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Abstract

In this thesis we investigate how the social organizatiofissf schools is influenced by the
morphology and the sensory capabilities of the individaale/ell as by those of their predators.
We do this by means of individual-based models. Here, behavithe group-level (schooling)
is a consequence of local interactions, i.e. the resporfsesligiduals to their neighbors and
the interactions between predator and prey. We demonsimatenodeling the embodiment and
the perceptual capabilities (situatedness) both of thiziohahls and of the predator influences
their interaction and therefore the patterns at the greuptl

Representing the individuals’ body affects the interwndiial spacing, such that large in-
dividuals occupy more space compared to small ones. Mag#him individuals’ situatedness,
by reflecting the masking of distant neighbors by closer presdricts interaction to the local
environment of the individual. This influences many schagplkharacteristics, such as nearest
neighbor distance or group speed, and in mixed schools @¢ land small individuals it leads
to the segregation of the two sizes. In large groups schapeshecomes complex and vari-
able and the distribution of individuals heterogeneoush wegions of high and low density
occurring anywhere in the school.

Modeling morphological and sensory constraints of a padatfects its success in captur-
ing prey and, therefore, influences whether schooling heh&beneficial for the individuals
or not. We demonstrate that when the predator is confusablexvhen its sensory capabili-
ties to detect the movements of individuals in a group arédid) schooling is almost always
beneficial.

In summary, incorporating aspects of embodiment and sitiness leads to more realistic
models, first, because the real world is reflected more atstyrand, second, because they lead
to a more realistic social organization of the simulatecsth
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Zusammenfassung

Diese Dissertation beschaftigt sich mit der Frage, wie sieiale Organisation von Fisch-
schwarmen von der Morphologie und der sensorischen Wahraeg der Fische abhangt. Wir
betrachten dabei sowohl die Fische, die den Schwarm bismuch die Raubfische, die den
Schwarm attackieren. Das Verhalten auf Gruppenebene dals@&chwarmverhalten, ist eine
Folge der lokalen Interaktionen, der Reaktionen der Fiselighre Nachbarn. Wir zeigen, dass
sowohl die Modellierung des Korpers (embodiment) als alehsensorischen Wahrnehmung
(situatedness) der Fische sowie der Rauber diese Ini@makt beeinflusst und darum auch zu
veranderten Mustern im Gruppenverhalten fuhrt.

Wird der Korper der Fische in einer Schwarmsimulation mliezogen, beeinflusst dies
die Abstande zwischen den Nachbarn, da dann grosse Inéiidhehr Platz beanspruchen
als kleine. Wird die sensorische Wahrnehmung modelliedein berticksichtigt wird dass
ein Teil der Nachbarn hinter solchen die sich naher befindgborgen und somit unsicht-
bar sind, interagieren nur noch unmittelbare Nachbarrs bezinflusst viele Eigenschaften des
Schwarmverhaltens, unter anderem die Distanz zwischemstén Nachbarn oder die Schwim-
mgeschwindigkeit des Schwarms. In gemischten Schwarbsstehend aus grossen und kleinen
Individuen, gruppieren sich dann grosse Individuen baygirmit grossen Nachbarn und kleine
Individuen entsprechend mit kleinen. In grossen Schwarmé vielen Individuen wird die
Form des Schwarms sowie die Anordnung der Individuen utmgggsig und andert sich auch
im Laufe der Zeit. Es bilden sich z.B. Einbuchtungen und Alilpsingen, wahrend gleichzeitig
die Dichte der Fische an einem Ort im Schwarm zu- und an eimetaran abnimmt, wie man
dies auch in der Natur beobachtet.

Modelliert man die morphologischen und sensorischen Brésikkungen des Raubfisches,
so beeinflusst dies seinen Jagderfolg, und bestimmt sowtit @b sich Schwarmverhalten fur
die Fische lohnt oder nicht. Wir zeigen insbesondere daks/&@mverhalten in den meisten
Fallen vorteilhaft ist, wenn der Raubfisch von der MasseB#ertefische “verwirrt” wird.

Zusammenfassend kdnnen wir sagen, dass die Miteinbemetwun Korper und sensorisch-
er Wahrnehmung zu realistischeren Modellen fuhrt. Eiegsveil solche Modelle die Situation
in der realen Welt genauer abbilden, andererseits weilusib au naturlicheren Mustern in der
sozialen Organisation der simulierten Fischschwarrhe fu
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Chapter 1

Introduction

Almost all living organisms, from bacteria to higher venaes, aggregate with con-specifics
for longer or shorter periods of time. Such aggregationsoften associated with striking
patterns, for example the dendritic structures of badtgrawth (Fig. 1.1), the living bridges
built by army ants (Fig. 1.2) or the diverse maneuvers disggaaby schools of fish (Figs. 1.3-
1.5). Common to these examples is their astonishing straladuder. Sometimes, individuals
are coupled so tightly that they seem to behave as a singd@isrg. Naturally, such phenomena
attract a lot of interest and raised two general questishy'andhowthe animals are doing it.

In some cases, it seems clear how such aggregations come dbahbe case of the bac-
teria, the tree-like structures form because of the intemadetween bacterial growth and the
availability of nutrients in their environment, suggesgtitnat there is no purpose or function
associated with the pattern (e.g. Ben-Jacob et al. 1994).

In the case of the army-ant bridges, the function is obviotie-ants build bridges to cross
gaps —, whereas the mechanism, how the ants coordinatedlves order to build it, it not
well understood (e.g. Anderson 2002). The difficulty is tlwatcan only observe the behavior at
the group level, from which is difficult to draw conclusioresdt to the actions of the individuals.

This is even more true for schools of fish and flocks of birdsabse they form very large
groups, in the case of herring comprising up to several omlindividuals. Even in such
large aggregations the coordination of movements is reatdek Astonishingly, the individ-
uals achieve this by simply adjusting their movements tsé¢hof their close by neighbors,
without a need for a leader or external cues, as suggestenblogical evidence (Parrish and
Viscido 2005).

Such a system, where there is no global control is caliddorganizedThe behavior at the
group-level (schooling) is a consequence of the actionseainidividual-level. Thus, schooling
is emergenfrom thelocal interactionsbetween the individuals.

In this thesis, we investigate such emergence of schookgior of fish by means of
individual-based models

Individual-based models focus on the actions of and intenas between the individuals
and are used to investigate how the behavior at the grougb-éenerges from the actions at the
individual-level. Such models, therefore, can elucidatequestiorhowfish school. By com-
bining an individual-based approach wekiolutionary algorithmshowever, it is also possible
to investigate the conditions under which schooling bedragiadvantageous, shifting the focus
on the questiomhyfish school.

The work described here is the result of combining such iddai-based modeling with

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1 — Fractal dendrites formed by bacterial growth. Reprintathwhe kind permission
of Eshel Ben-Jacob.

ideas originating fromembodied artificial intelligenceEmbodied artificial intelligence states
that intelligent behavior is the result of an agemteraction with its environmer{Pfeifer and
Scheier 1999), assuming that an intelligent agent mustiigodiedrepresented by a physical
body) andsituated(extracting information on its environment by its own sas3$oln contrast
to classical artificial intelligence, which focuses on eohalgorithms, the behavior of an em-
bodied agent depends both on its 'brain’ (the control athar) as well as on its morphology.

The concepts of embodiment and situatedness were devebdoigatally for building phys-
ical robots acting in the real world. But they fit seamlesalpithe individual-based simulation
approach. Both, embodied artificial intelligence and tltvidlual-based approach, emphasize
that behavior is generated by the individuals’ interactiath its environment, which in the case
of individual-based models are the other individuals. Remnore, by concentrating on local
interactions, individual-based models of self-organiggstems have an element of situatedness
already present by design.

In contrast to the real world, where situatedness and emimtiare given, in simulation
models their inclusion is a matter of degree. More or feweratteristics of the morphology
(and the physical properties of the environment) can berparated into the simulation.

In the present thesis, we demonstrate that including elen@rembodiment and situated-
ness in individual-based simulations leads to more réahsbdels, because they reflect the real
world more accurately. Furthermore, we find that their is@a also leads to more realistic
social organization of schools and are necessary in evolaty models to explain benefits of
schooling behavior.
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Figure 1.2 — A “living bridge” built by army ants Eciton burcelli). Photo by: Alex Wild.

1.1 Self-organized systems and emergence

Self-organization, a concept originally developed to ustdd physical systems (dynamical
systems theory, e.g. Ashby 1947; Nicolis and Prigogine 1,93 howadays applied throughout
science. It is important to understand many biological pineena (e.g. Camazine et al. 2001)
such as morphogenesis, homeostasis, and also colleceveptena such as structures created
by social insects and the dynamic properties of flocks ofdunald schools of fish.

Self-organization is the process, by whithuctureor order appears in a system without a
central or external mechanism imposing it. Instead, thballpatterns result from thaterac-
tionsbetween the constituting parts of the system. In other wdhdspatterns observed at the
global levelemergdrom the interactions at the local level (see e.g. De Wolfldotvoet 2005).
Interestingly, complex behavior at the global level caethe explained by surprisingly simple
local rules (Langton 1995).

Examples of self-organizing systems are: Rayleigh-B&oanvection cells (Getling 1998)
in physics, the Belousov-Zhabotinsky reaction (Zhabéirs964) in chemistry, or in biology
the aggregation behaviors found in many species of aniniasag overview see Camazine
et al. 2001; Hemelrijk 2002a).
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Figure 1.3 — A school of bluestripe snappetytjanus kasmira Photo by: Jim and Becca
Wicks.

1.2 Individual-based models

Mathematical models of self-organized systems in generlcd aggregating animals in par-
ticular can be classified into two categories, Eulerian aagrangian models.

Eulerian models use partial differential equations to dbsdhe flux of a property (how that
property changes spatially and temporally). In the cas@gfegating animals this property is
the population density. While using partial differentigjuations for modeling has certainly
its merits due to the mathematical tools available, this@g@gh has the disadvantage, that it
does not allow to trace the properties at the group-levet bathe behavior of the individuals
(DeAngelis and Mooij 2005) and many biologically relevasatures, such as perceptual lim-
itations and individual variations (e.g. in body size), manbe incorporated into such models
(Gautrais, Jost, and Theraulaz 2008).

In Lagrangian models, aggregation behavior is modeleceanttividual level, by specifying
the equation of motion of the animals. For this reason, tmey#éen referred to as individual-
based or agent-based models. The individual's behasanavements for example, is specified
by an algorithm, that describes how an individual respoodtstneighbors, and possibly to its
environment and its internal state. These behavioral mdespplied in turn to all individuals
and integrated over time, usually by running a computer Etian. Thus, individual-based
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Figure 1.4 — A shoal of maldives surgeon fishcanthurus leucosternpnPhoto by: Uxbona
(Wikipedia)

models use a bottom-up approach (c.f. synthetic methodeP#nd Scheier 1999), that starts
with the individuals and aims to explain the patterns at tteaip-level as emergent properties
(Grimm 1999), which makes them perfect tools to investigajgregation behavior of animals.

For more theoretical background on Eulerian or Lagrangiadets, see e.g. Grinbaum and
Okubo (1994).

1.3 Evolutionary algorithms

Evolutionary algorithms were developed as biologicallpimed tools for optimization of engi-
neering systems (see e.g. Back, Fogel, and MichalewicZ)1®everal techniques have been
developed over time (evolutionary programming, Fogel €1866; genetic algorithms Holland
1975; and evolution strategies, Rechenberg 1973) whictegsha common basic algorithm:
Starting from a population of random solutions for a giveolpem, their performancdi{nes3

is evaluated. During (roulette wheeklection a set of solutions is picked randomly but based
on their fitness values, such that good solutions have a hggbéability to “survive”. In the
following recombinatiorthe selected solutions are combined and occasionallyeditendomly
(mutatior) to obtain a new population of solutions. By repeating fitnegaluation, selection
and recombination, the average fitness in each generatisolations increases. The process
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Figure1.5— A school of Selar crumenophthalmus forming a tight “baPhoto by: Bo Pardeau
(uwphotographyguide.com).

stops, when there is no improvement or the desired levelraddg has been achieved.

In this thesis, we will be using genetic algorithms to evabedooling behavior. As our
goal is to find the conditions under which schooling is bermafigve vary the the abilities and
behaviors of a predator, and use the genetic algorithm tdf &shooling is beneficial under the
given conditions or not.

1.4 Embodiment and situatedness

The concepts of embodiment and situatedness (among otrers)been proven very fruitful
in guiding the development of models and robots in the fieldrobodied artificial intelligence
(Pfeifer and Bongard 2007; Pfeifer and Scheier 1999).

Embodiment and situatedness couple an agent to the real wrimore generally, to its
environment: An embodied agent possesses a physical bodgt tm the real world and a
situated agent reacts to its environment according to fleenmation it extracts through its own
sensors. Biological agents, e.g. animals, are always eth@hd situated. Therefore, in
our biological models, the embodiment and the situatedokfise agents or individuals, are
important aspects.

Historically, those concepts were developed when it becdese, that the purely computa-
tional approach of classical artificial intelligence wasdamentally flawed.

Classical artificial intelligence was successful in taskshsas playing chess or proving
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mathematical theorems, i.e. tasks that could be describmraal systems because they reside
in well defined (symbolic) domains. On the other hand, evayydsks such as locomotion or
object manipulation, that are typically performed in thalr&orld, proved to be notoriously
hard for classical artificial intelligence. Partly, becadke brain is not a computer that does
symbol manipulation. Instead, body and nervous systemnaeparable, and behavior is not
understandable looking only at either one of them. Instbabavior is generated by the inter-
action of body and mind with the environment, i.e the realldior

Embodied atrtificial intelligence adopts the synthetic rodtilogy of “understanding by
building”, by creating artificial systems, usually robdisreproduce certain aspects of natural
systems. In this thesis, however, we are not concerned wofitbts, but with individual-based
simulations. However, investigation of group behavior byams of individual-based models
also employs the synthetic approach.

Here, in this thesis, we will do a first step in transferring toncepts of embodiment and
situatedness from field of embodied artificial intelligeta¢he individual-based modeling ap-
proach and apply it to fish schools.

1.5 Biological aspects of fish schools

Fish schools express a great variety of patterns (see Figsl.q for a few examples) and it is
estimated that arourizb% of the species, e.g. herring and achovy, aggregate thramgheir
life (obligate schooling, Shaw 1978), and even more, e.gl axad saithe, form schools some
of the time (facultative schooling). Often, it is distingbed between shoaling, which refers to
any kind of social aggregation of fish (Fig. 1.4), and schaglivhich more specifically denotes
synchronized, i.e. polarized, groups of fish that move (Eig, Pitcher 1983).

In the remainder of this section we review briefly the biotagiliterature on why and how
fish school. For more thorough background information wegssgPitcher and Parrish (1993)
and Parrish and Hamner (1997).

1.5.1 Benefits - Why do fish school?

The fact that many species of fish live in schools at leastdorestime suggest that schooling is
beneficial to the individuals that constitute the groupdiétr and Parrish 1993). The following
paragraphs provide an overview on the most important berifitalso disadvantages.

Predator avoidance and dilution of attack. Because of the optical properties of water (ab-
sorption and scattering) groups cannot be detected fronimawger distances than single indi-
viduals (Murphy 1980). Therefore, it takes a predator langdind prey, if it is grouped rather
then randomly dispersed (predator avoidance, Partrid§2)1% the predator, once it detected
a school, can only eat one individual or small proportiorhef group, while the others can flee,
schooling is a good strategy (Treisman 1975). Furthernibeglarger the school, the lower the
probability for an individual fish to be the one that is atedkdilution of attack, Turner and
Pitcher 1986).

Predator evasion. Fish have evolved a number of strategies, to evade a predatong them
forming very dense balls (Fig. 1.5), mills and vacuoles atbilne predator. The mostimpressive
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behavior is probably the flash expansion, where the indalgltapidly swim in all directions,
that looks like an explosion (see e.g. Pitcher and Wyche D@&3tcher and Parrish 1993 for
an overview).

Predator confusion. Connected to the evasion strategies is the confusion gfféitinski
and Heller 1978), which denotes the inability of the predaébovisually lock onto one target
(Landeau and Terborgh 1986) because of the sensory oveytweiated in the predators visual
system (Broadbent 1965).

Predator detection. Fish in schools are able to detect predators earlier bedhasgask of
watching for predators is shared among many individualagyneyes’ hypothesis, Bertram
1978) and thus evade it earlier than single individualssT$iibecause fish observe each others
behavior closely. If a fish detects a predator (or food, seepaagraph), it adapts its behavior,
which is detected by its neighbors, thus effectively “shgfithe information.

Foraging advantages. Schooling also provides two mechanisms that improve thagiog
success of group members. Individuals find food faster Isecad the 'many eyes’ effect
(Pitcher and Magurran 1982) and, because they are bettieicped against predators than soli-
tary individuals, they can also allocate more time to fegdMagurran and Pitcher 1983).

Hydrodynamic benefits. Whether there are hydrodynamic benefits is still debateel €sg.
Weihs 1973 or Partridge and Pitcher 1979), but it seemseigltkat they were a primary reason
for the evolution of schooling behavior (Pitcher and Pardi893).

Disadvantages. Large predators, such as sea mammals, exploit the tendépegyoto form
dense balls (Norris and Dohl 1980). Furthermore, indivisiwathin a school, are also competi-
tors, e.g. for food (Bertram 1978).

Group size. The benefits and costs of schooling behavior depend on thegiae, i.e the
number of individuals in the school. The effectiveness @dattor confusion, for example, is
higher for larger groups (Landeau and Terborgh 1986), biatrger groups competition for food
is also higher (Bertram 1978).

Position within the school. But also the position of the individual within the group isgor-
tant when balancing costs and benefits. For example, positiahe interior are considered the
safest location (e.g. Bumann 1993), but for hungry animasnbost preferable positions are
those at the front, because here they will encounter food &irg. Krause 1993a).

Size sorting. In schools, even if they consist only of one species, indiald vary in body
size. Body size affects both the foraging abilities and tleelation risk. Small fish, for example,
have higher energetic requirements (Wootton 1994) andtdhe @ame time at a disadvantage
when competing for food with larger companions (Krause 19®@n the other hand, large
individuals, if among small ones, are more conspicuous aedefore less protected by the
confusion effect (Peuhkuri, Ranta, and Seppa 1997). Torereindividuals seem to prefer to
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school with others of similar size, which leads to size-assbschools (Peuhkuri 1999) and to
size-segregation within schools (Pitcher, Magurran, athadfds 1985).

1.5.2 Mechanisms - How do fish school?

Here we will review very briefly properties of fish schools amhsory systems in fish, in order
to utilize them for the development of schooling models.

Properties of fish schools

Fish schools are cohesive aggregations of tens up to nslbdhish with clearly defined borders.
Although the inter-individual spacing is very variable stusually around one body-length.
Visually, the most striking property of fish schools is thgatarization and synchronization, the
parallel orientation of the individuals and their seemynghoreographed movement. Despite
this order, individuals change positions frequently areytare not arranged regularly (like the
atoms in a crystal, Partridge 1982). Indeed, the movemérasytwo individuals in a school
are only weakly correlated (Aoki 1980; Partridge 1980). Séheesults suggest, that schools
have no leader. Instead, the individuals match their sppé@aentation to the average of their
neighbors. In other words, the entire school is the leadértla@ individuals are the followers
(Niwa 1996).

Visual (e.g. Osborn 1997) and acoustic methods (e.g. Graed&Viebe 1997) have been
used to capture the distribution of individuals and othatistics of schools of many thousands
of individuals (e.g. Misund 1993), to determine the dethit®sitioning of neighbors (e.g.
Partridge et al. 1980) and also to track the trajectoriesndividuals (e.g. Hemelrijk et al.
2010). These studies show that, first, there is great vanidioth within and between schools
and between species. But, second, that qualitatively cterstics are very similar across taxa,
thus suggesting common underlying mechanisms (ParrisViaoitio 2005).

Conclusions for modeling schooling interactions. It has long been hypothesized that fish
engage in social interactions, i.e. react by few simple ienal rules to movements of their
neighbors (Breder Jr. 1954; Partridge 1982) to achievedheding behavior we observe.

Clearly, anattractiveforce must exists in order for a school to be formed in the filate,
and for the individuals to stay close to each other (Morravt 948).

Individuals maintain an empty space around themselves ttrere must also berapulsive
force. The size of this area is different between speciestaasdigger for larger individuals.
The distance to the nearest neighbor is, on average, arawnbtarly length (Partridge 1982)
but this varies a lot within and between schools and dependsroumstances, i.e. whether
schools are under predatory attack or not. The avoidanceeryf close neighbors must be
strong, because even during sudden and fast maneuversluals/rarely collide.

Attraction and repulsion are contrary to each other. Whejautsion is evidently stronger
at shorter distances or for the closest neighbors, respégtattraction must be stronger than
repulsion between individuals that are further apart (Brelt. 1954).

The fact that in a fish school all members face in the sametdrebas been explained
differently. For example Morrow Jr. (1948) reasoned thdt ise vision to orient themselves
parallel to their neighbors. On the other hand, the parafiehtation could be a by-product of
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the forward movement or it could be induced externally, &.the fish have a common goal or
if there is a water current (as fish tend to head upstream).

Sensory systems in fish

In order to school (but also for other activities), fish regueensory systems that allow them to
assess quickly and accurately the small changes in thginbers positions an headings relative
to their own.

It has been speculated already very early, that vision isgity the most important sensory
modality for schooling (Morrow Jr. 1948). But also the latidine was suspected to be impor-
tant, at least for avoiding collisions (Breder Jr. 1954)tdraPartridge and Pitcher (1980) have
shown, that fish are able to school even without vision orevittihe lateral line, but not without
both of them. Although there is indication that also otherses are also involved in schooling
(e.g. olfaction, Pitcher and Parrish 1993) vision and tieréd line are generally considered to
be the most important ones.

Because the lateral line only works over relatively shastatices of 1-2 body lengths (Lars-
son 2009) its main functions is probably to avoid collisi@ml, because it senses pressure
waves and water flow, to determine the speed and orientatiaearby neighbors (Partridge
and Pitcher 1980). Vision is considered more importantdagker range interactions, for exam-
ple to keep the school from splitting, and to maintain positnd angle between fish (Partridge
and Pitcher 1980). Because of scattering and absorptiemgéfulness of vision also degrades
quickly with distance (Pitcher and Parrish 1993), such ithatonly effective for a few meters
(depending on water conditions).

Conclusions for modeling individual perception. To guide the modeling process, it is im-
portant to know which information about the environmentvaikable to fish, otherwise our
models might include unrealistic assumptions. First, beeaf the limited range of their senses
in water, fish can only perceive their local environment. yfaee clearly able to recognize their
con-specifics and it is reasonable to assume, that usirgasid the lateral line fish can assess
direction and distance to neighbors (i.e. their positias)ywell as their orientation and speed.

1.6 Modeling fish schools as self-organized systems

Computer-based models have been used to investigate atjgregehavior of animals in gen-
eral and schooling in particular for two reasons.

First, the biological mechanisms underlying schoolingawetr are still not well under-
stood. Partly, because it is difficult to record the behawbthe individuals, especially for
large groups. But mainly, even if detailed data were avildiiecause the individual behaviors
cannot be determined from the behavior observed at the gevah Group behavior, by its
nature, is a result of the interactions between its membetsansequently cannot be analyzed
by examining a single individual. Therefore, it is neceggarcreate a behavioral model of the
individual that includes our hypotheses about the animmaponses to its neighbors.

Second, because of the complex interaction among the thdils in a group, we cannot de-
termine the outcomes of such a model directly, i.e. by mdoglking at the rules of interaction.
Instead, we have to determine the behavior by means of cempmulations. The emerging
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patterns can then be compared to the properties of real Isctoogalidate our assumptions, and
to get a deeper understanding of “how” the animals form tloejgs we observe in nature.

Since the first attempts on describing how fish school (Brddet951; Parr 1927; Shaw
1978) and the first simulation models thereof (Inagaki, aka, and Kuroki 1976) the focus
was on the question, which individual behaviors lead to ethg. Consequently, the models
are kept as simple as possible in order to determine whichvw@is are necessary: individuals
are identical and they react to their neighbors by adjustpeed and orientation only.

All those models share a common structure that consistseé tomponents: First,selec-
tion criterion describes by which neighbors an individual isuaficed. Second, a set of rules
specifies the behavioraeésponseof an individual to an influential neighbor. And third, an al-
gorithm that determines how the (possibly conflicting) hedial responses of an individual to
all its influential neighbors amnixed

Selection of interaction partners. Concerning selection almost all models employ either a
criterion based on a maximal interaction range (often wittrad field at the individual’s back,
see Fig. 2.1 and e.g. Couzin et al. 2002; Niwa 1994; ReuteBasckling 1994) or one that re-
stricts the interaction to the nearest neighbors, sometimes referred to as numericarprefe
(e.g. Aoki 1982; Huth and Wissel 1992; Viscido, Parrish, @rdinbaum 2005).

The intuition behind both approaches is that individuadsaat omniscient. Their perception
of others is limited by distance and by the number of neighlibeir sensory systems can
handle.

In what follows we will refer to models using a maximal intetian range asnetric models
(because they use a criterion based on metric distancepdhdde restricting the interaction to
then nearest neighbors &spological modelgbecause they use a criterion based on topological
distance). For more information on the differences betwaetric and topological approaches
see Giardina (2008).

Mixing if the influences of the interaction partners. Concerning the mixing element, most
models use a sum-of-forces approach, which essentiallyages the behavioral responses to
the influential neighbors (e.g. Aoki 1982; Reuter and Breck{L994; Viscido, Parrish, and
Grunbaum 2005). Sometimes, the individuals are weighi#erently, e.g. according to their
position (Huth and Wissel 1994b), to represent a priorityhaselection of the influential neigh-
bors.

Behavioral response. All models implement attraction and repulsion, in orderdooups to
form and to avoid collisions within the group. To achieveabt individual spacing, some form
of balance of force must exist, which can be achieved by ushagt-range repulsion and long-
range attraction (e.g. Warburton and Lazarus 1991). Mostetsdound that a weak alignment
force is needed in addition (e.g. Aoki 1982) in order to gdapped schools. Thus the “rules”
that describe the behavioral response to the neighbors are:

Repulsion: Move away from neighbors that are too close.

Alignment/Velocity Matching: Adjust the heading and the speed to match that of nearby
neighbors.

Attraction: Move towards neighbors that are further away.
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The distance dependency of these responses has been imfgdnmetwo ways. First, by using
so called behavioral zones within which neighbors are éceagually (e.g. Huth and Wissel
1992). The response is either repulsion, alignment orcibra depending on the distance to
the influential neighbor.

Second, by using continuous weight functions (e.g ReutdrBaeckling 1994; Warburton
and Lazarus 1991) the response to an influential neighbogesagradually with distance and
is usually a combination of repulsion and alignment or attom and alignment.

Individual-based models of schooling contain a number sfiagptions about poorly-under-
stood aspects of grouping behavior, for example the datdg®cial interactions, i.e. the be-
havioral responses, but also the selection of influentiadhimrs. Therefore, there is great
variability across models in the details how those are imgleted.

1.6.1 General properties of schooling models

Despite the differences among the schooling models, threrseveral general properties that
hold for all of them.

For example group density is affected by relative strendttepulsion and attraction, but
also depends on the number of interacting individuals:

e Increasing attraction or weakening repulsion leads to elegioups (e.g. Mogilner et al.
2003; Warburton and Lazarus 1991).

e Large groups (that consist of a larger number of individuale also denser. This is
because more individuals are attracted to each other, lazger number of individuals
that push from periphery towards the center of the schoak i§Hound in metric models
(e.g. Warburton and Lazarus 1991) but also to some extewipmldagical models (e.g.
Viscido, Parrish, and Grinbaum 2005). This is also disedigs chapter 2.

e Likewise, increasing the number of influential neighborsapological models leads to
denser schools (e.g. Viscido, Parrish, and Grinbaum 2@&iilar results are described
in chapter 4.

The relative strength of alignment, on the other hand, &ffpolarization of the individuals and
the speed of the school:

e If the alignment tendency is weak, the school looses its ite and the polarization
of the individuals is low, which results in a slow group speeecause individuals head
into different directions and are continually turning tooal/neighbors. Increasing the
strength of alignment leads to polarized groups whose sigeiedreased, because here
individuals agree on a common swimming direction (e.g. MigcParrish, and Grinbaum
2004). The connection between polarization and group sigesdo discussed in chapter
2.

e If the range of distances over which individuals align withighbors is small (compared
to the range of attraction), schools start to form a ring ooraig (“milling”) because
they align only with their immediate neighbors but are sifracted to others further
away, which causes the group to form a loop (Couzin et al. 2@autrais, Jost, and
Theraulaz 2008). If alignment is effective over largeramstes, on the other hand, parallel
orientation becomes more important and the formation obp lmecomes improbable.
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A few studies explored the impact of individual differencesthe group-level behavior and on
the positioning of the individuals:

¢ Individuals with stronger attraction or weaker repulsiesponses, i.e. those that have a
shorter preferred nearest neighbor distance, end up inetitercof the group, others are
pushed to the periphery (Couzin et al. 2002; Romey 1996 pridly the same results,
but connected to the body size of the individuals, are detnatesl in chapter 3.

¢ Individuals with a higher preferred speed move to the frdrthe group, whereas those
with a higher turning rate slow down and end up at the rear ¢@oet al. 2002).

This is only a small part of the findings, but they are thosehugktare important to get a basic
understanding how the selection of influential neighbdms, hiehavioral responses and their
mixing influences the behavior at the group-level.

1.7 Artificial evolution of schooling behavior

The models reviewed so far focused on the mechanisms thatajerschooling behavior, i.e.
they focused on the questibowschooling behavior emerges. However, individual-based-mo
els can also be used to investigate the circumstances utdgehn schooling behavior is benefi-
cial, i.e. to help elucidate the questiatny schooling behavior evolved.

This can be done at least in two ways. First, by introducingealg@tor into an individual-
based schooling model. Here, the effectiveness of stesdmith for the prey as well as for the
predator can be tested directly (Nishimura 2002; Zheng. &0415).

A second approach uses artificial evolution (e.g. genegorghms) to generate or adjust
the behavioral responses of the individuals. Artificialletion is used generally to optimize a
system according to a fitness function. In the context of slthg, there has been one failed
attempt to evolve schooling directly (Zaera, Cliff, and 8m1996), using an engineered fitness
function that should have rewarded schooling behavior. Jded of the evolutionary process
was to optimize the parameters of a neuronal controllerdtessred the individuals. However,
while the method was successful to generate simple shodlsofw the parallel alignment of
the individuals), it was impossible to evolve schoolingdebr. The conclusion was surprising:
Apparently, we do not know how to come up with a fitness functlwat induces schooling, but
not other types of aggregation behavior, i.e. althoughaliguve can recognize schooling
instantly, we cannot put that knowledge into an objectivefion.

An alternative approach is to use an “implicit fithess fuoctj i.e. a predator. This has been
done by Oboshi et al. (2002) but only to evolve evasion gjrateand not schooling behavior
in itself, as basic schooling behavior was prespecified. h&ucexperiment gives insight as
to which evasion strategies are beneficial, but it cannole@xwhy the fish school in the first
place.

1.8 Outline and contributions of this thesis

This thesis is organized around 4 papers, 3 of which have pabfished in international

scientific journals and proceedings of conferences. Thetfirs introduce embodiment into
individual-based simulations, the second two focus morsitwatedness, i.e. how individuals
or a predator perceive their environment.
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1.8.1 Embodiment

So far, in almost all simulations of schooling individuate anodeled as mass-points, because
agent movement was considered more important than thestanude (Parrish and Viscido
2005).

Here we will develop a new model, where individuals are repnéed as lines (reflecting
both body length and its elongated form). Furthermore, ameform of the individual is taken
into account in the behavioral response, e.g. larger iddads have a larger personal space and
thus avoid neighbors a larger distances.

In chapter 2 we study how body size and form of artificial fisteetf social organization
of schools, i.e. group form, density, polarization, tuhmate and speed, in schools consisting
either of large or small individuals.

In chapter 3 we investigate how differences in body size teagze segregation in hetero-
geneous schools of different ratios of large and small iddials. We compare the patterns to
when individuals choose neighbors according to their famitiy (kinship) or by similar body
size (active assortment) and in combination with risk aso@ke (where small individuals avoid
larger neighbors more strongly).

1.8.2 Situatedness

Fish usually perceive only a small part of the school. Thslteen modeled using either a max-
imal interaction range (metric models) where individuakeract with all those located within
this range, or by restricting the interaction to theearest neighbors (topological models).

Surprisingly often, in order to enhance stability and toidvivtagmentation of schools,
model parameters (such as interaction range) were chosén that an individual interacted
with a large fraction of the group (e.g. Huth and Wissel 19R2uter and Breckling 1994;
Romey 1996; Warburton and Lazarus 1991).

However, in reality, even for a smaller interaction ranga tower number of nearest neigh-
bors, many individuals might not be perceivable, althodgdytare within sensory range, be-
cause of masking by closer neighbors. Interestingly, tras already recognized very early
(Breder Jr. 1954; Huth and Wissel 1994a), but has never lbeengorated into schooling mod-
els so far.

As an extension to our model, we implemented such maskingighbors. Here, individ-
uals can only perceive (and interact with) those that arehidten behind closer neighbors,
thereby making the model better situated.

In chapter 4 we study, how such “obstructed perception” civinestricts the interaction to
the local environment of the individual, influences the aberganization of schools.

By introducing a predator in our model (chapter 5) we study ¢bnditions under which
schooling protects the individuals from predation. In cast to other studies, that were con-
cerned with the evolution of predator evasion strategresur model the individuals are not
aware of the predator, because the purpose of our model stéondine the conditions neces-
sary for schooling to be of “passive” advantage. Specificailchapter 5 we describe whether
predator avoidance and predator confusion were presenirimodel, depending on the per-
ceptual abilities of the predator, its speed and the hagdilne required to consume a prey.
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1.8.3 Implications

Chapter 6 summarizes our findings and the conclusions thdiedrawn from them, finalizing
the implications of embodiment and situatedness on thekoanization of fish schools.
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Chapter 2

Collective Effects of School Size, Body Size
and Form’

Abstract

Individual-based models of schooling in fish have demoteiréhat, via processes of self-
organization, artificial fish may school in the absence of @adkr or external stimuli, using
local information only. We study for the first time how bodzesand body form of artificial
fish affect school formation in such a model. For a variety @iug sizes we describe how
school characteristics, i.e. group form, spread, dengittarization, turning rate and speed,
depend on body characteristics. Furthermore, we demotestheat nearest neighbor distance
and turning rate of individuals is different for differerggions in the group, although the agents
are completely identical.

Our approach shows the significance of both self-orgarozesind embodiment in modeling
of schools of artificial fish and, probably, in structuringwols of real fish.

2.1 Introduction

In studies of artificial life and artificial intelligence tledfects of self-organization and embod-
iment are important topics. In the present paper we invatigoth aspects in the context of
simulated artificial fish schools. We analyze how self-orgaiion may lead to emergent be-
havioral phenomena at different group sizes (Camazine €08fl) and how this process may
be affected by characteristics of the body and may influentieative behavior (Pfeifer 2000;
Pfeifer and Scheier 1999). Several individual-based nsdkekchooling in fish (Aoki 1982;
Couzin et al. 2002; Huth and Wissel 1992, 1994b; Niwa 1994jt&eand Breckling 1994;
Romey 1996; Vabg and Ngttestad 1997) have revealed thitialtiish, which use local in-
formation only (like flocking birds, Reynolds 1987) may sohim the absence of a leader and
external stimuli. Further, some of them have shown certallective effects of school size, but
the origination of these effects have not been explainedstBgtying both group size and body
characteristics (forms and sizes), we hope to obtain imsigtihe processes that lead to these
collective effects.

lappeared as H. Kunz and C. K. Hemelrijk (2003rtificial fish schools: collective effects of school size,
body size, and body form.“ ImArtif. Life. 9.3, pp. 237-253

17
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Our model is inspired by those from Huth and Wissel (1992 4b99Reuter and Breck-
ling (1994) and Niwa (1994). In these models schooling is msequence of the tendency
of fish to avoid others that are close, to align their body tmsthat intermediate distances
and to move towards others that are far away. Shaw (197 dirsuggested such distance
dependent mechanisms and distinguished between poladaeddinated 'schools’ and non-
polarized, non-coordinated 'shoals’. Here, we invesadhe former only.

In earlier models of fish schools, fish are represented asgomma their regions of repulsion,
aligning and attraction are concentric and circular. Thogginot reflect the form and size
of the agent’s body nor its sensory capabilities. Modeling agent’s body with its sensory
characteristics may alter the way the agent is perceivedhmsr® as well as the way in which
it perceives its neighbors itself. Therefore, we compatesting behavior of artificial fish
represented as lines to those represented as points. Faotifese not only vision, but also the
lateral line is used in schooling (Bleckman 1993; Partridgd Pitcher 1980). The lateral lines
consist of a series of hydrodynamic sensors along both sidhs body (Bleckman 1993). They
detect stimuli (i.e. changes in water flow) close to the baay.d/NVe reflect this in the model by
making the shape of the repulsion and aligning areas @liipform. Therefore, we compare the
collective behavior between artificial fish with circulaeas of aligning and repulsion versus
those with oval-shaped ones. Further, we investigateaalifish of two different body sizes.
Here, we follow the findings by Olst and Hunter (1970), thagéa fish have larger repulsion
areas, but the increase with body size is less than propaitio

In sum, we compare the collective behavior of artificial fillifferent body size and form
in increasing detail for various group sizes. Apart fronditianal statistical measures we use
also measures developed by ourselves (i.e. a measure @l $pahogeneity, of the relative
location of the center of gravity within the school, and obgp form). We will explain how
self-organization and embodiment influences collectiteepas of artificial schools of different
sizes. Subsequently, we will indicate how these results gugge studies of real fish.

2.2 Methods

Our model contains aspects of several models by others.ihitee model by Huth and Wis-
sel (1992), fish react to others by repulsion, by aligning lapé@ttraction. In correspondence
to Reuter and Breckling (1994) and Niwa (1994) these belnaliendencies are weighted ac-
cording to distance, and thus result in graded transitietsden the different motivations.

Fish schools have been modeled in 2-D as well as in 3-D. Cangparparticular 2-D model
(Huth and Wissel 1992) to a 3-D one (Huth and Wissel 1994bgdditional phenomena were
obtained in the 3D-model. Therefore we decided to implernanimodel, SchoolingWorld, in
2-D.

2.2.1 The Model

The model consists of a world that is continuous (not a gndyich artificial fish can move.
The environment is homogeneous without structure. Timeg®ds in discrete stegst. Each
time step all artificial fish are activated sequentially indam order. Note that for parallel
activation (where all agents are activated simultanegubl same results are obtained. The
model was implemented in C. Octave and Gnuplot were usedataerahalysis.
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Position, Speed, and Heading

At the beginning of the simulation, a certain number of avtdi fish are put randomly in a
starting area o2.5 x 2.5m and are given a random orientation, which was chosen batWee
and90° in order to result in a single school. The initial speed ofalgents was set tq,, (see
Tab. 2.1).
Attimet agent is located at positior! and moves with a velocity! during one simulation
stepAt.
x! = xI7A 4 vIAL (2.1)

The velocityv! is determined by the agent heading(orientation of the vectox!) and by the
speed! (length of the vectox!) as follows

t t
vi= (“@ oS O‘g) (2.2)

Similar to certain models of fish schools (Aoki 1982; Couziale2002; Huth and Wissel 1992,
1994b), the speed’ of agents does not depend on that of other agents, but is apendent
stochastic variable. It is drawn from a Gaussian probatuistributionP (vayg, vsq) €ach time
step. The stochasticity is chosen to reflect unspecifie@tvan in speed.

The heading:! of agent: is determined by

2

ol = P(a!™2 + WAL, asg) (2.3)
S——— ——

t

ai,avg

wherea!™*" is the agent’s heading in the previous simulation stepugrid its rate of rotation,
which depends on the interaction with the other agents (@#@ning section). a! is again
drawn from a Gaussian distributi@t{a; ,,q, sd)-

Repulsion, attraction, and aligning

The artificial fish have three types of behavioral responsasely repulsion (short distances),
attraction (intermediate distance), and aligning (gredigtances) (e.g. Breder Jr. 1954; War-
burton and Lazarus 1991). This has often been modeled hyirspkihe region surrounding the
agent into behavioral zones with discrete boundaries tugh and Wissel 1992), therefore an
agent triggers exactly one type of behavioral response gighbor. An alternative approach,
which is adopted here, is the use of continuously varyintadise dependent weight factors
to determine the effectiveness of repulsion, aligning atréetion behaviors (e.g. Niwa 1994;
Reuter and Breckling 1994). Thus, an agent triggers alkthypes of behavioral responses in a
neighbor, although with different effectiveness.

In their experimental studies of real fish, Partridge andHeit (1980) have shown that the
three behavioral responses are mediated by different geagstems (lateral lines and visual
system) to a different extend. Cutting the lateral lines esaik difficult for fish to align their
swimming direction to others and to keep others at a mininsthdce, whereas blindfolding
fish impairs social attraction.

We assume that attraction, mediated by vision mainly, dpstia the complete visual range
around the agent apart from a “blind area” in the back with mgleofy = 60° (Fig. 2.1A).
For aligning, for which the lateral line is considered to be most important sensory system,
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repulsion

B

Figure 2.1 — Schematic representation of the different behaviorabmgof an agent. The agent
is located at the center. The outermost circle shows itsavianger,, which can be divided
into three functional areas, namely attraction, aligniragd repulsion.A: point-agents (gray
indicates the attraction and repulsion regions of smallmatge black of large ones). Note that
line-agents are the same, but for a line representing themthybinstead of pointB: elliptic-
agents; body size is indicated by the small line in the ce&ee text for further information.
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Parameter

Symbol and value

Simulation time step

Average agent speed

Standard deviation of agent speed
Standard deviation of agent heading
Default rate of rotation of the agents
Body length

Scaling factor for repulsion
Scaling factor for alignment
Scaling factor for attraction
Repulsion range

Alignment range

Attraction range (visual range)

Eccentricity of repulsion and alignment regions

At =0.2s
Vavg = 0.3M/s
vsg = 0.03mM/s
Osg = %radz 2.5°
w9 = rrad/s
Point agentsb = 0.0m
Large agents (line, elliptich = 0.2m
Small agents (line, elliptic) = 0.1m
Large agents:= 2.0
Small agentsa, = 1.0
a, = 1.0
a, = 1.0
Large agents:= 0.6m
Small agentsr,, = 0.3m
Large agents, = 2.0m
Small agentsr, = 1.0m
re = 5.0m
Point and agentse = 0.0
Large elliptical agentse = 4.0
Small elliptical agentse = 2.0

Table 2.1 — Simulation parameters.

body size:

‘rep. {

alignment

attraction

‘ large

‘repA alignment

attraction

‘ small

2

T

|

|

|
e
15 |
|

|

|

weight

d[m]

Figure 2.2 — Plot of the weight factors),(d), w,(d), andw,(d) for small agents (solid lines)
and large ones (dotted linesj.denotes the distance to the neighbor. Regions are classitied
repulsion, aligning, and attraction by the largest of thesthweight factors (top of figure).
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there is an additional “blind area” at the agent’s front (AdLA, v’ = 60°). Thus the lateral
line is most effective at the sides and it operates at intdiate distances. Repulsion, mediated
by both lateral line and vision, operates in the completaalisange (Fig. 2.1A).

Repulsion implies that an ageitiurns away from a close-by agenivith an rate of rotation
(angular speed) of

(2.4)

—w®" if 0!, > 0 (avoid agent to the left)
Wy = . . .
w%"  otherwise (avoid agent to the right)

where¢!; = Z(vi,x! — x!) (see Fig. 2.1B) and**' is the “default” rate of rotation of the
agents (Tab. 2.1), reflecting their movement capabiliésaction implies that an agenturns

towards an agentwith a rate of rotation of
Wy = wdefﬁfj (2.5)

Note that, in contrast to repulsion, the rate of rotatigrcaused by attraction is proportional to
03 Allgnlng implies that agentmatches its orientation to that of aggriy turning with a rate
of rotation

Wy = W fj (2.6)
whereg;; = Z(v’, v}) is the angle between the orientations of the two agents 2FI@). The
actual behavioral reaction depends on the weights of repuis,, attractionw, and aligning

Wp,

w,(d) = min (%% 10.0) (2.7)
(=5
we(d) =0.2a.e \ 7 (2.8)
(55)
wy(d) =age \ 7 (2.9)
(see Fig. 2.2 and Tab. 2.1 for the parameters) due to thendesta the other agent
dij = |1} — x| (2.10)

The combined behavioral reaction, i.e. rate of rotatioragdnti due to the interaction with a
single ageny is calculated as a weighted sum

wi; = wy(dy; )wy 4+ wa (di;)wa + wy(df;)wp (2.11)
The weight factors shape the behavioral reaction to depemiihciously on the distance. There-
fore, there is no discrete behavior switching. Nevertlglésr convenience, we label three
behavioral regions after the largest of the three weighfaatprs (Fig. 2.2). When agenper-
ceives more than one other ageériby either vision or the lateral line), its behavioral respe
(rate of rotation) is calculated as the average of the respinvould display when considering
each neighbor independently, i.e. the average of the rat#aifon caused by each of the agents
j separately

1
w; = N, Z Wi (2.12)
j

Here, N; denotes the number of agents perceived by agehlote thatw;?j describes the be-
havioral reaction (rate of rotation) of agenih response to the presence of aggfinot to be
confused with the rate of rotatiasi of agenty).



2.2. METHODS 23

t
Di/'
t
=== | D ji
t
P d i

Figure 2.3 — Measures of distance between agerdg.denotes Euclidean distance between
the centers of the two agent@fj and D§i denote an alternative approach calculating agent
distance, where both body size and form is reflected in agstartte (see text for details).

Body size and form

Three aspects of the agents were varied to reflect body dbasiics. First, we represent the
agent’s body by a line of variable lengbthnstead of a point (Tab 2.1). This does not change
the agent’s behavior directly, but it alters the way the ageperceived by others as follows.
Instead of using the distance between the agents’ cedftete measure distance between two
agents, the distance between agenitenter and the nearest point of ag¢ntlenoted ad)j;
(Fig. 2.3) was used in (2.11). Note thaf; andd;; differ depending on the body siz€Fig. 2.3).

Second, as regards body size we follow the findings by Olst-antter (1970) that larger
fish maintain larger inter-individual distances, but theg eloser than would be expected if
inter-individual distance would be proportional to the paize. This is modeled by increasing
the sizes of the repulsion and aligning regions (by changiegvalues of,, ., andr,, see
Figs. 2.1 and 2.2, Tab. 2.1 and Egs. 2.7 and 2.9). The rang#&racteon (mediated by vision)
was kept identical.

Third, body form is modeled by including sensory charastes of the lateral line, there-
fore changing the agent’s perception of its neighbors. VEeirag that the perceptual field of
the lateral line follows the body form; therefore the repuisand aligning regions are ellip-
tic rather than circular (Fig. 2.1B). This is achieved byefiing agent distancé;; used in
Eq. 2.11. Consider an agentt position(u;, z;) relative to a coordinate system embedded in
agenti, in such a way that the-axis points in the heading directierj of agenti. For elliptic
agents distance between ageandj is defined as

1
efj =4/ ;u2 + ez? (2.13)

wheree is the eccentricity (Tab. 2.1). Therefore, if aggns located directly in front of agerit
(z = 0), e}; is smaller thani;; and if agentj is at the side of agerit(u = 0), ¢;; is larger than
d;;. Consequently, agents will avoid those neighbors thatleeadof them sooner (at a greater
distance) than those that are at their side (conform thetielfiorm of the repulsion region, see
Fig. 2.1B). The same applies for the aligning region.

Thus, body size and form is modeled as follows in three legélimcreasing detail (see
Tab. 2.1):

Point-agents: Agents are modeled as points; body size is only reflectedarsitte of the re-
gions of repulsion and aligning. Agents of larger size hargdr regions of repulsion
and aligning, but their range of attraction (their visiomjhe same for all (see Fig. 2.1A,
black: regions of large agents, gray: those of small agents)
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Figure 2.4 — The box method for obtaining measures of group widthength/ and front f.
Dashed lines indicate the different regions of measurement

Line-agents: Agents are represented as lines. Larger body size is reflectenger lines and
larger regions of repulsion and aligning (Fig. 2.1A).

Elliptic-agents: Agents are represented as lines. The regions of repulsofaaligning are
elliptic and are larger for large agents than for small onEe region of attraction is
circular and independent of body size (Fig. 2.1B)

Note that we included the line-agents as a kind of 'contrtol'study merely the effects of the
representation of the agent’s body as a line.

2.2.2 Experiments

For agents of a body lengthof 0.2m (large) and).1m (small) and for all three types of body
form we have studied eight population sizes of 3, 4, 6, 1050575, 100 identical agents. Every
simulation was repeated 25 times for random starting lonatiFor parameters see Tab. 2.1.

2.2.3 Measures

Each simulation step the following statistics have beeoutated.
To measure group spread, we use the average distance ofealisag the center of the
group, the so-called average center distance

1
=5 IX —xi] (2.14)

where .
t t
X' = N g X; (2.15)
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denotes the center of gravity of the school. A similar measexpanse, (i.e. average quadratic
distance to the center of the group) was used by Huth and Wik3@?).

To measure group density we use average nearest neighbamadis! (see for instance,
Huth and Wissel 1992). We quantify the uniformity of the saladistribution of agents, called
'homogeneity’, by the average distance to the nearest hergtivided by that to the second
nearest neighbor

nt
_Mm

t
h' = 3 (2.16)
Greater homogeneity of spatial distances among agentdlestesl by values close to one,
whereas high irregularity (low homogeneity) of agent disttion results in lower values.

To quantify the coordination of the heading directions &f #igents, we calculate the square

root of the mean quadratic angle deviation of each fish to\beage headingg\,g of the group

1
pt - N Z(atavg - alz?)Q (217)

whereag\,g is the average heading of the agenftss usually referred to as 'polarization’ (Huth

and Wissel 1992), but we call it 'confusion’, since highelues indicate greater disorder. Note
that by 'homogeneity’ we denote spatial uniformity of thedtions of the agents, whereas con-
fusion and polarization measure the coordination (unatibeality) of the headings the agents.

Further, group speed, is defined as speed of the center of gravity of the group; the
group turning ratd’; as the (absolute) rate of change of direction of the group.

To measure school form we enclose the complete school byrih#est rectangle oriented
parallel to direction of movement of the group (Fig. 2.4) améracterize group form by the
lengthi?, the widthw?, and their quotieng’ (width divided by length). To indicate the relative
placeg’ of the center of gravityX! in the school, we use the distance of the center of gravity to
the front (called front length?) divided by total lengthi’.

In order to detect spatial variations, we partition the grimutwo ways: the left, middle, and
the right part, and the front, middle, and the back sectiog. &4). In each of these parts we
calculate the average agent turning rate (i.e., the (ateyatate of change of the agents heading
direction) and average nearest neighbor distance selyardfe denote average agent turning
rate byT’; and average nearest neighbor distancehyThe lower indices denote the section
(f: front, n: main,b: back,l: left, m: middle, andr-: right).

Per simulation the measures were averaged over the timps-2890-3000 (thus omitting
the transitory period). Averages and their standard eoees 25 runs are plotted in the figures
below. We discuss only the results that significantly déféras can be derived from the small
size of the standard errors. Further, we only evaluate rines@vthe agents aggregate in a single
school. This was the case in 98.9% of the simulations.

2.3 Results

2.3.1 General effects of group size

As a direct consequence of the larger number of individualarger schools, the average dis-
tance to the center increases with school size (Figs. 2.5B&)ause a larger group covers
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Figure 2.5 - Distance measures and their standard errors for diffesgres of groups of agents
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a larger spatial area. Nevertheless the nearest neighdtande decreases (Figs. 5CD) for in-
creasing group size, due to the increased attraction anherigrger number of group members,
which leads to a denser packing of agents.

Because agents do not align directly with more remote groembers in a larger group,
confusion (mean angular deviation) increases (Figs. 2)6ABd this leads to a lower speed
of the group (Fig. 2.6CD). The turning rate of larger groupkwer (Fig. 2.6E, data for large
agents are similar, but not shown). This is a consequendeedgjreater number of individuals
that have to coordinate in order for the complete group to.tur

The center of gravity is significantly found in the front haffthe school: The distance of
the center of gravity to the front divided by the distancdlback was always smaller than 0.9
(for an example see Fig. 2.4). There are two causes for thist, Bue to the constant speed,
agents cannot catch up once they lag behind. Second, agamtthe front have few individuals
ahead of them. Therefore they have a lower tendency to moaglstforward, but they may
turn either left or right, wherever they perceive more nbiwis. Consequently, their turning rate
is higher compared to agents in the main and the back regioichvare also attracted to others
ahead (Figs. 2.7BD). Due to their increased turning rae fritnt-agents slow down slightly
which leads to crowding at the front. Also turning rate is évat the sides than in the middle
part of the school (Fig. 2.7F), especially for the elliptgeats.

The finding that the center of gravity is found in the frontfladithe school is also reflected
in the relative nearest neighbor distances in differentspairthe group (Fig. 2.7AC). Nearest
neighbor distance is lowest in the central part and higlmetbig back, whereas it is intermediate
at the front. Itis also lower in the middle part, comparedi® sides (Fig. 2.7E).

Increasing group size leads to an increase in both the wieiHength of the group (Figs.
2.8A-D). The width of the group increases slower at largeugrsizes (Figs. 2.8AB), whereas
the length of the group grows almost linearly with group gizigs. 2.8CD). This may be due
to the fact that in wide groups there is a strong attractidhéacenter among peripheral agents.
This results in a strong inward movement of the agents ldcatéhe sides, whereas there is no
similar mechanism for agents in the front or at the back ostteol, because of their constant
speed. Therefore, larger groups are longer than wide (Eiga\BCD).

2.3.2 Effects of body size and form

Larger agents are usually significantly further apart thraalker ones (as measured by average
distance to the center and nearest neighbor distance, mosnall values of the S.E. in Figs.
2.5A-D). This is due to their larger body size and repulsicgaa For a similar reason, when
comparing between different agent-types of the same bamy Bhe-agents are significantly
further apart than point-agents. For point- and line-agjargarest neighbor distance is approx-
imately the same, whereas average center distance is fardiere-agents. This arises because
line-agents swim at larger distances behind each othelewhimming side by side they stay
equally close as point-agents. Elliptic-agents swim gigautly closest together (side by side)
due to their narrow and lengthy (elliptic) repulsion reg{éig. 2.1B).

The uniformity of distances (i.e. homogeneity) among grongmbers (measured in terms
of the ratio of the distances to the first and second nearéghtinar) is weaker the more asym-
metric the body form is. Thus, homogeneity decreases fromt,paa line- to elliptic-agents
(Fig. 2.6F, similar for small agents, data not shown).

Comparing between groups of large and small agents groomturate appears to be simi-
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Figure 2.6 — Mean values and standard errors of confusién B), group speed, D) group
turning rate €), and homogeneity of distancds) (of groups of large agents (right panels) and
of small ones (left panels) for different group sizes.
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Figure 2.7 — Left Panels:. Mean and S.E. of ratio of average nearest neighbor distamntes
different parts of groups of several group sizes consistingmall agents (the results for large
agents are qualitatively similarRight Panels: Mean and S.E. of ratio of average agent turning
rates in different parts of the group for several group siaekarge agents (the results for small
agents are qualitatively similar).
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Figure 2.8 — Average and standard error of group width and length foresalvgroup sizes of
either small agents (left panels) or large ones (right pahefFor definitions of width and length
see Fig. 2.4.

lar, but confusion and, consequently, group speed diffadifferent way among groups of line-
and point-agents at the one hand and elliptic-agents, ootttex hand. Groups of large line-
(and point-) agents show less variation in heading diraectmd therefore higher speed, than
groups of small agents. However, for elliptic-agents, #eerse holds (Figs. 2.6A-D). Head-
ing directions of point- and line-agents that are large aoeentoordinated than those among
agents that are small due to the greater aligning area aragents (Fig. 2.1A). In contrast,
among elliptic-agents the elliptic form of the repulsioeaicauses frequent turning. Because
the repulsion area is lengthy, after turning away from @erggoup members, the individual
soon finds others in its repulsion region and this provokestean repulsion reaction (Fig. 2.9).
This “repeated-repulsion effect” is greater for largepeiti-agents than for small ones, because
the form of their repulsion region is more asymmetric (Fig<.B). In sum, groups of elliptic-
agents (of both sizes) show greater confusion of headiregtiins than those of point- and
line-agents due to the combined effects of the “repeatedsem” and the smaller size of their
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A

Figure 2.9 — Effect of elliptic repulsion regions on agent behaviorgfyeated repulsion effect”):
The agent (center) avoids a close by agent (indicated by eowateft panel) by turning away
(right panel). Because of the elliptic form of the repulsiegion, other neighboring agents may
be found in the repulsion region after the turn (indicateddogows in the right panel), which
will induce another avoidance movement in the next time step

aligning region (Figs. 2.1AB).

As regards group form, line-agents form the widest and Iehgeoups, groups of point-
agents are intermediate and those of elliptic-agents aaflesh(Figs. 2.8A-D). The difference
between line- and point-agents is due to the smaller bodywit{agents. Groups of elliptic-
agents, in turn, are smaller, due to their narrower repularea. Groups of large agents appear
to be wider (Figs. 2.8AB) and more circular (data not showajhtthose of small agents. This is
possibly due to the fact that the attraction at the sideseatients is weaker as a consequence
of the greater aligning area. For all types, we find elongatdaols (data not shown), at least
at larger group sizes\( > 50).

2.4 Discussion

Our model, SchoolingWorld, shows several emergent phenamine number of agents in a
group influences the group’s form, density, confusion, ingmate and group speed. Further,
although all agents are completely identical, agent densities depending on the specific
location in the school (e.g. front or back). Besides, ampdibody form leads to a more

confused school and therefore, reduced group movement.

As regards the effects of group size, SchoolingWorld shtxaslarger groups have a higher
agent density, are more confused and have a lower group .spkddrger expanse (which
Is similar to the average center distance) of larger groapd, simultaneously, a decreased
average nearest neighbor distance for larger groups, basbakn found in former models
(Huth and Wissel 1992; Reuter and Breckling 1994), but ndasgiion has been given for
this phenomenon. Here, we explain such closer proximityhto daverage nearest neighbor
(i.e. ’huddling together’) by the stronger mutual attrantin larger groups due to the larger
number of neighbors. Further, the increase in confusioarége deviation of the headings of
the agents from the group average) in larger groups is invitie the findings of Reuter and
Breckling (1994). It arises because in larger groups onlgragf the agents directly aligns with
each other (because of larger agent distance). For gecaletasons, higher confusion lowers
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group speed. The turning rate of larger groups in Schoolwog\is slower due to the lower
impact of the behavior of a single agent on the group and Isecduere are more agents present
to align with. This result contradicts part of the resultsRymey (1996). Whereas he found
that the speed of groups decreased in larger groups, smeoligly (in contrast to our results)
group turning rate increased in larger (cohesive) grougss difference may be attributed to
the absence of aligning in his model. Therefore turning mwets, which occur frequently
in dense (large) groups because of repulsion, are not dabmpatigning and thus may more
easily lead to a change of direction of the whole group.

How do these effects of group size in SchoolingWorld relatéirtdings in real animals?
Lower inter-individual distance in larger schools has beemd in many fish studies (minnows:
Partridge 1980; cod and saithe: Partridge et al. 1980). fiaises it interesting to investigate
confusion and group speed in relation to group size alsoh Sata would reveal whether our
model captures the essentials of fish schooling. If confijmedmay expect larger groups to
fission more easily as a consequence of the increased comfusi

Although the agents are completely identical, they behafferently in different parts of
the group. Average turning rate of agents is highest at thd.fiThis arises, because agents at
the front have no group members ahead of them and thus aaetattronly to the partners at
their sides. This causes the agents at the front to slow dowrhais leads to a 'jam’ near the
front. Thus, in our model agents are distributed unevenithenschool. Density is higher in
the center and at the front, and lowest at the back and threrefee center of gravity is located
in the front half of the school. Further, for larger groupesizschools are usually longer than
wide and this asymmetry increases with the number of agéntsur model these properties
are emergent from the combination of attraction and aligiie@havior due to which the agents
are on average attracted to the center of the group whilemgderwards.

A similar slowing-down and ’jamming’ has been found by Depeurg et al. (1989) in
the model that closely resembles the swarming behaviorrof ants. Further, exactly these
school characteristics (of frontal density and oblong ge)unave been found in shoals of roach
(Rutilus rutilus) by Bumann, Krause, and Rubenstein (1998)ng models of predation mini-
mization and corresponding experimental procedures akateub (Semotilus actromaculatus)
the authors conclude that both, increased density in the &bthe school and the elongated
shape of groups, are a way to minimize the predation risk dingifrom the periphery and
behind others (as suggested by the ’selfish herd theory’|ilktani971). The authors, however,
do not offer any ideas on how individual fish may attain sudrabteristics of school form and
heterogeneous density. SchoolingWorld suggests a soiutin oblong group-shape and the
highest density at the front of the school may automatiaault from the simple behavioral
rules of repulsion, aligning, and attraction.

Note that even though we provided agents with a speed thaeis fwith random noise, as
is also done in the other models Aoki 1982; Couzin et al. 262h and Wissel 1992) the front
agents still appear to be 'slowing down’ and effects of gretrpcture and size closely resemble
patterns that have been studied in fish so far. This mininpaésentation, thus, seems to suffice
to reproduce these phenomena. On the other hand, adaptpeed between neighboring
agents is an interesting extension to study in future models

As regards our preliminary representation of 'embodimemt’ have compared the effect of
two body sizes and of three body forms (point, line, and &d)pn patterns of schooling for a
range of different school sizes. As regards size of the adgngier body size is accompanied
by a larger area of repulsion and alignment and, therefaarast neighbor distance is larger
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and coordination is stronger among large than small (paint- line, but not elliptic) agents.
These results are in agreement with those by Olst and HUE2&0] in their comparative study
between adult and juvenile (instead of large and small) &t and Hunter, however, attribute
lower cohesion and alignment to the higher feeding rateswahjile fish, whereas in our model
these differences are a direct consequence of body sizejae=of the region of repulsion and
aligning.

Of the three body forms, groups of line-agents have, congptréhose of point-agents,
a slightly larger average center distance, they are widegdr and less homogeneous; other
school characteristics are similar. The greatest difie@ephowever, are found between elliptic-
agents and the others. Groups of elliptic-agents are mdresoee (in average center distance
as well as nearest neighbor distance); they are less horaogenbecause the inter-individual
distance of agents swimming side to side is much shorter tihase swimming behind each
other. Further, they show higher confusion and confusiagrésater among large agents than
small ones, whereas among point- and line-agents the eeW@igls. These phenomena are
directly related to the elliptic form of the repulsion regi¢which is more asymmetric for the
large agents), which is associated with the “repeated segukffect”. Although intuitively, the
representation of fish as an elliptic- agent seems morealdhan that of point- or line-agent,
this cannot be judged at present from the results. In thisesdnit is of interest to compare
confusion among groups of small adult individuals and lanmges of the same species: if con-
fusion is greater among the larger individuals this prosidepport for the model of "elliptic’
agents as being a better representation than that of peidtlige-agents. This is, of course,
still a preliminary representation of the body and eachllef/detail that will be added (such as
a body that can bend) in future, may lead to new hypothesesgjasds collective phenomena in
real fish. The main function of models like SchoolingWorldyniee to provide us with useful
new hypotheses.
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Chapter 3

Density distribution and size sorting in fish
schools: an individual-based model

Abstract

In fish schools the density varies per location and oftenviildials are sorted according to
familiarity and/or body size. High density is consideredaatageous for protection against
predators and this sorting is believed to be advantageou®nly to avoid predators but also
for finding food. In this paper, we list a number of mechaniams we study, with the help of
an individual-based model of schooling agents, which gpatatterns may result from them.
In our model, schooling is regulated by the following rulesoiding those that are close by,
aligning to those at intermediate distances, and movingatdw others further off. Regarding
kinship/familiarity, we study patterns that come aboutmagents actively choose to be close to
related agents (i.e., ‘active sorting’). Regarding bodzesiwe study what happens when agents
merely differ in size but behave according to the usual slchgoules (‘size difference model’),
when agents choose to be close to those of similar size, ared ainall agents avoid larger
ones (‘risk avoidance’). Several spatial configurationsu during ‘active sorting’ familiar
agents group together anywhere in the shoal, but agentsffefeint size group concentrically,
whereby the small agents occupy the center and the largetbegseriphery (‘size difference
model’ and ‘active sorting’). If small agents avoid the riskbeing close to large ones, how-
ever, small agents end up at the periphery and large onespycitie center (‘risk avoidance’).
Spatial configurations are also influenced by the compaosiicthe group, namely the percent-
age of agents of each type. Furthermore, schools are usablgng and their density is always
greatest near the front. We explain the way in which thesteepa emerge and indicate how
results of our model may guide the study of spatial pattemreal animals.

3.1 Introduction

In natural shoals of fish, the highest density is often at tbetf(Bumann, Krause, and Ruben-
stein 1997) and schools are usually oblong (Pitcher 198t} i§ attributed to the tendency to
seek protection against predators, as the front is regasléfte most dangerous part (Bumann,

lappeared as C. K. Hemelrijk and H. Kunz (200%)ensity distribution and size sorting in fish schools: an
individual-based model“. InBehav. Ecol16.1, pp. 178-187
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Krause, and Rubenstein 1997). Furthermore, it appearsnthiatduals are assorted by famil-
iarity (e.g., Barber and Ruxton 2000; Griffiths and Magurt&99) and body size (Hoare et al.
2000; Krause, Godin, and Brown 1996; Krause et al. 2000; ReyRanta, and Seppa 1997;
Svensson, Barber, and Forsgren 2000). Segregation byidaityilis thought to be beneficial
because of cooperation against predators (Trivers 19&Huse it allows cohesion (Chivers,
Brown, and Smith 1995), and it is also supposed to have fogagilvantages. Segregation by
size may be beneficial for two reasons: it may facilitate dowtion of movement (Theodor-
akis 1989), and it can have hydrodynamic advantages (PPjtbtegurran, and Edwards 1985).
Because fish of the same size are under the same selecticungréBitcher, Magurran, and
Allan 1986) and have the same needs, they may synchronizebttevior; and by clustering
together they may reduce their visual conspicuousnessegdiaction of the so-called ‘oddity
effect’ (Landeau and Terborgh 1986; Ranta, Peuhkuri, andlilaal994).

Small individuals are either found at the periphery of theosd (Krause 1993b; Theodorakis
1989) or in the center (Romey 1997). There are descriptibmgter insects in which small
individuals remain in the center (Sih 1980) and of fish in vitilzey are at the periphery (Krause
1993b). This may be related to different predator tactinansects predators often enter the
swarm (Sivinski 1997), but in fish this is rare (Krause 1994a)

Here, we do not want to give a functional explanation in teofnshat is best for the fitness
of different categories of individuals, but we try to conhamumber of behavioral rules and
body characteristics on the one hand to spatial patterngaiug level (i.e., ‘macro-patterns’)
on the other. This we do by means of an individual-orientedehof agents that school (called
SchoolingWorld). We start from specific body charactersstand rules of behavior and are
guided by the patterns that the model itself generates. \&e¢hesemergence of these patterns
as hypotheses that may be investigated in real fish schodis. g a useful method, because
complex patterns of behavior at a group level are more eastigrstood from the ‘bottom up’
than from the ‘top down’ (Braitenberg 1984; Hemelrijk 19%8eifer and Scheier 1999).

3.2 Methods

3.2.1 Introduction to the model

Let us discuss mechanisms that may underlie spatial assatrtoy familiarity and size.

An ‘active’ preference to shoal with familiar individualswith fish similar in size has been
demonstrated in experiments several times: a single fishemt@al compartment had the choice
to swim close to a compartment containing fish of a similar difeerent body size (Krause
1994b; Krause and Tegeder 1994; Ranta, Juvonen, and PeaBR2; Ranta, Lindstrom, and
Peuhkuri 1992; Ward, Gobet, and Kendall 2001) and also ¢tmsecompartment with fish of
different degrees of familiarity (e.g. Griffiths and Magamr1999).

Furthermore, size assortment may be caused by differendbs swimming speed of fish
of different sizes. Pitcher and Parrish (1993), howevertlsat this leads to complete separation
of groups by size and, therefore, that it cannot explain s&zgegation in shoals. On the other
hand, Couzin (2003) have shown in a model that individuddehces in swimming speed may
lead to segregation of individuals in the same school, ifafpents adjust their speed to that of
their neighbors. In this paper, we study other mechanisatatiay lead to segregation by size.

Size assortment in schools may also be the result of aggreasidescribed for sardines,
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Engraulis japonicus (Kimura 1934), the Atlantic herringli&fer 1955), and cod (Brawn 1961).
This may reflect competition for food or for mates. The eff#atompetition on spatial structure
has been illustrated by Hemelrijk (2000) in a model callear®¢orld. She shows that among
artificial agents that group and compete in a virtual worlothba dominance hierarchy and
a spatial structure develop. In this spatial structure tgare assorted by dominance rank
with high-ranking agents in the center and low-ranking oaiethe periphery. Because social
dominance is often associated with a larger size (MyrbetJ2; Thines and Heuts 1968),
competition may also lead to assortment by size. We studyathia form of ‘risk avoidance’,
meaning that small agents avoid large ones in order to awggdeasion from large ones, as
described in (Pitcher, Magurran, and Allan 1986).

As a ‘control’ we investigate what happens if agents diffegrefy in size (without size-
related rules of active assortment and without rules ofaigkdance).

To understand the patterns of segregation to which theseitams lead, we extend our
earlier model SchoolingWorld (Kunz and Hemelrijk 2003) witharacteristics of the agents
(namely size and familiarity) and with behavioral rules $orting and competition. This kind
of model is useful because studies of complexity science hegweatedly shown that it is impos-
sible to predict the consequences of individual behaviarals at a group level without them
(Camazine et al. 2001; Hemelrijk 2002b).

Our model SchoolingWorld has produced emergent (groupblgdatterns that resemble
those of schools of real fish (Kunz and Hemelrijk 2003). Itnspired by models of Huth and
Wissel(1992, 1994b), Reuter and Breckling (1994) and Nik@&94). In these models, school-
ing is a consequence of the tendency to avoid other fish teatlase by, to align to those at
intermediate distances, and to move towards others thdtidher off (but within the range of
vision).

In the models designed by others, agents are representedté&s\pith their sensory regions
as concentric circles around them (here indicated as ‘@gents’). In SchoolingWorld, we
use a representation that is more realistic in two respeebsst, the body is reflected as a
line segment. Second, the sensory regions of repulsionlagrdre are represented as ellipses
(called ‘elliptic-agents’, see Kunz and Hemelrijk 2003chuse they are situated (besides in the
visual system) in the ‘lateral line system’ in real fish (lAdge and Pitcher 1980). The lateral
line consists of a series of hydrodynamic sensors alongsidés of the body (Bleckman 1993)
that detect stimuli (e.g., changes in water pressure) digseTherefore, ellipses reflect the
operational area of the lateral line system more accur#ely circles. We keep the region of
attraction circular, however, because it is determinedibipn (Partridge and Pitcher 1980).

To represent familiarity, we divide agents into two clas$&siliar and unfamiliar. Whether
individuals distinguish between these categories on tkeslzd smell or of visual appearance
does not matter for the model. To represent two differenylsizies (large and small), we vary
the length of the line segment and the size of the sensorgnegf repulsion and aligning.
For ‘active sorting by size/familiarity’ we increase thérattion and aligning tendency of the
agents and diminish their tendency to avoid others of sirsilge/familiarity compared to those
of different size/familiarity. Note that ‘active sorting/familiarity’ is studied among agents
of the same size. ‘Risk avoidance’ is implemented by suppgl@mall agents with a strong
tendency to avoid large agents. We compare collective npatte those that result only from
the effects of the difference in size (the ‘size differenceidel). Thus, any pattern that arises
in the ‘size difference’ model emerges exclusively from Yatharacteristics, whereas in the
model of ‘risk assortment by size’ and ‘active avoidancdtgras emerge from the combined
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Parameter Symbol and value
Time step At =0.2s

Speed (average and SD)

SD of the heading

Turning rate, ‘default’

Blind field in the back

Blind field for aligning region (front)
Line length

Scaling factor of repulsion(3.8)
Scaling factor of attraction(3.9)
Scaling factor of aligning(3.10)
Ranges of repulsion(3.8)

Ranges of aligning(3.10)

Range of attraction
Eccentricity

‘Active sorting’
‘Risk avoidance’

Uavg - 0.3m/S,USd - 0.03m/s
tg = Erada 2.5°
wiet = Zrrad/s

v = 60°
’Y/ = 60°
smallb = 0.1m
large:b = 0.2m
smatl;, = 1.0
large:a, = 2.0
a, = 1.0
a, = 1.0
smahl; = 0.3m

large:r, = 0.6m
smah, = 1.0m
large:r, = 2.0m

e = 5.0m
smalle = 2.0
large:e = 4.0

¢ =2.0,¢,=2.0,¢,=20
CriskAavoid = 20.0 (varied from0 to 40.0)

Table 3.1 — Parameters of the agents.

effects of size and the additional behavioral rules.

We characterize collective patterns by the spatial vamain density and by the spatial
distribution of the two classes of agents (size/familjgriby their degree of segregation, by the
surface, and by the form of the school as a whole.

3.2.2 The model

SchoolingWorld is implemented in the programming langu@gi addition, Octavg a high-
level language intended for numerical (matrix) computagiavas used for data post-processing
and Gnuplot, a command-driven interactive function-plotting prograim generate various
types of graphs.

Fish schools have been modeled in 2-D as well as in 3-D. Cangparparticular 2-D model
(Huth and Wissel 1992) to a 3-D one (Huth and Wissel 1994bgdditional phenomena are
visible in the 3D-model. Therefore, we decided to implenmnt model, SchoolingWorld, in
2-D. The modeled artificial world is continuous and homo@erse Time proceeds in discrete
stepst. At each time step all agents are activated in random order.

2y, oct ave. com
Swww. gnupl ot . i nfo
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X attraction 7

Figure 3.1 — The sensory regions of an agent. The agent is located aktiiterc The outermost
circle represents the visual range,. It contains three functional areas: of attraction, of alig
ing, and of repulsion (gray: regions of attraction and regioh of small agents, black: the same
of large ones).
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Figure 3.2 — Weight factors of repulsiony,(d), attraction, w,(d), and aligning,w,(d), for
small agents (solid lines) and large ones (dotted linédsjenotes the distance to the neighbor.
Regions are classified into repulsion, aligning, and attiac by the largest of the three weight
factors (top of figure). For further information, see text.
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Position, speed, and heading

At the beginning of the simulation, a certain number of ageme put randomly in a starting
area of2.5 x 2.5m and are given a random orientation, which was chosen batwaad90
degrees in order to obtain a single school. The initial spetle agents was set tq,4 (See
Tab. 3.1). At timet agent; is located at positiox: and moves with a velocity! (speed and
direction) during one simulation ste.

xt = xI78 4 vIAL (3.1)

Similar to models by others (see Aoki 1982; Couzin et al. 2602h and Wissel 1992, 1994b),

the speed of agents does not depend on that of other agents but is an indepertdehastic

variable. Itis drawn from a Gaussian probability distribatP (va.g, vsq) at each time step.
The agent’s heading direction! , is updated every simulation step as follows:

ol = P(al™8 + WAL, asg (3.2)
~—_———
at
©,avg
wherebya! 2! is the agent’s heading in the previous time stepa@jitis rate of turning or rota-

tion (which depends on other agents, see next sectidng.drawn from a Gaussian distribution
with a variable meany! ., and fixed SDpgs. The headingqa!, and the speed;!, constitute

i,avg?
the velocity t t
vV, COS v,
L= ( L ) (3.3)

Repulsion, attraction, and aligning

The artificial fish have three behavioral responses: repulsietween agents at short distances),
aligning (at intermediate distances), and attraction (eatgr distances, see Breder Jr. 1954,
Huth and Wissel 1992, 1994b; Warburton and Lazarus 1991).

Repulsion in nature is presumably determined by both themserof the lateral line and
the visual system, and, therefore, we implement it as if grages in an area immediately
surrounding the agent, except for a ‘blind area’ at its b&g.(3.1). For aligning, the lateral
line is most effective. Because it operates mainly at thessithere are two ‘blind areas’ for
aligning, one at the back and one at the front. Because ttnas determined by vision, there
is only one ‘blind area’, at the back.

During repulsion an agerntturns away from a nearby ageptwith rate of rotation (i.e.,

speed of turning)
S
W= ¢ 0= (3.4)
+wdet  otherwise

whered;; = /(x, —xj, v;) (see Fig. 3.2) and? is the ‘standard’ rate of rotation of the agents

17 3

(see Tab. 3.1). Attraction implies that an agetirns towards an agentwith a rate of rotation
Wy = wdefﬁfj (3.5)

Note that, in contrast to repulsion, rate of turningcaused by attraction is proportionalét@.
Aligning implies that agent matches its orientation to that of ageniy turning with rate of
rotation

wy = wet ﬁj (3.6)
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whereg; = Z(v%, v}) is the difference in the heading direction of the two agesee Fig. 3.2).
The actual behavioral reaction depends on the weights ofsiem (w,), attraction {v,), and
aligning @,). These weights depend on the distance to the other agentRasiter and Breck-

ling 1994), as follows:

dij = |Ix; — xi 3.7)
w,(d) = min (%22, 10) (3.8)
,(M)Q
we(d) = 0.2a,e e (3.9)
7(d_%(7"p+7"7')>2
wy(d) = ape R (3.10)
The behavioral reaction is calculated as the weighed sum,

wiy = wy(dig)wr + wa(dij)wa + wp(di;)w, (3.11)

The dependence of the weight factors on the distafjcto the interaction partner makes be-
havioral transitions continuous instead of discrete. Ké&edess, for convenience, we name the
three behavioral regions (Fig. 3.1) after the weight faetidh the largest value (Fig. 3.2).

When agent perceives more than one agentits behavioral response (turning rate) is
calculated as the average of its response to each neighiemasely.

Body representation

We represent both the size and the form of the agent's body-calied ‘elliptic’ agents
(Fig. 3.1); the body is represented by a line segment (witialke length,b, Tab. 3.1), and
regions of repulsion and of aligning are elliptic, reflegtihe operational area of the lateral line
system (Healey and Prieston 1973), whereas that of atiraisticircular, reflecting the range of
vision (for construction details see Kunz and Hemelrijk 200

We represent the agent’s size (large or small) by the lerfgtiedineb and by the size of the
regions of repulsion and aligning (the size of the regiortivéation is kept independent of body
size because it reflects the area of vision). In line with thdifigs by Olst and Hunter (1970)
that inter-individual distance increases with body siz,lbss so than proportionally to body
length, we increase the size of the repulsion and aligniggns accordingly (by scaling,, r,
, andr,; Figs. 3.1 and 3.2, Tab. 3.1, Equations (3.8), (3.9), (3.1Byrthermore, because the
increase in length of larger fish is greater than its incr@asadth, we made the asymmetry of
the elliptic regions of large agents greater than that oflstnas (see ‘eccentricityg, Tab. 3.1).
Note that by using a line (instead of a point) to represenagent’s body, it occupies space and
others often perceive it as being slightly closer than isitepresented as a point (Kunz and
Hemelrijk 2003).

‘Active sorting’ and ‘risk avoidance’

In the case of ‘active sorting’ we lower the tendency to awageénts of similar size (or familiar
agents) and increase the tendency to avoid others of diffsiee (or that are unfamiliar), by
dividing/multiplying the scaling factor of repulsion,, by a constante, (see Tab. 3.1). In

addition, the strength of aligning and attraction amongdisthe same size (or that are familiar)
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Figure 3.3 — The method for obtaining measures of group widih, (ength (), and distance
to front (f). The snapshot is randomly chosen and indicates the posiaod orientations of
agents in different parts of the school (front, main, andi)ac

is increased, whereas it is reduced among individuals téréifit size (or that are unfamiliar).
We implemented this by multiplying/dividing the scalingfar of aligning,a,,, by a constant,
¢p, and that of attractiony,, by a constants,.

‘Risk avoidance’ is asymmetric. The tendency of small agéatavoid large ones is in-
creased, but the tendency of large ones to avoid small omext hanged. This is realized by
the scaling factor of repulsior,. . During an encounter of a small fish with a large one, it
is multiplied by a constant;;saveia- This can be interpreted as the avoidance of a potential
danger by small fish.

3.2.3 Data and measures

We study each model (familiarity assortment, size diffeegmisk avoidance, and active assort-
ment) for different percentages of each type (small anclasfiagent (0%, 25%, 50%, 100%).
Groups always consisted of 100 agents. We performed 25 anreath combination.

For each simulation step the following statistics are daledl. As an indication of the
expanse of the group (compare ‘expanse’ by Huth and Wis€2l)1@e use the average distance
of all agents to the center of the schadl,

1 1
t_ t t t_ t
c —NXZ:HX -x;ll, X _N;Xi

whereX' denotes the center of the school (center of gravity, caledlas the average and
y-values over all agents)V indicates the number of agents.

The so-called ‘normalized center distance of large agehiatacterizes the spatial config-
uration of small and large agents in the school. It is theayedistance of the large agents to



3.3. RESULTS 43

the center of gravity;!, divided by the average distance of all agents to the cefitgawity, ¢;:

t_ t t
=2 ZHX x|

N, denotes the number of large agentsciIfs greater than one, large agents are more likely
to be found at the periphery, whereas if it is less than orey tend to occupy more central
positions.

To quantify the coordination of the heading directions & #gents, we measure the devi-
ation of each agent’s orientation to the average hea@ig)g, of the group. This is usually re-
ferred to as ‘polarization’y’ (Huth and Wissel 1992), but we call it ‘confusion’, becauighker
values indicate greater disorder (Kunz and Hemelrijk 20@33% calculated as the square root
of the mean quadratic deviation angle:

p—\/ Z Ogyg — vy = <NZV>

To quantify the form of the school, we enclose the complet®astby the smallest rectangle
oriented parallel to the direction of movement of the grdeig (3.3) and we calculate the degree
to which a group is oblong, by dividing group width (orthogbto the swimming direction) by
group length (the longest group size in the direction of swing).

To indicate the degree of centrality of the position of theteeof gravity,X’, we divide the
distance of the center of gravity to the front by the totagténof the group.

To detect variation in turning rate depending on locatios, aalculate the average agent
turning rate (i.e., the absolute rate of change of the agetding direction) in the front, main,
and back section of the group separately (Fig. 3.3).

Group speedy;, is measured as the speed of the center of gra¥ty,of the group. Per
run these measures were averaged over time &t#)0s3000 (omitting the transitory period).
Averages and their SEs over 25 runs are plotted in Figs. 314& We discuss only results
that are clearly significant, which can be judged from thgdatifferences between the average
values and the small sizes of the SEs. Furthermore, we coafirselves to runs in which
agents aggregate in a single school (as happened in 98.98& ofins) that is polarized and
coordinated (Shaw 1970), because in real fish size assdriserainly found in such schools
(Krause 1994b; Krause and Tegeder 1994).

3.3 Results

3.3.1 Density and form of schools

For all behavioral mechanisms and group compositions,e&hsitly of the agents is higher at the
frontal part of the school. This is measured by the relatngtppon of the center of the school
(i.e., distance of the center of gravity to the front dividedthe total length of the school is
smaller thard).5; see Fig. 3.4A). This is due to several causes: at the veny iindividuals align
and are attracted to neighbors at their sides only (there@m only few neighbors ahead).
Consequently, the turning rate of agents is higher at th fr@an in the main part of the school
(Fig. 3.4B). This slows down the forward movement of fror@génts (as they zigzag instead of
moving straight) and a ‘jam’ develops near the front.
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Figure 3.4 — Averages and SE of various measurements for models of $ipely ‘active as-
sessment’, and ‘risk avoidance and for different perceesagf small agentsA: Location of the
center of gravity.B: Turning rate among agents at the front divided by that amaggnts in
the middle of the schooC: Degree to which groups are oblonB. Average distance to center.
E: Normalized average center distance of large agents.
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A: 25% small agents  B: 50% small agents C: 75% small agents
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The form of the school is usually oblong (group width dividedlength being smaller than
one; see Fig. 3.4C), because individuals approach each fotime the side only (by turning
towards each other) and not from the back (because they tspeed up). An exception is that
during ‘active sorting’ in a school with many small agent§%a), the group is slightly wider
than long (Fig. 3.4C). This is caused by the clustering oftagsoup of large agents at each side
of the school (Fig. 3.611I1C).

Groups are most compact (as measured by the average disfasitagents to the center)
during ‘active size assortment’ and least compact durirgl ‘avoidance’ (Fig. 3.4D). This is
because ‘risk avoidance’ causes small agents to maintargarldistance to large ones and,
therefore, the group spreads out. Increasing ‘risk avadaffrom ¢ avoiqa = 0 t040) enlarges
the surface or expanse of the group (measured by the aveeager distance), decreases its
coordination (increases confusion), and, therefore, slivdown because of more frequent
zigzag movements (Fig. 3.5A, B, and C, respectively).

3.3.2 Segregation by familiarity and by size

Assortment according to familiarity among agents of theeaine leads to subgroups of fa-
miliar agents that may occur at any location in the group.(Bigl). Segregation is clearer if
one class of agents is in the minority (25%). This arises leealuster formation by attraction
among only a few agents tends to lead to a single cluster dwtyre agents (50%) can form
several clusters (Fig. 3.61B).

Assortment according to size is, in contrast to assortmmdrding to familiarity, a concen-
tric configuration. In the models of ‘active sorting’ andzsidifferences’ large agents occupy
the periphery and small ones the center (Fig. 3.6ll, lll}] &ms pattern is reversed in that of
‘risk avoidance’ (Fig. 3.61V and 3.6V).

Remarkably, also in the model of ‘size difference’ that kekpreference for similar agents,
spatial assortment is found. This is a consequence of thereliice in size between agents,
which drives large agents to the periphery, because thgedaiepulsion regions cause them to
avoid small ones at a greater distance than vice versa (fatj).3

In contrast to ‘active assortment by familiarity’, ‘actiassortment by size’ leads to a con-
centric spatial configuration of agents of both sizes. Thisea from the additional effect of
size difference. Note that during ‘active assortment bg’dize segregation is stronger than
in the ‘size difference’ only model, because it is suppoltgdch preference to keep agents of
similar size in close proximity (compare Fig. 3.6lll and I1)

‘Risk avoidance’, in contrast, counteracts the effectsiai difference’, because by strongly
avoiding large agents, small agents avoid large neightamtgeethan vice versa, and conse-
guently the small ones are driven to the periphery. Thussgatial configuration may re-
verse (Fig. 3.61V). Obviously, whether or not this spat@larsal actually occurs during ‘risk
avoidance’ depends on the relative strength of risk avaiddrepresented byfisavoia). The
stronger it is, the clearer the reversed spatial configumatiith small agents at the periphery
and large ones in the center becomes (Fig. 3.6V). The cerstiande of large agents thus be-
comes increasingly smaller than one while increasing ‘agbidance’ ¢;isxavoia from 0O to 40;
see Fig. 3.5A). Lower values (less than one) indicate tingelagents are closer to the center and
small ones to the periphery (as shown for the highest dednegkaavoidance ¢;isavoia = 40]
in Fig. 3.6V for different group compositions). Due to theahbody size, and thus closer
proximity of small agents, more than 50% of small agents aeglad to surround the large ones



48 CHAPTER 3. DENSITY DISTRIBUTION & SIZE SORTING

completely (Fig. 3.6V).

There are two deviations from these spatial patterns. \drge lagents are at the periphery,
they sometimes are lacking at the back (Fig. 3.611C, llIBC)land when small agents are on
the outside (during ‘risk avoidance’), segregation is wgdg. 3.61VB, IVC). Large agents are
lacking at the back because they move to the side to avoich¢pamall ones directly ahead of
them. In the ‘size differences’ model, this happens mairniemwthe number of large agents is
small (Fig. 3.61IC), but during ‘active sorting’ it also ta& place when large agents and small
ones are equal in number (Fig. 3.611I1B, IlIC), because largents are attracted by other large
ones to the periphery, in addition to just avoiding smalloakead of them.

Furthermore, segregation is weak if the percentage of agbat have a more extensive
tendency to avoid others is large. Thus, during ‘activeisgtt if large agents are numerous
(and small agents are few, 25%), they will form several €isstbecause they easily find each
other. These clusters are stable because large agentsdtettheir borders avoid small ones
and thus move back into the cluster. Thus, these clusterainestuck among small agents,
preventing further segregation (i.e., joining of clusfers

Thus, during ‘risk avoidance’ segregation is weak for mediand high percentages of
small agents due to similar cluster formation because sagaihts get stuck among large ones
(Fig. 3.61VB, IVC). In contrast, when the percentage of dragknts is low, they have little
opportunity to cluster together (because they seldom naeét @ther) and thus are driven to the
periphery (Fig. 3.61VA).

The typical spatial configuration, with large agents at theghery (in the cases of ‘size dif-
ference’ and ‘active sorting’) and small agents at the enip (in the case of ‘risk avoidance’),
differ significantly from each other, as can be seen from tioerQalized) center distance, of
large agents shown in Fig. 3.4E. Note that values less thamnalicate that large agents are in
the center, and those greater than one indicate that lasyeésagre at the periphery.

In the cases of ‘size difference’ and ‘active sorting’, wdeéhe small agents occupy the
center, the average center distance of large agents iesreath the percentage of small ones:
a larger number of small agents naturally take up a largex. arbus, the large agents, which
are located peripherally, are further from the center (3ge 3-4E). Note that during ‘active
sorting’ at a low percentage of 25% small agents, the avemag®alized center distance of
large agentsg;, equals approximately one, and thus small agents are rexf\cie the center
because they get stuck among large ones as mentioned abeveids 3.6111A).

Conversely, in the case of ‘risk avoidance’, where the lagents are found in the center, a
small number of large agents occupies a smaller surfaceh@decreases the average distance
to the center of larger agents, At 25% large agents (75% of small ones), there is an increase
in the center distance of large agents despite their low mublecause clusters of small agents,
as mentioned above, may be caught in-between large agehtistesymay stay in the center (see
Fig. 3.61VC).

3.4 Discussion

SchoolingWorld generates a wide range of spatial pattémsinstance, the center of the school
(center of gravity) is located in the front half of the schaold schools are oblong; sorting
according to familiarity causes familiar agents to clusteany place in the group; agents of
different size sort themselves concentrically, with laagents in the center and small ones at
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the periphery or vice versa.

3.4.1 Density and form of schools

In the model, the density in the school is highest near thetfrime center of gravity is always
located in the front half. This arises by self-organizatsrfollows.

Because agents at the front see no group members ahead othiegrare attracted only by
those at either side. Therefore, their movement directasres continuously (their turning rate
is high), which causes them to slow their forward movemewoteNhat even though we provide
agents with a fixed velocity (with random ‘noise’, as is theecan the other models (Aoki 1982;
Couzin et al. 2002; Huth and Wissel 1992, 1994b)), the frgeinds still appear to be ‘slowing
down’ because of their zigzag movement. This leads to a ‘ja@ar the front.

Schools are usually oblong. In an earlier model (Kunz and &lgjk 2003) we found that
this oblong form also occurs in schools of agents of one sizetlaat it becomes more marked
with a higher number of agents. This arises in the model frloendombination of aligning
behavior and the overall attraction of the agents to theec@rfthe group. This attraction causes
the agents to turn towards the center and consequentlyesdue width of the group. Because
the agents move forward at a ‘constant’ speed, the onesafdtdhind cannot accelerate, and
therefore the length of the group remains constant.

Remarkably, a similar slowing-down and ‘jamming’ has beeunid by Deneubourg et al.
(1989) in a model that closely resembles the swarming behatarmy ants. Exactly the same
characteristics (of frontal density and oblong groups)ehaéo been found in shoals of roach
(Rutilus rutilus) by Bumann, Krause, and Rubenstein (1997)

Using models for minimization of predation and correspagdixperimental procedures on
creek chub (Semotilus actromaculatus), these authordummthat both traits are beneficial to
minimize predation risk. Bumann, Krause, and Rubenste&87), however, do not provide a
theory to explain how fish come to form such characteristiosts. SchoolingWorld does sug-
gest an explanation: an oblong group-shape with the higlestity at the front automatically
results from the behavioral rules of repulsion, aligningd attraction. It is of interest to verify
the origin of the high density at the front in schools of resthby analyzing whether the turning
rate is higher at the front than in the main part of the school.

3.4.2 Spatial segregation by familiarity and size

Segregation by familiarity (in the absence of size diffees) is clearer if one class of agents
Is in the minority. This arises because in this case theréesrer agents to be attracted to and,
therefore, clusters become fewer, but larger. A similaultdgs been found by Schelling (1971)
in his model of racial segregation, in which two types of dgeequire at least a minimum
percentage of agents of the same type close by, otherwigdeee the subgroup. Stronger
clustering of individuals whose type is in the minority isaptive in nature, because fish of
the minority type run a higher risk of predation, as Theolir&1989) has shown in his ex-
periments in which odd-sized fish were eaten more often lgelanouth brass, Micropterus
salmonides. SchoolingWorld and Schelling’s (1971) modelsthat such stronger clustering
may arise as an emergent phenomenon.

In the ‘size difference’ model (in which agents merely difie body size), size sorting is
spatial and emerges purely from the larger repulsion regfdarge agents. This provides us
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with yet another reason why large agents may be at the ous§itie group: their large size.

Our results are supported by those of related models usedbeir (1996) and Couzin
et al. (2002); in shoals in which the repulsion area of thentgydiffered, agents with smaller
repulsion areas appeared to end up in the center. (Noted¢hatte also varied the size of the
line segment and the aligning area.)

The mechanism of ‘active assortment by size’ strengthegsegation according to body
size via self-reinforcing effects. The larger the clustéidentical agents, the stronger the
attraction of other agents of the same size. Similar effactdound for clustering of all kinds
of objects and organisms (Camazine et al. 2001; Schellis§YL$However, the pattern of small
agents in the center is disturbed when the percentagesgef #axd small agents differ; if large
agents are in the majority (75%), clusters of large agents tie get stuck among small ones. If
large agents are rare, they cluster together at the sidaubecthey avoid small ones ahead of
them.

Furthermore, the degree of segregation during ‘risk avaidais higher when small agents
are few, because then large agents are in the center suedbydeparate clusters of small ones.
If, however, small agents are numerous, they find each otbeg gasily and end up in clusters
that are trapped among large agents. The degree of segredapends on the strength of the
tendency of ‘risk avoidance’, since it is counteracted ligas due to differences in size; large
agents move to the periphery because their repulsion al@ges, but ‘risk avoidance’ reverses
the situation if small agents have an even stronger tendereyoid large ones than vice versa.
In DomWorld (Hemelrijk 1998, 2000), in contrast, such caratting forces are absent during
the process of dominance assortment, because here alsdgerm identical sensory regions.
Agents differ only in their capacity to win or lose fights. Sudiinates that lose more often flee
more frequently and, therefore, automatically end up aptrghery of the group.

3.4.3 Spatial segregation in real fish

Of course, our model is no more than a minimal representatiomhat happens in real fish.
In real fish body size varies continuously and real fish ofedéht body size differ in many
more aspects than we have studied here. For instance, theyliffexr in their tail-beat and
swimming speed. These two traits may augment assortmemntestber than is the case in our
‘size difference’ model. Also, our model does not represeotl and feeding behavior, and the
distribution of food, of course, influences the distribatiaf individuals. If food is clumped,
large individuals that are hungry will drive smaller oneshe periphery. If food is distributed
randomly, most food is obtained at the periphery of the group

Both spatial distributions found in the model, with largesats at the periphery or in the
center of the group, are found in nature. The spatial cordigur with small individuals in the
center has only rarely been described, but it has been faumdiier insects (male whirligig
beetles, Romey 1997; water insects, Sih 1980). It is uncheawever, whether this configu-
ration is consistent in water insects. The converse pattéinlarge fish in the center is de-
scribed for a larger number of species of fish, both underi&tatbed’ captive conditions (for
the hammerhead shark, Sphyrna lewini: Klimley 1985; forlihentnose, Pimephalus notatus,
and stoneroller minnows, Campostoma anomalum: Theodoi&89) and under experimental
conditions (Krause 1994b; minnows, Phoxinus phoxinusheit, Magurran, and Allan 1986).
In relation to SchoolingWorld, it is of interest to know whet and for which species large
individuals are missing from the back when large individuede at the periphery. When large
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individuals are in the center, it is of particular interashbte whether clusters of small fish are
caught among the large ones for certain compositions o langl small individuals but not for
others, as SchoolingWorld suggests.

How do these opposite spatial configuration of large and Isagaints relate to the risk of
predation and the competition for food? When, in naturechosls of certain species, large
individuals are continuously in the center, this may be aix@gd by permanent strong cohesion
as a consequence of both predator-avoidance and fooddistn. If the large ones are in the
center only during feeding, this may indicate feeding cotitipe, if food sources are clumped
(possibly in hammerhead sharks, Klimley 1985; in minnoweddorakis 1989). If this spatial
configuration is found only during predator threat (chubydtiscus cephalus, Krause 1993c),
this pattern seems to result primarily from increased colngsr protection against predators.

The configuration with large ones at the outside would reflesituation where the group
iIs compact (in loose groups this assortment is lacking) dysre¢dation avoidance and where
competition (for whatever it may be) is weak.

Which of the three rules (the ‘active sorting’, the ‘risk &a@nce’, or the ‘size difference’
model) protects best against predators, does, of courpendeon the strategy of the predator
(whether s/he attacks at the center or at the peripheryjhtaihas not been investigated here.

3.4.4 Conclusion

The two objects of this study are the connection betweervithaal behavior and the collec-

tive patterns of (1) density distribution in the schools aetiool form and of (2) segregation
according to familiarity and size. This approach can berelge by adding other features that
can lead to spatial segregation, such as age (e.g., in andp®a-Franks and Franks 1995),
sex (e.g. Ruckstuhl and Neuhaus 2002), motivation (sucluagédr, Krause 1993c), parasites
(Krause and Godin 1996), and ecological factors. PossHhif/kind of model may also be made
to apply to swarms of other taxa, such as insects. As it is,ope lthat our results may inspire
empirical scientists to study spatial patterns in schobl®al fish and relate their findings to

the results of our model.

We want to thank Wolf Blanckenhorn, Ingo Schlupp, and Jerauke for their comments
on an earlier version of this manuscript, and Rolf Pfeifegrifo Weissing, and the University
of Groningen for continuous support. This work was parthaficed by the A. H. Schultz
Foundation and the Swiss National Science Foundation §5444).
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Chapter 4

Simulations of the social organization of
large schools of fish whose perception is
obstructed

Abstract

Individual-based models have shown that simple interast@mong moving individuals (re-
pulsion, attraction and alignment) result in travellingrsmls that resemble those of real fish.
In most models individuals interact with all neighbourshait sensory range which usually
includes almost all the individuals of the school. Thusmplies (almost) global perception.
However, in reality in large groups, individuals will onlpteract with their neighbours close
by, because they cannot perceive those farther away, siregedare masked by closer ones.
Here, we have developed a new model to investigate how suohsiruction of perception
influences aspects of social organization in schools of Uj0te00 individuals. We will show
that in small schools of up to approximately 30 individuaisup shape and density resembles
that obtained with global perception, because in small sthibardly anyone is masked by oth-
ers: school shape is oblong and the density is highest inrtredl half of the school. With
increasing group size, from approximately 200 individuadsvards, internal density becomes
variable over time, regions of high and low density develogrg location within a school, and
group shape becomes more complex, in the sense that inwardilb@nd appendages occur
more frequently. The complexity of shape and internal stinecarises because, due to their
limited perception, individuals interact relatively mol@cally in larger schools. In case of
global perception, however, shape remains elliptical frggoup sizes and in groups above
1000 individuals, the schools become unrealistically ders sum, our results show that ob-
structed perception in itself suffices to generate a raalistganization of large schools and
that no extra rules for coping with many individuals are need

4.1 Introduction

The flexible coordination of schools of fish, ranging fromge of a few individuals to vast
aggregations of millions, has been an enigma for a long tReeently, computer models based

lunder review
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on processes of self-organization (Camazine et al. 200dei®ourg and Goss 1989; Hemelrijk
2002b; Hemelrijk and Kunz 2005) have shown that coordimaéimong neighbours suffices to
generate collective behaviour that resembles that of dshoddish (Aoki 1982; Couzin et al.
2002; Niwa 1994; Parrish and Viscido 2005; Reuter and Bregkl994; Reynolds 1987).

Besides, such models may guide empirical studies. Forrinsiahey have predicted that
larger schools are denser and more oblong (Hemelrijk 20@&éirijk and Hildenbrandt 2008;
Kunz and Hemelrijk 2003). These traits are supposed to eedobnected, schools are more
oblong, because the higher density of larger schools farmigiduals to avoid others more
frequently. Since individuals avoid collisions by slowidgwn, former neighbours may subse-
guently move inwards and thus the school becomes more obldrese predictions were sub-
sequently confirmed in an empirical study (Hemelrijk et &1@), in which the 3-dimensional
positions of individuals in schools were measured in schoblup to 60 mullets. Empirical
results confirmed that larger schools were denser and méwagfHemelrijk et al. 2010).

Models of fish schooling have usually been based on threevlmhral rules consisting of
attraction to others further away, alignment with othersatlium distance and avoidance of
others that are close by (for a review, see Parrish and \Gds20d5). They differ in a number
of traits, such as in whether they are made in two or in thregedsions and in the number
of interaction partners to which individuals react. Renadtl, the difference in dimensional-
ity hardly affects results (Hemelrijk 2005; Hemelrijk anddé¢nbrandt 2008; Huth and Wissel
1992, 1994a; Kunz and Hemelrijk 2003). However, how manywhith neighbours an indi-
vidual reacts to, matters clearly (Viscido, Parrish, andraum 2005). Most models employ
a metric approach, where individuals interact with all idigurs that are located within a cer-
tain radius, i.e. a circular area around the focal individaecluding a blind field at its rear
(Couzin et al. 2002; Niwa 1994; Reuter and Breckling 1994yrieéds 1987). Here, because
the range of interaction is constant, the number of intevagtartners increases with density
of the school. Since larger schools are denser (Hemelrilo26lemelrijk and Hildenbrandt
2008; Kunz and Hemelrijk 2003; Reuter and Breckling 1994, tumber of interaction part-
ners increases with school size. This becomes unrealistmdels of very large groups, in the
sense that too many individuals interact (Lemasson, Anderand Goodwin 2009; Viscido,
Miller, and Wethey 2002) and that group structure collagbésgilner et al. 2003). By reduc-
ing the range of interaction when local density increasesh & collapse has been avoided in
the 3-dimensional model of large groups consisting of upd@2individuals by Hemelrijk and
Hildenbrandt (2008). In other models, individuals are mimteract with a fixed number of
their nearest neighbours, their so-called topologicagieaAoki 1982; Hildenbrandt, Carere,
and Hemelrijk 2010; Huth and Wissel 1992; Viscido, Parreid Grinbaum 2005, 2007), or
with the first shell or layer of neighbours around it, as gilsgra Voronoi tessellation (Gregoire
2003). Such restrictions are, however, unrealistic, b&eaureality neighbours are sometimes
perceived over much larger distances in certain directioas in other directions.

The aim of the present paper is to study the consequences ofeargalistic representation
of interaction partners: individuals interact with all theighbours they perceive, i.e. those that
are not hidden behind others. We study the effect of suchuatietd perception on local density
and school shape (its asymmetry, the degree to which it sngband the convolutedness of
its border) in relation to school size for groups of 10 to DWOndividuals. Our earlier model
(Kunz and Hemelrijk 2003), henceforth referred to as the@hadth global perception, is taken
as a control.
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Parameter Symbol and Value

Body length b=0.2m

Cruise speed and s.d. (Gaussian noise)s = 0.3 m/s,vsq = 0.03 m/s
'Default’ rate of rotation Waef = m rad/s

Interaction radius r=>50m

Blind angle v = 60°

Time step At=0.2s

Table 4.1 — Default parameters of the model. These were kept fixed dvexerimental
conditions.

4.2 Methods

4.2.1 The model

Our model is an extension of our earlier model described inZand Hemelrijk (2003). It
is implemented in the programming language C and consisas2eflimensional world that is
continuous and infinite. In each simulation stap all artificial fish are activated in random
order. The individuals behave according to three responsgsision away from close by
neighbours, alignment with individuals at intermediatstainces, and attraction to neighbours
at larger distances.

Position, speed and heading. At time ¢ individual i is located at positiox;(¢) and moves
with a velocityv;(¢) during one simulation stef¢. Thus the location is updated as

x;(t) = x;(t — At) + v;(t) At 4.1)

wherex;(t — At) is the position of individual at the previous time step. The velociy(t)
comprises the heading(¢) and the speed;(t)

v;(t) cos oy (t)

vilt) = < vi(t) sin s () ) (4.2)

of individuali. The speed;(t) is set tov.s (Tab. 4.1). It is subjected to Gaussian noise with
a standard deviation afyy. Like in other models, it is independent of the behaviour thieo
individuals (Aoki 1982; Couzin et al. 2002; Huth and Wiss892, 1994a). This seems to be a
valid simplification, as similar results are found, irresipee if the individuals adjust their speed
to neighbours (Hemelrijk and Hildenbrandt 2008) or not (Kamd Hemelrijk 2003).

The individual’s headingy;(¢) is updated each simulation step as follows

a;(t) = a;(t — At) + w;(t) At £ agg (4.3)
whereq; (t— At) is the individual’'s heading in the previous time step and) its rate of turning

or rotation, which depends on the interaction with neighlbolhe headingy;(t) is subject to
Gaussian noise with a standard deviatiovgf
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A: Sensory field B: Zoomed view of A

42 44 46 48 50 \\ \\ ¥

42 44 46 48 50

Figure 4.1 — The circular sensory field around an individual (white batjh the blind angley
at its back. For obstructed perception the interaction pars are indicated by fat black bars.
Interaction partners for global perception are given by {fe and thin) black bars. Neighbours
outside the sensory field are painted gray.

Global and obstructed perception. We use our earlier model as a control (Kunz and Hemel-
rijk 2003). In this model an individualinteracts with all neighbours located in it sensory field
(Fig. 4.1A). In our new model, where perception is obstrdctle interaction partners consist
of all those individuals that are not masked by those clastrd focal individual. To find these,
we divide the sensory field into sectors and assume thatrwgach sector only the closest
neighbour can be perceived (Fig. 4.1AB, fat bars). If thighleour covers several sectors it is
counted only once. Thus, increasing the number of sectoreases the number of different
neighbours that may be visible simultaneously.

In relation to each interaction partngthe individuali tends to be repulsed;; (), be at-
tractedwy (t) and alignwy;(t). The total behavioural responses of individue the sum of the
three actions averaged over all its interaction partnésgate of rotation is

lt) = P;(t)| %}t) WI(t) + W (1) + W (1) (4.2)

where P;(t) denotes the set of all perceived neighbours (all within titeraction radius for
global perception, or those not masked by closer ones fairuatied perception). In other
words, individuals do not react to single neighbours indejeatly. Instead, their behaviour is
a weighted average of their reaction to all the neighboursgdead by them.

Repulsion, attraction and alignment. The strength of repulsion, attraction and alignment
depend in a non-linear and continuous way on the distapcbetween the individuals (in-
spired by Reuter and Breckling 1994). The weight for remuisi, (d;;) is highest for short,
that for alignmentu,(d,;) for intermediate and that for attractian,(d;;) for longer distances
(Fig. 4.2A).



4.2. METHODS 57

A: Weight factors (obstructed perception) B: Angles and vectors between individuals
and;
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Figure 4.2 — A: The weight factors for repulsion, (d), attractionw,(d) and alignmentu,(d)
for obstructed perception (the weight factors for globaigeption are similar, see Kunz and
Hemelrijk 2003).d denotes the distance to the neighbd&irThe location, headings, associated
angles and vectors and bodies of two individuadsd j (black bars).

Repulsion implies that an individuakurns away from a nearby individugliwith a rate of
rotation (i.e. speed of turning) of

+Wef otherwise (4.5)

w;j (t) _ wr(dij) { —Wdef if 92‘]' (t) >0
wherew,(d;;) is the distance dependent weight factor (Fig. 4.24) is the 'default’ rate
of rotation of the individual (Tab. 4.1) anl);(¢) is the angle between the vector connecting
individuals: and j and the heading of individual (Fig. 4.2B). Note that the rate of turning
wi;(t) caused by repulsion only depends on the sigfi;d#), such that the individual turns
always away frony.
Attraction implies that individual turns towards individual with a rate of rotation of
wf](t) = wa(dij)wdefﬁij(t). (46)
Note that, in contrast to repulsion, the rate of turnirig¢) caused by attraction is proportional
to 0;;(¢), thus individual turns faster when the angle to individyaik larger. Therefore, when
individual j is directly ahead; does not turn at all.
Aligning implies that individual matches its orientation to that of individuaby turning
with a rate of rotation of
wii(t) = wy(dij)waerpij (t) (4.7)

wherey;;(t) is the difference in the headings of the two individuals (Big@B). Thus, by turning
proportionally top;;(¢), individuali adjusts its heading to that of individugal

We represent the body of the individual by lines of len@{fTab. 4.1). This influences the
degree with which the individual blocks the perception dfess (Fig. 4.2A). The distancg;
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Parameters Global perception Obstructed perception
Group size 10, 20, 30, 60, 100, 200, 30,0, 20, 30, 60, 100, 200, 300,
600, 1000 600, 1000, 2000, 3000, 6000,
10’000
Number of perceptual sectors - 10, 20, 30, 50

Table 4.2 — Model parameters that differ between experimental cao bt

between individuaj and (the focal) individual is measured as the distance between individual
1's center and the nearest point of individyalFig. 4.2B). Thus, it depends on the orientation
of individual j.

4.2.2 Parameterization and initial conditions

Note that for ease of comparison the parameters (Tab. 4 Keat identical to those used in our
former studies (Hemelrijk and Kunz 2005; Kunz and HemeRij3). The interaction radius
and the blind angle are similar to those used by Reuter and Breckling (1994) yBedgth!
and cruise speed,s are chosen in a biologically meaningful way (Pitcher andriRiye 1979).
The weight factors for repulsiom,, attractionw, and alignmentu, are chosen such that for
groups between 10 and 100 individuals the nearest neiglistance corresponds to biological
findings (Olst and Hunter 1970; Partridge and Pitcher 1980her and Partridge 1979) and are
slightly adjusted for obstructed perception, such thatigsoof 50 individuals with 30 sectors
resemble those with global perception. The 'default’ tnghratewgs and the variation in
speedvsqg and headingvsg we have tuned by hand such that individuals are able to atbel®
effectively but without introducing too erratic or jerky m@aments. The initial conditions are
chosen such that a single school always forms. Individualpasitioned randomly in a circular
area whose radius is chosen such that the initial densitppsoaimately 10 individuals per
square meter. They have random orientations chosen fromfa@rmndistribution of angles
within a sector of 90 degrees and their velocity is set to these speeas.

4.2.3 Experiments and Measures

We study both models for a range of group sizes (Tab. 4.2) gkedral perception, the largest
group size contained 1000 individuals because larger selegre unrealistically dense. We
study the influence of the numbers of sectors if perceptiavb@&ructed (Tab. 4.2). For each
parameter setting 5 replicas are performed. The simukatast for 5000 steps, which corre-
sponds to 1000 s (16.7 min). Unless indicated otherwisesarements are done every 10 s and
are averaged over the time interval between 500 and 100@Gsdtd transients at the beginning
of the simulations). Octave, a high-level language, inéehfibr numerical computations, was
used for data analysis.

As a global measure of the average density of individuals sohaol we use the average
nearest neighbour distance.

We measure shape in two ways: the degree to which a schoaigeiahan wide (oblong-
ness) and asymmetrical. In order to measure the degree witth\it is oblong, we enclose
the school in the smallest rectangle oriented parallelsalitection of movement (Kunz and
Hemelrijk 2003) and measure oblongness as the ratio of tiggheof the school in its direction



4.2. METHODS 59

Group area and convex hull
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A: Nearest neighbour distance B: Group area
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Figure 4.4 — Average nearest neighbour distan@® @nd group area B) for obstructed and
global perception. The weight factors (see Methods) aresehsuch that nearest neighbour
distance is similar for groups of 50 individuals under glblad obstructed perception (30
sectors). Therefore, for smaller groups nearest neighlaistance is larger when perception is
obstructed. For global perception, schools of more thanli@dividuals become unrealistically
dense and when perception is obstructed groups of 10’00@ithaals occasionally fragment
for 10 sectors; results are thus shown only for smaller gsougote thatA has a half- andB a
full-logarithmic scale.

of movement divided by its width. The asymmetry of the schal@pe (ignoring the move-
ment direction) we compute as the ratio of length and widthsoeed by means of a principle
component analysis (PCA) of the positions of the individudlength is measured along the
largest dimension of the school, which is given by the eigetor associated with the largest
eigenvalue of the co-variance matrix. The width is measpe¥gendicular to the length. This
equals the aspect ratio used by Hildenbrandt, Carere, anteldg (2010). An asymmetry
value of one corresponds to a roughly circular school wiehégher values indicate a more
elliptic shape.

We characterize the convolutedness of the group borderlbylating its convexity, i.e. the
ratio of the group area divided by the area of the convex Hatbup area is measured as the
area of the Delaunay triangulation where all triangles &ittedge longer than 2 m are omitted
(Fig. 4.3) to account for inward bounds. The maximal lendtadges (2 m) is chosen as small
as possible (for higher accuracy) but large enough to erisatéhe Delaunay triangulation does
not fragment the school. A convexity close to one indicatesighly circular or elliptic school,
whereas lower values reveal more irregular group shapésnvitard bounds and appendages.

4.3 Results

Although it happens to a different degree, for obstructectgion like in the control, i.e.
global perception, with increasing group size nearesthimigr distance decreases (Fig. 4.4A),
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B: Asymmetry of group shape
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Figure 4.5 — Group shape (measured as length divided by width) relabvime direction of
movement, called oblongness)(and shape measured by the ratio of the longest dimension
divided by the one orthogonal to it (independent of the mevemirection), called asymmetry
(B). As the influence of the number of sectors appears unimpioatad because variability is
high the plots for obstructed perception are lumped togefbreall numbers of sectors (10, 20,
30, 50).
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A: Obstructed perceptiofif0 s B: Global perception700 s
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Figure4.8— Snapshots of two groups of 30 individuals after 700 and @@rsobstructedAC)
and global perceptionBD), respectively. Local density is color coded, and rangesfo to 10
individuals per square meter. As the weight factors are enaich that nearest neighbour dis-
tance is similar for groups of 50 individuals with obstruttend global perception (Fig. 4.4A),
density in groups of 30 individuals under obstructed petiogpis lower than it is under global

perception.
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group area increases (Fig. 4.4B) and groups become moreg{i#a. 4.5A).

However, compared to the control, in which nearest neighd@miance decreases strongly
with group size (Fig. 4.4A) and becomes unrealistically isrfta groups larger than 1000
individuals, when perception is obstructed, nearest righ distance decreases with group
size less (Fig. 4.4A), leading to more realistic group dégsi Because density stabilizes for
groups larger than 200 individuals, the surface area ofched increases linearly with school
size (Fig. 4.4B). Further, with increasing size, group €hepmore oblong and asymmetric
(Fig. 4.5AB), more convoluted and thus less convex (FigA%#&nd local density is more het-
erogeneous (Fig. 4.7): there are regions of higher densitigeaperiphery as well as in the
interior and occasionally there are holes. In large grougp®asl shape (Fig. 4.6B) and local
density (Fig. 4.7) is more variable over time than it is in #reehools (Fig. 4.6B, Fig. 4.8AC)
and in case perception is global (Fig. 4.6B, Fig. 4.8BD).

Small groups of up to 30 individuals resemble those in thearobmodel: Nearest neigh-
bour distance decreases with group size (Fig. 4.4A) andogaoea (Fig. 4.4A) and oblongness
increase with group size (Fig. 4.5B); group shape is connexstatic over time (Fig. 4.6) and
local density is highest in the interior of the school (Fig)4

Although we did not perform a detailed sensitivity analysisanging the weight factors
for the behavioural responses affects our model in a waylairto that reported by Couzin
et al. (2002). Increasing the strength or range of repulsiakes groups sparser, increasing the
strength of attraction or its range increases density. eb®ing the range of alignment leads
to milling, i.e. the groups form a ring. Very strong repulsior very weak attraction leads to
fragmentation of the group, very weak alignment makes tbagunordered, so that it becomes
stationary.

4.4 Discussion

We developed a new model of schooling, where the interagt@wnong individuals are repre-
sented more naturally, because individuals interact ontg those neighbours that they can
perceive because these neighbours are not masked by closeas suggested by Breder Jr.
(1954) and Huth and Wissel (1994a).

The differences in nearest neighbour distance, group sagheensity between the model
with obstructed perception and the control can be expldnydtie lower number of interaction
partners if perception is obstructed. Here, the relativalmer of interaction partners (i.e. the
number of interaction partners divided by group size) deswe with school size, it decreases
from 60% in groups of 10 individuals to below 0.2% in group4.6f000 individuals, but in the
control it is always about 80%. Thus interactions are mocalloFor groups larger than ap-
proximately 200 individuals, the number of interactiontpars becomes independent of group
size because it is at its maximum (between 4 and 11, depewdirige number of perceptual
sectors) and therefore, nearest neighbour distanceiseabfFig. 4.4A). For groups of increas-
ing size the shape of schools is more asymmetric (Fig. 415Bje convoluted (Fig. 4.6A) and
more variable over time (Fig. 4.6B), because local intépactioes not coordinate the group
globally, such that subgroups may move in different digewdi This causes the formation of
'appendages’ and 'inward bounds’ and regions of high or lewsity (Fig. 4.7).

The results are qualitatively similar for different numbef sectors (Fig. 4.4 and 4.6A).
However, nearest neighbour distance and group area ar&esiiala higher number of sectors
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(Fig. 4.4AB) because of associated higher number of interapartners and thus the stronger
attraction. This higher density at a higher number of inftineighbours confirms the findings
in related models by others (Huth and Wissel 1992; Viscid@orifh, and Griinbaum 2005).

Small groups in our model resemble those in metric models/(iich individuals interact
with all neighbours within the radius of interaction), batde groups in it resemble those in
topological models (in which individuals interact with adtknumber of nearest neighbours).
In small groups of up to approximatedp individuals, the effect of masking is weak and the
individuals interact with almost the entire group (the n@mbf interaction partners ranges be-
tween 20% and 60% of the whole group). Therefore, resultgjaaditatively similar to those
of metric models: Nearest neighbour distance decreasismiteasing group size (Hemelrijk
and Hildenbrandt 2008; Kunz and Hemelrijk 2003; Reuter aretBing 1994), larger groups
are increasingly oblong and density is highest in the frait of the school (Hemelrijk and
Hildenbrandt 2008; Hemelrijk and Kunz 2005). Note, thatrtiedel by Hemelrijk and Hilden-
brandt (2008) is only partly metric, because the radius tefraction decreases with increasing
local density. Thus, it is keeping the number of interacgpantners at around5 and is thus
almost topological for groups larger thah individuals.

In groups with more than 200 individuals, most neighbouestadden behind closer ones,
and the number of interaction partners becomes indepeonfignbup size like in models with
a fixed number of interaction partners (i.e. topologicatiattion-range). Consequently, the
results resemble those of topological models of schoolsbfdnd of flocks of birds: Nearest
neighbour distance depends not on group size when groupsssagnificantly larger than the
number of interaction partners (Hildenbrandt, Carere, ldathelrijk 2010; Viscido, Parrish,
and Grianbaum 2005). A higher number of interaction pastifiee. due to a higher number of
visual sectors in our model) leads to a shorter nearest beighdistance (conforming to Huth
and Wissel 1992; Viscido, Parrish, and Griinbaum 2005; Woh and Lazarus 1991).

Apart from these similarities, our model of obstructed peton differs from metric (with
fixed interaction ranges) and topological models (with adirember of interaction partners)
in two important ways: First, the number of interaction pars and the range of interaction
varies according to the details of the actors perceptionluérs (depending on local density,
body size and number of sectors). Second, in our model ithgials perceive others over larger
distances in the directions where the density of neighbisumsver and over shorter distances
in the direction where density is higher. This is the caseréat animals too, particularly if
they are located at the border of a group. The necessity twpocate this in schooling models
was already pointed out by Huth and Wissel (1994a). In ourehaith obstructed perception,
individuals at the border of a school are more likely to iatgmwith individuals in a neighbour-
ing school (Fig. 4.9) than if interaction is topological oetmc with a short interaction range
(Hemelrijk and Hildenbrandt 2008). How such differenceshioosing interaction partners in-
fluence the formation and maintenance of groups of diffeseats, we will investigate in future
models.

Results of our model resemble the following empirical ddtasmall schools of fish of
up to 60 individuals of various species (mullets, minnowesying, saithe, cod, three-spined
sticklebacks and rudd) density increases with group sizemglrijk et al. 2010; Keenleyside
1955; Partridge 1980; Partridge et al. 1980). For school® @p2 million individuals (herring,
sprat, saithe) the average inter-individual distanceegagreatly within and between schools
(up to a factor of 100) but does not seem related to school(Memund 1993); dense areas
and regions of almost empty space are found frequently inwahfendred juvenile roach and
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Figure 4.9 — lllustration of the interaction partners (fat black barsfan individual (white bar)
with obstructed perception. As it is close to the bordertieéracts with distant individuals that
are part of another group.

perch (Guillard, Brehmer, and Colon 2006) and in very largeosls of many thousands of
sardines (Freon, Gerlotto, and Soria 1992; Gerlotto andrfar2003). Similarly, in starling
flocks ranging between 500 up to 2500 individuals averagsitjevaries considerably across
flocks (by a factor of 3) but is not associated with the numbdrirals; regions of high density
may occur at any location, also at the border of the groupléBai et al. 2008).

Oblong shape is found for small schools of up to 30 herringhsand cod (Partridge et
al. 1980), 60 mullets (Hemelrijk et al. 2010), a few hundradenile roach and perch (Bu-
mann, Krause, and Rubenstein 1997; Guillard, Brehmer, atonC006), a few hundreds of
roach and several thousands of minnow (Pitcher 1980) ang thansands of herring (Axelsen
et al. 2001) and sardines (Gerlotto and Paramo 2003). Fortire, group shape becomes in-
creasingly irregular for schools of many thousands of hgrfAxelsen et al. 2001), sardines
(Gerlotto and Paramo 2003) and anchovy (Squire 1978) amdchlanges dramatically over
time for herring (Pitcher et al. 1996) and anchovy (Squirég)9

Our model of obstructed perception is, to our knowledgefitiseone that can explain the
characteristics found in large schools of fish, such as tbaroence of complex and changing
school shape and the high variability of the inter-indiatdistances. Remarkably, despite the
disturbances generated by the shape-changes, schootsrrottel still do not split up.

Note that our model is conceptual. It has not been tuned tehmaispecific species. Its
comparison to empirical data was qualitative only. Fumiane, for the sake of simplicity our
model is two-dimensional. Extension of our model to threeeafisions would make individuals
interact with a greater number of neighbours. Since ourtestidifferent numbers of sectors
(and thus interacting neighbours) are qualitatively samilve expect results of a 3-dimensional
model to resemble those of a 2-dimensional one.
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For future research itis of interest to analyse the resemsblaf our model to empirical data
quantitatively, especially for large schools of more tRaf individuals because for such large
groups the influence of obstruction of perception is strofRgr example, it could be studied,
whether the dynamics of shape and the spatial distributiamdoviduals resemble those found
in nature (e.g Misund 1993) or if our model is capable to exylze number and size of vacuoles
found in schools of real fish (e.g. Gerlotto and Paramo 2003).

In conclusion, by confining the interaction only to thoseghéiours that can be perceived,
instead of including all neighbours within the interactiaalius, the model generates patterns
of schooling that are more realistic particularly for lagghools. As to the question whether in
large groups special coping mechanisms are needed (threedbhiis issue), we conclude that
in models of self-organized schools, it suffices that pefoaps obstructed in order to generate
patterns that characterize those of very large groups.
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Chapter 5

On Prey Grouping and Predator
Confusion in Artificial Fish Schools

Abstract

In two simulation models the benefit of schooling under pr@gyapressure is investigated. It
appears that if a predator cannot become confused by preyping is seldom beneficial. If
prey, however, can confuse a predator, schooling appeapsdtect prey under a whole range
of parameters. Using an evolutionary approach we found,thrathe case of a confusable
predator, cohesive groups with a consistent forward movemeolve most frequently, but that
milling stationary groups also prove to be effective. Wegasgjthat the predator protection in
moving and stationary groups rely on different mechanisamsong other things, on a kind of
altruistic behavior.

5.1 Introduction

Similar to herds or flocks of other animals many species of disther in shoals or schodls
without the need for leaders or external cues. Insteadthioisght that the (local) interactions
between the group members lead through processes of galfimation (Camazine et al. 2001)
to the evident group structure. The character of these latadactions has been the focus of
many models, e.g. (Aoki 1982; Huth and Wissel 1992; Niwa }98énceptually these models
are identical in that individual fish relate their orientetiand speed to that of their neighbors
according to a few behavioral rules which we will refer to asidance (of collisions), attraction
(centering) and alignment (matching speed and orientatidxs has been demonstrated by
means of computer simulations these behavioral rules eadhooling behavior which looks
natural to the human observer. However, in these modelsuéstign of what the benefits are
of school formation is not addressed.

Of the many studies of the advantages of schooling (PitchdrRarrish 1993) there are
indications for foraging benefits (Street and Hart 1985)rbyynamic advantages (Svendsen
et al. 2003) and anti-predator functions. Here we will corice on the anti-predator function

lappeared as H. Kunz, T. Ziblin, and C. Hemelrijk (20Q&)n prey grouping and predator confusion in
artificial fish schools®. InAtrtificial Life X. Cambridge, MA: MIT Press, pp. 365-371

2Groups of fish that aggregate for social reasons are commefielyed to as shoals (Pitcher and Parrish 1993).
Schools are shoals that swim coordinated and synchronized.
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of schools. We will study prey-survival in a model on direenkefits of schooling (Nishimura
2002; Zheng et al. 2005) and in an evolutionary model (Obesal. 2002).

Shoaling fish counter predator attacks in many ways, e.gvégien such as flash expansion
or by early detection of attacking predators (Pitcher arrd$ta1993). Whereas these strategies
are active and direct reactions of the prey-fish to the paseha predator or an ongoing attack,
we will concentrate on two different effects, namely theeffof grouping itself (it may reduce
the probability of being found by the predator) and of cordn®f the predator.

Grouping may be advantageous because in water fish shoblarahg better detectable than
individuals (Pitcher and Parrish 1993). Therefore, whenvibual range is low compared to the
speed of the predators and the fish, the predator has a mueh ébvance of encountering a
shoal (because of their low number) than encountering fishsvim independently (as there
are many). Nevertheless, Treisman shows that groupingdysbemeficial if the predator (once
a shoal has been detected) can only eat a small number ofdodis while the rest can flee
(Treisman 1975). Here, we will nevertheless investigatdeunnvhich conditions shoals might
successfully avoid predators. Confusion of a predatoraeslihe success of an attack of a
predator (Krause and Ruxton 2002; Pitcher and Parrish 1@93Yo a multitude of available
targets. Correspondingly, the decision of the predatoutdvbich individual to attack has been
shown to take a longer time for larger shoals (Landeau anabfgh 1986). The reason for this
could be twofold — by overloading the visual system (Broadld®65) or by the difficulty of
choosing between equal targets, the so-called effect diaerassment of riches'.

Here we will study the effects of grouping and confusiontsiyées on prey survival both for
schooling and ungrouped prey. In a first model we will show hleanumber of surviving fish
depends on the speed of the predator, the time that is needethsume a prey fish (handling
time) and on whether the predator is confused by too many-ipgays or not. Next we will
present the behavioral strategies that evolve in prey irvalugonary model.

It is important to note that in these two models prey cannotgiee the predator, therefore
they cannot take any evasive action. This allows us to stiuelgtfects of grouping by prey and
confusion of the predator independently from other angidator behaviors such as evasion and
startling. We plan to incorporate evasion strategies inreutvork.

5.2 Methods

This section outlines the two types of prey agents used imihaels and the predator, which is
the same for both models.

At the start of each simulation, the prey and the predatoewet at random positions with
random orientation. The initial positions were confined tovated area, in order that all the
agents were in sensory range.

5.2.1 Predator

The predator agent needs to incorporate the two main effeetare interested in: Handling
time and being confused.

Handling time. After the predator caught a fish, it stops for a certain timenspandomly
changing its orientation. This reflects the process of canisg a prey.
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Figure 5.1 — The sensory field of the predator is divided into five sedt@sare subdivided in
three areas. The crowdednessgidentical for all prey in an area) is the sum of the number st fi
located in the same area and in the one immediately furtheyyawhe higher the crowdedness
in an area, the better the protection for the prey due to thefesion effect.

Hunting behavior by confusable predator. To decide which prey to chase the predator as-
signs an “attractivenessi¢ for each prey in its sensory range.

A¢=<1—L)- 05 . 5 (5.1)

| distance fact0|| | confusion factod | prey Iocking|

(if ¢c; > 3) (i chased)

Firstly, the attractivenesds is a linear function of the distancé between predator and the
preyi (d,., = dm is the sensory range of the predator). The closer a prey, igfehis

its attractiveness. Secondly, to simulate confusion, ‘istance factor” is multiplied with a
“confusion factor” that reduces the attractivity. (the “crowdedness” of the area where prey
i is located) is calculated as indicated in Fig 5.1. For lowealof crowdednessg;(< 3) the
confusion factor is omitted. Thirdly, if the preéyhas been chased already in the last time step, it
(rather unluckily) gets a bonus in the form of a “prey locKifactor of 5. This is to avoid that
the predator keeps switching between prey in situationsevbeveral individuals have similar
attractiveness. The predator then chases the prey withighest attractiveness, given that it
exceeds a certain threshold.

AP > 0.1 (5.2)
Once the distancé of the chased prey to the predator becomes smallerxhanthe prey will

be killed and eaten. If no prey with attractiveness abovestold is found, the predator moves
straight ahead.
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parameter direct effects evolution units
no. predators 1 1
handling time 0.2,1.0,1.8,2.6,3.4 1.0 s
predator speed 0.3,0.6,0.9 0.6 =
number of prey 100 100
prey behavior schooling, ungrouped evolved
prey speed 0.3 0.3 =
sensory range 5 5 m
blind anglé¢ 60° 60°
simulation time 100° 1000 s
runs 25 3
size of arena 32 (torus) 32 (torus) m

aldentical for prey and predator
bNot including the time the predator is eating
®Random starting positions, agents in sensory range.

Table 5.1 — Summary of the parameters used.

Hunting behavior by unconfusable predator. The architecture of the unconfusable predator
is the same as that of the confusable one, but without theisamf factor.

AY = (1 - d—) .5 (5.3)

dyiew

| distance fact0|| | prey locking |

(i chased)

Of prey that are sufficiently attractiv&? > 0.1 the one with the highest attractivity is chased.

5.2.2 Model on direct effects: schools under predator attdc

Our first model uses a prey agent already developed for previork. These agents are capable
of schooling by the usual behavior, namely turn away fronghleors which are too close, match
the swimming direction to the average orientation of negglat intermediate distance and turn
towards neighbors farther away (see (Kunz and Hemelrijk32®0r technical details). This
model (of one predator and 100 prey agents) was used to igasthe benefits for grouping
by prey for a range of parameters (handling time, predateedpboth for confusable and
unconfusable predators. The parameters used are sumadiarizable 5.1.

5.2.3 Evolutionary model: prey under predatory pressure.

The second model uses an evolutionary approach with a eliffetlype of prey agent (see
Fig. 5.2). The agent uses a simple neural network to cortsainbvement. The inputs;
are specified in Fig. 5.2. The outputof the network

5 2
0= f(z dowi-Ip),  flx) = ﬁ —0.5 (5.4)

determines the turning angle
¢ =2m0, (¢ clipped to the interval—40°, 40°]) (5.5)
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Figure 5.2 — The sensory field of each agent is divided into eight sethatsare subdivided in
three areas. A simple neural network is used for the sensoigegsing. Each input; node is
assigned to an area of the sensory field. Not every area dgliie same information, though.
Inputs located in the closest and outermost areas- (0 andr = 2) feed the number of agents
(located in that area) into the neural network. Inputs in thieermediate areasr(= 1) provide
the average relative orientation of the agents located ertspective areas.

and thus the new velocity vecfor
LA = v+ g, |V =032 (5.6)

and consequently the movement
xTA = xt L vIAL, At =0.2s (5.7)

Thus, the weights’ in the neural network determine the prey behavior. Sincg onbiased
behavior is desired here (i.e. the reaction to neighborbeddft and to the right should be
identical) the weights on the right-hand side are deterthimethe corresponding weights on
the left.

The parameters of the predator were chosen deliberatelythat grouping would be dis-
advantageous in the case of an unconfusable predator. fonmary of the used parameters
see Table 5.1.

Since we use an evolutionary approach here, we leave it toetigalgorithm to find opti-
mal weights for the prey to survive as long as possible. Thefsgeights therefore constitutes
the genome.

The evolutionary algorithm is working on a group of idenkigey agents (all have the same
genome and thus the same neural network). The groups wdtamaby two criteria, namely
the percentage of surviving agents and the ratio of colis@mmongst prey agents,

fitness = =ae (1 — —”°°'”5i°”) (5.8)

n

3Prey agents have a constant speed.®fz/s. /v denotes the orientation of the vectoand ||v|| its length.
4A standard genetic algorithm was used (Goldberg 1989). @ptementation usesAL | B, an open source
general purpose genetic algorithm library which can be fiduere:l ancet . mi t . edu/ ga/ .
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Figure 5.3 —Number of surviving prey. The left panel shows the results of the simulations with
an unconfusable predator, the panel on the right depictsstimae situation for a confusable
predator. Solid lines correspond to schooling prey, wherdatted lines depict simulations
where prey moves independently. The darkness represergpeled of the predator.

wheren = 100 is the total number of prey agents (at the start of the sinni@tn e is the
number of prey agents still alive at the end of the simulafefter 1000 S) anagision IS the
number of prey agents which are closer than 3 cm to their seamghbor (measured at the
end of the simulation).

A total of 25 evolutionary runs were simulated, in each ofefh& pool of 30 groups (of
100 individuals and 1 predator) were evolved for 100 ger@rat In each generation, for each
of these 30 groups the fitness (see above) was evaluated.

At the end of a run the group with highest fithess was selededralysis. Further, each
time a prey was captured, its nearest neighbor distancéaravérage nearest neighbor distance
were saved. Additionally, the degree of coordination (selew) was measured at the end of
each run.

Statistical measurements

Besides the number of surviving prey the following measwese calculated. To characterize
the compactness, we used the average nearest neighbaorcdistBhe degree of alignment is
measured by the coordination (polarizatiprgefined as

1 £ (vivag)
— 1_ 19 an )
p n Z ( n

i=1

wherev; is the velocity of preyi and v, is the average velocity over all prey agents. For
perfectly coordinated groups we would get 1.0, for totally uncoordinated groups we would
expectp = 0.5.
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Strategy # S
schooling  cohesive, consistent forward movement, notssacdy well coordinated 11 80
milling cohesive, forming a closed loop, stationary 5 82

oscillating cohesive, agents move synchronously towandssvay from the center of the4 78
group, stationary

compact very dense, stationary or moving 3 69

swarming cohesive, uncoordinated, stationary 2 62

Table 5.2 — Summary of the evolved grouping strategies. # denotesuimder of times the
strategy has evolved as the most successful one. 'S’ detheteverage number of surviving
prey per strategy. Each run started with 100 prey agents.

The degree of ‘solitude’ indicates the degree with whichtaeegt prey were exposed. It is
calculated as the ratio of nearest neighbor distance ofapticed prey to the average nearest
neighbor distance in the group, averaged over all captuedfish. A solitude of implies that
the distance between the captured prey and their nearegthogiwere on average two times
larger than the average nearest neighbor distance oveyaalta A high solitude thus indicates
that the captured prey was isolated and thus not part of gogrou

5.3 Results

5.3.1 Direct benefits of schooling

As is shown in Fig. 5.3 (left panel), the number of survivingyin schools increases when it
takes the unconfusable predator more time to handle antieatey (solid lines). In contrast,
when prey agents are ungrouped, the number of survivinggwey not depend on the handling
time. When comparing solid and dotted lines of the same aedocan see for which handling
time (and predator speed) schooling or independent movieisiemore advantageous. In fact,
for the parameters tested here, the grouping strategy andéatyeous only for a very long han-
dling time: for a predator speed of 0.6 m/s handling time &hbe higher thans 2 s and for a
speed of 0.9 m/s handling time should exceed s.

As expected higher predator speed generally leads to meydping eaten, both for school-
ing and non-schooling prey. If the predator has the samedsgethe prey, it can hardly capture
any of them, despite the fact that the prey does not take asiavaction.

On the other hand, for a confusable predator schooling iay@wadvantageous, even when
the predator can consume prey in almost no time (see 5.3 payiel). Note, however, that here
we compared only two behavioral strategies, namely schgand independent movement.
There may even be better strategies which we did not test Weereby individuals group only
under certain conditions.

5.3.2 Evolved behavior

The hypothesis here was that a cohesive strategy shouldesamiong prey agents when under
attack of a confusable predator. Remember, that the predatameters (handling time and
speed) were chosen deliberately that the grouping strategid not work with an unconfusable
predator.
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Indeed, in all the 25 evolutionary runs cohesive strategiesed to be the most successful
ones. In none of these strategies were the prey agents modegendently. Nevertheless, the
strategies were not identical, see Table 5.2 for a summaigtably, in almost half of the runs
schooling evolved. Interestingly, the second most fretjstnategy was milling a behavior
which can also be observed in nature. The next frequent bmhaxhich we called ‘oscillating’
(where the individuals synchronously approach the groapeceind the again move away from
it repeatedly), is not observed in nature, still it leadsitoilar good results as schooling and
milling. Both the compact and the swarming strategies hdiglatky lower number of surviving
prey. Although, one would expect that compact groups woidltlya better protection than less
dense ones due to the confusion effect. The reason thatingacd groups had a lower number
of surviving prey can be explained by the observation tregjdently individuals left the group,
in one case the group dissolved entirely. Solitary prey sleaaptured by the predator. The
swarming groups had the lowest number of surviving preyabse of their low density at the
periphery which reduced their protection by the group.

Nearest neighbor distance and coordination. We can get a more quantitative view of the
evolved grouping strategies looking at average neareghher distance and the degree of
coordination. For both moving and stationary groups theess to be a tendency that denser
groups (with a lower average nearest neighbor distance) gfeater safety in terms of the
confusion effect (see Fig. 5.4, left panel). Further, itrsedhat for stationary groups (red
squares) the sheltering effect of dense groups is more tanpor

The importance of degree of coordination for survival is moinediate (see 5.4, middle
panel). Obviously, the moving groups have a much higherdination than the stationary ones
(consistent forward movement requires a certain degreeaftimation). Further, it seems that
for stationary groups, coordination is of less importarféer. the moving groups, on the other
hand, a higher coordination indeed seems to corresponditgharmumber of surviving prey.
This could indicate, that for moving groups, the velotity the group is important.

Solitary agents. From the visual inspection of the simulations we knew thanheny cases
single agents left the group and were often chased (and)dateghe predator. While bad for
the individual, this behavior is potentially good for theogp, as it distracts the predator from
the group.

While this idea seems straightforward Fig. 5.4 (right ppekbws a more complicated pic-
ture. For the stationary groups it seems that such ‘altaiisehavior does not really help the
group, as indicated by a low solitude for the groups with a benof surviving prey> 75 and
lower numbers of surviving prey for the groups with a highaitade. An explanation for this
finding may be that solitary agents are captured quickly evtiie group is still in the sensory
range of the predator (and can easily be attacked againheAstationary groups cannot evade
the predator (when the latter is handling a prey item) thexeha rely on the confusion of the
predator, which is reflected in small nearest neighbor dégta (at least for the more successful
groups, see also above).

SThe different strategies were discriminated by a humanrobse

Although the average number of surviving prey was slighityhier for milling than for schooling, we do not
consider this difference as statistically significant heseaof the low number of samples.

As the velocity is strongly connected to coordination (Kamzl Hemelrijk 2003).
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In moving groups (especially in the more successful oneb nitmber of surviving prey
> 75) prey is often captured at a much larger distance from theggtioan for stationary groups.
This means that in these cases solitary prey is capturedeébprigdator, indicating that this
‘altruistic’ behavior of some prey agents is beneficial foe group. Indeed, as the group is
moving it may evade the predator when the latter is chasirmijtagy prey.

Note, however, that there are also highly successful mogmogps where the solitude of
captured prey is low (see circled triangles in Fig. 5.4). Sehgroups are protected by confusing
the predator because of their small nearest neighbor distan

5.4 Discussion

In this study, the benefit of schooling (or cohesive behawigeneral) under predatory pressure
was investigated. Even though the prey agents could noeperthe predator (and thus they
could not take any evasive action) it was still beneficialema wide range of parameters to
form groups.

In the model of direct effects of predation on schooling pegrs that if a predator cannot
become confused by prey, grouping is seldom beneficial ollig advantageous if the handling
time by the predator of the prey is long, so that the predated contact with the school while
still eating its captured prey. Although predator speedanarong effect on how many prey
agents can escape from the predator, it does not greathemndduwhat the minimal handling
time is under which schooling is beneficial.

If, however, a predator can be confused, schooling appeabe tadvantageous under a
whole range of parameters, even if the predator handlespraghtem very fast. This confirms
that “the confusion effect is one of the most powerful fortiest promote sociality in animals”
(Landeau and Terborgh 1986).

Next, an evolutionary approach was used to search for amapstrategy. We found that
in the case of a confusable predator cohesive groups witmsistent forward movement, i.e.
schools, evolved most frequently. Although these groupséheonsiderable degree of coordi-
nation (otherwise they would be incapable of maintainingravhrd movement) they lacked the
high degree of coordination observed in real fish schoolsaBsg it is possible to evolve highly
coordinated behavior using our prey mdtiéhe only explanation for the low degrees of coordi-
nation evolved here is that it is advantageous, becausasesasingle individuals to stray away
from the group and these ‘altruists’ are more likely to beeratnd in this way help the group.
We may hypothesize that strongly coordinated schools malwvewnder slightly different cir-
cumstances, namely when a kind of energy minimization islied (synchronized movement
is considered to be more energy efficient) or when the pregtagm sense the predator and take
evasive action (as synchronization is a strong mechanigransfer information from one part
of the group, were a predator has already been detected,iti@i@nit part, were the predator
cannot be seen).

The second most frequent strategy that emerged was milliagoehavior which is also
observed in real fish schools. This unexpected finding igestang because milling, rather
than being a “trap” for fish schools, appears to be benefisi@maanti-predatory strategy — at

8Evidence for highly coordinated behavior was found in a sseaset of evolutionary runs using the same
prey model, but where the prey was explicitly selected foiga egree of coordination (data not published here).
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least in our experiments. Whether milling in real fish sce@$o serves as a protection against
predators is, to our knowledge, an open question.

The third most frequent strategy that evolved we calledifladimg’. This has not been
observed in real fish schools, possibly because this behawiald be energy expensive.

Another strategy that emerged, which we called ‘compaet &lso been observed in real
fish schools. Under predatory attack prey may form very dgmseked groups, which makes
it very difficult for the predator to single out individuals attack (Hamilton 1971).

The last strategy that evolved, namely swarming (or shggis observed also in nature.
Nevertheless, this strategy did not seem to be particukdflctive in protecting the group
against the predator.

When comparing stationary groups with moving ones in terh@verage nearest neighbor
distance and solitude, it seems that the predator protectay depend on two different mech-
anisms. Most of the more successful stationary groups ayedense (nndx 5 cm) and almost
no prey agents leave the group. In contrast, for many (bualpinoving groups the nearest
neighbor distance is much higher and a high fraction of thedkjprey was captured outside of
the group. For the few moving groups without solitary indivals nearest neighbor distances
appears to be low. This suggests that the stationary growptha moving groups without soli-
tary individuals rely entirely on the protective effect afnfusing the predator, whereas other
moving groups employ a combined strategy, of on the one hamiision and on the other hand
avoidance by swimming away from the predator if it is busysthga prey that left the group.
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Chapter 6

Summary and Discussion

This chapter concludes this thesis by summarizing the tesbitained and discussing more
general principles that can be drawn from them. We finish up saggestions for future re-
search.

6.1 Summary

Here we will summarize the results from the previous chaptecused, however, on those that
are consequences of the individuals’ embodiment and sinass. For more details, the reader
is referred to the respective chapters.

Of course, all the results presented here primarily emeamga the interactions among the
individuals and are therefore a consequence of self-argdan. Thus, the results we discuss
here are those that arise as embodiment and situatedn@estianteraction among the indi-
viduals, thereby affecting the process of self-organizatind thus the patterns that emerge.

6.1.1 Effects of embodiment

In chapter 2 the implications of body size and form on theaamiganization of fish schools
consisting either of large or small individuals is inveatigd.

Body size directly affects thanter-individual spacing Larger individuals occupy more
space (because their body is larger) and avoid neighboesgdrl distances, therefore schools
of large individuals are less dense and occupy a larger hagethose of small individuals.

The asymmetric body form leads kess uniform inter-individual spacingecause of the
elongated shape of the body individuals maintain largetadises to neighbors ahead than to
those at the sides (measured as distance from center of hass andividual to that of the
other).

Body size influences theolarizationand speedof the schools: Because large individuals
align with neighbors further away, schools of large indiats are more polarized than those of
small ones. They are also faster as a group (note that in odelnferge and small individuals
have the same preferred speed), because in highly coaedisahools all individuals swim in
the same direction.

However, if body form is also reflected in the shape of theawegjiof repulsion and align-
ment (elliptic agents), the situation reverses, becausieesépeated repulsion effeavhich is
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stronger for large individuals. Consequently, groups gfeandividuals are less polarized and
thus slower than those of small ones.

In chapter 3 the effect of body size and form on the orgaromadi mixed schools of large
and small individuals is investigated.

Body size has a strong effect on hesitioningof the individuals within the school: Because
large individuals maintain larger inter-individual distaes they avoid small individuals stronger
than vice versa. Consequently, over time, they are pushibe feeriphery, while the small ones
remain in the center.

However, if small individuals avoid to be in the vicinity @frige individuals (risk avoidance)
but still maintain smaller distances among themselves, ttiepattern reverses, with small ones
at the periphery and large ones in the center.

6.1.2 Effects of situatedness

In chapter 4 individuals are made more situated by inclutiwegmasking of distant neighbors
by closer ones. Such an obstructed perception has a big irapdbe density and the form of
large groups.

Without obstruction increasing group size leads to inéreggyg dense groups, because in
larger groups more individuals interact, which leads torgger mutual attraction. In fact, be-
cause of the high density the interaction becomes almobag(because most of the neighbors
are within interaction range) and thus the groups have a regylar, approximately elliptic
form.

With obstructed perception, on the other hand, the numbeflaéntial neighbors decreases
with increasing density, because crowding limits the petioa of others. In fact, the masking
of distant neighbors by closer ones restricts the intevadb thelocal environmenof an indi-
vidual. Whereas for small groups, obstructed perceptianlitite effect, because here only a
few neighbors are hidden behind others, for groups largar 200 individuals there are several
profound consequences, which are due to the more locahutten.

First, the average nearest neighbor distance (or groupitgebgcomesindependent of
group sizethereby avoiding unrealistically dense groups that owgtlir the old model.

Second, group shape becomes mmevoluted or amoebojdvith appendages and inward
bounds. Furthermore, group shag@nges over timesometimes dramatically.

Third, local density becomeamore heterogeneousvith regions of higher and lower den-
sities, respectively, occurring in the interior as well &adhee boundaries. Additionally, the
distribution of individual densities undergolsavy fluctuationsvhen the overall shape of the
group changes.

In chapter 5 a series of experiments was performed with aapvedhat was confusable,
thereby approximating the perceptual limits of a real ptedand thus making the simulated
predator better situated.

Using such a predator as “implicit fithess function” (by ctnog the number of surviving
prey after a given amount of time) it was straightforwardcetmlve schooling behavidqand
other related grouping strategies, such as milling) usamggc algorithms.

Furthermore, if a predator is confusable, schooling is athgeous under a wide range of
predator parameters (predator speed and food handling, timeereas if the predator is not
confused by prey, grouping is only beneficial if food hangliime is very large.
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6.2 Conclusions

Whereas in biology, the morphology of the animals, as wethas sensory and motor system,
and how they are situated in the real world has always bedroptre research because their
significance for explaining natural behavior is obviouswdwer, the influence of embodiment
and situatedness on group behavior has been modeled onlyniited sense so far. As such
models are developed to investigate the behavior of aninsailgs, rather than single individu-
als, their focus is on the interaction between the indivisluand they abstract from the details
of embodiment and how it influences their behavior, i.e.rth@vement.

On one hand, this abstraction is important, because itustisuild simple models in order
to understand the mechanisms how groups organize theraselya other words, how the be-
havior at the group-level emerges (by self-organizatiomnfthe interactions at the individual-
level.

On the other hand, once a basic understanding of these peschas been gained, we are
ready to explore how they are affected if aspects of embautiared situatedness are included,
which we did here.

6.2.1 Implications of embodiment

In chapter 3 we show that the inclusion of characteristith®@Embodiment of individuals leads
to sorting of schools according to their body size. This igbte for three reasons. First, the
sorting is emergent, as the individuals have no preferefareseighbors of either size, they
treat all neighbors equally. Second, also the movementeftthall one towards the center
and of the large ones towards the periphery is emergentubea#one of the individuals have
any preferences on their positioning withing the schoold Aast but not least, it is in a way
surprising that size sorting occurs at all, because theithgils do not even know how large
their neighbors are.

Thus, rather than being specified explicitly, segregatibmdividuals according to their
body size in our model is entirely passive.

In embodied artificial intelligence, the idea that not eveagtern or behavior has to be the
result of an explicit mechanism is known psnciple of cheap desigPfeifer and Scheier
1999). It states that good designs exploit the physics ofsftstem-environment interaction,
or in our case the physically-inspired interaction betwtenindividuals, because they, as we
have seen, may lead to emergent phenomena, such as sing.sbrtthis sense, such models
are “cheap” or parsimonious.

6.2.2 Implications of situatedness

The credo of embodied artificial intelligence, that agergschto be situated can be applied
to individual-based simulations: In order to develop megful models, we have to adopt the
individual’s perspective. Otherwise, our models may beedam unrealistic assumptions and
are, from a biological perspective, meaningless or leadisteading conclusions.

For example, models based on a metric selection criteridetiermine the influential neigh-
bors have a fundamental problem. First, the interactiogedras to be big, in order that the
individuals can find each other and form a group in the firstg@laOnce the group is formed,
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many individuals are within range, which leads to intei@tsi among very many, if not all,
individuals.

While this is not a problem for smaller groups, such a highrée@f interaction is clearly
implausible for larger groups, because the interactioh titndreds of neighbors will overload
even the fastest sensory and cognitive system. Besidesathate demonstrated, it leads to
unrealistically dense groups.

The latter has already been realized earlier by Mogilnerl.e(2803), who gave exact
mathematical requirements for repulsion- and attractioitfions to achieve reasonable inter-
individual spacing in groups of arbitrary size.

Here, however, we realized that the flaw of our model is nat e repulsion behavior is
too weak to compensate for the increasing mutual attractigmoups of increasing size, but
that the assumption that individuals interact with all theeighbors within a given range is
wrong.

Instead of tweaking the behavioral responses, in chaptez shade our individuals more
situated, by restricting the interaction partners to thbse can be perceived, i.e. those are not
hidden behind closer ones. This reduces the number of atiengartners and therefore avoids
unrealistically high densities in large groups.

Again, by exploiting “physical” properties of the interemt among the individuals, i.e. by
applying the principle of cheap design, we arrive at a mosgleich has more explanatory power,
because it incorporates a real mechanism instead of twgakaael parameters until the results
matches biological data or our expectations.

Interestingly, obstructed perception adds adaptivityht® tnodel. If density is high, an
individual interacts only with very few neighbors, theretagducing mutual attraction. On the
other hand, if density is low, many more neighbors can begdexd, thereby increasing the
overall attraction. In both cases, by regulating the nundbenteraction partners, obstructed
perception stabilizes the school’s density, such thatdbbees independent of group size.

6.2.3 Interactions between embodiment and situatedness

A novel characteristic of our model of obstructed perceptichapter 4) is that perceivability
and therefore interaction depend also on body size, fornmoaedtation of the close by neigh-
bors, i.e. on their embodiment. First, for large individualasking is stronger than for small
ones (because their larger bodies occlude a larger angtiipigto a lower number of influential
neighbors in groups of large individuals.

Second, because of their elongated body, neighbors atdée scclude a larger angle than
those at the front (assuming that individuals are align@dherefore individuals interact with
more neighbors ahead that are also farther away on averdge.ledds to an emergent front
priority, which has been built into earlier models explic{Huth and Wissel 1992, 1994a; Inada
and Kawachi 2002; Lukeman, Li, and Edelstein-Keshet 20h@)ras also been suggested for
real fish (Olst and Hunter 1970; Partridge and Pitcher 198@riBge et al. 1980).

Here, situatedness and embodiment of the individuals piggther, and provide “for free”
(cheap design) what otherwise has to be built into model$icittyy thereby increasing the
explanatory power of the model.
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6.2.4 Implications on computational efficiency

A major difficulty in the simulation of large schools is thencputational effort required to
determine the interactions among the individuals, becthesseaumber of possible interactions
grows very quickly when the number of individuals is incredigsee also Appendix A).

As we have seen, making individuals more situated, leadsuchrtess interaction among
individuals. Thus, such a model has the potential to be céatipnally much more efficient
than one where the interactions are extensive — if we carse@vimethod that provides us with
the interaction partners without having to examine all pai individuals. Indeed, inspired
by methods developed originally for astrophysical simala, we could devise a method to
determine the perceivable neighbors without much overfsselAppendix A for more details).

Thus, the restrictions imposed on the interaction by eningrtbe situtatedness of the indi-
viduals makes the simulation computationally much moreieffit, which in turn allows us to
simulate much larger groups than otherwise would be passibl

6.2.5 Outlook

In this thesis, we demonstrated that modeling the indivgllembodiment and situatedness
more accurately lead to more realistic social organizadiosimulated fish schools. It is there-
fore important to include such characteristics in compbgesed simulation models and we hope
that our results may provide inspiration for further modglalso of other biological systems.

We believe that the principle of cheap design deserves apattention. In its original
meaning this principle urges the designer to exploit whatrisady there in the physical world,
instead of devising a specific mechanism. Unfortunatelginmulation models nothing is “al-
ready there”. But, at least when modeling biological systeiins still important to include in
the model, what would be “already there” in the physical wpdven though this requires a
modeling effort. Otherwise our models are in danger of mg&nportant mechanisms, which
are presentin the real world. Mechanisms that lead to phenarike the emergent size sorting
in the case of reflecting body size in the model, or to the stalbilization of school density in
case of obstructed perception. Without these physicadlgired mechanisms we would have to
build those things into our models by other means.

Thus, by the inclusion of physical properties, i.e. by moggémbodiment and situatedness
more realistically, our explanations of the individualghavior get simpler or more parsimo-
nious.

Of course our implementations of embodiment and situatsiaee only a first step. For
example, we entirely neglected hydrodynamics or the bendirthe individuals body during
swimming. Furthermore, our implementation of obstructeccpption is only an approxima-
tion, as fish can be partly occluded, for example, which da¢®acur in our model. Further-
more, we assumed that the individuals can assess the divectd distance to neighbors as well
as their heading and speed, without asking how fish mightiextjus information.

Truly embodied and situated models will have to addressetloballenges. However, we
believe that much can be learned on how real fish school byngfour models in this way.

More generally, since in most individual-based models,ardy those of schooling, mor-
phological and material constraints are taken into accouht in a very limited sense, we
expect that their inclusion might in fact lead to surprisingights and to models with higher
explanatory power, also for other types of group behavior.
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Appendix A

Computational efficiency

A major difficulty in the simulation of large schools is thenasputational effort required to find,
for every individual, the neighbors to interact with. Theedit approach, that is used most
commonly, is to check for every/ (N — 1) ~ N? pair of individuals if the individuals are in
sensory range and thus interact. The computational contyplehthis naive approach i9(N?)
and therefore only suitable for small populations.

To simulate large schools we developed a new method to findbyeaighbors efficiently,
which is inspired by an algorithm developed originally fetra-physical simulations (see e.g.
Barnes and Hut 1986). Here, at every time step the individdaeg sorted into a spatial-tree
which is then used by every individual to find the perceivaitgighbors. The spatial tree, which
provides a hierarchical subdivision of the space into dglée Fig. A.2A), is constructed as
follows:

1. Assingle square cell that contains all individuals sea®&¢he root of the tree.

2. Every cell containing more than one individual is subdidd into four equally sized cells,
which are inserted into the tree as descendants of the paetknt

3. Step 2 is repeated until each cell is either empty or costali most one individual.

After constructing the tree each individual uses it to fineltlearest neighbor per sensory sector
(see Fig. A.2B), i.e. the perceivable neighbors:

1. Starting from the cell containing all individuals, thébscells are considered recursively.
2. The sub-cells close to the individual are examined firgd, then those further away.

3. If a sub-cell is not in sensory range or is occluded by cloggghbors, then there is no
need to process it (and its sub-cells) any further. Notedhelt a cell might contain many
sub-cells and thus a large number of individuals which chbeaignored.

Such a tree-based scheme reduces the computational catpfmex( N log V) (see e.g. Barnes
and Hut 1986). To compare the computational efficiency oftwwealgorithms or models, re-
spectively, we compare the average number of evaluationsighbors that are required to find
the interaction partners per individual per time-step. thernaive algorithm used with global
perceptions this is always — 1. For the tree-method used together with perceptual oligiruc
it depends on the number of sensory sectors (see Fig. A.Zphbutumber of evaluations it is
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Figure A.1 — lllustration of the hierarchical subdivision of the spaoéo cells (gray squares).
A: The individuals, represented by short black bars (the eeot the line is the reference point)
are organized in five groups of different size. The dottessliHustrate the sensory sectors of a
focal individual.B: Closer view of the group with the focal individual. Noteathe blind area
at the back of the individual. Direction of movement is iitated by the gray arrow.
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average number of neighbors tested
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Figure A.2 — Average number of evaluations of neighbors that are reglio find the interac-
tion partners per individual per time-step.
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always smaller than for the naive approach. Ff00 individuals the tree-method is more than
200 times more efficient.

Similar algorithms have been developed by Erra et al. (20R8ynolds (2006); Silva et al.
(2008) .
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