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Abstract We develop a systematic toolbox for analyzing the adaptive dynamics of
multidimensional traits in physiologically structured population models with point
equilibria (sensu Dieckmann et al. in Theor. Popul. Biol. 63:309–338, 2003). Firstly,
we show how the canonical equation of adaptive dynamics (Dieckmann and Law in
J. Math. Biol. 34:579–612, 1996), an approximation for the rate of evolutionary change
in characters under directional selection, can be extended so as to apply to general
physiologically structured population models with multiple birth states. Secondly, we
show that the invasion fitness function (up to and including second order terms, in the
distances of the trait vectors to the singularity) for a community of N coexisting types
near an evolutionarily singular point has a rational form, which is model-independent
in the following sense: the form depends on the strategies of the residents and the
invader, and on the second order partial derivatives of the one-resident fitness function
at the singular point. This normal form holds for Lotka–Volterra models as well as
for physiologically structured population models with multiple birth states, in discrete
as well as continuous time and can thus be considered universal for the evolutionary
dynamics in the neighbourhood of singular points. Only in the case of one-dimensional
trait spaces or when N = 1 can the normal form be reduced to a Taylor polynomial.
Lastly we show, in the form of a stylized recipe, how these results can be combined
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into a systematic approach for the analysis of the (large) class of evolutionary models
that satisfy the above restrictions.

Keywords Adaptive dynamics · Physiologically structured populations ·
Multivariate evolutionarily singular strategies · Multitype branching processes ·
Evolutionary modelling
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1 Introduction

This paper is concerned with the abstract geometry underlying the process of repeated
invasions by novel mutants. Mutation limited near-continuous evolution will be our
frame of reference, as we follow the so-called adaptive dynamics approach. Adaptive
dynamics studies which rare mutants can establish themselves in an environment
inhabited by a large equilibrium population of residents that they closely resemble,
which invasions by similar mutants will lead to the demise of the original residents,
and what the evolutionary outcome will be of a series of such substitution events. The
tricks and tools of this trade are introduced in the following section.

The assumed magnitude of the resident population makes its dynamics determi-
nistic, whereas the rarity of the invading mutant introduces a strong stochastic effect.
This complication means that a positive average growth rate is a necessity, but no
guarantee for a mutant’s invasion success. To ask for the probability of such success is
basically to ask what chance a given mutant has of being the ancestor of an unbroken
line of descendants. This is analogous to the “surname” problem that led to the theory
of branching processes, where the quantity we called for is termed the establishment
probability of the given mutant (e.g., [32]).

The last major consideration we have in the setup of this enquiry is that we look for
general geometric properties and not artifacts generated by specific models. Therefore
we must consider as wide a class of models as we can technically handle. To that end, we
derive our results within the context of general physiologically structured populations.
This class of models is the ultimate generalization of resource competition models,
allowing populations structured, e.g., by size, and multiple birth states (think sexes,
morphs, or size at birth). The third part of this introduction (1.2) points out the main
assumptions and quantities pertaining to such models.

Gathering together the results of perturbation calculations, we are able to extend the
so-called canonical equation derived by Dieckmann and Law [15] to general physio-
logically structured populations. It is the adaptive dynamics tool, describing the rate
of trait change in the case of directional selection. However, the canonical equation
is an approximation that loses its validity in the close proximity of its equilibrium
points. At such points, called evolutionarily singular points, a more precise analysis
is required.

In this paper we also show that with regard to the invasion fitness function near
evolutionarily singular points, all possible models are locally equivalent to Lotka–
Volterra models (3.4, Proposition 3). Therefore the fitness function of these well-
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known and mathematically relatively tractable models provides a general normal
form. Thus the derivation of this property is a step towards classifying the local
geometrical properties of invasion functions. Geritz et al. [27] showed that if the
trait under evolutionary control is scalar, a full classification of nonexceptional cases
consists of eight possibilities. When traits are multidimensional (as in this paper),
it is unknown how many classes are needed to cover all nonexceptional cases nor
what they would look like, let alone that there is an understanding of the bifur-
cations between those classes. F.J.A. Jacobs is engaged (together with one of the
authors) in analyzing the latter for Lotka–Volterra models with scalar traits; this
paper shows that a fair part of his results apply to all models with one-dimensional
strategies.

1.1 Adaptive dynamics

Adaptive dynamics is concerned with evolutionary outcomes of community-dynamical
processes when reproduction is nearly faithful [49]. The main assumptions are rarity
of mutations (i.e., the ecological and evolutionary timescales are separated, and hence
the community dynamics will settle on an attractor between mutation events), small-
ness of mutational steps (allowing sensible topological and geometrical inferences)
and the initial rareness of mutants (implying a well-mixed resident population of large
size).

A key insight of structured population models is given pride of place in adaptive
dynamics: the separation of individual and environment, both influencing each other
in a feedback loop [48]. The idea is that individuals influence the environment in
an additive manner. Given an environment, individuals are independent—any two
particular individuals being exceedingly rare as a proportion of the total population,
their mutual influence is effectively zero. This decoupling makes the equations linear
when the environmental condition is given as a function of time.

The starting point of adaptive dynamics is the invasion fitness function [50]. By
definition this is the long-term average per capita growth rate of a rare type (the
invader) in an equilibrium community of a given set of types (the residents). Thus a
resident type cast in the role of invader always has a zero invasion fitness, since it will on
average neither grow nor diminish in abundance. One also sees that a negative fitness
for a given type implies the impossibility for such an invader to gain a foothold in the
population, whereas a positive fitness means a positive probability of establishment.
But as this concerns a stochastic process with an initially very small amount of invaders,
even a positive average growth rate will not prevent extinction in a fair amount of cases.
However, as we consider gradual, mutation-driven evolution, the relevant invaders are
the mutants: new types that differ but slightly from one of the residents. When a mutant
has a positive invasion fitness, but due to stochasticity its attempt at establishment fails,
this is not the end; evolution can bide its time and a later occurring similar mutation
may get established due to other chance fluctuations.

Reviewing the technical setup of the framework, we start by considering the
parameters under evolutionary control. We refer to this set of parameters as a stra-
tegy (which gives it a life history flavour), a trait value or trait vector (which sets the
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mind to a more technical, algebraic frame), a point in the strategy space (which hints
at a graphical representation, or a geometrical argument), or simply the type of the
individual. We call the set of all possible traits the trait space and denote it by X.

The invasion fitness function is also known as the s-function, to underline its heritage
as a conceptual extension of the selection coefficient of population genetics. The
s-function for a monomorphic community, denoted by sX(Y ), describes the invasion
fitness of a mutant with trait value Y in an environment set by a single resident of
type X. The s-function for a polymorphic community, similarly denoted by sX(Y ),
gives the invasion fitness of a Y -type mutant in an environment set by a community
of N types {X1,X2, . . . ,XN } =: X.

That the community can (locally) be identified with the strategies present, comes
from the convenient assumption of existence and (local) uniqueness of an attractor
for the population dynamics of the community, plus the paucity and small effect of
mutations.

The s-function generates further functions of central concern, namely the inva-
sion gradients, which are the transposes of the derivatives of the fitness in the mutant

direction at the trait value of a resident:
(
∂sX(Y )
∂Y Y=X

)T
for a monomorphic world,

(
∂sX(Y )
∂Y Y=Xi

)T
for some i in the polymorphic case. The trait values where these

invasion gradients are zero are called evolutionarily singular strategies. The study
of evolutionary dynamics can thereby be split into two main parts. First, away from
the zeros of the invasion gradient and under the restriction of well-behaved po-
pulation dynamics, it can be shown that “invasion implies substitution” [13,14].
What well-behaved entails, is considered by Geritz et al. [25,26], and substitution
means that the mutant drives its ancestral resident to extinction if it succeeds in es-
tablishing itself. Hence the apparition of a new type, the mutant, does not usually
lead to increased diversity—on the contrary, if there are several types coexisting
in the resident community, on rare occasions the appearance of a mutant may lead
to the demise of not only the resident that spawned it but also of other resident
types, thereby actually reducing the diversity of resident types. Close to a singu-
lar strategy however, other phenomena come into play. Singularities fall into se-
veral categories, one possibility being the classical ESS, known i.a. from evolutio-
nary game theory. What makes adaptive dynamics an interesting evolutionary frame-
work, is the existence of other, naturally occurring, types of singularities. Foremost
among them is the branching point, a singularity that is attracting (for the monomor-
phic dynamics) but in the proximity of which selection is disruptive. Here selection
acts such that a newly established mutant does not drive its progenitor to kingdom
come. Subsequent mutants do however wipe out their ancestors, so that after a few
mutation events two distinct resident populations will sit on opposite sides of the
singularity. Over evolutionary time, these populations form two “branches” of co-
viable types, that evolve away from the singularity. Such a splitting of genetic lines
through an intrinsic process has an obvious appeal as a model for (the initiation of)
speciation.

Research into the mathematical properties of adaptive dynamics models has led to
several insights. Foremost there is the canonical equation as formulated by Dieckmann
and Law [15], which predicts the speed of evolution as a function of the underlying
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individual processes. That formulation so far allows only community dynamics mo-
delled by ODEs. The equation basically predicts evolution under directional selection,
at some distance from singularities. In this paper we first extend the applicability of
the canonical equation to physiologically structured populations, and later look what
happens at those points where the approximation fails to hold true. To this end we
devise an expansion near the singular points of the fitness function. The formalism in
which we do the calculations is set down in the following subsection.

1.2 Physiologically structured population models

As described for example by Diekmann et al. [21], general physiologically structu-
red models assume few restrictions on population dynamical mechanisms other than
(local) well-mixedness. We restrict our attention to the special case of structured
populations with point equilibria in the resident population dynamics. In that case, the
following definitions shape the modelling framework:

– b is the column vector of birth rates, with as components the steady rates at which
individuals are born with state-at-birth specified by the component number.

– I is a vector describing the environmental conditions as far as they play a role in the
(direct or indirect) interactions between the individuals. The defining requirement
is that individuals are independent of one another when I is given. In this paper,
we restrict our attention to community dynamics with point equilibria, so I is
time-independent.

– L(X, I ) is the next-generation matrix. The matrix component L(X, I )lm is the
expected number of offspring with birth state l born over the lifetime of an indi-
vidual with trait vector X that was born with state m, given steady environmental
conditions as specified by I.

– G(X, I ) is the feedback matrix. The matrix component G(X, I )tl is the lifetime
contribution to the t th component of I by an individual born in state l with trait
vector X, given steady environmental conditions as specified by I.

The terminology above implies that we are only considering a finite number of pos-
sible birth states and of environmental dimensions, although there are no conceptual
reasons for this restriction. For example, single celled organisms will inherit their
size from their mother (about half her size at the time of division), which implies a
continuous range of sizes for the newborns. Similarly, sexual reproduction leads to
infinite dimensional environments usually, because each trait can potentially partner
with infinitely many other traits to make up a diploid individual.

We restrict ourselves to finite dimensional environments and birth flows, to make
sure that our formal calculations make mathematical sense; there is no a priori reason
why a generalization would not be possible or desirable. [For modelling work without
these limitations, see e.g. Diekmann and Gyllenberg (submitted 2007), Abstract delay
equations inspired by population dynamics].

For a community under the above conditions with N types present, equilibrium
means that each generation precisely replaces the previous generation, and that the
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feedback is such that it exactly re-creates the environment as experienced by the
organisms:

⎧⎪⎨
⎪⎩

bi = L(Xi , I ) bi (∀i ∈ {1, 2, . . . , N })

I =
N∑

j=1
G(Xj , I ) b j

(1)

It is clear that the first equation is equivalent to stating that at equilibrium, a population
is either extinct or the expected lifetime offspring production R0 of its individuals is
one, since R0 is the dominant eigenvalue of L. The second equation states nothing
more than that all individuals together must contribute to the environment in such a
way that it remains unchanged. Diekmann et al. [21] have shown that the equilibrium
conditions of most population models in the literature may be cast in the above form
(1), a claim hinging on the considerations below about uncoupling the feedback loop
that connects populations and individuals. It will however often be an arduous task to
rewrite a given model representation into this form while the individual-based recipe
for arriving at Eq. (1) is easy.

It should be stressed that Eq. (1) is an equilibrium equation, written in terms of
the next-generation operator L together with the feedback operator G. Discrete time
non-overlapping generations models are typically specified by giving matrix valued
functions L and G for all possible environmental conditions, including non-equilibrium
population states. Then Eq. (1) is immediately found as the corresponding equilibrium
condition. For continuous time models, Diekmann et al. [19,20] have shown how an
extension into nonequilibrium conditions can be done through reformulating the dyna-
mics using an integral kernel formulation, which can be a challenging task in concrete
cases.

From a biological point of view, the environment I is more readily observed as the
effect of the community on the world (the environmental output Iout) than vice versa
(the environmental input Iin), as the rest of this subsection will elaborate.

The idea behind physiologically structured population models as put forward by
Diekmann et al. [20,21], is to characterize the populations by their birth flow vectors;
that is, we register the flux of births bi of the i th population differentiated according to
the possible birth states. The per capita lifetime offspring production depends on the
condition of the world, Iin, and on the type Xi of the individual, so that in the special
case where the world is constant, a given cohort bi produces L(Xi , Iin)bi offspring
over its lifetime, for some matrix function L.

The output Iout registers the total influence the individuals have on the environment.
This clearly depends on the state of the community; for example, an individual in a
virgin (i.e., devoid of competitors) environment may consume more and have far more
offspring than an identically born individual that is put in an overcrowded world. It is
also clear that this output should scale with the number of individuals there are, as it
is an instantaneous output: two individuals will have exactly twice the influence of a
single individual if they are kept under exactly the same conditions. Furthermore, this
influence depends on the type of the individuals concerned. Therefore we postulate
that the output must depend on the input in the following way that accounts for the
scaling argument: Iout = ∑

j G(Xj , Iin)b j .
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All other things being equal, the state of the world must be the result of the com-
pounded influence of all the individuals. Thus the condition Iin depends only on the
output Iout of the population, through some conversion function F that accounts for the
effect of the environmental dynamics. Hence the feedback loop of the community’s
influence on itself is closed.

All told, we have the following system to solve, where the last equation is the
equilibrium condition:

Iout =
∑

j

G(Xj , Iin)b j Iin = F(Iout) ∀i : bi = L(Xi , Iin)bi

Here we see that we can eliminate one equation and have only Iout and b as unknowns,
since

Iout =
∑

j

G̃(Xj , Iout)b j ∀i : bi = L̃(Xi , Iout)bi

where the matrix functions G̃ and L̃ are the compositions G◦ (id×F) and L ◦ (id×F)
respectively. We will denote Iout simply as I and drop the tilde in the notation of
G and L, which gives us the equations introduced at the beginning of this subsec-
tion. It is clear that an arbitrarily complicated amount of biological detail can be put
in the functions G and L, justifying the claim that this is a very flexible modelling
framework. We do however assume a certain level of smoothness (namely that G
and L are thrice continuously Fréchet differentiable functions), to guarantee the exis-
tence of chain rules and to justify our expansion arguments by the implicit function
theorem.

1.3 Notations

Throughout this paper, we will deal with communities where a finite number of types
are present. These are numbered from 1 to N and denoted by their respective trait
vectors X1 up to XN . The community as a whole is denoted by X and it is interpreted
either as a set of trait vectors X := {X1, X2, . . . , XN }, or as an N -column matrix
X := [X1 X2 · · · XN ], depending on the context. As a convention,

– the indices i, j, k will exclusively refer to resident types (which were said to range
from 1 to N ),

– the indices l,m, n are reserved for denoting birth states in a structured population
model, and if only a finite number of different birth states exist they are numbered
from 1 to d,

– the indices a, b will only be used to indicate the scalar trait components that make
up a trait vector, which we take to be z-dimensional,

– the indices s, t always relate to environmental components, where the dimension
of the environment I is r (cf. Sect. 1.2).
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Thanks to these rules, a summation index implicitly has a range attached to it, as for
example

∑
i can be unambiguously read as

∑N
i=1. Our aim however was not a slight

notational simplification, but to make calculations easier to verify.
As far as possible, we adhere to the convention (e.g., [3]) that matrices and tensors

are denoted by an upright, sans serif capital like M, vectors with a bold Italic letter like
b or V , and scalars with a Greek or Roman letter like λ,Π , t or R0. A consequence of
this convention is that for example the lth component of the birth flow vector b must
be written as bl , and one cannot mistake the matrix C11 for the first diagonal element
C11 of another matrix C.

To help the reader, brackets around matrix-valued expressions have been made
square, where vector- or scalar-valued expressions are signalled by round brackets;
thus matrix components are indicated as, e.g., [C11]ab.

Furthermore, column vectors with all entries equal to 1 (resp. zero) will be denoted
by 1 (resp. 0), where the dimension will be clear from the context. Similarly, the zero
matrix is denoted by 0 and the identity matrix by id.

Please see Sect. 3.1 for additional notations restricted to Sect. 3.

1.4 Assumptions

Here we present an overview of the assumptions scattered throughout this paper. The
impact of some of these conditions cannot be meaningfully discussed at this point, as
the relevant concepts have not been presented yet. Hence we refer the reader to the
subsections where the assumptions are stated as preliminary to specific calculations.
One notes that most are stated in the Introduction, and hence are necessarily active
from there onwards until the end. Assumptions made in one of Sects. 2 or 3 do not
apply to the other section, but are necessarily active in Sect. 4.

First and foremost we abide by the core premises of the adaptive dynamics fra-
mework: individuals have heritable traits that influence their life histories and little
variation in these traits is present, the resident community is large and well-mixed
while both mutants and mutation events are rare (1.1), plus the additional assumption
that the community has a global point attractor, or alternatively that it has locally
unique point attractors while mutational steps are sufficiently small so as to guarantee
that after a succesful invasion the community moves to a natural continuation of its
earlier attractor (1.1, 1.2, 2.2). The basic process from which the deliberations start
is derived in the following manner, as a limit of a fully individual-based community
dynamics. Introducing a parameter Ω called system size that scales inversely with
the effects of interactions between the individuals in the community, the number of
individuals must be about proportional to Ω . The limit to consider is that where Ω
becomes large while the mutation probability per birth event gets so small that a mutant
strategy reaching establishment becomes a rare event on the community dynamical
timescale. To compensate for this rarity, time is rescaled so that the number of dif-
ferent established mutants per unit of time stays O(1); this new timescale is called the
evolutionary timescale. (With increasing Ω , the rescaling must be such that the rate
of mutations reaching establishment decays sufficiently slowly to guarantee that the
rescaled asymptotic rate at which the community goes extinct through demographic
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fluctuations, decreases to zero.) On the ecological timescale, the community relaxes
to its deterministic attractor before the next mutant comes along. This attractor can
be calculated from the equilibrium equations (1) scaled by 1/Ω , i.e., when b is read
as a density per time and I as a density. The described combination of a limit and a
rescaling allows a reduced process description, where at almost all times there is but
a small set X of trait values around, in densities given by the corresponding determi-
nistic community attractor. Such a process has been variously referred to as adaptive
dynamics [49], oligomorphic dynamics [15] and trait substitution process [27]. The
validity of the limit has been proven for some specific Markovian models by Champa-
gnat [7]. For general physiologically structured populations there is as yet no proof for
the step from the underlying stochastic models to the deterministic models considered
by Diekmann et al. [20,21]. In our paper, we take the existence of the limit on faith,
and from this vantage point study situations where mutational steps are small and
all types present in the population are very similar. All order statements refer to the
scale of the differences in the traits under consideration, between mutant and ancestor
in Sect. 2 and mutant and residents in Sect. 3. In Sect. 4 however we also consider
situations with similar residents and mutational steps that are of an even smaller order.

In addition, we impose regularity conditions that are inherent to our modelling
approach: a thrice continuously differentiable dependence of the demographic para-
meters on trait values and environment (1.2, 3.3), offspring distributions that decay
sufficiently quickly to have uniformly bounded third moments (which amounts to the
thrice differentiability of the generating function) (2.5), and no birth states with zero
birth flow for the sole singular resident (3.4). Finiteness of the number of birth states
(1.2) can also be put into this class of requirement, although it is fundamental to our
approach only in the sense that it is required by our specific machinery (i.e. vectors
and matrices, instead of distributions and operators).

Lastly, we inherit assumptions made by Dieckmann and Law [15], as one of our aims
is to see how the canonical equation changes when their premise of ODE population
regulation is dropped: unbiased mutations (2.6), and a stochastic trait substitution
process that becomes deterministic when the mutational steps become small while
time is rescaled such that on the new scale the rate of trait change stays O(1) (2.3).

2 The canonical equation of directional adaptive dynamics

2.1 Unstructured populations

The canonical equation of adaptive dynamics [15] is a first order approximation for
the average speed of evolution. The rate of trait change per time of the i th type in a
community is

dXi

dt
≈ 1

2
n̂i µi (Xi )M(Xi )

∂sX(Y )

∂Y

T

Y=Xi

(2)

where the mutational covariance matrix M at trait value Xi is defined as M(Xi ) :=∫
V V TM(V,Xi ) dV, an expression that depends on the multivariate distribution of

mutational steps M(V,Xi ) from Xi to Xi + V. (here we abuse V temporally as
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a random variable). The speed of evolution is thus seen to be proportional to the
mutation probability per birth eventµi , the equilibrium population size n̂i in the given

N -resident community X, and the fitness gradient

(
∂sX(Y )
∂Y Y=Xi

)T

.

At the singular strategies the fitness gradient becomes zero. Hence, close to the
singular strategies the first and second order terms are of similar size, and the approxi-
mation embodied by the canonical equation looses its descriptive power. Champagnat
[5,6] has proven that under some additional technical conditions, trait substitution
processes that are based on population models with ODE deterministic skeletons
sporting globally attracting point equilibria do converge weakly to the deterministic
process captured by the canonical equation. His proof applies without change to the
general case except for some small changes in the formulas, to be provided in the
next subsections. Simulations suggest that away from the singular points, the pictures
derived by solving the canonical equation capture the temporal development of the
trait composition of the underlying individual-based process rather well (e.g., Fig. 2
in [15]; Fig. 10 in [49]) in a fair-sized parameter volume close to the origin of the
three-dimensional parameter space spanned by mutational step size, inverse system
size and mutation probability per birth event.

2.2 Aims of this section

Where Dieckmann and Law [15] formulated the canonical equation for ODE models,
we aim here to relax that limitation by considering the far wider class of physiologically
structured population models, and thus to recover a generalized form of Eq. (2). As
the canonical equation (in both formulations) fails to capture the trait substitution
behaviour of systems near evolutionary singularities, a separate part of this paper will
deal with singularities (Sect. 3).

Our goal is to find out how a community (or more precisely, a set of trait values) will
evolve, and at what rate. The basic scenario is the following: we start by considering
a coalition of N different trait values that are the strategies of residents, which form
a community that is at equilibrium. This fixed point attractor is presumed to exist for
the community as a whole, as a unique set of positive equilibrium densities for all N
trait values. When a mutant with positive invasion fitness appears, several things may
happen. Usually, it will fail to get established in the community due to stochasticity,
and will disappear. However, if it does get established, it will remove its parent from
the population through competitive exclusion. Then the N − 1 remaining residents
plus the invader will have their densities equilibrate at new values, assumed to be
positive and unique to the given set of N strategies. The first situation means that the
community returns to its earlier state, the second that a small evolutionary step has
taken place. Mutation events are by assumption so rare, that the community has relaxed
to its attractor before the next mutation event takes place. As the cycle of mutation
followed by possible invasion and equilibration can occur over and over again, this
invasion/replacement dynamics provides a scenario where evolution proceeds through
a great number of small trait changes.
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The above setting assumes that the mutating trait value is not (close to) singular
nor close to the boundary of the coexistence region, and that the population dynamics
is sufficiently well-behaved, so that the dictum “invasion implies substitution” holds
[13,14,25,26,45]. We stress here that we restrict ourselves to point attractors, as it is
not clear yet to which extent the rule holds for more complicated attractors than fixed
points and limit cycles. Thus special situations, where either the mutant coexists inde-
finitely with its parent or where it drives several residents to extinction, are explicitly
excluded from this paper’s analysis. Also, in higher dimensional trait spaces there are
unavoidable exceptions to the dictum: several selectively neutral mutants (in directions
orthogonal to the invasion gradient) may briefly establish a foothold, until the next
succesful mutant in the direction of the invasion gradient kills off its progenitor along
with those recent invaders. But these problematic scenarios are essentially negligible,
as they represent a fraction of the total invasion events that vanishes in the limit of
infinitesimal mutation steps.

Research shows that the assumption of uniqueness of the community fixed point
is merely made for mathematical convenience, as the community attractors before
and after succesful invasions are arbitrarily close for sufficiently small mutation steps
[26,45,14]. Thus the invader inherits the attractor of the resident it replaces, as the
new attractor lies on the continuation of the older. The existence and (local) unique-
ness is therefore guaranteed under the mild restrictions put forward by Geritz et al.
[26], which essentially are absence of population dynamical bifurcations and sufficient
smoothness of the model ingredients. If several fixed point attractors exist for a given
set of trait vectors, they necessarily lie on distinct branches of solutions to the po-
pulation dynamical equilibrium equations. Distinguishing such multiple attractors is
therefore an administrative rather than mathematical problem, as the initial conditions
(specifically, the earlier community attractors) determine in which basin of attraction
the community finds itself.

The appearance of mutants, governed by the probability per birth event of a
mutation and the distribution M of mutational steps, and their eventual success or
failure at establishment is inherently stochastic. This means that trait values are sto-
chastic and time-dependent variables that we can characterize by the probability of the
community being in a given state at a given time. The essential information to deter-
mine this probability is the rate at which the community’s state is expected to change
from one state to another, an issue we will turn our attention to over the following
paragraphs.

2.3 The deterministic path

We can now view the change in community composition as a Markov process, with
a probability Π(X, t) that the population is in state X at a given time t > 0. From
the interpretation as a Markovian dynamics, there are instantaneous transition rates
π(B, A) from any state A to any B. The connection between probability distribution
and transition rates is found by observing that the rate of change inΠ must consist of
two terms at any time, a gain in probability mass from other states into X, and a loss
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from transitions to other states (the Kolmogorov forward equation):

∂Π(X, t)

∂t
=
∫ (

π(X,X′)Π(X′, t)− π(X′,X)Π(X, t)
)

dX
′ (3)

For any observable ψ of our dynamical system, the expected value at time t is defined
as the ensemble average

E(ψ(X)) :=
∫
ψ(X)Π(X, t) dX

Applying the above definition with ψ the identity and using the Markov property
above, we find the following equality:

d

dt
E(X) =

∫
X
∂Π(X, t)

∂t
dX

=
∫∫

X
(
π(X,X′)Π(X′, t)− π(X′,X)Π(X, t)

)
dX

′dX

=
∫∫

(X′ − X) π(X′,X)Π(X, t)dX
′dX

= E(Aε(X)) (4)

where we introduce the operator Aε(X) := ∫
(X′−X) π(X′,X) dX

′, and the parameter
ε that is proportional to the mutation step size (so the distance between a mutant and
its ancestor is O(ε)). The solution to Eq. (4) is called the mean path of X. Sadly this
equation is not a self-contained equation in E(X), causing much mathematical grief
(or joy, depending on one’s disposition). To dodge this issue, the deterministic path is
introduced, which is the solution to this variation on Eq. (4):

d

dt
X̄ = Aε(X̄) (5)

The mean and deterministic paths would coincide if the distibution of X is concen-
trated in a point or if the integral on the right hand side is linear in X, but neither
is true in general. Whether the deterministic path is a valid approximation of the
mean path clearly depends on whether it is dominated by the first order term of
Aε or not. Intuitively one expects this to be true, as the adaptive dynamics model-
ling approach has evolution proceeding through very many very small steps. Thus
with decreasing mutational step size, it takes more and more mutation steps to co-
ver the same distance in trait space and a law-of-large-numbers effect should hold
sway in the limit ε → 0. Dieckmann and Law [15] assumed this to be a valid ap-
proximation, relying on simulations plus the considerations of Van Kampen [55].
More recently Champagnat [5,6] has proven the weak convergence of the stochas-
tic trait substitution process to the solution of Eq. (6). Apart from a number of
more technical assumptions, all papers mentioned assume ODE population dynamics
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and the existence of a global point attractor for the deterministic community dyna-
mics. Furthermore, the many-small-steps argument suggests that the error around the
deterministic approximation is Gaussian with variance proportional to ε. This heuris-
tic argument is confirmed by Champagnat [5,6] who derives the full equations for this
Gaussian error process as well.

We will simplify the notations E(X) and X̄ to X henceforth, and similarly for the
community X, so Eq. (5) is rewritten as

d

dt
X = Aε(X) (6)

One should not lose sight of the fact that for the remainder of this section, any strategy
or community not marked by a prime (′) should be read as the value predicted by the
deterministic limit; hence the mutation step V := X′

i − Xi is the difference between
a potential stochastically realized new strategy and its deterministically calculated
originator.

The next step in capturing the dynamics is to divide and conquer the transition
probabilities.

2.4 The transition probabilities

Since we consider rare mutations, any transition must be a mutation affecting a single
strategy vector. Therefore nontrivial transition rates are of the form πo(X

′
i ,Xi ,X),

representing the rate at which the i th resident in a given community X switches from
state Xi to X′

i . Thus if we interprete X as the matrix [X1 X2 · · · XN ], then the i th
column of the matrix equation describing the deterministic path (5) simplifies to

d

dt
Xi = A

i
ε(X) =

∫
(X′

i − Xi )πo(X
′
i ,Xi ,X) dX′

i (7)

Our next aim must therefore be to derive analytical expressions for the right hand side
of Eq. (7). As a first step, we split πo into separate factors by observing that mutation
and selection are independent processes, hence these transition probabilities are the
product of the appearance rate of mutants and their probability of establishment:

πo(X
′
i ,Xi ,X)

= (production rate of mutants X′
i ) (establishment chance of X′

i )

=
︷ ︸︸ ︷
(birth rate of Xi types) (mutation chance Xi → X′

i )

︷ ︸︸ ︷
P(X′

i ,X)

=
︷ ︸︸ ︷
λ(Xi ,X) n̂i

︷ ︸︸ ︷
µ(Xi ) M(X′

i − Xi ,Xi ) P(X′
i ,X) (8)

We stress again that the values above are population averages, while n̂i stands for the
equilibrium density of the i th type. The probability P of establishment is the expected
outcome of a branching process. This rather complicated beast, which depends hea-
vily on the underlying population model, will be resolved in the next subsection. The
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other factors are easy to understand. The appearance rate of mutants (that is, X′
i -type

individuals that have Xi -type parents) is just the total offspring production by Xi -type
parents, times the mutation rate of Xi into X′

i . This comes from the fact that we have
assumed the mutational steps to be small, so only the i th type can be the ancestor of
our mutant. The total production of Xi individuals is (by definition) the instantaneous
per capita birth rate of such individuals, times their equilibrium density. The muta-
tion chance Xi → X′

i is the probability per birth event of mutating for an Xi -type
individual, times the mutation distribution around this trait value; M(V,Xi ) is the
probability density of a mutation from Xi to Xi + V.

In a closed system at equilibrium, the per capita birth rate is the inverse of the
expected lifespan. This was termed the “microcosm principle” by Mollison [51], and it
holds for the stochastic systems we consider. The argument is that in a large population
ergodically fluctuating around its attracting density, the density is the product of the
influx of new individuals and the time they stay in the population. Since the population
is closed, the newborns correspond to the influx of residents, and only death ends a
resident’s stay. Hence

E(density) = E(influx of individuals per area) E(duration of stay)

= E(per capita birth rate × density) E(lifespan)

= E(per capita birth rate) E(density) E(lifespan) (9)

where the last step follows from our assumptions of large system size and thrice
differentiable model ingredients. So we conclude that the expected lifespan Ts is the
inverse of the birth rate:

Ts := Ts(Xi ,X) = (E(per capita birth rate))−1 = λ(Xi ,X)
−1 (10)

We can substitute this result in our breakdown of πo (8) and move on to a study of
P(X′

i ,X).

2.5 The establishment probability

To determine the establishment probability of a given mutant, we recall from the
introduction on adaptive dynamics (Sect. 1.1) a statement about the link between bran-
ching processes and adaptive dynamics: under very general conditions, the probability
P(Y,X) of an individual with strategy Y establishing itself in a given community X,
is related to that type’s invasion fitness by

P(Y,X) > 0 ⇔ sX(Y ) > 0 (11)

(cf. [32]).
We now require a quantitative relationship between these entities. We will derive

this relation in two steps: first we relate P to the lifetime offspring production R0,
and then R0 to the fitness s. For the first part, we will use some techniques from the
theory of branching processes. By assumption we started with the large equilibrium
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community X and a single mutant. Thus the community resides on its attractor as its
size makes deviations from the mean too small to be significant, and a deterministic
description is valid. This constitutes the environment of the branching process that
describes the demography of the initial mutant and its (still rare) offspring, which
are too rare to influence each other. An approximation first heuristically derived (as a
generalization of a result of Haldane [33]) by Ewens [24] for single type branching
processes (Eq. (12)), and its multitype counterpart (Eq. (14)), gives our first relation
as we shall presently see.

If there is only a single possible birth state in our (at this timescale) constant
environment, and a small but positive scalar � so that the lifetime reproductive output
is R0 = 1 + �, then our single-type process is called slightly supercritical. If the
probability generating function g(z, �) of the offspring distribution is three times
continuously differentiable in its arguments, then

P(X′
i ,X) = 2�

σ 2 + O(�2) = 2 log R0

σ 2 + O(�2) (12)

where R0 and σ 2 are respectively the mean and variance of the mutant’s offspring
distribution in the community. For further information see [1,22,35].

Unfortunately the above result does not suffice, as we want to include population
dynamics where multiple birth states are possible. In cases where there are d possible
birth states, we denote by the stochastic variable ξ lm the number of offspring born in
state l to a parent that was itself born in state m. Then E(ξ lm) = [L]lm relates these
random variables to the reproduction matrix we introduced at the start of Sect. 1.2.
Furthermore, R0 is in such multitype models the dominant eigenvalue of the L matrix,
and we denote by u and vT respectively the right- and left eigenvectors of L belonging
to R0:

R0 = λd(L) = vTLu (13)

where we normalized u and v by requiring
∑

l |ul | = 1 and vTu = 1 (see e.g., [4]).
One should be mindful that this notation for ξ lm reverses the order of the subscripts

with respect to the traditional branching processes notation. The definition of u and v

is similarly reversed, so that in both notations u is the stable type distribution, and v

the vector of the (generationwise) reproductive values.
Similarly, in the above d-type situation for a slightly supercritical process, the

chance Pl for a single mutant born in state l of establishing itself can be written as

Pl(X
′
i ,X) = 2�

B
vl + O(�2) = 2 log R0

B
vl + O(�2) (14)

with B := ∑
l ′mn ul ′vmvnE(ξml ′(ξnl ′ − δmn)) where δ is the Kronecker delta (i.e.,

δll = 1 and δlm = 0 if l �= m) and conditions similar to those of the single state case
(12) are assumed to be satisfied (see [2,23] for further details). Clearly B and both
eigenvectors depend on �, as does R0. It is easily seen that if d = 1, the earlier version
is recovered, as it should be. We have mainly stated the (better known) single-type

123



688 M. Durinx et al.

result (12) earlier on, to hint at an interpretation of B as a variance. Bearing in mind
that u and vT are the right- and left eigenvectors of L, we find

B =
∑

l

ulE

(∑
mn

vmvnξmlξnl

)
−
∑
lm

ulv
2
mE(ξml)

=
∑

l

ulE

⎛
⎝
(∑

m

vmξml

)2
⎞
⎠−

∑
lm

v2
mE(ξml)ul

=
∑

l

ul

⎛
⎝Var

(∑
m

vmξml

)
+
(

E

(∑
m

vmξml

))2
⎞
⎠−

∑
m

v2
m R0um

=
∑

l

ulVar

(∑
m

vmξml

)
+
∑

l

ulv
2
l R2

0 −
∑

m

v2
m R0um

=
∑

l

ulVar

(∑
m

vmξml

)
+ O(�2) (15)

where the O(�2) approximation holds since R2
0 − R0 = �2 + �. By defining

σ 2 :=
∑

l

ulVar

(∑
m

vmξml

)
(16)

we can replace B with the variance-like quantity σ 2 to bring out the close similarity
of the multiple birth state case (14) with the simpler case (12):

P(X′
i ,X) =

∑
n

Pn(X
′
i ,X)un = 2

log R0

σ 2 + O(�2) (17)

since
∑

n vnun = 1, which concludes the first step in quantifying the relation (11)
between establishment chance P(Y,X) and invasion fitness sX(Y ).

The second step is to determine the relation between R0 and sX(Y ). To derive this,
we consider the birth kernel notation of a general model. If we denote the environment
set by the community X as IX := I (X1,X2, . . . ,XN ), then there exists a matrix
function � with entries [�(X′

i , IX, a)]lm that are the expected number of offspring
born in state l to a X′

i -type invader, newly born in state m, before the invader reaches
age a, in the equilibrium community X (cf. [21]). The link with the lifetime offspring
production matrix is obviously that [�(X′

i , IX,∞)]lm = [L]lm = E(ξ lm). Using this
notation, the invasion fitness sX(X

′
i ) is the (generally unique) solution for ρ of the

Euler–Lotka equation

λd

⎛
⎝

∞∫

0

e−ρa�(X′
i , IX, da)

⎞
⎠ = 1 (18)
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where λd is the dominant eigenvalue operator. In Appendix A we show how to extract
from Eq. (18) the following relationship:

log R0 = T f (Xi ,X) sX(Xi + V )+ O(||V ||2) (19)

where T f is the average age at giving birth (97). If we approximate sX(X
′
i ) using the

fitness gradient, we can finally formulate the establishment probability (in both single
(12) and multitype (17) cases) as

P(X′
i ,X) = 2 T f sX(X

′
i )

σ 2 + O(ε2) (20)

= 2 T f

σ 2 (X
′
i − Xi )

T ∂sX(Y )

∂Y

T

Y=Xi

+ O(ε2) (21)

As this last expression contains the factor X′
i − Xi , we are free to evaluate T f and σ 2

at Xi without changing the order of the approximation. Hence the mutant trait value
X′

i only appears in the mutation step V := X′
i − Xi .

Bear in mind that this result only holds for positive P , as such is the starting point
of the approximation formula (14).

2.6 The canonical equation for physiologically structured population models

After this divide-and-conquer campaign, we can substitute the factors that make up
the transition rates (8), (10), (21) into the equation describing the deterministic path
(7):

A
i
ε(X) =

∫
(X′

i − Xi )πo(X
′
i ,Xi ,X) dX′

i

= n̂i µ

Ts

∫
(X′

i − Xi )M(X′
i − Xi ,Xi )P(X

′
i ,X) dX′

i

= T f

Ts

2 n̂i µ

σ 2

∫
V M(V,Xi )V

T ∂sX(Y )

∂Y

T

Y=Xi

dV + O(ε3) (22)

where ε is the average mutation step size. The estimate of the establishment probability
(21) introduces an error term equal to a constant times

∫
V M(V,Xi )O(||V ||2) dV.

Equation (22) allows us finally to formulate the canonical equation for structured
population models with unbiased mutation distributions, giving an approximate rate
of change under evolutionary selection for traits of the i th resident in a multitype
community X in the limit of infinitesimal mutational step size, as

A
i
0(X) = T f

Ts

n̂i µ

σ 2 M
∂sX(Y )

∂Y

T

Y=Xi

(23)
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We repeat that all factors in Eq. (23) are expected values, and that the canonical
equation characterizes the deterministic, not the mean, path. One sees that most of
the parameters in the canonical equation (23) depend both on the strategy Xi and
the entire community X; the exceptions are µ and M, which only depend on the
strategy.

In the last transition, a factor 2 may seem to be lost. Its disappearance stems from
the fact that the approximation formula (14) only holds for supercritical processes,
where log R0 > 0, but in other cases we must substitute a zero. As the sign of log R0 is

that of V T ∂sX(Y )
∂Y

T

Y=Xi
, we can correctly account for the subcritical cases by integrating

over a halfspace. If the mutation distribution is unbiased, this comes down to dividing
by two. In case this assumption is not met, one has to stick to Eq. (22). Alternative
formulations when mutations are biased are given by Champagnat et al. [6,8].

All the quantities in Eq. (22), including the order estimate, are still on the original
community dynamical timescale. The reason for not changing to expressions in evo-
lutionary time, is that doing so lets the biological interpretation of model ingredients
disappear from sight. The speeded up timescale necessary for deriving a proper limit
process is constructed by equating one unit of evolutionary time to 1/ε units of com-
munity dynamical time. The order estimate becomes O(ε) in evolutionary time, which
is higher than the O(

√
ε) estimate for the approximation to the stochastic process using

the deterministic path (cf. the paragraph preceding Eq. (6)). Hence the overall order
of the approximation is dominated by the process noise and not by the calculation of
the mean speed of change of X, and is O(

√
ε).

One sees that the only difference between the canonical equation for unstructured
(2) and for structured populations (23) is that a factor 1/2 becomes a factor T f /(Ts σ

2).
As an illustration, we now bridge this gap by recovering the canonical equation for
unstructured population models from the general result for structured models. The
unstructured case deals with ODE models, which implies the absence of any historical
dependence of the individual birth and death rates. Hence in such models the initial
invasion of a mutant is described by a linear birth-and-death process. If we denote
birth and death rates respectively by λ and µ, we can calculate the ratio T f /(Tsσ

2).
First, the ratio of the average age at giving birth to the life expectancy can be computed
since

T f =
∫∞

0 λ e−µt t dt∫∞
0 λ e−µt dt

= 1

µ
=

∞∫

0

µ e−µt t dt = Ts

Second, the offspring distribution follows from the observation that a lifetime number
of i children means i successive birth events (each with relative probability λ/(λ+µ)),
followed by a death event (with probabilityµ/(λ+µ)). All events being independent,
the probability of having i offspring is the product of all these probabilities:

P(ξ = i) := pi =
(

λ

λ+ µ

)i
µ

λ+ µ
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This geometric distribution has variance σ 2 = λ(λ + µ)/µ2, so the factor we try to
calculate is

T f

Ts

1∑
l ulVar

(∑
m vmξml

) = µ2

λ(λ+ µ)
= 1

2
+ O(�)

since λ = µ+ O(�) in a slightly supercritical situation. This completes our recovery
of the result of [15].

3 The normal form of the invasion function at a singularity

When trying to figure out the nature of the invasion function for a community close to
a singularity, the first naive attempts usually fail. A clear example is the formulation of
the general form of the s-function for a community of three or more residents, close to
a singular strategy. If one assumes the existence of a Taylor expansion up to quadratic
terms and checks some consistency conditions that must surely hold, a single page of
calculations (Appendix C) gives the clean-but-nonsensical result that s = O(ε3) at
the singularity, no matter what model or parameters.

When we look at a community of two residents that are similar and close to a singular
strategy, we can see the root of the problem. At the limit where the residents’ strategies
are equal to the singular strategy, the population densities show a line of neutrally
stable equilibria (Fig. 1); any other combination of trait vectors shows an attracting
point equilibrium. Thus a bifurcation that is unusual for general dynamical systems, is
generic in the context of invasion analysis. The illustration shows the essential nature
of the beast: even though a derivative does not exist, the directional derivatives do.
What this suggests, is to blow up singularities by separating the directional components
of a strategy from its norm. The notations that follow are natural implementations of
this idea.

3.1 Additional notations for this section

On top of the notations we presented in Sect. 1.3, we introduce the following conven-
tions.

As we are interested in the form of the fitness function for a community near
an evolutionarily singular strategy, we choose a parametrization centered around it.
Denoting the singular trait value by X∗, a resident has strategy vector X = X∗+ U,
or Xi = X∗ + Ui if there are several residents. Likewise an invader has trait value
Y = X∗+ V.

We introduce the small (bifurcation) parameter ε to scale the set of resident traits:
for each i from 1 to N there is a vector ξ i so that the i th resident has strategy Xi =
X∗+ Ui = X∗+ εξ i .

Any quantity with an asterisk will refer to a community at equilibrium with only the
singular strategy present: e.g., b∗ is the equilibrium birth flow and I ∗ the equilibrium
environment when only X∗ is present. Furthermore, all derivatives in this section will
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Fig. 1 The nature of the beast: we consider an N -resident Lotka–Volterra system with scalar strategies.
The population dynamics for the i th type is given by d log ni /dt = 1 −∑

j a(Xi , X j )n j − a(Xi , Y )m
and similarly for the mutant’s density d log m/dt = 1−∑ j a(Y, X j )n j −a(Y, Y )m, where the interaction

function was chosen as a(X, X ′) := 1 + (X − X ′)(0.05X + 1.00X ′ − 0.03X2 − 0.02X X ′ + 0.1X ′2). In
the first plot, strategy X1 is plotted against strategy X2, the dark gray area is defined by sX1 (X2) < 0,
the light gray one by sX2 (X1) < 0. In the white zone the equilibrium densities of both residents have
the same sign, positive on the origin’s side of the black curve and negative on the other. Thus all points
on the four straight lines drawn in gray represent strategy combinations that can coexist in a protected
manner (since they are mutually invadable). The second and third graph plot the equilibrium density of
X1 strategists against that of X2 strategists. The black dot in the second plot corresponds to the coalition
(−0.5, 1) indicated on the first plot, and the gray curves on the second plot correspond to the identically
colored lines through (−0.5, 1) in the first plot. The same correspondence holds between the two lines
through the singularity at (0, 0) in the first plot, and the curves in the third plot. The aim of these figures is to
point out what happens as the community approaches the singularity: one sees that there exists no limit for
the densities when both strategies converge to the singular trait value, although in each direction this limit
exists. Hence the black point on the second plot is the normal situation where the density equations have
a stable fixed point solution, but in the third plot we see that this point degenerates into a line of neutrally
stable equilibria when both populations are at the singular trait value. Note that the system is scaled such
that the equilibrium density is always 1 for a monomorphic population. As all the curves in the second and
third plot are above the line n̂1 + n̂2 = 1, the total density in a community with two residents is always
higher than in one with a single resident. From the third plot, we expect that the total density in a community
“close” to the singularity in terms of some distance measure, will have a zero linear part when expanded in
terms of this distance; the analysis we present will show that this holds true in general

be evaluated for exactly that community. Thus a very substantial notational simplifi-
cation is the systematic suppression of variable names and the location of evaluation:
we see that without ambiguity, we can denote, e.g., the average of the lifetime repro-
ductive output L = L(Y, I ), derived first for its second argument then for its first and
evaluated at the singular strategy and environment, as the r × z matrix

∂2λd(L)
∂I∂Y

:= ∂

∂Y

(
∂λd(L(Y, I ))

∂I

)T

Y = X∗
I = I∗

(24)

where λd is the dominant eigenvalue operator.
Since no third order derivatives occur in this paper, all partial derivatives of scalar

functions (s, r and λd ) are either row vectors or matrices. A minor complication
is however the occurrence of tensors of rank 3 as derivatives of matrix functions
(G and L). Instead of solving this issue by treating them componentwise and thus
cluttering the notation, we interprete these tensors as matrices with row vectors as
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elements by introducing an additional notation: to take the derivative of L in the
mutant direction as an example, we define it componentwise as

[
∂L

∂Y

]

lm
:= ∂[L]lm

∂Y
(25)

Whenever this symbol occurs, it will always be in an expansion and acting on an
appropriately dimensioned vector like U, so that we have a d × d matrix ∂L

∂Y
(U) that

gives no further complications. The slightly different layout serves as a reminder that
the vector-and-matrix notation cannot be used when the tensor is separated from its
argument in parentheses. Whenever possible, we opt not to use this unfamiliar notation:
e.g., since b∗ is a constant vector, ∂L

∂Y
(U) b∗ may be replaced by ∂Lb∗

∂Y
U.

In the case of a double subscript, parentheses are added to remove ambiguity: e.g.,
(bi )l is the lth component of the i th resident’s birth flow. Without parentheses, bil

might just as well be a component of some matrix b.

3.2 Aims of this section

In the introduction we have defined the invasion fitness of type Y in an N -resident
community X = {X1,X2, . . . ,XN } as the long-term average per capita growth rate of
a rare Y -type individual in a large equilibrium community made up of all the resident
types, X1 to XN . In this section we show that for such an N -resident community, the
invasion fitness function sX(Y ) up to quadratic terms can be constructed using only the
trait values present plus the second order derivatives at the singularity of the simpler
fitness function sX(Y ).

The effect is that the task of formulating the fitness function for a polymorphic com-
munity in the neighbourhood of an evolutionarily singular strategy for an arbitrarily
complicated structured population model, is reduced to formulating the one-resident
s-function, and either fitting the corresponding Lotka–Volterra model (Proposition 1)
or substituting the simple s-functions into the normal form (73) that we will present
below. Both procedures yield an invasion fitness function sX(Y ) which is correct up
to quadratic terms in the small parameter ε.

For example, assume one knows the simple fitness function sX(Y ) for some model
and one has resident strategies X1 and X2 (with N = 2). First we calculate the second
order partial derivatives of sX(Y ) at the singularity:

C11 := 1

2

∂2sX(Y )

∂X2 , C10 := 1

2

∂2sX(Y )

∂X∂Y
, C00 := 1

2

∂2sX(Y )

∂Y 2 (26)

Using the additional notations U := U1+U2
2 and ∆ := U1−U2

2 where the deviations
U1, U2 and V are O(ε), we will show in Sect. 3.5 that the invasion fitness of any
mutant Y is
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sX1X2(Y ) = V TC00V + 2U
T
C10V + U

T
C11U − ∆TC00∆

+2∆TC10(U − V )
∆T[C00 + CT

10]U
∆TC10∆

+ O(ε3) (27)

Therefore we can consider the equation above to be a normal form. It immediately
shows that a Taylor expansion of sX1X2 does not exist and explains why calculations like
those in Appendix C are doomed to fail, with the exception of the case where strategies
are scalar so that the equation above simplifies to sX1 X2(Y ) = (X1 −Y )(X2 −Y )C00 +
O(ε3).

One available route for deriving the normal form for general N -resident popula-
tion dynamics close to a singular strategy and showing the mentioned niceties, is to
first prove the general case, then cast a general Lotka–Volterra system in that form
and show what it reduces to, and lastly demonstrate that this form only depends
on the mentioned strategies and derivatives. The unpleasant reality however is, that
casting Lotka–Volterra models into the form of physiologically structured population
models requires us in general to introduce an infinite dimensional vector as description
of the environmental conditions I (one environmental dimension for every possible
trait value). The proof for the infinite dimensional case requires more sophisticated
mathematical tools than we use here, like operators and distributions instead of finite
dimensional matrices and vectors. We fully expect, though, that the same techniques
as used in this paper still hold for any model on a space supporting a chain rule and
an inverse function theorem.

For clarity’s sake and given our own more limited mathematical expertise, we have
opted for another route: we restrict ourselves to the case of structured populations with
a finite dimensional environment, and show that the same normal form is found as
derived separately for Lotka–Volterra systems. We will start with a detailed exposition
of the Lotka–Volterra case in view of its familiarity, followed by the corresponding
calculations for the structured case.

3.3 The normal form for Lotka–Volterra systems

The following is a general form for Lotka–Volterra systems, where r(Y ) is the per
capita growth rate in a virgin environment (i.e., the growth rate in the absense of com-
petitors), and the interaction is fully determined by the interaction function a(Y,X)
plus the trait value and the densities of the interacting types. We assume that r and a
are C3 functions, to guarantee the existence of an expansion of the fitness function up
to order O(ε3). If the community has N residents plus an invading type, the equations
that govern growth can be formulated as

⎧⎪⎪⎨
⎪⎪⎩

∀ j : 1

n j

dn j

dt
= r(Xj )

(
1 −∑

i a(Xj ,Xi )ni − a(Xj ,Y )m
)

1

m

dm

dt
= r(Y )

(
1 −∑

i a(Y,Xi )ni − a(Y,Y )m
) (28)
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We will first perform a trait-dependent rescaling and some calculations pertaining to
monomorphic communities.

We first add a tilde to indicate rescaled quantities, and later drop the tilde once
convinced that rescaling has no effect on the fitness value. We multiply the density of
any type with the strength of its self-competition and similarly divide the interaction
function:

ñi := a(Xi ,Xi ) ni

m̃ := a(Y,Y )m
ã(Xi ,Xj ) := a(Xi ,Xj )

a(Xj ,Xj )
(29)

Thus for any strategy X we have that ã(X,X) = 1 and consequently the equilibrium
density in a monomorphic world is always ˆ̃n = 1, as seen from the equilibrium
equation 0 = r(X)(1 − ã(X,X) ˆ̃n). We see that for example a(Xi ,Xj )n j equals
ã(Xi ,Xj )ñ j , so that the per capita growth rate, and therefore the invasion fitness
sX(Y ), is independent of this rescaling. So without loss of generality, we assume from
here onwards that a(X,X) = 1 for any X and hence that n̂ = 1 if there is a sole
resident type.

By a literal translation of the definition of the s-function (see 1.1) into symbols, we
calculate the invasion fitness for a monomorphic community as

sX(Y ) = lim
T →∞ lim

m→0

1

T

T∫

0

1

m

dm

dt
dt

n=n̂
= r(Y ) (1 − a(Y,X)) (30)

Proposition 1 For every single-resident fitness function sX(Y ) and every strictly
positive growth rate in a virgin environment r(Y ), there exists an interaction function
a(Y,X) such that the resultant Lotka–Volterra model (28) has the same single-resident
s-function.

Proof As we comply to the rescaling (29), the suitable interaction function can be
found from the formula for the invasion fitness in a Lotka–Volterra model (30) as
a(Y,X) := 1 − sX(Y )/r(Y ). �


In practice, a constant growth rate r(Y ) := 1 is usually preferable as it tends to
simplify calculations.

Once we have fitted an interaction function to a simple fitness function and growth
rate, the corresponding fitness for a mutant of type Y invading in a polymorphic
Lotka–Volterra community {X1, X2, . . . , XN } is found as in Eq. (30), by combining
the definitions of its dynamics (28) and of s-functions:

sX(Y ) = r(Y )

(
1 −

∑
i

a(Y,Xi )n̂i

)
(31)
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Then we simply solve the equilibrium densities n̂i from the growth equations and find
that

sX(Y ) = r(Y )
(

1 − (a(Y,X1) a(Y,X2) · · · a(Y,XN ))A−11
)

(32)

where A is the interaction matrix for the given community, with entries [A]i j :=
a(Xi ,Xj ), and we recall that 1 is a column vector of 1’s (cf. 1.3).

From Eq. (32) we see that except for the non-Lotka–Volterra case, there will in
general not exist a well-defined interaction function a(Y,X) that satisfies this equation
for all communities and invaders:

Proposition 2 Proposition 1 does not hold if the words single-resident are replaced
by N -resident.

Proof Equation (32) shows that Lotka–Volterra systems only allow pairwise interac-
tions (that are scaled by a specific type of density regulation). Any multiresident
s-function that fails these requirements can therefore serve as a counterexample.
In principle, the only constraint on s-functions is that they have to satisfy the following
consistency conditions [49]: zero fitness for each of the residents (i.e., sX(Xi ) = 0 for
all i) and invariance under the renaming of residents (i.e., sXi Xj (Y ) = sXj Xi (Y ) for
all i, j). The simplest example would be

sX1 X2(Y ) := (X1 − Y )(X2 − Y )

where the reader can verify that no choice of growth rate and interaction function
will lead to a Lotka–Volterra model with this two-resident s-function. A slightly less
caricatural example starts from the fitness function of an N -resident Lotka–Volterra
model (31), and adds interaction terms between triples of strategies

sX(Y ) := r(Y )

⎛
⎝1 −

∑
i

a(Y,Xi )n̂i −
∑

i j

b(Y,Xi ,Xj )n̂i n̂ j

⎞
⎠

through an appropriate function b(Y,X,X′). For nontrivial choices of b, it is clearly
impossible to account for the above fitness function by using a Lotka–Volterra model.

�


How to relate N -resident Lotka–Volterra and physiologically structured population
models instead, will be the central question of this section. To address it we return our
attention to the simple fitness function (30) we found, which can be expanded in the
small parameter ε as
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sX(Y ) = r(X∗+ V )
(
1 − a(X∗+ V,X∗+ U)

)

=
(

r(X∗)+ r ′(X∗)V + 1

2
V Tr′′(X∗)V + O(ε3)

)

×
(

1 − α − β1U − β0V − UT�11U − 2UT�10V − V T�00V + O(ε3)
)

= r(X∗)(1 − α)−(r(X∗)
(
β1U + β0V

)+ r ′(X∗)V (1 − α)
)

− r(X∗)
(
UT�11U + 2UT�10V + V T�00V

)+ r ′(X∗)V
(
β1U + β0V

)

+ 1

2
V Tr′′(X∗)V (1 − α)+ O(ε3) (33)

were all terms of the same order in ε are grouped together.
As �11 and �00 are always pre- and postmultiplied by the same vector, their anti-

symmetric parts are irrelevant. Thus there is an equivalence class of matrix choices
for which the evaluation of Expansion (33) is the same, and from this class we choose
a unique element by demanding that �11 and �00 are symmetric. As an aside we note
that while it is highly nongeneric for �10 to be symmetric as well, this phenomenon
happens often in simple models: either as a result of special symmetries (cf. our
example, Sect. 4.6), or since the model is formulated so that the environmental
input is effectively one-dimensional, and monotonically influences the invasion fitness
(cf. [49]).

Several consistency conditions can be used to simplify Eq. (33). As a result of
its definition, sX(X) is zero for any value of X. So for any U = V, the four parts
of the right hand side of (33)—constant, linear, quadratic and higher order in ε—
must be separately zero. Without loss of generality we may assume that r(X∗) is
strictly positive, as else the singular type would not be viable. The constant, linear and
quadratic parts of the equation then respectively imply that α = 1, β1 = −β0 and
�11 + �10 + �10

T + �00 = 0.
Since X∗ is singular, by definition 0T = ∂sX∗ (Y )

∂Y Y=X∗ = −r(X∗)β0, so −β1 =
β0 = 0T. We rename the matrices using C := −r(X∗)� so that the expansion (33)
simplifies to

sX(Y ) = U TC11U + 2U TC10V + V TC00V + O(ε3) (34)

From this we see that renaming and rescaling the �-matrices into the C-matrices was
consistent with the earlier definition (26) of those as second order partial derivatives
at the singularity.

We can now start considering N -resident invasion fitness functions close to singular
points. Starting from Eq. (31), we see that we can express much of the multiresident
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s-function immediately in terms of single-resident s-functions:

sX(Y ) = r(Y )

(
1 −

∑
i

a(Y,Xi )n̂i

)

= r(Y )

(
1 −

∑
i

(
1 − sXi (Y )

r(Y )

)
n̂i

)

= r(Y )

(
1 −

∑
i

n̂i

)
+
∑

i

sXi (Y )n̂i (35)

We will now expand this last equality up to but not including O(ε3)-terms. In view of
the considerations at the start of this section, we change our coordinates from densities
n̂i to fractional densities pi plus the difference in total density from the monomorphic
equilibrium density:

pi := n̂i∑
j n̂ j

∆n :=
∑

i

n̂i − 1 (36)

Note that the constant term of ∆n is zero since ε = 0 corresponds to a monomorphic
community X = {X∗}. Introducing a shorthand notation,

c(U ,V ) := UTC11U + 2UTC10V + V TC00V (37)

we see that terms like c(Ui ,V )∆n will be discarded, since c(U ,V ) itself is already
purely second order in ε. Using the new coordinates, we see that

sX(Y ) = − (r(X∗)+ r ′(X∗)V
)
∆n +

∑
i

c(Ui ,V ) pi + O(ε3)

From the above we also note that only the constant part of the fractions pi matters in
the calculation of sX(Y ) up to the given order. We expand the density difference as
∆n = e1ε + e2ε

2 + O(ε3). Since sX(Xi ) is zero for each resident, we have for each
i ∈ {1, 2, . . . , N } that

0 = −r(X∗)(e1ε + e2ε
2)− r ′(X∗)Ui e1ε +

∑
j

c(U j ,Ui ) p j + O(ε3) (38)

From the part that is linear in ε, we see that e1 too is zero, and from the quadratic part
we have that r(X∗)e2ε

2 = ∑
j c(U j ,Ui )p j . Thus N + 1 unknowns (p1, p2, . . . , pN
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and e2) have to be solved using the consistency condition
∑

i pi = 1 plus the requi-
rement that for each i from 1 to N

∑
j

2U j
TC10Ui

︸ ︷︷ ︸
[E]i j

p j

︸︷︷︸
(P ) j

+
∑

j

U j
TC11U j p j − r(X∗)e2ε

2

︸ ︷︷ ︸
θ

= −Ui
TC00Ui

︸ ︷︷ ︸
(T )i

(39)

Together these equations contain the componentwise definitions of the scalar θ , the
column vectors T and P , and the matrix E. We can also gather together all N equations
into a single vectorial one, using the vector 1 that has all its components equal to one
(cf. 1.3 Notations). The fact that the proportions necessarily sum up to 1 gives us an
additional (scalar) equation, so we have altogether N +1 equations in N +1 unknowns:

{
EP + θ1 = T

1TP = 1
(40)

If we treat θ as an unknown (equivalent to the unknown e2 once P is solved), these
are linear equations. Hence we extend E,P and T to

E∗ :=
[

E 1
1T 0

]
P ∗ :=

(
P

θ

)
T ∗ :=

(
T

1

)

so that we can straightforwardly solve θ and the proportions pi in terms of second
order derivatives of simple s-functions from

P ∗ = E∗−1
T ∗ (41)

to come to the final conclusion that

sX(Y ) = −r(X∗)∆n +
∑

i

c(Ui ,V )pi + O(ε3)

= θ + 2

(∑
i

piUi
T

)
C10V + V TC00V + O(ε3) (42)

where each term or factor is expressed in second order partial derivatives of the simple
s-function, or a strategy difference vector (Ui or V, of respectively a resident or the
invader), since θ and the proportions are solved from

⎛
⎜⎜⎜⎝

p1
...

pN

θ

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

2U1
TC10U1 · · · 2UN

TC10U1 1
...

. . .
...

...

2U1
TC10UN · · · 2UN

TC10UN 1

1 · · · 1 0

⎤
⎥⎥⎥⎥⎦

−1 ⎛
⎜⎜⎜⎜⎝

−U1
TC00U1
...

−UN
TC00UN

1

⎞
⎟⎟⎟⎟⎠

(43)
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The invertibility of the matrix E∗ is clearly an important issue here. It will be treated
in Sect. 3.6 (and touched upon in 3.5), but the gist is that generically E∗ is invertible
if the community {X1,X2, . . . ,XN } exists.

3.4 The normal form for physiologically structured population models

As explained in Sect. 1.2, the equilibrium equations for a physiologically structured
community are {

bi = L(Xi , I )bi (∀i)

I = ∑
i G(Xi , I )bi

(44)

In Appendix B we show that if the residents and the invader are near a singularity, the
invasion fitness is

sX(Y ) = log R0(Y, I )

T f (Y, I )
+ O(ε3) (45)

where R0 is the dominant eigenvalue λd(L) of the next-generation matrix L, I the
equilibrium environment set by the community X := {X1, . . . , XN }, and T f the
average age at giving birth (cf. Eq. (97)).

As before, we will use an invertible, trait-dependent rescaling. In this case, we do
not rescale population densities at equilibrium to 1 (while compensating by rescaling
the interaction function, or vice versa) as these do not appear in the equilibrium equa-
tions. Instead we rescale the birth flow such that, for the monomorphic equilibrium
community set by any strategy X in the trait space,

b = b∗ (46)

where b∗ is the equilibrium birth flow for a community with only the singular strategy
X∗ present. We do this by defining for each strategy X the rescaled birth flow b̃ := Db

where D is the diagonal d ×d matrix with components [D]ll := b∗
l /bl , where bl is the

lth component of the unscaled equilibrium birth flow in the monomorphic community
set by X. This transformation clearly ensures that Eq. (46) is satisfied. If all components
of b∗ are strictly positive, there is a neighbourhood of the singularity in which the birth
flow bl in each state is nonzero, so the matrix D is well-defined. The invertibility of
the rescaling is guaranteed as well if all components of b∗ are strictly positive. So we
assume henceforth that b∗

l > 0, which we can do essentially without loss of generality
since models flouting this assumption should be rare indeed. As in the Lotka–Volterra
case (29), we compensate the first rescaling by rescaling the interaction; here by
choosing L̃ := DLD−1 and G̃ := GD−1. The matrices L̃ and L necessarily have the
same eigenvalues, hence the rescaling does not affect sX(Y ) while it allows us to
greatly simplify the calculations. From here on we revert to the old notations while
assuming the rescaling has happened.

To expand a structured population’s invasion fitness function (45) near a singularity,
we have to look at the lower orders of dependence on ε for all unknowns. To that end,
we start by defining I i as the monomorphic environment set solely by strategy Xi , so
that I i = G(Xi , I i )b

∗ (note that the rescaling has been used here). We then expand
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respectively the polymorphic environment set by X and the monomorphic environment
set by Xi as follows:

I = I ∗ + εI ′ + ε2I ′′ + O(ε3)

∀i : I i = I ∗ + εI ′
i + ε2I ′′

i + O(ε3) (47)

In order to establish a relation between the N -resident environment I and its N
monomorphic counterparts I 1, I 2, . . . , I N , we introduce first some new coordinates,
similar to those we used in the Lotka–Volterra case (36). We will need to calculate
the relative abundance of each type of resident in the community. But as we now look
from a generational perspective, we define this time a vector pi that is the proportional
abundance at birth of the i th type in the respective birth states, plus a difference vector
∆b that is the proportional change in total births from the monomorphic equilibrium:
for each birth state from 1 to d and for each resident from 1 to N ,

∀l,∀i : (pi )l := (bi )l∑
j (b j )l

1 + (∆b)l :=
∑

j (b j )l

b∗
l

(48)

We expand the N proportion vectors pi and ∆b with respect to ε as

∀i : pi = po
i + q i ε + O(ε2)

∆b = e0 + e1 ε + O(ε2) (49)

defining vectors e0, e1, po
1, po

2, . . . , po
N , q1, q2, . . . , qN in the process. As happe-

ned with the density difference∆n in the Lotka–Volterra case (Eq. (36)), the constant
part of the birth flow difference automatically disappears: e0 = 0 since ε = 0 cor-
responds to a monomorphic case. Note that for each birth state l separately these
proportions sum up to one, since

∑
i (pi )l = ∑

i (bi )l/
∑

j (b j )l = 1. Expanding both
sides of these equalities with respect to ε, we find two times d consistency conditions

∑
i

po
i = 1

∑
i

q i = 0 (50)

As we only have the equilibrium equations (44) to start from, let’s begin by expan-
ding all parts of the first equation:

(bi )l = (pi )l
∑

j

(b j )l = (
(po

i )l + (q i )l ε
)
(1 + (e1)l ε) b∗

l + O(ε2) (51)

L(Xi , I ) = L(X∗, I ∗)+ ∂L

∂Y
(εξ i )+ ∂L

∂I
(εI ′)+ O(ε2) (52)

where, e.g., ∂L
∂I
(εI ′) is the d×d matrix with entries

(
∂L(X∗,I )lm

∂I I=I∗
)
εI ′ in accordance

with the conventions introduced in Sect. 3.1.
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From Eqs. (51) and (52) we see that bi = L(Xi , I )bi can be rewritten for each i as

(
(po

i )l + ε(q i )l + ε(po
i )l(e1)l

)
b∗

l + O(ε2)

=
∑

m

[
L(X∗, I ∗)+ ∂L

∂Y
(εξ i )+ ∂L

∂I
(εI ′)

]

lm

(
(po

i )m + ε(q i )m
+ ε(po

i )m(e1)m

)
b∗

m

=
∑

m

[
L(X∗, I ∗)

]
lm (p

o
i )mb∗

m +
∑

m

ε

[
∂L

∂Y
(ξ i )+ ∂L

∂I
(I ′)

]

lm
(po

i )mb∗
m

+
∑

m

[
L(X∗, I ∗)

]
lm

(
ε(q i )m + ε(po

i )m(e1)m
)

b∗
m (53)

As this equality has to hold for all ε, it has to hold for all orders of ε separately. Thus
the constant part tells us that for each i the vector with components (po

i )lb
∗
l is an

eigenvector of L(X∗, I ∗) with eigenvalue 1. Since this eigenvalue was assumed to be
simple, with corresponding eigenvector b∗, necessarily there must exist some scalars
pi such that

∀i : po
i = pi 1 (54)

This fact helps us simplify the part of Eq. (53) that is linear in ε. We can transform it
further by summing over i , so that the q i -components disappear (50):

(e1)lb
∗
l =

∑
i

∑
m

[
∂L

∂Y
(ξ i )+ ∂L

∂I
(I ′)

]

lm
pi b∗

m

+
∑

m

[
L(X∗, I ∗)

]
lm (e1)mb∗

m (55)

If we define a “help” vector heb componentwise as (heb)l := (e1)lb∗
l , we have

heb =
∑

i

pi
∂Lb∗

∂Y
ξ i + ∂Lb∗

∂I
I ′ + L(X∗, I ∗)heb (56)

0 = ∂Lb∗

∂Y
ξ i + ∂Lb∗

∂I
I ′

i (57)

where the second equation is the monomorphic case, for which we scaled the equili-
brium birth flow to b∗ so e1 = heb = 0.

Let’s now look at the second equilibrium equation, I = ∑
i G(Xi , I )bi . If we here

too expand both I and bi while using the new coordinates (48), we can combine the
per-state summation rules (50) with the fact that po

i = pi 1, to find that
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I ∗+ εI ′ + O(ε2)

=
∑

i

[
G(X∗, I ∗)+ ∂G

∂I
(εI ′)+ ∂G

∂Y
(εξ i )

]⎛⎜⎝

(
pi + ε(q i )1 + ε pi (e1)1

)
b∗

1
...(

pi + ε(q i )d + ε pi (e1)d
)

b∗
d

⎞
⎟⎠

= G(X∗, I ∗)b∗ + εG(X∗, I ∗)heb + ε
∂G

∂I
(I ′)b∗ +

∑
i

piε
∂G

∂Y
(ξ i )b

∗ (58)

The part of this equation that is independent of ε does not tell us anything new, but
the part that is linear in ε gives the following relation:

I ′ = G(X∗, I ∗)heb + ∂Gb∗

∂I
I ′ +

∑
i

pi
∂Gb∗

∂Y
ξ i

From this we solve I ′ and I ′
i (where again e1 = 0 so heb disappears), as

I ′ =
[
id − ∂G b∗

∂I

]−1
(

G(X∗, I ∗)heb +
∑

i

pi
∂Gb∗

∂Y
ξ i

)
(59)

I ′
i =

[
id − ∂G b∗

∂I

]−1
∂Gb∗

∂Y
ξ i (60)

where id represents the identity matrix, and taking the inverse is allowed as this trans-
formation is nonsingular provided we stay away from bifurcation points of the popu-
lation dynamics.

With the shorthand notations L∗ := L(X∗, I ∗) and G∗ := G(X∗, I ∗), we have as a
consequence of Eqs. (59) and (60) that

I ′ =
∑

i

pi I ′
i +

[
id − ∂G b∗

∂I

]−1

G∗ heb (61)

which we substitute into Eq. (56) so that we can use Equality (57):

[id − L∗]heb =
∑

i

pi
∂Lb∗

∂Y
ξ i + ∂Lb∗

∂I
I ′

=
∑

i

pi

(
∂Lb∗

∂Y
ξ i + ∂Lb∗

∂I
I ′

i

)
+ ∂Lb∗

∂I

[
id − ∂G b∗

∂I

]−1

G∗ heb

= ∂Lb∗

∂I

[
id − ∂G b∗

∂I

]−1

G∗ heb (62)

123



704 M. Durinx et al.

After a slight rewrite we find that

0 =
[
[L∗ − id] + ∂Lb∗

∂I

[
id − ∂Gb∗

∂I

]−1
G∗
]

heb (63)

As there is no a priori, fixed connection between L and G—changing one without
changing the other (while not violating consistency conditions) results in an equally
valid population model—we see that the matrix in this equation generically (within the
set of local equivalence classes of models characterized by L, G, ∂L/∂I and ∂G/∂I )
has full rank. In the special case of a single birth state model, clearly id = L∗ = 1, and
hence e1 = e1 = 0. In general, L∗ − id always has rank d − 1 as [L∗ − id]b∗ = 0 and
this eigenvalue is simple. Other examples corroborating the intuition that the matrix
in Eq. (63) generically is invertible, are models with G(Xi , I ) independent of I.

Therefore e1 = heb = 0 is generically the only possible solution, since all entries
of b∗ are strictly positive as argued in the justification of the birth flow rescaling (46).
Hence Eq. (61) shows that the relation we sought between the linear parts of the
environments I i and I is simply

I ′ =
∑

i

I ′
i pi (64)

With this, we can formulate an expansion of the multitype s-function at the singularity
X∗, up to O(ε3). For that, we start by recalling the single-resident invasion fitness for
structured population models (45),

sXi (Y ) = log λd
(
L(X∗+ V, I ∗ + εI ′

i + O(ε2)
)

T f (Y, I i )
+ O(ε3)

First we note that the dominant eigenvalue of L(X∗, I ∗) is one, so that the numerator
has no constant part (with respect to ε). Therefore, only the constant part T ∗

f :=
T f (X

∗, I ∗) of the denominator appears in a first order expansion of sX(Y ):

sXi (Y ) = λd
(
L(X∗+ V, I ∗ + εI ′

i )
)− 1

T f (Y, I i )
+ O(ε2)

= 1

T ∗
f

(
∂λd(L)
∂Y

V + ε
∂λd(L)
∂I

I ′
i

)
+ O(ε2) (65)

As we are expanding at a singular point, we have ∂s/∂Y = ∂λd(L)/∂Y = 0T. But
because sX(X) = 0 for any X, the linear terms of (65) must add up to zero when
choosing V = Ui —or if you prefer, they add up to zero as a consequence of Eq. (57),
since for simple eigenvalues ∂λd(L)/∂ f = (v∗Tb∗)−1 v∗T[∂L/∂ f ]b∗ for any f , where
v∗T is a left eigenvector of L with eigenvalue 1 (cf. Eq. (96)). Hence we also have
0 = (∂λd(L)/∂I )I ′

i , and because of (64) also the more general 0 = (∂λd(L)/∂I )I ′.
This shows that invasion fitness functions for N -resident communities, expanded at
singularities, do not have linear terms either.
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As we have just shown that in an expansion of λd(L) no linear terms appear, we see
that in a quadratic expansion of the N -resident fitness function, only the constant part
of the denominator T f and the first order part of the logarithm will have to appear:

sX(Y ) = log λd
(
L(X∗+ V, I ∗ + εI ′ + ε2I ′′)

T f (Y, I )
+ O(ε3)

= λd
(
L(X∗+ V, I ∗ + εI ′ + ε2I ′′)

)− 1

T ∗
f

+ O(ε3)

= 1

T ∗
f

(
ε2 ∂λd(L)

∂I
I ′′ + 1

2
ε2I ′T ∂2λd(L)

∂I 2 I ′

+ εI ′T ∂2λd(L)
∂I∂Y

V + 1

2
V T ∂

2λd(L)

∂Y 2 V

)
+ O(ε3) (66)

If we compare this expansion, in the case of a single resident Xi , with the Taylor
series of the simple s-function at a singularity, sXi (Y ) = 1

2Ui
T ∂2s
∂X2 Ui + Ui

T ∂2s
∂X∂Y

V +
1
2V T ∂2s

∂Y 2 V + O(ε3), we can associate the partial derivatives of simple s-functions with
the terms just found:

Ui
T ∂

2s

∂X2 Ui = 1

T ∗
f

(
2ε2 ∂λd(L)

∂I
I ′′

i + ε2I ′
i

T ∂
2λd(L)

∂I 2 I ′
i

)

Ui
T ∂2s

∂X∂Y
V = 1

T ∗
f
εI ′

i
T ∂

2λd(L)
∂I∂Y

V (67)

V T ∂
2s

∂Y 2 V = 1

T ∗
f
V T ∂

2λd(L)

∂Y 2 V

To simplify the notation and to bring out the similarity to the Lotka–Volterra case
(34), we use the matrices C11, C00 and C10 introduced before (cf. Eq. (26)), which
consist of the second order partial derivatives of sX(Y ) at X = Y = X∗. In addition,
we use a shorthand notation

θ := ε2

T ∗
f

(
∂λd(L)
∂I

I ′′ + 1

2
I ′T ∂2λd(L)

∂I 2 I ′
)

(68)

Since for each resident necessarily sX(Xi ) = 0, we see from combining the expansion
of sX(Y ) (66) with Equality (64) that for each i
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0 = ε2 ∂λd(L)
∂I

I ′′ + 1

2
ε2I ′T ∂2λd(L)

∂I 2 I ′ + ε2I ′T ∂2λd(L)
∂I∂Y

ξ i + 1

2
ε2ξT

i
∂2λd(L)

∂Y 2 ξ i

= T ∗
f

⎛
⎝θ + 2

∑
j

U j
TC10Ui p j + Ui

TC00Ui

⎞
⎠ (69)

As for the Lotka–Volterra case (39), we can formulate these N equalities as

∀i :
∑

j

2U j
TC10Ui

︸ ︷︷ ︸
[E]i j

p j
︸︷︷︸
(P ) j

+ θ = −Ui
TC00Ui

︸ ︷︷ ︸
(T )i

(70)

From here onwards, we can paraphrase all steps that led us to the result in the Lotka–
Volterra case, since we have the same set of equations and all terms and factors have
exactly the same meaning.

To reiterate succinctly, our set of N equations (70) can be used to define compo-
nentwise an N ×N matrix E and vectors P and T , so that we can write the N equations
in a vectorial form: E P + θ1 = T . Treating θ as an independent unknown, we have
N + 1 linear equations (since additionally we know 1TP = ∑

i pi = 1) in the N + 1
unknowns θ and p1, p2, . . . , pN . We then gather the vectorial and the scalar equation
together by extending E, P and T as

E∗ :=
[

E 1
1T 0

]
P ∗ :=

(
P

θ

)
T ∗ :=

(
T

1

)
(71)

so that θ and the proportions pi are solved from P ∗ = E∗−1T ∗ using only the
C-matrices and the strategy differences Ui . Componentwise this gives

⎛
⎜⎜⎜⎝

p1
...

pN

θ

⎞
⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

2U1
TC10U1 · · · 2UN

TC10U1 1
...

. . .
...

...

2U1
TC10UN · · · 2UN

TC10UN 1

1 · · · 1 0

⎤
⎥⎥⎥⎥⎦

−1 ⎛
⎜⎜⎜⎜⎝

−U1
TC00U1
...

−UN
TC00UN

1

⎞
⎟⎟⎟⎟⎠

(72)

The issue of the invertibility of E∗ will be explored in Sect. 3.6. Note however, that
a full rank of E∗ is a necessity for the structurally stable existence of the community
{X1,X2, . . . ,XN }.

Finally, we have to cast the second order approximation of sX(Y ) close to X∗ (45)
in the form we found for Lotka–Volterra systems (42). To that end, we use Equality
(66), the relationship I ′ = ∑

i piI
′
i (64), and the definitions of θ and the C-matrices.

Then we find the following form for the invasion fitness function of any structured
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population model with N resident types:

sX(Y ) = log(λd(L(Y, I )))
T f (Y, I )

+ O(ε3)

= 1

T ∗
f

(
ε2 ∂λd(L)

∂I
I ′′ + 1

2
ε2I ′T ∂2λd(L)

∂I 2 I ′
)

+ 1

T ∗
f

(
εI ′T ∂2λd(L)

∂I∂Y
V + 1

2
V T ∂

2λd(L)

∂Y 2 V

)
+ O(ε3)

= θ + 2

(∑
i

piUi
T

)
C10V + V TC00V + O(ε3) (73)

This is exactly the same equation as we found for the invasion fitness in Lotka–Volterra
models (42) and leads us to the following proposition:

Proposition 3 The invasion fitness function of a general physiologically structured
population model with N resident strategies near an evolutionarily singular strategy,
can be approximated by that of an N-resident Lotka–Volterra system, up to terms of
order O(ε3) for distances between residents and singularity of order O(ε).

Proof By comparing the multiresident s-functions of the Lotka–Volterra case (42–43)
with the physiologically structured population case (72–73), it is seen that both de-
pend in exactly the same way on the second order derivatives of the single-resident
s-function at X∗ (i.e., the C-matrices) and the deviations Ui of the resident strategies
X∗+Ui from the singular strategy. Applying Proposition 1, we can fit a Lotka–Volterra
model with the same N -resident fitness function as the given physiologically structured
population model, up to quadratic terms in ε. �


As remarked before, adding the requirement that the fitted Lotka–Volterra model
has a trait-independent growth rate r in virgin environments, makes the approximating
system unique since a(Y,X) = 1 − sX(Y )/r .

Proposition 3 may be read as follows: The s-function for N-resident Lotka–Volterra
models (31) is a second order normal form for multiresident fitness functions, since
for any given structured population model for which we can write down the simple
invasion function sX(Y ), we can easily fit a Lotka–Volterra model by defining the
growth rate in a virgin environment and the interaction function as

∀X,Y : r(Y ) := 1, a(Y,X) := 1 − sX(Y ) (74)

The single-resident fitness function of this Lotka–Volterra model is exactly the same
as that of the given model, and the multiresident s-function for Lotka–Volterra models
(31) was found to be

sX(Y ) = 1 − (a(Y,X1) · · · a(Y,XN )) A−1 1
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where the interaction matrix A was defined as

A :=

⎡
⎢⎢⎢⎢⎣

a(X1,X1) a(X1,X2) · · · a(X1,XN )

a(X2,X1) a(X2,X2) · · · a(X2,XN )

...
...

. . .
...

a(XN ,X1) a(XN ,X2) · · · a(XN ,XN )

⎤
⎥⎥⎥⎥⎦

(75)

with necessarily each diagonal element a(Xi ,Xi ) equal to one.
Proposition 3 guarantees that the difference between this polymorphic fitness func-

tion and the correct function for the given population model is of order O(ε3).

3.5 The case of two residents

We found a normal form for fitness functions that is generally applicable to any
N -resident Lotka–Volterra (42) or physiologically structured (73) community near
a singularity. It is however not a very perspicacious relation between the model ingre-
dients.

If there are only two residents, we can come to a more insightful form by choosing
as coordinates U := (U1 +U2)/2 and ∆ := (U1 −U2)/2 (so conversely U1 = U +∆

and U2 = U − ∆). Translating T ∗ and E∗, we have

T ∗ :=
⎛
⎜⎝

−U1
TC00U1

−U2
TC00U2

1

⎞
⎟⎠ =

⎛
⎜⎜⎝

−U
T
C00U − 2∆TC00U − ∆TC00∆

−U
T
C00U + 2∆TC00U − ∆TC00∆

1

⎞
⎟⎟⎠

and (after some computing)

E∗−1 = − 1

8∆TC10∆

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 4U
T
C10∆ − 4∆TC10∆

1 −1 −4U
T
C10∆ − 4∆TC10∆

4∆TC10U −4∆TC10U 16∆TC10∆U
T
C10U

−4∆TC10∆ −4∆TC10∆ −16U
T
C10∆∆TC10U

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

By adding the second row or column to the first, we can calculate that det E∗−1 =
−8∆TC10∆. Thus we find p1, p2 and θ from E∗−1T ∗ to be
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

θ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2
− 1

2

U
T
C00∆ + U

T
C10∆

∆TC10∆

1

2
+ 1

2

U
T
C00∆ + U

T
C10∆

∆TC10∆

−∆TC00∆ − U
T
C00U − 2U

T
C10U

+ 2
∆TC10U∆T[C00 + CT

10]U
∆TC10∆

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(76)

Substituting these three in the normal form (73) presented before, we find

sX1X2(Y ) = V TC00V + 2U
T
C10V − U

T[C00 + 2C10]U − ∆TC00∆

+2∆TC10(U − V )
∆T[C00 + CT

10]U
∆TC10∆

+ O(ε3) (77)

which is Eq. (27) as presented in Sect. 3.2, “Aims”. As an aid to the reader, we remark
that most of the correspondence between the general (73) and the two-resident normal
form (77) is seen by observing that

∑
i

piUi
T = U

T − ∆T[C00 + CT
10]U

∆TC10∆
∆T

For two strategies close to X∗, to be mutually invadable (a requirement for stable
coexistence) implies that ∆TC10∆ is negative:

0 < sX1(X2)+ sX2(X1)

= U1
TC11U1 + 2U1

TC10U2 + U2
TC00U2 + O(ε3)

+U2
TC11U2 + 2U2

TC10U1 + U1
TC00U1 + O(ε3)

= 2U
T[C11 + C00]U + 2∆T[C11 + C00]∆

+ 2U
T[C10 + CT

10]U − 2∆T[C10 + CT
10]∆ + O(ε3)

= −8∆TC10∆ + O(ε3) (78)

Equation (77) shows that the relative densities can at least be calculated, as long as
the denominator ∆TC10∆ is nonzero. However, this does not amount to coexistence
when one of the proportions pi is negative. From (76) we see that coexistence (the
positiveness of both p1 and p2) is equivalent to

∣∣∣∣∣
U

T
C00∆ + U

T
C10∆

∆TC10∆

∣∣∣∣∣ < 1 (79)
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To see how likely it is that this inequality is fulfilled, consider the case where X1,X2
and X∗ are collinear, so U2 = αU1 for some value of α. Typically residents will be
on opposite sides of the singularity (corresponding to a negative α), although shortly
after a branching event we may find them on the same side (positive α). We see that

E = 2U1
TC10U1

[
1 α

α α2

]
det E∗ = −2U1

TC10U1(α − 1)2 (80)

so there is no unique solution if α is one; T ∗ then lies in the range of E∗ and the
linear system E∗P ∗ = T ∗ is underdetermined. This much was expected (cf. Fig. 1)
since the residents are indistinguishable in this case and coexist at a neutrally stable
equilibrium, their relative abundances dependent on initial conditions.

Thus for a nonsingular E∗, the condition for true coexistence is

∣∣∣∣
1 + α

1 − α

∣∣∣∣ <
∣∣∣∣

U1
TC10U1

U1
TC00U1 + U1

TC10U1

∣∣∣∣ =

∣∣∣∣∣∣∣

1 + U1
TC11U1

U1
TC00U1

1 − U1
TC11U1

U1
TC00U1

∣∣∣∣∣∣∣
(81)

By plotting the left hand side of the inequality, we can draw some conclusions. For
two residents to lie on the same side of a singularity (α > 0), it is necessary that the
right hand side of the inequality is larger than one. The pole at α = 1 shows that the
closer two such residents are, the less likely it is that the condition is satisfied. On
the other hand, we see that α = −1 is always a solution, and the closer two residents
are to being each other’s opposite (U1 ≈ −U2), the likelier it is that the condition is
fulfilled.

If X∗ is invadable, C00 has positive eigenvalues. We can then choose U1 such that
U1

TC00U1 > 0. Moreover, we concluded that U1
TC10U1 is negative (cf. Eq. (78)), so

necessarily the right hand side of Inequality (81) is larger than one and any α < 0
suffices. If however X∗ is uninvadable, the right hand side of the inequality is smaller
than one and only a narrow interval around α = −1 will lead to coexistence.

3.6 Limits to the level of local polymorphism

We have solved θ and the proportions P by inverting E∗. To justify this approach, we
show first that by excluding singular matrices E∗, we have only excluded structurally
unstable communities.

Let us first point out that the frame of reference in Propositions 4 and 5 and Lemmata
3–6 below, is the set of all systems in the product of the space of strategy deviations
{U1, U2, . . . , UN } and the space of local equivalence classes of communities specified
by the matrices C11, C10 and C00; within this context the qualification “generically”
must be understood.

Proposition 4 Generically, if the strategies {X∗+ εξ i | i = 1, 2, . . . , N } can coexist
in the limit ε → 0, then E∗ is nonsingular.
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Proof If E∗ is singular, there exists a nontrivial vector µ such that

(µ1 µ2 · · · µN µN+1)E∗ = 0T

or in another form {
(µ1 µ2 · · · µN )E = −µN+11T

(µ1 µ2 · · · µN )1 = 0

If we now apply the equalities 1 = 1TP and E P = T − θ1 (which we found for both
Lotka–Volterra (40) and physiologically structured models (70)), we see that

− µN+1 = −µN+11TP = (µ1 · · ·µN )E P = (µ1 · · ·µN )T

which is generically a contradiction since µ only relates to E∗ whereas T has no
direct connection to E∗ since they depend on different C-matrices that can be varied
independently, by slight changes in the model specification. �


We will now formulate some results about the influence of the system ingredients
on the invertibility of E∗ (Lemma 1–4). Proposition 4 then provides a recipe for
translating those results into upper bounds to the possible complexity of communities
(Proposition 5–Lemma 6). Finally, Proposition 7 relates these results to some very
general ideas floating around in the literature about the abstract generalization of the
theorem by Levin [42] that N limiting resources can robustly support the coexistence
of at most N types.

Lemma 1 If det E �= 0, then det E∗ = −(det E)1TE−11.

Lemma 2 If rank E � N − 2, then E∗ is singular.

Lemma 3 If rank E = N − 1, then generically E∗ is invertible.

Lemma 4 If rank E = N, then generically E∗ is invertible.

The first three lemmata are proven in Appendix D, while the last statement is verified
by a look at Lemma 1 plus the realization that the sum 1TE−11 of all the elements of
the inverse matrix is typically nonzero.

Proposition 5 Generically, the number of residents N near a singularity is at most
one higher than the dimension m of the trait vectors.

This proposition generalizes a result of Christiansen and Loeschke [11].

Proof First we define an m×N trait matrix U := [U1 U2 · · · UN ] from the trait vectors
(or componentwise [U]ai := (Ui )a). We then see that E is a product of matrices,

[E]i j := 2U j
TC10Ui = [2UTCT

10U]i j

As the rank of a product of matrices is never higher than the rank of any of its constituent
matrices, the rank of E is at least two below maximal if N � m + 2, in which case E∗
is not invertible according to Lemma 2 and the conclusion follows from Proposition 4.

�
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Lemma 5 When two resident strategies are linearly dependent on the other N − 2
in a set of strategies close to a singularity, this set of N strategies generically cannot
coexist.

Proof In this case U has a rank at least two below N , and by Lemma 2 this holds for
E too; applying Proposition 4 concludes the proof. �

Lemma 6 Near a singularity, the number of residents is generically at most one higher
than the rank of C10.

This is a corollary of Lemma 2 and Proposition 4 as well.

Lemma 7 Even if both U and C10 have full rank, E∗ may still be singular.

This statement is proven in Appendix D. We remark however that a small perturbation
of U and/or C10 will suffice to make E∗ invertible.

We will now point out in Proposition 7 an indirect connection between E =
2UTC10U and the dimension of the feedback environment [17,46]. As a corollary, Pro-
position 5 may be recovered, as at most N types can stably coexist in an N -dimensional
environment [47,46]. As a preliminary we show how to find the exceptions to the rule
that Lotka–Volterra models generate infinite dimensional environments:

Proposition 6 A Lotka–Volterra model with interaction function a(Y,X) has feed-
back dimension e, if and only if e is the minimal number for which we can write
a(Y,X) = ∑e

q=1 bq(Y )cq(X), for some functions bq and cq .

A proof is given in Appendix E.

Proposition 7 (local environmental dimension) Near singularities, the environment
is locally at most (z + 1)-dimensional when the strategies are z-dimensional.

Proof In this section we showed that an adaptive dynamics model near a singularity
can be approximated, up to quadratic terms, by a Lotka–Volterra model with any
interaction function of the form

a(X∗+ V,X∗+ U) := 1 − U TC11U − 2UTC10V − V TC00V + O(ε3)

and growth rate r(Y ) := 1, where the C-matrices are determined by the model to be
approximated. The fitted model then has the same s-function as the original model,
up to quadratic terms in ε. Making the specific choice

a(X∗+ V,X∗+ U) := 1 − U TC11U − 2UTC10V −V TC00V + UTC11U V TC00V

and using the following definitions,

b0(Y ) := 1 − (Y − X∗)TC00(Y − X∗)
c0(X) := 1 − (X − X∗)TC11(X − X∗)

∀a ∈ {1, . . . , z} : ba(Y ) := 2
∑

b
[C10]ab(Y − X∗)b

ca(X) := (X − X∗)a
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we see that a(Y,X) = ∑z
a=0 ba(Y )ca(X). Proposition 6 then shows us that the feed-

back dimension of the approximating model is at most z + 1. �


4 The meaning of it all

What is the relation between the canonical equation (Sect. 2) and the fitness function
near singularities (Sect. 3)? How can they aid in interpreting a model? Or in other
words, why do these sections appear together in a single paper? We will address these
questions here, by describing a recipe for analysing concrete models and illustrating
it with an example from the literature.

The starting point should be a model that satisfies the assumptions of adaptive
dynamics: a large system size and a population dynamics where the individuals have
heritable life history parameters that are under evolutionary control through a low
rate of mutations with relatively small effect. In this situation, the ecology typically
is dominated by a few, markedly different, strategy vectors. The distribution of the
strategies thus has a few distinct peaks, with almost all individuals having a trait
very close to the position of one of the peaks. If there are one or two such trait
values, for example, the community is termed quasi-monomorphic or quasi-dimorphic.
Interesting evolutionary dynamics are those where the number of peaks increases over
time, as such increasing diversity and specialization has an obvious interpretation as
(the onset of) (sym- or parapatric) speciation. Of course, it is just as important to know
when this buildup of diversity does not and/or cannot occur.

The evolutionary analysis of such a model starts by setting up a resident popula-
tion at equilibrium, with all individuals of a single type. Typically the trait finds itself
under directional selection and evolves as predicted by the canonical equation (23).
The community is then quasi-monomorphic at an evolutionary timescale, as the
appearance of a succesful mutant is immediately followed by the disappearance of
the former resident (cf. Sect. 2.2, “invasion implies substitution”). This substitutional
regime only comes to an end when the population finds itself near a singular trait
value (cf. Introduction 1.1). Near singular trait values the invasion/replacement dyna-
mics acts differently with other behaviours possible: resident traits may stop evolving,
or the quasi-monomorphic population may diversify into a quasi-dimorphic commu-
nity after a brief polymorphic phase. If we find that the population does branch into
several populations with differing strategies, these branches must be followed until
they go extinct or until they are a safe distance away from the singularity, so that
one knows whether several types of residents coexist in a protected manner or whe-
ther the polymorphism quickly disappears again. Once the branches have evolved out
of the proximity of the singularity, a canonical equation again governs the evolution
of the subpopulation associated with each branch, and the analysis can proceed as
before.

This process is possibly repeated, with further evolutionary branching, until all
branches have reached evolutionary endpoints (i.e., attracting, uninvadable trait
values): only then a final evolutionary outcome has been found. In some cases however,
evolution does not proceed towards a definite endpoint but ends up on a limit cycle or
on a more complicated attractor (e.g., [16]).
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A recipe for studying the evolutionary behaviour of a model, from random initial
resident until the final outcome(s), can be broken down in the following steps.

4.1 Model (re)formulation

The adaptive dynamics approach requires that the basic model assumptions are for-
mulated in terms of the behaviour of individuals. These must possess near-faithfully
inherited traits [49] influencing their reproduction, survival, change in spatial and phy-
siological states, and impact on their environment. (The environment was introduced
in Sect. 1.1 and described further in 1.2. It is a concept of which the utility lies in the
fact that in a given environment the growth dynamics of any clone is linear with an
asymptotic relative growth rate depending on both the strategy and the environment.)
Such a description requires i.a. postulates for how individuals convert resources into
offspring (depending on the state and inherited strategy of the organism, and the state
of the resources), but also for the dynamics of the resources consumed by individuals.
Therefore the vector of heritable traits will appear as a parameter of the individual
dynamics (and hence of the population dynamics), and the population distribution
will appear as an input of the environmental dynamics.

4.2 Life history parameters

Once the model is formulated in individual-based terms, the necessary life history
parameters can be calculated: for a resident with strategy X in the environment I,
there is the expected lifetime offspring production L(X, I ) and the feedback matrix
G(X, I ) (cf. Sect. 1.2), the life expectancy Ts(X, I ) and the average age-at-giving-
birth T f (X, I ) (97), the equilibrium population densities Ts(X, I ) ||b|| where b is the
birth flow vector (1), and the offspring variance σ 2 (16). Notice that these are all
observables, with a clear biological interpretation.

From Appendix A we know that the invasion fitness of a mutant that resembles the
i th resident type has the following form in general:

sX(Xi + V ) = log λd(L(Xi + V, IX))

T f (Xi , IX)
+ O(||V ||2)

where λd is the dominant eigenvalue operator. Notice how in this context one can
avoid solving the characteristic equation to find λd(L): the dominant eigenvalue of
L for any resident Xi is necessarily 1. Therefore the right- and left-eigenvectors bi

and vT
i of L are the (unique, up to a scalar) solutions to

[
id − L(Xi , IX)

]
bi = 0 and

vT
i

[
id − L(Xi , IX)

] = 0T. This allows us to approximate the ath component of the

fitness gradient

(
∂sX(Y )
∂Ya Y=Xi

)T

by vT
i

[
∂L(Y,IX)
∂Ya Y=Xi

]
bi/(T f vT

i bi ). Hence we see that

for the fitness gradient we only have to solve the next-generation and environmental
feedback equations (1) for bi (and L(Xi , IX)), and to find vi .
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For each i , the eigenvectors are normalized so that ||ui || = 1 and 1 = vT
i ui (13).

This allows us to calculate T f (97) and Ts ; the life expectancy for example is

Ts :=
∑

i

ui

∞∫

0

Fi (X, I , a) da (82)

with Fi (X, I , a) the probability that an individual with trait value X and born in state
i , survives to at least age a.

Depending on model type, the previously described steps in the analysis may be
numerical or analytical. Clearly an analytical approach has many advantages, like
showing how life histories depend on strategy parameters. However, even when this
treatment is theoretically possible, it may be so cumbersome as to be unfeasable:
finding the dominant eigenvalue of L where there are three or four possible birth states
would be a case in point.

We remark furthermore that this description of the second step of the analysis is
written so as to be as general as possible. In practice life tends to be simpler, and
often parts of this step may be skipped: e.g., for an ODE or difference equation model,
the population dynamical equilibrium and per capita growth rate are found directly,
making the explicit formulation of G and L (and its derivatives and eigenvectors)
redundant. Furthermore the community will be starting from a single resident, so that
1 = i = N and the number of equations to solve simultaneously may be low.

4.3 Monomorphic dynamics under directional selection

The canonical equation (23) predicts how the trait vectors in a community will change
over time. This prediction is valid as long as the fitness gradient stays nonzero, allowing
a deterministic approximation of the path a community will follow from any given
initial state. Here we assume that the mutational covariance matrix is nonsingular.
(It may become singular, for example when the traits under evolutionary control are
subject to constraints. For trait vectors on the surface that then forms the boundary of
the attainable trait space, the null space of the covariance matrix is locally orthogonal
to that surface. The equation shows that at equilibrium the fitness gradient must lie in
that null space. This scenario may be treated in the same way as that of a bounded trait
space, discussed below). From the canonical equation, we see that a state is transient if
the fitness gradient is nonzero. As it is derived from an approximation that fails in the
proximity of singular points, the canonical equation does not help the analysis close to
those interesting points towards which evolution drives the community. Paradoxically,
we will use the (one-resident) canonical equation to find the strategy values where it
fails as an approximation, and subsequently use the (multiple-resident) equation to
predict how the community will evolve around those strategies.

A major exception to the above scenario occurs when the trait space is bounded in
one or more directions. In that case, a distinction must be made between the dynamics
tangential and orthogonal to the boundary. If the fitness gradient points outward at
the boundary, the dynamics orthogonal to the boundary will trap any approaching
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community. Hence the analysis can be continued in a lower-dimensional strategy
space, looking for singularities of the dynamics constrained to the boundary. Some
care must be taken if the fitness gradient points outward only along part of the boundary,
as the community may evolve for a while along the boundary, but later stray away
from it.

After locating those points where the fitness gradient is zero—the so-called singular
points (1.1)—we can use the canonical equation to find out whether they are attracting
or not, and if so, to find their basin of attraction. Singular points that are repelling
or have inappreciable domains of attraction are clearly not that interesting, as the
community will normally not approach such points. In principle, the equation can be
as rich in dynamical features as any ODE. As such, the appropriate numerical tools,
or theorems about the qualitative behaviour of solutions, will depend on the specifics
of the model under consideration.

At this point we still lack one ingredient of the canonical equation: the mutational
covariance matrix M(X) near the trait value X (cf. Eq. (2), (23)). The influence of M
can be understood in the following way: selection impels traits to change in the direc-
tion of the steepest increase in fitness, but the covariances are changing the direction
of movement away from this “optimal” direction. Covariance matrices are the great
unknowns in evolutionary biology. There is little or no understanding of which choices
of M (or, equivalently, of the mutational distribution M) are the reasonable ones for
each type of biological model, as the covariances are footprints of deeper develop-
mental, physiological and biophysical processes (cf. [52]). The safest conclusion to
draw is that any complicated dynamical features found from the canonical equation
should be dismissed as biologically irrelevant, unless they are robust against changes
in M. When there is no further information about it, most people in practice choose
M = id, the identity matrix. However, it is never a bad idea to do simulations for a
few other values of M. The best possible result would then be that one can classify
the potential evolutionary outcomes as dependent on M. Then the theoretical analysis
leads to a potentially empirically answerable question: “Is M expected to lie in this or
that domain?”.

If we are satisfied that evolution is towards a singularity, whether of the full trait
space or of a constrained subspace, we continue to the next step. If there is no such
singularity, the community will stay monomorphic indefinitely while the resident trait
keeps changing according to the canonical equation.

4.4 Near singularities

When a resident strategy moves closer and closer to a singularity, the first order
approximation of fitness by the selection gradient breaks down, and so do a number of
other approximations that were made so far. Around a singularity, several zones can
be distinguished in which different refinements come into play.

In the most convenient (and hence generally emphasized) case, there exists an outer
zone where the second order terms start to dominate the s-function, while the radius
of curvature of the local fitness contours is still large in comparison with the average
mutational step length. We note here that the existence of such a region depends on the
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separation of two scales: that of the distance of the residents from the singular point and
that of the distance of the mutants from their resident progenitors, where the relative
effects on the two scales have to be gauged through the s-function. Whether or not the
singular point attracts throughout this outer zone can be determined through recourse
to the canonical equation. The only difference with the earlier discussion is that here
standard analytic tools from linearized stability theory can be used, as the second
order terms of the invasion fitness function fully determine the local linearization
of the canonical equation. The one snag is that the canonical equation still contains
the mutational covariance matrix. Leimar [39–41] analyzed the extent to which the
stability of a singular point can be determined without any knowledge of that matrix. In
this analysis, the eigenvalues of the matrix ∂2sX(Y )/∂Y 2−∂2sX(Y )/∂X2 (or C00−C11
in our earlier notation (26)) play the key role in the classification of the evolutionary
possibilities relatively close to a singularity X∗. The possibilities are as follows:

– If C00 − C11 is positive definite (i.e., has only strictly positive eigenvalues), X∗ is
repelling. Thus the community can only find itself close to X∗ if the initial resident
was close to X∗ as well. In such cases, the community will evolve away from
the singularity and the canonical equation will quickly become valid, so that the
analysis can proceed in accordance with 4.3.

– If C00 − C11 is negative definite (i.e., has only strictly negative eigenvalues),
convergence to X∗ is assured. In this case the next step of this recipe, Sect. 4.5,
applies. Different outcomes are possible, as X∗ may be an evolutionary endpoint
or a branching point.

– If C00 −C11 is indefinite (i.e., has both strictly positive and negative eigenvalues),
the covariance matrix M(X∗) is decisive. Firstly, for a given M the singularity
may be a saddlepoint, so that at first the resident can approach X∗ but later grow
more and more distinct from X∗. Thus the regime of directional selection stays
intact and the analysis of 4.3 applies. Secondly, for a given M the singularity may
be an attractor so that the analysis can continue at the next step in this analysis.
Thirdly, for a given M the singularity may be a repellor, and hence be disregarded
as unattainable.
The model under consideration may constrain M to one of the three cases and thus
simplify the analysis, or several cases may occur depending on parameter values.

Closer to the singular point where the curvature of the fitness contours starts to have
its effects, it is also no longer possible to assume permanent quasi-monomorphism,
as it may be that mutants are no longer able to oust their progenitor. A discussion
of the final convergence to an uninvadable singular point (characterized by C00 being
negative definite) under a still mutation limited regime, can be found in Appendix B of
[17]. Although the problem of the final convergence is far from solved, in this case it
turns out to be both independent of the mutational covariance matrix and an all-or-none
property. Hence the problem can be solved in principle by a single extended simulation
run, of a type similar to those described in the next subsection. A final problem is that
sufficiently close to the singular point, the timescale of selective takeovers will in any
concrete case become so slow that the assumption of mutation limitation will break
down, thus necessitating an approach along the lines of quantitative genetics (cf. [53]).
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4.5 At attracting singularities

Once we know that the singularity X∗ is an attractor, we can start wondering whether
selection will be stabilizing (so that the resident distribution will forever have the shape
of a single peak close to X∗), or disruptive (so that distinct (sub)populations may form
near X∗ and evolve away from each other).

When C00 is negative definite then X∗ is uninvadable and selection is stabilizing
close to X∗. Hence the first requirement for branching to occur is that X∗ must be
invadable: C00 must have at least one positive eigenvalue. If increasingly differentia-
ting polymorphisms indeed do arise, we once again have to distinguish between the
zones discussed in the previous subsection.

For the zone where both the canonical equation and the second order approximation
to the s-function hold, the following conjecture is floating around (Stefan Geritz,
Lecture given at the International Conference on Computational and Mathematical
Population Dynamics, Trento, 2004): in those cases where C00 has a simple positive
maximal eigenvalue, there will remain only a single pair of branches if eT

M [C00 +
C11]eM > 0, where eM is an eigenvector corresponding to the maximal eigenvalue;
else all but one branch will eventually go extinct. When there are two co-maximal
positive eigenvalues, then in principle three branches can grow away from each other
at 120 degree angles, without any two of them driving the remaining third to extinction
[56]. But even in the particular case of co-maximality, it appears that three-way splitting
happens only under special conditions. (The authors welcome any counterexamples!)

As an aside we note that in finite populations, the largest positive eigenvalue of
C00 has to be sufficiently large for branching to really occur. Moreover, several other
processes may obstruct diversification. Consider for example a diploid, sexual orga-
nism and assume some diversity has arisen. If a male and female of differing types
mate, their offspring will be of a type close to the average of the parental types. Hence
unless a preference for assortative mating is present already, sexual reproduction and
the recombination it engenders will tend to average out strategies and thus prevent the
buildup of specialized subpopulations through what could be called the “Mendelian
mixer”.

Before we can with some confidence rely on the canonical equation, evolution has
to get the resident community out of the region where the radius of curvature of the
local fitness contours is small relative to the average mutational step length. It is in the
analysis of what happens in this region that Sect. 3 is useful in our recipe: since (up to
quadratic terms in the mutation step size) all models behave as Lotka–Volterra models
(28) near singularities, we can fit such a model and study it instead of the original
model. As explained after Proposition 3 and applied in the Example 4.6 below, to
construct a Lotka–Volterra model with the same N -resident fitness function as the
model under consideration, we merely have to define the per capita growth rate in a
virgin environment and the interaction function as

∀X,Y : r(Y ) := 1, a(Y,X) := 1 − sX(Y ) (83)

This model is now fitted so as to have the same single-resident fitness function
as the original model, for any combination of resident and invader. As mentioned
above, Sect. 3 shows that fitness functions of communities close to a singularity are
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model-independent in a sense, so we can proceed our analysis with either model. Wha-
tever the nature of the original model, the new one is an ODE model, so a possible
advantage is that we can study its dynamics with standard packages. Furthermore
Lotka–Volterra models are mathematically rather straightforward (e.g., [34]), as for
example the equilibrium population sizes in a community of N types is easily calcula-
ted (Formula 32). Finally, stochastic simulations of their individual-based counterparts
are easily performed using the Gillespie algorithm [30] (see e.g., the appendix to [16],
and [9]).

To explore the evolutionary behaviour of a system near an invadable attracting
singularity X∗, simulations can be run along the following lines:

1. Choose an initial resident near the singularity: for some small U1, this resident’s
strategy isX1 = X∗+U1. The resident’s density is set at its (nontrivial) equilibrium,
and the total number N of resident types in the community is 1.

2. Draw a mutant from the mutational distribution associated with the community.
To do this straightforwardly, we just have to think about the mutant’s ancestor.
If N types are present in the community at densities n̂i , then with probability
pi = n̂i/

∑
j n̂ j the mutant derives from the i th resident. From the mutational step

distribution M(Xi ) around this progenitor we draw a mutation step V, generating
a mutant of type Y := Xi + V.
If the invasion fitness of the newly found mutant is negative, we discard it and
draw another mutant according to the above recipe. Once we have a mutant with
positive fitness, we have to see whether it will get established or not. For this we
turn the Wheel of Fortune a second time, where the chance of success scales with
the mutant’s fitness as required by Equality (21). If our mutant is unlucky, we go
back to generating mutants until one succesfully invades.

3. See which of the original residents survive the invasion of our mutant. This is done
by initializing the Lotka–Volterra ODEs at the community attractor, adding a small
number of invaders—enough to avoid disappearance of the mutants by roundoff
errors—and then following the community dynamics to its new equilibrium.
After the transition from (close to) the equilibrium of the former to that of the new
community, we will usually find that the mutant’s progenitor has disappeared.
In some situations however, several residents may have disappeared, while in the
case of disruptive selection it is possible that no residents disappear at all. Thus the
community X may have lost residentsXd1 , Xd2 , . . . , Xdk but gained a new resident
XN−k+1 := Y, where the equilibrium densities are easily found analytically or
numerically, using the interaction function and the resident strategies (cf. Eq. 32).

4. Go back to Step 2, as long as there still are residents in a close neighbourhood
of X∗.
In some cases however, the singularity is invadable but does not allow a polymor-
phism to build up. This happens when the zone of mutual invadability (and hence
stable coexistence) is so narrow that a mutant will be outside of this area after very
few mutation steps, and therefore drive all close by residents to extinction. The
trajectory will then hover close to the singularity, while neither really closing in
on X∗ nor branching. Thus, if any polymorphism in the community only remains
for a brief period while the trajectory makes no progress towards the nearby sin-
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Fig. 2 Steps in simulating the evolutionary dynamics close to a singularity

gularity within a reasonable time, the algorithm must be interrupted and X∗ be
proclaimed an evolutionary endpoint.

At the last step, there is no hard and fast rule to work out what a safe distance is for
concluding that all branches present have evolved away from the proximity of the
singularity. Out of hand, we would say ten mutation steps. The underlying idea is that
away from a singularity, the “invasion implies substitution” dictum holds sway for
each of the separate branches, so we can be confident that no buildup of diversity is
possible beyond our chosen boundary. Similarly, what constitutes a “reasonable time”
at Step 2 is not exactly defined; we would call it a day when a thousand successive
mutants fail to invade. Given these inexactitudes, it is clear that our story relies on the
common sense of the programmer. A summary of the algorithm as a flow diagram is
given in Fig. 2.

If we are convinced there is no diversification occurring while the resident creeps
ever closer to X∗, we label this strategy an evolutionary endpoint. If on the other hand
branching has occurred, then the branches come under a regime of directional selection
once they have outgrown the influence of X∗. Thus we find ourselves back at Sect. 4.3
to repeat the entire analysis, this time in a more complicated fashion since equilibria
of the canonical equation for several residents have to be found, and equilibria of a
community dynamics with several residents. The invasion analysis, however, keeps
studying the singular points separately, with the other (faraway) strategists being part
of the background that determines part of the environment I when examining the
evolution of a resident.

To illustrate our recipe, we conclude with an example from the literature.
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4.6 A fitting example

As an example we consider a one-locus model for intraspecific competition [11].
Diploid additive genetics is assumed in a discrete time, non-overlapping generations
analogue to Lotka–Volterra dynamics. There are multiple resources, and the trait under
evolutionary control is the modus of the utilization function:

– Resources are distributed as a z-variate Gaussian with mean 0 and covariance
matrix �, where � is real, symmetric and positive definite.

– Each existing allele Ai ∈ {A1, A2, . . . , AN } has a trait value Xi associated with
it, such that for a diploid with genotype (Ai , A j ), the optimal resource type is
Di j := D + Xi + Xj and the diploid has a Gaussian resource utilization func-
tion Ui j (r) := α exp

(− 1
2 (Di j − r)T�−1(Di j − r)

)
. The scaling constants α and

D, and the symmetrical, positive definite covariance matrix � are shared by all
genotypes.

– Diploid individuals (Ai , A j ) and (Ak, Al) interact through the competition coeffi-
cient γi j,kl := exp

(− 1
4 (Di j −Dkl)

T�−1(Di j −Dkl)
)

while the carrying capacity

is given as ki j := exp
(
− 1

2DT
i j [�+�]−1Di j

)
.

Genotypes are formed by random mating under free recombination. Between genera-
tions, a genotype (Ai , A j ) changes in abundance as

ni j (t + 1) = ni j (t)

(
1 + β

(
ki j −

∑
kl

γi j,kl nkl(t)

))
(84)

for some scaling constant β.
For an adaptive dynamics analysis of this model, it is important to realize at this

point that the alleles, not the diploids, are the individuals to consider. This is seen
by contemplating who is faithfully replicating [49] in this community: in the extreme
situation where the population is made up of homozygotes (A1, A1) and (A2, A2),
half of the offspring is of a brand new type so that the heterozygote per capita growth
rate is infinite.

We can now interpret the model ingredients in an adaptive dynamics context. Firstly,
the strategy of an allele Ai is the allelic trait value Xi associated with it. Secondly,
for a rare allele A j that is introduced in this monomorphic community, the number of
alleles A j is actually ni j as mutant homozygotes are exceedingly rare. Thus we find
the one-resident invasion fitness (i.e., the per capita growth rate of a rare mutant in a
monomorphic equilibrium community) as the logarithm of the mutant heterozygote’s
growth rate. From these considerations plus the model ingredients and Eq. (84), we
see that

sX(Y ) = log
(
1 + β e− 1

2 (D+X+Y )T[�+�]−1(D+X+Y )

−β e− 1
2 (D+2X)T[�+�]−1(D+2X) e− 1

4 (X−Y )T�−1(X−Y )
)

(85)

From the selection gradient

123



722 M. Durinx et al.

(
∂sX(Y )

∂Y Y=X

)T

= −β e− 1
2 (D+2X)T[�+�]−1(D+2X) [�+�]−1(D + 2X) (86)

we see that the unique singularity lies at X∗ := −D/2, so we translate the origin of
our coordinate system to X∗ and use the (not necessarily small) strategy difference
vectors U := D/2 + X and V := D/2 + Y.

The singularity is globally attracting, as can be seen in the following way. First we
note that the inverse of the sum of real, positive definite, symmetric matrices has these
three properties as well, so that 0 < XT[�+�]−1X for any nontrivial vector X. If we
look at the canonical equation (23), we see that it predicts the resident trait to change
according to

dX

dt
= α(X)M(X)

∂sX(Y )

∂Y

T

Y=X

=: f (X) (87)

for some positive function α(X). Considering only small mutations in the direction of
the singularity (i.e., V := (1−γ )U with γ > 0 and V −U = O(ε)), we see that such
a mutant has positive fitness, while a step away from the singularity (γ < 0) implies
negative fitness:

sX∗+U (X
∗ + V ) = 0 + ∂sX(Y )

∂Y Y=X∗+U
(−γ U)+ O(ε2)

= 2β γ e−2UT[�+�]−1U UT[�+�]−1U + O(ε2) > 0 (88)

Given this inequality, it is easy to find a Lyapunov function for f (X): e.g., L(X) :=
XT[�+�]−1X is positive, continuously differentiable and for every nontrivial U

∇L(U) f (X∗+ U) = −α2(X
∗+ U)U T[�+�]−1M [�+�]−1U < 0 (89)

where α2 is a positive function. Hence the singular point always is a global attractor
for the one-resident canonical equation, and there is no separate need to check the
conditions described in Sect. 4.4.

We draw attention here to the fact that C10 is symmetric, as often happens in simple
models (cf. the paragraph following Eq. (33)).

As the sign of sX(Y ) is not influenced by the value of β > 0, we can put this
proportionality constant at β := 1. For strategies close to the singularity, where U and
V are O(ε), we approximate the invasion fitness function as

sX∗+U (X
∗+ V )

= log
(
1 + e− 1

2 (U+V )T[�+�]−1(U+V ) − e−2UT[�+�]−1U e− 1
4 (U−V )T�−1(U−V )

)

= UT

[
3

2
[�+�]−1 + 1

4
�−1

]
U + 2UT

[
−1

2
[�+�]−1 − 1

4
�−1

]
V

+V T

[
−1

2
[�+�]−1 + 1

4
�−1

]
V + O(ε3) (90)

from which form we can read off C11, C10 and C00.
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In the case of scalar traits, the invadability of X∗ now settles the rest: if 0 < C00 we
find a branching point, else a CSS. The first case corresponds to � < �, the second
to the reverse. This is the classical result that for branching to occur, the resource
utilization kernel must be narrower than the resource abundance spectrum [10].

In the case of vectorial traits, X∗ is an evolutionary endpoint if C00 is negative
(semi)definite, and a branching point if C00 is positive (semi)definite. In Appendix G
we show that C00 is positive definite if and only if � −� is positive definite, and
that the same holds for indefiniteness, (non)negative and nonpositive definiteness.
Hence a similar result holds for the relation between resource utilization kernel and
resource abundance spectrum as in the scalar case. However, that C00 has a single
positive eigenvalue is not sufficient for branching, as a protected polymorphism is not
guaranteed to arise. Even if it does arise, the region of coexistence may be so narrow
that the dimorphic population quickly strays out of it.

In the case where C00 has both positive and negative eigenvalues, we should resort
to the algorithm suggested in Fig. 2 and use a Lotka–Volterra model to simulate the
evolutionary dynamics. This is a valid approach, since the dynamics (up to O(ε3))
of the proportions pi are identical in all models with the same single-resident fitness
function, as argued in Appendix F: two different community dynamics that yield
the same one-resident fitness functions up to terms of order O(ε3) will arrive at an
equilibrium with the same set of types surviving, whenever they start with the same
N -resident community at equilibrium plus the same invader at a low density. Therefore,
instead of the original discrete time equations (84) for diploids, we switch to a Lotka–
Volterra system that has a sign-equivalent fitness function for any community of alleles,
up to terms of order O(ε3). If alleles with trait values X∗+U1, X∗+U2, . . . , X∗+UN

are present in the community, their respective densities change over time as

d log ni

dt
= 1 −

∑
j

(U j
TC11U j + 2U j

TC10Ui + Ui
TC00Ui )n j

from which we can calculate the equilibrium densities of the residents. Consequently,
the initial conditions for an invasion event consist of the resident community at this
attractor in addition to an invading allele, with associated trait vector X∗ + V, at a
very small density. By running the population dynamical equations with N + 1 types
present, we get to know the fate of the invader and all the resident types.

However, where do the invaders come from? At this point, we have to postulate a
mutational process, as there is none given by Christiansen and Loeschke [11]. Then we
can follow the algorithm given in Sect. 4.1, which involves generating a new mutant
after each invasion attempt and running a similar invasion experiment, with the survi-
ving community as initial condition. This is repeated until the branches have escaped
the close proximity of the singularity and we are satisfied that the polymorphism is
either protected or unstable.

As an example, using the notations ∆ := (U1 − U2)/2 and U := (U1 + U2)/2, we
turn to Eq. (27) which approximates the invasion function for dimorphic communities
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with both residents near a singularity X∗:

sX1,X2(X
∗+ V ) = V TC00V + 2U

T
C10V + U

T
C11U − ∆TC00∆

+ 2∆TC10(U − V )
∆T[C00 + CT

10]U
∆TC10∆

+ O(ε2)

Note that at the singularity, sX∗(X∗ +V ) = V TC00V so mutants in the direction of
the largest (positive) eigenvalue of C00 have the highest probability of invading. When
branching indeed occurs, there are almost always two branches on opposite sides of
the singularity that move at the same pace in opposite directions, along the steepest
fitness gradient (cf. 4.5). Approximating this situation by U1 = −U2, we have U = 0
and ∆ = U1 and find ourselves in the special case

sX∗+U1,X
∗+U2(X

∗ + V ) = V TC00V − UT
1C00U1 + O(ε3)

in which any more extreme mutant (V := αU1 with |α| > 1) can invade and replace
its ancestor, while α < 1 implies negative fitness. This shows that branches initially
indeed grow away from the singularity.

If we are convinced that branching indeed does occur (either from a simulation
as described above or because C00 is positive definite), one starts by formulating the
two-resident fitness function

sX∗+U1,X
∗+U2(X

∗ + U3)

= log

(
max
j=1,2

(
1 + β

(
k j3 − γ j3,11n̂11 − γ j3,12n̂12 − γ j3,22n̂22

)))
(91)

where the equilibrium densities are calculated from

⎛
⎝

k11
k12
k22

⎞
⎠ =

⎡
⎣

1 γ γ 4

γ 1 γ

γ 4 γ 1

⎤
⎦
⎛
⎝

n̂11
n̂12
n̂22

⎞
⎠ (92)

with γ := exp
(− 1

4 (U1 − U2)
T�−1(U1 − U2)

)
.

If the traits are scalar, we can calculate from the above expression (92) the

X1-isocline defined by
∂sX1,X2 (Y )

∂Y Y=X1
= 0, and the similarly defined X2-isocline.

These allow trait evolution plots (TEPs) to be drawn, which are basically pairwise
invasibility plots (PIPs) with added information related to the s-function of dimorphic
communities. For an easy explanation on how to plot and interpret PIPs consult [18],
for examples of TEPs with some explanations including properties of the isoclines see
[28]. The usefulness of TEPs lies in the fact that one can tell from them at a glance
whether the community will evolve towards the edge of the coexistence region (so that
the community reverts to a monomorphic state), towards the edge of the trait space
(an evolutionary endpoint) or towards a singularity (with a possibility for secondary
branching where the same analysis as before applies again).
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5 Discussion

While superficially the first two parts of this paper are wildly disparate, we hope
that the last part has shown their fundamental connexion by addressing one of the
open problems the evolutionary biologist faces, namely how to systematically treat
long-term evolutionary behaviour.

To the more mathematically inclined, Sect. 3 shows that classifying the bifurcation
patterns that the s-functions of quadratic Lotka–Volterra models can exhibit is not
just a niche hobby, but in the case of codimension-1 singularities amounts to a full
classification of these singularities for models of evolution driven by small mutations.
Furthermore we have revealed how the local geometry of coexistence (3.5, 3.6) and the
residents’ proportional density dynamics (Appendix F) are model independent (up to
a given order), in the sense that they only depend on the geometry of the one-resident
fitness function near the singularity and on the strategies present in the community.

To the more biologically inclined, Sect. 4 gives a handle on the systematic analysis
of concrete evolutionary models from scratch. The approach can also prove useful in
the interpretation of any odd pattern one has encountered, by showing a straightforward
way to explore the geometry close to the location of the oddity and hence to figure out
what model features cause the pattern. The approach on the whole allows the reader to
focus on the phenomena at hand instead of the specific mathematical problems that are
encountered: as models are shown to be interchangeable in some ways, computational
difficulties may be avoided, e.g., by switching between continuous and discrete time
versions of a model, or a similar sleight of hand.

The biologist will note how similar the canonical equation is to Lande’s equation
[38] which in turn derives from the breeder’s equation [43] in the animal sciences.
Except for the population density which does not appear in Lande’s equation as a
factor, all visible differences with the canonical equation amount to differences in the
definition of parameters. Where they differ is in interpretation, as Lande’s equation
describes changes in the genetical makeup of a population through selection on stan-
ding genetic variation. This variation can for example be accumulated in a population
near to a (weak) optimal strategy in a stable environment. Some have cast doubts on
the sufficience of the mutation/selection balance for the generation of the observed
levels of variation (e.g., [37,54]), though our feeling is that the associated problems
are of greater mathematical than biological interest (see [57] for some mathematical
counterarguments). Changing the environmental parameters that a population close to
an evolutionary optimum is subjected to, leads to a rapid evolution in the genetical ma-
keup. However Haldane [33] already realized that in the next phase, true innovations
and long-term changes must come from mutations. He also made plain that mutation
limited evolution is a slower process than naive analytical models would suggest since
most advantageous mutants will fail to establish themselves due to stochasticity, an
effect that is quantitatively captured by Ewens’ approximation (14) of the establish-
ment probability. The canonical equation builds on those ideas to derive a quantita-
tive relation between the factors involved, establishing in particular how the ecology
determines the selective pressures. The extended form presented in Sect. 2 is appli-
cable to a very wide variety of discrete and continuous time models, instead of only
to ODE models as is the original version by Dieckmann and Law [15].
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The analysis as presented in Sects. 2 and 3 is ready for extension in several direc-
tions. In terms of content, the third order terms of the normal form (27), (42) should
be worked out and compared between the different model types. While they do show
differences, it is not yet clear to the authors whether those are substantial enough to
translate into differences in bifurcation patterns.

In terms of rigour, we note that the calculations are presented in a heuristic and bio-
logically slanted manner, at a cost to mathematical precision and exhaustiveness. We
have followed most of the biological literature by treating mutations as unbiased, as if
tacitly assuming the genotype–phenotype map to be linear and mutations to be unbia-
sed at the genotype level. Since we are treating exceedingly small mutation steps, the
mapping is indeed linear, but the possibility of bias remains (cf. [15]). A discussion of
this topic can be found in the more mathematical treatment of the canonical equation
by Champagnat et al. [7–9]. A far more complicated issue is the one underlying ti-
mescale separation and the several latent limits (of system size, mutation step size and
mutation probability) which are not commutative, as Metz et al. [49] explained. How
quasi-monomorphicity (and by extension, quasi-N -morphicity) is maintained under
some not-too-restrictive assumptions is being addressed more recently (e.g., [12,45]).
More specifically, the latter authors show for general ODE population models with
small differences between the types, that away from evolutionary singularities the dy-
namics of the relative frequencies pi follows (up to the lowest order of approximation)
the familiar population genetics equations for the density independent case. Further-
more they show that near singularities the dynamics mimics that of Lotka–Volterra
models, with fitnesses approximated along the same lines as in this paper.

In terms of applicability, the collection of models covered should be extended to
physiologically structured populations with infinite numbers of birth states. Biologi-
cally this is a small step, for example not just allowing a few classes of birth weights but
allowing a continuum of sizes at birth. Mathematically however, this means that the
matrix operations of Sect. 3 should be rewritten in terms of operators and norms,
which we happily leave as a problem for more accomplished nonlinear analysts.
Additionally, this requires an extension of Equality (14) to branching processes with
infinitely many types, where the d-type version only is available now [23,2].

In continuous time, the extension to infinite numbers of birth states would
automatically remove our restriction to fixed point attractors, as individuals born in
a community on a periodic attractor can be assigned the phase of the attractor as
(a component of) their birth state. Thus the attractor can be interpreted as a fixed point
attractor and all analysis goes through. (In discrete time this trick does not even require
the suggested extension.) Analytically, we have no clear idea how to extend our treat-
ment to nonperiodic attractors. Heuristic explorations by Dieckmann (pers. comm.) for
ergodically fluctuating environments with linear birth-and-death population dynamics
for the invaders, suggest that the canonical equation is robust against such extension:
by approximating the fixation probabilities as calculated by Kendall [36], it is found
that the establishment probability is still approximately proportional to the fitness (cf.
Relation (20)).

The analysis of this paper is valid for models where the population is spread over
a finite number of patches, as long as the local resident densities are large enough to
ensure local infinite dilution of individual effects and a branching process approxi-
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mation for the initial phase of the invasion process. The patch an individual inhabits
is then expressed in a component of its (birth) state. More research is badly needed
on more complicated spatial models to see under which conditions the probability of
establishment scales linearly with changes in strategy, as then an equation similar to
the canonical equation will apply.
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Appendix A: The relationship between sX(Y) and R0. I. Away from singularities

To derive a relationship between the N -resident invasion fitness sX(Xi + V ) and the
lifetime offspring production R0, we define φ as

φ(ρ,V ) := log

⎛
⎝λd

⎛
⎝

∞∫

0

e−ρa�(Xi + V, IX, da)

⎞
⎠
⎞
⎠ (93)

where� is the birth kernel (see Eq. (18) and preceding lines). Then the invasion fitness
of a mutant Xi + V in a given community X is the (generally unique) solution ρ to
φ(ρ,V ) = 0 (known as the Euler-Lotka equation (18)).

We can expand φ as a function of its first argument,

φ(ρ,V ) = φ(0,V )+ f (V )ρ + O(ρ2) (94)

As ∂φ(ρ,V )/∂ρ is (generically, in the space of all models that allow a birth kernel
notation (93)) nonzero, the implicit function theorem may be applied to ρ. Hence we
can furthermore expand s as a function of V, where the constant term is zero since
residents have zero fitness. Thus

0 = φ(sX(Xi + V ),V )

= φ(0,V )+ f (V ) sX(Xi + V )+ O(sX(Xi + V )2)

= log R0 + f0 sX(Xi + V )+ O(||V ||2) (95)

where we have used the fact that φ(0,V ) = log λd(L(Xi + V, IX)) = log R0, and
f (V ) was replaced by its the lowest order part f0 := f (0). To calculate f0, observe
that it is a partial derivative of φ for ρ at 0:

f0 = ∂φ(0, 0)
∂ρ

= 1

λd
(∫∞

0 �(Xi , IX, da)
) ∂
∂ρ
λd

⎛
⎝

∞∫

0

e−ρa�(Xi , IX, da)

⎞
⎠

ρ=0
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Since Xi is a resident, the first factor is one. The last factor can be resolved, as
derivatives of simple eigenvalue λ(x) of a matrix M(x) are found from

∂λ(x0)

∂x
= vT ∂M(x0)

∂x
u (96)

where u and vT are respectively right- and left eigenvectors of M(x0), normalized such
that vTu = 1 (e.g., [4,44]). As

∫∞
0 e−ρa�(Xi , IX, da) is nonnegative and primitive

so that λd is an isolated eigenvalue, we use this last result to decide that

f0 = ∂λd
(∫∞

0 e−ρa�(Xi , IX, da)
)

∂ρ ρ=0

= vT

(
∂
∫∞

0 e−ρa�(Xi , IX, da)

∂ρ ρ=0

)
u

= −vT

⎛
⎝

∞∫

0

a�(Xi , IX, da)

⎞
⎠u =: −T f (Xi , IX) (97)

where u and vT now are normalized right- and left eigenvectors of L(Xi , IX) (cf.
Eq. (13)). The (nonzero) quantity T f has a natural interpretation as the average age
at giving birth, since the integral is a lifetime census of the parent’s age at each birth
event while the expected lifetime offspring production is one (as Xi ∈ X). Substituting
this value for f0 into our expansion (95), we conclude that

sX(Xi + V ) = log R0(Xi + V, IX)

T f (Xi , IX)
+ O(||V ||2)

Appendix B: The relationship between sX(Y) and R0. II. Near singularities

In Appendix A, a relationship between invasion fitness and lifetime reproductive output
was formulated, up to O(ε2) = O(||V ||2). Near a singularity however, we can redo
the analysis to show that the approximate relation is correct up to terms of order O(ε3).

When all residents are close to a singular strategy X∗, we can describe the commu-
nity in terms of strategy deviations ξ i and a scaling factor ε as X := {X∗+ε ξ i

∣∣ i � N }.
We expand the multiresident fitness function as dependent on the mutation step V and
the community scaling factor ε as

sX(X
∗+ V ) = sX∗(X∗)+ β V + εB(ξ1, . . . , ξ N )+ O(||V ||2, ||V ||ε, ε2) (98)

The constant term is necessarily zero, and β too since sX(Y ) = sX∗(Y ) at ε = 0.
Furthermore, any resident strategy is a zero of the N -resident fitness function, so we
find from any choice V = ε ξ i that B(ξ1, . . . , ξ N ) is zero as well. Thus for any mutant
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X∗+ V where V = O(ε), we have that

sX(X
∗+ V ) = O(ε2) (99)

When we define

φ(ρ,V ) := log

⎛
⎝λd

⎛
⎝

∞∫

0

e−ρa�(X∗+ V, IX, da)

⎞
⎠
⎞
⎠ (100)

we may expand this φ again as a function of ρ and thus solve the Euler–Lotka equation
φ(ρ,V ) = 0 for V = O(ε) as

0 = φ(sX(X
∗+ V ),V )

= φ(0,V )+ f (V ) sX(X
∗+ V )+ O(sX(X

∗+ V )2)

= log R0(X
∗+ V, IX)+ f0 sX(X

∗+ V )+ O(ε3) (101)

where f0 := f (0) = −T f (X
∗, I ∗) =: −T ∗

f , as shown at Eq. (97). Hence we conclude
that

sX(X
∗+ V ) = log R0(X

∗+ V, IX)

T ∗
f

+ O(ε3)

for communities and mutants near a singularity X∗.

Appendix C: Miscalculating sX(Y)

Let us consider a singular strategy X∗, and try to express the s-function in case there
are N resident strategies close to X∗. For each i from 1 to N , we can express resident
trait values as Xi = X∗ + Ui for some small vector Ui , and similarly for invading
mutants Y = X∗+ V. We now take the Taylor expansion around X∗ up to quadratic
terms, and can start to figure out the coefficients:

sX1...XN (Y ) = α + β V +
∑

i

β i Ui + V TC00V

+2
∑

i

Ui
TCi0V +

∑
i j

Ui
TCi jU j + O(ε3)

where C00 and each matrix Ci i is taken to be symmetric.
Any resident has zero growth in an equilibrium population, so for each k we have

the consistency condition sX1···XN (Xk) = 0. Thus for all k we must have that

0 = α + β Uk +
∑

i

βi Ui + Uk
TC00Uk + 2

∑
i

Ui
TCi0Uk +

∑
i j

Ui
TCi jU j + O(ε3)

123



730 M. Durinx et al.

As this has to hold independently of the strategy deviations U1 to UN , we can split the
equation into several equations like

0 = α + (
β + βk

)
Uk +

∑
i �=k

β i Ui (102)

0 = Uk
T (C00 + 2Ck0 + Ckk)Uk (103)

0 =
∑
i �=k

Ui
T
(
2Ci0 + CT

ki + Cik
)
Uk (104)

0 =
∑

i, j �=k

Ui
TCi jU j (105)

Equation (102) shows that α = 0, and for each i �= k we see β i = 0T while βk = −β.
So if we first choose k = 1 and then k = 2, we conclude that for all the residents
β = β i = 0T. Note that in the monomorphic case, this argumentation does not hold
as k = 2 is impossible then.

We deduce from Equality (105) that Ci j = 0, if both i and j differ from k. So
taking an initial choice of k = 1 shows that all Ci j are zero except if i or j is one, and
a further choice of k = 2 shows that all are zero except C12 and C21. If N > 2, we
can take k = 3 to prove that for any i and j the matrix Ci j is zero. The case N = 2 is
worked out below, where C12 and C21 may be nonzero.

For N > 2 we substitute our results into Eq. (104) and see in a similar way that
Ci0 = 0 for any i . From Eq. (103) we deduce that the symmetric matrix C00 is zero
as well. Hence we conclude that for any model where N > 2

sX1···XN (Y ) = 0 + O(ε3)

which is clearly false. (By repeating the argumentation for higher order terms we
can “show” that sX1···XN (Y ) = O(εM+1) when N > M .) The false result can be
traced back to one implicit assumption: the existence of partial derivatives, a basic
requirement for the applicability of Taylor approximations.

For N = 2 we find that C10 + CT
10 = −C00 = C20 + CT

20 and 2C10 = 2CT
20 =

−[C12 + CT
21], so that

sX1X2(Y ) = (V − U1)
T[C12 + CT

21](V − U2)+ O(ε3)

This equation suggests that the s-function for any two resident model would be locally
quadratic at X∗. If one compares this equation to the correct solution in this paper (27),
we see that it is correct only if we are dealing with scalar strategies.

Appendix D: Proofs of Lemma 1–3 and 7

The following lemmata were mentioned without proof in Sect. 3.6. They are useful
in making some points about upper bounds to the number of types that can locally
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coexist. The (non)invertibility of E∗ plays a central role in this issue, not just because
our route to calculating the multiresident fitness function depends on the invertibility of
E∗ (72), but because invertibility is a necessary condition for the population dynamical
stability of the community. Since the proofs are of a technical nature, they were moved
to this appendix, as they merely divert the attention from the real issues in Sect. 3.6.

Lemma 1 If det E �= 0, then det E∗ = −(det E)1TE−11.

Proof We start by recalling the general formula for the inverse of a nonsingular N × N
matrix:

(det E)E−1 =
⎡
⎢⎣
(−1)1+1e1,1 · · · (−1)1+N eN ,1

...
. . .

...

(−1)N+1e1,N · · · (−1)N+N eN ,N

⎤
⎥⎦

where the minor ei, j is defined as the determinant of the matrix obtained by deleting
the i th row and j th column of E.

We encounter the same minors, when we calculate the determinant of E∗ by
expanding first from the bottom row and then from the rightmost column:

det E∗ =
∑

j

(−1)N+1+ j det

⎡
⎢⎣

E1,1 · · · E1, j−1 E1, j+1 · · · E1,N 1
...

. . .
...

...
. . .

...
...

EN ,1 · · · EN , j−1 EN , j+1 · · · EN ,N 1

⎤
⎥⎦

=
∑

i j

(−1)N+1+ j (−1)N+i det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1,1 · · · E1, j−1 E1, j+1 · · · E1,N
...

. . .
...

...
. . .

...

Ei−1,1 · · · Ei−1, j−1 Ei−1, j+1 · · · Ei−1,N
Ei+1,1 · · · Ei+1, j−1 Ei+1, j+1 · · · Ei+1,N
...

. . .
...

...
. . .

...

EN ,1 · · · EN , j−1 EN , j+1 · · · EN ,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
∑

i j

(−1)i+ j+1ei, j

= − (det E) 1TE−11

�

Lemma 2 If rank E � N − 2, then E∗ is singular.

Proof If the rank of E is N−2 or less, we can transform it by elementary row operations
into an N × N matrix with the last two rows equal to zero. After applying the same
sequence of elementary operations to E∗ instead, one of its last two rows is a multiple
of the other (since only their last coefficients possibly differ from zero). Thus E∗ is
singular since the determinant is not affected by elementary row operations. �

Lemma 3 If rank E = N − 1, then generically E∗ is invertible.
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Proof (by contradiction) If E∗ is singular, there exists a nontrivial vector µ such that
the N + 1 equations (µ1 µ2 · · · µN+1)E∗ = 0T are simultaneously satisfied.

If µN+1 = 0, then µ is the unique (up to a scalar) nonzero vector such that
(µ1 µ2 · · · µN )E = 0T, where uniqueness comes from the rank of E. This situa-
tion is nongeneric as the independent (N + 1)st equation

∑
i µi = 0 is satified as

well.
If on the other handµN+1 �= 0, we rescale µ by settingµN+1 := −1, thus finding a

solution to the N equations (µ1 µ2 · · · µN )E = 1T. Generically such a solution does
not exist however, as E has an (N − 1)-dimensional range. �

Lemma 7 Even if both U and C10 have full rank, E∗ can still be singular. In fact, all
four combinations of invertible or singular E and E∗ can occur.

Proof Only in cases where N = m we know offhand whether E = U TC10U is singular
or not, as the determinant of a matrix product is the product of the determinants.

As an example of the case that both E and E∗ are singular, consider

[
U1 U2 U3 U4

] :=

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ C10 :=

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦

We see that for any combination of two residents, both U and C10 have full rank
(respectively two and four). For two out of the six possible combinations (namely
{U1, U4} and {U2, U3}), both E and E∗ are invertible. But for the other four pairs of
residents (namely {U1, U2}, {U1, U3}, {U2, U4} and {U3, U4}), matrix E has rank zero
and E∗ is singular, so that such strategy couples cannot coexist: if [C00]i i �= [C00] j j ,
the system E P = T (70) is contradictory; if [C00]i i = [C00] j j , there is a continuum
of neutrally stable solutions.

If we add any of the remaining two as a third resident type, coexistence becomes
possible again as E∗ is invertible (but E is singular). Notice that Ti := −Ui

TC00Ui =
−[C00]i i , so that there is no a priori relation whatsoever between the vector T and the
matrix E. If we consider the community {U1, U2, U3} for example, the proportions p1,
p2, p3 will respectively be 1+2T1−T2−T3, T3−T1 and T2−T1. Values of T that result
in strictly positive proportion vectors are (1/4 1/2 1/2)T or (−1/2 −1/3 −1/6)T.
Similarly, there are generic solutions with all four given strategies present.

Considering another possible resident, U0
T := (1 0 0 1), we encounter the fourth

possibility, as the resident duo {U1, U0} has a singular E∗ matrix yet E =
[

0 1
1 2

]
is

invertible. �


Appendix E: The environmental dimension and finite dimensional
Lotka–Volterra environments

We will first precisely define the environmental dimension, as relevant in an evo-
lutionary context and differing from the dimension concept used in physiologically
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structured models. In such models, the environment is used to describe the full
population dynamics. In the adaptive dynamics context however, the interest is
reduced to a time-averaged growth rate of an individual in that environment (as testified
by the definition of invasion fitness). Moreover, it is not the environments themselves
that are of central concern here, but the collection of ergodic probability measures on
functions that map time to environments.

A closer consideration of this topic reveals there is an observability issue. Whe-
ther for reasons of didactical clearness, mathematical manipulability, interpretability
or ineptitude, the environment will not always be formulated in a minimal form.
In addition one must realize that not the dimension of the set of environments is
relevant, but the dimension of the subspace of feasible environments.

To do away with these potential deficiencies, we use the following definitions. For
the set of all environments I and the trait space X, we define the growth operator as

ρ : I → C(X) (106)

such that ρ(I )(Y ) is the instantaneous per capita growth rate of a given type Y in a
given environment I, as dependent on the model under consideration. In this setting
we define the environmental dimension of that model as

dimE := dim ρ(I) (107)

From the definition we straightforwardly see why Lotka–Volterra type models by
default have infinite dimensional environments, as opposed to, e.g., resource dynamics
models (cf. Eq. (116)):

Lemma 8 Generically, the environment of a Lotka–Volterra model is infinite dimen-
sional.

Proof Let us consider a strategy space X with an infinite number of elements. Using
the growth operator (106), for an N -resident Lotka–Volterra model (28) we formally
have that

ρ(I )(Y ) = r(Y )

(
1 −

∑
i

a(Y,Xi )ni

)

or for more general Lotka–Volterra models

ρ(I )(Y ) = r(Y )

⎛
⎝1 −

∫

X

a(Y,X) dν(X)

⎞
⎠

where N -resident models are made by taking the population distribution ν to be a
weighted sum of N Dirac delta distributions ν(X) := ∑

j n jδ(X − Xj ).
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To separate the focal individual Y from the environment I, we have to define the
environment as (something isomorphic to) the real-valued function

I : Y ′ �→
∫

X

a(Y ′,X) dν(X) (108)

Now the growth rate can indeed be put in the form ρ(I )(Y ), with I independent of Y.
Thus we see that the dimension of I is at most the cardinality of X.

As there is no a priori reason for a smaller set than X to suffice as domain for a
function similar to Expression (108), generically I is infinite dimensional. �

Proposition 6 A Lotka–Volterra model with interaction function a(Y,X) has finite
feedback dimension e, if and only if e is the minimal number for which there exist
functions bq and cq such that a(Y,X) =∑e

q=1 bq(Y )cq(X).

Proof Firstly, by Definition (107) we have

e := dim ρ(I) = dim A(D) (109)

where D is the space of all Borel measures on X and the operator A is defined as

A(ν) : Y �→
∫

X

a(Y,X) dν(X) (110)

Therefore A(D) has a basis {b1(Y ), b2(Y ), . . . , be(Y )}, and for any ν ∈ D there are
coefficients γq such that A(ν)(Y ) = ∑e

q=1 bq(Y )γq . By choosing Dirac distributions
ν(X) := δ(X − X0), we see that for any strategy combination (X0,Y ) the interaction
term can be written as

a(Y,X0) =
∫

X

a(Y,X) dν(X) =
e∑

q=1

bq(Y )γq (111)

Thus the cq -functions are defined pointwise from Equality (111) as cq(X0) := γq .
That e is the minimal number of functions bq and cq , follows from the second part of
this proof.

Conversely, if a(Y,X) can be written as a finite sum
∑e

q=1 bq(Y )cq(X), then

ρ(Y )(I ) = r(Y )

⎛
⎝1 −

∫

X

e∑
q=1

bq(Y )cq(X) dν(X)

⎞
⎠= r(Y )

⎛
⎝1 −

e∑
q=1

bq(Y )Iq

⎞
⎠

where Iq := ∫
X cq(X) dν(X). Thus we see that the environment is at most

e-dimensional. In fact, I is exactly e-dimensional: if I were e′-dimensional with
e′ < e, then the first part of the proof shows that e was not minimal.
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To finish the first half of the proof, we note that there cannot exist an interaction
operator a(Y,X) = ∑e′

q=1 bq(Y )cq(X) with environments of dimension e > e′, as
the second half of the proof shows that e � e′. �


Appendix F: The dynamics of fractions pi

We have seen, through the equality P ∗ = E∗−1T ∗ (41), that the equilibrium fractions
for all models depend in an identical way on the simple fitness function sX(Y ) and the
strategies of the players, up to but not including terms of order O(ε3). But there is
more than that: in this appendix we argue that for a given fitness function, the dynamics
of the fractions is model-independent in the same sense as well.

To show this, we first analyze a general Lotka–Volterra system. Later on we repeat
the analysis with a resource dynamics model, as the relevant singular perturbation
theory for the dynamical analogues of the equilibrium equations (1) for general struc-
tured populations have not yet been developed. (We note that for the single birth state
case, an obvious research plan would be to apply the approach in the third chapter of
the thesis of Getto [29] to the conjecture of Greiner et al. [31]; see also [19]).

First we consider a Lotka–Volterra community {X1, X2, . . . , XN−1} at equili-
brium, to which we add a small number nN = O(ε2) of mutants with strategy XN .
We recall that for the (N − 1)-resident community at equilibrium, the density is of
the form n̂ = 1 + O(ε2) (38), so at least initially n = 1 + O(ε2) for our N -resident
community as well. That this actually holds at all times, is shown in the following
way.

Writing ri := r(Xi ) and ai j := a(Xi ,Xj ) = 1+ε2αi j + O(ε3) for some constants
αi j (33), the dynamics of each of the N densities is

dni

dt
= ni ri

⎛
⎝1 −

∑
j

ai j n j

⎞
⎠ (112)

and therefore the dynamics of the total density is

d∆n

dt
= dn

dt
=
∑

j

dn j

dt
=
∑

j

n j r j

(
1 −

∑
k

a jk nk

)

= n
∑

j

p j r j

(
1 −

∑
k

(
1 + ε2α jk

)
pk n

)
+ O(ε3)

= n
∑

j

p j r j (−∆n)+ O(ε2) (113)

Since the solution to this ODE is continuous, there exists some half open time interval
[0, τ ) during which ∆n = O(ε). Then the sign of d∆n/dt is the opposite of that of
∆n, so ∆n cannot escape from an O(ε2)-neighbourhood of zero and τ = ∞.
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Bearing the above in mind, we expand the dynamics of a fraction pi as

d pi

dt
= dni

dt

1

n
− ni

n2

dn

dt

= pi ri

(
1 −

∑
k

aik pk n

)
− pi

∑
j

p j r j

(
−∆n − ε2 n

∑
k

α jk pk

)
+ O(ε3)

= piri

(
−∆n−

∑
k

ε2αik pkn

)
+ pi

∑
j

p j r j

(
∆n+ε2n

∑
k

α jk pk

)
+O(ε3)

= −pi r(X∗) ε2 n
∑

k

αik pk + pi r(X∗) ε2 n
∑

jk

α jk p j pk + O(ε3) (114)

where the∆n-terms cancelled each other out because ri , r j = r(X∗)+ O(ε) and thus
the difference is absorbed by the order term O(ε3) since ∆n = O(ε2) at all times.
Similarly we can replace n by 1 in the remaining terms, which both have ε2 as a factor.
From the calculations following Eq. (33) we know that αk j = ξ T

j�11ξ j + 2ξT
j�10ξ k +

ξT
k�00ξ k , so using the renaming C := −r(X∗)� (cf. Eq. 34) we rewrite Eq. (114) as

d pi

dt
= −pi r(X∗) ε2

∑
k

(ξT
k�11ξ k + 2ξT

k�10ξ i + ξ T
i �00ξ i )pk

+pi r(X∗) ε2
∑

jk

(ξ T
k�11ξ k + 2ξ T

k�10ξ j + ξT
j�00ξ j )p j pk + O(ε3)

= pi

∑
jk

(
2Uk

TC10(Ui − U j )+(Ui + U j )
TC00(Ui −U j )

)
p j pk +O(ε3) (115)

We will now argue that this dynamics (115) is a shared property of all population
dynamical models. However, as mentioned in the first lines of this appendix, there
is no dynamical equivalent of the equilibrium equations available for physiologically
structured populations (1). Therefore we will show that the dynamics found for Lotka–
Volterra models (115), is also found for the most general subclass of the structured
population models where the dynamical equivalent of the equilibrium equations (1) is
of ODE form. The subclass in question is that of resource dynamics models, generally
formulated as follows: for each trait value Xi , per capita growth is given by

1

ni

dni

dt
= g

⎛
⎝Xi ,

∑
j

h1(Xj )n j ,
∑

j

h2(Xj )n j , . . . ,
∑

j

hr (Xj )n j

⎞
⎠ (116)

for some C3 functions g and h1, h2, …, hr . The multiresident invasion fitness is by
definition

sX(Y ) := g(Y, I1, I2, . . . , Ir ) (117)
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where the environment I is defined componentwise as

Is :=
∑

j

hs(Xj )n j (118)

Like we did for Lotka–Volterra (29) and general structured population models (46), we
simplify the calculations through a trait-dependent rescaling that does not influence
the s-function:

∀X : 0 = g(X, h1(X), h2(X), . . . , hr (X)) (119)

The effect is that the equilibrium density n̂ is one in every monomorphic community.
Once again we need to know that ∆n = O(ε2) at all times. For that we combine a

first-order expansion of the environmental differences,

Is − hs(X
∗) =

∑
j

(
hs(X

∗)+ ∂hs

∂X
U j

)
p j (1 +∆n)− hs(X

∗)+ O(ε2)

= hs(X
∗)∆n +

∑
j

∂hs

∂X
U j p j (1 +∆n)+ O(ε2) (120)

with a first-order expansion of g

g(X∗+ V, I1, I2, . . . , Ir )

= g(X∗, h1(X
∗), h2(X

∗), . . . , hr (X
∗))+ ∂g

∂Y
V +

∑
s

∂g

∂ Is
(Is − hs(X

∗))

+O(ε2)+
∑

st

O
(
(Is − hs(X

∗))(It − ht (X
∗))
)

(121)

where the derivatives are taken at Is = hs(X
∗) (∀s) and V = 0. Note that the first

term is zero because of the rescaling, and the second because X∗ is a singular strategy.
Because of the rescaling (119), ∆n is zero in monomorphic equilibrium commu-

nities, and hence Is − hs(X
∗) = ∑

j (∂hs/∂X)U + O(ε2) there. If we combine this
expansion with that of g (121), and observe that the linear terms (in ε) are zero in the
normal form for s-functions near singularities (73), we see that

∑
s

∂g

∂ Is

∂hs

∂X
= 0T (122)

As we have shown in the paragraph preceding Eq. (64),∆n = O(ε2) for a commu-
nity at equilibrium with N−1 types present. If we then add a small number nN = O(ε2)

of invaders, then there is an open time interval [0, τ ) during which∆n = O(ε). During
this interval, by combining Expansions (120) and (121) and Equality (122), we find
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d∆n

dt
= dn

dt
= n

∑
i

pi g(X∗ + Ui , I 1, I 2, . . . , I r )

= (1 +∆n)
∑

s

∂g

∂ Is
hs(X

∗)∆n + O(ε2) (123)

From this we can conclude that either ∆n = O(ε2) or its sign is the opposite of that
of d∆n/dt , so the time interval [0, τ ) is actually unbounded and ∆n = O(ε2) at all
times. The sign difference is easy to show, as the assumption of the existence of a fixed
point attractor (1.1) holds for this singular community at equilibrium, so

0 >
∂g(X∗, I1, I2, . . . , Ir )

∂n
⎛
⎝ Is =hs (X

∗)n
n=1

⎞
⎠

=
∑

s

∂g

∂ Is
hs(X

∗) (124)

To find the dynamics of the fractions pi , we need a second-order expansion of the
both the environmental differences,

Is − hs(X
∗) = hs(X

∗)∆n +
∑

j

(
∂hs

∂X
U j + U j

T ∂
2hs

∂X2 U j

)
p j + O(ε3) (125)

and the community dynamics,

g(X∗+ V, I1, I2, . . . , Ir )

=
∑

s

∂g

∂ Is
(Is − hs(X

∗))+ 1

2

∑
st

∂2g

∂ Is∂ It
(Is − hs(X

∗))(It − ht (X
∗))

+
∑

s

(Is − hs(X
∗)) ∂

2g

∂ Is∂Y
V + 1

2
V T ∂

2g

∂Y 2 V + O(ε3) (126)

The dynamics of the fractions is then approximated as

d pi

dt
= dni

dt

1

n
− ni

n2

dn

dt

= pi

(
g(Xi , I 1, I 2, . . . , I r )−

∑
j

p j g(Xj , I 1, I 2, . . . , I r )
)

= pi

(∑
s

(∑
k

pk
∂hs

∂X
Uk

)
∂2g

∂ Is∂Y
Ui + 1

2
Ui

T ∂
2g

∂Y 2 Ui

)

−pi

⎛
⎝∑

j

p j

(∑
s

(∑
k

pk
∂hs

∂X
Uk

)
∂2g

∂ Is∂Y
U j + 1

2
U j

T ∂
2g

∂Y 2 U j

)⎞
⎠+ O(ε3)

= pi

∑
jk

p j pk
(
2Uk

TC10(Ui − U j )+(Ui + U j )
TC00(Ui − U j )

)+ O(ε3) (127)
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where we have used the correspondences

C00 = 1

2

∂2g

∂Y 2 C10 = 1

2

∑
s

∂

∂Y

(
∂g

∂ Is

∂hs

∂X

)T

= 1

2

∑
s

∂hs

∂X

T ∂2g

∂ Is∂Y

which are straightforward to derive, given the definition of sX(Y ) (117) and the
expansion of g (126). Our last result (127) is identical to that for Lotka–Volterra
systems (115) and shows that the dynamics of the fractions is the same, up to and
including terms of order O(ε2), for all systems near evolutionary singularities.

Appendix G: Resource utilization and abundance, in relation to invadability

We will show here that in our example (Sect. 4.6), the matrix C00 is positive definite
(resp. indefinite, negative, nonnegative or nonpositive definite) if and only if � − �

is positive definite (resp. indefinite, negative, nonnegative or nonpositive definite).

Proof We start by decomposing the symmetric, positive definite matrix � using a
matrix V of normalized, orthogonal eigenvectors:

∃V,� : �V = V� for which id = VTV = VVT (128)

where id is the identity and � is a diagonal matrix containing the (strictly positive)
eigenvalues of �. Using the above, we decompose � and find

� +� = V�
1
2

[
�− 1

2 VT�V�− 1
2 + id

]
�

1
2 VT (129)

so that

C00 = �−1

4
− [� +�]−1

2

= V�− 1
2

[
1

4
id − 1

2

[
id +�− 1

2 VT�V�− 1
2

]−1
]
�− 1

2 VT (130)

Defining C∗
00 := 1

4 id − 1
2

[
id +�− 1

2 VT�V�− 1
2

]−1
, it is easy to see that C00 has

a positive (resp. negative, zero) eigenvalue for each positive (resp. negative, zero)

eigenvalue of C∗
00: for any vector v, consider w := VT�

1
2 v so that wTC∗

00w =
vTC00v. The same correspondence holds between [�−�]∗ := �− 1

2 VT�V�− 1
2 − id

and � −�.

123



740 M. Durinx et al.

To conclude the proof, it suffices to remark that the matrices [� − �]∗ and C∗
00

have the same eigenvectors, and more importantly that the signs of their eigenvalues
coincide:

[
�− 1

2 VT�V�− 1
2 − id

]
v = λv

⇔
[
�− 1

2 VT�V�− 1
2 + id

]−1
v = (λ+ 2)−1v

⇔ C∗
00v =

[
1

4
− 1

2
(λ+ 2)−1

]
v = 1

4

λ

λ+ 2
v

where λ+ 2 is necessarily positive, as it is an eigenvalue of a sum of positive definite
matrices. �
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