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Chapter 1

Ecosystem models

Numerical bifurcation analysis of ecosystems in a spatially homogeneous environment
B.W. Kooi

Acta Biotheoretica 51: 189–222, 2003

The dynamics of single populations upto ecosystems, are often described by one or a set
of non-linear ordinary differential equations. In this paper we review the use of bifurcation
theory to analyse these non-linear dynamical systems. Bifurcation analysis gives regimes
in the parameter space with quantitatively different asymptotic dynamic behaviour of the
system. In small-scale systems the underlying models for the populations and their interaction
are simple Lotka-Volterra models or more elaborated models with more biological detail.
The latter ones are more difficult to analyse, especially when the number of populations is
large. Therefore for large-scale systems the Lotka-Volterra equations are still popular despite
the limited realism. Various approaches are discussed in which the different time-scale of
ecological and evolutionary biology processes are considered together.

1.1 Introduction

In population based models the state of the population is described by one or a finite number
of state variables, such as the number of individuals, the total biomass and so on. The
temporal changes of these variables are mathematically given as one or a set of difference
equations (discrete-time) or a set of differential equations (continuous-time). These equations
and a rationale together form a model. A phenomenological model is inspired by data. Other
models, often called mechanistic, are based on first principles such as conservation laws.

In a food chain each population in consumed by at most one other population. The
composition is called a food web when besides this predator-prey interaction other trophic
interactions such as omnivory, multiple predators and multiple resources occur. Generally
these interactions describe feeding relations among a subset of the species in the community
of species living together in a spatially discrete habitat, for example a pond, island and
so on. Ecosystems consist of one or more communities which interact with their physical
and chemical environment taking into account for instance light supply, energy dissipation,
nutrient cycling, immigration, and emigration. Ecosystem ecology is mainly concerned with
the functioning (rates and fluxes) and structure (abundances and species composition) of the
overall (biotic and abiotic) system.

7



8 CHAPTER 1. ECOSYSTEM MODELS

Nonlinear dynamical system theory was first applied to single population dynamics. May
(1976) found that for a population with non-overlapping generations (for instance discrete
breeding seasons), described by the logistic discrete time equation (logistic map), a cascade
of period doubling ultimately leads to chaotic dynamics when the per capita growth rate
is increased. In this section we focus on the application to continuous time systems. The
continuous time version of the logistic equation exhibits only simple dynamics [56].

When descriptive formulations are used for each population the formulation of the inter-
actions with the environment often remain vague. We will use a mass-balance formulation
where the environment has to be specified. This formulation facilitates an integration be-
tween population dynamics and the flow of energy, mass and nutrients in ecosystems. We will
consider two types of environment, the batch reactor and the chemostat system. The batch
reactor is a closed system with neither material influxes nor outfluxes. A lake of constant
volume where water carrying nutrients flows in at a given rate, and water carrying organisms
and nutrients flow out at the same rate [100,118] is an example of a chemostat environment.

When the operation conditions are constant the system of ordinary differential equations
is called an autonomous system. For these systems it is useful to look for equilibrium states
in which the state variables do not change in time. These states, solutions of a nonlinear set
of equations, can be stable or unstable. Stable means that after arbitrary small perturbations
the system returns asymptotically to this state whereas if unstable it does not. For a specific
parameter setting, the stability properties of all equilibria gives knowledge about the dynamics
only for initial conditions in the neighbourhood of the equilibria. When an equilibrium is
stable it is a point attractor, but there are other types of attractors as well, namely limit cycles,
periodic solutions, and chaotic attractors, with sensitive dependency on initial conditions for
a given set of parametric values. The set of states from which the solution converges to the
attractor is called the basin of attraction. Knowledge of the basins belonging to all attractors
yields full information about the dynamic behaviour. Separatrices form the boundary of these
basins. Generally they are geometrically smooth but in [63] it is shown by simulation that
for models of interaction populations, the basins of attraction may have intermingled fractal
geometry. That is, small perturbations in initial conditions can change the final attractor of
the dynamics.

Bifurcation analysis focuses on the dependency of the long-term dynamics behaviour on
model parameters [54,86]. In a bifurcation point the asymptotic dynamical behaviour of the
system changes quantitatively, for example a stable equilibrium becomes unstable when a
parameter is varied. In this way the parameter space is divided into regions with different
long-term behaviour. Computer packages are available to calculate the boundaries of regions.

The classical Lotka-Volterra (LV) model [96] is still popular with modelling large-scale
food webs with many state variables and parameters. The main reason for choosing the
LV model formulism is that the procedure to calculate the equilibria and their stability and
the return time, which is a quantitative measure of the resilience stability in stable equilibria,
is straightforward.

For modelling small-scale food webs the linear functional response is often replaced by
more realistic population interaction formulations. Many alternative formulations have been
proposed. The Holling type II functional response, whereby the consumption rate becomes
saturated as the food level increases, is popular. However, with this type of functional re-
sponse, multiple stationary long-term dynamic behaviours are possible and this complicates
the analysis of these models. These models with more biological detail have been analysed
frequently using numerical bifurcation analysis. Bazykin (1998) studied various small-scale
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food web systems. He gives a rather complete overview of the different types of local and
global bifurcations.

Throughout this section we will use (unless stated otherwise) the stability concept derived
from mathematics and physics, that is a return to the reference state after a perturbation.
We refer to [52] for an inventory and analysis of discussions of ecological stability. They
consider 163 definitions of 70 different stability concepts and conclude that: “the general
term ’stability’ is so ambiguous as to be useless”.

The individual level of organization is often used as a staring point for modelling manily
because reproduction occurs at this level. We have to bridge this gap generally done via a
number of intermediate levels, individuals, populations, communities, ecosystems. Individu-
als can have a complicated life cycle with many life stages, such as: egg, larvae, juvenile and
adult, and different modes of reproduction; division and sexual reproduction. Each individual
is unique and therefore there is variability at the population level. The “large number assump-
tion” is used to describe the state of a population with a few population state variables and the
vital parameters depend anyhow on the parameters of the individual model. Mathematically
the population model can be expressed in partial differential equations for a physiologically
structured (for instance by age or size) population, delay differential equations for a stage-
structured population and a ordinary differential equation for an unstructured population
where all individuals are treated identically. In this review only unstructured population
models in a spatially homogeneous environment are discussed.

1.2 Small-scale models

1.2.1 One-population models in a closed system

We start with a very simple model for a population feeding on a abiotic nutrient under batch
reactor conditions

dN

dt
= −I

N

k
R (1.1a)

dR

dt
= µ

N

k
R (1.1b)

where N(t) is the state of the nutrient mass and R(t) the population biomass. The parameter
I is the per capita ingestion rate. The dimension of I is nutrient mass per biomass per unit
of time and k nutrient. We assume µ = yI, where y is the efficiency of the nutrient/biomass
conversion. In order to obtain mass conservation we introduce products P excreted by the
population and defined by the ode

dP

dt
= (I − µ)

N

k
R (1.1c)

Mass conservation gives d(N + R + P )/dt = 0. This requires that all state-variables use the
same currency, for instance carbon.

Since Equation (1.1c) is decoupled from Equations (1.1a) and (1.1b), we can solve these
latter two coupled odes first, and thereafter calculate P (t) by substitution of the solutions
N(t) and R(t) into Equation (1.1c).

We can reduce the remaining system of two equations (1.1a) and (1.1b) even further.
Consider yN(t) + R(t) then d(yN + R)/dt = 0. We remark that the state variables N(t)
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and R(t) do not need to have the same currency here, it is corrected by the dimension of the
efficiency. Because the efficiency y is constant the weighted sum of the nutrient mass and
population biomass is time-independent. Substitution of N(t) = k−R(t)/y into (1.1b) yields
the single governing equation for the population biomass

dR

dt
= r(1 − R

K
)R (1.2)

where r = µ and K = ky. This is the well-known logistic growth equation where r is the
intrinsic growth rate and K the carrying capacity. Observe that this equation is generally
considered to be a descriptive model in which case the exponential growth model, which is
the linear term on the right hand side, is augmented with a second order term, the quadratic
term, of the Taylor series. Often this term is linked with intraspecific competition for a, not
explicitly modelled, nutrient. In another mechanistic interpretation the second term models
cannibalism.

The derivation of (1.2) yields an interpretation of the carrying capacity in terms of (ini-
tially) available nutrient N(0) = k − R(0)/y that supports population existence.

Equilibria There is an explicit expression for the solution R(t) for the logistic growth
equation (1.2) but in order to elucidate the bifurcation analysis technique we do not use it
here. When interested in the long-term dynamics, we look for stationary solutions where
time goes to infinity. Stationary solutions can be equilibria (that is the state variables do not
change in time), periodic solutions (that is the state variables change periodically in time) or
chaos. The equilibrium equation, where the right-hand side of equation (1.2) is equal to zero,
has two solutions, namely R∗ = 0 and R∗ = K. Consequently R(0) = 0 implies R(t) = 0
for all t > 0 and similar when R(0) = K then R(t) = K for all t > 0. The next question is
whether these equilibria are stable or not.

Notice that although we have one equation there are multiple equilibria. This is typical
for nonlinear models where the equilibrium equations are nonlinear as well. In this example
the equilibrium values can be calculated easily, but for large ode systems this can be a
tremendous task and they have to be approximated numerically.

Stability Fortunately there is a systematic way to determine whether an equilibrium is
stable or not. For that purpose, the system is approximated in the vicinity of the equilibrium
point. This approximation yields a linear system, which mathematically is more manageable
than a non-linear system. For example, consider the zero equilibrium R = 0. When R is small,
the second term is small with respect to the first one, R/K ≪ 1. Therefore dR/dt ≈ rR and
hence R(t) ≈ R(0) exp(rt). Since the growth rate r is positive, arbitrary small perturbations
R(0) 6= 0 grow in time exponentially and consequently the zero equilibrium is unstable. In
a similar way one can show that the equilibrium R∗ = K is stable. That is, after arbitrary
small perturbations from R(0) = K the system returns to the equilibrium value, which is the
carrying capacity K.

Parameter dependency We continue with the influence of parameter values on the long-
term dynamics behaviour. We are interested in those critical values at which the asymptotic
behaviour changes qualitatively when the critical values is passed. In the logistic growth
example we can take the intrinsic growth rate as a free or bifurcation parameter. Obviously
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r = 0 is a critical point. If r > 0 the trivial equilibrium R∗ = 0 is unstable and at the same
time R∗ = K is stable. If r < 0 (indeed not very realistic from a biological point of view)
the trivial equilibrium is stable and the equilibrium R∗ = K is unstable. Starting below the
carrying capacity, R(0) < K, gives convergence to zero, but if starting above the carrying
capacity, R(0) > K, the population explodes to an unlimited size; the value K is a separatrix.

So, we are looking for parameter values where the stability properties of an equilibrium (or
other stationary solution) changes. At this point the system is called structurally unstable.
For a one dimensional system with one state variable R, as in the logistic growth case, this is
easy; linearise the right-hand side of the ode at the equilibrium and set the linear term, the
“growth rate”, zero. For higher dimensions a similar, but more elaborate, procedure works.

1.2.2 One-population models in an open system

Now suppose that the population lives in an open environment, a chemostat. Then (1.1)
changes into

dN

dt
= (Nr − N)D − I

N

k
R (1.3a)

dR

dt
= (µ

N

k
− D)R (1.3b)

There are three additional terms which model the interaction with the environment. One for
the influx of nutrient, DNr, two for the outfluxes of the nutrient DN and population DR.
The dilution rate D (fraction of the volume replaced per unit of time) and the nutrient density
Nr of the inflow medium are the chemostat control parameters that can be experimentally
manipulated.

We try to follow the same procedure as for the closed system. Mass conservation is
obtained after introduction of a product which leaves the reactor with rate D

dP

dt
= (I − µ)

N

k
R − DP . (1.3c)

Mass conservation gives for this open system d(N + R + P )/dt = −D(N + R + P −Nr); not
an algebraic equation but an ode. This equation is the amount of material supplied minus
that removed from the reactor, both per volume of the reactor and per unit of time.

We define H(t) = N(t) + R(t)/y − Nr and, since Nr and y are constant, evaluation of
the time derivative of H gives directly dH/dt = −DH and therefore H(t) = H(0) exp(−Dt).
Substitution of the solution into (1.3b) gives

dR

dt
=

(

µ
Nr + H(0) exp(−Dt) − R/y

k
− D

)

R (1.4)

However, this single equation is non-autonomous. Mass conservation gives only a simple alge-
braic equation at the equilibrium. The original two-dimensional system (1.3) is asymptotically
dynamically equivalent to the one-dimensional system where H = 0

dR

dt
=

(

µ
Nr − R/y

k
− D

)

R (1.5)

This is the logistic growth equation where r = µNr/k − D and K = y(Nr − kD/µ) and we
discussed its equilibria and their stability in the previous section.
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There are two equilibria: the trivial equilibrium N∗ = Nr and R∗ = 0, and the interior
equilibrium N∗ = kD/µ and R∗ = y(Nr −kD/µ). The original model is two-dimensional and
stability analysis at these equilibria is now more complicated. For a two dimensional system
there are two variables, N and R and therefore an equilibrium can be perturbed by varying
two variables simultaneously, yielding a much richer repertoire.

Linearization leads now to the following linear set of odes. which can be analysed mathe-
matically. There are two resulting exponential growth rates which can be associated with the
so-called eigenvalues of the Jacobian matrix evaluated in the equilibrium. When all eigen-
values are negative it is stable. Unfortunately, this is not a complete picture. There are
situations where oscillatory behaviour occurs and the eigenvalues are complex numbers in-
stead of real numbers. Complex numbers have a real part and an imaginary part. When the
imaginary part is zero it is in fact a real number. When all eigenvalues have negative real
parts the equilibrium is stable, that is, the sign of the eigenvalue with largest real part decides
on stability.

The trivial equilibrium N∗ = Nr and R∗ = 0 is stable when µNr/k − D < 0 and the
interior equilibrium N∗ = kD/µ and R∗ = y(Nr − kD/µ) is stable when µNr/k − D > 0.
Observe that R∗ is non-negative only when the trivial equilibrium is unstable.

In summary: if µNr/k < D then there is one non-negative solution, the trivial solution
which is stable. If µNr/k > D then besides the trivial solution, which is unstable, there
is one interior solution which is stable. Hence µNr/k = D is a bifurcation curve, called a
transcritical bifurcation curve, in the parameter space Nr,D, where all other parameters are
fixed. For a given Nr, the population can invade the nutrient system when the trivial solution
is unstable, that is when D is not too large. Invasion is possible when the initial rate of
increase of the population is positive, that is, its per capita growth rate is larger than its
depletion rate. In a biologically context the bifurcation curve marks regions in the parameter
space where a population can invade an existing system which was stable before invasion but
becomes unstable when the population appears.

When one equilibrium is stable, the other is unstable and vica versa. In general, with
multiple equilibria this need not to be true. Therefore we must investigate the stability of all
possible equilibria. For biologically relevant problems, we have to investigate only those with
non-negative state variables.

1.2.3 Predator-prey models

The resources are now consumed by a consumer of which the biomass is denoted by C. Like
for the nutrient–resource interaction, we assume a Holling type II functional response for
the consumer–resource interaction. Furthermore, there are per capita loss rates of the living
populations. The nutrient–resource–consumer model in the chemostat reads

dN

dt
= (Nr − N)D − INR

N

kNR + N
R (1.6a)

dR

dt
= (µNR

N

kNR + N
− D − mR)R − IRC

R

kRC + R
C (1.6b)

dC

dt
= (µRC

R

kRC + R
− D − mC)C (1.6c)

Observe that for C = 0 the system reduces to the nutrient–resource system discussed in
the previous section (except that for the nutrient–resource interaction the LV is replaced by
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max

min

Nr

N
R

C
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Figure 1.1: A one-parameter bifurcation diagram for a population (1.6) in the chemostat. The

stationary biomass of the nutrient N , resource R and consumer C is depicted as a function of the

nutrient level Nr. For high nutrient levels the system oscillates with extrema indicated.

Holling type II functional response). Thus all results obtained for that system are relevant.
Again we search for parameter values where the consumer can invade the stable nutrient–
resource system which becomes unstable in the nutrient–resource–consumer system which is
one dimension higher.

Explicit expressions for all equilibria can be derived straightforwardly. Evaluation of the
stability, that is the eigenvalues of the Jacobian matrix evaluated at these points, is much
more complicated. Therefore we use a computer program to approximate the bifurcation
curves where an eigenvalue or its real part equals zero.

A new version of the Hopf bifurcation the supercritical version is found. For certain
parameter combinations the real part of two complex conjugate eigenvalues is zero. At this
point the equilibrium, which is first stable, then becomes unstable and eventually a stable
limit cycle emanates. This is illustrated in Figure 1.1.

We use the species parameter set for bacterium-ciliate models, after [24] given in Table 1.1.
We fix D = 0.02 and vary xr. For low values the resource cannot invade the reactor with
only the nutrient present. On the right-hand side of the transcritical bifurcation TC1 it can.
Increasing xr further, also the consumer can invade the nutrient–resource system on the right-
hand side of TC2. Unexpectedly, when the system is enriched by increasing xr, the interior
equilibrium becomes unstable and the system starts to cycle at the Hopf bifurcation point
denoted by H−

2 . This phenomenon is know as the “paradox of enrichment” [110].
Reduction is possible with Holling type II functional response when the assimilation ef-

ficiency is constant, and mR = 0 and mC = 0. Definition of the function H(t) = N(t) +
R(t)/yNR + C(t)/(yNRyRC) − Nr gives dH/dt = −DH and H → 0 for t → ∞.

In the two dimensional RM model the prey population is self-reproducing and its growth
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Table 1.1: Parameter set for bacterium-ciliate model, after [24]. The control parameters that can be

experimentally manipulated are D and Nr.

Parameter Unit Values
i = N j = C j = P

j = R j = M i = R i = M i = C

µi,j h−1 0.5 0.42 0.2 0.3 0.15
Ii,j h−1 1.25 1.25 0.333 0.333 0.25
ki,j mgdm−3 8.0 5.5 9.0 9.1 10.0
mj h−1 0.025 0.025 0.01 0.0075

in absence of the predator is modelled using the logistic growth

dR

dt
= r(1 − R

K
)R − IRC

R

kRC + R
C (1.7a)

dC

dt
= (µRC

R

kRC + R
− D − mC)C (1.7b)

To illustrate the relationship between the mass-balance formulation and the RM model
we eliminate N with H = 0. The resulting term depends on C as well as on R. Consequently,
the asymptotic growth rate of the resource depends also on the consumer C whereas with
the logistic growth rate it depends solely on R. We conclude that the growth of the resource
population is retarded because part of the ingested nutrients are meant for the consumer.
The conservation law holds for the whole community and therefore if the resource population
itself is consumed this effect is even larger.

If mR > 0 and mC > 0, both the products excreted by the resource population and the
consumer population both consist of two terms. One term is associated with the assimilation
process which is proportional to the functional response times the biomass and the other is
related to the maintenance process and is proportional to the biomass. Observe that the
mass-balance model cannot be reduced when mR > 0 and or mC > 0.

Two dimensional autonomous systems and hence also the RM model (1.7), cannot show
chaotic behaviour but three dimensional systems can, [105]. The three dimensional mass-
balance model (1.6) is analysed in [72] where we found that chaos can occur for biologically
meaningful parameter values. Obviously the additional degree of freedom obtained from the
modelling of the nutrients explicitly is important.

1.2.4 Small-scale food chain models

If the consumer is in its place consumed by a predator population the food chain consists of
three species and one nutrient. The RM model formulation in which the nutrient is again
modelled implicitly is studied in the literature to a fair degree. In [61] and later in [60] it
was shown through simulation that chaotic behaviour can occur in the so-called three species
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(resource, herbivore, carnivore) RM model.

dR

dt
= r(1 − R

K
)R − IRC

R

kRC + R
C (1.8a)

dC

dt
= (µRC

R

kRC + R
− D − mC)C − ICP

C

kCP + C
P (1.8b)

dP

dt
= (µCP

C

kCP + C
− D − mP )P (1.8c)

This system has been analysed in great detail by means of bifurcation analyses t [17, 49,
90, 92, 98, 99]. The long-term dynamics appear to be very rich. In addition to the familiar
local bifurcations, transcritical, tangent (or saddle-node) and Hopf-bifurcation, global bifur-
cations were found. Sometimes these global bifurcations, such as the saddle-focus Shil’nikov
bifurcation [90], form a ‘skeleton’ for the period doubling of which a cascade leads to chaotic
dynamics. In other cases, such as the homoclinic bifurcation for a limit cycle marks interior
and boundary crises, see [17, 50, 51, 105]. A discussion of the various types of global bifurca-
tions that are mentioned in the literature on food web dynamics is beyond the scope of this
review section.

In [93,122] the interaction between the consumer and the resource population is modelled
by a modified Leslie-Gower scheme described in [6]. The loss in a predator population is pro-
portional to the reciprocal of per capita availability of its most favourite food. The generalist
consumer is assumed to reproduce sexually. In this model Equation (1.8c) is replaced by

dP

dt
= µCP P 2 − IP

P 2

kCP + C
(1.9)

Aziz-Alaoui (2002) stated that: “in the absence of the consumer the predator goes extinct
if µCP kCP < IP and grows unbounded if the opposite, which is biologically not acceptable”.
Indeed this trichotomy is similar to that of exponential growth in the case the growth rate is
proportional to P instead of proportional to P squared. Nevertheless, if this condition holds
similar long-term dynamic behaviour is found, including the crisis route to chaos and the
saddle-focus Shil’nikov bifurcation.

If the consumer C is consumed by a predator P then a straightforward extension of
system (1.6) gives

dN

dt
= (Nr − N)D − INR

N

kNR + N
R (1.10a)

dR

dt
= (µNR

N

kNR + N
− D − mR)R − IRC

R

kRC + R
C (1.10b)

dC

dt
= (µRC

R

kRC + R
− D − mC)C − ICP

C

kCP + C
P (1.10c)

dP

dt
= (µCP

C

kCP + C
− D − mP )P (1.10d)

Figure 1.2 gives the stationary biomasses for the tri-trophic food chain as a function of Nr.
Again, the results for Nr below the point TC3, where the predator cannot invade the bi-
trophic stable nutrient–resource–consumer system, are the same as those of Figure 1.1 for the
bi-trophic food chain. On the right-hand side of the transcritical bifurcation TC3 the predator
can invade. On the left-hand side of the Hopf bifurcation H−

2 this is via a stable equilibrium
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Figure 1.2: A one-parameter bifurcation diagram for a population (1.10) in the chemostat. The

stationary biomass of the nutrient N , resource R, consumer C and predator P is depicted as a function

of the nutrient level Nr. For high nutrient levels the system oscillates with extrema indicated.



1.2. SMALL-SCALE MODELS 17

of the bi-trophic food chain. However, on the right-hand side of H−
2 the equilibrium of the bi-

trophic food chain itself is unstable and there is a stable limit cycle. The invasion criterion is
now that the mean rate of increase of the predator size over the limit cycle has to be positive,
instead of the rate of increase of the population size at the unstable equilibrium itself. Points in
the parameter space where the mean growth rate is zero also mark a transcritical bifurcation,
now a transcritical bifurcation of a limit cycle.

The tri-trophic system starts to cycle via a Hopf bifurcation, here denoted H−
3 . This

bifurcation for the tri-trophic food chain occurs at a higher Nr value than the Hopf bifurcation
H−

2 of the bi-trophic food chain. This means that in the parameter range between these points
the predator stabilizes the bi-trophic food chain; it now invades via a stable boundary limit
cycle and converges to a stable interior equilibrium.

Biomass distribution under nutrient enrichment Early ecologists like Elton (1927)
were able to show that pyramids, by which is meant a decrease in biomass between successively
higher trophic levels, are a consistent feature of real ecosystems [69]. The calculated biomass
distribution for the bi-trophic (Figure 1.1) and tri-trophic (Figure 1.2) food chain do not follow
this rule. The stable equilibrium biomass distributions are in agreement with the “cascade
hypothesis” [123]. Increases in the nutrient input to the bottom of the system should increase
the abundance of the top level and those that are even numbers of levels below the top and
not affecting the abundances of those that are odd number of levels below the top. We refer
to [1] for a discussion of the biomass distribution over the trophic levels when the equilibrium
is unstable. The tri-trophic results of Figure 1.2 are often related to the “world is green”
proposition [57]. The idea is that green plant biomass (the resources) accumulate in the
world because predators keep consumers in check [11].

Routes to chaos The results in Figure 1.2 are depicted only for ranges of parameters where
the dynamic behaviour is simple, such as an equilibrium or a limit cycle. In a number of papers
this mass-balance model of tri-trophic food chain was analysed using numerical bifurcation
analysis [16,18,73,74]. A rich repertoire of long-term dynamic behaviour was found for relative
high dilution rates and high nutrient supply concentrations. As an example, in Figure 1.3.a a
chaotic attractor in the state-space is shown for the tri-trophic food chain with the per capita
loss terms zero.

Chaotic behaviour itself may be interesting, but routes to chaos are also important. The
most observed route is via a cascade of period doubling. The system starts to oscillate at
a Hopf bifurcation. The emanating stable limit cycle becomes unstable via a so called flip
bifurcation. At that point, in addition to the unstable limit cycle, a stable (supercritical
version) or unstable (subcritical version) limit cycle with a double period is born. Varying
the parameter further, this process repeatedly leads to stable limit cycles with high periods
and finally it ends up in chaos. Chaos can also end at boundary crises. Hastings (1996) also
discussed this long lasting transient behaviour. This is illustrated in Figure 1.3 where for an
intermediate parameter value a global homoclinic bifurcations to a saddle limit cycle occurs,
as pointed out in [17]. On one side of the global bifurcation point there is coexistence of an
interior chaotic attractor and a boundary limit cycle, but on the other side only the boundary
limit cycle exist. Here starting in the interior the solution possibly follows the “ghost” of a
chaotic attractor for a long time firstly and finally approaches an attractor where the top-
predator is absent. Continuation of this global bifurcation in the parameter space for the
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Figure 1.3: Phase plane plot for system (1.10) where mR = mC = mP = 0 and control parameter
values Nr = 200.0 and a: D = 0.08732 and b: D = 0.0873. For D = 0.08732 there are multiple
attractors; a chaotic attractor and the attracting limit cycle which is characterised by the absence of
the top-predator. The initial condition is chosen so that there is convergence to the chaotic attractor.
For D = 0.0873 and similar initial conditions the solution follows the “ghost” of a chaotic attractor
for a long time before approaching an attractor where the top-predator is absent.

tri-trophic food chain in the chemostat gives the boundaries of the regimes where chaotic
behaviour occurs.

Multiple attractors occur for a considerable variety of control parameter values. Fig-
ure 1.3.a shows two attractors in the state-space. In the chaotic interior attractor all trophic
levels coexist and in the other attractor a limit cycle exist in which the top-predator is absent.
In general, starting near the saddle equilibrium gives chaotic dynamics whilst if P is initially
small the system converges to the stable limit cycle where the top-predator is absent. The
boundary between the two regions of attraction (the separatrix) is the stable manifold of a
saddle cycle [16].

In [74] a top-predator that feeds on the predator is introduced. The bifurcation pattern
of this four-species food chain indicate also that regions of persistence for food chains with
increasing length are nested. That is, higher nutrient input is required for a top-predator
to be able to invade while at the same time the trough-put rate may not be too high. The
interval where invasion is possible is bounded by the transcritical bifurcations TCi, i = 1, 2, ....
The nutrient levels at which these bifurcations occur, increase with the length of the food
chain, compare Figure 1.1 and 1.2. These equilibria are stable within a nutrient level range
between TCi and H−

i . This suggests that, theoretically, long food chains can persist.

1.2.5 Small-scale food web models

In food webs different trophic levels are distinguished and a population can consume multiple
populations at a lower level. Therefore, at the same time two new trophic interactions can
occur besides predator-prey interaction, namely competition for resources where multiple
predators consume one resource and one predator consuming multiple resources. In [71,76] we
used numerical bifurcation analyses to study the dynamics of a nutrient–resource–competitor–
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predator system. Competitive exclusion prevents coexistence of the resource and competitor
populations feeding both on the nutrient in the chemostat. The equations for this simple food
web are

dN

dt
= (Nr − N)D − INR

N/kNR

1 + N/kNR
R − INM

N/kNM

1 + N/kNM
M , (1.11a)

dR

dt
= R

(

µNR
N/kNR

1 + N/kNR
− D − mR

)

− IRC
R/kRC

1 + R/kRC + M/kMC
C , (1.11b)

dM

dt
= M

(

µNM
N/kNM

1 + N/kNM
− D − mM

)

− IMC
M/kMC

1 + R/kRC + M/kMC
C , (1.11c)

dC

dt
= C

(µRCR/kRC + µMCM/kMC

1 + R/kRC + M/kMC
− D − mC

)

. (1.11d)

That is, for the consumer C, both the consumer populations R and the competitor population
M are substitutable. This implies that a deficiency in one of the resources can be compensated
by using the other, so both are non-essential. Most heterotrophs probably consume resources
that are substitutable.

The results for system (1.11) are presented by one-parameter diagrams where Nr is the
bifurcation parameter. The diagram for the nutrient–competitor–predator N,M,C system
looks similar to the one for the nutrient–resource–consumer N,R,C system given in Figure 1.1
except that the system start to oscillate earlier. The reader is referred to [76] for more detailed
results.

For a given dilution rate D = 0.02 and without predation the competitor always wins.
However, with predation, the results depicted in Figure 1.4 differ greatly.

Below the transcritical bifurcation point TC31 the results are those for the N,M,C system.
At the point TC31 the resource is able to invade this system and the interior solution for the
full food web is stable. Increasing Nr this remains true until the transcritical bifurcation
point TC32 is reached at which the competitor becomes extinct. Hence, above this point the
results for the N,R,C system shown in Figure 1.1 are valid. These results imply the following
invasion scenarios. For Nr = 25 the N,R,C system can be invaded by the competitor and
it replaces the resource population. For Nr = 50 the N,R,C system can be invaded by the
competitor and the N,M,C system can be invaded by the resource. So, there is mutual
invasibility. In both cases after invasion with Nr = 50, an interior equilibrium for the whole
food web is the result. For Nr = 75 the N,M,C system can be invaded by the prey that
replaces the competitor. The resulting N,R,C system can not be invaded by the competitor.

When one attractor or multiple interior attractors exist, invasion does not have to lead to
convergence to one of these attractors, but replacement can still occur. In [77,85] we studied
a tri-trophic food web with omnivory, that is the predator consumes the resources as well as
the consumer. We showed that crossing a global bifurcation point, invasion of the consumer
into the nutrient–resource–predator system leads to convergence to different attractors on
both sides of this global bifurcation which is a connection between a boundary equilibrium
and an interior limit cycle.

Resources can also be complementary. Then the two (or more) resources are essential at
the same time, they cannot be substituted by the other, [121]. Autotrophs require mineral
nutrients like carbon, nitrogen, phosphorus and sulfur. These are examples of multiple re-
sources trophic interactions where resources are essential (see Grover (1997)). For essential
resources often Liebig’s “Law of the Minimum” is assumed where the consumer is limited by
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Figure 1.4: A one-parameter bifurcation diagram for food web (1.11) in the chemostat. The stationary

biomass of the nutrient N , resource R, competitor M and consumer C is depicted as a function of the

nutrient level Nr. For high nutrient levels the system oscillates with extrema indicated.
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only one resource at a time and its growth rate depends on only the abundance of that most
limiting resource. The rate of change of the consumer changes discontinuously when another
resource becomes most limiting. The final values of the state variables before the switch are
their initial values for the dynamics after the switch. Generally the resulting ode system is
well-posed because the Lipschitz condition is satisfied. With respect to parameter changes
it is not that simple. The Jacobian matrix evaluated in an equilibrium may change discon-
tinuously with respect to a varying parameter when another resource becomes most limiting.
For example limit cycles with positive amplitude can emanate abruptly at a bifurcation point
where on the one side of the bifurcation point where the switch occurs, the real parts of all
eigenvalues are negative (stable equilibrium) and on the other side they are positive (unsta-
ble equilibrium). A formulation without switches and based on mechanistically well-founded
principles called a synthesizing unit, is proposed in [78].

1.3 Discussion

Recently in [42, 115], predator prey cycles in an aquatic community consisting of a mineral
resource (nitrogen), producer (green algae) and herbivore (rotifer) where found both experi-
mentally and theoretically. The model is essentially the mass-balance model (1.6) where the
consumer population is described by two state variables, the total rotifer biomass B and the
biomass of the reproducing fraction C

dC

dt
= (µRC

R

kRC + R
− D − mC − λ)C (1.12a)

dB

dt
= µRC

R

kRC + R
R − (D + mC)B (1.12b)

The parameter λ is the decay rate of fecundity and mC the mortality rate of the herbivore.
This model shows, for the parameter range chosen in [42], coexistence at equilibrium, coexis-
tence on limit cycles, or extinction of the predator or both populations. Qualitatively similar
results were obtained with model (1.6) of which the results are depicted in Figure 1.1. It was
concluded that the qualitative dynamical behaviour of this system consisting of equilibria,
cycles and extinction is highly predictable by the simple model (1.6) where (1.6c) is replaced
by (1.12).

Concrete evidence of chaotic dynamics in real populations has rarely been found. Causes
are environmental stochasticity, biological variablity, poor data quality, but also the simpli-
fying assumptions made to keep models manageable.

Studying the dynamics of the community can be performed by simulation at given initial
values. Gaining insight into the dynamic behaviour of the community under various envi-
ronmental conditions with this method will be computer-time consuming and large amounts
of data will be generated. Finding the desired information from this bulk of data can be a
formidable task.

An equilibrium of a dynamic system is just the solution of a set of algebraic equations,
the equilibrium equations in which the changes of all state variables are set to zero. If the
dimension of the system is high with multiple solutions, then it can still be problematic to find
all the solutions. If multiple attractors (equilibria, limit cycles) exist, the state space is divided
into different regions, the basins of attraction of which each attractor has one. Starting in a
particular point in a basin, convergences to the specific attractor to which the basin belongs.
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Finding the boundaries of these basins gives in a compact fashion a good overview of the
long-term dynamics depend on initial conditions. In general the boundaries have a lower
dimension than the total state space and therefore calculation of the basin boundaries saves
computing time. Sometimes, performing simulations in time and starting in a sufficiently
dense grid in the region of interest in the state space, is the only way to go; for instance if
the basins of attraction are fractal.

If sensitivity of the long-term dynamics with respect to parameters is the subject of inter-
est, we can repeat the calculations for different parameter settings and study the enormous
amounts of data gathered in this way. In the case that the sensitivity with respect to the
initial state variable is smooth, a reduction of efforts can be obtained by dividing the pa-
rameter space in regions with a specific long-term dynamic behaviour, such as stationary or
oscillatory, or the composition of the community at the final state. It is advantageous to look
for the boundaries of these regions, now in the parameter space. This presupposes that there
is a criterion which can be checked to determine which region applies for specific parameter
values. This is precisely what bifurcation analysis does. Coupled with continuation techniques
it gives the opportunity to divide the parameter space in regimes with qualitatively different
long-term dynamic behaviour. In the biological sense, it gives the circumstances under which
a community can survive or, for example, how much fish can be landed without the danger
of extinction.

In this review we have explained the bifurcation analysis approach by elaboration of some
case-studies. The results are obtained as simple expressions derived by ’pencil and paper’
or computer packages such as Maple and Mathematica to perform symbolic operations. In
practice this is seldom the case and one has to use computer packages, we mention: auto [31],
locbif [65], content [91], DsTool [8] and xppaut [40].

A complete description of all possible uninvasible endpoints of a community assembly
is problematic. In practice, using intermediate results, the parameters associated with the
numerical algorithms (tolerances, continuation step size and discretization constants) have to
be adjusted interactively by the user, so it seems impossible to generate complete bifurcation
diagrams in a stand-alone process. It is a challenge to apply the bifurcation analysis approach,
based on nonlinear dynamics system theory, to large-scale food webs and variable parameter
models. That the bifurcations pattern, which include both local and global bifurcations, are
robust with respect to model formulations is promising. This insight obtained from small-
scale food webs can be used to find the relationship between web structure and dynamics in
large-scale food webs.



Chapter 2

Predator-prey with Allee effects

Heteroclinic orbits indicate overexploitation in predator–prey systems
with a strong Allee effect.

G.A.K. van Voorn, L. Hemerik, M.P. Boer and B.W. Kooi
Mathematical Biosciences, 209:451-469.

In this section we deal with the dynamics of the predator–prey system where the prey popula-
tion suffers from an Allee effect. A strong Allee effect is known to occur when near extinction
the net prey growth rate is negative. A literatyre survey shows that this occurs in plant and
animal populations. It leads to an extinction threshold, defined as a density below which
population densities decrease. We discuss two models. In the Bazykin and Berezovskaya
(1998) model the quadratic function in the general Lotka-Volterra model is replaced by a
third order polynomial as the growth rate. Besides the toe zero growth rates of the logistic
growth rate, the zero biomass and the carrying capacity, there is an intermediate biomass, the
extinction threshold, with zero growth. We expand on their analysis of the model and explain
the fact, why limit cycles seemingly are not supported by an Allee effect. The existence of
a point-to-point heteroclinic cycle in these models is shown. In a two-parameter space the
continuation of these cycles form the boundary of a region where the system collapse, that is
where both populations go extinct. Different numerical methods for continuation of a globally
connecting cycle are discussed.

2.1 Introduction

We study the rich dynamical behaviour of a predator-prey model described in [9] using nu-
merical bifurcation analysis. In the Bazykin-Berezovskaya (BB)-model a strong Allee effect
for the prey population is formulated by incorporation of an extra factor in the logistic growth
equation such that the population growth rate is negative at zero biomass. The trophic in-
teraction is modeled with a linear Lotka-Volterra functional response (see Eqn. (2.1) below),
but qualitatively similar results are obtained for the in many cases more realistic Holling type
II functional response (Holling, 1959) [62].

When the predator is able to invade the prey system that is subject to an Allee effect at
its positive stable equilibrium, it becomes an unstable boundary equilibrium (saddle point)
of the predator-prey system. Due to the predation and the existence of the two equilibria
with only prey (both saddle points) a heteroclinic cycle between these two equilibria can

23
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arise. Generally, invasion by the predator will lead to stable coexistence of both populations.
However, there appears to be a Hopf bifurcation at which this positive equilibrium becomes
unstable and the system starts to oscillate around that equilibrium when a parameter is
varied. The stable limit cycle grows when the parameter is varied further. Then, at some
point this periodic orbit touches the two saddle boundary equilibria, collides with these and
disappears abruptly. As a consequence invasion of the predator leads to a total collapse of
the system, where both the prey and predator population go extinct.

The region in the parameter space where an unstable positive equilibrium exists while
the zero solution is globally attracting is bounded by a global bifurcation curve, that is, a
heteroclinic cycle for the two saddle boundary equilibria. This curve is sketched in [9, page
86] and anticipated in [83]. Here, we calculate this curve by continuation, and we discuss
the applicability of the numerical techniques proposed in [12,13,20,21,86] to continue homo-
and heteroclinic connections. We also discuss the implications of an Allee effect for biological
populations.

2.2 Formulation of the BB-model

The BB-model is described and analysed in [9]. The size of the prey population is denoted by
X1(t) ≥ 0 and of the predator population by X2 ≥ 0. The prey population grows following
the logistic equation (with growth rate R ≥ 0 and carrying capacity K) extended for the
strong Allee effect with threshold L ≥ 0. The trophic interaction is modeled with a linear (or
Lotka-Volterra) functional response with efficiency E ≥ 0. Finally the predator population
has a constant mortality rate M ≥ 0. Then the governing equations read

dX1

dT
= RX1(X1 − L)(K − X1) − AX1X2 , (2.1a)

dX2

dT
= (EX1 − M)X2 . (2.1b)

In [73] we pointed out that combining this equation with (2.1b) considered as the nutrient–
prey–predator system violates the mass balance. Nevertheless, because system (2.1) is math-
ematically more tractable than the full mass-balance equation we analyse this system and we
stress that the latter system can display more complex dynamics.

System (2.1) can be made dimensionless by setting t = TRK2/k2, x1 = kX1/K and
x2 = k2X2A/(RK2) where l = kL/K, e = E/(RK) and m = M/(EK). This gives the
dimensionless form of the predator–prey system

dx1

dt
= x1(x1 − l)(k − x1) − x1x2 , (2.2a)

dx2

dt
= e(x1 − m)x2 , (2.2b)

where l and m are compound parameters which will serve as bifurcation parameters.

2.3 Bifurcation analysis of the BB-model

The local bifurcations are analysed in [9, page 85] and in the textbook [83, Chapter 8]. We
start with a summary of the results. In addition to the stable trivial equilibrium point E0
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point (0, 0) (the eigenvalues are −l and −m), there are two boundary equilibria with positive
prey and zero predator biomass density, namely two equilibria E2 point (1, 0) (the eigenvalues
are l−1 and 1−m), and E1 point (l, 0) (the eigenvalues are l−m and l−l2). Furthermore there
is a positive equilibrium E3 point (m, (m − l)(1 − m)) in the region m > l and 0 < m < 1
of the parameter space (l,m). At that equilibrium point we have tr (J) = m(1 − 2ml)
and det(J) = m(1 − m)(m − l) so that discJ = trJ2 − 4 detJ and the eigenvalues read
λ1,2 = (trJ±

√
discJ)/2. So, the equilibria are given by

E0 :=(0, 0) , (2.3a)

E1 :=(l, 0) , (2.3b)

E2 :=(1, 0) , (2.3c)

E3 :=(m, (m − l)(1 − m)) . (2.3d)

In Figure 2.1 the three dimensional plot with one free parameter m and two state variables:
x1, x2 is shown. Figure 2.2 gives the long-term dynamics of the biomasses of the prey and
predator population where l = 0.5 and m is varied. There are two transcritical bifurcation
curves denoted by TC, at m = 0.5 and m = 1 where the equilibrium value for the predator
population equals zero, x2 = 0. A Hopf bifurcation point where Re(λ1,2) = 0 denoted by
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Figure 2.1: A three dimensional bifurcation diagram with one free parameter and two state variables:

x1, m, x2 and l = 0.5 fixed. The equilibrium curve and its vertical projection is also shown; solid line:

stable and dashed line: unstable.

H3 occurs at m = 0.75, the subindex 3 is because this is a bifurcation point for equilibrium
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Figure 2.2: One-parameter bifurcation diagram with free parameter m for predator-prey model with

Allee effect for prey population system (2.2) where e = 1, k = 1 and l = 0.5. Points TC1 and TC2

are transcritical bifurcation points. Point H3 is the Hopf bifurcation point and G6= indicates the

heteroclinic orbit. Between these two points the solution is a stable limit cycle of which the extrema

are plotted. At the heteroclinic orbit the prey biomass ranges from 0.5 to 1 while the predator biomass

becomes very small during one cycle of which the period is infinitely large. Region A: bistability E0

or E2; Region B/C: positive stable equilibrium E3, Region D: positive stable limit cycle E3, E: zero

equilibrium E0 is global attracting when predator is invading.
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Figure 2.3: Two-parameter bifurcation diagram for predator-prey system (2.2). The bifurcation

parameters are l (the threshold value of the Allee effect) and m (the mortality rate of the predator).

Curves TC are transcritical bifurcation curves. At the curves TC and TC the predator biomass

equals zero, that is these curves mark regions where both population can coexists. At N the predator

biomasses is negative and therefore this curve is not interesting from a biological point of view. Curve

H3 is the supercritical Hopf bifurcation curve and G6= the heteroclinic orbit. The points Z+ point

(1, 1) and Z− point (0, 0) are different types of codim 2 points.

E3. Below this Hopf bifurcation point the positive equilibrium is unstable and a stable limit
cycle around this point exists (we recall that the system is two dimensional and Poincaré–
Bendixson theorem [83, page 137] applies). Lowering m gives an increasing period of this
limit cycle. The period goes to infinity at a global bifurcation point, denoted by G 6=. At that
point the minimum value during the cycle goes to zero and the peak value to the carrying
capacity equal to k = 1.

The two-parameter bifurcation diagram is given in Fig. 2.3. The curve m = 0 is a curve,
denoted by N , where each point is an equilibrium with two zero eigenvalues. Substitution
of m = 0 in Eqn. (2.2) shown that with x1 = 0 all values for x2 give an equilibrium, so
there is a continuum of solutions. There are several transcritical bifurcation curves TC. Two
transcritical bifurcation curves are associated with the equilibrium E2 originating l = 1 and
m = 1. The vertical curve l = 1 and the horizontal curve m = 1 are both transcritical curve
TC2. The curve TC1 on the diagonal m = l is associated with the equilibrium E1. Above the
horizontal curve TC2 and below the diagonal curve TC1, denoted by region A the predator is
absent and the prey population is at carrying capacity equilibrium E2 or zero equilibrium E0,
depending on the initial state. Between the last two curves in region denoted by B/C there is
a positive equilibrium E3. In this region there is a Hopf bifurcation curve H3 described by the
relationship m = 0.5l + 0.5. Between this curve and the global bifurcation curve G6= denoted
by region D, the positive equilibrium is unstable and a positive stable limit cycle exists. Below
the curve G6=, denoted by region E the trivial solution E0 is the global attractor. Below the
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Figure 2.4: Stable and unstable manifold where m = 0.74837 and l = 0.5. For the saddle E2 point

(1, 0) the unstable manifold Wu
2 (dashed line) and for the saddle E1 point (0.5, 0) the stable manifold

W s
1 (solid line) are shown. Since the m-value is between the Hopf bifurcation H3 and the heteroclinic

orbit G6= values, there is a stable limit cycle. All orbits above the stable manifold W s
1 converge to the

stable zero equilibrium E0 point (0, 0). All orbits below the stable manifold W s
1 converge to the stable

limit cycle.

diagonal in region F, E0 is also the global attractor.
In order to get more insight into the dynamics around the global bifurcation point G6= we

study the dynamics in the phase plane for fixed l = 0.5 while we vary m in the next three
Figs. 2.4, 2.5 and 2.6.

Figure 2.4 shows the stable and unstable manifold where m = 0.74837 and l = 0.5. For the
saddle E2 point (1, 0) the unstable manifold W u

2 and for the saddle E1 point (0.5, 0) the stable
manifold W s

1 are shown. All orbits above this curve converge to the the zero equilibrium E0

point (0, 0). That is the stable manifold W s
1 acts as a separatrix for the stable limit cycle and

the stable equilibrium E0. The unstable manifold converges toward this stable limit cycle.
These manifolds were calculated using dstool [8].

In Fig. 2.5 the heteroclinic cycle is shown. It visits the two saddles E1 point (0.5, 0) and
E2 point (1, 0). The cycle is broken into two pieces being heteroclinic connections between
these two saddle points denoted by G6=. Outside the heteroclinic cycle the solution goes
asymptotically to the stable zero state E0. Inside the heteroclinic cycle there is convergence
towards the heteroclinic cycle.

Figure 2.6 shows the stable and unstable manifold where m = 0.735 and l = 0.5. For
the saddle E2 point (1, 0) the unstable manifold W u

2 and for the saddle E1 point (0.5, 0) the
stable manifold W s

1 are shown. Now W u
2 is connected to E0 point (0, 0) while W s

1 is connected
to the positive equilibrium E3 which is a spiral source since the m-value is below the Hopf
bifurcation value. All orbits above the W u

2 curve converge to the zero equilibrium E0 point
(0, 0). Inside the curve bounded by the stable manifold of the saddle E1 point (0.5, 0) the
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Figure 2.5: The heteroclinic connection plotted in the x1, x2 phase space for l = 0.5. The unstable

manifold Wu
2 and the stable manifold W s

1 intersect. For starting values inside the heteroclinic cycle

the orbit converges outward to the heteroclinic cycle. With starting values outside the heteroclinic

cycle the system converges to the stable zero equilibrium E0 point (0, 0).

orbit will oscillates and finally converges slowly to E0 point (0, 0) also. Observe that such an
orbit can not leave this region by crossing the stable manifold which is invariant and due to
uniqueness of the solution. The orbit can leave the region only via the narrow tunnel between
the lowest part of the first turn of the stable manifold belonging to E1 and the unstable
manifold of E2. This means that the stable limit cycle breaks open when the heteroclinic
cycle occurs in the neighbourhood of the saddle E2 where the stable manifold of E1 and the
unstable manifold of E2 mismatch. Furthermore, even starting close to the spiral source the
system makes a final oscillatory behaviour around the positive equilibrium before it eventually
converges to E0. Starting close to E1 on the right-hand site of the stable manifold the system
makes one single turn around the spiral source before extinction.

2.4 Heteroclinic cycle formulation and numerical methods

In this section we define the heteroclinic cycle (or loop) which occurs at the global bifurcation
G6=. It is formed by two connections. One at the boundary of the positive quadrant of
the state space (x1, x2), from E1 to E2, is the trivial branch where the predator is absent
x2 = 0 and the dynamics of the prey population is given by (2.2a). Hence this branch is not
discussed further. The nontrivial branch is the intersection of the unstable manifold W u(x)
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Figure 2.6: Stable and unstable manifold where m = 0.735 and l = 0.5, thus below m 6=. For the

saddle E2 point (1, 0) the unstable manifold Wu
2 (dashed line) and for the saddle E1 point (0.5, 0)

the stable manifold W s (solid line) are shown. Since the m-value is below the heteroclinic orbit G6=

and hence below the Hopf bifurcation, there is an unstable positive equilibrium (spiral source). All

orbits above the unstable manifold of E2 point (1, 0) curve converge directly towards the stable zero

equilibrium E0 point (0, 0). Inside the curve bounded by the stable manifold of the saddle E1 point

(0.5, 0), the orbit will oscillates and finally converges slowly to the stable zero equilibrium E0 point

(0, 0) as well.
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of the saddle E2 and the stable manifold W s(y) of the saddle E1. That is

dz

dt
= f(z) , (2.4a)

ϕt(z) → x , t → −∞ , (2.4b)

ϕt(z) → y , t → ∞ , (2.4c)

where f : R
2
+ → R

2
+ (the system is autonomous, hence there is no explicit dependency on

time t) and equilibrium point x belongs to E2, y belongs to E1. The flow ϕt : R
2
+ → R

2
+

corresponding to (2.4), that is, ϕt(z0) = z(t, z0) where the function z(t) considered as a
function of t, is the solution starting at z0 of the boundary value problem (bvp) (2.4). The
stable and unstable manifolds W u(x) and W s(y) are defined by

W s(x) = {z ∈ R
2|ϕt(z) → x as t → −∞} , (2.5a)

W u(y) = {z ∈ R
2|ϕt(z) → y as t → ∞} . (2.5b)

In the previous section we showed that for a fixed l-value decreasing m yields a point
where the period of the limit cycle goes to infinity while is passes both saddle points E2 and
E1 closely. The global bifurcation is fixed by the parameter value where the cycle breaks via
the heteroclinic cycle defined by (2.4).

The numerical schemes described in the next section were used to calculate and continue
the heteroclinic cycle G6= in the two-parameter diagram Fig. 2.3. This heteroclinic cycle
curve connects two codim 2 points Z+ point (1, 1) and Z− point (0, 0). In end-point Z−

point (1, 1) the heteroclinic cycle vanishes into the equilibrium point (1, 0). The point Z+

is on the intersection of transcritical bifurcations, TC2 and TC2, and the Hopf bifurcation
curve H3. At the critical codim 2 point Z+ point (1, 1), the Jacobian matrix evaluated at
the equilibrium (1, 0) is nilpotent of index 2, that is, there are two zero eigenvalues. Also at
the other end-point Z− point (0, 0) the heteroclinic cycle is degenerated. At this point there
is a continuum of solutions x1 = 0 and x2 ∈ R, so the predator biomass is not determined.
The eigenvalue of the single stable equilibrium (0, 0), and is a double 0 with eigenvector (1, 0)
and generalized eigenvector (0, 1). The global bifurcation curve G6= intersects the transcritical
bifurcation TC1 curve and the curve N of which each point is an equilibrium with a continuum
of solutions x1 = 0 and x2 ∈ R.

2.4.1 Formulation of the truncated boundary conditions

Calculating the global bifurcation curve boils down to solving the bvp (2.4) and its contin-
uation. The bvp is truncated into a finite time interval (−T, T ) where T is large enough,
and certain boundary conditions BC’s at the end points of that interval are imposed. An
appropriate ode solver can be used to calculate the orbit. In the following we will discuss
two techniques.

First the BC’s have to be adapted to this finite time interval. The local linear approxima-
tion of the unstable invariant manifold W u(x) is denoted as T u(x) and of the stable invariant
manifold W s(y) is denoted as T s(y). This requires calculation of the Jacobian matrix evalu-
ated at the saddle points, its eigenvalues and eigenvectors. For system (2.2) this can be done
analytically but this is not exploited here.
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The saddle equilibria and the eigenvalues and eigenvectors of the Jacobian matrix evalu-
ated in that point are calculated by solving

f(z) = 0 . (2.6)

where z is the equilibrium and

J p = λ p , (2.7)

〈p,p〉 = 1 , (2.8)

where λ is the eigenvalue, p the associated eigenvector and 〈r, s〉 = rT s is the standard scalar
product in R

2.
In some formulations the eigenvalues and eigenvectors of the adjoint Jacobian matrix

evaluated in that point are used

JT q = λ q , (2.9)

where λ is again the eigenvalue, the same as for the original Jacobian matrix, q the adjoint
eigenvector corresponding the eigenvalue. The eigenvectors are normalized by

〈q,q〉 = 1 , (2.10)

When p and q correspond to different eigenvalues we have 〈p,q〉 = 0, that is they are
orthogonal.

Generally no explicit expressions are know for the equilibrium values, the eigenvalues
and the eigenvectors and each set of equations for the two saddles E1 and E2 leads to the
additional scalar equations for additional scalar variables which are solved at each continuation
step. Although here analytical expressions are available, these quantities are numerically
determined.

With explicit BC’s we use the local linearizations of the stable and unstable manifolds at
E2 and E1, respectively. The BC’s read [41]

z(−T ) = x + εp−
u , (2.11a)

z(T ) = y + ξp+
s , (2.11b)

where ε and ξ are two fixed sufficiently small parameters and p−
u is the eigenvector belonging

to the negative eigenvalue at E2, in Fig. 2.5 tangent to the unstable manifold W u
2 and p+

s is
the eigenvector belonging to the positive eigenvalue at E1 in Fig. 2.5 tangent to the stable
manifold W s

1 .

2.4.2 Numerical techniques to solve and continue bvp

In order to solve the bvp we can distinguish two popular numerical techniques, namely the
(single and multiple) shooting method and the orthogonal collocation method. The methods
can be used together with each boundary condition formulation: projection and/or explicit.

To start the calculation of the heteroclinic connection in both approaches, we have to
start with an appropriate initial guess for the connection. We used the part of the stable
limit cycle for fixed l and varying m to a m-value where the period of the limit cycle was
large, and the orbit passes the two saddles closely (see Fig. 2.2).
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Shooting methods

Shooting methods for solving bvp of ode-systems are combinations of an initial value problem
(IVP) solver and a non-linear set of equations solver. Starting point is the formulation of the
initial conditions the explicit BC’s at E2 (2.11a), of which some are the boundary conditions
at one end while the remaining variable have to be guessed (within a continuation procedure
the values in a previous step can be used). However, the solution of this IVP does not fulfil
exactly the boundary conditions at the other end, the final point mentioned above (2.11b). In
this way this method yields a system of equations depending on the unknown initial variables.
These equations can be solved by, for instance, Newtonian equation solvers.

The continuation of the connection was done by means of a predictor-corrector continua-
tion method with step-size control [4, 86,108].

In [77, Appendix] this method is described for the calculation of a heteroclinic connection
between an equilibrium point and a limit cycle of four dimensional system consisting of
a nutrient, prey, predator and omnivore. The predator as well as the prey is consumed
by an omnivore. The heteroclinic cycle in the parameter space separates two regions with
convergence to an positive stable equilibrium or convergence to a boundary limit cycle.

We describe the implementation of a multiple shooting method for the calculation of the
heteroclinic cycle of system (2.2). In order to get reliable results for the whole parameter
range close to l = 1 and m = 1 the equations a midpoint u is introduced in the plane given
by

u = ϕ0(x + εp−
u ) , (2.12)

0 = 〈x − y,u − 0.5(x + y)〉 . (2.13)

where ϕ−T (x + εp−
u ) = x + εp−

u .
The truncated heteroclinic cycle starts at the distance fixed by the scalar ε from E2 with

equilibrium point x on the local linear approximation T u(x), of the unstable manifold W u
2 (x)

fixed by the eigenvector corresponding to the positive eigenvalue of the Jacobian evaluated
at x. Staring in this point the system is solve numerically using a Runge-Kutta method for a
fixed time period T : this point is denoted by u. Thereafter integration starts from point u till
a point on the stable manifold W s

1 is reached of E1 with equilibrium point y by Eqn. (2.11b)
is reached.

Orthogonal collocation methods

With collocation methods the solution is approximated by piecewise polynomials leading
to a huge system of non-linear equations which has to be solved numerically using some
Newtonian method. In auto [36] this technique is efficiently implemented together with
a pseudo-arclength continuation technique. For local bifurcations the code detects higher
order codimension bifurcations and calculates after detection the emanating branches of these
bifurcations.

We used the computer package auto in two modes. First the part of auto called Hom-

Cont [31, Chapter 16], a collection of easy to use subroutines for the continuation of homo-
and heteroclinic cycles. Secondly, we implemented the BC’s in auto using facilities described
in [31, Chapter 11] to solve the bvp’s.
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2.5 Discussion and conclusions

Characteristic for the strong Allee effect is the existence of three equilibria where the two
extreme points are stable and one saddle equilibrium in the middle. The stable manifold
of the saddle forms the separatrics in the phase plane for the two attractors. When the
population is predated the positive equilibrium becomes also unstable, Then generally after
invasion of the predator the system converges to a stable positive equilibrium. However,
this equilibrium can become unstable at a Hopf bifurcation giving rise to stable limit cycles.
Varying a parameter further can lead to a heteroclinic cycle. This is a global phenomenon
since it can not be detected by local analysis of the equilibrium points involved. After this
point the is a collapses of the complete system.

The two-parameter diagram Fig. 2.3 shows that there is only a positive equilibrium or
limit cycle in an intermediate range of the mortality range of the predator.

We found a global bifurcation denoted by G6= depicted in Fig. 2.3. This global bifurca-
tion is a heteroclinic cycle that consists of two heteroclinic connections between two saddle
equilibria in the zero predator biomass plane. This curve marks the region in the (l,m) pa-
rameter space where a collapse of the complete system occurs after invasion of the predator
into the prey population at stable positive equilibrium. The global bifurcation was sketched
in [9, page 86], but here we give algorithms to calculate this curve by continuation. This
curve separates the region in the parameter space with positive coexistence of the prey and
predator populations from the region where the system collapses and each initial point leads
to convergence to the zero biomass state.

The bifurcation curve G6= was calculated with auto [36] by using ordinary differential
equation two-point boundary-value problem (bvp) solver facilities of auto based on the
orthogonal collocation method. For the BB-model we also used the multiple shooting method
with one intermediate step. The calculated curves with both methods are the same. We also
used the more user-friendly HomCont [31, Chapter 16] program. Here in the region close to
point Z+ in Fig. 2.3 the user has to take case that the truncation time interval is allowed to
increase when this point is approached.

The orthogonal collocation method with bvp formulation with explicit boundary condi-
tions at both saddle points worked best. With the other BC formulations satisfactory results
close to point Z+ were obtained after introduction of an additional continuation step where
the truncated time interval was enlarged.

The multiple shooting method using one midpoint u, gave reliable results for the whole
parameter range 0 ≤ l ≤ 1 and 0 ≤ m ≤ 1.

We conclude that the bvp solver implemented in auto gives flexibility in the choice of
the formulation of the boundary conditions at the cost of coding of all boundary and integral
conditions and no detection of the various higher order bifurcation points implemented in
HomCont [31, Chapter 16].

In [25] using a size-structured, individual-based model show that catastrophic population
collapses may be an intrinsic property of many communities, because of two general aspects of
individual life history: size- and food-dependent individual growth and individual mortality
decreasing with body size. Positive density dependence, characteristic for depensatory growth
mechanisms and catastrophic behavior, results as a direct and robust consequence of the
interplay between these individual life-history traits, which are commonly found in many
species.



Chapter 3

Two stage population model

Multiparametric bifurcation analysis of a basic two stage population model
S.M. Baer, B.W. Kooi, Yu. A. Kuznetsov, H.R. Thieme

SIAM Applied Mathematics, 66(4):1339-1365.

In this section we investigate long-term dynamics of the most basic model for stage-
structured populations, in which the per capita transition from the juvenile into the adult
class is density dependent. The model is represented by an autonomous system of two non-
linear differential equations with four parameters for a single population. We find that the
interaction of intra-adult competition and intra-juvenile competition gives rise to multiple at-
tractors, one of which can be oscillatory. A detailed numerical study reveals a rich bifurcation
structure for this two dimensional system, originating from a degenerate Bogdanov-Takens
(BT) bifurcation point when one parameter is kept constant. Depending on the value of this
fixed parameter, the corresponding triple critical equilibrium has either an elliptic sector or
it is a topological focus, which is demonstrated by the numerical normal form analysis. It is
shown that the canonical unfolding of the codimension-three BT point reveals the underlying
dynamics of the model. Certain new features of this unfolding in the elliptic case, which
are important in applications but have been overlooked in available theoretical studies, are
established. Various three-, two-, and one-parameter bifurcation diagrams of the model are
presented and interpreted in biological terms.

3.1 Introduction

We deal with a model for one population with two stage introduced in [82] and further studied
in [120, Chapter 11]. The life-history of the individuals comprises a juvenile and an adult
stage. The population state is the number of juveniles and adults. Juveniles and adults die,
while adults reproduce. The transition rate between the two stages, together with the per
capita mortality and reproduction rates, form the parameters of the two first-order ordinary
differential equations (ode’s) which specify the time derivative of the population state.

Our stage-structured population model is a two dimensional system with four parameters.
When one parameter is fixed (b), a degenerate Bogdanov-Takens bifurcation (BT point for
short) with a triple critical equilibrium is found. Different types of such degenerate BT points
are studied in detail in [10, 37] where three categories of topological types are distinguished:
the saddle, focus, and the elliptic case. We will derive a normal form with terms up to and

35
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including fourth order for the codimension-three BT point by using a time re-parameterization
combined with a smooth transformation that also includes fourth order terms. This analysis
reveals that the elliptic or focus case applies for the two stage population model depending on
the value of the fixed parameter (b). When this parameter is varied a transition from elliptic
to focus codimension-three BT bifurcation is found.

The truncated normal form of the codimension-three BT point in the elliptic case is
embedded into an appropriate three-parameter family, and we study its unfolding by per-
forming a numerical bifurcation analysis for the neighborhood of the origin in that three
dimensional parameter space. In the three-dimensional parameter space, two branches of
codimension-two BT curves emanate from the codimension-three point. These curves form
the intersection of saddle-node and Hopf bifurcation planes. Furthermore, codimension-two
Bautin bifurcations as well as codimension-two homoclinic orbits to neutral saddles originate
from the codimension-three BT point. In two parameter space, codimension-one homoclinic
bifurcation curves can originate from BT points. Both saddle, saddle-node and neutral sad-
dle homoclinic orbit bifurcations actually occur. The analysis reveals unexpected similarities
between the elliptic and the focus cases, which have been overlooked in earlier theoretical
studies.

The normal form analysis results are used to interpret those of the numerical bifurcation
analysis study of the full planar two stage population model and consequently also those
reported in [120, Chapter 11].

3.2 The two stage population model

The model is introduced in [82] and further motivated in [120, Chapter 11]. The population
is split into juveniles (larvae, e.g.) and adults, the numbers of which are denoted by L(t) and
A(t) respectively. The system has the form

dL

dt
= β(L,A)A − µ(L,A)L − f(L,A)L , (3.1a)

dA

dt
= f(L,A)L − α(L,A)A , (3.1b)

where β is the per capita reproduction rate of an average adult individual, µ is the per
capita mortality rate of an average juvenile individual (α for the adults) and f the per capita
transition rate from the juvenile into the adult stage. In general, these rates can depend on
both the densities of juveniles and adults.

As in [82], a Ricker-type function is chosen for the stage transition rate,

f(L) =
µ

m
e−L . (3.2)

The reproduction rate β(A) is chosen as

β(A) = g
(m

µ
A

)

. (3.3)

After introducing the scaled number of adults y as

y =
m

µ
A, (3.4)
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the stage-structured population model becomes

dL

dt
=

µ

m

[

g(y)y − mL − Le−L
]

, (3.5a)

dy

dt
= Le−L − y . (3.5b)

At equilibrium, Equation (3.5b) gives a fixed relationship between y∗ and L∗ which is inde-
pendent of all parameters. Note, from Equation (3.5a), that these values are independent of
the parameter µ. We assume that the birth rate g(y) is also of Ricker-type:

g(y) = e(1/b)(a−y) . (3.6)

3.3 Organizing centers

This section is partially based on [120, Section 11.9]. The system (3.5) has been scaled in
such a way that the equilibria do not depend on the parameter µ. The origin (L = 0, y = 0)
is always an equilibrium.

The parameter m can be expressed as a function of the L-component of the interior
equilibria, L∗,

m =
[

g(L∗e−L∗

) − 1
]

e−L∗

=: M(L∗) . (3.7)

Figure 3.1 shows the graph of the function M for b = 2.2 and various values of a. The
dotted curve marks points where M ′(L∗) = 0 when a is varied. This curve cuts the horizontal
axis m = 0 = M(L∗) at L∗ = 1 where a = a♯ = 0.3679.
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Figure 3.1: Graph of the function M for b = 2.2 and various values of a. From right to
left: a = 0.5, a = a♯ = 0.4492276697, a = 0.43, a = 0.4, a = 0.35. The bullet gives the
simultaneous point of inflection and critical point for a = a♯. The dotted line connects the
critical points where a is varied. The numbers label the branches where equilibrium Ei occurs
at branch i = 1, 2, 3.
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It can also be shown ( [120, page 172]) that the trace of the Jacobian matrix evaluated at
an interior equilibrium is a linear function of µ. The trace switches its sign from negative to
positive at

µ = φ(L∗) :=
g(y∗) − 1

L∗ − g(y∗)
, y∗ = L∗e−L∗

. (3.8)

At a = a♯ see Figure 3.1 the determinant and the trace of the Jacobian matrix evaluated at
the equilibrium (L♯, y♯) are zero. Therefore, for fixed b > 0 and µ = µ♯,m = m♯, and a = a♯,
we have a BT point. Moreover, the equilibrium is triple at this point, thus a degenerate BT
point occurs.

For b = 2.2, we have

L♯ = 1.513180178, y♯ = 0.33321523 (3.9)

and

µ♯ = 0.01179614, m♯ = 0.01192386945, a♯ = 0.4492276697. (3.10)

3.4 Normal form analysis

In this section we perform a normal form analysis of the degenerate BT point and study its
canonical unfolding.

3.4.1 Critical normal form

First, we write system (3.1) for fixed b > 0 at the critical parameter values (3.10) in a
coordinate system where the equilibrium with the coordinates (3.9) is shifted to the origin of
the phase plane by the transformation

x =

(

x1

x2

)

=

(

L − L♯

y − y♯

)

, (3.11)

The transformed planar system becomes

ẋ = Jx + F(x) , (3.12)

where J is the Jacobian matrix evaluated at the equilibrium and F(x) = O(‖x‖2).
Next we use a similarity transformation to put the linear part in the Jordan canonical

form. First we calculate two vectors u,v ∈ R
2, such that

J2v = 0 , Jv = u , ‖u‖ = 1 , (3.13)

where the vector norm is defined by ‖u‖2 = 〈u,u〉 and 〈u,v〉 stands for the standard in-
ner product in R

2: u1v1 + u2v2. These two vectors (the eigenvector u and the generalized
eigenvector v), are linearly independent and form a basis in the plane. Notice that v is the
eigenvector belonging to the zero eigenvalue of the the matrix J2 (J is nilpotent of index 2,
that is J2v = 0 but Jv 6= 0). One can calculate v as an eigenvector associated with the zero
eigenvalue of the squared Jacobian matrix evaluated at the equilibrium point.
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The similarity transformation is now defined by

x = Uy , (3.14)

where U denotes the matrix the columns of which are formed by a normalized eigenvector and
a generalized eigenvector. The matrix U is invertible, since the vectors u and v are linearly
independent, and we can write

y = U−1x . (3.15)

Then

U−1JU = J0 =

(

0 1
0 0

)

, (3.16)

and

ẏ = J0y + U−1F(Uy) . (3.17)

Taylor series expansion of the right-hand side of (3.17) at the equilibrium y = 0 gives

dy1

dt
= y2 +

1

2
a20y

2
1 + a11y1y2 +

1

2
a02y

2
2

+
1

6
a30y

3
1 +

1

2
a21y

2
1y2 +

1

2
a12y1y

2
2 +

1

6
a03y

3
2

+
1

24
a40y

4
1 +

1

6
a31y

3
1y2 +

1

4
a22y

2
1y

2
2 +

1

6
a13y1y

3
2 +

1

24
a04y

4
2 + O(‖y‖5), (3.18a)

dy2

dt
=

1

2
b20y

2
1 + b11y1y2 +

1

2
b02y

2
2

+
1

6
b30y

3
1 +

1

2
b21y

2
1y2 +

1

2
b12y1y

2
2 +

1

6
b03y

3
2

+
1

24
b40y

4
1 +

1

6
b31y

3
1y2 +

1

4
b22y

2
1y

2
2 +

1

6
b13y1y

3
2 +

1

24
b04y

4
2 + O(‖y‖5). (3.18b)

The final transformation to the normal form

dξ

dτ
= η (3.19a)

dη

dτ
= Aξ2 + Bξη + Cξ3 + Dξ2η + Eξ4 + Fξ3η + O(‖(ξ, η)‖5) , (3.19b)

is achieved by a time re-parameterization combined with a smooth change of coordinates. In
this way it is possible to remove both 4th-order terms from (3.19) (using BC 6= 0 as will be
verified numerically in our case).

The time re-parameterization introduces a new time τ as follows

dt = (1 + θ1y1 + θ2y
2
1)dτ, (3.20)
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where θ1 and θ2 are to be defined later. Alternatively one can use (1 + θ1y1 + θ2y2) which
leads to the same results. The smooth transformation reads

ξ = y1 +
1

2
g20y

2
1 + g11y1y2 +

1

6
g30y

3
1 +

1

2
g21y

2
1y2 +

1

2
g12y1y

2
2

+
1

24
g40y

4
1 +

1

6
g31y

3
1y2 +

1

4
g22y

2
1y

2
2 +

1

6
g13y1y

3
2, (3.21a)

η = y2 +
1

2
h20y

2
1 + h11y1y2 +

1

6
h30y

3
1 +

1

2
h21y

2
1y2 +

1

2
h12y1y

2
2

+
1

24
h40y

4
1 +

1

6
h31y

3
1y2 +

1

4
h22y

2
1y

2
2 +

1

6
h13y1y

3
2, (3.21b)

where gij and hij are unknown coefficients. Differentiating (3.21a) and (3.21b) with respect
to τ yields

dξ

dτ
= (1 + θ1y1 + θ2y

2
1)

(

∂ξ

∂y1

dy1

dt
+

∂ξ

∂y2

dy2

dt

)

, (3.22a)

dη

dτ
= (1 + θ1y1 + θ2y

2
1)

(

∂η

∂y1

dy1

dt
+

∂η

∂y2

dy2

dt

)

. (3.22b)

Substituting (3.18a) and (3.18b) into (3.22a) and (3.22b), and then equating coefficients
(3.19a) and (3.19b), gives the equations to find the coefficients gij , hij , θ1, θ2 in (3.21) and
(3.20), as well as A,B,C,D in (3.19), where θ1 and θ2 are used to enforce E = F = 0. This
gives

A =
1

2
b20, (3.23a)

B =a20 + b11, (3.23b)

C =
1

6
b30 −

1

2
a20b11, (3.23c)

D =
1

2
b21 +

1

4
b02(b11 − a20) +

1

2
b11a11 +

1

2
a30 +

3(a20 + b11)

20(3 a20b11 − b30)
×

(

b40 − 6 a20b21 − 3 b11b02a20 + 3 b02a20
2 − 4 b11a30 + 6 b30a11 + b30b02 − 6 b11a20a11

)

.

(3.23d)

Note that the 3rd-order coefficient D in (3.19) depends (via b40) on the 4th-order terms of
(3.18).

The Taylor coefficient A in (3.19) equals zero, since b20 = 0 because the critical equilibrium
is triple. This implies that one of the non-degeneracy conditions for a classical codimension-
two BT point is violated [86, p.272]. This leads to a bifurcation point with codimension
three (or higher) and could, together with the requirement detJ = 0 and tr J = 0, be used as
defining functions to determine the critical parameter values corresponding to this bifurcation
point.

If CD 6= 0, then the truncated critical normal form

dξ

dt
= η (3.24a)

dη

dt
= Bξη + Cξ3 + Dξ2η (3.24b)
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can be simplified further by a linear coordinate and time scaling:

dξ

dt
= η (3.25a)

dη

dt
= βξη + ǫ1ξ

3 + ǫ2ξ
2η , (3.25b)

where ǫ1 = ±1, ǫ2 = ±1, and

β =
B

√

|C|
.

In [10,37], three topologically different cases are distinguished:

• Saddle case ǫ1 = 1, any ǫ2 and β;

• Focus case ǫ1 = −1 and 0 < β < 2
√

2;

• Elliptic case ǫ1 = −1 and 2
√

2 < β.

When b = 2.2, the calculated values of the coefficients of the truncated critical normal
form (3.24) are B = 1.0538275511, C = −0.110108078, and D = −1.23163654. This gives
ǫ1 = −1 (because C < 0), ǫ2 = −1 (because D < 0), and

β =
B√
−C

= 3.175849820.

We conclude that with b = 2.2 the elliptic case applies, for β = 3.175849820 > 2
√

2. Direct
numerical integration of (3.1) at the critical parameter values (3.10) confirms this conclusion
(see Figure 3.2).

•

⋄

L

y

43210

0.4

0.3

0.2

0.1

0

•

L

y

1.81.71.61.51.41.3

0.36

0.34

0.32

0.3

Figure 3.2: Phase portrait of (3.1) at the critical parameter values with b=2.2 (left) and an
enlargement of a neighborhood of the critical equilibrium (right), where the elliptic sector is
clearly visible.

Calculations showed that in an extended range of parameter values b > 0 the parameters
C and D defined in (3.24b) are negative, implying ǫ1 = −1 and ǫ2 = −1. In Figure 3.3 we
give the dependence of β on the parameter b. At b♮ = 1.7300228, where β = 2

√
2, there is a

transition from the elliptic case to the focus case. The phase portrait at the critical parameter
values with b = 1.5 (when the focus case applies) is depicted in Figure 3.4. Compared with
Figure 3.2 where b = 2.2, we see that the elliptic sector disappeared.
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Figure 3.3: The coefficient β defined in (3.25b) as a function of the parameter b. There is a
transition from the elliptic case to the focus case at the codimension-four bifurcation point
where b = b♮ = 1.7300228.
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Figure 3.4: Phase portrait of (3.1) at the critical parameter values with b=1.5 (left) and an
enlargement of a neighborhood of the critical equilibrium (right) where no elliptic sector is
present.
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The transition at b = b♮ is a bifurcation of codimension four (or higher), which could be
considered as the ultimate organizing center in model (3.5). However, in the sequel we will
deal with b > b♮ corresponding to the elliptic case because it is the most interesting one. The
focus case is discussed extensively in applied literature (for example, in [9,86] with the analysis
of the Rosenzweig-MacArthur predator-prey model having density dependent mortality rate
for the predators).

3.4.2 Bifurcation diagram of the canonical unfolding

The local bifurcation diagram for the focus and elliptic case has been studied theoretically
in [37], where the truncated critical normal form (3.25) is embedded in the following three-
parameter family

dξ

dt
= η , (3.26a)

dη

dt
= −µ1 − µ2ξ + νη + βξη − ξ3 − ξ2η , (3.26b)

with µ1, µ2, and ν serving as the unfolding parameters. Below we reconstruct the bifurcation
diagram of (3.26) in the elliptic case using the same numerical continuation methods as applied
in the next section to compute global bifurcation diagrams of (3.1).

The equilibria of (3.26) satisfy η = 0 and −µ1 − µ2ξ − ξ3 = 0. Therefore, depending on
the parameter values µ1 and µ2, there is one or there are three real solutions. For example,
when µ1 = 0, we have ξ = 0 and ξ = ±√−µ2 besides η = 0.

In Figure 3.5, a partial three-parameter bifurcation diagram near the codimension-three
bifurcation point µ1 = µ2 = ν = 0 is shown for the normal form (3.26) where β = 3.175849820
(elliptic case). Two BT curves of different type emanate from the codimension-three point
denoted by BT=. Locally attracting limit cycles bifurcate from the first curve which is called
a supercritical Bogdanov-Takens bifurcation curve and is denoted by BT−, while repelling
limit cycles bifurcate from the curve of second type which is a subcritical Bogdanov-Takens
bifurcation curve, denoted by BT+. Another codimension-two bifurcation curve, namely a
cusp curve denoted by Ne in the figure, passes through the point BT=. Finally, from BT=,
a codimension-two Bautin (generalized or degenerated Hopf, see [86]) bifurcation curve B
emanates. Software packages locbif [65,86] and content [48,91] were used for the numerical
continuation of these curves related to equilibrium bifurcations.

Figure 3.6 presents two-parameter slices of the complete bifurcation diagram of (3.26)
with β = 3.175849820 for µ2 = −0.1 and µ2 = −1. The top diagram with µ2 = −0.1 gives
a clear picture of the unfolding near the codimension-three BT point. The same diagram
(together with corresponding phase portraits) is sketched in Figure 3.7, which we advise to
consult while reading the rest of this section. The codimension-two BT± points and four
saddle-node homoclinic bifurcation points Di, i = 1, . . . , 4 (analyzed theoretically in [95]) are
indicated in all diagrams. These points lie all on the tangent bifurcation curves for equilibria
T±

e . At the supercritical BT− point, a supercritical Hopf bifurcation curve H− originates,
and similarly a subcritical Hopf bifurcation curve H+ emanates from the subcritical BT+.
From each BT point, BT− and BT+, a global bifurcation curve emanates, indicated by G+

or G−, respectively. These are saddle homoclinic bifurcation curves. The homoclinic orbits
corresponding to them are “small”, i.e. they go around one equilibrium only. There exists
another saddle homoclinic bifurcation curve, denoted by G0 in the figure. In contrast with G+
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Figure 3.5: Three-parameter bifurcation diagram with µ1, µ2, and ν as bifurcation parameters
for the normal form (3.26) where β = 3.175849820. Only equilibrium bifurcations are shown.
The tangent bifurcation curves T±

e (dashed curves) and Hopf H± and neutral saddle NS
curve (dotted curve) in the (µ1, ν)-plane for µ2 = −0.1 are plotted.
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Figure 3.6: Two-parameter bifurcation diagrams of (3.26) with µ1 and ν as bifurcation param-
eters and µ2 = −0.1 (left) and µ2 = −1 (right) for normal form (3.26) where β = 3.175849820.
The labels are explained in the text.
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and G−, the homoclinic orbit corresponding to G0 is “big”, i.e. it surrounds two equilibria.
The homoclinic curves were calculated using the package HomCont, a part of auto [31].
The implemented theory and numerical procedures are described in [20,21].

ξ

η

43210-1-2-3

5

0

-5

-10

-15

ξ

η

0.050.0250-0.025-0.05

0.05

0.025

0

-0.025

-0.05

Figure 3.8: A nonhyperbolic limit cycle ( see (4) in Fig 3.7) of (3.26) at the critical parameter
value ν = 0.8458472970 corresponding to Tc (left) and an enlargement of a neighborhood of
the origin, where a saddle equilibrium is located (right). Other parameters are µ1 = 0, µ2 =
−0.1, b = 3.175849820. We recall that the three equilibria are: η = 0 and ξ = 0 or ξ = ±

√
0.1.

The equilibrium in the origin is a saddle, the left one is stable and the right one unstable.

A tangent bifurcation curve for limit cycles Tc, where two limit cycles collide and disap-
pear, crosses the curve T−

e and ends at a point F in the intersection of the homoclinic curve
G0 and the neutral saddle curve NS connecting the Bogdanov-Takens points BT− and BT+.
This point F corresponds to a codimension-two “big” homoclinic orbit to a neutral saddle,
where the trace of the Jacobian matrix is zero [86]. The tangent bifurcation curve for limit
cycles Tc and the homoclinic curve G0 have an infinite-order contact at F [103]. It should be
noted that Tc is indistinguishable from G0 in Figure 3.6. Between the equilibrium bifurcation
curves T+

e and T−
e , the curve Tc is located just above G0. This can be verified by accurate

computations in auto or content with many mesh points (e.g., NTST=1000). Figure 3.8
demonstrates that the critical limit cycle corresponding to Tc is located at a small but clearly
visible distance from the saddle equilibrium at the origin. This nonhyperbolic limit cycle
bifurcates into an (outer) stable and (inner) unstable limit cycles, shown in Figure 3.9 for
parameter values between the curves Tc and G0. When we cross the homoclinic bifurcation
curve G0 above point F , the inner unstable limit cycle “collides” with the saddle and disap-
pears via the saddle homoclinic orbit that is unstable from the outside, in accordance with
the positive sign of the trace of the Jacobian matrix above the curve NS (see Figure 3.6).
Crossing G0 below F results in the appearance of a stable “big” cycle.

The saddle homoclinic curve G−, originating at the point BT−, terminates tangentially
at a point D1 on the bifurcation curve T+

e . Between the two codimension-two points D1

and D2 the saddle-node equilibrium (existing along the tangent bifurcation curve T+
e ) has a

smooth homoclinic orbit. On this line-segment D1D2, the global bifurcation and the local
bifurcation occur simultaneously. The homoclinic orbit is asymptotic to a saddle-node rather
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Figure 3.9: A stable limit cycle (outer, solid) and an unstable (inner, dashed) limit cycle of
(3.26) at ν = 0.8458473000. The other parameters are µ1 = 0, µ2 = −0.1, b = 3.175849820.

than to a saddle. In point D2, the “big” saddle homoclinic curve G0 departs tangentially
from T+

e . This curve G0 ends also tangentially at a codimension-two point D3 on T−
e , which

is similar to D2. Another saddle homoclinic curve, G−, originating at BT+ on the bifurcation
curve T+

e , terminates tangentially at a point D4 on T−
e . In all points Di, the corresponding

homoclinic orbits are nonsmooth at the saddle-node. The right diagram with µ2 = −1 shows
that already in the vicinity of the codimension-three point the two saddle-node homoclinic
bifurcation points D3 and D4 are also close to each other and hardly distinguishable in
Figure 3.6 (right).

3.4.3 Elliptic versus focus case

The bifurcation diagram of the normal form (3.26) presented in Figure 3.7 differs drastically
from the theoretical bifurcation diagram for the elliptic case given in [37, p. 8]. The reason
for this discrepancy is that the diagram in [37] concerns phase portraits in a fixed small
neighborhood (in fact, an elliptic disk) of the origin. Therefore, additional bifurcation curves
associated with boundary tangencies appear, while some parts of the global bifurcation curves
described above become “invisible”, since the corresponding bifurcations happen outside the
neighborhood. This approach is absolutely legitimate in theoretical studies, but is of little use
in applied analysis, where artificial boundaries have no meaning and global phase portraits
in the whole phase plane must be considered. Only such portraits could provide a good
understanding of the long-term dynamics of the model.

Figure 3.6 gives such global bifurcation diagrams of the normal form (3.26). It turns out
that the two-parameter slices are topologically equivalent to those corresponding to the focus
case (see [10, p. 36] or [37, p. 7], where an intersection of bifurcation surfaces with a small
sphere centered at the origin in the three-dimensional parameter space is shown). However,
the inner limit cycle demonstrates rapid amplitude changes (“canard-like” behavior) near the
bifurcation curve Tc. It is this phenomenon that makes the continuation of limit cycles near
Tc difficult. One could also observe that, in contrast with the focus case, the “big” homoclinic
orbit to the neutral saddle (see point F ) does not shrink to the origin of the phase plane, when
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we approach the codimension-three elliptic BT point in the parameter space. Instead, this
homoclinic orbit tends to the boundary of the elliptic sector that has a finite size in (3.26).
The similarity between the focus and the elliptic cases implies that the transition between
them at b = b♮, although interesting from a theoretical point of view, is of minor importance
in applications, since it does not affect dynamics away from the degenerate BT bifurcation
points.

These similarities and differences between the focus and the elliptic cases were overlooked
in all theoretical studies. Of course, global phase portraits arising from an elliptic BT case in
a specific model could differ from the global bifurcation diagrams of the canonical unfolding
(3.26) reported above. However, if other phase objects (equilibria, cycles, etc.) do not interact
with the objects bifurcating around the codimension-three BT point, one would encounter
the described bifurcation diagrams in his/her system, as it happens in our ecological model
(3.1).

3.5 Bifurcation diagrams of the two-stage model

We show only one three, one two and some one-parameter bifurcation diagrams of (3.1) for
a representative parameter value b = 2.2 (elliptic case). We also show explicitly various
homoclinic orbits.

3.5.1 Three-parameter bifurcation diagram

In Figure 3.10, the three parameters µ,m, a are changed simultaneously. There is a codimension-
three point, denoted by BT= at the critical parameter values (µ♯,m♯, a♯) given by (3.10). The
bifurcation pattern resembles that of the normal form (3.26) presented in Figure 3.5. There
is now another codimension-two Bautin bifurcation curve B which is not connected to a
codimension-three point BT=. Varying the forth parameter b showed that such a connection
never occurs in the region of the parameter space of interest in this paper.

Codim-one bifurcation curves for a = 0.44 is investigated in the next section using two-
parameter bifurcation diagrams.

3.5.2 Two-parameter bifurcation diagram

The two-parameter bifurcation diagram for a = 0.44 in Figure 3.11 strongly resembles that
given in Figure 3.6(right) where µ2 = −1. The Hopf bifurcation curves H− (origination to
the left in BT−) and H+ (origination to the right in BT+), the neutral-saddle curve NS
(between BT− and BT+), and the tangent bifurcation curves T±

e (straight lines parallel to
the ν-axis) as well as the tangent bifurcation curve for limit cycles Tc are shown. Observe that
although the parameter value a = 0.44 is rather close to a♯, the two saddle-node homoclinic
bifurcation points D3 and D4 are indistinguishable in the figure.

3.5.3 One-parameter bifurcation diagrams

In Figures 3.12 and 3.13 where m = 0.01, a = 0.43, the bifurcation parameter is µ. For all
µ-values, there are three interior equilibria, denoted by E1, E2 and E3, the positions of which
are independent of µ. For the (scaled) numbers of juveniles and adults at these equilibria,
Ej = (L∗

j , y
∗
j ), we have L∗

1 < L∗
2 < L∗

3 and y∗1 > y∗2 > y∗3, respectively. Hopf bifurcations of
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Figure 3.10: Three-parameter bifurcation diagram for equilibria in of (3.1) with µ, m and
a as bifurcation parameters. The codimension-three Bogdanov-Takens point is denoted by
BT=. From this point two codimension-two BT curves, BT− and BT+, emanate. They
are shown along with their projections. The codimension-two Bautin bifurcation curves B
are long dashed. The Hopf bifurcation curves (dotted) and tangent bifurcation curves (short
dashed) are shown for a = 0.455, a = 0.4492277, a = 0.44 and a = 0.43. The curve Ne passing
through BT= is a cusp bifurcation curve for equilibria. The two curves T±

e for a = 0.44 are
the intersections of the a = 0.44-plane with the tangent bifurcation surfaces. Similarly the
H+ and H− curves from the intersections for the two-dimensional Hopf bifurcation surfaces.
For a-values above the point BT= these sheets are separated by the codimension-two Bautin
bifurcation curves B. These sheets are separated for a-values below the point BT= where
the two codimension-two BT curves, BT− and BT+ form the end-curves of the separated
sheets. For smaller µ-values there is always a codimension-two Bautin bifurcation curves B
that separates super- and subcritical Hopf bifurcation surfaces.

E1 and E3 occur at H+ and H−, respectively, giving rise to limit cycles. Their maximum
and minimum values are plotted in the figure, a stable one, denoted by C3 and generated
by the supercritical Hopf bifurcation from the equilibrium E3 and an unstable one, denoted
by C1 and generated by the subcritical Hopf bifurcation from the equilibrium E1. For large
µ, there is a branch of “big” stable periodic orbits (also denoted by C3) which surround all
three equilibria. This branch also exists for µ values for which the unstable period orbits C1

surrounding the equilibrium E1 exist. There are homoclinic orbits at the points where these
limit cycles touch the saddle equilibrium E2.

Figure 3.14 shows approximations of these two homoclinic orbits, one “big” (solid) C3

and one “small” (dashed) C1 for µ = 1 and a = 0.43. The period of the plotted limit cycles
is very large, indicating a homoclinic orbit. There are two rather sharp bends in the “big”
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Figure 3.11: Two-dimensional bifurcation diagram with µ and m as bifurcation parameters
where a = 0.44.
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Figure 3.12: Bifurcation diagram where m = 0.01 and a = 0.43, and µ is the single bifur-
cation parameter. Stable equilibria are represented by solid lines and unstable equilibria by
dashed lines which are horizontal because the y and L equilibrium values are independent
of µ. A branch of stable limit cycles C3 (solid curves) originate through the supercritical
Hopf (H−), and a branch of unstable limit cycles C1 (dashed curves) through the subcritical
Hopf bifurcation (H+). A homoclinic orbit occurs where these limit cycles touch the saddle
equilibrium E2.
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homoclinic orbit. The top one is close to the saddle point as expected. The lower bend is
associated with the zero equilibrium (L = 0, y = 0) which is a saddle point for the parameter
values used. Both orbits pass the stable focus E1 closely.

3.6 Discussion

We have considered the most basic model for stage-structured populations in which per capita
transition from the juvenile into the adult class is density dependent, namely a system of
two ordinary differential equations. We established existence of a codimension-three BT
bifurcation in our model and have verified its nondegeneracy by computing its normal form
numerically. The normal form is computed using a preliminary linear transformation to
simplify the linear terms, in this case to put the linear part in the Jordan canonical form.
In [86, 87] this step is omitted by using a representation of any vector in the state space
as a linear combination of the eigenvector and the adjoint eigenvector. That method is
appropriate for higher-order dynamics systems where normalization on the center manifold
is needed [89]. The nonlinear smooth transformation in this paper is combined with a time
re-parameterization. This facilitates the removal of all 4th-order terms in the Taylor series
expansion. Therefore the expression for the coefficient D of the ξ2η term given by (3.23d)
differs from the classical expression [68] where only 3rd-order terms are taken into account.
The expressions (3.23) agree with those reported in [43]. In this way, we have computed
the relevant normal form coefficients and established that the critical equilibrium at the
codimension-three BT point is triple and has an elliptic sector for b > b♮ = 1.7300228.
Apparently, this case has never been observed in ecological modelling. At b = b♮, a transition
from the elliptic codimension-three BT to the focus codimension-three BT point occurs.

Using known theoretical results [10,37], we have concluded that two BT codimension-two
curves emanate from the codimension-three BT point. Along these curves a Hopf bifurcation
surface, as well as a tangent bifurcation and a homoclinic orbit surfaces meet. There is also
a codimension-two Bautin bifurcation curve B in the Hopf bifurcation surface, where the
supercritical Hopf bifurcation becomes subcritical or visa versa. This happens in a parameter
region where only one interior equilibrium exists. In Bautin bifurcation points, a surface of
tangent bifurcations of limit cycles originates.

Our numerical analysis of the global bifurcation diagram of the canonical unfolding of the
normal form, Figure 3.6, has revealed other global bifurcation curves. On codimension-two
bifurcation curves Di, transitions of the homoclinic orbit to a saddle-node homoclinic orbit
occur. There is also a bifurcation surface G0 corresponding to a “big” homoclinic orbit to the
saddle that surrounds two equilibria. In this surface, a line F of codimension-two homoclinic
orbits to a neutral saddle exists. Figure 3.11 resemble that of the Bazykin’s predator–prey
model [9, Figure 3.5.3] and [86, Figure 8.10], despite the fact that the degenerate BT point
is here of the elliptic type while in Bazykin’s model it is of the focus type. The diagrams
given in [37] for both types differ a lot on first sight. However, in [37] additional bifurcation
curves associated with boundary tangencies are reported. In this paper, we do not have such
artificial bifurcations, since we do not restrict our attention to a small neighborhood of the
critical equilibrium. Instead, we consider global phase portraits, which allow us to obtain a
better understanding of the long-term dynamic behavior of the model. It should be stressed
that without a preliminary analysis of the canonical unfolding (3.26) it would have been
practically impossible to understand the numerical continuation results for (3.5).
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A large-time solution behavior of similar complexity has been found for certain planar
predator-prey systems [9, 86, 114, 127, 128] and epidemic models [112]. Predator-prey and
host-parasite system involve two species which influence each other in opposite ways with one
suffering from a benefiting the other. The predator-prey models which show complex behavior
take into account competition among prey and predator competition for prey. Our model
involves two stages of one species which compete among themselves but influence each other
positively because we assume pure intra-stage competition. (Adding interstage competition
actually counteracts the complexity.) Mathematically, this is reflected in the fact that the
nonlinear terms in our system only depend on one variable each, whereas predator prey and
epidemic models always have nonlinear terms which involve both variables. In this paper, we
find complex behavior in a class of planar systems that is different from predator prey models
both biologically and mathematically.

The complex behavior only occurs in a small parameter region (see [120, Chapter 11] for
a discussion of other parameter ranges). In this parameter region, the per capita mortality
rate of juveniles is smaller than the one of adults (µ ≤ 1 = α), and almost every juvenile
makes it into the adult stage if there is no competition (the small values of m). This would
hold for species where the juveniles are less prone to enemies than the adults and the juvenile
stage is very short if there are plenty of resources available. We expect that the complex
behavior can be observed in a larger parameter region if more sophisticated nonlinearities
than the classical Ricker function are chosen to model the competition among juveniles and
adults. A thorough understanding of the basic stage-structured model is important because
its simplicity makes it a useful building block in models for several species. Recently it has
been used (extended by an intermediate stage of sub-adult individuals) to explain emergent
Allee effects in predators that feed on structured prey populations [26].

The results show that despite the low dimension of the system, the dependence of the
resulting long-term dynamics on parameter values can be rather complex. The rich behavior
of our model is caused by the interaction of intra-adult competition and intra-juvenile com-
petition. None of the two alone can generate multiple positive attractors. It is essential that
the intra-juvenile competition does not only affect juvenile mortality, but also juvenile matu-
ration (the per capita transition rate). A density-dependent per capita juvenile mortality rate
alone, even if combined with a density-dependent per capita birth rate, can neither generate
Hopf bifurcation nor multiple interior equilibria. This feature seems to be related to the fact
that in our ODE model the length of the juvenile period is exponentially distributed. If the
length of the juvenile period is the same for all individuals (at least for those that are born at
the same time), then a density-dependent per capita birth rate can lead to periodic solutions
without any other nonlinear model ingredients [82,102].
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Chapter 4

Example: Ecotoxicology

Sublethal toxic effects in a simple aquatic food chain
B.W. Kooi, D. Bontje, G.A.K van Voorn and S.A.L.M. Kooijman. 2008.

Sublethal toxic effects in a simple aquatic food chain.
Ecological Modelling, 212: 304-318.

In this section we study the sublethal effect of toxicants on the functioning (biomass pro-
duction, nutrient recycling) and structure (species composition and complexity) of a simple
aquatic ecosystem in a well-mixed environment (chemostat reactor). The modelled ecosystem
consists of a nutrient consumed by a prey (e.g. bacteria, algae) which, in turn, is consumed
by a predator (e.g. ciliates, daphnia) population. The dynamic behaviour of this ecosystem is
described by a set of ordinary differential equations (ode)s: one for the nutrient and one for
each population. The system is stressed by a toxicant dissolved in the in-flowing water. The
transport of the toxicant is modelled using a mass balance formulation leading to an ode.
Bioaccumulation in the prey and predator populations is via uptake from the water, in case
of the predator also via consumption of contaminated prey. Mathematically this process is
described by a one-compartment model for the kinetics of the toxicant: uptake (from water
and food) and elimination. The toxicant affects individuals which make up populations. In
the model the physiological parameters depend on the internal concentration of the toxicant
in individuals. Examples of physiological parameters are cost for growth and maintenance,
and assimilation efficiency. In this paper we use bifurcation theory to analyse the long-term
dynamics of the models. In this way the parameter space is divided into regions with qualita-
tively different asymptotic dynamic behaviour of the system. As logical choice for bifurcation
parameters are the input rate of the nutrient and toxicant. The dynamic behaviour of the
stressed ecosystem can be much more complicated than that of the unstressed system. For
instance the nutrient–prey–toxicant system can show bi-stability and oscillatory dynamics.
Due to the toxic effects a total collapse (both prey and predator population go extinct) of the
nutrient–prey–predator–toxicant system can occur after invasion of a predator.

4.1 Introduction

In this section we analyse the lowest levels of an aquatic ecosystem. The model for the
populations (e.g. bacteria or algae) that compose the ecosystem is a simplified version of
the deb model [78]. The toxic effects on the population level are described by the debtox

55
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Table 4.1: State variables and control parameter set for nutrient–prey–predator chemostat
model. The environmental parameters that can be experimentally manipulated are D ∈
(0, 0.5) h−1, Nr ∈ (0, 150) mg dm−3 and cr ∈ (0, 9) µg dm−3: m mass of toxicant, t time, v
is dimension of the volume of the reactor and V biovolume or biomass of organism.

Var. Description Dimension

N Nutrient mass density Vv−1

R Prey biomass density Vv−1

cW Toxicant concentration in the water m v−1

cR Prey internal toxicant concentration m V−1

Par. Description Dimension

D Dilution rate t−1

Nr Nutrient mass density Vv−1

cr Toxicant concentration in influent m v−1

Table 4.2: Parameter set for bacterium-ciliate model, after [24]: m mass of toxicant, t time,
v is dimension of the volume of the reactor and V biovolume or biomass of organism.

Nutrient–Prey
µNR Max. growth rate t−1 0.5 h−1

INR Max. ingestion rate t−1 1.25 h−1

kNR Saturation constant V v−1 8.0 mg dm−3

mR0 Maintenance rate coefficient t−1 0.025 h−1

cRM0 NoEffect Concentration (nec) m V−1 0.1 µg mg−1

cRM Tolerance concentration m V−1 0.5 µg mg−1

bcfWR BioConcentration Factor v V−1 1.0 dm3 mg−1

approach for uni-cellular organisms with a simple life-history namely propagation by binary
fission [80]. The effect module is not based on parameters estimated from descriptive models
but on process-based models where physiological parameters depend on the internal toxicant
concentration. The maintenance process is affected. Here we describe the consequences on the
ecosystem functioning and structure where nutrients and toxicant are supplied and removed
at a constant rate in a spatially homogeneous chemostat [118].

The model for the nutrient–prey system in the chemostat is formulated in Section 4.2.
The model for the unstressed system predicts simple dynamic behaviour: a stable equilibrium
when sufficient nutrient is supplied. In Section 4.3 we show that under toxic stress, the model
predicts bi-stability under suitable environmental conditions.

Table 4.1 shows a list of the state variables and the control parameters. In Table 4.2
we give the parameter values used in this study. The physiological parameters are those
for a bacterium-ciliate system and were also used for various food web studies, see [70] and
reference therein.
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4.2 Model for nutrient–prey system

4.2.1 Unstressed nutrient–prey system

Let N(t) be the nutrient density and R(t) the biomass density of the population. Then the
governing equations for the simple ecosystem read (see [70])

dN

dt
= (Nr − N)D − INR

N

kNR + N
R , (4.1a)

dR

dt
=

(

µNR
N

kNR + N
− (D + mR0)

)

R . (4.1b)

A verbal description of these equations is as follows. The dilution (flow-through) rate D
(fraction of the volume replaced per unit of time) and the nutrient density Nr in the inflow
are the chemostat control parameters. The following terms model the interaction of the
population with the water: the influx of nutrient, DNr, the outflow of the nutrient, DN ,
and of population, DR. The consumption of the nutrient by the population is modelled by
a Holling type II functional response. The parameters are the maximum ingestion rate INR,
the maximum growth rate µNR and the saturation constant kNR. These three parameters
are fixed for a specific prey-nutrient combination indicated by the double subscript of the
variables. The ratio of the growth rate and ingestion rate is called the assimilation efficiency
in ecology or yield in microbiology. The parameter mR0 is the maintenance rate and models
a reduction of the growth rate due to overhead costs, related to keeping the organism alive.
These costs are assumed to be proportional to the biomass density of the prey R.

4.2.2 Stressed nutrient-prey system

Let cW (t) be the ambient water concentration of the toxicant in the reactor and cr the constant
concentration of the toxicant in the inflow. The dynamics of the toxicant is described by the
following mass-balance equation

d(cW + cRR)

dt
=

(

cr − (cW + cRR)
)

D , (4.2)

where we use that the volume of the reactor is constant. The toxicant enters the reactor via
the inlet with a concentration cr, in a similar way as the nutrients (the term NrD in (4.1a)).
The internal concentration of the toxicant in the organisms is denoted by cR (concentration
with respect to the biomass R). The rate at which the toxicant leaves the reactor consists of
two terms, transport of the dissolved toxicant in the reactor, cW D, and the toxicant absorbed
by the population, cRRD.

The one-compartment model for the internal toxicant concentration reads

dcR

dt
=kRucW − kRacR −

(

(INR − µNR)
N

kNR + N
+ D + mR(cR) +

1

R

dR

dt

)

cR , (4.3)

where the last term is due to dilution by growth.
Equivalently, the dynamics of the exchange of the toxicant between the prey and its

ambient water, is described by a mass-balance model for the total toxicant content in the
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prey being the product of internal concentration cR and the biomass density R as follows.
Using the product rule we obtain

dcRR

dt
= (kRucW − kRacR)R −

(

(INR − µNR)
N

kNR + N
+ D + mR(cR)

)

cRR . (4.4)

The first term on the right-hand side is the exchange between the water and the organisms
and the second term is the flux of the toxicant into the organisms that leaves the reactor and
the flux egested by the organisms as assimilation and maintenance products. The diffusion
transport fluxes are proportional to the area of the surfaces summed over all organisms. We
assume that the area of the surface (e.g. outer membrane) of the organisms is proportional
to their volume. The same holds at the population level. For organisms that propagate by
division this is justified. This means the surface area to volume ratio is included in the uptake
and elimination rate constants. Furthermore the toxicant is absorbed into the assimilation
and maintenance products and egested into the reactor as dissolved toxicant.

The exchange of the toxicant between the water and the organisms is assumed much faster
than the other biological processes including dilution, assimilation, growth and maintenance.
Due to the small size and large area to volume ratio for phyto- and zooplankton it is assumed
that the uptake and elimination of toxicants predominate exchange between the organism and
the water [47]. Similarly in [58] for a Daphnia population it is assumed that the characteristic
time for internal distribution is short compared with the characteristic time for exchange with
the water. We rewrite the system as a singular perturbation problem where κa = εkRa and
κu = εkRu with τ = t/ε where time scale separation occurs when ε ≪ 1

dcRR

dτ
= (κucW − κacR)R − ε

(

(INR − µNR)
N

kNR + N
+ D + mR(cR)

)

cRR , (4.5a)

dcW

dτ
= −(κucW − κacR)R + ε

(

(cr − cW )D + mR(cR)cRR
)

. (4.5b)

At the fast time scale we have the sub-model where ε → 0

dcRR

dτ
= (κucW − κacR)R , (4.6a)

dcW

dτ
= −(κucW − κacR)R , (4.6b)

where we used (4.2) and (4.4). In equilibrium we obtain

0 = κuc∗W − κac
∗
R . (4.7)

Thus, in quasi-steady state we have

kRu

kRa
=

κu

κa
=

c∗R
c∗W

= bcfWR , (4.8)

where the BioConcentration Factor for the population (bcfWR) is the ratio of the internal
toxicant concentration (with respect to the biomass density of the population) and the external
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toxicant concentration (with respect to the reactor volume). This relationship is now also
used in non-equilibrium situations on the slow time scale.

It is advantageous to introduce the total toxicant concentration in the reactor cT . The
set of governing equations then becomes

dN

dt
= (Nr − N)D − INR

N

kNR + N
R , (4.9a)

dR

dt
=

(

µNR(cR)
N

kNR + N
− (D + mR(cR))

)

R , (4.9b)

dcT

dt
= (cr − cT )D , where cT = cW + cRR = cW (1 + bcfWRR) . (4.9c)

The effect of the toxicant on the physiology of the populations is modelled as a depen-
dency on physiological parameters, such as growth rate and maintenance rate, on the internal
toxicant concentration. In [80] the following expressions are proposed

mR(cR) = mR0

(

1 +
(cR − cRM0)+

cRM

)

, (4.10a)

µNR(cR) = µNR0

(

1 +
(cR − cRG0)+

cRG

)−1
, (4.10b)

where the subscript plus operator is defined as x+ = max(0, x). The parameter mR0 is the
maintenance rate coefficient of the unstressed system (cr = 0). The toxicological parameters
are the No Effect Concentration nec (a threshold concentration for the onset of effects)
denoted by cRM0, and cRM called the tolerance concentration for maintenance. In [80] these
two parameters are based on external concentration (per volume of the reactor), not on
internal concentration (per biomass density) as is done here. Similarly, when the growth
process is the mode of action we have cRG0 and cRG, but this is not elaborated in the paper.

To calculate cR(t), t ≥ 0 depending on the two state variables cT (t) and R(t) we use

cW =
cT

1 + bcfWR R
, cR =

bcfWR cT

1 + bcfWR R
. (4.11)

This expression (4.11) is substituted into (4.10a) which, in turn, is substituted into (4.9b).

4.3 Analysis of the nutrient–prey system

Equilibria of a system are determined by the requirement that the time derivatives of the
state variable are zero. Let equilibrium values N∗ and R∗ denote a possible solution. The
equation for the dynamics of the toxicant concentration (4.11) yields the equilibrium situation
c∗T = c∗R (1 + bcfWRR∗)/bcfWR. Depending on the environmental conditions, there will be
one, E1, or multiple positive equilibria, E1 and E2 where N∗ < Nr, R

∗ > 0, c∗W < cr. Besides
these equilibria there is a trivial solution E0 = (N∗ = Nr, R

∗ = 0, c∗W = cr).
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Figure 4.1: A two-parameter bifurcation diagram with nutrient inflow Nr and dilution rate D as free

parameters for the population without toxicity stress (cr = 0) in the chemostat system (4.1), with

nutrient inflow Nr and dilution rate D as free parameters. Dashed lines are transcritical bifurcation

curve TC−. For dilution rates above this curve there is wash-out. Below the transcritical bifurcation

curve the population can invade a nutrient system and establishes at a stable positive equilibrium.

Table 4.3: List of bifurcations, codim-one curves and codim-two points (for two-parameter
bifurcation diagrams).

Bifurcation Description

Codim-one curves

TC±
a,i Transcritical bifurcation: − supercritical, + subcritical;

a = e or empty equilibrium : zero eigenvalue
a = c limit cycle: Floquet multiplier equal one
i = 1: invasion by population prey, i = 2: invasion by predator

T Tangent bifurcation for equilibrium: zero eigenvalue
Codim-two points

N Transition from sub- to supercritical transcritical bifurcation
tangent bifurcation curve originates
on boundary of region of bi-stability

BT Intersection of Hopf and tangent bifurcation curves
Origin of homoclinic connection (not shown)



4.3. ANALYSIS OF THE NUTRIENT–PREY SYSTEM 61

4.3.1 Unstressed nutrient–prey system

For the unstressed system (4.1) the two-parameter bifurcation diagram is shown in Fig. 4.1
where the environmental parameters Nr and D are the bifurcation parameters. The most
important bifurcations are characterised in Table 4.3.

Let the concentration nutrient in the inflow Nr be given, then it is realistic to assume that
there is a maximum dilution rate that supports existence of the population. For instance,
when the dilution rate is larger than the maximum growth rate of the population (D > µNR)
the population can never establish itself. For dilution rates below the D-value at the curve
TC− in Fig. 4.1 there is sufficient nutrient to support existence of the population. So, two
regions can be distinguished in the bifurcation diagram. In one region the population is
absent (equilibrium E0 where R∗ = 0), and in the other the population survives (equilibrium
E1 where R∗ > 0). These two regions are separated by a so-called supercritical transcritical
curve TC−.

In summary, local stability analysis of the positive equilibrium yields the long-term dy-
namics when the initial values for the state variables, N(0) and R(0), are in the vicinity of
the equilibrium. Calculation show that if the positive equilibrium exists it is stable. It is well-
known that it is also globally stable [118], that is for all positive initial values, N(0) > 0 and
R(0) > 0, there is convergence to the stable equilibrium. This property makes the chemostat
a popular experimental apparatus for growth of uni-cellular organism populations.

4.3.2 Stressed nutrient–prey–toxicant system

In the stressed case where the toxicant concentrations have to be considered in system (4.9),
(4.9c) with cr > 0 can be solved analytically:

cT (t) = (cT (0) − cr) exp(−Dt) + cr . (4.12)

Substitution of this expression into the two-dimensional ecosystem with state variables N(t),
(4.9a), and R(t), (4.9b), yields a non-autonomous system. For the asymptotic dynamics it
suffices to study the autonomous system where cT = cr is substituted in system (4.9a,4.9b),
see [118].

The bifurcation diagram is shown in Fig. 4.2 for cr = 1. In a toxic stressed system on
the transcritical bifurcation curve there is a point N where a so-called tangent bifurcation
curve T emanates. Below point N at the curve TC− the situation is the same as with
the unstressed system. Above point N there is a different kind of behaviour. The trivial
equilibrium E0 and equilibrium E1 are both stable. There are two stable attractors and a
third unstable equilibrium denoted by E2 that functions as a separatrix (more precisely the
point is a saddle and the stable manifold is the separatrix). The stable, E1, and unstable,
E2, positive equilibria collide at the tangent bifurcation T . For parameter values above the
T curve no positive equilibria exist, only the stable trivial equilibrium E0 does and therefore
in that region of the diagram the population goes extinct. This is illustrated in Fig. 4.3, a
one-parameter bifurcation diagram for Nr = 150 and cr = 1 with D the free parameter.

We conclude that the transcritical bifurcation curve in Fig. 4.2, changes character at point
N from supercritical TC− below N and subcritical TC+ above N while in N the tangent
bifurcation curve T emanates. Furthermore the reduction of the dimension of the system by
taking cT = cr holds for the analysis of the stability of the equilibria, but not when global
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Figure 4.2: A two-parameter bifurcation diagram with nutrient inflow Nr and dilution rate D as

free parameters for the population with toxicity stress in the chemostat system (4.9) where cr = 1.

Dashed lines are transcritical bifurcation curves TC± and dot-dashed curve the tangent bifurcations

T . At point N the tangent curve T originates and the transcritical bifurcation changes for supercritical

TC− in subcritical TC+. Wash-out occurs for dilution rates above the tangent curve T . Below the

transcritical bifurcation curve the population can invade a virgin system and establishes at a stable

positive equilibrium. Between the two curves T and TC− there is bi-stability.
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Figure 4.3: A one-parameter bifurcation diagram with dilution rate D as free parameter, for the
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aspects are involved: for instance to determine to which equilibrium the system will converge
when there are multiple equilibria.

4.4 Discussion

For an overview of different mathematical model formulations and their analysis of unstressed
ecosystems, the reader may consult [70] and references therein. In this paper we focused on
the sublethal effects of a toxicant on the ecosystem structure and functioning. Important
effects are extinction of species, invasibility by a species from a neighbourhood, abundance of
the different populations and long-term dynamics (stable equilibrium, oscillatory or chaotic
behaviour).

For the simple ecosystems studied, we found that toxic effects have very large consequences
for the long-term dynamical behaviour. When the maintenance process is the mode of action
the per capita maintenance rate coefficient is not constant anymore, but increases with internal
toxicant concentration. The concentration of the internal toxicant depends on the toxicant
concentration in the water which is in turn linked with the dynamics of the biomass of the
population since removal of the toxicant is partly via the biomass that leaves the reactor
at the dilution rate. This is a feed-back mechanism. Due to this feed-back mechanism the
repertoire of dynamical behaviour of the stressed system is much more diverse, for instance
bi-stability, cyclic behaviour and global bifurcations occur.

Bi-stability of the nutrient–prey system can be the result of various mechanisms, we
mention the Allee effect [3,124]. When a population possessing an Allee effect is consumed by a
predator population this can lead to a collapse of the complete system when a predator invades
the nutrient–prey system (see for instance [9, 64]). In [75] we showed that mathematically a
heteroclinic bifurcation is associated with this biological phenomenon.

Given a toxic stress level cr, it is possible to identify environmental conditions Nr and D,
under which the toxic stress has no effect on the abundances. This threshold concentration
value is determined by the requirement that to equals the nec value of at least one mode of
action of one population.



Chapter 5

Example: Forest-pest model

Forest-Pest Interaction Dynamics:
The Simplest Mathematical Models

M. YA. Antonovsky, R. A. Fleming, Yu. A. Kuznetsov and W.C. Clark, 1990.
Forest–Pest interaction dynamics: The simplest mathematical models Theoretical

Population Biology 37:343-367.

In this section we deal with the dynamics of a Forest-Pest system. The model in described
and analysed in [5]. The forest possesses two stages a young x and an old y stage. Therefore
the forest population is modelled by two odes. It is assumed that the pest feeds on the young
trees (undergrowth).

The bifurcation analysis shows that there is a global bifurcation involved with the destruc-
tion of a limit cycle. This stable limit cycle originates at a supercritical Hopf bifurcation of
a stable positive equilibrium. Beyond this global bifurcation the system colapes completely,
hence besides the pest and the yound trees also the old trees (due to lack of replacement by
yound trees). This a a kind of over-exploitation similar to that found in [124] for a predator-
prey system where the prey population growth shows an Allee effect.

5.1 Formulation of the model

The model equations in dimensionless form read

dx

dt
= ρy − (y − l)2x − sx − xz , (5.1a)

dy

dt
= x − hy , (5.1b)

dz

dt
= ǫz + Bxz , (5.1c)

where ρ and h are compound parameters which will serve as bifurcation parameters. We will
used the dimensioneless parameter values given in Table 5.1.

5.2 Bifurcation diagrams

A one-parameter diagram is shown in Fig. 5.1 where h is varied. Point G6= indicates a
heteroclines connection between the two positive saddle equilibria in the plane z = 0.
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Table 5.1: Parameter values after [5, Table 1] and the used dimensionless values with the calculation

of the bifurcation diagrams.

Parameter Units Values dimensionless Values

a ha2(103 trees)−2yr−1 0.00606 —
b 103 trees ha−1 0.247 —
c yr−1 0.01 —
ρ yr−1 0.134 variable
f yr−1 0.017 —
h yr−1 0.04 variable
A yr−1 0.004 —

ǫ yr−1 1.5 2
B yr−1 0.8 1
s yr−1 — 1

Fig. 5.2 is the two-parameter bifurcation diagram with besides h now ρ is also a bifurcation
parameter. Observe that Fig. 5.1 shows the three state variables as a function of h where
ρ = 10. For low h values the abundance of the young trees is low and of the old trees rather
high. Increasing h makes it possible for the pest to invade at TC2. This positive equilibrium
becomes unstable at a supercritical Hopf bifurcation H. Crossing this curve gives oscillatory
dynamics of a stable limit cycles. The size of this cycle increases with increasing h. At the
global bifurcation G6= this cycle disappears by a collision with the two saddle equilibria where
the pest is absent.Above this curve the zero equilibrium is globally stable.

Curve T is the tangent bifurcation curve. For parameter values on the left-hand side
of this curve the system is absent. At this curve two positive equilibria collide. Both are
unstable, see Fig. 5.1.
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The bifurcation parameters are ρ and h. Curves TC1 and TC2 are transcritical bifurcation curves.

Curve H is the Hopf bifurcation curve and G6= indicates the heteroclinic bifurcation curve.



Chapter 6

Food chain: Point-to-cycle

connections

Continuation of connecting orbits in 3D-odes: (I) Point-to-cycle connections
E.J. Doedel, B.W. Kooi, G.A.K. van Voorn and Yu.A. Kuznetsov
International Journal of Bifurcation and Chaos, 18(7):1889-1903.

We propose new methods for the numerical continuation of point-to-cycle connecting orbits
in 3-dimensional autonomous ode’s using projection boundary conditions. In our approach,
the projection boundary conditions near the cycle are formulated using an eigenfunction of
the associated adjoint variational equation, avoiding costly and numerically unstable com-
putations of the monodromy matrix. The equations for the eigenfunction are included in
the defining boundary-value problem, allowing a straightforward implementation in auto, in
which only the standard features of the software are employed. Homotopy methods to find
connecting orbits are discussed in general and illustrated with one example. Complete auto

demos, which can be easily adapted to any autonomous 3-dimensional ode system, are freely
available.

6.1 Introduction

Many interesting phenomena in ode systems can only be understood by analyzing global
bifurcations. Examples of such are the occurrence and disappearance of chaotic behaviour.
For example, the classical Lorenz attractor appears in a sequence of bifurcations, where
homoclinic orbits connecting a saddle equilibrium to itself and heteroclinic orbits connecting
an equilibrium point with a saddle cycle, are involved [2]. In the ecological context, [18, 19]
showed that regions of chaotic behaviour in parameter space in some food chain models are
bounded by bifurcations of point-to-cycle and cycle-to-cycle connections.

Thus, in order to gain more knowledge about the global bifurcation structure of a model,
information is required on the existence of homoclinic and heteroclinic connections between
equilibria and/or periodic cycles. The first type is a connection that links an equilibrium or
a cycle to itself (asymptotically bi-stable, so it necessarily has nontrivial stable and unstable
invariant manifolds). The second type is a connection that links an equilibrium or a cycle to
another equilibrium or cycle.

The continuation of connecting orbits in ode systems has been notoriously difficult. In
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[32]) and [13] direct numerical methods have been developed for the computation of orbits
connecting equilibrium points and their associated parameter values, based on truncated
boundary value problems with projection boundary conditions. Moreover, in [33] proposed
efficient methods to find starting solutions by successive continuations (homotopies). These
continuation methods have been implemented in HomCont, as incorporated in auto [20,
22, 36]. HomCont is only suitable for the continuation of homoclinic point-to-point and
heteroclinic point-to-point connections.

More recently, significant progress has been made in the continuation of homoclinic and
heteroclinic connections involving cycles. In [28, 29] a method has been developed based on
earlier works by [14] and [107]. Their method is also based on projection boundary conditions,
but uses an ad hoc multiple shooting technique and requires the numerical determination of
the monodromy matrix associated with the periodic cycles involved in the connection.

In this paper, we propose new methods for the numerical continuation of point-to-cycle
connections in 3-dimensional autonomous ode’s using projection boundary conditions. In
our approach, the projection boundary conditions near each cycle are formulated using an
eigenfunction of the associated adjoint variational equation, avoiding costly and numerically
unstable computation of the monodromy matrix. Instead, the equations for the eigenfunction
are included in the defining boundary-value problem, allowing a straightforward implemen-
tation in auto.

This section is organized as follows. In Section 7.2 we recall basic properties of the
projection boundary condition method to continue point-to-cycle connections. In Section 6.3
this method is adapted to efficient numerical implementation in a special – but important –
3D case. Homotopy methods to find connecting orbits are discussed in Section 6.4. Section
6.5 demonstrates that the algorithms allow for a straightforward implementation in auto,
using only the basic features of this software. The well-known standard three-level food chain
model based on the Rosenzweig–MacArthur system [111] is used to illustrate the power of
the new methods. In [34] also the Lorenz equations, an electronic circuit model are analysed.

6.2 Truncated BVP’s with projection BC’s

Before presenting a bvp for a point-to-cycle connection, we set up some notation.

(a) (b)

W s

−

W u

−

W s

− W u

−

ξ
ξ W u

+

W s

+
W s

+

W u

+

O+O+

Figure 6.1: Point-to-cycle connecting orbits in R
3: (a) n−

u = 1; (b) n−
u = 2.
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Consider a general system of ode’s

du

dt
= f(u, α), (6.1)

where f : R
n × R

p → R
n is a sufficiently smooth function of the state variables u ∈ R

n and
the control parameters α ∈ R

p. Denote by ϕt the (local) flow generated by (6.1)1.
Let O− be either a saddle or a saddle-focus equilibrium, say ξ, and let O+ be a hyperbolic

saddle limit cycle of (6.1). A solution u(t) of (6.1) defines a connecting orbit from O− to O+

if

lim
t→±∞

dist(u(t), O±) = 0 (6.2)

(see Figure 6.1 for illustrations). Since u(t + τ) satisfies (6.1) and (6.2) for any phase shift τ ,
an additional scalar phase condition

ψ[u, α] = 0 (6.3)

is needed to ensure uniqueness of the connecting orbit. This condition will be specified later.
For numerical approximation, the asymptotic conditions (6.2) are replaced by projection

boundary conditions at the end-points of a large truncation interval [τ−, τ+]: The points u(τ−)
and u(τ+) are required to belong to the linear subspaces that are tangent to the unstable and
stable invariant manifolds of O− and O+, respectively.

Let n−
u be the dimension of the unstable invariant manifold W u

− of ξ, i.e., the number of
eigenvalues λ−

u of the Jacobian matrix fu = Duf evaluated at the equilibrium which satisfy

ℜ(λ−) > 0. (6.4)

Denote by x+(t) a periodic solution (with minimal period T+) corresponding to O+ and
introduce the monodromy matrix

M+ = DxϕT+

(x)
∣

∣

∣

x=x+(0)
, (6.5)

i.e., the linearization matrix of the T+-shift along orbits of (6.1) at point x+
0 = x+(0) ∈ O+.

Its eigenvalues µ+ are called the Floquet multipliers; exactly one of them equals 1, due to
the assumption of hyperbolicity. Let m+

s = n+
s + 1 be the dimension of the stable invariant

manifold W s
+ of the cycle O+; here n+

s is the number of its multipliers satisfying

|µ+| < 1. (6.6)

A necessary condition to have an isolated family of point-to-cycle connecting orbits of (6.1)
is that (see [14])

p = n − m+
s − n−

u + 2 (6.7)

The projection boundary conditions in this case can be written as

L−(u(τ−) − ξ) = 0 , (6.8a)

L+(u(τ+) − x+(0)) = 0 , (6.8b)

1Whenever possible, we will not indicate explicitly the dependence of various objects on system parameters.
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where L− is a (n − n−
u ) × n matrix whose rows form a basis in the orthogonal complement

of the linear subspace that is tangent to W u
− at ξ. Similarly, L+ is a (n − m+

s ) × n matrix,
such that its rows form a basis in the orthogonal complement to the linear subspace that is
tangent to W s

+ of O+ at x+(0).
It can be proved that, generically, the truncated bvp composed of (6.1), a truncation

of (6.3), and (6.8) has a unique solution family (û, α̂), provided that (6.1) has a connecting
solution family satisfying (6.3) and (6.7).

The truncation to the finite interval [τ−, τ+] implies an error. If u is a generic connecting
solution to (6.1) at parameter value α, then the following estimate holds:

‖(u|[τ−,τ+], α) − (û, α̂)‖ ≤ Ce−2min(µ−|τ−|,µ+|τ+|), (6.9)

where ‖·‖ is an appropriate norm in the space C1([τ−, τ+], Rn)×R
p, u|[τ−,τ+] is the restriction

of u to the truncation interval, and µ± are determined by the eigenvalues of the Jacobian
matrix and the monodromy matrix. See [107] and [28,29] for exact formulations, proofs, and
references to earlier contributions.

6.3 New defining systems in R
3

Here we explain how the projection boundary conditions (6.8) can be implemented efficiently
in a special – but important – case n = 3. Thereafter we specify the defining system used
to continue connecting orbits in 3D-ode example systems with auto. A saddle cycle O+ in
such systems always has m+

s = m+
u = 2.

6.3.1 The equilibrium-related part

The equilibrium point ξ, an appropriate solution of f(ξ, α) = 0, cannot be found by time-
integration methods because it is a saddle. There are two different types of saddle equilibria
that can be connected to saddle cycles in 3D-ode’s. These are distinguished by the dimension
n−

u of the unstable invariant manifold W u
− of ξ: We have either n−

u = 1 or n−
u = 2 (see

Figure 6.1). In the former case, the connection is structurally unstable (has codim 1) and,
according to (6.7), we need two free system parameters for its continuation (p = 2). In the
latter case, however, the connection is structurally stable and can be continued, generically,
with one system parameter (p = 1). There is a small difference in the implementation of the
projection boundary condition (6.8a) in these two cases.

If n−
u = 1 (see Figure 6.2(a)), then the following explicit projection boundary condition

replaces (6.8a):

u(τ−) = ξ + εv, (6.10)

where ε > 0 is a given small number, and v ∈ R
3 is a unit vector that is tangent to W u

− at ξ.
Notice that this fixes the phase of the connecting solution u, so that (6.3) becomes (6.8a) in
this case. The vector v in (6.10) is, of course, a normalized eigenvector associated with the
unstable eigenvalue λu > 0 of the Jacobian matrix fu evaluated at the equilibrium. Hence,
we can use the following algebraic system to continue ξ, v and λu simultaneously:







f(ξ, α) = 0 ,
fξ(ξ, α)v − λuv = 0 ,

〈v, v〉 − 1 = 0 ,
(6.11)
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Figure 6.2: bvp’s to approximate connecting orbits: (a) n−
u = 1; (b) n−

u = 2.

where 〈x, u〉 = xTu is the standard scalar product in R
n.

If n−
u = 2 (see Figure 6.2(b)), then W u

− is orthogonal to an eigenvector v of the transposed
Jacobian matrix fT

u corresponding to its eigenvalue λs < 0, so that (6.8a) can be written as

〈v, u(τ−) − ξ〉 = 0. (6.12)

To continue ξ, v, and λs, we use a system similar to (6.11), namely:







f(ξ, α) = 0 ,
fT

ξ (ξ, α)v − λsv = 0 ,

〈v, v〉 − 1 = 0 .

(6.13)

As a variant of the phase condition (6.3) in this case, we can use the linear condition

〈η, u(τ−) − ξ〉 = 0, (6.14)

which places the starting point of the truncated connecting solution in a plane containing the
equilibrium ξ and orthogonal to a fixed vector η (not collinear with v).

6.3.2 The cycle and eigenfunctions

The heteroclinic connection is linked on the other side to a saddle limit cycle O+ (see Figure
6.2). Thus, we also need a bvp to compute it. We use the standard periodic bvp:

{

ẋ+ − f(x+, α) = 0 ,
x+(0) − x+(T+) = 0 ,

(6.15)

which is augmented by an appropriate phase condition that makes its solution unique. This
phase condition is actually a boundary condition for the truncated connecting solution, and
will be introduced below.

To set up the projection boundary condition for the truncated connecting solution u near
O+, we also need a vector, say w(0), that is orthogonal at x(0) to the stable manifold W s

+ of
the saddle limit cycle O+ (see Figure 6.2). It is well known that w(0) can be obtained from
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an eigenfunction w(t) of the adjoint variational problem associated with (6.15), corresponding
to its eigenvalue

µ =
1

µ+
u

, (6.16)

where µ+
u is a multiplier of the monodromy matrix M+ satisfying

|µ+
u | > 1 (6.17)

(see Appendix 6.8). The corresponding bvp is







ẇ + fT
u (x+, α)w = 0 ,

w(T+) − µw(0) = 0 ,
〈w(0), w(0)〉 − 1 = 0 ,

(6.18)

where x+ is the solution of (6.15). In our implementation the above bvp is replaced by an
equivalent bvp







ẇ + fT
u (x+, α)w + λw = 0 ,
w(T+) − sw(0) = 0 ,
〈w(0), w(0)〉 − 1 = 0 ,

(6.19)

where s = sign µ = ±1 and

λ = ln |µ| (6.20)

(see Appendix 6.8). In (6.19), the boundary conditions become periodic or anti-periodic,
depending on the sign of the multiplier µ, while the logarithm of its absolute value appears
in the variational equation. This ensures high numerical robustness.

Given w satisfying (6.19), the projection boundary condition (6.8b) becomes

〈w(0), u(τ+) − x+(0)〉 = 0. (6.21)

6.3.3 The connection

Finally, we need a phase condition to select a unique periodic solution among those which
satisfy (6.15), i.e., to fix a base point x+

0 = x+(0) on the cycle O+ (see Figure 6.2). Usually,
an integral condition is used to fix the phase of the periodic solution. For the point-to-cycle
connection, however, we need a new condition, since the end point near the cycle should vary
freely. To this end we require the end point of the connection to belong to a plane orthogonal
to the vector f+

0 = f(x+(0), α). This gives the following bvp for the connecting solution:

{

u̇ − f(u, α) = 0 ,
〈f(x+(0), α), u(τ+) − x+(0)〉 = 0 .

(6.22)
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6.3.4 The complete BVP

The complete truncated bvp to be solved numerically consists of (6.11), with

u(0) = ξ + εv, (6.23)

or (6.13), with

〈v, u(0) − ξ〉 = 0 , (6.24a)

〈η, u(0) − ξ〉 = 0, (6.24b)

as well as

ẋ+ − T+f(x+, α) = 0, (6.25a)

x+(0) − x+(1) = 0, (6.25b)

〈w(0), u(1) − x+(0)〉 = 0, (6.25c)

ẇ + T+fT
u (x+, α)w + λw = 0, (6.25d)

w(1) − sw(0) = 0, (6.25e)

〈w(0), w(0)〉 − 1 = 0, (6.25f)

u̇ − Tf(u, α) = 0, (6.25g)

〈f(x+(0), α), u(1) − x+(0)〉 = 0. (6.25h)

Here the time variable is scaled to the unit interval [0, 1], so that both the cycle period T+

and the connecting time T become parameters.
If the connection time T is fixed at a large value, this bvp allows to continue simultaneously

the equilibrium ξ, its eigenvalue λu or λs, the corresponding eigenvector v, the periodic
solution x+ corresponding to the limit cycle O+, its period T+, the logarithm of the absolute
value of the unstable multiplier of this cycle, the corresponding scaled eigenfunction w, as well
as (a truncation of) the connecting orbit u. These objects become functions of one system
parameter (when dim W u

− = 2) or two system parameters (when dimW u
− = 1). These free

system parameters are denoted as αi.
If dimW u

− = 2 then, generically, limit points (folds) are encountered along the solution
family. These can be detected, located accurately, and subsequently continued in two system
parameters, say, (α1, α2), using the standard fold-following facilities of auto.

6.4 Starting strategies

The bvp’s specified above can only be used if good starting data are available. This can
be problematic, since global objects – a saddle cycle and a connecting orbit – are involved.
However, a series of successive continuations in auto can be used to generate all necessary
starting data, given little a priori knowledge about the existence and location of a heteroclinic
point-to-cycle connection.

6.4.1 The equilibrium and the cycle

The equilibrium ξ, its unstable or stable eigenvalue, as well as the corresponding eigenvector
or adjoint eigenvector can be calculated using maple or matlab. Alternatively, this saddle



76 CHAPTER 6. FOOD CHAIN: POINT-TO-CYCLE CONNECTIONS

equilibrium can often be obtained via continuation of a stable equilibrium family through a
limit point (fold) bifurcation.

To obtain the limit cycle O+, one can continue numerically (with auto [36] or content

[91], for example) a limit cycle born at a Hopf bifurcation to an appropriate value of α, from
where we start the successive continuation.

6.4.2 Eigenfunctions

In the first of such continuations, the periodic solution corresponding the limit cycle at the
particular parameter values is used to get an eigenfunction. To explain the idea, let us begin
with the original adjoint eigenfunction w. Consider the periodic bvp (6.25a)–(6.25b) for the
cycle, to which the standard integral phase condition is added,

∫ 1

0
〈ẋ+

old(τ), x+(τ)〉 = 0 , (6.26)

as well as a bvp similar to (6.18), namely:







ẇ + T+fT
u (x+, α)w = 0 ,

w(1) − µw(0) = 0 ,
〈w(0), w(0)〉 − h = 0 .

(6.27)

In (6.26), x+
old is a reference periodic solution, typically the one in the preceding continuation

step. The parameter h in (6.27) is a homotopy parameter, that is set to zero initially. Then
(6.27) has a trivial solution

w(t) ≡ 0, h = 0, (6.28)

for any real µ. This family of trivial solutions parametrized by µ can be continued in auto

using a bvp consisting of (6.15) (with scaled time variable t), (6.26), and (6.27) with free
parameters (µ, h) and fixed α. A Floquet multiplier of the adjoint system then corresponds
to a branch point at µ1 along this trivial solution family (see Appendix 6.8). auto can
accurately locate such a point and switch to the nontrivial branch that emanates from it.
Continuing this secondary family in (µ, h) until, say, the value h = 1 is reached, gives a
nontrivial eigenfunction w corresponding to the multiplier µ1. Note that in this continuation
the value of µ remains constant, µ ≡ µ1, up to numerical accuracy.

The same method is applicable to obtain a nontrivial scaled adjoint eigenfunction. For
this, the bvp







ẇ + T+fT
u (x+, α)w + λw = 0 ,

w(1) − sw(0) = 0 ,
〈w(0), w(0)〉 − h = 0 ,

(6.29)

where s = sign(µ), replaces (6.27). A branch point at λ1 then corresponds to the adjoint
multiplier seλ1 . Branch switching then gives the desired eigendata.

6.4.3 The connection

Sometimes, an approximation of the connecting orbit can be obtained by time-integration of
(6.1) with a starting point satisfying (6.10) or (6.12) and (6.14). These data (the periodic
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solution corresponding to the limit cycle, its nontrivial eigenfunction, and the integrated
connecting orbit) must then be merged, using the same scaled time variable and mesh points.
This only works for non-stiff systems provided that the connecting orbit and its corresponding
parameter values are known a priori with high accuracy, which is not the case for most models.

A practical remedy in most cases is to apply the method of successive continuation first
introduced in [33] for point-to-point problems. This method does not guarantee that a connec-
tion will be found but works well if we start sufficiently close to a connection in the parameter
space. Here we generalize this method to point-to-cycle connections.

We first consider the case dim W u
− = 1. To start, we introduce a bvp composed of (6.11),

(6.23), and a modified version of (6.25), namely:

ẋ+ − T+f(x+, α) = 0, (6.30a)

x+(0) − x+(1) = 0, (6.30b)

Ψ[x+] = 0, (6.30c)

ẇ + T+fT
u (x+, α)w + λw = 0, (6.30d)

w(1) − sw(0) = 0, (6.30e)

〈w(0), w(0)〉 − 1 = 0, (6.30f)

u̇ − Tf(u, α) = 0, (6.30g)

〈f(x+(0), α), u(1) − x+(0)〉 − h1 = 0, (6.30h)

where Ψ in (6.30c) defines any phase condition fixing the base point x+(0) on the cycle O+;
for example

Ψ[x+] = x+
j (0) − aj , (6.31)

where aj is the jth-coordinate of the base point at some given parameter values, and h1 is a
homotopy parameter.

Take an initial solution to this bvp that collects the previously found equilibrium-related
data, the cycle-related data (x+, T+) including x+(0), the eigenfunction-related data (w, λ),
as well as the value of h1 computed for the initial “connection”

u(τ) = ξ + εveλuTτ , τ ∈ [0, 1], (6.32)

which is a solution of the scaled linear approximation of (6.1) in the tangent line to the
unstable manifold W u

− of ξ. By continuation in (T, h1) for a fixed value of α, we try to make
h1 = 0, while u(1) is near the cycle O+, so that T becomes sufficiently large.

After this is accomplished, we introduce another bvp composed of (6.11), (6.23), and

ẋ+ − T+f(x+, α) = 0, (6.33a)

x+(0) − x+(1) = 0, (6.33b)

〈w(0), u(1) − x+(0)〉 − h2 = 0, (6.33c)

ẇ + T+fT
u (x+, α)w + λw = 0, (6.33d)

w(1) − sw(0) = 0, (6.33e)

〈w(0), w(0)〉 − 1 = 0, (6.33f)

u̇ − Tf(u, α) = 0, (6.33g)

〈f(x+(0), α), u(1) − x+(0)〉 = 0, (6.33h)
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where h2 is another homotopy parameter.
Using the solution obtained in the previous step, we can activate one of the system pa-

rameters, say α1, and aim to find a solution with h2 = 0 by continuation in (α1, h2) for fixed
T . Then we can improve the connection by continuation in (α1, T ), restarting from this latest
solution, in the direction of increasing T . Eventually, we fix a sufficiently large value of T and
continue the (approximate) connecting orbit in two systems parameters, say (α1, α2), using
the original bvp without any homotopy parameter as described in Section 6.3.4.

When dim W u
− = 2, a minor modification of the above homotopy method is required. In

this case, we replace (6.24) by the explicit boundary conditions

u(0) − ξ − ε(c1v
(1) + c2v

(2)) = 0, (6.34a)

c2
1 + c2

2 = 1, (6.34b)

where ε is a small parameter specifying the distance between u(0) and ξ, v(j) are two linear-
independent vectors tangent to W u

− of the saddle ξ, and c1,2 are two new scalar homotopy
parameters. Note that if v = (v1, v2, v3)

T is a solution to (6.13) with v2 6= 0, then one can
use the normalized vectors

v(1) =





v2

−v1

0



 , v(2) =





0
v3

−v2



 . (6.35)

Now consider a bvp composed of (6.13), (6.34), and (6.30). The initial data for this bvp are
the same as in the case dim W u

− = 1, except for

c1 = 1, c2 = 0. (6.36)

The initial “connection” in this case is

u(τ) = ξ + εeτTAv(1), τ ∈ [0, 1], (6.37)

where A = fu(ξ, α), to be used to compute the initial value of h1 in (6.30h).
By continuation in (T, h1) (and, eventually, in (c1, c2, h1)) for fixed values of all other

parameters, we aim to locate a solution with h1 = 0, with u(1) near the base point of the
cycle O+, so that T becomes sufficiently large. We then switch to the bvp composed of (6.11),
(6.34), and (6.33), and we aim to locate a solution with h2 = 0, by continuation in (c1, c2, h2)
for fixed T . When this is achieved, we have a solution to the original bvp (6.13), (6.24), and
(6.25) introduced in Section 6.3.4 and containing no homotopy parameters. Using this bvp,
we can continue the approximate connecting orbit in one system parameter, say α1, with T
fixed.

Examples of such successive continuations will be given in Section 6.6, where we consider
the standard model of a 3-level food chain. In that section also an alternative bvp formulation
for (6.34) is given. When one system parameter is varied, limit points (folds) can be found
and then continued in two system parameters.

6.5 Implementation in AUTO

Our algorithms have been implemented in auto, which solves the boundary value problems
using superconvergent orthogonal collocation with adaptive meshes. auto can compute paths



6.6. A FOOD CHAIN MODEL 79

of solutions to boundary value problems with integral constraints and non-separated boundary
conditions:

U̇(τ) − F (U(τ), β) = 0 , τ ∈ [0, 1], (6.38a)

b(U(0), U(1), β) = 0 , (6.38b)
∫ 1

0
q(U(τ), β)dτ = 0 , (6.38c)

where

U(·), F (·, ·) ∈ R
nd , b(·, ·) ∈ R

nbc, q(·, ·) ∈ R
nic , (6.39)

and

β ∈ R
nfp . (6.40)

Here β represents the nfp free parameters that are allowed to vary, where

nfp = nbc + nic − nd + 1. (6.41)

The function q can also depend on U̇ and on the derivative of U with respect to pseudo-
arclength, as well as on Û , the value of U at the previously computed point on the solution
family.

For our primary bvp problem (6.11) or (6.13) with (6.23) or (6.24), respectively, and
(6.25), we have

nd = 9, nic = 0, (6.42)

and nbc = 19 or 18, respectively, since (6.11) and (6.13) are treated as boundary conditions.

6.6 A food chain model

In this section we illustrate the performance of our algorithm by applying it to one biologically
relevant system.

The following three-level food chain model from theoretical biology is based on the Rosenzweig–
MacArthur model [111]. The equations are given by







ẋ1 = x1(1 − x1) − f1(x1, x2),
ẋ2 = f1(x1, x2) − f2(x2, x3) − d1x2,
ẋ3 = f2(x2, x3) − d2x3,

(6.43)

with Holling Type-II functional responses

fi(u, v) =
aiuv

1 + biu
, i = 1, 2. (6.44)

The death rates d1 and d2 are used as bifurcation parameters, with the other parameters
set at a1 = 5, a2 = 0.1, b1 = 3, and b2 = 2.

It is well known that this model displays chaotic behaviour in a given parameter range,
see [61,66,90,92,99].
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Previous work in [18, 19] has also shown that the regions of chaos are intersected by
homoclinic and heteroclinic global connections. In particular, a heteroclinic point-to-cycle
orbit connecting a saddle with a two-dimensional unstable manifold to a saddle cycle with
a two-dimensional stable manifold can exist. It was shown that the stable manifold of this
limit cycle forms the basin boundary of the interior attractor and that the boundary has a
complicated structure, especially near the equilibrium, when the heteroclinic orbit is present.
These and other results were obtained numerically using multiple shooting. In this section we
reproduce these results for the heteroclinic point-to-cycle connection. Using our homotopy
method we obtain an accurate approximation of the heteroclinic orbit. A one-parameter
bifurcation diagram then shows limit points, which correspond to tangencies of the above-
mentioned two-dimensional manifolds. We then continue the limit points in two parameters.

A starting point can be found, for example, at d1 ≈ 0.2080452, d2 = 0.0125, where there
is a fold bifurcation in which two limit cycles appear. This also corresponds to the birth of
the heteroclinic point-to-cycle connection.

Before using the homotopy method to obtain an approximation of the point-to-cycle con-
nection, we locate a Hopf bifurcation, for instance at d1 ≈ 0.51227, d2 = 0.0125. The limit
cycle born at this Hopf bifurcation is continued up to a selected value of d1, say, d1 = 0.25.

We now have an equilibrium

ξ = (0.74158162, 0.16666666, 11.997732) (6.45)

and a saddle limit cycle with the base point

x+(0) = (0.839705, 0.125349, 10.55289) (6.46)

and period T+ = 24.282248. Its nontrivial multipliers are

µ+
s = 0.6440615, µ+

u = 6.107464 · 102. (6.47)

The eigenfunction w is obtained as described in the previous sections. Continuation of the
trivial solution of the bvp (6.25a), (6.25b), (6.26), and (6.29) and the subsequent continuation
of the bifurcating family until h = 1, yields the multiplier

λ = ln(µ+
s ) = −0.439961. (6.48)

Note that we use the stable multiplier, because of the projection boundary conditions. The
associated nontrivial eigenfunction w(t) with ‖w(0)‖ = 1 has

w(0) = (0.09306,−0.87791,−4.69689)T . (6.49)

We now consider a bvp composed of (6.13), (6.34a), and (6.30). Using content and
matlab we obtain an approximation of the connection with the boundary condition

Ψ[x+] = x+
2 (0) − 0.125349 (6.50)

and period T = 155.905. The starting point is calculated by splitting the normalized adjoint
stable vector (evaluated at d1 = 0.25, d2 = 0.0125)

v = (0.098440, 0.168771, 0.0049532)T (6.51)
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Figure 6.3: An approximation to the point-to-cycle connection projected onto the (x2, x3)-plane for
the food chain model with a1 = 5, a2 = 0.1, b1 = 3, b2 = 2, d1 = 0.25, and d2 = 0.0125.
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Figure 6.4: Several point-to-cycle connections in the food chain model with different values of d1.

into v(1) and v(2), as described in Section 6.4.3, and multiplying it by a small ε, say ε = 0.001.
In our case the starting point was

u(0) = (0.742445, 0.166163, 11.997732). (6.52)

The first homotopy step involves continuation in (h1, T ). However, this does not lead to
zeroes of h1. To obtain h1 = 0 we expand the previous set of bvps with (6.34b). Subsequent
continuation in (c1, c2, h1) gives a solution with h1 = 0 that indeed ends near the base point
x+(0) of the limit cycle.

For continuation in the second homotopy step, a switch is made to a bvp composed of
(6.13), (6.33) and (6.34). Continuation in (c1, c2, h2) leads to some solutions with h2 = 0.

The obtained approximate connecting point-to-cycle connection now suffices for continua-
tion in system parameters. Before doing a continuation in a system parameter the connection
is improved by increasing the connection period. A user-defined point of T = 300 suffices.
Next, the parameter ε is decreased up to a user-defined point of ε = −1 · 10−5, so that the
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Figure 6.5: A two-parameter bifurcation diagram of the food chain model that shows the region where
there exist point-to-cycle connections. The region is bounded on one side by the cycle fold, (Tc), and
on the other side by the curve Thet, the locus of limit points of the heteroclinic connections.

starting point u(0) is slightly away from the equilibrium ξ. Figure 6.3 displays a projection
of the point-to-cycle connection onto the (x2, x3)-plane.

Now the connecting orbit can be continued up to a limit point in one system parameter.
Figure 6.4 displays three connecting orbits obtained after continuation with respect to α1 =
d1. Continuations in d1 result in the detection of the points

d1 = 0.280913 and d1 = 0.208045 (6.53)

where the first one is a limit point and the second one a termination point. This point
coincides with a tangent bifurcation for the limit cycle to which the point-to-cycle orbit
connects. Continuations in d2 result in the detection of the points

d2 = 0.0130272 and d2 = 9.51660 · 10−3 (6.54)

which are both limit points. Any of the detected limit points can now be used as a starting
point for a two-parameter continuation in α = d1 or d2. In practice, the connection period
may have to be increased or decreased to obtain the full two-parameter continuation curve.
In the demo, the last limit point (d2 = 9.51660 · 10−3) is the one selected for the food chain
model. The two-parameter continuation curve terminates at both ends in codim 2 points
lying on the above-mentioned tangent bifurcation for the limit cycle. These points coincide
with the log multiplier λ = 0. Observe that this corresponds to the point d1 = 0.208045,
detected in the one-parameter continuation, where also λ = 0.

For the continuation in two system parameters, the bc (6.34) proves ineffective, since it
leads to the detection of several spurious limit points. This is, because the orbit spiralling
out from the equilibrium has an elliptical shape. The circle of a small radius, centered at the
equilibrium, intersects the spiral at several points, one of which is the starting point of the
connecting orbit. During continuation, with a changing problem parameter, the spiral will
change size and the starting point on the circle may collide with another such point where
the circle and the spiral intersect. This intersection would correspond to a fold with respect
to the problem parameter. As a result, to obtain a full continuation curve of the connecting
orbit in two system parameters, some restarts are required.
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In order to avoid these spurious folds, we returned to the original bc (6.24) with (6.24b)
in the form

uj(0) − ξj = 0 , (6.55)

where j is either 1,2 or 3. By setting j = 2 we are in line with the work in [19], who used a
Poincaré plane through the equilibrium ξ where x2 = ξ2.

Figure 6.5 shows the curve of limit points Thet that is computed with the method described
above, using the standard switching and fold-following facilities of auto. This curve can be
obtained in one run, given the connection period is chosen conveniently. It agrees with the
results previously obtained in [18] by labourious multiple shooting.

6.7 Discussion

Our continuation method for point-to-cycle connections, using homotopies in a boundary
value setting is both robust and time-efficient. Detailed auto demos carry out the com-
putations described here are freely downloadable [36]. Although the method was presented
for 3D-systems, it can be extended directly to point-to-cycle connections in n-dimensional
systems, when the unstable invariant manifold of the equilibrium ξ is either one-dimensional
or has codimension one, while the stable invariant manifold of the cycle O+ has codimension
one.

In [34] the methodis extended to include detection and continuation of cycle-to-cycle
connections.

6.8 Monodromy matrices

In order to approximate the invariant manifolds of a limit cycle we use eigenvalues and eigen-
functions of appropriate variational problems. These eigenvalues in turn are the eigenvalues
of the so-called monodromy matrix.

To define an eigenfunction of the periodic solution x(t + T ) = x(t), where T is the period
of the cycle, of an autonomous system of smooth ode’s

u̇ = f(u), f : R
n → R

n, (6.56)

write a solution of this system near the cycle in the form

u(t) = x(t) + ξ(t) , (6.57)

where ξ(t) is a small deviation from the periodic solution. After substitution and truncation
of the O(‖ξ‖2)-terms, we obtain the following variational system:

ξ̇ = A(t)ξ , ξ ∈ R
n , (6.58)

where A(t) = fu(x(t)) is the Jacobian matrix evaluated along the periodic solution; A(t + T )
= A(t).

Now, consider the matrix initial-value problem

Ẏ = A(t)Y , Y (0) = In, (6.59)
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where In is the unit n × n matrix. Its solution Y (t) at t = T is the monodromy matrix of the
cycle:

M = Y (T ). (6.60)

The monodromy matrix is nonsingular. Any solution ξ(t) to (6.58) satisfies

ξ(T ) = Mξ(0) . (6.61)

The eigenvalues of the monodromy matrix M are called the Floquet multipliers of the cycle.
There is always a multiplier +1. Moreover, the product of all multipliers is positive:

µ1µ2 · · · µn = exp

(∫ T

0
div f(x(t)) dt

)

. (6.62)

Together with (6.58), consider the adjoint variational system

ζ̇ = −AT(t)ζ , ζ ∈ R
n (6.63)

and the corresponding matrix initial-value problem

Ż = −AT(t)Z , Z(0) = In, (6.64)

which is the adjoint system to (6.59). Note, that the multipliers of the adjoint monodromy
matrix

N = Z(T ) (6.65)

are the inverse multipliers of the monodromy matrix M = Y (T ). The proof of this well-known
fact goes as follows. Compute

d

dt
(ZTY ) =

dZ
T

dt
Y + ZT dY

dt

= (−ATZ)TY + ZTAY

= ZT(−A)Y + ZTAY = 0 .

Since Z(0) = Y (0) = In, we get ZT(T )Y (T ) = In, which implies

N = [M−1]T. (6.66)

Due to (6.61), a multiplier µ satisfies v(T ) = µv(0) with v(0) 6= 0 or, equivalently, it is a
solution component of the following bvp on the unit interval [0, 1]:







v̇ + TA(t)v = 0 ,
v(1) − µv(0) = 0 ,

〈v(0), v(0)〉 − 1 = 0 .
(6.67)

First assume that µ > 0 and write

µ = eλ, v(t) = eλtw(t). (6.68)
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Then w satisfies a periodic bvp, namely:







ẇ + TA(t)w + λw = 0 ,
w(1) − w(0) = 0 ,

〈w(0), w(0)〉 − 1 = 0 .
(6.69)

Similarly, when µ < 0, we can introduce

µ = −eλ, v(t) = eλtw(t) (6.70)

and obtain an anti-periodic bvp







ẇ + TA(t)w + λw = 0 ,
w(1) + w(0) = 0 ,

〈w(0), w(0)〉 − 1 = 0 .
(6.71)

This technique can easily be adapted to the multipliers of the adjoint variational problem
(6.63).

Finally, we note that the eigenvalue problem for a Floquet multiplier

Mv − µv = 0 (6.72)

can be considered as a continuation problem with n + 1 variables (v, µ) ∈ R
n × R defined

by n equations. This continuation problem has a trivial solution family (v, µ) = (0, µ). An
eigenvalue µ1 corresponds to a branch point, from which a secondary solution family (v, µ1)
with v 6= 0 emanates. This nontrivial family can be continued using an extended continuation
problem

{

Mv − µv = 0 ,
〈v, v〉 − h = 0,

(6.73)

which consists of n + 1 equation with n + 2 variables (v, µ, h). If h = 1 is reached, we get a
normalized eigenvector v corresponding to the eigenvalue µ1, since along this branch µ ≡ µ1.
Generalization of this procedure to the bvp (6.67) (as well as to (6.69), (6.71), and their
adjoint versions) is straightforward.
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Chapter 7

Cycle-to-cycle connections in food

chain

Continuation of connecting orbits in 3D-odes: (II) Cycle-to-cycle connections
E.J. Doedel, B.W. Kooi, G.A.K. van Voorn and Yu.A. Kuznetsov
International Journal of Bifurcation and Chaos, 19(1):159-169.

In [34] we discussed new methods for the numerical continuation of point-to-cycle connect-
ing orbits in 3-dimensional autonomous odes using projection boundary conditions. In this
second part we extend the method to the numerical continuation of cycle-to-cycle connecting
orbits. In our approach, the projection boundary conditions near the cycles are formulated
using eigenfunctions of the associated adjoint variational equations, avoiding costly and nu-
merically unstable computations of the monodromy matrices. The equations for the eigen-
functions are included in the defining boundary-value problem, allowing a straightforward
implementation in auto, in which only the standard features of the software are employed.
Homotopy methods to find the connecting orbits are discussed in general and illustrated with
an example from population dynamics. Complete auto demos, which can be easily adapted
to any autonomous 3-dimensional ode system, are freely available.

7.1 Introduction

In a diversity of scientific fields bifurcation theory is used for the analysis of systems of ordinary
differential equations (odes) under parameter variation. Many interesting phenomena in ode

systems are linked to global bifurcations. Examples of such are overharvesting in ecological
models with bistability properties [5,9,124], and the occurrence and disappearance of chaotic
behaviour in such models. For example, it has been shown (see [18, 19, 90]) that chaotic
behaviour of the classical food chain models is associated with global bifurcations of point-
to-point, point-to-cycle, and cycle-to-cycle connecting orbits.

In [34] we discussed heteroclinic connections between equilibria and cycles. Here we look
at connections that link a cycle to itself (a homoclinic cycle-to-cycle connection, for which
the cycle is necessarily saddle), or to another cycle (a heteroclinic cycle-to-cycle connection).
Orbits homoclinic to the same hyperbolic cycle are classical objects of the Dynamical Systems
Theory. It is known thanks to [15, 101, 109, 116, 117] that a transversal intersection of the
stable and unstable invariant manifolds of the cycle along such an orbit implies the existence

87
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of infinite number of saddle cycles nearby. Disappearance of the intersection via collision of
two homoclinic orbits (homoclinic tangency) is an important global bifurcation for which the
famous Hénon map turns to be a model Poincaré mapping [44,45,88,106].

Numerical methods for homoclinic orbits to equilibria have been devised by [30] but see
[34], who approximated homoclinic orbits by periodic orbits of large but fixed period. In [13]
a direct numerical method has been developed for the computation of such connecting orbits
and their associated parameter values, based on integral conditions and a truncated boundary
value problem (bvp) with projection boundary conditions.

The continuation of homoclinic connections in auto [36] improved with the development
of HomCont by [20, 22]. However, it is only suited for the continuation of bifurcations of
homoclinic point-to-point connections and some heteroclinic point-to-point connections. A
modification of this software was introduced in [27], that uses the continuation of invari-
ant subspaces (cis-algorithm) for the location and continuation of homoclinic point-to-point
connections.

In [29]) significant progress has been made by developing methods to continue point-
to-cycle and cycle-to-cycle connecting orbits based on another work in [14]. Their method
employs a multiple shooting technique and requires the numerical solving for the monodromy
matrices associated with the periodic cycles involved in the connection. Recently, Krauskopf
and Rieß (2008) used a Lins method approach to finding and continuing similar connections.

Our previous paper [34] we dealt with a method for the detection and continuation of
point-to-cycle connections. Here this method is adapted for the continuation of homoclinic
and heteroclinic cycle-to-cycle connections. The method is set up such that the homoclinic
case is essentially a heteroclinic case where the same periodic orbit (but not the periodic
solution) is doubled. In Section 7.2 we give a short overview of a bvp formulation to solve a
heteroclinic cycle-to-cycle problem. In Section 7.3 it is shown how boundary conditions are
implemented. In Section 7.4 we discuss starting strategies to obtain approximate connecting
orbits using homotopy. In Section 6.5 the bvp is made suitable for numerical implementation.

Results are presented of the continuation of a homoclinic cycle-to-cycle connection in
the standard three-level food chain model in Section 7.6. Previously numerically in [18] the
two-parameter continuation curve of this connecting orbit has been obtained using a shooting
method, combined with the Poincaré map technique. In [34] we reproduced the results for the
structurally stable heteroclinic point-to-cycle connection of the same food chain model using
the homotopy method. In this paper we discuss how the homoclinic cycle-to-cycle connection
can be detected, and continued in parameter space using the homotopy method. Also, it is
set up such that it can be used as well for a heteroclinic cycle-to-cycle connection.

7.2 Truncated BVPs with projection BCs

Before presenting the bvp that describes a cycle-to-cycle connection, let us first set up some
notation. Consider a general system of ODEs

du

dt
= f(u, α), (7.1)

where f : R
n ×R

p → R
n is sufficiently smooth, given that state variables u ∈ R

n, and control
parameters α ∈ R

p. Thus, the dimension of the state space is n and the dimension of the
parameter space is p. The (local) flow generated by (7.1) is denoted by ϕt. Whenever possible,
we will not indicate explicitly the dependence of various objects on parameters.
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Figure 7.1: Cycle-to-cycle connecting orbits in R
3: (a) heteroclinic orbit, O+ 6= O−; (b) homoclinic

orbit, O+ = O−.

We assume that both O− and O+ are saddle limit cycles of (7.1). A solution u(t) of (7.1)
for fixed α defines a connecting orbit from O− to O+ if

lim
t→±∞

dist(u(t), O±) = 0 . (7.2)

(Figure 7.1 depicts such a connecting orbit in the 3D-space.) Since u(t+ τ) satisfies (7.1) and
(7.2) for any phase shift τ , an additional phase condition

ψ[u, α] = 0 , (7.3)

should be imposed to ensure uniqueness of the connecting solution. This condition will be
specified later.

For numerical approximations, the asymptotic conditions (7.2) are substituted by projec-
tion boundary conditions at the end-points of a large truncation interval [τ−, τ+], following [14].
It is prescribed that the points u(τ−) and u(τ+) belong to the linear subspaces, which are
tangent to the unstable and stable invariant manifolds of O− and O+, respectively.

Now, denote by x±(t) a periodic solution (with minimal period T±) corresponding to O±

and introduce the monodromy matrix

M± = DxϕT±

(x)
∣

∣

∣

x=x±(0)
,

i.e. the linearization matrix of the T±-shift along orbits of (7.1) at point x±
0 = x±(0) ∈ O±.

Its eigenvalues are called Floquet multipliers, of which one (trivial) equals 1. Let m+
s = n+

s +1
be the dimension of the stable invariant manifold W s

+ of the cycle O+, where n+
s is the number

of its multipliers satisfying

|µ| < 1.

Along the same line, m−
u = n−

u + 1 is the dimension of the unstable invariant manifold W u
− of

the cycle O−, and n−
u is the number of its multipliers satisfying

|µ| > 1.

To have an isolated branch of cycle-to-cycle connecting orbits of (7.1) it is necessary that

p = n − m+
s − m−

u + 2 , (7.4)
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Table 7.1: List of notation used in the paper.

sym. meaning

x± Periodic solution
v± Eigenfunction
w± Scaled adjoint eigenfunction
u Connection
α Bifurcation parameters
O+ Limit cycle where connection ends
O− Limit cycle where connection starts
W s

+ Stable manifold of the cycle O+

W u
− Unstable manifold of the cycle O−

µ+
u Unstable multiplier of the cycle O+

µ−
s Stable multiplier of the cycle O−

µ−
u Unstable multiplier of the cycle O−

µ+ Adjoint multiplier 1/µ+
u

µ− Adjoint multiplier 1/µ−
s

λ± ln(µ±)
T± Period of the cycle O±

T Connection time

(see [14]).
The projection boundary conditions in this case become

L±(u(τ±) − x±(0)) = 0 , (7.5)

where L− is a (n−m−
u )×n matrix whose rows form a basis in the orthogonal complement to

the linear subspace that is tangent to W u
− at x−(0). Similarly, L+ is a (n − m+

s ) × n matrix,
such that its rows form a basis in the orthogonal complement to the linear subspace that is
tangent to W s

+ at x+(0).
The above construction also applies in the case when O+ and O− coincide, i.e. we deal

with a homoclinic orbit to a saddle limit cycle O+ = O−. Note that, in general, the base
points x±(0) ∈ O± remain different (and so do the periodic solutions x±(t)).

It can be proved that, generically, the truncated bvp composed of (7.1), a truncation of
(7.3), and (7.5), has a unique solution branch (û(t, α̂), α̂), provided that (7.1) has a connecting
solution branch satisfying (7.3) and (7.4).

The truncation to the finite interval [τ−, τ+] causes an error. If u is a generic connecting
solution to (7.1) at parameter α, then the following estimate holds in both cases:

‖(u|[τ−,τ+], α) − (û, α̂)‖ ≤ Ce−2min(µ−|τ−|,µ+|τ+|), (7.6)

where ‖·‖ is an appropriate norm in the space C1([τ−, τ+], Rn)×R
p, u|[τ−,τ+] is the restriction

of u to the truncation interval, and µ± are determined by the eigenvalues of the monodromy
matrices. For exact formulations, proofs, and references to earlier contributions, see [28, 29,
107], including the Erratum.
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7.3 New defining systems in R
3

In this section we show how to implement the boundary conditions (7.5). We consider the
case n = 3 where O− and O+ are saddle cycles and therefore always m−

s = m−
u = 2 and

m+
s = m+

u = 2. Substitution in (7.4) gives the number of free parameters for the continuation
p = 1.

Note that the complete bvp will consist of 15 equations (2 saddle cycles, 2 eigendata for
these cycles, and the connecting orbit) and 19 boundary conditions.

x+

x+

0
u(1)x−

x−
0

u(0)

O−

w−(0)

w−

w+(0)

w+

f−
0

O+

u

f+

0

Figure 7.2: Ingredients of a bvp to approximate a heteroclinic connecting orbit. The homoclinic
cycle-to-cycle connection is also approached as the heteroclinic case, where two saddle cycles coincide.

7.3.1 The cycle and eigenfunctions

To compute the saddle limit cycles O− and O+ involved in the heteroclinic connection (see
Figure 7.2) we need a bvp. The standard periodic bvp can be used

{

ẋ± − f(x±, α) = 0 ,
x±(0) − x±(T±) = 0 ,

(7.7)

A unique solution of this bvp is determined by using an appropriate phase condition, which
is actually a boundary condition for the truncated connecting solution, and which will be
introduced below.

To set up the projection boundary condition for the truncated connecting solution u near
O±, we also need a vector, say w+(0), that is orthogonal at x+(0) to the stable manifold W s

+

of the saddle limit cycle O+, as well another vector, say w−(0), that is orthogonal at x−(0) to
the unstable manifold W u

− of the saddle limit cycle O− (see Figure 7.2). Each vector w±(0)
can be obtained from an eigenfunction w±(t) of the adjoint variational problem associated
with (7.7), corresponding to eigenvalue µ±. These eigenvalues satisfy

µ+ =
1

µ+
u

, µ− =
1

µ−
s

,

where µ+
u and µ−

s are the multipliers of the monodromy matrix M± with

|µ+
u | > 1 , |µ−

s | < 1 .
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The corresponding bvp is







ẇ± + fT
u (x±, α)w± = 0 ,

w±(T±) − µ±w±(0) = 0 ,
〈w±(0), w±(0)〉 − 1 = 0 ,

(7.8)

where x± is the solution of (7.7). In our implementation the above bvp is replaced by an
equivalent bvp







ẇ± + fT
u (x±, α)w± + λ±w± = 0 ,
w±(T±) − s±w±(0) = 0 ,
〈w±(0), w±(0)〉 − 1 = 0 ,

(7.9)

where s± = sign µ± and

λ± = ln |µ±| . (7.10)

(See [34, Appendix]).
In (7.9), the boundary conditions become periodic or anti-periodic, depending on the sign

of the multiplier µ±, while the logarithm of its absolute value appears in the variational
equation. This ensures high numerical robustness.

Given w± satisfies (7.9), the projection boundary conditions (7.5) become

〈w±(0), u(τ±) − x±(0)〉 = 0. (7.11)

7.3.2 The connection

We use the following bvp for the connecting solution:

{

u̇ − f(u, α) = 0 ,
〈f(x±(0), α), u(τ±) − x±(0)〉 = 0 .

(7.12)

For each cycle, a phase condition is needed to select a unique periodic solution among those
which satisfy (7.7), i.e. to fix a base point x±

0 = x±(0) on the cycle O± (see Figure 7.2). For
this we require the end-point of the connection to belong to a plane orthogonal to the vector
f(x+(0), α), and the starting point of the connection to belong to a plane orthogonal to the
vector f(x−(0), α). This allows the base points x±(0) to move freely and independently upon
each other along the corresponding cycles O±.
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7.3.3 The complete BVP

The complete truncated bvp to be solved numerically consists of

ẋ± − T±f(x±, α) = 0, (7.13a)

x±(0) − x±(1) = 0 , (7.13b)

ẇ± + T±fT
u (x±, α)w± + λ±w± = 0 , (7.13c)

w±(1) − s±w±(0) = 0, (7.13d)

〈w±(0), w±(0)〉 − 1 = 0 , (7.13e)

u̇ − Tf(u, α) = 0 , (7.13f)

〈f(x+(0), α), u(1) − x+(0)〉 = 0 , (7.13g)

〈f(x−(0), α), u(0) − x−(0)〉 = 0 , (7.13h)

〈w+(0), u(1) − x+(0)〉 = 0 , (7.13i)

〈w−(0), u(0) − x−(0)〉 = 0 , (7.13j)

‖u(0) − x−(0)‖2 − ε2 = 0 , (7.13k)

where the last equation places the starting point u(0) of the connection at a small fixed
distance ε > 0 from the base point x−(0). The time variable is scaled to the unit interval
[0, 1], so that both the cycle periods T± and the connection time T become parameters.
Hence, besides a component of α, there are five more parameters available for continuation:
the connection time T , the cycle periods T±, and the multipliers λ±.

7.4 Starting strategies

The bvp described in the previous section are only usable when good initial starting data
are available. Usually, such data are not present. Here we demonstrate how initial data
can be generated through a series of successive continuations in auto, a method referred
to as homotopy method, first introduced in [33] for point-to-point problems and extended to
point-to-cycle problems in [34].

7.4.1 Saddle cycles

The easiest way to obtain the limit saddle cycles O±, first calculate a stable equilibrium using
software like maple, matlab or mathematica. Then, using auto, continue this equilibrium
up to an Andronov-Hopf bifurcation, where a stable limit cycle is generated. A continuation
of this cycle can result in the detection of a fold bifurcation for the limit cycle. This will yield
a saddle limit cycle.

7.4.2 Eigenfunctions

In order to obtain an initial starting point for the connecting orbit we require knowledge
about the unstable manifold of the saddle limit cycle O−. Also, we need the linearized
adjoint “manifolds” to understand how the connecting orbit leaves O− and approaches O+

(or the same cycle in the homoclinic case). For this, we look at the eigendata.
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First consider the periodic bvp for O−,

{

ẋ− − T−f(x−, α) = 0 ,
x−(0) − x−(1) = 0 ,

(7.14)

to which we add the standard integral phase condition

∫ 1

0
〈ẋ−

old(τ), x−(τ)〉 = 0 , (7.15)

as well as a bvp similar to (7.8), namely







v̇ − T−fu(x−, α)v = 0 ,
v(1) − µv(0) = 0 ,

〈v(0), v(0)〉 − h = 0 .
(7.16)

In (7.15), x−
old is a reference periodic solution, e.g. from the preceding continuation step. The

parameter h in (7.16) is a homotopy parameter, that is set to zero initially. Then, (7.16) has
a trivial solution

v(t) ≡ 0, h = 0,

for any real µ. This family of the trivial solutions parameterized by µ can be continued in
auto using a bvp consisting of (7.14), (7.15), and (7.16) with free parameters (µ, h) and
fixed α. The unstable Floquet multiplier of O− then corresponds to a branch point at µ = µ−

u

along this trivial solution family. auto can accurately locate such a point and switch to the
nontrivial branch that emanates from it. This secondary family is continued in (µ, h) until
the value h = 1 is reached, which gives a normalized eigenfunction v− corresponding to the
multiplier µ−

u . Note that in this continuation the value of µ remains constant, µ ≡ µ−
u , up to

numerical accuracy. For the initial starting point of the connection we use v−(0).
The same method is applicable to obtain the nontrivial scaled adjoint eigenfunctions w±

of the saddle cycles. For this, the bvp







ẇ± + T±fT
u (x±, α)w± + λ±w± = 0 ,

w±(1) − s±w±(0) = 0 ,
〈w±(0), w±(0)〉 − h± = 0 ,

(7.17)

where s± = sign(µ±), replaces (7.16). A branch point at λ±
1 then corresponds to the adjoint

multiplier s±eλ±

1 . After branch switching the desired eigendata can be obtained.

7.4.3 The connection

Time-integration of (7.1), in matlab for instance, can yield an initial connecting orbit, how-
ever, this only applies for non-stiff systems. Nevertheless, mostly when starting sufficiently
close to the exact connecting orbit in parameter space the method of successive continua-
tion [33] can be used to obtain an initial connecting orbit.
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Let us introduce a bvp that is a modified version of (7.13)

ẋ± − T±f(x±, α) = 0 , (7.18a)

x±(0) − x±(1) = 0 , (7.18b)

Φ±[x±] = 0 , (7.18c)

ẇ± + T±fT
u (x±, α)w± + λ±w± = 0 , (7.18d)

w±(1) − s±w±(0) = 0 , (7.18e)

〈w±(0), w±(0)〉 − 1 = 0 , (7.18f)

u̇ − Tf(u, α) = 0, (7.18g)

〈f(x+(0), α), u(1) − x+(0)〉 − h11 = 0 , (7.18h)

〈f(x−(0), α), u(0) − x−(0)〉 − h12 = 0 , (7.18i)

〈w+(0), u(1) − x+(0)〉 − h21 = 0 , (7.18j)

〈w−(0), u(0) − x−(0)〉 − h22 = 0 , (7.18k)

where each Φ± in (7.18c) defines any phase condition fixing the base point x±(0) on the cycle
O±. An example of such a phase condition is

Φ+[x] = xj(0) − aj ,

where aj is the jth-coordinate of the base point of O+ at some given parameter values.
Furthermore, hjk, j, k = 1, 2, in (7.18h)–(7.18k) are homotopy parameters.

For the approximate connecting orbit a small step ε is made in the direction of the unstable
eigenfunction v− of the cycle O−:

u(τ) = x−(0) + εv−(0)eµ−
u T−τ , τ ∈ [0, 1] , (7.19)

which provides an approximation to a solution of u̇ = T−f(u, α) in the unstable manifold
W u

− near O−. After collection of the cycle-related data, eigendata and the time-integrated
approximated orbit, a solution to the above bvp can be continued in (T, h11) and (T, h12) for
fixed value of α in order to make h11 = h12 = 0, while u(1) is near the cycle O+, so that T
becomes sufficiently large. In the next step, we then try to make h21 = h22 = 0, after which
a good approximate initial connecting orbit is obtained.

This solution is now used to activate one of the system parameters, say α1, and to continue
a solution to the primary bvp (7.13). Then, if necessary after having improved the connection
first by a continuation in T , continuation in (α1, T ) can be done to detect limit points, using
the standard fold-detection facilities of auto. Subsequently a fold curve can be continued in
two parameters, say (α1, α2), for fixed T using the standard fold-following facilities in auto.

7.5 Implementation in AUTO

Our algorithms have been implemented in auto, which solves the boundary value problems
using superconvergent orthogonal collocation with adaptive meshes. auto can compute paths
of solutions to boundary value problems with integral constraints and non-separated boundary
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conditions:

U̇(τ) − F (U(τ), β) = 0 , τ ∈ [0, 1], (7.20a)

b(U(0), U(1), β) = 0 , (7.20b)
∫ 1

0
q(U(τ), β)dτ = 0 , (7.20c)

where

U(·), F (·, ·) ∈ R
nd , b(·, ·) ∈ R

nbc, q(·, ·) ∈ R
nic ,

and

β ∈ R
nfp ,

as nfp free parameters β are allowed to vary, where

nfp = nbc + nic − nd + 1 . (7.21)

The function q can also depend on F , the derivative of U with respect to pseudo-arclength,
and on Û , the value of U at the previously computed point on the solution family.

For our primary bvp problem (7.13) in three dimensions we have

nd = 15, nic = 0,

and nbc = 19, so that any 5 free parameters are allowed to vary.

7.6 Example: food chain model

In this section we describe the performance of the bvp-method for the detection and con-
tinuation of a cycle-to-cycle connecting orbit in the standard food chain model, also used
in [34].

7.6.1 The model

The three-level food chain model from theoretical biology, based on the Rosenzweig-MacAr-
thur [111] prey-predator model, is given by the following equations







ẋ1 = x1(1 − x1) − f1(x1, x2) ,
ẋ2 = f1(x1, x2) − d1x2 − f2(x2, x3) ,
ẋ3 = f2(x2, x3) − d2x3 ,

(7.22)

with Holling Type-II functional responses

f1(x1, x2) =
a1x1x2

1 + b1x1

and

f2(x2, x3) =
a2x2x3

1 + b2x2
.
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Lp �x3

d1
x 3

Thom Thom(2�)ThomT

0.30.280.260.240.220.2

131211109
Figure 7.3: One-parameter bifurcation diagram for d2 = 0.0125. The equilibrium is indicated as x̄3.
The dashed line Lp is the x3-value of the local minimum of an unstable (saddle) limit cycle. At the
point Tc this limit cycle coincides with a stable limit cycle, of which the local minimum of x3 is also
shown. The stable limit cycle undergoes period doublings until chaos (the dense regions) is reached.
The two dense regions are separated by a region where homoclinic cycle-to-cycle connections to the
limit cycle Lp exist. Both chaotic regions are bounded by a limit point of the homoclinic connection,
indicated by Thom. Observe that near the right chaotic region, between two limit points exist secondary
connecting orbits to the cycle. One of these limit points coincides with the limit point of the primary
connecting orbit that forms the boundary of the region of chaos (hence Thom twice); after Boer et al.,
1999).

X312.511.510.59.5 X2 0.30.20.10 X11 0.8 0.6 0.4 0.2
Figure 7.4: Phase plot of the homoclinic cycle-to-cycle connection.
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This standard model has been studied by several authors, see e.g. [90, 92]) and references
there.

The death rates d1 and d2 are often used as bifurcation parameters α1 and α2, respectively,
with the other parameters set at a1 = 5, a2 = 0.1, b1 = 3, and b2 = 2. For these parameter
values the model displays chaotic behaviour in a given parameter range of d1 and d2 ( [60,
66, 99]). The region of chaos can be found starting from a fold bifurcation at for instance
d1 ≈ 0.2080452, d2 = 0.0125, where two limit cycles appear. The stable branch then undergoes
a cascade of period-doublings (see Figure 7.3) until a region of chaos is reached.

Previous work by Boer et al. (1999, 2001) has shown that the parameter region where
chaos occurs is intersected by homoclinic and heteroclinic global connections, and that this
region is partly bounded by a homoclinic cycle-to-cycle connection, as shown in Figure 7.3.
These results were obtained numerically using multiple shooting.

7.6.2 Homotopy

Using the technique discussed in this paper we first find the saddle limit cycle for d1 = 0.25,
d2 = 0.0125. Since the cycle O is both O+ and O−, we use the same initial base point

x±(0) = (0.839783, 0.125284, 10.55288)

and the period T± = 24.28225. The logarithms of the nontrivial adjoint multipliers are

λ+ = −0.4399607 , λ− = 6.414681 .

The starting point of the initial “connecting” orbit is calculated by taking the base point
x−(0) and multiplying the eigenfunction v−(0) by ε = −0.001

u(0) = x−(0) + εv−(0) ,

where

v−(0) = (−1.5855 · 10−2, 2.6935 · 10−2,−0.99951) ,

and the resulting

u(0) = (0.839789, 0.125274, 10.55324) .

The connection time T = 503.168.
To obtain a good initial connection we consider a bvp like (7.18), with 6 free parameters:

µ±, T±, T , and, in turn, one of the four homotopy parameters h11, h12, h21, h22. The selected
boundary conditions (7.18c) are

Φ+[x] = x−
2 (0) − 0.125274 ,

and

Φ−[x] = x+
1 (0) − 0.839789 ,

so, the first condition uses the x2-coordinate of the initial base point selected on the cycle,
while the second condition uses the x1-coordinate of the initial base point. Observe, that this
selection is somewhat arbitrary and that one can select other base point coordinates.
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Figure 7.5: Profiles of the homoclinic cycle-to-cycle connections for d2 = 0.0125. The left panel
compares the two profiles of the connections for d1 = 0.2809078, the right panel compares the four
profiles for d1 = 0.27850, which is between the limit points for the primary and secondary branches.
The connection time T is scaled to one.

In the continuation we want h11 = h12 = h21 = h22 = 0. However, there are several
solutions, that correspond to connecting orbits with different numbers of excursions near the
limit cycle, both at the starting and the end-part of the orbit. Observe that the success of
the future continuation in (d1, d2) seems to depend highly on the number of excursions near
the cycle at the end-point of the connecting orbit. In the food chain model a decrease in d2 is
accompanied by a decrease in the numbers of excursions near the cycle at the end-point of the
connection, like a wire around a reel. If this number is too low, a one-parameter continuation
in d1,2 will yield incorrect limit points. Also, two-parameter continuations in (d1, d2) will most
likely terminate at some point. Hence a starting orbit is selected with a sufficient number of
excursions near the cycle at the end-point, with T = 454.04705 and ε2 = 0.069414 (see Figure
7.4).

7.6.3 Continuation

The continuation of the connecting orbit can be done in d1,2 using the primary bvp (7.13).
Equation (6.23) ensures that the base points x±(0) ∈ O± become different (and so do the
periodic solutions x±(t)).

First, however, using this bvp, the connection can be improved by increasing the connec-
tion time, for the same reason as mentioned above with regard to the number of excursions
near the cycle at the end-point. The increase in T results in an increase of the number of
excursions near the cycle at the end-point of the connecting orbit. Then, the continuation
in d1, T for fixed d2 = 0.0125 results in the detection of four limit points, of which two are
identical. Observe that in this way – in accordance with Figure 7.3 – not only the primary
(d1 = 0.2809078, twice, and d1 = 0.2305987), but also the secondary (d1 = 0.2776909) branch
is detected. Figure 7.5 shows the profiles of the connecting orbits for d2 = 0.0125. Observe
that for the region of 0.2776909 < d1 < 0.2809078 there are four different connecting orbits
with the same connection time T (see right panel).

Using the standard fold-following facilities for bvps in auto, both critical homoclinic
orbits can be continued in two parameters (d1, d2). Along these orbits the stable and unstable
invariant manifold of the cycle are tangent. Starting from d1 = 0.2809078 we continue the
primary branch. The secondary branch is continued from d1 = 0.2776909. Both curves are
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d1
d 2

0.320.30.280.260.240.220.20.180.16
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d 2
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0.0150.0130.0110.0090.007
Figure 7.6: Two-parameter curves of the primary (left) and secondary (right) homoclinic tangencies
in the food chain model. Depicted is also the fold bifurcation curve of a limit cycle (dashed).

depicted in Figure 7.6.

7.7 Discussion

Our continuation method for cycle-to-cycle connections, using homotopies in a boundary
value setting, is a modified method proposed in our previous paper for the continuation of
point-to-cycle connections [34]. The results discussed here seem to be both robust and time-
efficient.Detailed auto demos carry out the computations described here are freely download-
able [36]. Provided that the cycle has one simple unstable multiplier, the proposed method
can be extended directly to homoclinic cycle-to-cycle connections in n-dimensional systems.



Chapter 8

Ecological consequences of global

bifurcations

Ecological consequences of global bifurcations in some food chain models.
G.A.K. van Voorn, B.W. Kooi and M.P. Boer, Submitted

Food chain models of ordinary differential equations (ode’s) are examples of models that are
used in ecology to gain insight in the dynamics of populations of species, and the interactions
of these species with each other and their environment. To investigate the validity of these
models they have to be analysed. One powerful analysis technique is local bifurcation analysis,
focusing on the changes in long-term (asymptotic) behaviour under parameter variation, and
for which there exists standardised software. Here we revisit the analyses of four previously
published ecological ode food chain models. One model is a two-dimensional stoichiometric
model. Due to Liebig minimum growth rate the resulting model is piecewise continuous.
The model will be compared with a smooth version of the model, and this allows for an
interpretation of some “pseudo-bifurcations”, associated with piecewise continuous systems.
Two other models are three-dimensional food chain models. We particularly focus on global
bifurcations. Techniques, previously developed for this type of analysis, are applied here to
locate and continue globally connecting orbits and, if applicable, their tangencies occurring in
these models. We will show how global bifurcations in these models are related to each other
and to local bifurcations. Furthermore, we consider the ecological implications of the global
bifurcations. For example, the Shil’nikov homoclinic bifurcation functions as the organising
centre of chaos in three-dimensional food chain models. Other global bifurcations “cut” the
chaotic attractors and, combined with bistability, can even cause hysteresis is some models.

8.1 Introduction

Ecological modelling is the field were the time dynamics of populations of species are studied,
and how these populations interact with each other and with their abiotic environment.
It is useful to investigate diverse subjects, like extinction thresholds, the effects of sublethal
toxicants or global warming on ecosystem functioning and structure, to name a few examples.
A large portion of the ecological modelling consists of food chain studies, where sets of ordinary
differential equations (ode’s) are used to describe population sizes in time.

To test the ecological validity of these models, extensive analysis is required. Food chain
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models can be analysed using bifurcation theory [38, 54, 88, 125, 126], where the asymptotic
behaviour of the system (equilibria, periodic cycles, chaos) is evaluated under parameter
variation for qualitative changes. A qualitative change in the asymptotic behaviour is then
referred to as a bifurcation point.

For examples of an ecological application see [7,9,55,70]. Four types of bifurcation points
are often encountered in food chain models: the transcritical bifurcation (an equilibrium
that did not exist in the positive plane shifts to the positive plane, which in an ecological
context gives an existence or extinction boundary), the tangent bifurcation (two equilibria,
with usually different stability properties, coincide and disappear, ecologically often associated
with the disappearance of a system separatrix), the Hopf bifurcation (a stable equilibrium
that changes stability, while a limit cycle is born, which marks the transition to periodic
behaviour), and the flip bifurcation (a limit cycle undergoes periodic doubling, and usually
a series of these bifurcations marks the onset of chaotic behaviour). Of these four so-called
local bifurcation points, only two types have been shown to have potentially radical effects,
that is, small changes in a parameter lead to large changes, and also changes that cannot be
easily reverted by restoring the parameter to its old value. The subcritical Hopf bifurcation
is one type, but in general the subcritical Hopf bifurcation has not received much attention in
the literature. The tangent bifurcation is the other type, and it has been discussed that the
occurrence of a tangent bifurcation in a food chain model that at least basicly represent a real-
life ecosystem might explain why species suddenly go extinct under only small (parameter)
changes [113].

Not all extinction events, however, can be explained by the occurrence of any of the above-
mentioned local bifurcations. For example, the bifurcation analyses of some two-dimensional
food chain models with Allee-effect [3] revealed that extinction events named overexploitation,
where the whole system collapses, were coupled to so-called global bifurcations [124]. A
similar type of collapse is observed in food chain chemostat models after the introduction of
sub-lethal toxicants [75]. And there are also other examples where global bifurcations are
essential for understanding the dynamics of a food chain model. For instance, in the three-
dimensional prey-predator-top-predator Rosenzweig-MacArthur model it has been shown that
the parameter region of chaotic behaviour is bounded by a global bifurcation [17], [18], [35].

These results suggest it is interesting to take a closer look at global bifurcation analy-
sis. However, previously it proved to be notoriously difficult to detect and continue global
bifurcations, where either a saddle equilibrium or saddle limit cycle is connected to itself
(homoclinic), or where two saddle equilibria and/or saddle limit cycles are connected via
their manifolds (heteroclinic). Local information, that suffices to track local bifurcations,
reveals nothing about the existence of globally connecting orbits other than whether or not
one of more saddles exist. Limit cycles can grow to asymptotically large period under pa-
rameter variation, and this can be an indication that a homoclinic point-to-point connection
exists. The existence of a bifurcation point of higher codimension (like Bogdanov–Takens or
Gavrilov–Guckenheimer) can indicates there must be a point-to-point connection.

Recently there has been a significant jump in the development and successful testing of
techniques to both find and continue global bifurcations. Now it is possible to find homoclinic
connections in 2D models (HomCont, [20], [22], [23], as part of auto, [36]), 2D heteroclinic
connections [124], and point-to-cycle and cycle-to-cycle connections in 3D systems [29], [28],
[34], [35], [84], [36]. This shows that previously unexplained phenomena can be explained by
the occurrence of global bifurcations. We discuss here four previously published food chain
models, two two- and two three-dimensional, and apply our previously developed techniques
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Table 8.1: List of parameters used in the model by [94], and the additional parameters of the smooth

version of the model.

symbol value meaning

P 0.025 Total phosphorous
ê 0.8 Maximal production efficiency
b 1.2 Maximal growth rate of producer
d 0.25 Grazer loss rate, including respiration

θ 0.03 Grazer constant P
C

q 0.0038 Producer minimal P
C

c 0.81 Maximum ingestion rate of grazer
a 0.25 Half-saturation of functional response
K - Producer carrying capacity

C - Total carbon
BC 0.002 Assimilation preference for C
BP 2. Assimilation preference for P
KPC 1. Saturation constant
j - Maximum predator ingestion rate

to detect and continue occurring global bifurcations.
In Section 8.2 we discuss the two-dimensional stoichiometric food chain model by [94], and

a smooth version of the model by [119]. In this model a homoclinic point-to-point connection
exists that is associated with the destruction of a system’s attractor. We revisit the analyses of
the 3D food chain models by Rosenzweig and MacArthur [111], [17], [19], [90]. In these models
there are homoclinic point-to-point connections that form the “skeleton” in the generation of
chaos (Shil’nikov bifurcation), while there are homoclinic cycle-to-cycle connections that are
associated with the disappearance of the chaotic behaviour. Finally, in Section 4.4 there is a
discussion of the known global bifurcations in ecological food chain models, and the ecological
consequences of their occurrence.

8.2 2D stoichiometric model

The first, two-dimensional model we discuss is given as

dX1

dt
= b

(

1 − X1

min(K, (P − θX2)/q)

)

X1 − cf(X1)X2 , (8.1a)

dX2

dt
= ê min

(

1,
(P − θX2)/X1

θ

)

cf(X1)X2 − dX2 , (8.1b)

and was first given as Eqn. (6a,b) by [94], where f(X1) is the Holling type II functional
response [62]. The parameter values are given in Table 8.1.

The individuals of both the producer and grazer populations are composed of two nutri-
ents, carbon (an energy source) and phosphorous. X1 and X2 denote the carbon content of
the two populations. The phosphorus in the system is divided over the grazer and producer
populations. The ratio in phosphorus and carbon (P : C) can vary in the producer popula-
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Figure 8.1: Diagrams of the model by [94], where d = 0.25. From left to right a: One-parameter
bifurcation diagram, identical to Figure 4 in [94], where K is the bifurcation parameter. The limit
cycle attractor is born at the Hopf bifurcation. At K ≈ 0.979435 the tangent bifurcation where the
equilibria E2 and E3 are born occurs simultaneously with the global bifurcation. b: State space picture
at K ≈ 0.979435. The limit cycle L1 collides with the equilibrium E2 = E3 and forms a saddle-node
homoclinic connection.

tion, but by introduction of the parameter q it is assumed that there is a minimum in this
ratio.

The populations can be limited either by carbon or by phosphorus, as is given by the
Liebig minimum function. The use of this switch-function results in a piecewise continuous
model, that satisfies the Lipschitz condition with respect to both variables X1 and X2. The
initial value problem is therefore mathematically well-posed and there is generally continuous
dependence on initial conditions and parameters in the system. The derivative of the system,
the Jacobian matrix, is however undetermined at the switching point.

In [94] the two types of displayed qualitative behaviour were discussed. In Fig. 8.1a (a
replica of [94, Fig. 4]) it is shown that for the situation where 0.17 . K . 0.979435 the
producer population is limited by energy (carbon). There are only two equilibria, the trivial
unstable equilibrium E0 = (0, 0) and the stable internal equilibrium E1. Under an increase of
parameter K the system displays the classical “paradox of enrichment” (POE) [110], [46]: a
stable limit cycle L1 is born at a Hopf bifurcation, while the equilibrium E1 becomes unstable.
For 0.979435 . K . 1.9 the producer population is limited by phosphorous. The limit cycle
and POE are not present, but instead there are four equilibria: the unstable equilibria E0

and E1, the stable equilibrium E2 and a saddle equilibrium E3.
The switch at K ≈ 0.979 in Fig. 8.1a was described in [94] as an “infinite period bifurca-

tion”, and coincides with a tangent bifurcation where the two equilibria E2 and E3 collide.
At this bifurcation the limit cycle L1 disappears and the principle system’s attractor becomes
E2, which explains why the POE no longer occurs. This bifurcation is in fact a (global) ho-
moclinic bifurcation, that coincides with a (local) tangent bifurcation. Exactly at the tangent
bifurcation there is one equilibrium, E2 = E3, that is a saddle-node point. The limit cycle
touches this equilibrium and thus forms a saddle-node homoclinic connection, as can be seen
in Fig. 8.1b. This connection can be obtained either by tracking the limit cycle L1 up to a
period that approximates infinity, or by using homotopy as described in [124, Appendix].

An interesting point is now whether or not the limit cycle L1 disappears through the
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Figure 8.2: Diagrams of the model by [94], where d = 0.32. From left to right a: One-parameter
bifurcation diagram where K is the bifurcation parameter. The termination of the limit cycle and the
birth of the attracting equilibrium do not coincide in this case. b: State space picture at K ≈ 0.879726,
d = 0.32. The limit cycle forms a saddle connection orbit to the equilibrium E3. The eigenvectors are
indicated using arrows. orbits starting within the limit cycle converge to the limit cycle, while orbits
outside converge to E2. This is known as bistability. The grazer biomass density of the point attractor
lies below the minimum of the limit cycle. When at the saddle homoclinic curve G=

S the stable limit
cycle is destroyed, all initial densities converge to the lower grazer density of the remaining stable
equilibrium.

tangent bifurcation, making it a local bifurcation event, or through the connecting orbit,
making it a global bifurcation event. By varying a second parameter (d) we find that it is
possible that the point-to-point connection exists as a saddle connection from E3 to itself,
while there is also the stable equilibrium E2. This situation is depicted in Fig. 8.2 where
d = 0.32 and K ≈ 0.879726. In Fig. 8.2a the one-parameter bifurcation diagram of the
system is shown, and it can be seen that besides the two types of behaviour described above
(POE and stable equilibrium E2) there is also a third type of behaviour in the region 0.849 .

K . 0.879726, namely bistability. In this region there are two attractors, the limit cycle L1

and the equilibrium E3, separated by the stable manifold to the saddle equilibrium E2, as
can be seen in Fig. 8.2b.

Fig. 8.3a shows the two-parameter bifurcation diagram of the model, where the bifurcation
parameters are K and d. Observe that because of the discontinuous Jacobian we do not only
have regular bifurcation curves and bifurcation points of higher codimension, but also discon-
tinuity curves, where one of the minimum functions for the producer and grazer species switch,
so the curve Ax is determined by P = Kq+θX2, and Ay by P = θ(X1+X2). These curves can
be continued using sets of boundary conditions, as shown in the Appendix 8.5. Furthermore
there are “pseudo bifurcation” points Zi, where i = 1, 2, · · · , in which bifurcations curves join
with either Ax or Ay. The point-to-point connection can be found and then continued in
two-parameter space by using the homotopy techniques discussed in [124], [34], [35].

There are two transcritical bifurcations TC1 and TC2 that connect to each other in point
Z1. The tangent bifurcation Te where E2 = E3 connects to the curve Ay in point Z2, which in
a sense replaces a Cusp bifurcation. The Hopf bifurcation curve H− terminates at the curve
Ay at Z3. The two-parameter global bifurcation curve G=

S indicates the saddle homoclinic
connection and terminates at one end at the curve Ay in point Z4, where the point-to-
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point connection has shrunk to a point. At the other end it terminates at the tangent
bifurcation curve in a point of higher codimension N , where it is transformed into a saddle-
node connection. The saddle-node homoclinic orbit is indicated by G=

SN and terminates at
Ax in point Z5.

We can now distinguish the following parameter regions with different dynamical be-
haviour. A limit cycle attractor occurs in the region right of the H−, left of the global
bifurcation curves G=

S and G=
SN , below Ay. In the rest of the region below TC1 and TC2

there are equilibrium attractors. Bistability occurs in the approximately triangular-shaped
parameter region bounded between Z2, Z4 and N . Hence this region partly overlaps with the
region where limit cycles exist, and there is one limit cycle attractor and one point attractor.
In the rest of the bistability region there are two point attractors.

8.2.1 Smooth stoichiometric model

Because of problems generated by the non-smoothness of the model, a smooth version of
the above-discussed stoichiometric model was developed in [119], where all variables and
parameters are kept equal to their counterparts in the original stoichiometric formulation,
and all parameter values remain the same. In this model the su-formulation [104], [79] is
used to describe the assimilation in the producer species where both the phosphorus and
the carbon are essential nutrients, i.e., the growth depends on both nutrients. The producer
species consists of two components, structure and an internal phosphorus reserve pool.

It is assumed that the structure has a fixed stoichiometry, so the phosphorus density of
the structure P/C is fixed. The total phosphorus density in the producer is denoted by η.
We furthermore assume a closed system, so the mass conservation principle can be applied
(which is not applied in the original model in [94]. The growth depends on the carbon influx
from the environment and equals C − X1 − X2, where C is the total carbon in the system,
and the internal phosphorus P − θX2 − qX1. Since all phosphorus is in the biota, the pool
η − q and the total phosphorus density in the producer η are time-dependent. The whole
formulation is given as

dX1

dt
= b

j

g(X1,X2)
X1 − cf(X1)X2 , (8.2a)

dX2

dt
= ê

1.2

1 + θ
η − 1/(1 + η

θ )
cf(X1)X2 − dX2 , (8.2b)

where the functional response is Holling type II again

f(X1) =
X1

a + X1
,

the producer intake flux is written as

j = 1 +
KPC

C BC
+

KPC

P BP
− KPC

C BC + P BP
,

and
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Figure 8.3: Two-parameter bifurcation diagrams. From top to bottom a: The model by [94], where
K and d are the bifurcation parameters. The saddle-node homoclinic curve G=

SN corresponds with the
dashed tangent bifurcation curve Te, as could be expected. In the point D the saddle-node homoclinic
connection turns into a saddle homoclinic connection. The saddle homoclinic curve G=

S stops in
point Z4, where the connection has shrunk to a point (not shown). b: The smooth analogue model
by [119]. The Hopf bifurcation H− and the global bifurcation G=

SN terminate on a tangent curve in a
Bogdanov-Takens point

g(X1,X2) = 1 +
KPC

(C − X1)BC
+

KPC

(P − θX2 − qX1)BP

− KPC

(C − X1)BC + (P − θX2 − qX1)BP
,

where the extra parameters are also given in Table 8.1. In Eq. 8.2b it is assumed that after
ingestion the carbon and phosphorus are independently available again for growth. The factor
1.2 is a scaling factor in order to better match the original model by [94].

The dynamics of this smooth version of the stoichiometric model are summarised in
Fig. 8.3b. Apart from quantitative there are also qualitative differences between the two
models. In the smooth model version neither the points Zi nor the discontinuity curves
Ax and Ay exist. The two transcritical bifurcation curves TC1 and TC2 are here the same
curve TCe. There are now two tangent bifurcation curves Te,1 and Te,2 that collide in a cusp
bifurcation Cp, a point of higher codimension. The Hopf bifurcation H− terminates in a
Bogdanov-Takens point BT , also a point of higher codimension that is on one of the tangent
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bifurcation curves. The BT is also the origin for the global bifurcation curve G=
S , depicted

in solid line type. The global bifurcation curve continues as a saddle-node connection G=
SN

after it has collided with the lower tangent bifurcation curve in point N .
There are the following regions of dynamical behaviour. In the region left of H− and

below TCe there is a point attractor. This turns into a limit cycle attractor in the region
right of H− and left of the global bifurcations curves G=

S and G=
SN . There is a point attractor

right of the global bifurcation curves, below TCe. There is also a point attractor in the small
region between H−, Te,1 and TCe. Bistability occurs in the four-cornered region bounded by
G=

S , Te,2, Te,1 and TCe. Left of H− there are two point attractors, right of H− there is a
point attractor and stable limit cycle.

8.2.2 Comparison of the two model versions

The original stoichiometric model in [94] displays not only bifurcation curves and bifurcation
points of higher codimension, but also discontinuity curves, and bifurcation-like points. At
these points bifurcation curves coincide with switches of the Liebig minimum associated with
the model formulation of the trophic interaction. These points seem to be the analogue of
real codim-2 points that occur in the smooth version of the stoichiometric model by [119].
The tangent curve in the original model terminates in a pseudo-bifurcation point, while in
the smooth model there is also a second tangent curve that terminates together with the
first tangent curve in a Cusp bifurcation. Also, in the original model the Hopf and saddle
homoclinic bifurcation curves terminate separately in pseudo-bifurcation points, while in the
smooth model it terminates at the same point of higher codimension on a tangent curve, as
corresponding with theory on the Bogdanov-Takens point [88].

With regard to the global bifurcation occurring in the stoichiometric model we have two
possible scenario’s. In the first scenario there is only one system attractor, the limit cycle.
With increased K the saddle-node connection occurs occurs at the exact point where a tangent
bifurcation takes place. In this case, a global bifurcation coincides with a local bifurcation.
Upon the immediate destruction of the system attractor a new attractor is created. There is
no extinction of species, and there is no disappearance or creation of bistability properties.
However, the time dynamics of the system changes from periodic to steady state.

In the second scenario the occurrence of the (saddle) homoclinic orbit is not connected
to any local bifurcation. In this scenario there is a parameter region where there are two
attractors, namely a stable limit cycle and a stable equilibrium, separated by the stable
manifold to the saddle equilibrium E3. With the occurrence of the connecting orbit to this
saddle equilibrium, both the limit cycle and the separatrix are destroyed. As such, with this
global bifurcation, a system attractor and the bistability properties of the model disappear.

This second scenario resembles the phenomenon of “overexploitation” in Allee models
[124]. In contrast to the previously studied Allee-models, where after the destruction of the
limit cycle attractor a zero-equilibrium becomes the new global attractor, the equilibrium
that remains after the global bifurcation in the stoichiometric model is positive, although it
does have a lower grazer density than the minimum of the destroyed limit cycle attractor (see
Figure 8.1, right panel). Therefore, although no overexploitation occurs, a small, stochastic
shift in K can result in a sudden drop in biomass densities. Also, the new lower grazer density
cannot be reverted back to its old state without a larger step back in K, since the system is in
its new attractor. As such we have some kind of “catastrophic shift” [113], but now occurring
because of a global bifurcation instead of a local bifurcation (tangent).
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8.3 3D food chain models with chaos

In this section we review the analysis of the three-dimensional Rosenzweig-MacArthur food
chain model.

8.3.1 Rosenzweig-MacArthur food chain model

The Rosenzweig-MacArthur food chain model is given as

dX1

dt
= rX1

(

1 − X1

K

)

− A1,2X1X2

κ1,2 + X1
, (8.4a)

dX2

dt
= X2

(

y1,2
A1,2X1

κ1,2 + X1
− γ1 −

A2,3X3

κ2,3 + X2

)

, (8.4b)

dX3

dt
= X3

(

y2,3
A2,3X2

κ2,3 + X2
− γ2

)

. (8.4c)

In these equations X1 is the prey, X2 the predator and X3 the top-predator. The param-
eters A1,2 and A2,3 are the ingestion rates, y1,2 and y2,3 are the yields over ingested biomass
from the previous trophic level, and γ1 and γ2 are the linear predator death rates. The RM
model is effectively a combination of the logistic growth curve with Holling type II functional
responses. The model can be rewritten after rescaling as

ẋ1 = x1(1 − x1) − f1(x1)x2 , (8.5a)

ẋ2 = f1(x1)x2 − d1x2 − f2(x2)x3 , (8.5b)

ẋ3 = f2(x2)x3 − d2x3 , (8.5c)

which is dimensionless. The variables and parameters are given in Table 8.2. The carrying
capacity has disappeared in the rescaling process, therefore it can no longer be used as bifur-
cation parameter. The two death rate parameters di are the most obvious selection to perform
a two-dimensional bifurcation analysis of the model, since the other remaining parameters
are associated to physiological properties and can therefore be assumed to remain fixed.

Table 8.2: List of rescaled variables and parameters of the three-dimensional RM model.

x1 = X1

K a1 =
KA1,2y1,2

rκ1,2
= 5. d1 = γ1

r

x2 = X2

Ky1,2
a2 =

KA2,3y1,2y2,3

rκ2,3
= 0.1 d2 = γ2

r

x3 = X3

Ky1,2y2,3
b1 = K

κ1,2
= 3. f1(x1) = a1x1

1+b1x1

t = rT b2 =
Ky1,2

κ2,3
= 2. f2(x2) = a2x2

1+b2x2
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The equilibria of System (8.5) are

E0 = (0, 0, 0) , (8.6a)

E1 = (1, 0, 0) , (8.6b)

E2 =
( d1

a1 − b1d1
,
a1 − d1(b1 + 1)

(a1 − b1d1)2
, 0

)

, (8.6c)

E3 = (x∗
1, x

∗
2, x

∗
3) , (8.6d)

where

x∗
1 =

b1 − 1 +
√

(b1 + 1)2 − 4a1b1d2

a2−b2d2

2b1
, (8.7a)

x∗
2 =

d2

a2 − b2d2
, (8.7b)

x∗
3 =

f1(x
∗
1) − d1

a2 − b2d2
. (8.7c)

for 0.16 ≤ d1 ≤ 0.32, 0.0075 ≤ d2 ≤ 0.015 (see also [67]).
The stability of the equilibria, and the local bifurcation analysis of the RM model, are

described in detail in [92]. We will give a short overview here of the system, that is rich in
bifurcations, both for equilibria and limit cycles.

Fig. 8.4a shows a one-parameter local bifurcation diagram, with d1 = 0.25 and d2 as free
parameter. The value of x3 is displayed as a function of d2. In the case that it is a limit
cycle, the minimal and maximal values of x3 are also displayed. The system has a stable
equilibrium E3 where all three species exist only between the two Hopf bifurcations H− and
H+. Increasing the value of d2, at the subcritical H+ the stable equilibrium becomes a
saddle point, while an unstable limit cycle is born. The unstable limit cycle can be continued
up to a cycle tangent bifurcation Tc, where also a stable limit cycle emerges. This stable
limit cycle disappears from the positive plane at a transcritical bifurcation TCc. The saddle
point collides with an unstable equilibrium, born from a transcritical bifurcation TCe, in the
tangent bifurcation Te.

On the other side, when decreasing the value of d2, at the supercritical H−, the stable
equilibrium E3 is replaced by a stable limit cycle as the system’s attractor. The equilibrium
becomes a saddle point. When decreasing the value of d2 further the stable limit cycle
goes through a series of flip bifurcations, until a chaotic attractor appears, as is depicted in
Fig. 8.4b.

In Fig. 8.5a a two-parameter diagram is shown, where d2 = 0.1, and d1 and the cycle
period T0 are varied. The cycle period goes to infinity at d1 ≈ 0.3166, after an infinite
number of tangent and flip bifurcations. This figure indicates there is a Shil’nikov global
bifurcation, of which the connection has one spiralling end. The “skeleton” of the route to
chaos is this Shil’nikov bifurcation, a point-to-point connection to itself of the equilibrium E3

that has become a saddle point after the Hopf bifurcation H−.
The point-to-point connection can be detected, and continued, using the techniques dis-

cussed by [34] in adapted form. There are actually two connections very close to each other
in parameter space, that are depicted in Fig. 8.5b. One connecting orbit connects from the
saddle equilibrium to itself after one rotation (dashed-dotted). The other orbit makes two
full rotations before connecting (dotted).
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Figure 8.4: From top to bottom a: One-parameter bifurcation diagram of the 3D RM model,
Eqn. (8.5), with d2 as free parameter (d1 = 0.25). Depicted are the equilibrium densities and the
extremum values of x3. Solid indicates stable, dotted indicated saddle or unstable. b: Detail of Figure
a, now with the regions indicated where chaos occurs. The labels are explained in the main text.



112 CHAPTER 8. ECOLOGICAL CONSEQUENCES OF GLOBAL BIFURCATIONS

a d1
T 0

0.360.330.30.270.24

300260220180140100
b

x31110.810.610.410.2109.8 x20.35 0.3 0.25 0.2 0.15 0.1 0.05 x1 10.90.80.70.60.50.40.3
Figure 8.5: From left to right a: Diagram of the 3D RM model Eqn. (6.43), where T0 is plotted as
a function of d1, with d2 = 0.01. The cycle period goes to infinity after an infinite series of tangent
and flip bifurcations. Each turning point is a tangent bifurcation. Flip bifurcations are not indicated.
This leads to a Shil’nikov global bifurcation, the organising centre of chaos in this model. b: Three-
dimensional state space where d2 = 0.01. There are two point-to-point connections: one single-period
(dashed-dotted) at d1 ≈ 0.3166, and one double-period (dotted) connection very close by at a different
value of d1.

From Fig. 8.4b it can be concluded that the chaos suddenly disappears. The parameter
values where this happens are the values where the minimal value of the chaotic attractor
collides with the minimal value of the unstable limit cycle. At the left-hand side, at a lower
parameter value, a similar thing happens. At those parameter values a global bifurcation
occurs, that destroys the chaotic attractor [18], [19].

In Fig. 8.6a a two-parameter diagram is shown with d1 and d2 as bifurcation parameters.

Two extra local bifurcations are visible now. The first is the transcritical bifurcation
TCe, where the stable three-dimensional equilibrium appears. The second is the planar Hopf
bifurcation Hp. For values of d1 lower than where Hp occurs, a two-dimensional stable limit
cycle exists, that functions as the system attractor when the top predator does not exist.
Most local bifurcations (Te, both TCe, Hp, TCc, and H+) originate from the same organising
centre, a point M of higher codimension. This point has been analysed in detail in [92]. The
two Hopf bifurcations H+ and H− collide in a second codim-2 point, a Bautin point B, which
is also the end point for the curve Tc.

In Fig. 8.6b a detail of the two-parameter bifurcation diagram is shown. The first and
second order flip bifurcations F 1,2 of the stable limit cycle are displayed, and indicate where
approximately the region of chaos is located. They originate from the Shil’nikov bifurcation
curve, labeled as G=

e . Also originating from the Shil’nikov are cycle tangent bifurcations Tc, of
which one is depicted. The full unfolding around a Shil’nikov bifurcation has been discussed
in detail in [90]. The region of chaos is bounded internally by the global bifurcation curve G=

c ,
that indicates a homoclinic cycle-to-cycle connection that creates the “hole” in the region of
chaos. Observe also, that the two global bifurcation curves G=

e and G=
c do not intersect.

Finally there is also a curve G6=, that indicates a heteroclinic point-to-cycle connecting
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Figure 8.6: From top to bottom a: Two-parameter bifurcation diagram of the 3D RM model,
Eqn. (8.5), with d1 and d2 as free parameters. b: Detail of the upper panel, where also flip and
global bifurcations are depicted. See text for explanation. The curves G=

e , G6=, and G=
c have been

obtained using the techniques discussed by [34], [35]. c: Biologically separated regions. 0 = no species,
E = equilibrium with all three species, P = periodic solutions, C = chaos.
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orbit. This connection forms the boundary of the region, where there is a separatrix, that
divides two basins of attraction. Orbits starting in one basin evolve to the limit cycle or
chaotic attractor, orbits in the other basin converge to a solution where the top-predator is
extinct [17].

In Fig. 8.6c the bifurcation diagram has been simplified to indicate the biological different
regions in parameter space. The region above the subcritical Hopf bifurcation curve H+ is
indicated by 0, meaning there is no positive system attractor there. In the region labeled
E there exists a stable three-dimensional equilibrium. It is bounded by the subcritical Hopf
bifurcation curve H+, the supercritical Hopf bifurcation curve H− and the transcritical bi-
furcation TCe. The region below H−, bounded right of Tc, and then below TCc, contains
a non-equilibrium attractor. In the regions indicated by P it is a limit cycle, in the region
marked C it is a chaotic attractor. In the “eye” bounded by the global bifurcation G=

c the
top-predator does not exists.

8.3.2 Overview of food chain models

In two resembling three-dimensional food chain models, the 3D Rosenzweig-MacArthur (RM)
model and the model by [93], the Shilni’kov homoclinic point-to-point connection is the organ-
ising centre of chaos in the system. Around the Shilni’kov there is an unfolding of tangent and
flip bifurcations, that generates chaotic behaviour in these models. The Shilni’kov bifurcation,
although a global bifurcation, is however not the origin for the cycle-to-cycle connections in
these models.

In the 3D RM model there exists one chaotic attractor in a region of parameter space.
Depending on the initial condition the system evolves to this three-dimensional attractor or
to a planar limit cycle, where the top predator is extinct. The chaotic attractor disappears
through the tangency of a homoclinic cycle-to-cycle connection. This tangency is coupled
to the existence of a saddle limit cycle, born at a subcritical Hopf bifurcation. After this
event, also referred to as a “boundary crisis”, there remains only the saddle limit cycle and
no coexistence of the three species is possible [19]. The global bifurcation curve that indicates
this boundary crisis forms an “eye” in two-parameter space.

8.4 General discussion

Four food chain models, two consisting of two, and two of three ode’s, have been analysed in
this paper with specific focus on global bifurcations. We define a global bifurcation as either
a structurally unstable connecting orbit, that disappears when one parameter is varied, or
the tangency of a structurally stable connecting orbit. Although there is no way to know for
certain we have detected or identified all existing global bifurcations in these models, we can
give the following list of connections that can occur in ode-models

• Homoclinic point-to-point, for example in stoichiometric models by [94], [81], in a chemo-
stat model with added sub-lethal toxicants [75], and the Shil’nikov bifurcation in the
three-dimensional food chain models [93]

• Heteroclinic point-to-point, for example in two-dimensional food chain models with
Allee-effect [124]
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• Point-to-cycle, for example in the three-dimensional Rosenzweig-MacArthur food chain
model [34]

• Homoclinic cycle-to-cycle, for example in the same RM model [35] and the model by [93]

• Heteroclinic cycle-to-cycle, of which there exists no example in theoretical ecology thus
far, but see for instance [29].

Most of the examples of global bifurcations in food chain models studied here result in
events that resemble the “catastrophic shift” normally associated with a tangent bifurcation
[113], where after a small parameter change there is a loss of bistability. This is automatically
coupled to hysteresis, meaning that a larger decrease of the parameter is required to restore
the system to its old state. Because the bistability region is re-entered after a small decrease,
the system remains in the “new” state that only disappears after the bistability is left again
at the other side. Second, there is a sudden change is average biomass. For example, in
the stoichiometric model by [94] after the occurrence of the saddle homoclinic connection the
remaining stable equilibrium has a lower biomass than the minimum value of the stable limit
cycle that has disappeared.

In many previously studied systems the system even goes extinct after a global bifurcation.
In predator-prey models with Allee-effect the bistability is lost after a global bifurcation that
destroys the stable positive limit cycle, leaving only a stable zero-equilibrium. This event
was named “overharvesting” because it occurs under a decrease of the predator mortality
parameter [124]. In [75] it was shown that chemostat models display bistability after the
addition of sub-lethal toxicants. The system goes extinct after a global bifurcation that
destroys a stable limit cycle.

This last phenomenon is also interesting in terms of the “paradox of enrichment” [110], [46].
The paradox describes that the limit cycle grows in amplitude under an increase of the
enrichment parameter, until extinction because of demographic stochasticity becomes more
and more likely. The occurrence of a global bifurcation in this context seems more appropriate.
The destruction of the limit cycle through a global bifurcation, and the following extinction
of the system because only the zero-equilibrium is left, is a more “clean” way of how the
paradox of enrichment could occur.

A third effect, next to loss of bistability and a sudden change in average biomass densities,
is not found in a catastrophic shift caused by a tangent. That is that there is a “simplification”
of the dynamics. For example, in the model by [93] the chaotic attractor disappears after a
global bifurcation, leaving a limit cycle of low frequency as sole attractor. The simplification
of dynamics is not necessarily coupled to the existence of bistability in the model. After a
saddle-node homoclinic bifurcation the dynamics in the model by [94] simplify from periodic
to steady state, but the system is immediately restored to the periodic behaviour after a small
parameter decrease.

An interesting note is that the simplification in combination with bistability can be per-
ceived as “stabilising”. For example, in the model by [94] after a saddle homoclinic bifurcation
the steady state remains and only disappears after a significant decrease in the parameter K,
where the system reverts to the periodic behaviour again. In a similar fashion, in the model
by [93] the chaotic behaviour is only restored after a significant decrease in a1. As such, the
system could become more stable after a “parameter-shift trick”, a small increase followed by
a small decrease in the parameter.
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Thus far, all discussed homoclinic and heteroclinic connections indicate a boundary where
bistability or chaos disappears. A different type of boundary is formed by the point-to-
cycle connection. An example is provided by the three-dimensional RM model. In some
regions in parameter space there is bistability, and orbits can converge either to a chaotic
or a planar attractor where the top-predator goes extinct. The basins of attraction have
a very complicated structure, and it is not obvious to which attractor an initial condition
will converge. The tangency of the point-to-cycle connection is the boundary of the region
in parameter space where these complicated basins of attraction exist, and after this global
bifurcation has occurred the basin of attraction for the chaotic attractor is “closed” and
non-complicated [19]. Biologically these complicated basins of attraction could lead to very
dramatic changes in biomass densities under stochastic changes.

Some global bifurcations have a different function. The Shil’nikov bifurcation is the or-
ganising centre for chaos in the three-dimensional models so far. In the RM model there
is one chaotic attractor [90] born through a series of flip bifurcations that sprout from the
Shil’nikov. In the model by [93] there can be two chaotic attractors at the same parameter
set, that seem to be unrelated: one chaotic attractor traces back to a stable equilibrium like
in the RM model, and the other to a stable limit cycle born in a cycle tangent bifurcation.
However, the tangent bifurcation stems from the Shil’nikov, just like the flip bifurcations.

What is striking is that the Shil’nikov bifurcation is a homoclinic saddle point-to-point
connection, just like the global bifurcation involved in the destruction of the limit cycle in
the model by [94], for instance. The difference between the two homoclinic connections is
that the Shil’nikov orbit connects a focus-saddle point to itself in a system of more than two
variables, while the boundary orbit connects a simple saddle point to itself. An example of a
three-dimensional homoclinic simple saddle point-to-point connection that forms a boundary
occurs in a producer-consumer model where the consumer population is split into searchers
and handlers [81].

An important aspect in global bifurcation analysis is the preferred use of continuation
software over simulations. A simulator is a useful tool to obtain chaos diagrams, but a
poor tool to obtain a good bifurcation diagram. Especially near the bifurcation points the
integration time required to get an approximation of the stable asymptotic state increases,
and detection of the exact bifurcation point is almost impossible. Furthermore, saddle points
and saddle cycles cannot be found by doing simulations, since any orbit that approaches a
saddle in the stable direction will be diverted again when close to the saddle. Because saddles
are the start and end points of global connections, knowledge of their location is of vital
importance. A good example of this point is the dynamics of the model by [93], where it is
crucial to know the location of the saddle cycle that is involved in both the boundary and
interior crises. The use of continuation software like auto can result in the detection of the
saddle cycle by continuing the stable limit cycle through a tangent bifurcation. The saddle
cycle data can then be used in the application of the homotopy techniques to find global
bifurcations as developed by [34], [35].

The results seen and discussed here suggests that global bifurcation analysis is vital for a
good understanding of the dynamics of many food chain models. It remains to be seen what
other possible global bifurcations might exist, especially in food chain models of more than
three variables, and what the ramifications of their occurrence are, but the global bifurcations
studied so far can have potentially significant effects that cannot be understood without
knowledge of their occurrence. We argue that in future model analyses of food chain models
more attention is paid to the possible occurrence of global bifurcations.
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8.5 Discontinuity curves

The set of boundary conditions used to calculate the discontinuity curve Ax in Figure 8.3,
upper panel, is given as the three equations

{

φ(ξ, α) = 0 ,
P − θX2 − qK = 0 ,

(8.8)

where α is the parameter set and φ(ξ, α) is the equilibrium setting of Eq. (8.1), so the solution
of dX1/dt = dX2/dt = 0.

The second boundary condition is the minimum function for the producer species. For
the discontinuity curve Ay a similar set can be given

{

φ(ξ, p) = 0 ,
P − θ(X2 + X1) = 0 ,

(8.9)

where the second condition is the minimum function for the grazer species.
In a two-dimensional system, like the stoichiometric model, these are three equations with

four free parameters. We select as parameters the two equilibrium values ξ = X∗
1 ,X∗

2 , and
the two bifurcation parameters K and d.
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Chapter 9

Exercises

9.1 Exercise 1

The nutrient–prey model reads

dN

dt
= (Nr − N)D − INR

N

kNR + N
R , (9.1a)

dR

dt
=

(

µNR(cR)
N

kNR + N
− (D + mR(cR))

)

R , (9.1b)

dcT

dt
= (cr − cT )D , where cT = cW + cRR = cW (1 + bcfWRR) . (9.1c)

The parameter values are given in Table 9.1:

Table 9.1: Parameter set for bacterium-ciliate model: m mass of toxicant, t time, v is
dimension of the volume of the reactor and V biovolume or biomass of organism.

Nutrient–Prey
µNR Max. growth rate t−1 0.5 h−1

INR Max. ingestion rate t−1 1.25 h−1

kNR Saturation constant V v−1 8.0 mg dm−3

mR0 Maintenance rate coefficient t−1 0.025 h−1

cRM0 NoEffect Concentration (nec) m V−1 0.1 µg mg−1

cRM Tolerance concentration m V−1 0.5 µg mg−1

bcfWR BioConcentration Factor v V−1 1.0 dm3 mg−1

• Analyse the nutrient–prey model described in this document using auto or another
computer package. Use the parameter values in Table 9.1. Generate a two-parameter
bifurcation diagram with nutrient inflow Nr and dilution rate cr as free parameters for
the nutrient–prey system (9.1) with toxicity stress in the chemostat where the dilution
rate equals D = 0.02.

• Calculate the discontinuity curve in the (Nr, cr)-diagram where cW = cRM0. At this
point the elements of the Jacobian matrix evaluated at the equilibrium point can be dis-
continuous functions of the state variables. This makes this problem piece-wise smooth.
Describe the region in the diagram with no toxic effects.
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9.2 Exercise 2

The three-level food chain the Rosenzweig–MacArthur model is given by







ẋ1 = x1(1 − x1) − f1(x1, x2),
ẋ2 = f1(x1, x2) − f2(x2, x3) − d1x2,
ẋ3 = f2(x2, x3) − d2x3,

(9.2)

with Holling Type-II functional responses

fi(u, v) =
aiuv

1 + biu
, i = 1, 2. (9.3)

The death rates d1 and d2 are used as bifurcation parameters, with the other parameters set
at a1 = 5, a2 = 0.1, b1 = 3, and b2 = 2.

• Analyse the bi-trophic Rosenzweig–MacArthur model. Derive for this two-dimensional
system expressions for the equilibria. Derive the critial values for the carrying capacity
at the transcritical and Hopf bifurcation. Show that at the Hopf bifurcation the two
nullclines intersect at the top of the parabola.

• Analyse with auto the Rosenzweig–MacArthur tri-trophic food chain model. First
calculate the local bifurcation curves.

• Run the demos in Auto the continu the heteroclinic point–to–cycle connection and the
homoclinic cycle-to-cycle connection.

9.3 Exercise 3

A Forest-Pest model reads

dx

dt
= ρy − (y − l)2x − sx − xz , (9.4a)

dy

dt
= x − hy , (9.4b)

dz

dt
= ǫz + Bxz , (9.4c)

The parameter values are given in Table 9.2:

• Analyse this model where ρ and h are compound parameters which serve as bifurcation
parameters. Use the dimensioneless parameter values given in Table 9.2. Use auto or
another computer package to continue the local bifurcations.

• Use the Homcont facilities of auto to continue the heteroclinic point–to–point connec-
tion.
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Table 9.2: Parameter values after [5, Table 1] and the used dimensionless values with the calculation

of the bifurcation diagrams.

Parameter Units Values dimensionless Values

a ha2(103 trees)−2yr−1 0.00606 —
b 103 trees ha−1 0.247 —
c yr−1 0.01 —
ρ yr−1 0.134 variable
f yr−1 0.017 —
h yr−1 0.04 variable
A yr−1 0.004 —

ǫ yr−1 1.5 2
B yr−1 0.8 1
s yr−1 — 1
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