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The comments in this document resulted from discussions with colleagues and students
and from further research. The numbers in curled braces in the margin refer to page
numbers of the DEB book [289]; the positive numbers behind ‘l’ refer to line number from
the top of the page, the negative numbers from the bottom of the page; the numbers behind
‘p’ refer to paragraph, and ‘Eq’ stands for equation. Derivations for particular equations
are presented here in detail. The numbers separated by dots refer to section numbers.

Many items in this book are illustrated with sheets that can be found at (and down-
loaded from) http://www.bio.vu.nl/thb/deb/sheets/. Other supporting material, such
as errata, quizzes and exercises can be found at http://www.bio.vu.nl/thb/deb/material.
html. This site also shows question & answer, essay and theses collections that re-
sulted from the international tele-courses on DEB theory that have been organized, see
http://www.bio.vu.nl/thb/deb/course/deb/. All these files are updated every now and
then.

Each figure of the DEB book has an Octave/Matlab file in DEBtool/fig at http:

//www.bio.vu.nl/thb/deb/deblab/debtool/; these files set the data points, define the
models, fit the models to the data, present parameter values and their standard deviations,
and show the figure in color. Replacing these data by your own data provides a rapid mean
the apply DEB theory to your data. DEBtool can also be used for further illustrations and
new applications of DEB theory.

DEB papers before the DEB-book [281]: 1979–1993

[323, 326, 270, 269, 268, 272, 271, 273, 313, 274, 275, 276, 140, 174, 277, 317, 603, 184, 315,
139, 138, 278, 279, 324, 182, 280, 471, 580, 596, 185]

DEB papers since the DEB-book [281] till [289]: 1993–2000

[116, 132, 137, 201, 185, 457, 470, 469, 605, 604, 27, 29, 28, 55, 183, 186, 239, 257, 258,
267, 283, 282, 322, 409, 465, 469, 571, 181, 245, 259, 284, 411, 468, 570, 302, 285, 305, 303,
304, 310, 314, 319, 320, 401, 402, 472, 597, 175, 249, 248, 260, 286, 306, 598, 602, 57, 240,
251, 250, 288, 287, 308, 400, 466, 601, 600, 599, 45, 58, 252, 261, 321]

DEB papers since the DEB-book [289]: 2000–2009

[9, 47, 46, 56, 66, 179, 180, 229, 262, 307, 325, 357, 403, 128, 421, 59, 177, 176, 246, 254,
255, 290, 348, 410, 446, 467, 502, 567, 64, 178, 243, 263, 265, 311, 346, 449, 451, 67, 244,
247, 256, 298, 338, 340, 345, 347, 349, 356, 448, 566, 65, 123, 211, 155, 172, 264, 292, 291,
297, 318, 335, 337, 334, 339, 343, 422, 452, 572, 2, 210, 214, 316, 327, 352, 359, 365, 423,
447, 462, 480, 559, 558, 4, 3, 6, 18, 83, 84, 85, 124, 213, 231, 266, 293, 309, 391, 390, 428,
450, 455, 459, 530, 554, 556, 563, 565, 16, 17, 48, 76, 82, 199, 212, 234, 235, 301, 300, 312,
330, 350, 555, 384, 385, 528, 427, 429, 560, 60, 77, 130, 131, 145, 209, 253, 294, 299, 329,
440, 441, 443, 444, 442, 529, 557, 54, 61, 62, 146, 295, 296, 216, 166, 366, 367, 382, 392,
439, 458, 481, 485, 551, 564, 584]



3

Third edition of the DEB book

I started systematic research on DEB theory in august 1979, some thirty years ago. Re-
search, results and acceptance accelerated since then. The international tele-courses on
DEB theory (2001, 2003, 2005, 2007) played an important role in the acceleration. The
research group AQUAdeb and international research projects further simulated research
with practical applications in aquaculture, ecotoxicity and economics. This necessitated a
new edition of the DEB book [289] to remain an effective stimulus for further developments.

• Title: The Dynamic Energy Budget theory for metabolic organization

• Links with DEBtool (m-file for each figure)

• Support on the web (derivations); helpdesk

• Inclusion of a selection of these comments

• Reduction of preface

• Elimination of chapter 1 (some material transfer to other chapters)

• Update of chapter 2

2.3.1 weak, strong, structural homeostasis: mechanisms

2.4 → Synthesizing Units: extension, transfer from chap5

• Update of chapter 4

ageing, with acceleration of ageing linked to mitochondria

entropy estimates, effect of pressure in deep ocean

dynamics of isotopes

• Update of chapter 8

new primary parameters

tables with estimates of species parameters

• Update of chapter 9

reduction of population dynamics

parasite dynamics in hosts; effects on hosts

extension of system dynamics; biomass spectra

• New chapter on evolution & system earth
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DEB symposium in Brest, April 2009

To enhance the essential link between eduction and research the fifth international tele-
course on DEB theory with be linked to a DEB symposium. This symposium is planned
for April 2009 in Brest (see DEB info page on the web); At the symposium we plan to
present

• a second special issue of the Journal of Sea Research on DEB applications by the
group AQUAdeb

• the third edition of the DEB book by Bas Kooijman

• an introductory DEB book for ecologists by Jaap van der Meer

• a book on ecotoxicological applications of DEB theory by Tjalling Jager



Chapter 1

Energetics and models

Pores in egg shells and plant leaves
{3}, l25

The example of the pore frequency in egg shells has a parallel with the stomata frequency
in plant leaves. Data from fossil plants from Greenland show a dramatic drop in stomata
frequency at the end of the Triassic (208 Ma ago), which has been linked to a steep rise of
the atmospheric CO2 concentration to three times the present values, possibly as a result of
the activity of volcanoes that mark the breakup of Pangaea [31, p98]. The plants no longer
needed many stomata, and reduced the number to reduce the water loss by evaporation.

A weird world at small scales {7},1.2.1

The standard approach to the problem of understanding complex systems is to start from
the low organization level, to collect all possible information and use it to explain processes
at higher organization levels. Although spectacular progress has been booked in the last
decades on qualitative aspects of molecular biology, little is known about quantitative ones,
which are substantially more difficult to tackle. Chemical kinetics, and enzyme kinetics,
are developed for (large) homogeneous reactors with constant volumes that have diluted
concentrations of substrates and enzymes that perform simple transformations, not for
small inhomogeneous cells that change in volume and are packed with macro molecules
that each partake in very few but complex transformations only. Basic to chemical kinetics
is the law of mass action: transformation rates are proportional to meeting frequencies,
which are taken proportional to the product of concentrations of substrate. This rests on
transport by diffusion or convection. A few observations might help to reveal that the
application of classic chemical kinetics in cellular metabolism is problematic. This even
holds for the concept ‘concentration’ of a compound inside cells.

An example from [290]: Consider a typical bacterial cell of volume 0.25 µm3 and an
internal pH of 7. The intra-cellular compartments of eukaryotic cells are about the same
size. It must have 15 free protons, but random dissociation of water, and random asso-
ciation of protons and hydroxyl ions make this number fluctuate wildly [389]. Figure 1.1
shows that the (asymptotic) frequency distribution of the number of protons, and so of
pH, dramatically increases in variance for decreasing cell sizes for volumes smaller that 0.5
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pH

cell volume, �m3 Figure 1.1: The 95%, 90%, 80% and 60% confi-
dence intervals of pH in cells of pure water with
pH 7 as a function of the cell size. They in-
crease dramatically for decreasing cell sizes for
cells (or cell compartments) less than 0.5 µm3.
The thick curve represents the mean pH, which
goes up sharply for very small cell sizes.

µm3. We have to think in terms of pH distributions rather than pH values. Many chemical
properties of compounds depend on the pH, which makes matters really complex.

A water molecule is created, by association of a proton and a hydroxyl ion, and is
annihilated by dissociation about twice a day at 25 ◦C. Brownian motion transports a
water molecule about 3 cm between creation and annihilation, while protons and hydroxyl
ions are transported some 3 µm, on average. However, these distances do not fit into a
cell (or cell compartment), which must lead to the conclusion that undisturbed diffusion
does not occur in cells. These expectations are based on pure water, but a more realistic
cytoplasm composition does not eliminate the problem.

Water in very small volumes behaves as a liquid crystal [75, 22], rather than as a liquid,
which has substantial consequences for kinetics. Electrical potentials reveal the crystalline
properties. They decay exponentially as a function of distance L, so they are proportional
to exp{−L/LD}. The parameter LD, called the Debye distance, is about 0.1 µm for water
at 25 ◦C [579], which means the electrical potential of a proton would be felt through most
of the cell, even if it did not move.

Organelles crawl around in cells, divide, merge and may be destroyed. Substrates are
delivered to enzymes by transporter proteins, that follow paths along the endoplasmatic
reticulum; products are removed from their site of origin in a similar way. Active allocation
of substrates to particular transformations is common. The small number of molecules
of any type requires stochastic rather than deterministic specification of their dynamics.
Many enzymes are only active if bounded to membranes. Many substrates play a role
in a metabolic network, which given complex connections. The cell follows a cell cycle,
and many sub-cellular structures and activities have complex links to this cycle. All these
aspects make that transformations that are based on the law of mass action are problematic
for living cells.

Central role for individuals in DEB theory
{10}, Fig
1.2 The reasons why the individual play a central role in DEB theory for metabolic organization

are
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• input and output of mass and energy is most accessible at this level

• the individual is the primary unit of evolutionary selection, the survival machine life

• behaviour is key to food intake and food selection; food fuels metabolism. Behaviour
is also key to mate selection; reproduction controls survival across generation in many
species. Behaviour is primarily linked to the level of the individual

The delineation of the individual level is not always sharp; the section on evolution (Chapter
8) discusses this in more detail. Many species are unicellular, so the cellular and individual
levels coincide for them. Multicellular species that sport reproduction start their life cycle
as a unicellular, which is relevant to DEB theory because it deals with the full life cycle.
Some species are multicellular in the embryo stage, but unicellular in the adult stage, which
illustrates that the various levels of organisation are more complex than illustrated in this
scheme.

Estimation of DEB parameters
{14},1.2.4

The sequence of estimation steps that is discussed in [328] basically concerns a mixture
of statistics (e.g. the von Bertalanffy growth rate) and observations. We did this because
sometimes this is the only information that is available, but in the first place to reveal
the logical relationships between these quantities and DEB parameters. From a statistical
point of view, it is better to use data directly [390], rather than via these statistics. This
strategy also allows for a wider choise of types of data that can be used to obtain values for
parameters. Data on embryo development, for instance, can be used to extract the energy
conductance v̇ and the somatic maintenance rate coefficient k̇M , see [289, p101]. The basic
idea is to use all available information simultaneously.

The regression routines of software package DEBtool can handle an arbitrary number
of data set simultaneously using algorithms, that vary from slow with a large domain
of attraction (genetic algorithms, Nead-Melder method), to fast with a small domain of
attraction (Newton-Raphson method). It is easy to change from fixing parameters at
particular values and subjecting them to optimasation. The routines allow for continuation,
i.e. the resulting parameters from one call can be used as starting point for a next call. Since
the possibility always exist that the resulting estimates correspond with a local minimum of
the sum of weighted squared deviations, rather than with a global minimum, it is good idea
to try several values for initial estimates, and select the result with the smallest deviation.

A basic problem in estimating parameters from several data sets simultaneously is that
it is less easy to figure out if the combined data do determine the parameters that are
subjected to optimasation. A useful test is to check for non-singularity using the Newton-
Raphson method (a warning appears for singularity); this test is not “waterproof”, however.
Moreover, a parameter might be determined by the combined data, but very imprecisely
only. The standard deviations might indicate this, (DEBtool has a function for the covari-
ance matrix of parameter estimates, from which standard deviations are derived), but one
should not conclude from a small standard deviation that the corresponding parameter is
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precisely determined by the data; a mistake that is easy to make. The simultaneous con-
fidence interval with highly correlated parameters might be large. Moreover parameters
might depend on each other in non-linear ways that are poorly quantified by the corre-
lation matrix. Profile likelyhood functions give a much more reliable idea about the real
confidence of parameter values (DEBtool has functions for them), but the computation of
these profile likehood functions can easily be demanding.

It is always a good idea to finalize the estimation with the Newton Raphson method
(because it is most accurate), and to check the results graphically (DEBtool has facilities
for this); no formalized method can compete with the human eye.

Apart from optimizing the goodness of fit we want to have physiological consistency.
These different criteria frequently, but not always, coincide; a very unrealistic parameter
value might give a slightly better fit than a realistic one. As long as the fit is not too bad, re-
alism is a stronger criterion. Such an endpoint can be obtained using the concept of sloppy
constraints, where “pseudo observations” are fitted for particular parameters, simultane-
ously with real observations. Choosing large weight coefficients in the regression procedure
that minimizes the weighted sum of squared deviations for the pseudo observations, the
sloppy constraints become real constraints and the parameters are set to the “observed”
values. By decreasing the weight coefficients, we can allow deviations from these values; if
the weight coefficients equal zero, the “observation” is completely ignored. This procedure
has relationships with Baysian methods, but has a better biological foundation. See the
first estimation step for the logic of this procedure.

DEB theory can handle varying food conditions and temperatures, which are inherent
to seasonal forcing. The implementation of the more advance applications typically requires
some data set specific coding.

Implicit Monod
{16},Fig
1.3 Note that the solution for Monod degradation has been given implicitly only. It cannot be

given explicitly because X(t) as well as ln X(t) occur in the equation. It is not difficult,
however, to solve X(t) numerically from the equation that has been given.

More intros to DEB theory
{19}

Meanwhile we wrote papers that introduce DEB theory conceptually [421, 290, 390]. The
role of the central nervous system in the regulation of food intake in demand systems is
discussed by [408].



Chapter 2

Basic concepts

Supply versus demand systems
{19}

Since the DEB theory is supposed to be applicable to all organisms, both supply and
demand systems follow the same rules within the DEB theory. An explanation might
be that demand systems evolved from supply systems, froze the existing metabolic rules,
lost metabolic flexibility (to deal with extreme starvation conditions), but increased in
behavioural flexibility. All demand systems are animals, i.e. organisms that feed on other
organsims; they are often mobile and move to there were the food is and this food typi-
cally consists of other organisms. Hence they encounter less frequently extreme starvation
conditions; they typically cannot shrink during starvation, but die. The increased be-
havioural flexibility gives them the possibility to specialize on one type of food species and
translates in a small value for the half saturation coefficient for demand systems. They
also have a relatively large difference between the peak and the standard metabolic rate,
and have typically closed circulation systems (efficient transport under extreme metabolic
performance), some developed endothermy (birds and mammals) and many have higly
developed sensors. Supply organisms typically move less and find their food via a kind
of (activated) diffusion process. They can better deal with starvation (shrinking). They
have less developed sensors and are metabolically more flexible. Especially those that do
not live of other organisms typically have a number of reserves equal to the number of
complementary resources. By far the majority of species are supply systems, but the few
demand systems got relatively more research attention.

Size variation via food intake {21}, Fig
2.1We here focus on spatially homogeneous situations, and create ourselves a stochastic model

for feeding of a single individual on a single type of food particles. We then extend the
model to more individuals and see how social interaction can amplify size differences. This
section is meant to present a mechanism behind the phenomenon depicted in Figure 2.1
at {21}.

The stochastic feeding model is constructed such that the expected feeding rate is
J̇XA = f{J̇XAm}L2 with f = X/(K + X), where J̇XA is quantified as mass of particles per
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time and food density X and saturation constant K as mass of food particles per volume.
The mass of a food particle is MX (in C-mole). In number of food particles, we write
ḣX = f{ḣXm}L2 with {J̇XAm} = −{ḣXm}MX , and f = X#/(K# +X#), with X = X#MX

and K = K#MX . (Notice that J̇XA < 0 and ḣX > 0.) At high food density X#, for f = 1,
searching takes a negligible amount of time, and the mean time it takes to handle a single
food item is th = 1/ḣXm = {ḣXm}−1L−2. Since ḣX = (ts + th)

−1, the time for searching is
ts = 1/ḣX − 1/ḣXm = K#{ḣXm}−1X−1

# L−2.
Suppose that the food particles at a given time are randomly distributed in space with

mean density X#. The probability that the nearest food particle is at a distance larger
than L from an individual at a random site is

Prob{Ld > L} = exp(−X#L3π4/3)

So, the nearest food particle is at mean distance

ELd =
∫ ∞

0
Prob{Ld > L} dL = Γ(4/3)(X#π4/3)−1/3 = aX

−1/3
#

with a = Γ(4/3)(π4/3)−1/3 ≃ 0.554. Traveling at speed Ṡ, the time to reach this particle is

ts = ELd/Ṡ = aX
−1/3
# /Ṡ, so the speed is Ṡ = aX

−1/3
# /ts = aK−1

# {ḣXm}X2/3
# L2 = ḃX

2/3
# L2

for ḃ = aK−1
# {ḣXm}.

We now construct a feeding process of a single individual in a unit cube of habitat on
the basis of the following rules

R1 a new food particle appears at a random site within the cube at the moment one of
the resident particles disappears. It stays on this site till it disappears; the total number
of food particles remains constant.

R2 a food particle disappears at a constant probability rate µ, or because it is eaten
by the individual.

R3 the individual travels in a straight line to the nearest visible food particle at
speed Ṡ = ḃX

2/3
# L2, eats the particle upon arrival and waits at this site for a time

th = {ḣXm}−1L−2. The individual changes direction if the food particle at which it is
aiming disappears or a nearer new one appears. It changes speed because of changes in
length.

R4 the individual grows following the DEB rules for an isomorph, i.e. the food particle
converts to reserve instantaneously; the scaled reserve density e of an individual of struc-
tural volume L3 makes a jump from e to e + (LX/L)3 upon feeding; scaled reserve density
is used for metabolism at rate d

dt
e = −e{ḣXm}L3

X/L; reserve converts to structure and the

length changes at rate d
dt

L =
{ḣXm}L3

Xe−Lk̇Mg

3(e+g)
. At time t = 0 the length is L = Lb, and the

reserve density e = f .
R5 all food particles are visible.
We now extend the rules for N individuals that interact not only by competition, but

also by social intimidation using the following rule that replaces R5
R5 a food particle becomes invisible for an individual of length L1, if an individual

of length L1 is within a distance Ls(L2/L1)
2 from the food particle, irrespective of being

aimed at.
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Notice that even for the intimidation length Ls → 0 the individuals interact (weakly)
by competition because the mean traveling distance will increase, despite the replacement
of disappearing food particles. The differences in length will amplify for increasing intimi-
dation length.

The interpretation of the food length LX is L3
X = MXyEX/[MEm], which makes that

Lm = −{J̇XAm}yEX

kMg[MEm]
= κ{J̇EAm}

jEM [MV ]
= −κ{−J̇XAm}

jXM [MV ]
(cf {122} Table 3.4). Notice that by increasing

mass MX , while keeping {J̇XAm} constant, the maximum length will increase as well.
Keeping {J̇XAm} constant, however, will result in an increase in variance. The speed can
be made independent of food density and proportional to length, rather than squared
length, by inserting more detail in the feeding process (especially in the visibility module).
We here want to minimize the number of parameters that needs to be specified.

The food density X and the particle disappearance rate µ are environmental parame-
ters. Although our food particles do not move, the replacement scheme has the effect as if
the particles move at infinite speed to another random location at random points in time.
The mean distance between two random points on a unit edge is 1/3, on a unit square it
is 0.521405, and on a unit cube it is 0.65853. So the mean speed of a food particle in a
cube with edge LD is 0.65853LDµ. If this is in the same order of magnitude as the speed
of the organism, it strongly affects the feeding process; if it is much larger, the individuals
will starve to death.

We have two different spatial units, that of the individual (in {ḣXm}, Lb and LX) and
of the environment (in X, K and Ls), here chosen as cm and m, respectively. Speed is
primarily controlled by the saturation constant K. The social interaction increases with
decreasing number of food particles per individual. The variance increases with food length
LX , but decreases in time because of the smoothing capacity of the individual increases
with size (the catabolic flux is inversely proportional to a length measure.

We have 8 parameters X#, K#, Lb, LX , {ḣXm}, k̇M , g, µ for feeding and growth of a
single individual with state variables scaled reserve density e and structural length L, and
one extra parameter, Ls, for the feeding and growth of N individuals. Notice that {ḣXm}L3

X

plays the role of the energy conductance v̇ in the standard DEB formulation, which does not
account for stochasticity and the discreteness of food particles. This stochastic extension,
therefore, does not come with an increase in the number of parameters, while we need a
single parameter to introduce social interaction. We can out-scale one parameter, if our
interest is in relative length l = L/Lm with Lm = {ḣXm}L3

X/k̇Mg, and another one by
choosing the spatial scale such that K# = 1, and a final one if we out-scale time, e.g. by
choosing the maintenance rate coefficient k̇−1

M as unit of time. The core of the problem
of how the variance in length builds up as function of time t, food density X, number of
interacting individuals N and the intimidation length Ls has thus 6 parameters.

Figure 2.1 illustrates simulation results; notice that both individuals have exactly the
same parameter values, although they seem to follow different growth curves! Stochastic
growth is retarded relative to the deterministic expectations because of the border effects
(which increase the traveling distances), and the stochastic displacements of food particles.
Even in the single individual case, the variance behaves different, compared to the random
telegraph process, as described in section 7.1.1 at {221} and Figure 7.1. Notice also how
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Figure 2.1: The scaled reserve density e and the length L, in the single (top) and the two (bottom)
individual situation. The green lines give the deterministic expectation without interaction.
Parameters: µ = 2 d−1, X# = 10 m−3, K# = 2 m−3, {ḣXm} = 10 d−1cm−2, Lb = 0.1 cm,
LX = 0.1 cm, k̇M = 0.01 d−1, g = 2, Ls = 0.2 m.

effectively reserve smooths out stochastic fluctuations in food availability.

Exoskeletons{25}, 2.2.1

Isomorphism itself poses no constraints on shape, but if organisms have a permanent exo-
skeleton, then stringent constraints on shape exist and as most animals with a permanent
exoskeleton actually meet these constraints, it is helpful to work them out. This is done
in [281].

A grasshopper remains isomorphic and has an exoskeleton, but it grows by moulting,
thus the exoskeleton is not permanent and isomorphism poses no constraints in this case.
The same holds for an organism which resembles a sphere, such as a sea urchin; it cannot
have a permanent (rigid) exoskeleton, because the curvature of its surface changes during
growth. A cylindrical organism that grows in length only, is not isomorphic. A cylindri-
cal organism that grows isometrically has only its caps as a permanent exoskeleton; thus
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this includes only the caps, i.e. two growing disks separated by a growing distance. The
permanent exoskeleton generally represents a (curved) surface in three dimensional space,
which can be described in a simple way using logarithmic spirals. The idea of the logarith-
mic spiral or spira mirabilis (in the plane) goes back to Descartes’ studies of Nautilus in
1638 and to Bernoulli in 1692. The function has been used by Thompson [552], Rudwick
[495, 496] and Raup [473, 474] to describe the shape of brachiopods, ammonites and other
molluscs. I will rephrase their work in modern mathematical terms and extend the idea a
bit.

A natural starting point for a description of the isomorphic permanent exoskeleton
is the mouthcurve. This is a closed curve in three dimensional space that describes the
‘opening’ of the permanent exoskeleton (shell). This is where the skeleton synthesizing
tissue is found. The development of the exoskeleton can, in most cases, be retraced in
time to an infinitesimally small beginning, giving the permanent exoskeleton just the one
‘opening’. This method avoids the problem of the specification of the shape of an invisibly
small object. To follow the mouth curve back in its development, we introduce a dummy
variable l, which has the value 0 for the present mouth curve and −∞ at the start of devel-
opment. By placing the start of development at the origin, the test on isomorphism of the
developing exoskeleton is reduced to mapping one exoskeleton to another by multiplication
and rotation only (so no translation). We can always orient the exoskeleton such that the
rotation is around the x-axis. Let R(l) denote the rotation matrix

R(l) =







1 0 0
0 cos l sin l
0 − sin l cos l







The closed mouthcurve m at an arbitrary value for the dummy variable l, can be described
by

m(l) = cl/2πR(−l)m(0) (2.1)

where c is a constant describing how fast the mouth curve reduces in size when the ex-
oskeleton rotates over an angle 2π. If c is very large, it means that the exoskeleton does not
rotate during its reduction in size. Size reduction relates in a special way to the rotation
rate to ensure (self) isomorphism. It follows from the requirement that for any two points
m0 and m1 on the mouthcurve, the distance ‖m1(l + h) − m0(l)‖ depends on l in a way
that does not involve the particular choice of points. The rotation matrix is here evalu-
ated at argument −l, because most gastropods form left handed coils. For right handed
coiling l, rather than −l, should be used. The mouth curve, together with the parameter
c determine the shape of the exoskeleton.

An arbitrary point on the mouth curve will describe a logarithmic spiral to the origin.
To visualize this, it helps to realize that a simple function such as the standard circle is
given by f(l) = (sin l, cos l), where the dummy variable l takes values between −∞ and
∞. A graphical representation can be obtained by plotting sin l against cos l. Similarly,
the logarithmic spiral with the vertex at the origin through the point m(0) ≡ (m1, 0,m3)
is given by

f(l) = cl/2π(m1,m3 sin−l,m3 cos−l) (2.2)
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It lies on a cone around the x-axis
with vertex at the origin, and tan-
gent m3/m1 of the diverging angle
with respect to the x-axis. For in-
creasing l, the normalized direction
vector of the spiral from the vertex,
(m1,m3 sin−l,m3 cos−l)/‖m‖, with

‖m‖ =
√

m2
1 + m2

3, describes a circle
in the y, z-plane at x-value m1/‖m‖.

x-axis

m

m3

m1

y-axis

z-axis

Until now, no explicit reference to time has been made. If the length measure of the
animal follows a von Bertalanffy growth pattern, i.e. 1 − exp{−ṙBt} for t ∈ (0,∞), the
relationship cl/2π = 1− exp{−ṙBt} results. So, l = 2π

ln c
ln{1− exp{−ṙBt}}. This is realistic

when food density and temperature remain constant. In winter, when growth ceases in
the temperate regions and calcification partially continues in molluscs, a thickening of the
shell occurs, which is visible as a ridge ringing the shell. If the gradual transitions between
the seasons can be neglected, these ridges will be found at l = 2 pi

ln c
ln{1 − exp{−ṙBi}},

i = 1, 2, 3, .., when the unit of time is one growth season. In principle, this offers the
possibility of determining the von Bertalanffy growth rate ṙB from a single shell found on
the sea shore.

The mouth curve in living animals with a permanent exoskeleton frequently lies more
or less in a plane, which reduces the specification of the three dimensional mouth curve to a
two dimensional one, plus the specification of the plane of the mouth curve, which involves
two extra parameters. The exoskeleton can always be oriented such that the plane of the
mouth curve is perpendicular to the x, y-plane and the mouth opening is facing negative
y-values.
Let p ≡ (p1, p2, 0) denote a point in the
plane of the mouth curve, such that this
plane is perpendicular to the vector p and
p2 ≤ 0. (Remember that the axis of the spi-
ral is the x-axis with the vertex at the origin
so that the orientation of the exoskeleton is
now completely fixed.) The mouth curve n

in the plane is now measured using the point
p as origin. If the mouth curve is exactly in
a plane, a series of two coordinates suffice to
describe the exoskeleton together with c, p1

and p2.
If it is not exactly in a plane, we can interpret the plane as a regression plane and still

use three coordinates, where the y-values are taken to be small. The relationship between
n measured in the coordinate system with the plane of the mouth curve as x, z-plane and
p as origin with the original three dimensional mouth curve m is:

m = p +







−p2/‖p‖ −p1/‖p‖ 0
p1/‖p‖ −p2/‖p‖ 0

0 0 1





n (2.3)
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More specifically, if the mouth curve is a circle with radius r and the centre point at
(q1, 0, q3), we get n(φ) = (q1 + r sin φ, 0, q3 + r cos φ), for an arbitrary value of φ between 0
and 2π. This dummy variable just scans the circle. The 6 parameters c, p1, p2, q1, q2 and
r completely fix both shape and size of all isomorphic exoskeletons with circular mouth
curves. If only the shape is of interest, we can choose r as the unit of distance, which leaves
5 free parameters for a full specification.

This class of morphs is too wide because it includes physically impossible shapes. The
orientation of the mouth curve should be such that a mouth opening results and the shape
may not ‘bite’ itself when walking along the spiral. This constraint can be translated
into the constraint that the intersections of the exoskeleton with the x, z-plane should not
intersect each other. The intersections of the mouth curve with the x, z-plane are easy
to construct, given points on the mouth curve. When the point m1 ≡ (m1,m2,m3) on
the mouth curve m(0) spirals its way back to the vertex, it intersects the x, z-plane at
cli/2πR(li)m1, with li = iπ − arctan m2/m3 for i = 0,−1,−2, · · ·.

The distinction Raup [473] made between a generating curve and a biological one
is purely arbitrary and has neither biological nor geometric meaning; Raup raises the
problem that realistic values for the parameters he uses to characterize shape tend to
cluster around certain values. Schindel [506] correctly pointed out that this depends on
the particular way of defining parameters, and he used the intersection of (2.1) with the
x, z-plane to characterize shape and showed that realistic values for parameters of this
curve did not cluster. Any parameterization, however, is arbitrary unless it follows the
growth mechanism. This shape of permanent exoskeletons is dealt with here to show that
the shape is a result of the isomorphic constraint.

Nautilus has a fixed number of septa per revolution. This is to be expected as it makes
a septum as soon as the end chamber in which it lives exceeds a given proportion of its body
size. (The fact that the septa in subsequent revolutions frequently make contact implies
that Nautilus somehow knows the number π.) These septa cause the shell to be no longer
isomorphic in the strict sense, but to be what can be called periodically isomorphic, by
which I mean that isomorphism no longer holds for any two values of l, but for values that
differ by a certain amount. Many gastropods are sculptured at the outer surface of their
shell; this sculpture is formed by the mantle curling around the shell edge. The distance
from the shell edge and the height of the sculpture relates to the actual body size, the
result being a shell that is also periodically isomorphic. Sculpture patterns that do not
follow the mouth curve, but follow the logarithmic spirals, do not degrade isomorphism.
Some shells of fully grown ammonites and gastropods have a last convolution that deviates
in shape from the previous ones, showing a change in physiology related to life stage.

Most shapes are simple and correspond to special cases where the mouth curve lies in
a plane. For p1 = 0, the mouth curve lies in a plane parallel to the x, z-plane; shapes such
as Planorbis and Nautilus result if the mouth curve is symmetrical around the x, y-plane.
A growing sheet is obtained when p1 → 0 and p2 = 0 so that the mouth curve lies in the
y, z-plane. Age ridges can still show logarithmic spirals (in the plane), depending on the
value of c. Figure 2.2 gives a sample of possible shapes. Although the shell of Spirula is
internal rather than external, this does not spoil the argument.

From an abstract point of view, the closed mouth curve can secrete exoskeletons to
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Patella, c → ∞, p2 = 0

Nautilus, c = 3, p1 = 0, p2 → 0

Spirula, c = 5, p1 = 0, p2 → 0
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Lymnaea, c = 2, p1 = 0, p2 → 0

Mytilus, c = 104, p1 → 0, p2 = 0

Ensis, c = 105, p1 → 0, p2 = 0

Figure 2.2: A sample of possible shapes of isomorphs with permanent exoskeletons. The mouth
curves are shown at equal steps for the dummy argument (Lymnaea, Spirula) or for time. Illumi-
nate well and evenly to obtain the stereo effect. Hold your head about 50 cm from the page with
the axis that connects your eyes exactly parelell to that for the figures. Do not focus at first on
the page but on an imaginary point far behind the page. Try to merge both middle images of the
four you should see this way. Then focus on the merged image. If this fails, try stereo glasses.
If the grey is in front, rather than at the background, you are looking with your right eye to the
left picture. Prevent this with a sheet of paper placed between your eyes and the page. About
10% of people actually look with one eye only and thus fail to see depth. If necessary, test this
by raising one finger in front of your nose and counting the number of raised fingers that you see
while focusing at infinity.
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Figure 2.3: The goose barnacle (Scalpellum

scalpellum) has an exoskeleton with a large
number of components, each belonging to the
family (2.1); it is an example of a branched
mouth curve. Tetrahedrons provide an example
of permanent exoskeletons with three branch-
ing points in the mouth curve and cubes with
eight. If the (branched) mouth curve is a globu-
lar network, the exoskeleton can even resemble
a sphere.

either side and no formal restrictions exist for the parameters describing their surfaces.
(The biological reality is that two mouth curves are lined up and can be moved apart to let
the animal interact with the environment.) Animals such as bivalves have two logarithmic
spirals sharing the same mouth-curve, one turns clockwise, one anti-clockwise. Many
gastropods also have a second exoskeleton, the plane-like operculum, which is so small
that it easily escapes notice. Gastropods of the genera Berthelinia, Julia and Midorigai
have two valves, much like the bivalva. As illustrated in figure 2.3, more complex shape
are possible when the mouth curve is branched.

Surface areas vs volumes{27}, l2
The fact that the surface area of an isomorph is proportional to volume2/3 has been dis-
cussed in 2.2.2.
Line 13-14: ”The different body sizes can be obtained through multiplying the x-values by
some scalar...” , rather than the ‘x-axis’. (Comments by Dmitrii Logofet)

Derivation of Ld{29}, l7
The formula for Ld is derived as follows:
Vd = (Ld − δLd)πδ2L2

d/4 + 4
3
πδ3L3

d/8; the first term is the volume in the cylinder of length
Ld − δLd and radius δLd/2, excluding the caps, the second term is the volume in the
two hemispheres. These two hemispheres together make up a sphere with radius δLd/2.
Rearrangement of terms gives Vd = πδ2L3

d(1− δ/3)/4. We now write Ld as function of Vd,
rather than vice versa.

Although it is not required for the shape correction function, we will later need length
as a function of volume. The cylindric part of the cell is growing, so is the total cell length
L, and the cell volume V , while the diameter remains constant. The volume at division Vd

is taken as a reference value. We can express the cell length L as a function of cell volume
V . The derivation is as follows:
V = (L − δLd)πδ2L2

d/4 + 4
3
πδ3L3

d/8; the first term is again the volume in the cylinder,
the second term is the volume in the two hemispheres. Rearrangement of terms gives
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Figure 2.4: Biofilms (green) on the surface of a
sphere (brown) can behave between an isomorph
(top; radius of sphere V1 = 0) and a V0-morph
(bottom; radius of sphere V1 = ∞). The shape

correction function is M(V ) =
(

Vd
V

V1+V
V1+Vd

)2/3
.

V = Lπδ2L2
d/4−πδ3L3

d/12 or L = δ
3
Ld + 4V

πδ2L2
d
. We now substitute the expression for Ld as

function of Vd and obtain directly the expression for L as a function of V ; note that length
is linear in volume, which is characteristic for a mixture between a V0- and a V1-morph.
This is the reason why the result is presented in this section.

Biofilms {29}
Figure 2.4 shows that a biofilm on a curved surface can behave somehwere between a V0
and an isomorph.

Reserve & structure {30}
DEB theory partitions biomass into one or more reserves and one or more structures.
Reserves complicate the dynamics of the individual and the application of the model con-
siderably, so it make sense to think about its necessity and become motivated to deal with
this more complex dynamics.

We need reserve because of the following reasons

• to include metabolic memory. The metabolic behaviour of an individual does not
depend on the actual food availability, but of that of the (recent) past. At constant
food availabilities the argument is less convincing, but since an embryo does not eat,
and a juvenile and adult do, reserve is essential to include the embryonic stage, even
in constant environments.

• the chemical composition of the individual depends on the growth rate

• fluxes (e.g. dioxygen, carbon dioxide, nitrogen waste, heat) are linear sums of three
basic energy fluxes: assimilation, dissipation and growth (as we will see). The method
of indirect calorimetry is based on this fact. Without reserve, using a single structure
only, two rather than three basic energy fluxes would suffice, while experimental
evidence shows that this is not true.

• to explain observed patterns in respiration and in body size scaling relationships.
Eggs decrease in mass during development, but increase in respiration, while juveniles
increase in mass as well as in respiration. This cannot be understood without reserve.
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We will see that reserve plays a key role in body size scaling relationships, and to
understand, for instance, why respiration increases approximately with weight to the
power 3/4 among species.

• to understand how the cell decides on the use of a particular (organic) substrate, as
building block or as source of energy. This problem will be discussed in the section
on organelle-cytoplasm interactions (in these comments).

The term reserve does not mean ‘set apart for later use’; reserve can have active
metabolic functions. The primary difference between reserve and structure is in their
dynamics: all chemical compounds in the reserve have the same turnover time, in struc-
ture they can be different. An implication is that structure requires somatic maintenance,
reserve does not. A freshly laid egg consists (almost) fully of reserve and does hardly
respire; a simple and direct empirical support for this statement.

Muscle tissue: structure or reserve?{30}, l-16
‘muscle tissue .. must be considered as structural material’ is a confusing formulation.
Muscles, like all tissues, have structural as well as reserve components. If reserve is used
during starvation, and restored after subsequent feeding, the individual is in its original
state. If structure is used during (extreme) starvation, the individual can suffer from
permanent damage, and never recovers fully. An example is the degradation of muscle
tissue during extreme starvation. The example is not meant to imply that muscle tissue
does not have reserve.

C-mole{34}, l4
One mole of glucose equals 6 C-moles of glucose.

Generalized compounds
{34}

We need the link between generalized and “pure” chemical compounds in applications of
isotopes, for instance. Like generalized compounds, we quantify organic compounds in
terms of C-moles. Suppose that compound i is present in MVi

(C-)moles in structure,
for example. So structure has mass MV =

∑

i MVi
nCVi

, where nCVi
is either 0 (anorganic

compounds) or 1 (organic compounds). The chemical indices of the generalized compound
relate to that of the chemical compounds as

n∗V =

∑

i MVi
n∗Vi

∑

i MVinCVi

=

∑

i MVi
n∗Vi

MV

=
∑

i

win∗Vi
with wi = MVi

/MV and i ∈ {C,H,O,N}

This decomposition can also be done for other generalized compounds, such as reserve
and food. Notice that any chemical compound can potentially partake in all generalized
compounds and all chemical elements can be included.
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Figure 2.5: The atp/adp shuttle transports energy from a site where an
energy producing transformation occurs, to a site where an energy requiring
transformation occurs. If both transformations occur at the same place and
time, and thermodynamics allows, the shuttle is not required. Variations in
the free energy of an atp molecule affect the speed of the shuttle, but not
necessarily the transformation rates. Form [290].

Molar mass
{34}, l-14

When a biologist uses the word “weight”, he/she actually means mass expressed in grams,
not force. The book follows this tradition. The term ‘molar mass’ gives confusion. It
here stands for ‘mass expressed in (C-)moles’, as opposed to mass expressed in grams,
for instance. (The definition of a C-mole is given in the glossary). The main difference
between mass expressed in grams or moles is that comparisons of grams allow differences
of chemical composition, while that of moles typically do not. An inconsistency in the
notation of the dimension crept in. In table 3.4 at {122} m denotes mass (expressed in
moles), while in the notation list it denotes mass expressed in weight (grams for instance,
see symbol W ), while mass expressed in moles is indicated by the number-symbol # (see
symbol M). Since a mole is a unit, not a dimension, the dimension identifier for W and M
should be the same. Yet their role in checking mass conservation is very different, which
makes it handy to link the symbol to the way mass is quantified.

ATP
{35}

Bio-energetics studies the processes of atp
∗ generation and use, because cells use atp to

drive energy requiring transformations. atp turnover is considered to organize metabolism.
The energy charge, i.e. the ratio

[atp]/([amp] + [adp] + [atp]),
changes, and therefore the free energy∗ of atp. This complicates the understanding of
slow transformations in terms of generation and use of atp. Slow transformations are
controlled by polymers (proteins, lipids and carbohydrates), however, which do not suffer
from fluctuating free energies. They are spatially organized in granules, and attacked from
the periphery. Their amount, or exposed surface area, would quantify their metabolic
significance much better than their concentration; see Figure 2.5.

Entropy
{35}

Later developments of the theory replaced the assumption that the entropy of biomass
is zero by the assumption that the specific entropies of reserve and structure is constant
(because of the strong homeostasis assumption), see [530, 328]. These specific entropies
can be obtained indirectly for mass and energy balances. It turned out that the specific
entropy of structure is lower than that of reserve, as expected. See comment for {154}.
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Figure 2.6: Uptake of a single substrate is well quantified on the basis of a fixed
handling time of substrate (prey) by the uptake machinery. The time need not be
constant, but it must be independent of substrate density [395, 396]. The handling
time not only includes mechanical handling but also metabolic processing. This
is why eating prey by predators and transformation rate by enzymes depend in
a similar way on substrate (food) density. From [290]

SUs{41}
SUs are generalized enzymes that follow the rules of classic enzyme kinetics with two mod-
ifications: transformation is based on fluxes, rather than on concentrations of substrates,
and the backward fluxes are assumed to be negligibly small in the transformation

S + E ↔ SE ↔ PE ↔ P + E ,

where S stands for substrate, P for product and E for enzyme, see Figure 2.6. The backward
fluxes might be small, not because of enzyme performance as such, but because of the
spatial organization of the supply of substrate and the removal of product by transporters.
The differences from classic enzyme kinetics do not affect the simple one-substrate one-
product conversion in spatially homogeneous environments, but do affect more complex
transformations. The arrival flux can be taken to be proportional to the density in spatially
homogeneous environments. So for compound S present in concentration S, with binding
probability ρ and affinity ḃ, the arrival flux J̇S relates to the concentration as ρJ̇S = ḃS

More on SUs{43}
The theory on synthesizing units is substantially extended; [410] presents applications in
an evolutionary context; [64] gives extensions for multiple substrates, inhibition, and co-
metabolism; [327] presents closed handshanking slightly different from the book to ensure
that a set of SUs that perform closed hank-shaking can act as if it is just a single SU;
[297] apply the theory to quantify the nutritional value of prey for the predator; [335, 336,
334] introduces multiple reserves that can be used supplementary, both for maintenance
and growth. These extensions turn out to have remarkable consequences for ecosystem
dynamics. A short review on further developments is given in [330].

Number of SUs{44}
The section on SU ends with brief remarks on the effect of the number of SUs. The section
can use some expansion in the form of a simple application that supplements the section
on the functional response {73}.

Think of a V1-morph with structural mass MV (in C-mol) that feeds on a single sub-
strate that is present in concentration X in the environment. The number of SUs S per
C-mol of structure V is given by chemical index nSV ; the total number of SUs is thus
N = nSV MV . The arrival flux per SU is J̇X . The binding probability per molecule of
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substrate is ρ. Since the environment is homogeneous, we can work with the concentration
of substrate and write ρJ̇X = ḃX, where ḃ quantifies the transport of substrate through
the medium to an SU, already corrected for the binding efficiency of the SU; dim(ḃ) =
time−1 length (of environment)3 amount (of substrate)−1. The dissociation rate equals k̇;
dim(k̇) = time−1. The change in the fraction of unbound SUs is d

dt
θ· = θX k̇ − θ·ḃX, with

1 = θX + θ·. At equilibrium we have θ∗· = k̇
k̇+ḃX

= K
K+X

, with half saturation constant

K = k̇/ḃ; dim(K) = amount (of substrate) length (of environment)−3. The flux of dis-

appearing substrate per SU is −θ∗· ḃX = −k̇X
K+X

. The total flux is N times as large, which

means that the maximum substrate uptake rate is J̇Xm = Nk̇, and the maximum specific
substrate uptake rate is jXm = J̇Xm/MV = nSV k̇. The rate of reserve production can be
linked to the substrate uptake flux like J̇E = −yEX J̇X . Alternatively, it can be obtained
directly from the SUs kinetics J̇E = NyEXθ∗X k̇, which should give the same result.

Handshaking protocols
{48}

Consider the transformation Xi−1 → yXiXi−1
Xi for i = 1, · · · , n, see [327]. We take

yXiXi−1
= 1 for simplicity. After an introduction of the behaviour of a single Synthe-

sizing Unit (SU), we discuss closed and open handshaking, followed by mixtures of these
two extremes. Finally we discuss synthesis from two substrates, to model cyclic pathways.

Chain of length n = 1

For a given flux J̇X0,F of substrate to the MS1
SUs, we have

Change in unbound fraction:
d

dt
θ1 = (1 − θ1)k̇1 − θ1ρ1J̇X0,F /MS1

(2.4)

Steady state unbound fraction: θ∗1 =
(

1 + ρ1J̇X0,F (k̇1MS1
)−1

)−1
(2.5)

Production flux: J̇X1,P = k̇1MS1
(1 − θ∗1) =

ρ1J̇X0,F

1 + ρ1J̇X0,F (k̇1MS1
)−1

(2.6)

Closed handshaking at all nodes

Closed handshaking is defined as an interaction between subsequent SUs in a linear pathway
such that, given perfect binding, the product of SU i is directly piped to the SU i + 1 for
further processing. To find appropriate expressions for the dynamics of SUs that have this
property, we introduce (yet) unknown functions ḃi of the θi’s that specify the appearance of
unbound fractions. The dynamics of the last SU is simple, because the release of product
does not depend on the binding state of any other SU. The release rate of product from
the last SU-product complex is proportional to the bound fraction, so ḃn = (1− θn)k̇n. We
now have

d

dt
θ1 = ḃ1 − θ1ρ1J̇X0,F /MS1

(2.7)



24 2. Basic concepts

d

dt
θi = ḃi − ḃi−1MSi−1

/MSi
for i = 2, · · · , n − 1 (2.8)

d

dt
θn = (1 − θn)k̇n − ḃn−1MSn−1

/MSn (2.9)

J̇Xn,P = k̇nMSn(1 − θ∗n) =
ρ1J̇X0,F

1 + ρ1J̇X0,F
∑

j(k̇jMSj
)−1

(2.10)

The latter follows from the idea that (k̇iMSi
)−1 acts as a resistance, and that the n-chain

should operate as if it is a single SU; compare (2.6) with (2.10). At steady state, we have
ḃ∗i MSi

= ḃ∗i−1MSi−1
, so ḃ∗1MS1

= ḃ∗n−1MSn−1
. From (2.10) follows

ḃ∗i =
ρ1J̇X0,F /MSi

1 + ρ1J̇X0,F
∑n

j=1(k̇jMSj
)−1

(2.11)

θ∗1 =
1

1 + ρ1J̇X0,F
∑

i(k̇iMSi
)−1

(2.12)

θ∗n =
1 + ρ1J̇X0,F

∑n−1
j=1 (k̇jMSj

)−1

1 + ρ1J̇X0,F
∑n

j=1(k̇jMSj
)−1

(2.13)

We see that

θ∗i+1 − θ∗i =
ρ1J̇X0,F (k̇iMSi

)−1

1 + ρ1J̇X0,F
∑n

j=1(k̇jMSj
)−1

which suggests
ḃi = (θi+1 − θi)k̇i (2.14)

Substitution into (2.7) - (2.9) gives

d

dt
θ1 = (θ2 − θ1)k̇1 − θ1ρ1J̇X0,F /MS1

(2.15)

d

dt
θi = (θi+1 − θi)k̇i − (θi − θi−1)k̇i−1MSi−1

/MSi
for i = 2, · · · , n − 1 (2.16)

d

dt
θn = (1 − θn)k̇n − (θn − θn−1)k̇n−1MSn−1

/MSn (2.17)

For the purpose of mixing this dynamics with open handshaking, we substitute the feeding
fluxes J̇Xi−1,F = J̇Xi−1,P = (θi− θi−1)k̇i−1MSi−1

and allow for non-perfect binding (0 ≤ ρi ≤
1). Moreover, we remove θ1 in front of the flux of X0 that arrives to the pathway to avoid
leaks of X0. (This can be done because the open handshaking already has this factor.)
The result is

d

dt
θ1 = (θ2 − θ1)k̇1 − ρ1J̇X0,F /MS1

(2.18)

d

dt
θi = (θi+1 − θi)k̇i − ρiJ̇Xi−1,F /MSi

for i = 2, · · · , n − 1 (2.19)

d

dt
θn = (1 − θn)k̇n − ρnJ̇Xn−1,F /MSn (2.20)
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The steady state unbound fractions are

θ∗i = 1 − J̇X0,F

n
∑

j=n+1−i

(k̇jMSj
)−1Πj

k=1ρk = 1 − jX0,F

n
∑

j=n+1−i

(k̇jmSj
)−1Πj

k=1ρk

with mSj
= MSj

/MV and jX0,F = J̇X0,F /MV . The production fluxes are

J̇Xi,P = k̇iMSi
(θ∗i+1 − θ∗i ) = J̇X0,F Πi

k=1ρk

Open handshaking at all nodes

Open handshaking is defined as the lack of any interaction between subsequent SUs in a
linear pathway. We here simply have (compare with (2.4))

d

dt
θi = (1 − θi)k̇i − θiρiJ̇Xi−1,F /MSi

for i = 1, · · · , n (2.21)

θ∗i =
(

1 + ρiJ̇Xi−1,F (k̇iMSi
)−1

)−1
(2.22)

J̇Xi,P = k̇iMSi
(1 − θ∗i ) =

ρiJ̇Xi−1,F

1 + ρiJ̇Xi−1,F (k̇iMSi
)−1

(2.23)

General handshaking

We now combine the dynamics of (2.18) - (2.20) and (2.21) linearly with n handshaking
parameters αi and arrive for i = 1, · · · , n − 1 at

d

dt
θi = (1 − αi(1 − θi+1) − θi) k̇i − (θi + αi−1(1 − θi)) ρiJ̇Xi−1,F /MSi

(2.24)

d

dt
θn = (1 − θn)k̇n − (θn + αn−1(1 − θn)) ρnJ̇Xn−1,F /MSn (2.25)

We can check that the system reduces to closed handshaking for αi = 1 and open hand-
shaking for αi = 0 for i = 1, · · · , n−1. The motivation for the linear combination of the two
handshaking protocols is that a fraction αi of the SUs is following the open handshaking
protocol, and a fraction 1 − αi the closed one. Notice that α0 controls the flux from the
cell to the pathway, while the other αi’s only deal with the metabolite traffic between SU
i and i + 1.

Trophic modes
{51}

Trophic strategies are labeled with respect to the energy and the carbon source, as indicated
Table 2.1. Animals typically feed on other organisms, which makes them organochemotrophs,
and so heterotrophs. If these organisms are only animals, we call then carnivores, if they are
only veridiplants (glaucophytes, rhodophytes, or chlorophytes, including plants), we call
them herbivores, and in all other cases we call them omnivores. The implication is that
daphnids, which also feed on heterokonts, ciliates and dinoflagellates, should be classified
as omnivores, although many authors call them herbivores. Many trophic classifications
are very imprecise and sensitive to the context.
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trophy hetero- auto-

energy source chemo photo
carbon source organo litho

Table 2.1: The classification of trophic modes
among organisms.

Central metabolism{51}
The central metabolic pathway of many prokaryotes and almost all eukaryotes (Figure
2.14) consists of four main modules [316].

The Pentose Phosphate (PP) Cycle comprises a series of extra-mitochondrial trans-
formations by which glucose-6-phosphate is oxidized with the formation of carbon
dioxide, reduced NADP and ribulose 5-phosphate. Some of this latter compound is
subsequently transformed to sugar phosphates with 3 to 7 or 8 carbon atoms, whereby
glucose-6-phosphate is regenerated. Some ribulose 5-phosphate is also used in the
synthesis of nucleotides and amino acids. Higher plants can use the same enzymes
also in reverse, thus running the reductive pentose phosphate cycle. The PP cycle
is primarily used to inter-convert sugars as a source of precursor metabolites and to
produce reductive power. Theoretical combinatorial optimization analysis indicated
that the number of steps in the PP cycle is evolutionarily minimized [394, 393], which
maximizes the flux capacity [194, 575].

The Glycolytic Pathway (aerobically) converts glucose-6-phosphate to pyruvate or (an-
aerobically) to lactate, ethanol or glycerol, with the formation of 2 ATP. The transfor-
mations occur extra-mitochondrially in the free cytoplasm. However, in kinetoplas-
tids they are localized in an organelle, the glycosome, which is probably homologous
to the peroxisome of other organisms [20, 89]. The flux through this pathway is under
control by phospho fructokinase and by hormones. Heinrich & Schuster [194] studied
some design aspects of the glycolytic pathway. Most pyruvate is converted to acetyl
and bound to coenzyme A.

The TriCarboxylic Acid (TCA) Cycle also known as the citric acid or the Krebs cy-
cle, oxidizes (without the use of dioxygen) the acetyl group of acetyl coenzyme A
to two carbon dioxide molecules, under the reduction of 4 molecules NAD(P) to
NAD(P)H. In eukaryotes that contain them, these transformations occur within their
mitochondria. Some plants and micro-organisms have a variant of the TCA cycle,
the glyoxylate cycle, which converts pyruvate to glyoxylate and to malate (hence a
carbohydrate) with another pyruvate. Since pyruvate can also be obtained from fatty
acids, this route is used for converting fatty acids originating from lipids into car-
bohydrates. Some plants possess the enzymes of the glyoxylate cycle in specialized
organelles, the glyoxysomes.

The Respiratory Chain oxidizes the reduced coenzyme NAD(P)H, and succinate with
dioxygen, which leads to ATP formation through oxidative phosphorylation. Simi-
larly to the TCA cycle it occurs inside mitochondria. Amitochondriate eukaryotes
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process pyruvate through pyruvate-ferredoxin oxidoreductase, rather than through
the pyruvate dehydrogenase complex. If the species can live anaerobically, the respi-
ratory chain can use fumarate, nitrate, or nitrite as electron acceptors in the absence
of dioxygen [553].

In combination with nutrients (phosphates, sulphates, ammonia, iron oxides, etc), the
first three pathways of the central metabolic pathway provide almost all the essential
cellular building blocks, including proteins, lipids, and RNA. The universality of this central
metabolic pathway is partly superficial or, if you like, the result of convergent evolution
because the enzymes running it can differ substantially. This diversity in enzymes partly
results from the modular make-up of the enzymes themselves. Some variation occurs in
the intermediary metabolites as well.

Obviously, glucose plays a pivotal role in the central metabolism. However, its accu-
mulation as a monomer for providing a metabolism with a permanent source of substrate
would give all sorts of problems, such as osmotic ones. This also applies to metabolic
products. To solve these problems, cells typically store the supplies in polymeric form
(polyglucose (i.e. glycogen), starch, polyhydroxyalkanoate, polyphosphate, sulphur, pro-
teins, RNA), which are osmotically neutral. Their storage involves so-called inclusion
bodies, the inherent solid/liquid interface of which controlling their utilization dynamics
(see reserve dynamics in chap 8).

Autotrophy in eukaryotes
{52}

Several eukaryotes can respire nitrate non-symbiotically. The ciliate Loxodes (Karyorelicta)
reduces nitrate to nitrite; the fungi Fusarium oxysporum and Cylindrocarpon tonkinense
reduce nitrate to nitrous oxide; the foraminifera Globobulimina and Nonionella live in
anoxic marine sediments and are able to denitrify nitrate completely to N2 [487].

Patterns in Arrhenius temperatures
{54}

The catalizing rate of enzymes in metabolic transformations can be adapted by the indi-
vidual to the current temperature by changing the tertiary configuration. This takes time,
upto days to weeks depending on the detailed nature of the adaptation. Species living
in habitats that typically sport large (and rapid) temperature fluctuations (e.g. intertidal
zones of sea coasts) have to use enzymes that function well in a broad temperature range,
with the result that they have a relatively low Arrhenius temperature (around 6 kK).
Species that live in habitats with a rather constant temperature (e.g. the pelagic, or the
deep ocean) typically have a large Arrhenius temperature (around 12 kK).

Temperature dependence of assimilation
{55}

In the case of multiple reserves, physiological rates can depend on temperature in more
complex ways. Photosynthesis, for instance is known to depend on temperatue at high
light levels, but hardly so at low light levels [51, 383]. This can be understood by realizing
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that the binding of photons is insensitive to temperature, but that of carbon dioxide
and other nutrients is. The consequence is a build up of carbohydrate reserve at low
temperature, so a shift in the composition in biomass, which affects its nutritional value
for consumers of this biomass. In the case of a single generalized reserve, this flexibility
is absent, and the other rates (growth, reproduction, etc) must follow the temperature
dependence of the assimilation process to avoid changes in conversion efficiencies. Given
an invariant biochemical machinery for the transformations, such changes in efficiency are
hard to implement from an evolutionary perspective.

Dodo{59}, l22
Although examples exist where germination of seeds is stimulated by passage through a
gut, this example of the tambulacoque tree and the dodo is perhaps not the best one. It is
based on a publication by Temple in Science, but is questioned by Quammen [461, p349]
(Comment by Cor Zonneveld).



Chapter 3

Energy acquisition and use

Holling type II
{73}, eq
(3.1)The Holling type II functional response (Holling, 1959) represents in fact the Michaelis

Menten kinetics (Michaelis & Menten, 1913). Food has the role of substrate, food density
that of substrate concentration, ingested material that of product formation. Let θ· denote
the fraction of animals that are searching for food, and the ‘handling’ fraction is θX = 1−θ·.
The ‘searching’ fraction changes like

d

dt
θ· = k̇θX − ḃXθ·

where k̇−1 represents the mean handling time, and ḃ quantifies the searching efficiency,
which includes activity levels of both feeder and food (if it is alive). The steady state
fraction θ∗· obeys 0 = k̇θ∗X − ḃXθ∗· , which results in θ∗· = k̇/(k̇ + ḃX) (cf {42}). The
mean feeding rate is J̇X = ḃXθ∗· = J̇Xmf with scaled functional response f = X/(K + X),
maximum ingestion rate J̇Xm = k̇ and saturation constant K = k̇/ḃ. This is the hyperbolic
functional response indeed. Notice that this very simple model classifies all behavioural
components in either ‘searching’ or ‘handling’, so ‘handling’ includes the whole period that
the animal is not searching (such as sleeping, courtship, social interaction etc). See the
comment for {168}.

Specific food uptake
{75}, l-1

The dimension of parameter {J̇Xm} is mol.time−1.length−2. It applies to an isomorph,
while the parameter jXm with dimension mol.mol−1.time−1 is later frequently used for a V1-
morph. To improve comparability, DEBtool uses jXm = {J̇Xm}/([MV ]Ld) for isomorphs,
with characteristic length Ld = v̇ mEm/(yEX jXm) as compound parameter and v̇, mEm

and yEX as primary parameters. This type of rescaling is always possible, and sometimes
convenient, cf {122}.
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Dual function {77}, 3.1.4
Almost all compounds (including proteins) in a cell cq individual can be used to extract
energy as well as building blocks. Maintenance requires primarily energy (capacity to do
work), but also some building blocks (to compensate for the leaks in protein turnover,
for example). Lipids and carbohydrates can be used to generate energy with no harm-
ful by-products (just carbon dioxide and water), but they cannot cover the requirements
for building blocks. Proteins can cover both requirements, but their use to cover en-
ergy requirements comes with harmful by-products (primarily ammonia, which is toxic
even at rather low concentrations). Kuijper [335, 334, 336] discusses two-reserve situa-
tions (proteins versus carbohydrates plus lipids) that are partly substitutable in covering
maintenance costs.

Effect of storage
{78}, 3.1.5

The effect of storage (inside or outside the individual) on population dynamics depends
very much on the turnover rates of the stored material relative to the fluctuations in food
(prey) density. Some aspects are discussed in chapter 9 on population dynamics. If a
predator stores its food (dead prey) for later use, rather than converts prey into more
predator directly, a temporary peak in food availability does not translate into an increase
in predator biomass, so the prey-population will suffer less from the predator after the
peak for two reasons. First the amount of predators is less (compared with no storage),
second because the predator (partly) feeds on the stored material, rather than on living
(rare) prey. This only “helps” the prey if the dip in its abundance is short relative to the
time the storage lasts. If this dip lasts longer the opposite effect applies. Storages help
the predator to maintain a relative high abundance, which translates into a high predation
pressure on the prey in the dip. Without storage, the predator population would have
declined together with the prey.

Gradient in gut
{83}, Fig-
ure 3.10 The transition between digested and undigested daphnids’ gut contents is perhaps not easy

to see for the non-specialist. The black band of digested material in the gut tappers to the
left, the undigested material appears as light gray and tappers to the right. Just above
the black compound eye, you can see the two digestive ceaca, and above those, a bit to the
right, a wider part of the gut, filled with undigested algal material.

Derivation of formula without number{83}, l15
The formula for reserve density dynamics that is not numbered can be derived as follows.
The general formula for reserve dynamics is d

dt
[E] = [ṗA] − F ([E], V ), for some function

F of the state variables [E] and V . We now use the weak homeostasis assumption, which
states that [E] is independent of V if d

dt
[E] = 0, while [ṗA] ∝ V −1/3. The essential point of

this assumption is that the individual can grow under constant environmental conditions,
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but does this in such a way the the reserve density does not change. This means that
the function F has to be inversely proportional to length as well, and, at equilibrium, F
can be written as F ([E]∗, V ) = V −1/3H([E]∗|θ), where function H does not depend on V ,
but on [E] only. Weak homeostasis only applies at equilibrium. When we generalize this
result to non-equilibrium conditions, we must add a general term that disappears in the
equilibrium. We do this by choosing some general function G, like F , and multiply it with
the factor ([E]∗− [E]) to make sure that it disappears at equilibrium. This directly results
in the not-numbered formula on {83}. To demonstrate that the function G◦([E]∗, [E], V ) =
([E]∗ − [E])G([E]∗, [E], V ) must equal zero, we differentiate to [E]∗ and require that it is
independent of [E]∗ by imposing d

d[E]∗
G◦ = 0, which leads to 0 = G + ([E]∗ − [E]) d

d[E]∗
G.

Separation of variables leads to the solution G([E]∗, [E], V ) = G∗([E], V )/([E]∗ − [E]),
for some general function G∗. This is only independent of [E]∗, so of food density, if
G∗([E], V ) = 0, which leaves us at d

dt
[E] = [ṗA] − V −1/3H([E]|θ) at steady state, as well

as non-steady state conditions. The key argument around function G is that an arbitrary
function of [E] and V that disappears at steady state [E]∗ must depend on the value
[E]∗, while this value depends on food density. We assumed, however, that the use of
reserve does not depend on food density, so we can forget about such a function G and
d
dt

[E] = [ṗA]−V −1/3H([E]|θ) fully covers the set of all possibilities, given the assumptions.

Derivation of Eq (3.7)
{83}

The derivation of (3.7) is as follows: We have d
dt

E = ṗA − ṗC , while [E] = EV −1, so

d

dt
[E] = V −1 d

dt
E − EV −2 d

dt
V

= V −1 d

dt
E − [E]V −1 d

dt
V

= V −1 d

dt
E − [E]

d

dt
ln V

= ṗA/V − ṗC/V − [E]
d

dt
ln V

= [ṗA] − [ṗC ] − [E]
d

dt
ln V

Eq (3.8) follows from (3.7) and κṗC = ṗM + [EG] d
dt

V , by realizing that d
dt

ln V = V −1 d
dt

V .

Reserve dynamics
{85}

Notice that the reserve density dynamics is independent of any allocation rule; the mobi-
lization of reserves is prior to and independent of allocation. Therefore, the parameters
[ṗM ] (specific somatic maintenance costs) and [EG] (specific costs for structure) do not
occur in the parameter list θ (cf the first formula on {85}). The book introduces [EG] as
‘costs for growth’, but this description can be misleading because the allocation to growth,
ṗG can be zero. The parameter vector θ should better be renamed to θ◦, because the
earlier introduced parameter vector θ relates to θ◦ as θ = [[ṗM ], [EG],θ◦] (we simply take
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two parameters apart in the list of parameters; the status of the specific costs for structure
[EG] is indeed a constant parameter because of the strong homeostasis assumption. That
of [ṗM ] is more complex, because we did not yet make the assumption that is a constant,
it might still be a function of structure V ). In summary: the assumption is made that
each of the processes assimilation, mobilization and allocation don’t ”know” each other’s
activities directly. They do, however, react to the consequences of activities, namely the
built up of reserve (as a consequence of assimilation) and the dilution by growth (as a
consequence of allocation to growth).

The definition of partitionability in the formula on line 5 should be read as follows:
if we multiply [E], [ṗM ] and [EG] with some number κA between 0 and 1 (as is done in
the right-hand side), the effect is that [ṗC ] is multiplied with that number (as is done
in the left-hand side). The criterion applies to dynamics of the reserve density [E], not
to the dynamics of the amount of reserve E. The reason is in the smooth merging of
reserves in an evolutionary time frame. Single-reserve systems evolved from multi-reserve
systems. Moreover, symbiogenesis frequently occurred in evolution, where two syntrophic
species merge into a single one. Since DEB theory is supposed to apply to all organisms,
consistency arguments show that both partners prior to merging, as well are the merged
new species must follow the DEB rules. To do this in a smooth way, we need a mergebility
argument, which is the inverse partitionability argument. The reasoning is spelled out in
[298].

The step from the partitionability requirement to the requirement for H and κ follow
after substitution of (3.9) in the definition of partitionability, together with the observation
that it must apply for all values of V . The latter observation boils that to the argument
that the substitution of [ṗC ] in the left- and right-hand side of the partitionability definition
results in the equality of two ratios of terms in V , and so to equality of each of the terms.

Mergeability
{85}

The derivation of reserve dynamics can be simplified considerably by replacing the require-
ment of partitionability by that of mergeability. Mergeability means that reserves can be
added without effects on the reserve (density) dynamics if assimilation of the resources to
synthesize the reserves is coupled and the total intake is constant.

Definition: Given d
dt

[Ei] = [ṗAi
] − Ḟ ([Ei], V ) for i = 1, 2, · · · and [ṗAi

] = κAi
[ṗA] with

∑

i κAi
= 1, two reserves E1 and E2 are mergeable if d

dt

∑

i[Ei] = [ṗA] − Ḟ (
∑

i[Ei], V ).

Weak homeostasis implies that Ḟ ([E], V ) = V −1/3Ḣ([E]) (see {83}), so together with
the mergeability requirement this translates into the requirement that

∑

i Ḣ([Ei]) = Ḣ(
∑

i[Ei])
or κAḢ([E]) = Ḣ(κA[E]) for an arbitrary positive value of κA. In other words: H must
be first degree homogeneous in [E]. From this follows Ḣ([E]) = v̇[E].

Since the first organisms (prokaryotes) had (and prokaryotes still have) many reserves,
and the number of reserves reduced during evolution [330] (homeostasis), the mergeability
of reserves is unavoidable for theories that are not species-specific. The mergeability re-
quirement is also essential to understand symbiogenesis in a DEB theory context: Given
that species 1 and 2 each follow DEB rules, and species 1 evolves into an endosymbiont of
species 1, the new symbiosis again should follow the DEB rules (else the theory becomes
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species-specific). This process is discussed in detail in [298]. All eukaryotes once possessed
endosymbionts (mitochondria), some lost them subsequently. Various forms of symbio-
sis are key processes in life. Evolution might have found several mechanisms to obtain
mergeability of reserves, but the fact that they are mergeable is essential for evolution.

Mergeability is almost equivalent to partitionability

Since from partitionability also follows that κ is a zero-th degree homogeneous function
in E, while this does not follow from mergeability, the latter requirement is less restric-
tive. In other words, partitionability imposes constraints on the fate of mobilised reserve,
mergeability does not. More specifically, partitionability involves maintenance explicitly,
mergeability does not.

To demonstrate the difference we now translate the mergebility constraint on Ḟ to
a constraint on the mobilisation flux ṗC . These two fluxes relate to each other as Ḟ =
[ṗC ] + [E]ṙ, where the specific growth rate ṙ = [ṗG]/[EG] = (κ[ṗC ] − [ṗM ])/[EG]. So

Ḟ = [ṗC ] + (κ[ṗC ] − [ṗM ])[E]/[EG]

=

(

1 +
κ[E]

[EG]

)

[ṗC ] − [E]

[EG]
[ṗM ]

The mergeability constraint κAḞ ([E], V ) = Ḟ (κA[E], V ) can be written as

κA

(

1 +
κ[E]

[EG]

)

[ṗC ]([E], V ) − κA
[E]

[EG]
[ṗM ] =

(

1 +
κAκ[E]

[EG]

)

[ṗC ](κA[E], V ) − κA[E]

[EG]
[ṗM ]

or

κA

(

1 +
κ[E]

[EG]

)

[ṗC ]([E], V ) =

(

1 +
κAκ[E]

[EG]

)

[ṗC ](κA[E], V )

or

κA[ṗC ]([E], V ) = [ṗC ](κA[E], V )
[EG] + κAκ[E]

[EG] + κ[E]

while the partitionability constraint is

κA[ṗC ]([E], V |[ṗM ], [EG], κ) = [ṗC ](κA[E], V |κA[ṗM ], κA[EG], κ)

In combination with weak homeostasis, both partitionability and mergability imply the
result

ṗC =
[EG][E]

[EG] + κ[E]
G(V ) with G(V ) = V 2/3v̇ + V

[ṗM ]

[EG]

Both the partionability and the mergeability derivations allow the extension of the specific
maintenance costs with terms that depend on structural volume, such as terms that are
linked with surface area. So [ṗM ] might depend on V (but not on [E]).



34 3. Energy acquisition and use

Partitionability follows from weak and strong homeostasis
{85}

[529] demonstrate that partitionability is implied by weak and strong homeostasis. In other
words: it does not represent a new assumption. The consequence is that reserve dynamics
follows from weak and strong homeostasis, given that the flux of mobilized reserve does
not depend on assimilation and fuels all non-assimilatory metabolic activity.

Effects of parasites
{89}

The effects of the parasite Schistosoma on the DEB of the pond snail Lymnaea stagnalis
and its molecular aspects are discussed in [219].

Derivation of Eq (3.18)
{94}

Formula (3.18) can be derived as follows: Eq (3.12) reads ṗC = [E](v̇V 2/3 − d
dt

V ). Substi-
tution in Eq (3.17) gives

κ[E](v̇V 2/3 − d

dt
V ) = [EG]

d

dt
V + ṗM + ṗT which gives (3.1)

d

dt
V =

κ[E]v̇V 2/3 − ṗT − ṗM

κ[E] + [EG]
(3.2)

The volume-related somatic maintenance costs are given in Eq (3.15) as ṗM = [ṗM ]V ,
while the surface area-related somatic maintenance costs are specified by Eq (3.16): ṗT =
{ṗT}V 2/3. Substitution in the expression for growth gives

d

dt
V =

V 2/3[E]v̇κ − V 2/3{̇pT} − V [ṗM ]

κ[E] + [EG]
take out v̇

= v̇
V 2/3[E]κ − V 2/3{̇pT}/v̇ − V [ṗM ]/v̇

κ[E] + [EG]
divide by κ[Em]

= v̇
V 2/3[E]/[Em] − V 2/3 {̇pT }

v̇[Em]κ
− V [ṗM ]

v̇[Em]κ

[E]/[Em] + [EG]
κ[Em]

substitute v̇ =
{ṗAm}
[Em]

see {85} or {412}

= v̇
V 2/3[E]/[Em] − V 2/3 {̇pT }

κ{ṗAm}
− V [ṗM ]

κ{ṗAm}

[E]/[Em] + g
substitute V 1/3

m =
κ{ṗAm}

[ṗM ]

= v̇
V 2/3[E]/[Em] − V 2/3 {̇pT }

[ṗM ]
V −1/3

m − V/V 1/3
m

[E]/[Em] + g
substitute V

1/3
h =

{ṗT}
[ṗM ]

= v̇
V 2/3[E]/[Em] − V 2/3(Vh/Vm)1/3 − V/V 1/3

m

[E]/[Em] + g
= v̇V 2/3 e − lh − (V/Vm)1/3

e + g

for e = [E]/[Em] and lh = (Vh/Vm)1/3. The last equation is (3.18). In some applications
some further scaling is handy:

d

dt

V

Vm

=
v̇

V
1/3
m

(

V

Vm

)2/3 e − lh − (V/Vm)1/3

e + g
substitute l3 =

V

Vm

and k̇M =
[ṗM ]

[EG]
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d

dt
l3 = gk̇M l2

e − lh − l

e + g
while

d

dt
l3 = 3l2

d

dt
l

d

dt
l =

gk̇M

3

e − lh − l

e + g

Notice that heating only occurs in (juvenile and adult) endotherms, and Vh or lh quantifies
the surface area-related somatic maintenance costs. Apart from heating, it also includes
osmotic work, which is especially relevant for fresh-water organisms.

Maximum weight
{95}

On the island Gough, the house mouse Mus musculus changed diet and turned to prey on
the chicks of the Tristan albatross Diomedea dabbenena and the Atlantic petrel Pterodroma
incerta, despite the fact that these birds weigh 250 times their own weight. From an energy
point of view, this had the remarkable effect that the weight of the adult mice are 40 g,
rather than the typical 15 g. The reason is probably that the conversion efficiency from
birds to mice is higher than their typical conversion efficiency. This supports the idea
that ultimate weight represents the ratio of assimilation and maintenance. From a nature
conservation point of view the problem is that 99 % of the world population these two bird
species live on this island; the birds are now threatened with extinction.

Derivation of Eq (3.20)
{95}

Notice that (3.20) implies that

d

dt
V = 3ṙB(V 1/3

∞ V 2/3 − V )

which is used at {137} line 2, and only holds for constant food. Just differentiate (3.20)
and substitute V, to see that this result is true. The von Bertalanffy growth rate relates
to DEB parameters as

rB = (3/kM + 3L∞/v)−1 = [pM ](3[EG] + 3fκ[Em])−1

so it does not depend on the specific maximum assimilation flux {ṗAm}.

Empirical support for maternal effects [294]
{97}

Experimental support for the assumption that the reserve density at birth equals that of
the mother at egg formation have been found in e.g. birds [417], reptiles, amphibians [364],
fishes [192], insects [388, 493, 492], crustaceans [163], rotifers [593] (see [6]), echinoderms
and bivalves [42]. However, some species seem to produce large eggs under poor feeding
conditions, e.g. some poeciliid fishes [482], daphnids [164] and Sancassania mites [35].
Moreover, egg size can vary within a clutch [133, 578, 416], according to geographical
distribution [524], with age [388] and race.
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Figure 3.1: The scaled length at birth (left), age at birth (middle), and initial reserve (right)
as function of the scaled reserve at birth for various values of k. The length, age and reserve at
lb = eb is also indicated; the structure is shrinking at birth for smaller values of eb. Parameters:
κ = .8, g = 0.5, ub

H = .001.

Cell separation [294]
{103}

Hart [187] studied the effect of separation of the embryonic cells of the sea urchin Strongy-
locentrotus droebachiensis in the two-cell stage on the energetics of larval development.
Both the size and the feeding capacity of the resulting larva were reduced by about one-
half, but the time to metamorphosis is about the same (7 d at 8–13 ◦C). The maximum
clearance rate of dwarf and normal larvae was found to be the same function of the ciliated
band length. Larvae fed at smaller ration had longer larval periods, but food ration hardly
affected size at metamorphosis. Egg size affected juvenile test diameter only slightly.

DEB theory predicts an elongation of the embryonic period if the initial amount of
reserve is reduced, while the cumulative energy investment to complete the embryonic
stage is the same. The mechanism is that reducing the amount of reserve reduces the use
of reserve, so it takes longer to cumulate a particular investment into development. This is
found for the crested penguin Eudyptes, which sports egg dimorphy (Figure 3.17, {103}). If
the separation of the cells would affect the required cumulative investment in development,
however, other predictions result. It is then quite well possible that incubation is hardly
affected, while size at birth is. Standard DEB theory correctly predicts that a reduction
of the feeding level elongates the larval period and hardly affects size at puberty for a
particular relationship between the somatic and maturity maintenance costs.

The effects of cell separation are discussed further in the comments for chapter 8.

Removal of some initial reserve [294]
{103}

The removal of an amount of reserve at the start of the development, as is frequently done
[144, 215, 524, 406, 217] elongates of the incubation time (as observed in the gypsy moth
[493]), and reduces the reserve at hatching, see Figure 3.1. This experiment simulates the
natural situation, where the nutritional status of the mother affects to initial amount of
reserve. The pattern is rather similar to that of the separation of cells at an early stage,
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because reductions of structure and maturity at an early stage have little effect. Although
not very obvious in these plots, the initial amount of reserve is a U-shaped function of the
reserve at birth. The right branch is explained by the larger amount of reserve at birth,
the left branch by the larger age at birth, which comes with larger cumulative somatic
maintenance requirements.

The size of neonates of trout and salom, was found to increase with initial egg size
[133, 192], suggesting that k < 1 for samonids. This also applies to the emu [127], and
probably represents a general pattern.

Mother-foetus system
{103}

Vitellogenin in eggs and casein in milk have similar metabolic functions. The three
vitellogenin-encoding genes were progressively lost in the mammalia around 30–70 Ma
ago, except in the protherians, while casein-encoding genes already appeared in the mam-
mallian ancestor some 200–310 Ma ago [69]. The transition from egg laying to placental
development went probably incremental. The protherians still lay yolky eggs, the marsupial
oocyte still has some yolk, that of the eutherians has not.

The mother-foetus system can be analysed in a DEB context in more detail, as a result
of interaction with Tânia Sousa and Tiago Domingos.

Foetus

The foetus is ectothermic, so {J̇ET} = 0; in placentalia the mother keeps the foetus warm.
The mother provides the foetus with a reserve flux J̇F

EA = {J̇F
EA}L2 through the placenta,

which is proportional to the squared length of the foetus, while {J̇F
EA} is assumed to

be constant, but might depend on the general nutritional status of the mother. This
supply bypasses the assimilatory system of the foetus, which only becomes functional in
the juvenile stage.

All parameters in the following equations for the change in reserve mass ME and struc-
tural mass MV refer to that of the foetus, and are probably close to that of the mother.

d

dt
ME = J̇F

EA − J̇EC

J̇EC = {J̇EAm}L2 ge

g + e

(

1 +
L

gLm

)

with g =
v̇[MV ]

κ{J̇EAm}yV E

d

dt
MV = (κJ̇EC − J̇EM)yV E with J̇EM = [J̇EM ]L3

where the scaled reserve density e ≡ mE

mEm
= ME v̇

L3{J̇EAm}
(dimensionless) and the reserve

density mE = ME/MV = ME(L3[MV ])−1 (in mol mol−1) represent ratios of masses of
reserve and structure.

Initial structural length L0 is very small, while M0
V = MV (0) = [MV ]L3

0. The reserve
density of the foetus e equals that of the mother, so M0

E = ME(0) = eL3
0{J̇EAm}/v̇,
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which implies that if the mother is experiencing a constant food level for a long time
{J̇F

EA} = f{J̇EAm}.
The growth curve of the foetus is the von Bertalanffy growth curve. Since length at

birth is small relative to the ultimate length, length will increase in time linearly. This can
be seen as follows. Since MV = [MV ]L3, so L = (MV /[MV ])1/3, we have for yEV = 1/yV E

d

dt
L =

1

3[MV ]

(

MV

[MV ]

)−2/3
d

dt
MV =

κ{J̇EAm}L2 ge
g+e

(

1 + L
gLm

)

− [J̇EM ]L3

3yEV [MV ]L2

≃
κ{J̇EAm} ge

g+e
− [J̇EM ]L

3yEV [MV ]
≃ κ{J̇EAm}ge

3yEV [MV ](g + e)

L(t) ≃ κ{J̇EAm}get

3yEV [MV ](g + e)
for L0 ↓ 0

Mother

The assimilation of the mother is up-regulated during pregnancy, where the surface area
of the placenta is added to that of the mother. The idea behind this construct is that
for demand systems like most organisms that produce foetuses, food uptake capacity is
proportional to the gut surface area, where not only the actual transport of metabolites
across the gut surface limits uptake, but also the further processing of the metabolites
to reserve. The transport across the placenta accelerates this process. The assimilation
process of the mother of length L and a foetus of length LF then amounts to

J̇EA = f{J̇EAm}(L2 + δL2
F )

At constant food levels the extra assimilation will match the foetal needs, so

f{J̇EAm}(L2 + δL2
F ) = f{J̇EAm}L2 + {J̇F

EA}L2
F , so {J̇F

EA} = f{J̇EAm}δ

The export of reserve from the mother to the foetus is from the somatic branch of
the catabolic flux and has priority over the somatic maintenance of the mother unless
starvation conditions are so severe that spontaneous abortus occurs.

The parameters in the following specification of the changes in reserve ME and structure
MV refer to that of the mother:

d

dt
ME = J̇EA − J̇EC with J̇EC = {J̇EAm}L2 ge

g + e

(

1 +
Lh + L

gLm

)

d

dt
MV = (κJ̇EC − J̇EM − J̇ET − J̇F

EA)yV E with J̇EM = [J̇EM ]L3 and J̇ET = {J̇ET}L2

where Lh = {J̇ET}/[J̇EM ] and Lm = κ{J̇EAm}/[J̇EM ].
Notice that the foetus increases the assimilation of the mother, but not the catabolic

rate directly, only indirectly via the increase of the reserve of the mother that is the
consequence of the actions of the foetus. This is qualitatively consistent with empirical
observations.
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Since allocation to the foetal system has priority over somatic maintenance, and so over
growth, the foetus might reduce the growth of the mother. If the mother is already fully
grown at pregnancy, somatic maintenance might be reduced, e.g. by reducing activity,
which typically comprises some 5 till 10 % of the somatic maintenance costs. This too
is qualitatively consistent with observations. It is probably no coincidence that species
that sport foetal reproduction frequently developed advanced social systems to avoid the
translation of a reduction in activity into a reduction in food intake or an increase in hazard
rate via an increased risk of being catched by a predator.

Suppose that food density, and so f , as well as MV , and so L, are constant at the start of
pregnancy, so κJ̇EC = J̇EM +J̇ET +{J̇F

EA}L2
F and L = fLm−Lh. The catabolic flux reduces

to J̇EC = {J̇EAm}L2 f+g
e+g

e. We now study the reduction of [J̇EM ] that is required to cope
with foetal development. The value relative to the pre-pregnancy period and the dynamics
of scaled reserve density amounts for yTA = {J̇ET}/{J̇EAm} and yFA = {J̇F

EA}/{J̇EAm} to

[J̇EM ](t)

[J̇EM ](0)
=

κe(t) f+g
e(t)+g

− yTA − yFAL2
F /L2

κf − yTA

d

dt
e =

(

f + fδL2
F /L2 − e

)

v̇/L

This dynamics implies a maximum reduction of somatic maintenance costs, and might
match the fraction that activity takes in the somatic maintenance costs. In this way foetal
reproduction could evolve without mayor metabolic adaptations.

In many placentalia pregnancy is followed by a period of lactation. This product by the
mother is also paid from the somatic branch of the catabolic flux, and also has the effect
that the assimilation capacity is up-regulated to match this drain of reserve. It is typically
a demand-driven process where the flux of milk taken by the baby is proportional to its
squared length. The consequence is that the reserve of the mother remains elevated above
the normal level during this period. In the marsupials, the foetal development is really
short, meaning that the length at birth is very small, but the lactation period is relatively
long.

Incomplete beta function
{107}

The incomplete beta function in Eq (3.31) can be written explicitly as a hypergeometric
function, which partly removes the need for approximation (3.32). The result is

Bx(
4

3
, 0) =

∫ x

0
y1/3(1 − y)−1 dy

=
3

4
x4/3

2F1(1,
4

3
,
7

3
, x) =

3

4

Γ(7/3)

Γ(4/3)

∞
∑

n=0

Γ(n + 4/3)

Γ(n + 7/3)
xn+4/3

=
√

3

(

arctan
1 + 2x1/3

√
3

− arctan
1√
3

)

+
1

2
log(1 + x1/3 + x2/3) − log(1 − x1/3) − 3x1/3
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− Lbṙ
−1
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Figure 3.2: The von Bertalanffy
growth curve d

dtL = ṙB(L∞ − L),
with the geometric interpretation of
the von Bertalanffy growth rate ṙB,
and the maximum possible age at

birth
Lbṙ

−1
B

L∞
in the context of DEB

theory. The tangent line at t = 0 in-
tersects the asymptote at time ṙ−1

B ;
the line from the origin to this in-
tersection point hits level Lb at time

Lb
L∞ṙB

, which is the maximum possi-
ble incubation time.

Range for age at birth
{107}

The age at birth simplifies for small g and large k̇M , while ṙB = k̇Mg
3(eb+g)

remains fixed [329]:

ab =
3

k̇M

∫ xb

0

dx

(1 − x)x2/3(3gx
1/3
b l−1

b − Bxb
(4

3
, 0) + Bx(

4
3
, 0))

g,k̇−1
M small
≃ 1

3ebṙB

∫ xb

0

dx

(1 − x)x2/3x
1/3
b (l−1

b − (x
4/3
b − x4/3)/(4eb))

g,k̇−1
M →0
=

lb
ebṙB

where xb ≡ g
eb+g

. The significance of this result is in the fact that for fixed ṙB, Lb and L∞,

g → 0 while k̇M → ∞ if ab is running from 0 to this upper boundary. See Figure 3.2 for a
graphical interpretation.

The foetal special case, where ab = 3Lb/v̇ = 3lb
k̇Mg

(Eq. (3.36)) represents a lower

boundary for the age at birth (of eggs). For eb = f and ṙB = 1
3

k̇Mg
f+g

(Eq. (3.22)), the upper

boundary can be written as 3lb
k̇Mg

(1 + g/f), which makes that

3lb

k̇Mg
< ab <

3lb

k̇Mg
(1 + g/f) or 1 < ab

k̇Mg

3lb
< 1 + g/f

Find ab, Lb, U
0
E given U

b
H, U

b
E for k̇J 6= k̇M [294]

{107}
The standard DEB model for embryonic development amounts to

d

da
UE = −SC with SC = L2 ge

g + e

(

1 +
k̇ML

v̇

)

and e ≡ UE v̇

L3
(3.3)

d

da
L =

v̇e − k̇MgL

3(e + g)
(3.4)

d

da
UH = (1 − κ)SC − k̇JUH (3.5)
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Table 3.1: The dimensionless scaled variables and parameters that are used to find the initial
amount of scaled reserve.

τ = ak̇M τb = abk̇M l = Lgk̇M/v̇ lb = Lbgk̇M/v̇

uE = UEg2k̇3
M/v̇2 u0

E = U0
Eg2k̇3

M/v̇2 uH = UHg2k̇3
M/v̇2 ub

H = U b
Hg2k̇3

M/v̇2

e = guE/l3 eb = gub
E/l3b eH = guH/l3 eb

H = gub
H/l3b

x = g
e+g xb = g

eb+g α = 3gx1/3/l αb = 3gx
1/3
b /lb

y = xeH
1−κ yb =

xbe
b
H

1−κ = gxbv
b
H l−3

b vb
H =

ub
H

1−κ k = k̇J/k̇M

where the variable (UE, L, UH) evolves from value (U0
E, 0, 0) at a = 0 to value (U b

E, Lb, U
b
H)

at a = ab, which is at birth. Apart from the five parameters k̇M , k̇J , v̇, g, κ, only the scaled
maturity at birth U b

H and the (dimensionless) scaled reserve density at birth eb = v̇U b
EL−3

b

are given and the problem is to find U0
E and so ab, U b

E and Lb. For the special case k = 1
(i.e. k̇J = k̇M), the solution is given in [289], but the present problem is to find expressions
for the general case that k 6= 1.

In [294] I first remove 2 parameters by scaling to dimensionless quantities; Table 3.1
gives the dimensionless quantities that are involved. The reformulated problem is now:
Find τb, lb, u0

E given ub
H , k, g, κ and ub

E = ebl
3
b/g.

The reformulated problem is now: Find τb, lb, u0
E given ub

H , k, g, κ and ub
E = ebl

3
b/g.

We also have 0 < k < (1 − κ)e3
b/u

b
H and ub

H < 1 − κ.

For the variable (τ, uE, l, uH) evolving from the value (0, u0
E, 0, 0) to the value (τb, u

b
E, lb, u

b
H),

the scaled model amounts to

d

dτ
uE = −uEl2

g + l

uE + l3
(3.6)

d

dτ
l =

1

3

guE − l4

uE + l3
(3.7)

d

dτ
uH = (1 − κ)uEl2

g + l

uE + l3
− kuH (3.8)

or alternatively for variable (τ, e, l, eH) evolving from the value (0,∞, 0, e0
H) to the value

(τb, eb, lb, e
b
H)

d

dτ
e = −g

e

l
(3.9)

d

dτ
l =

g

3

e − l

e + g
(3.10)

d

dτ
eH = (1 − κ)

ge

l

l + g

e + g
− eH

(

k +
g

l

e − l

e + g

)

(3.11)

where e0
H = (1 − κ)g is such that d

dτ
eH(0) = 0, else d

dτ
eH(0) = ±∞. If k = 1 we have

eH(τ) = e0
H for all τ and uH(τ) = (1 − κ)l3b . For k > 1, eH is decreasing in (scaled) age,

and for k < 1 increasing.
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I first observe that

αb − α = Bxb
(
4

3
, 0) − Bx(

4

3
, 0) (3.12)

3gx
1/3
b

lb
− 3gx1/3

l
= Bxb

(
4

3
, 0) − Bx(

4

3
, 0) (3.13)

1

l
=

1

lb

(

xb

x

)1/3

− Bxb
(4

3
, 0) − Bx(

4
3
, 0)

3gx1/3
(3.14)

−l−2 dl

dx
=

−1

3lb

x
1/3
b

x4/3
+

x1/3

(1 − x)3gx1/3
+

Bxb
(4

3
, 0) − Bx(

4
3
, 0)

9gx4/3
(3.15)

using (3.13):
dl

dx
=

l2

3lb

x
1/3
b

x4/3
− l2

3g(1 − x)
− l2

3gx
1/3
b /lb − 3gx1/3/l

9gx4/3
(3.16)

=
l

3

(

1

x
− l

g(1 − x)

)

(3.17)

=

(

g(1 − x) − lx

3

)

(

gx
1 − x

l

)−1

(3.18)

=
dl

dτ

dτ

dx
(3.19)

The last step follows from Eq (3.9 - 3.10) and shows that Eq (3.12) follows from the latter
two ode’s for embryonic development; all earlier steps follow from the definitions in Table
3.1.

Scaled age at birth τb

The scaled age at birth τb and its derivation is given by

τb = 3
∫ xb

0

dx

(1 − x)x2/3(αb − Bxb
(4

3
, 0) + Bx(

4
3
, 0))

(3.20)

using (3.12) = 3
∫ xb

0

dx

α(1 − x)x2/3
(3.21)

=
∫ xb

0

l dx

gx(1 − x)
(3.22)

dτ =
l dx

gx(1 − x)
(3.23)

dx

dτ
= gx

1 − x

l
(3.24)

The latter follows from Eq (3.9) and the definition of x in Table 3.1, which shows that Eq
(3.20) follows for Eq (3.9 - 3.10). Notice that τb requires lb in αb, which is given below.

Scaled initial amount of reserve u0
E

From x−1 = 1 + uEl−3 (using definitions of x and uE in Table 3.1), we have l3 + uE =
l3/x = (3g/α)3. The last step follows again from from Table 3.1).
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Now we let l → 0, so that uE → u0
E, substitute α using Eq (3.12) and arrive at

u0
E =





3g

αb − Bxb

(

4
3
, 0
)





3

(3.25)

which again requires lb in αb.

Scaled length at birth lb

The pièce de resistance for solving our boundary value problem is finding lb, which turns
out to be rather straightforward once the appropriate transformation of variables is found
(namely y(x), see Table 3.1). For the variable (τ, x) evolving from the value (0, 0) to the
value (τb, xb) and the variable (τ, eH) evolving from the value (0, e0

H) to the value (τb, e
b
H)

we have

d

dτ
x = gx

1 − x

l(x)
;

d

dτ
eH = (1 − κ)g(1 − x)

(

g

l(x)
+ 1

)

− eH

(

k − x + g
1 − x

l(x)

)

Now consider the variable (x, eH) evolving from the value (0, e0
H) to the value (xb, e

b
H) or

the variable (x, y) evolving from the value (0, 0) to the value (xb, yb):

d

dx
eH =

e0
H

x

(

l(x)

g
+ 1

)

− eH

x

(

k − x

1 − x

l(x)

g
+ 1

)

for e0
H = eH(0) = (1 − κ)g

d

dx
y = r(x) − ys(x) for r(x) = g + l(x); s(x) =

k − x

1 − x

l(x)

gx
(3.26)

where l(x) is given in (3.14). The ode for y can be solved to

y(x) = v(x)
∫ x

0

r(x1)

v(x1)
dx1 with v(x) = exp(−

∫ x

0
s(x1) dx1)

The quantity lb must be solved from yb = y(xb) = gxbv
b
H l−3

b , see Table 3.1. So we need to
find the root of t as function of lb with

t(lb) =
xbgvb

H

v(xb)l3b
−
∫ xb

0

r(x)

v(x)
dx = 0 (3.27)

From this equation it becomes clear that the parameters κ and ub
H affect lb only via

vb
H =

ub
H

1−κ
; a conclusion that is more difficult to obtain using the ode for the scaled maturity

density eH rather than that for abstract variable y. Notice that the solution of ld (and that
of u0

E and τb) for the boundary value problem for the ode for (uE, l, eH) as given in Eq.
(3.6–3.8) depends on the four parameters g, k, vb

H and eb only. The solution for lb must be
substituted into Eq. (3.25) to obtain u0

E and in Eq. (3.20) to obtain τb; the scaled reserve
at birth is ub

E = ebl
3
b/g.
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Numerical solution for scaled length at birth lb

The shooting method turns out to be rather stable, where y(xb) = yb is evaluated by

integrating d
dx

y using lb =
(

vb
H

)1/3
as starting value. It is exact for k = 1 and has been the

motivation for the choice of the symbol vb
H , which appears to have the interpretation as a

scaled volume.
Alternatively the Newton Raphson procedure li+1

b = lib− t(lib)/t
′(lib) can be used to solve

(3.27) with

l(x) =

(

1

lb

(

xb

x

)1/3

− Bx(
4
3
, 0) − Bxb

(4
3
, 0)

3gx1/3

)−1

; l′(x) =
l2(x)

l2b

(

xb

x

)1/3

v(x) = exp

(

−
∫ x

0

k − x1

1 − x1

l(x1)

g

dx1

x1

)

; v′(x) = v(x) exp

(

−
∫ x

0

k − x1

1 − x1

l′(x1)

g

dx1

x1

)

r(x) = g + l(x); r′(x) = l′(x)

t(lb) =
xbgub

H

(1 − κ)v(xb)l3b
−
∫ xb

0

r(x)

v(x)
dx

t′(lb) = − xbgub
H

(1 − κ)v(xb)l3b

(

3

lb
+

v′(xb)

v(xb)

)

−
∫ xb

0

(

r′(x)

r(x)
− v′(x)

v(x)

)

r(x)

v(x)
dx

The problem here is in the accurate evaluation of the integrals. Euler integration requires
many steps if k > 1, but is nonetheless much faster.

Special case e → ∞: foetal development

The special case e → ∞, which is approximative for foetal development, makes that
d
dτ

l = g/3, or l(τ) = gτ/3. We further have

d

dτ
uH = (1 − κ)l2(g + l) − kuH

uH(τ) =
g3(1 − κ)

33k4

(

k2τ 2(3k + kτ − 3) + 6(k − 1)(1 − τ − exp(−kτ))
)

The equation uH(τb) = ub
H has to be solved numerically for τb, but for k = 1 we have

ub
H = (1 − κ)3−3g3τ 3

b = (1 − κ)l3b . The solution of this equation is stable and fast; the
resulting scaled length at birth lb = gτb/3 can be used to start the Newton Raphson
procedure. This start is preferable if k is substantially different from 1. From lb < 1, so
τb < 3/g, we can derive the constraint

k2ub
H

1 − κ
< k + g(k − 1) + g3k − 1

k2

1 − 3/g − exp(−3k/g)

9/2

It can be shown that 1 < gτb

3lb
< 1 + g

eb
generally holds, see [329]; the range in the foetus

case being restricted to zero.
For ub

E = uE(τb), the cost for a foetus amounts to

u0
E = ub

E + κl3b + ub
H +

∫ τb

0
(κl3(τ) + kuH(τ)) dτ = ub

E + l3b +
3

4

l4b
g
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where the five terms correspond with the costs of reserve, structure, maturity, somatic
and maturity maintenance, respectively. The second equality follows from the structure of
DEB theory: the investment in maturity plus maturity maintenance equals 1−κ

κ
times the

investment in structure plus somatic maintenance and l(τ) = gτ/3.

Growth of V1-morphs
{108}

The derivation of growth for V1-morphs can be very much simplified, using the reasoning
that leads to (5.15), but now applied to a single reserve only. We have for the increase of
structure:

J̇V G =
d

dt
MV =

J̇EG

yEV

=
J̇EC − J̇EM

yEV

=
ME(k̇E − ṙ) − J̇EM

yEV

ṙ =
J̇V G

MV

= jV G =
mE(k̇E − ṙ) − jEM

yEV

=
mE k̇E − jEM

mE + yEV

Part of the notation is introduced later. Notice that the term ṙ in the numerator of the
right argument at line two relates to ‘dilution by growth’ and gives rise to the term mE

in the denominator at the last line. So mE k̇E is the specific flux that is mobilized from
the reserve, jEM is lost for maintenance, while the cost for new biomass has a structural
component yEV and a reserve component mE.

The maximum specific growth rate is

ṙm =
mEmk̇E − jEM

mEm + yEV

=
jEAm − jEM

jEAm/k̇E + yEV

=
k̇E − k̇Mg

1 + g
= k̇E

1 − ld
1 + g

so that g = k̇E−ṙm

k̇M+ṙm
and jEAm = yEV

ṙm+k̇M

1−ṙm/k̇E
= yEV k̇E/g for jEM = yEV k̇M . Notice that the

maximum throughput rate of a chemostat is less than the maximum specific growth rate,
but the difference decreases for increasing concentration of substrate in the feed.

As stated in the comment for {315}, V1-morphs have the reserve density dynamics

d

dt
mE = jEA − k̇EmE

so that the steady state reserve density is m∗
E = jEA/k̇E and the maximum reserve density

is mEm = jEAm/k̇E.

Maturity
{111}

It would behave been conceptually more clear to introduce a state variable EH that quan-
tifies the level of maturity (expressed as cumulative energy investment), while the maturity
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maintenance costs ṗJ are taken to be proportional to EH , so the maturity maintenance
rate coefficient k̇J = ṗJ/EH is constant. The transition from embryo to juvenile occurs if
EH > Eb

H , and from juvenile to adult if EH = Ep
H . (The notation Eb and Ep is already in

use for the reserve E at structural volume Vb and Vp, respectively; these are not constant.)
Since allocation to the increase of the state of maturity ceases, we never have EH > Ep

H .
Eq (3.45) should have been preceded by

(1 − κ)ṗC = ṗJ +
d

dt
EH = k̇JEH +

d

dt
EH for EH < Ep

H

= k̇JEp
H + ṗR for EH = Ep

H

where ṗR is the allocation to reproduction. We now consider the special case that k̇JEp
H =

Vp[ṗM ]1−κ
κ

, where we have the situation that EH reaches Ep
H at exactly the same moment

when V reaches Vp. In this special case stage transitions occur if the structure exceeds a
threshold; in all other cases the structural volume at which stage transitions occur depend
on food history. This reasoning can be reversed: by observing how structural volume at
stage transitions depend on food levels, we have indirect access to the value of rate k̇J .
Notice that k̇J = [ṗJ ]Vp/E

p
H = [ṗJ ]Vb/E

b
H .

A similar situation applies to the transition from embryo to juvenile. So, if (1−κ)[ṗM ] 6=
κ[ṗJ ], we can find the age at birth ab, the reserve at birth Eb and the structural volume at
birth Vb from

Eb
H =

1 − κ

κ
[EG]Vb +

(

1 − κ

κ
[ṗM ] − [ṗJ ]

) ∫ ab

0
V (a) da

d

da
V = ṙV with ṙ = v̇

E/L − [Em]V/Lm

E + [EG]V/κ
and V (0) ≃ 0

d

da
E = E

(

ṙ − {ṗAm}
L[Em]

)

with E(0) = E0

for L = V 1/3 and Lm = V 1/3
m = κ{ṗAm}/[ṗM ] and given the initial amount of reserve E0 of

the egg. Notice that eggs are ectotherm, also those from endotherm adults (although there
is still a need to think about the temperature during incubation). We still can impose
the constraint Eb = f [Em]Vb, where f is the scaled functional response as experienced
by the mother, and we can solve E0. These computations are done in routine “egg” in
DEBtool/animal.

Low reproduction close to Lp
{112}, l15

The formulation is somewhat confusing. Individuals with an asymptotic length just lower
than Lp don’t reproduce, with or without maturity maintenance. The key is in the re-
production rate of individuals with an asymptotic length just larger than Lp; they hardly
reproduce in practice, but without maturity maintenance they would reproduce at a sub-
stantial rate.
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Effect of starvation on maturity
{113}, l-8

Little is known about variations in the state of maturity and how starvation can affect
it. Thomas & Ikeda [550] concluded from studies on laboratory populations of Euphausia
superba that female krill can regress from the adult to the juvenile state during starvation.

Derivation of Eq (3.48)
{114}

Eq (3.48) can be derived as follows. Ṙ denotes the reproductive rate in terms of numbers of
eggs per time, and relates to the energy investment into reproduction ṗR as Ṙ = κRṗR/E0,
where the fraction 1 − κR of ṗR goes lost into the environment as overhead costs of re-
production, and E0 = e0Em = e0[Em]Vm is the energy costs of an egg, which is further
quantified at {117}. Using (3.46) and (3.47) we have for e = [E]/[Em]

ṗR = (1 − κ)ṗC − ṗJ

=
(1 − κ)g[E]

g + [E]/[Em]

(

v̇V 2/3 + k̇MV
1/3
h V 2/3 + k̇MV

)

− 1 − κ

κ
[ṗM ]Vp

Ṙ =
κR

e0Vm

(1 − κ)

(

ge

g + e

(

v̇V 2/3 + k̇MV
1/3
h V 2/3 + k̇MV

)

− Vp

κ

[ṗM ]

[Em]

[EG]

[EG]

)

=
κR

e0Vm

(1 − κ)

(

ge

g + e

(

v̇V 2/3 + k̇MV
1/3
h V 2/3 + k̇MV

)

− gk̇MVp

)

for k̇M = [ṗM ]
[EG]

and g = [EG]
κ[Em]

.

Buffer handling rules
{116}

Collaborative work with Laure Pecquerie on anchovy, which is a multiple spawner: Batch
preparation is initiated if temperature in spring exceeds TR = 14◦C in individuals with
UH > Up

H . Individual that mature after this time point have to wait with batch preparation
till the next spring. The batch size is E∗

B = min(ER, [EB]L3) for constant [EB]. Batch
preparation is ceased for that spawning season if ER = 0.

The rate of batch preparation equals the allocation to reproduction in an individual if
e would equal 1 (which implies a maximum rate of allocation) so

ṗB = (1 − κ)ṗCm − ṗJ with ṗCm = [Em]
v̇∗L2 + k̇ML3

1 + 1/g

and a batch is completed if the batch size equals E∗
B. The rate still depends on length

of the individual and is motivated by the avoidance of an unbounded accumulation of
the reproduction buffer at abundant food (during the whole year). The spawning season,
however, lasts less than a year, so the rate of batch preparation is divided by the fraction
of the year that has good spawning conditions, which is about 7/12. Notice that only in
the last batch of the spawning season the batch size will be smaller than the target size
EB = [EB]L3. If food would be abundant, this rule for spawning implies that spawning,
once initiated, continues till death.
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The number of eggs per batch NB = κRE∗
B/E0 = κRU∗

B/U0
E, where 1 − κR is the

overhead costs of reproduction, which is paid at the moment of conversion of (part of)
the reproduction buffer to eggs. Furthermore U∗

B = E∗
B/{ṗAm} = min(U∗

R, L3/v̇B), with
v̇B = {ṗAm}/[EB], and U0

E = E0/{ṗAm}. The initial reserve of an egg,E0, depends on the
reserve density of the mother at spawning, since the reserve density at birth (= at the
moment of mouth-opening) equals that of the mother at spawning. This means that if
the scaled functional response decreases during the spawning season, the numbers of eggs
increases (if length would remain constant).

At spawning the reproduction buffer makes a step down of E∗
B if enough is available,

else it is emptied fully. So if tB denotes the time point at a spawning event, we have

ER(tB + dt) = ER(tB) − min(ER(tB), E∗
B) and EB(tB + dt) = 0

UR(tB + dt) =
ER(tB + dt)

{ṗAm}
= UR(tB) − min(UR(tB), U∗

B)

To find the spawning events ti, we have to solve ti, i = 1, 2, · · ·, from b(ti) = 1 for

b(t) =

∫ t
ti−1

ṗB dt

EB

so
d

dt
b =

ṗB

EB

− 3b

L

d

dt
L =

v̇BSB

L3
− 3b

L

d

dt
L

where t0 is implicitly given by T (t0) = TR and

SB =
ṗB

{ṗAm}
= (1 − κ)SCm − SJ with SCm =

L2

g + 1
(M(UH)g + L/Lm)

To this end we evaluate t1 =
∫ 1
b=0

dt
db

db, reset b = 0 at t1 and repeat to find t2, etc.

Frames of reference{120}
The changes in reserve and structure are given in several frames of reference. Eq (3.55) and
(3.56) are the mass-form of volume-form Eq (3.10) and (3.18). Eq (3.11) gives the scaled
form for reserve density, but that for length is not given. Table 3.5 gives the power-form,
while Eq (4.7) and (4.8) give the relationship between the power and the scaled form. The
overview is for isomorphs given in Table 3.2.

Parameter estimation{120}
The (compound) DEB parameters that only have time and length in their dimension can
be obtained from growth and reproduction data [329] with functions in DEBtool. These
parameters don’t depend on food level, while the growth and reproduction data do. To
emphasize this, the quantities that depend on food level are printed bold in the following
table:

Growth at a single food level: debtool/animal/get pars g

(Lb,L∞,ab, ṙB at f1) −→ (g, k̇M = k̇J , v̇; U 0
E,U b

E at f1)
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Table 3.2: Changes in reserve density [E] (energy per structural volume), structural volume V , re-
serve density mE (moles per structural mole), structural mass MV (moles), scaled reserve density
e (dimensionless), and scaled length l (dimensionless) for the standard DEB model for isomorphs

(top) and V1-morphs (bottom). The specific assimilation rate is jEAm = {jEAm}M−1/3
V [MV ]−2/3

for isomorphs and jEAm = [J̇EAm][MV ]−1 for V1-morphs.
form reserve structure

volume d
dt [E] = {ṗAm}

V 1/3

(

f − [E]
[Em]

)

d
dtV = v̇ V 2/3[E]/[Em]−V 2/3(Vh/Vm)1/3−V/V

1/3
m

[E]/[Em]+g

mass d
dtmE = jEAm

(

f − mE
mEm

)

d
dtMV = MV

jEAm(mE/mEm−lh)−jEM/κ
mE+yEV /κ

scaled d
dte = k̇Mg

l (f − e) d
dt l = k̇Mg

3(e+g)(e − lh − l)

volume d
dt [E] = [pAm]

(

f − [E]
[Em]

)

d
dtV = k̇EV [E]/[Em]−(Vd/Vm)1/3

[E]/[Em]+g

mass d
dtmE = jEAm

(

f − mE
mEm

)

d
dtMV = MV

jEAmmE/mEm−jEM/κ
mE+yEV /κ

scaled d
dte = k̇E(f − e) d

dt l = k̇Mg
3(e+g)(e − ld)

Growth at several food levels: debtool/animal/get pars h

(

Lb,L∞, ṙB at f1

Lb,L∞, ṙB at f2

)

−→
(

k̇M , k̇J , v̇,
U 0

E,U b
E at f1

U 0
E,U b

E at f2

)

Growth at several food levels: debtool/animal/get pars i

(

Lb,
L∞, ṙB at f1

L∞, ṙB at f2

)

−→
(

k̇M = k̇J , v̇,
U 0

E,U b
E at f1

U 0
E,U b

E at f2

)

Growth & reproduction at a single food level: debtool/animal/get pars r

(Lb, Lp,L∞,ab, ṙB, Ṙ∞ at f1)
given κR−→ (κ, g, k̇J = k̇M , v̇, U b

H , Up
H ; U 0

E,U b
E,U p

E at f1)

Growth & reproduction at several food levels: debtool/animal/get pars s

(

Lb,Lp,L∞, ṙB, Ṙ∞ at f1

Lb,Lp,L∞, ṙB, Ṙ∞ at f2

)

given κR−→
(

κ, g, k̇J , k̇M , v̇, U b
H , Up

H ,
U 0

E,U b
E,U p

E at f1

U 0
E,U b

E,U p
E at f2

)

Growth & reproduction at several food levels: debtool/animal/get pars t

(

Lb, Lp,
L∞, ṙB, Ṙ∞ at f1

L∞, ṙB, Ṙ∞ at f2

)

given κR−→
(

κ, g, k̇J = k̇M , v̇, U b
H , Up

H ,
U 0

E,U b
E,U p

E at f1

U 0
E,U b

E,U p
E at f2

)

The parameter κR must be obtained from mass balances. Notice that the assumption
k̇J = k̇M can only be avoided if info at several food levels is available. Notice also that
scaled reserve UE = ME/{J̇EAm} and scaled maturity UH = MH/{J̇EAm} play a role
here, while the unscaled reserve ME and maturity MH require moles, and so knowledge
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of {J̇EAm}. This can be obtained from observations on the feeding process and the mass
at zero and birth. These extra observations also results in the yield coefficients yEX and
yV E, see Chapter 4. DEBtool also has functions iget pars that do the inverse mapping
from (compound) DEB parameters to easy-to-measure quantities. This can be used for
checking the mapping and testing against empirical data.

Assumptions
{121}

Table with assumptions for the standard model: assumptions 3, 5 and 7 should be modified
slightly, see [529]

3 Embryos start their development with neglectable level of maturity and amount of struc-
ture. Daughters of dividing cells have equal amounts of structure and reserve, and
reset their maturity level.

5 Somatic maintenance is a weighted sum of structural volume and surface area, maturity
maintenance is proportional to the level of maturity.

7 The use of reserve does not depend on food availability and is weakly homeostatic.
So reserve density converges to a constant value in constant environments, despite
growth.

It is shown in [529] that the partitionability of reserve kinetics follows from weak and
strong homeostasis assumptions 1 and 7. This makes that the original assumption 7 can
be simplified.

Conversions{122}
Table with conversions: We need conversions, because we need volumes, masses and ener-
gies at different moments in working with the DEB theory. An individual has structural
volume V , structural mass MV and reserve mass ME. These quantities change in a coherent
way in time, as specified by the DEB theory. Because of strong homeostasis [MV ] = MV /V
is a constant. For a given structural mass MV , the reserve mass can vary between some
small positive number, and a maximum amount MEm. The lower boundary cannot be
zero, because the use of reserves would be zero as well, and the individual can no longer
pay maintenance. (See 7.1 for more discussion on starvation.) At high food levels, the
individual can grow to a maximum structural mass MV m, which is a simple function of
DEB parameters. Also for this structural mass we have a maximum reserve mass MEm,
but this value has not got a special symbol in the book. So, while MV m is a number, MEm

changes during growth, but [MEm] = MEm/V and mEm = MEm/MV are constants because
of the weak homeostasis assumption. Notice that we also have that mEm = MEm/MV m,
because the amounts of reserve and structure are taken from to the same individual, and
this time we apply it to an individual with structural mass MV m.

Maximum length equals Lm = V 1/3
m = v̇

k̇Mg
, and at maximum length we have

κJ̇EAm = J̇EM
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κ{J̇XAm}L2
myEX = jEM [MV ]L3

m

κ{J̇XAm}yEX = k̇MyEV [MV ]Lm

κ{J̇XAm}yEX = yEV [MV ]v̇/g

yEX =
yEV [MV ]v̇

gκ{J̇XAm}
gκ{J̇EAm} = yEV [MV ]v̇

Since v̇ = yEX
{J̇XAm}
[MEm]

, it follows that

gκ[MEm] = yEV [MV ] and yEX =
[MEm]v̇

{J̇XAm}

By definition we have ME = E/µE, and since [Em] = {ṗAm}/v̇ = µE{J̇EAm}/v̇, we
have [MEm] = [Em]/µE = {J̇EAm}/v̇. Notice that {J̇XAm} = {J̇EAm}yXE.

Other useful conversions and relationships are given in Table 3.3, where MH is the
maturity, quantified as the cumulative investment into maturation, expressed as C-mol of
reserve, using the choice of primary parameters as given in Table 3.4. Since this choice
no longer supports [ṗJ ] = [ṗM ](1 − κ)/κ, the maturity maintenance costs are no longer
proportional to the amount of structure, but to the maturity, so ṗJ = k̇JEH .

In the initial stages of estimation of DEB parameters [329], it is useful to avoid the use
of moles and energies, which motivates the use of scaled reserve UE and scaled maturity
UH . The initial scaled reserve U0

E can be known from g, k̇M , k̇J , v̇, and f , or from Lb, L∞,
ab, ṙB and f , using the assumption k̇M = k̇J .

Suppose that the amount of carbon in a freshly laid egg M0
E and in a neonate M b

W =
M b

E + M b
V are known, in combination with U0

E. We first use the information in M0
E

and obtain {J̇EAm} = M0
E/U0

E, and then yEX = {J̇EAm}/{J̇XAm}, M b
H = {J̇EAm}/U b

H ,
Mp

H = {J̇EAm}/Up
H , M b

E = U b
E{J̇XAm}. We then use the information in M b

W , and ob-
tain M b

V = M b
W − M b

E and [MV ] = M b
V L−3

b (in actual length, if Lb is in actual length),
yV E = v̇[MV ](κ{J̇EAm}g)−1, [J̇EM ] = k̇M [MV ]/yV E.

If the weight of a freshly laid egg W0 and of a neonate Wb is known, as well as the moles
of carbon in a freshly laid egg M0

E, we can obtain the molecular weights of reserve and
structure: wE = W0/M

0
E, W b

V = Wb − wEM b
E and wV = W b

V /M b
V . The shape coefficient is

δM = (M b
V /[MV ])1/3/Lb = (d−1

V W b
V )1/3/Lb.

The systematic use of the choice of primary parameters as in Table 3.4 comes with the
need to treat maturity as an explicit state variable. The changes in reserve mass and length
and the reproduction rate are for mE = ME/MV = ME(L3[MV ])−1, so e ≡ mE

mEm
= ME v̇

L3{J̇EAm}

d

dt
ME = f{J̇EAm}L2 − J̇EC with f = 0 if MH < M b

H (3.28)

d

dt
L =

v̇

3

e − (L + Lh)/Lm

e + g
with Lh = 0 if MH < M b

H (3.29)

d

dt
MH = (1 − κ)J̇EC − k̇JMH for MH < Mp

H (3.30)
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Table 3.3: Conversions and compound parameters
relationship unit description

K = {J̇EAm}

yEX{ḃ}
mol m−3 half-saturation constant

{J̇XAm} = {J̇EAm}/yEX mol m−2d−1 maximum specific ingestion rate
MV m = L3

m[MV ] mol maximum structural mass
[MV ] = dV /wV mol m−3 specific structural mass

[MEm] = {J̇EAm}/v̇ mol m−3 maximum reserve density
mEm = [MEm]/[MV ] mol mol−1 maximum reserve density
mE = ME/MV mol mol−1 reserve density
[Em] = {ṗAm}/v̇ J m−3 maximum reserve density

Lm = κ{J̇EAm}

[J̇EM ]
= κ{ṗAm}

[ṗM ] = v̇
k̇Mg

m maximum structural length

Lh = {ṗT }/[ṗM ] m heating length

UE = ME/{J̇EAm} = E/{ṗAm} d m2 scaled reserve

UH = MH/{J̇EAm} = EH/{ṗAm} d m2 scaled maturity

{ṗAm} = µE{J̇EAm} J d−1 m−2 maximum specific assimilation energy flux

{ṗT } = {J̇ET }µE J d−1 m−3 surface area-specific maintenance energy flux

[ṗM ] = [J̇EM ]µE = k̇MµGV [MV ] J d−1 m−3 specific somatic maintenance energy flux

[ṗJ ] = µE J̇EJL−3 = k̇JEHL−3 J d−1 m−3 specific maturity maintenance energy flux

k̇M = [ṗM ]/[EG] = jEMyV E d−1 somatic maintenance rate coefficient

J̇EJ = k̇JMH mol d−1 maturity maintenance mass flux

jEM = [J̇EM ]/[MV ] mol mol d−1 specific somatic maintenance flux
EH = µEMH J maturity
[EG] = µE [MV ]/yV E J m−3 energy costs per structural volume

µE = {ṗAm}/{J̇EAm} J mol−1 chemical potential of reserve
µGV = [EG]/[MV ] = µE/yV E J mol−1 energy-mass coupler for growth

g = [EG]
κ[Em] = v̇[MV ]

κ{J̇EAm}yV E
– energy investment ratio

f = X/(K + X) – scaled functional response

e = mE
mEm

= ME v̇
L3{J̇EAm}

– scaled reserve density

MV = L3[MV ] mol structural mass

Ṙ = κR((1 − κ)J̇EC − k̇JMp
H)/M0

E for MH > Mp
H (3.31)

J̇EC = {JEAm}L2 ge

g + e

(

1 +
Lh + L

gLm

)

with Lh = 0 if MH < M b
H (3.32)

where J̇EC has the interpretation of the flux of mobilized reserve, which can be seen in Eq
(3.28).

The initial amount of structure, L(0) ≃ 0 is negligibly small and the reserve density
at birth mb

E equals that of the mother at the moment of egg formation. That means, if
the mother is living at function response f , the reserve density of the embryo at birth
equals mb

E = fmEm. These initial conditions imply von Bertalanffy growth at constant
food availability right after birth, but the initial amount of reserve ME0 and the length Lb
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Table 3.4: The 12 primary parameters of the standard deb model in a length-mass frame. The
maturity maintenance costs can have arbitrary values (in principle, but the feasible range in very
much restricted).

symbol unit description process

{J̇EAm} mol d−1m−2 surface area-specific max assimilation rate assimilation

{ḃ} m3m−2d−1 surface area-specific searching rate feeding
yEX mol mol−1 yield of reserve on food digestion
yV E mol mol−1 yield of structure on reserve growth
v̇ m d−1 energy conductance mobilization

{J̇ET } mol d−1m−2 surface area-specific maint. costs heating/osmosis

[J̇EM ] mol d−1m−3 volume-specific somatic maintenance turnover/activity

k̇J d−1 specific maturity maintenance regulation/defense
κ - allocation fraction allocation
κR - reproduction efficiency egg formation
M b

H mol maturation at birth life history
Mp

H mol maturation at puberty life history

and at age ab at birth must be obtained numerically. So

(MH ,ME, L) : (0,M0
E, 0)

∣

∣

∣

a=0
→ (M b

H , fL3
b{J̇EAm}/v̇, Lb)

∣

∣

∣

a=ab

The development of a foetus is rarely limited by the availability of reserve, because it
gets reserve from the mother via the placenta. This can be used as a first approximation
to obtain the cost of an egg. Since L(0) ≃ 0 and e is very large, the catabolic flux initially

equals J̇EC = {JEAm}gL2
(

1 + Lk̇M/v̇
)

and the change in length d
dt

L = v̇/3. So length as

a function of age becomes L(a) = av̇/3. The maturity as function of age can now be solved
and amounts to

MH(a) =
1 − κ

κ

δ1 + δ2 + δ3

(ak̇J)3
MV











δ1 = 3(ak̇J(ak̇J − 2) + 2)

δ2 = (ak̇J(ak̇J(ak̇J − 3) + 6) − 6)k̇M/k̇J

δ3 = 6(k̇M/k̇J − 1) exp(−ak̇J)

(3.33)

The gestation (incubation) time ab can be found numerically from MH(ab) = M b
H , and the

initial amount of reserve of an embryo equals

M0
E = M b

E +
∫ ab

0
J̇EC(a) da

= {J̇EAm}
(

f + (1 − κ)g(1 + abk̇M/4)
)

L3
b/v̇

This underestimates the cost of an egg, because its development eventually slows down
due to depletion of reserve, which increases the maintenance costs.

Because endothermic species are ectothermic during the embryo stage, the change in
the mass of structure can be written as

d

dt
MV = (κJ̇EC − jEMMV )yV E
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From this equation it can be seen that if k̇M(1− κ) = k̇Jκ, the structure-specific maturity
remains constant, and stage transitions occur at fixed amounts of structure. That is mH ≡
MH/MV = y−1

V E
1−κ

κ
, or MH = [MV ]

yV E

1−κ
κ

L3. For a foetus we have M b
H = [MV ]

yV E

1−κ
κ

(abv̇/3)3,

so ab = 3Lb/v̇ with Lb = (M b
H

yV E

[MV ]
κ

1−κ
)1/3. This expression for the age at birth, ab, can

be used to initiate the numerical procedure that solves M b
H(a) = M b

H using Eq (3.33) if
k̇M(1 − κ) 6= k̇Jκ; the solution for ab can be used to find M0

E for a foetus, which can be
used to initiate the numerical procedure to find M0

E for an egg. The latter is necessary to
find M b

E and Lb for an egg.
In absence of growth the catabolic flux reduces to J̇EC = ME v̇/L. In absence of

surface-related maintenance costs, {J̇ET} = 0, the catabolic flux just covers the somatic
maintenance costs if κJ̇EC = [J̇EM ]L3. For e = ME/MEm, this amounts to the threshold

e = [J̇EM ]L

κ{J̇EAm}
. If food density is constant, we have e = f , so this threshold then applies

to f . The maturity can only exceed the threshold at birth if (1 − κ)J̇EC > k̇JM b
H , so if

M b
H < (1 − κ)

Mb
E v̇

Lbk̇J
. Substitution of the previous threshold gives the constraints for viable

eggs

f >
[J̇EM ]Lb

κ{J̇EAm}
= lb and M b

H <
1 − κ

κ

[J̇EM ]

k̇J

L3
b =

1 − κ

κ

jEM

k̇J

M b
V

where length at birth Lb is an implicit function of primary parameters that is determined
by the relationships just discussed.

Volume, mass & energy
{120}

Equivalent ways to quantify reserve, structure and maturity are given in Table 3.5. Mass
is typically expressed in C-moles if the chemical composition does not change, and in
grams when it can change (such as total body weight). Specific density d converts volume
(cm3) to mass (g); molecular weight w converts mass (mol) to mass (g); specific mass
[MV ] = dV /wV converts structural volume (cm3) to structural mass (mol). The chemical
potential converts mol (mol) to energy (J).

Since maturity results from an energy and/or mass conservation principle, it makes little
sense to quantify it as volume because there is no conservation law for volume. Maturity
is quantified in invested reserve (in mass or energy). It does not represent a mass or
energy pool, but information; in this way we avoid the explicit conversion from reserve to
information.

To avoid explicit use of moles or energy, we work with scaled reserve UE = ME/{J̇EAm} =
E/{ṗAm} and scaled maturity UH = MH/{J̇EAm} = EH/{ṗAm}, with dim(UE) = dim(UH) =
t L2.

Table with powers
{123}

The entries in the tables have to be multiplied by µEMEmk̇Mg = {ṗAm}L2
m to arrive

at the powers (energy fluxes). Please realize that ṗC = ṗM + ṗJ + ṗT + ṗG + ṗR, and
κṗC = ṗM + ṗT + ṗG. These relationships are used to calculate ṗR.
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Table 3.5: The state variables of the standard deb model, expressed in three different ways. The
notation for energy in reserve EE ≡ E and volume of structure VV ≡ V is simplified. Energy is
assessed via mass (in C-mole) by multiplication with the chemical potential (µE and µV ).

reserve E structure V maturity H

volume V VE V ≡ L3

mass M ME MV = [MV ]V MH

energy E E = µEME EV = µV MV EH = µEMH



56 3. Energy acquisition and use



Chapter 4

Uptake and use of essential
compounds

From compound to primary parameters
{129}

The mixture of primary and compound parameters of the previous chapter suffices for many
applications already (e.g. to predict growth and reproduction in different situations), but
other applications require more primary parameters explicitly. We need to supplement the
measured quantities with other type of measurements (involving weight, mass or energy)
to make the step to the primary parameters, if necessary.

The last missing information to obtain the full set of primary parameters for isomorphic
ectotherms ({J̇ET} = 0; see Table 3.4) can be extracted from the amount of carbon in a
freshly laid egg M0

E and in a neonate M b
W = M b

E + M b
V . We first use the information in

M0
E and obtain {J̇EAm} = M0

E/U0
E, and then yEX = {J̇EAm}/{J̇XAm}, M b

H = {J̇EAm}/U b
H ,

Mp
H = {J̇EAm}/Up

H , M b
E = U b

E{J̇XAm}. We then use the information in M b
W , and obtain

M b
V = M b

W − M b
E and [MV ] = M b

V L−3
b (in actual length, if Lb is in actual length), yV E =

v̇[MV ](κ{J̇EAm}g)−1, [J̇EM ] = k̇M [MV ]/yV E.
If the weight of a freshly laid egg W0 and of a neonate Wb is known, we can obtain

the molecular weights of reserve and structure: wE = W0/M
0
E, W b

V = Wb − wEM b
E and

wV = W b
V /M b

V . On the assumption that the specific density of structure is dV = 1
g cm−3 (i.e. that of water), the shape coefficient is δM = (d−1

V W b
V )1/3/Lb. We can now

convert actual lengths into volumetric lengths and correct the primary parameters that
have length in their dimension: δMv̇, δ−2

M{J̇EAm}, δ−2
M{ḃ}, δ−3

M [J̇EM ]. The parameter [MV ]
is not a primary one because it only converts one size-measure into another, but it is best
to convert it to δ−3

M [MV ] for comparative purposes.
The map

(

{J̇XAm}, K,M0
E,M b

W ; κ, κR, g, k̇J , k̇M , v̇, U b
H , Up

H

)

−→
(

{J̇EAm}, {ḃ}, yEX , yEV , v̇, [J̇EM ], k̇J , κ, κR,M b
H ,Mp

H , [MV ]
)

is made by function get pars u of software package DEBtool. This completes the full set of
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primary parameters of the standard DEB model in absence of somatic maintenance costs
that are linked to surface areas (ectotherms).

At constant food density the weight of juveniles increases proportional to cubed length
(in the standard model), and the proportionality constant relates to the (constant) reserve
density. The weights in adults are typically above this weight-length curve, due to con-
tributions of the buffer of reserve that is allocated to reproduction. The deviation can
be used to quantify the size of this buffer, and to study the buffer handling rules for the
transformation of the allocated reserve to offspring.

Composition parameters
{129}

The elemental composition of reserve and structure is required if predictions about fluxes
of specific compounds (such as ammonia, carbon dioxide and dioxygen) are to be made.
If the elemental composition of a freshly laid egg (so of reserve) and that of a neonate is
known, the chemical index of structure, i.e. the frequency of element ∗ in structure, relative
to carbon, is given by

n∗V = n∗W mb
W − n∗Emb

E for ∗ = H,O,N, · · ·

where mb
W = M b

W /M b
V .

This is just one of a series of related techniques to unravel the composition of reserve and
structure using measurements of biomass. Suppose that we have the elemental frequencies
of two individuals of the same length (so the same amount of structure) at two scaled
functional responses. We have MW = MV + ME, and ME = fmEmMV , where mEm =
(mW − 1)/f is the maximum reserve density. The structural mass MV of an individual of
total mass MW equals MV = MW /(1 + mE). Moreover, if an organism has physical length
L and structural mass MV , the shape coefficient is δM = (MV /[MV ])1/3/L.

We also have

MW n∗W = MV n∗V + ME n∗E

so the chemical indices of reserve and structure are

n∗E =
f1

mW1 − 1

mW1 − mW2

f1 − f2

n∗V = mW1n∗W − f1
mW1 − mW2

f1 − f2

This technique to compute the concentrations in reserve and structure can also be applied
to compounds rather than chemical elements. The contribution of the reproduction buffer
in the weight (and composition) of adults should be taken into account, but for juveniles
we don’t have these complications.

Knowledge about the chemical indices can be used to determine the molecular weights
of reserve and structure, so to link masses and weights. A pertinent question is to include
or exclude water in mass, volume and weight measurements. If water replaces reserve in
starving organisms (likely in aquatic arthropods and other taxa with exoskeletons), strong
homeostasis can only apply when we exclude water. In many other cases the inclusion of
water is more handy.
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Derivation of J̇E + J̇ER {129}, p-1
The derivation of why the sum of J̇E and J̇ER

is a weighted sum of the three basic powers,
but J̇E and J̇ER

are not, is given on {131}, third paragraph.

Derivation of Eq (4.2)
{130}

The notation can be confusing because some symbols can have different meanings, depend-
ing on the context. This specially applies to elements and compounds. The symbol N is,
for instance used to denote the chemical element nitrogen as well as the compound ‘nitro-
gen waste’. The first index in chemical index nNN refers to the element, the second one to
the compound. Compounds can be transformed into other compounds, but elements are
conserved. So we make a mass balances for elements, can study fluxes of compounds; the
N in J̇N denotes the compound ‘nitrogen waste’. A similar confusion can arise with the
symbol E, for instance, which can stand for the (generalized) compound reserve, as well
as for the amount of energy in the reserve.

The motivation behind these notational choices is that writing out the name of the
compound systematically is not an option, because many formulas will become very long.
Finding new symbols is also problematic, because many are used already, and this strategy
can easily make it hard to remember what symbols denotes what, so I tried the use ‘natural’
symbols for the compounds, which made it necessary to use the context of the symbols to
tell the meaning apart. See further the notation section.

Derivation of Eq (4.5)
{130}

Eq (4.5) is general for the product formation for the standard DEB system (one type of
food, one reserve, one structure). In the case of faeces, we have ηPD = ηPG = 0 (see first
line at {131}), but one can also think of other products, such as hair, skin flakes, sweat
(see section 4.8) etc. Goldfish produces e.g. ethanol at low dioxygen levels; organisms other
than animals have an even wider set of possible products.

Conversions {130}, l-7

µX stands for the chemical potential of X, so of food. µAX = µEyEX stands for the energy
per C-mole of food that is fixed in reserve, after the transformation, so ṗA = −µAX J̇X =
µEJ̇EA = −µEyEX J̇X . The difference µX − µAX went lost for the organism. Part of
this difference is still conserved in the faeces, some of it sits in e.g. the carbon dioxide
production and in heat production that are associated with assimilation. The partitioning
of the mineral fluxes to the three basic powers is discussed in 4.3.1. The energy balances
are discussed in more detail in 4.9. The notation in µAX is somewhat uneasy, because first
the process (assimilation A) is identified, and then the compound (food X). The reason is
in the relationship µAX = η−1

XA, which has nice notational properties.

For the assimilation process we can work out the balance as follows. We first define the
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matrix of mineral mass-energy couplers

ηM =











ηCA ηCD ηCG

ηHA ηHD ηHG

ηOA ηOD ηOG

ηNA ηND ηNG











≡
(

ηMA ηMD ηMG

)

As explained on {131}, these are not new parameters; they are given by ηM = −n−1
MnOηO,

where the organic mass-energy couplers ηO are given in eq (4.5), and the chemical indices
nM and nO in eq (4.2). So the mineral fluxes that are released in the environment in
association with assimilation are J̇MA = ṗAηMA. This represents an energy drain ṗMA =
µT

MṗAηMA. The energy drain in product that is associated with assimilation (think e.g.
of faeces for animals) amounts to ṗPA = ṗAµP ηPA, as explained on {130}. The energy
balance for assimilation process thus amounts to

−µX J̇X = ṗA + ṗPA + ṗMA + ṗTA

= ṗA(1 + µP ηPA + µT
MηMA) + ṗTA

µX = µAX(1 + µP ηPA + µT
MηMA) − ṗTA/J̇X

where ṗTA is the heat that dissipates into the environment in association with the assim-
ilation process; its amount follows from this energy balance. So the terms in the right
argument stands for the energy flux fixed in reserve, product en minerals, followed by
the dissipating heat. Only the reserve stays in the individual, the rest dissipates into the
environment. Food disappears so the flux J̇X is taken to be negative.

It is possible to express the basic powers as weighted sums of organic fluxes as







ṗA

ṗD

ṗG





 =











−µAX 0 0 0
−µAX −µGV −µE 0

0 µGV 0 0
0 0 0 0























J̇X

J̇V

J̇E + J̇ER

J̇P













or ṗ = η−1
O J̇O

for µAX = η−1
XA and µGV = η−1

V G. If n−1
O exists, the basic powers can also be written as

weighted sums of mineral fluxes: ṗ = −η−1
O n−1

O nMJ̇M. This quantification is likely to be
sensitive to inaccuracies.

Since YV X = − J̇V

J̇X
= ηV GṗG

ηXAṗA
= ηV GjEGµE

ηXAjEAµE
= ηV GyEV ṙ

ηXAyEXjXA
= ηV Gṙ

ηXAjXA
y−1

V X , we clearly see that

YV X 6= yV X . The first quantity is variable, the second one is fixed.

From macro- to micro-chemical reaction equations
{131}

A chemical transformation of chemical compounds A and B is typically denoted by, for
instance, A + 2 B → 4 C, or more generally A + YBA B → YCA C. Alternatively we
can write 0 = YAAA + YBAB + YCAC, if we include the fact that A and B disappear in
the (negative) sign of the yield coefficients YAA = −1 and YBA. The choice of relating
the disappearance rate of B and the appearance rate of C to the disappearance rate of A
is arbitrary. We might also have written 0 = YACA + YBCB + YCCC, for instance, with



61

YCC = 1. The notation does not specify the rate at which the transformation occurs, and
this rate is sensitive to the choice of the reference compound. The absence of information
on rates is probably the reason for the popularity of the notation in microbiology. The yield
coefficients can (by definition) be written as ratios of rates: Yij = J̇i/J̇j. If one or more
of the compounds stand for some generalized compound, rather than pure compounds, we
speak of a macrochemical reaction equation, which can typically be split up into two or
more microchemical reactions equations. Mass en energy conservation constraints apply to
the values of the yield coefficients, and the dissipating heat could be included explicitly. If
appropriate, these constraints could be extended with e.g. constraints on electrical charge
and isotopes.

Applied to metabolic systems, a macrochemical reaction equation is a chemical reaction
equation of the type

0 =
∑

i∈M,O

YiX i

where M and O represent all mineral and organic compounds that are involved in the
transformation, and substrate (= food) X and biomass W (or structure and reserve) are
among them. Notice that the macrochemical reaction equation is not a mathematical
equation; i in this equation stands for a label (i.e. a type), not for a concentration or other
quantity. The chemical indices of biomass, nHW , nOW and nNW , depend on the specific
growth rate, so on nutrient availability, which is why Y rather than y is used.

The yield coefficients can be collected in a matrix Y k, where element Y k
ij represents the

yield of compound i on compound j in transformation k. Likewise the chemical indices
can be collected in matix n, where element nij represents the chemical index of chemical
element i in compound j. Conservation of chemical elements implies nY k = 0. Multipli-
cation with the flux of the compound that is used to normalize the yield coefficients results
in nJ̇∗k = 0, where J̇∗k is the column matrix of fluxes of all compounds that partake in
transformation k. For all transformations simultaneously we can write nJ̇ = 0

Suppose that there are not one but several chemical transformations simultaneously.
Let M be the column matrix of the masses of all compounds. Then d

dt
M = J̇1, where

the summation is over all transformations.

Anabolism & catabolism

Substrate and reserve serve a dual function; they are a sources of energy as well as building
blocks. For this reason, assimilation, dissipation as well as growth can be partitioned
into a catabolic and an anabolic flux, see Table 4.1 for aerobic metabolism. The table
does not present the anabolic aspect of dissipation because the stuctural compounds are
degraded and synthesized at the same rate with additional use of reserve, making that
the overall stoichiometry is identical to the catabolic aspects. This turnover of structure
complicates the behaviour of isotopes, however. In anaerobic metabolism dioxygen O is
replaced by another electron acceptor, but otherwise the derivations are similar. If other
than the mineral products are formed, such feaces for animals, we need extra information
of how this product formation is linked to the catabolic and anabolic aspects to be able
to partition the flux. In the catabolic aspect, substrates are transformed to extract energy
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Table 4.1: The yield coefficients (upper panel) and the chemical indices (lower panel) for the
8 compounds that are involved in the 5 transformations with one reserve and one structure;
the energy and carbon substrates, X and S respectively, are frequently identical. Assimilation,
dissipation and growth have a catabolic and an anabolic aspect; that of dissipation is discussed
in the section on isotopes. The yield coefficients stand for

Y a
CS = 0 Y a

HS = nHS/2 − nHE/2 − Y a
NS3/2 Y a

OS = nOS/2 − nOE/2 − Y a
HS/2 Y a

NS = nNS − nNE

Y c
C∗ = nC∗ Y c

H∗ = −nN∗3/2 + nH∗/2 Y c
O∗ = −1 + nO∗/2 − Y a

H∗/2 Y c
N∗ = nN∗

Y a
CE = 0 Y a

HE = nHE/2 − nHV /2 − Y a
NE3/2 Y a

OE = nOE/2 − nOV /2 − Y a
HE/2 Y a

NE = nNE − nNV

Following microbiological tradition, substrate is chosen as reference in the yield coefficients for
assimilation and reserve for dissipation and growth. The specific rates jEA = ṗA/µE , jED =
ṗD/µE and jEG = ṗG/µE are specified by the DEB theory (see Tables 3.5 and 3.6). The specific
dissipation flux jED = jEM/κ for V1-morphs (or jED = jEM if κ = 1).
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Ac assim. (cat) Y c
CX Y c

HX Y c
OX Y c

NX −1 0 0 0 (yXE − 1)jEA

Aa assim. (ana) 0 Y a
HS Y a

OS Y a
NS 0 −1 1 0 jEA

D dissipation Y c
CE Y c

HE Y c
OE Y c

NE 0 0 −1 0 jED

Gc growth (cat) Y c
CE Y c

HE Y c
OE Y c

NE 0 0 −1 0 (1 − yV E)jEG

Ga growth (ana) 0 Y a
HE Y a

OE Y a
NE 0 0 −1 1 yV EjEG

C carbon 1 0 0 0 nCX 1 1 1
H hydrogen 0 2 0 3 nHX nHS nHE nHV

O oxygen 2 1 2 0 nOX nOS nOE nOV

N nitrogen 0 0 0 1 nNX nNS nNE nNV

and all the products are excreted. Since the catabolic aspect of growth concerns the use
of reserve, just like maintenance, the stoichiometries of the two processes are identical,
and different from the anabolic aspect of growth. In the anabolic aspect, some of the
substrates are incorporated in biomass, others are excreted; anabolic processes typically
require energy derived from catabolic processes. Since the anabolic aspect is a fixed fraction
of the total flux (both for assimilation and for growth), this partitioning does not imply
an extension of the number of independent fluxes in the total metabolism, which remains
3 (assimilation, dissipation and growth). Phosphates and other micro-nutrients are not
included for simplicity’s sake.

If we assemble a matrix of chemical indices n, with 4 elements in the rows and 8
compounds in the columns, and a matrix of yield coefficients Y , with 8 compounds in
the rows and 5 transformations in the columns (Table 4.1 presents the transposed Y

rather than Y , for typographic reasons), then the conservation law for elements implies
that nY = 0; it takes only simple book keeping and some patience to solve these yield
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coefficients.
The assimilation flux of reserves depends on the concentrations of the complementary

compounds substrates, dioxygen and ammonia. The SU rule for the assimilation rate of
reserves jEA for x = X/KX , s = S/KS, o = O/KO, n = N/KN work out as follows:

jEA =
jEAm

1 +
∑

i A
−1
i −∑

i B
−1
i +

∑

i C
−1
i − D−1

with

Ai = x, s, o, n; Bi = x + s, x + o, x + n, s + o, s + n, o + n

Ci = x + s + o, x + s + n, x + o + n, s + o + n; D = x + s + o + n

where X, S, O and N are the concentrations of energy substrate, carbon substrate, dioxy-
gen and ammonia, KX , KS, KO and KN are the half saturation constants; jEAm is the
maximum specific assimilation rate of reserves. The consumption of substrates, dioxygen
and ammonia follow from the production of reserve via fixed coupling coefficients. A rather
small range of concentrations of substrates, dioxygen and ammonia limit assimilation si-
multaneously. In many practical applications we have at abundant dioxygen and x ≪ n
or x ≫ n

jEA ≃ jEAm

1 + x−1
=

jEAmX

KX + X
or jEA ≃ jEAm

1 + n−1
=

jEAmN

KN + N

This is the familiar standard formulation for single-substrate limitation. If energy and
carbon substrate is identical, we should s → ∞ to remove the extra limitation by carbon.
This might seem to be counter intuitive, because we in fact have x = s. The explanation
is that a single molecule is used for both energy and carbon, so we remove waiting time
compared to the situation for two different molecules.

The specific rate of appearance of ammonia in association with maintenance, for in-
stance, is jNM = nNEjEM ; that of dioxygen is Y c

OE jEM . If we assemble the rates in
Table 4.1 in a 5-vector k̇, the 8-vector of specific rates of appearances or disappearances
of compounds is given by Y k̇, where each rate can be positive as well as negative.

Reserve density dynamics of V1-morphs is d
dt

mE = jEA− k̇EmE, where k̇E is the reserve

turnover rate. The specific maintenance flux of reserve is constant at rate jEM = yEV k̇M .

The specific growth rate is ṙ = mE k̇E−jEM

mE+yEV
, where mE k̇E − jEM is the reserve flux that

is released from the reserves minus the losses through maintenance; mE + yEV are the
specific costs for new reserve plus structure. So the growth rate depends on the reserve
density mE, not on the nutrient concentrations directly; growth ceases at reserve density
mE = jEM/k̇E, where all mobilized reserves are used for maintenance. The flux of reserve
associated with growth is jEG = yEV ṙ.

The assumption by [530] that the specific entropy of a compound is constant directly
translates in the entropy balance equation for compound ∗

s∗ = Y c
C∗sC + Y c

H∗sH + Y c
O∗sO + Y c

N∗sN

which gives the specific entropy of compound ∗, s∗, given the specific entropies of C, H, O
and N , as presented in Table 4.4.

It is important to realize that the microchemical reaction equations are still far away
from a detailed chemical description of metabolism. Compounds can be produced in one
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part of the pathway, and used in another part, and do not occur in the micro- or macro-
chemical reaction equation.

[297] gives such a decomposition for methanotrophy and [64] for the anaerobic oxida-
tion of ammonia (anammox). In the example of methanotrophy, the energy and carbon
source are identical, in the anammox the are different. The example for anammox shows
how additional biochemical information can be used in these decompositions and how the
number of conserved quantities can be extended. Here with eletrical charge, but extensions
with other chemical elements work out similarly.

Type I methanotrophy

The macro-chemical reaction equation for methanotrophs is

CH4 +YCX CO2 +YOX O2 +YNX NH3 +YHX H2O → YWX CHnHW
OnOW

NnNW

Methanotrophs use methane (CH4) as energy source; methane is the only carbon source
in Type I methanotrophs, such as Methylomonas, Methylomicrobium, Methylobacter and
Methyloccus, which use the monophosphate pathway to process formaldehyde (CH2O), a
metabolite of methane. Methane and carbon dioxide (CO2) are carbon sources for Type
II methanotrophs, such as Methylosinus and Methylocystis, which use the serine pathway
to process formaldehyde. These organisms can also fix dinitrogen. We here selected type I
methanotrophs to illustrate the stoichiometric principles because very simple compounds
are involved only, see [297]. So we have nCX = nCS = 1, nHX = nHS = 4, nOX = nOS = 0
and nNX = nNS = 0.

Figure 4.1 gives the specific fluxes of compounds as functions of the specific growth rate.
It also gives the ratio of the carbon dioxide and dioxygen fluxes, and that of ammonia and
dioxygen. Many text books deal with these ratios as being proportional to the specific
growth rate. This obviously does not apply here.

The result we obtained is that we can relate the yield coefficients and chemical indices
of biomass to (varying) concentrations of nutrients in the environment, and to a (varying)
reserve density, which involves a number of constant energy budget parameters. These con-
stant parameters are the specific maintenance rate k̇M , the reserve turnover k̇E, the yield
of structure on reserve yV E, the chemical indices of reserve and structure, and the param-
eters of the assimilation process. Some text books mention that methanotrophs consume
two methane molecules for each produced carbon dioxide molecule. Our analysis shows,
however, that such a fixed relationship does not exist; it is very sensitive to environmental
conditions.

Methane burning in assimilations’ catabolic transformation should generate enough en-
ergy to drive assimilations’ anabolic component. For the chemical potential µX of methane
and µE of reserve, we have µX jC

XA > (µE − µX)jA
XA or µX(1 − yEX) > (µE − µX)yEX or

yEX > µE/µX .

Notice that ammonia is taken up as well as excreted; a phenomenon that only recently
attracted attention in algal physiology. We know a priori that ammonium uptake always
exceeds excretion at steady state.
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Figure 4.1: The specific fluxes (left graph) of (from top to bottom) carbon dioxide C, reserves
E, ammonia N , methane X and dioxygen O as a function of the specific growth rate of a
methanotroph. That of water and structure are not shown. The ratio of the fluxes (right graph)
of methane (top curve), carbon dioxide (bottom curve) and ammonia (middle curve), with that
of dioxygen. Parameters: max spec assimilation rate (of E) jEAm = 1.2 mol/(h.mol), yield
coefficients yEX = 0.8 mol/mol and yV E = 0.8 mol/mol, maintenance rate constant k̇M = 0.01
1/h, reserve turnover rate k̇E = 2.00 1/h. Chemical indices of reserve and structure: nHE = 1.8;
nOE = 0.3; nNE = 0.3; nHV = 1.8; nOV = 0.5; nNV = 0.1.

Anammox

The anammox (anaerobic ammonia oxidation) process is only known from the chemolithotrophic
planctomycete Brocadia anammoxidans. It generates energy from NH+

4 + NO−
2 → N2 +

2 H2O, and fixes carbon from CO2 + 2 NO−
2 + H2O → CH2O + 2 NO−

3 . The measured
macrochemical reaction equation at specific growth rate ṙ = 0.0014 h−1 is [540]

1 NH+
4 + 1.32 NO−

2 + 0.066 HCO−
3 + 0.13 H+ →

1.02 N2 + 0.26 NO−
3 + 0.066 CH2O0.5N0.15 + 2.03 H2O

Also is known that N2 comes from NH+
4 and NO−

2 and that N in biomass comes from NH+
4 .

The coefficients depend on the growth rate in a way that has been evaluated by Bernd
Brandt [64] who also corrected and detailed the equation. We here extend the elemental
balance equations with that for the electric charge. Table 4.2 presents the summary of the
decomposition of the macrochanical reaction equation.

Figure 4.2 shows how the fluxes of the compounds that are involved in the anammox
transformation depend on the growth rate. The chemical indices for biomass depend
on the specific growth rate as niw = niV +mEniE

1+mE
where the reserve density is given by

mE = jEA/k̇E = yEV
k̇M+ṙ

k̇E−ṙ
. The specific growth flux equals jEG = ṙyEV and the specific

maintenance flux k̇MyEV . For further discussion see [64].

Isotopes
{133}

Isotope dynamics can be followed in the context of DEB theory, due to the fact that DEB
theory specifies all mass fluxes. We here derive the dynamics, excluding physiological
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Table 4.2: The yield coefficients (upper panel) and the chemical indices (lower panel) for the
nine compounds that are involved in the five transformations by anammox bacteria. The yield
coefficients are

Y A
CS = −n−1

NE Y A
H1S = Y A

CS

Y A
HS = (3 + Y A

CS(nHE − 2))/2 Y A
N3S = (3 − nOE)Y A

CS + Y A
HS

Y M
N3E = (−4 − nHE + 2nOE + 3nNE)/6 Y M

SE = nNE − Y M
N3E

Y M
H1E = 1 + Y M

N3E Y M
HE = nOE − 2Y M

N3E − 3
Y G

N3E = Y M
N3E − (−4 − nHV + 2nOV + 3nNV )/6 Y G

H1E = Y G
N3E

Y G
HE = −2Y G

N3E + nOE − nOV Y G
SE = −Y G

N3E + nNE − nNV

Following microbiological tradition, substrate is chosen as reference in the yield coefficients: am-
monium for assimilation, and reserve for maintenance and growth. The yield coefficients follow
from the conservation law for elements and electrical charge. The DEB theory provides the spe-
cific rates ̇EA, ̇EM , and ̇EG (see text). Note that the yield coefficients for the catabolic aspect
of growth equal those for maintenance.

sy
m

b
ol

p
ro

ce
ss

es

C
:

H
C

O
− 3

H
1
:

H
+

H
:

H
2
O

S
:

N
H

3

N
:

N
2

N
3
:

N
O

− 2

N
5
:

N
O

− 3

E
:

re
se

rv
e

V
:
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AC assim. (cat.) 0 –1 2 –1 1 –1 0 0 0 (ySE − nNE)̇EA

AA assim. (ana.) Y A
CS Y A

H1S Y A
HS –1 0 Y A

N3S −Y A
N3S −Y A

CS 0 nNE ̇EA

M maintenance 1 Y M
H1E Y M

HE Y M
SE 0 Y M

N3E 0 –1 0 ̇EM

GC growth (cat.) 1 Y M
H1E Y M

HE Y M
SE 0 Y M

N3E 0 –1 0 (1 − yV E)jEG

GA growth (ana.) 0 Y G
H1E Y G

HE Y G
SE 0 Y G

N3E 0 –1 1 yV E jEG

C carbon 1 0 0 0 0 0 0 1 1
H hydrogen 1 1 2 3 0 0 0 nHE nHV

O oxygen 3 0 1 0 0 2 3 nOE nOV

N nitrogen 0 0 0 1 2 1 1 nNE nNV

+ charge –1 1 0 0 0 –1 –1 0 0

effects of isotopes. Applications of isotope dynamics could include history reconstructions
and monitoring particular fluxes.

We neglect the decay of isotopes, so if this decay can’t be neglected (e.g. for unstable
isotopes), the present treatment should be adjusted. We assume that transformations
convert substrates into products, that the isotope ratios of the substrates are known. The
isotope ratios of the products are assumed to be known at time zero only, and the task
is to specify the trajectory of the ratio given a specification of the transformation rate as
function of time. We first discuss the process of reshuffling of atoms in transformations,
which leads to a re-distribution of isotopes, then we study fractionation, and finally we
apply the theory to the standard DEB model and discuss some applications.

We take the fluxes of substrate in a transformation to be negative by definition and
that of products positive. Since the roles of substrates and products are asymmetrical with
respect to isotope transduction, the next section assumes that all substrates and products
are specified, even if they happen to be chemically identical. Some transformations might
use e.g. water both as substrate and as product; water should then appear twice in the
equation for the transformation. Table 4.3 introduces the notation. Notice that n0k

ij only
gives the frequency of isotope 0 of element i relative to carbon if compound j actually has
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H2O

HCO−

3

NH3

H∗

-0.05

 0

 0.05

 0  0.2  0.4  0.6  0.8  1

-0.05

 0

 0.05

 0  0.2  0.4  0.6  0.8  1

-0.05

 0

 0.05

 0  0.2  0.4  0.6  0.8  1

-0.05

 0

 0.05

 0  0.2  0.4  0.6  0.8  1

j,
m

ol
.m

ol
−

1
h
−

1

scaled specific growth rate ṙ/ṙm
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Figure 4.2: The specific fluxes of the compounds as a function of the specific growth rate
as fraction of the maximum of ṙm = 0.003 h−1 of the anammox bacteria. DEB Parameters:
k̇E = 0.0127 h−1, k̇M = 0.000811 h−1, ySE = 8.80, yV E = 0.8 C-mol/C-mol reserve. Composition
parameters: nHE = 2, nOE = 0.46, nNE = 0.25, nHV = 2, nOV = 0.51, nNV = 0.125.

carbon; otherwise the same strategy should be followed as for nij, which leaves open the
possibility to work in e.g. H-moles for compounds that have no carbon, or in N -moles.

The literature on isotope distributions, see e.g. [97], uses the isotope ratio R, which
stands for the ratio of the frequencies of one isotope of a certain element (typically the rare
type) and that of another (typically the most common type). Sometimes R is the ratio of

masses, rather than frequences. This ratio relates to δ0
ij as R =

δ0
ij

1−δ0
ij
. Data typically refer

to isotope frequencies relative to a standard “ref” and are denoted by

δi = 1000
Ri − Rref

Rref

= 1000

(

δ0
ij

1 − δ0
ij

1 − δ0ref

ij

δ0ref

ij

− 1

)

This notation does not make explicit the compound(s) in which the element i occurs. If
the compound occurs in phases A and B, two other frequently used definitions are

∆A−B = δA − δB; αA−B =
1000 + δA

1000 + δB

=
δ0A
ij

1 − δ0A
ij

1 − δ0B
ij

δ0B
ij

nij frequency of element i in compound j
n0

ij frequency of isotope 0 in element i of compound j in the pool Mj

n0k
ij frequency of isotope 0 in element i of compound j in transformation k

δ0
ij frequency of isotope 0 of element i in compound j rel. to element i of compound j

Y k
ps yield of compound p on compound s in transformation k

Mj mass of compound j in (C-)mole

J̇jk flux of compound j in transformation k in (C-)mole/time
αik

ps reshuffle parameter of substrate s for product p for element i in transformation k

β0k
ij odds ratio for isotope 0 in transformation k of element i in compound j

Table 4.3: List of symbols for isotope dynamics.
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We use this notation only in auxiliary theory (to link predictions to measurements) because
in the core theory we need more notational detail in compounds and transformations and
a closer link to the underlying processes.

Reshuffling in a single transformation

Let S be the set of substrates and P be the set of products. The transformation is
completely defined by the set of fluxes {J̇Sk, J̇Pk}, where the column vectors have elements
J̇sk with s ∈ S and J̇pk with p ∈ P, respectively. These fluxes are subjected by the
constraints

0 = nP J̇Sk + nSJ̇Pk

where matrix nP has elements nip for p ∈ P, and similarly for nS . The number of
constraints equals the number of chemical elements that are followed; the constraints can
be used to specify some of the fluxes.

The dimensionless reshuffling parameter αik
ps, with 0 ≤ αik

ps ≤ 1 specifies what fraction
of the atoms of chemical element i in substrate s ends up in product p in transformation
k. Given the coefficients n0k

is for s ∈ S, the coefficients n0k
ip are given for p ∈ P by

0 = n0k
ip J̇pk +

∑

s∈S

αik
psn

0k
is J̇sk or n0k

ip = −
∑

s∈S

αik
psn

0k
is /Y k

ps

with 1 =
∑

p∈P αik
ps. If ns substrates and np products exist, the number reshuffle parameters

α is (np − 1)ns.
In matrix notation we can write

0 = J̇0i
Pk + αikJ̇0i

Sk with 1T αik = 1T

where (column) vector J̇0i
Sk has elements n0k

is J̇sk and vector J̇0i
Pk has elements n0k

ip J̇pk and
matrix αik has elements αik

ps with p ∈ P and s ∈ S. Notice that the use of the reshuffling
parameters is via the product with the chemical indices, αik

psn
0k
ns, so the requirement that

the sum of the rows of each column of αik equals 1 is only essential for elements that
actually occur in that substrate. If element i does not occur in substrate s, the entries of
αik in column s don’t matter. From the conservation of elements and isotopes, we must
have

0 = 1T J̇ i
Pk + 1T J̇ i

Sk and 0 = 1T J̇0i
Pk + 1T J̇0i

Sk

where vector J̇ i
Sk and J̇ i

Pk have elements nisJ̇sk and nipJ̇pk, respectively.
To illustrate the application of the reshuffling matrix, consider the oxygenic photosyn-

thesis L:
CO2 + 2 H2O + light → CH2O + H2O + O2 or C + 2 H → X + H ′ + O

where the oxygen atoms of dioxygen are known (from biochemistry) to come from water,
not from carbon dioxide; this is why water is both substrate and product in this transfor-
mation. Water as product is labelled H ′ because its isotope composition can deviate for
water as substrate H. For this transformation L and isotopes 13C, 2H and 18O we have

αCL
XC = 1

αCL
H′C = 0

αCL
OC = 0

...
αHL

XH = 1
2

αHL
H′H = 1

2

αHL
OH = 0

...
αOL

XC = 1
2

αOL
XH = 0

αOL
H′C = 1

2
αOL

H′H = 0
αOL

OC = 0 αOL
OH = 1

... n13 L
CX = n13 L

CC

...
n2 L

HX = n2 L
HH

n2 L
HH′ = n2 L

HH

...
n18 L

OX = 1
2
n18 L

OC

n18 L
OH′ = 1

2
n18 L

OC

n18 L
OO = 2n18 L

OH



69

αOL
XC = 1

2
tells that half of the oxygen of carbon dioxide ends up in carbohydrate; αOL

OH = 1
tells that all of the oxygen of water ends up in dioxygen. So the oxygen-isotope distribution
in carbon dioxide has no relevance for that in dioxygen (in this transformation).

Suppose we have the absurd reaction mechanism that all substrate atoms of element
i are allocated to product molecules after complete randomisation. The isotope ratios of
that element are equal in all products, so for product p ∈ P we have

n0k
ip

nip

=
1T J̇0i

Sk

1T J̇ i
Sk

or J̇0i
Pk = J̇ i

Pk

1T J̇0i
Sk

1T J̇ i
Sk

and αik
ps =

J̇ i
pk

1T J̇ i
Pk

or αik =
J̇ i
Pk1

T

1T J̇ i
Pk

Division of the numerator and denumerator by one of the fluxes, typically a flux of sub-
strate, converts fluxes to yield coefficients which are not time-dependent. Although the
mechanism is unrealistic, this choice of reshuffle coefficients can serve as baseline to reduce
the number of parameters in specific applications where no information about the mecha-
nism is available. If the transformation is really complex, like in living systems, complete
reshuffling might be not too far from reality.

Addition of transformations

Macrochemical reaction equations are typically additions of several (or even many) equa-
tions. Transfer of isotopes comes with an asymmetry of the roles of substrates and products,
which makes that a particular compound in a macrochemical reaction equation can play
both roles, even if no net synthesis or decay of that compound occurs.

Before adding transformations k and l, we extend the set of substrates S and products
P , such that these sets include all substrates and compounds, and allow that some of
the fluxes are zero, and some compounds occur in both sets. Let {J̇Sm, J̇Pm} = {J̇Sk +
J̇Sl, J̇Pk+J̇Pl} be the sets of fluxes of the total transformation. To define transformation m
properly, we must have n0k

is = n0l
is = n0m

is for s ∈ S, so J̇0i
Sm = J̇0i

Sk + J̇0i
Sl. Although generally

we will have n0k
ip 6= n0l

ip, we still have J̇0i
Pm = J̇0i

Pk + J̇0i
Pl. Further αim

ps J̇ i
sm = αik

psJ̇
i
sk + αil

psJ̇
i
sl.

We then have

0 = J̇0i
Pm + αimJ̇0i

Sm with 1T αim = 1T

and

αimdiag(J̇Sm) = αikdiag(J̇Sk) + αildiag(J̇Sl)

Notice that the reshuffle parameters become time-dependent if the ratio of the rates of
transformation k and l changes in time. The practice we will only add fully coupled
transformations.

Fractionation

Preamble: Fisher’s noncentral hypergeometric distribution. Suppose we have m0 white
balls with weight β0 each and m1 = m − m0 black balls with weight β1. The number of
white balls in a sample of size n follows Fisher’s noncentral hypergeometric distribution if
selection is non-interactive, only depends on weight and selection probability is proportional
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to weight. For odds ratio β = β0/β1 and n ∈ (0,m), the expected number of white balls
in the sample is

n0 = P1/P0 with Pk =
min(n,m0)
∑

y=max(0,n−m1)

(

m0

y

)(

m1

n − y

)

βyyk

or

n0 ≈
−2c

b −
√

b2 − 4ac
=

rm0β

rβ + 1
with r > 0 such that n =

rm0β

rβ + 1
+

rm1

r + 1

where a = β − 1, b = n − m1 − (m0 + n)β, c = m0nβ. Multivariate extensions are known.
For isotope applications we focus on fractions m0/m in the total flux and n0/n in the
sub-flux (the anabolic flux). The fluxes are converted to pools by integration over a time
increment, which makes that n is not necessarily small relative to m0 and m1.

For large m0 and m1 relative to n, this non-central hypergeometric distribution con-
verges to the binomial distribution with mean n0 = nm0β

m0β+m1
. This applies if isotope selection

occurs from the pool, such as that of dioxygen or carbon dioxide. Notice that this mean

only depends on m0

m1
=

δ0
ij

1−δ0
ij
, and not on m0 and m1 separately.

Fractionation from pools

Fractionation can occur in the selective uptake of dioxygen and carbon dioxide (mostly by
phototrophs) and in the selective release of carbon dioxyde, N-waste and water. The latter
might be of some importance for terrestrial organisms, where this release is associated with
a phase transition for liquid (= organism) to gas.

The selective uptake of dioxygen, where the isotope frequency in assimilation, dissipa-
tion and growth follows a binomial distribution with

n0k
ij =

nijβ
0k
ij

β0k
ij − 1 + 1/δ0

ij

, so n0k
OO =

2β0k
OO

β0k
OO − 1 + 1/δ0

OO

For odds ratio β0k
ij = 1, this gives n0k

ij = nijδ
0
ij. In the case of dioxygen, there is little reason

to expect that this relationship depends on the transformation k.
Suppose that the odds ratio equals the ratio of molecular velocities and that 10O and

16O combine randomly in dioxygen. So a fraction (1− δ18
OO)2 of the dioxygen molecules has

velocity v̇32, a fraction (δ18
OO)2 has velocity v̇36, and a fraction 2δ18

OO(1 − δ18
OO) has velocity

v̇34 at some given temperature. All dioxygen molecules have the same kinetic energy so
32v̇2

32 = 34v̇2
34 = 36v̇2

36. So

β18k
OO =

(1 − δ18
OO)v̇34 + δ18

OOv̇36

(1 − δ18
OO)v̇32 + δ18

OOv̇34

=
1 − δ18

OO + δ18
OO

√

34/36

(1 − δ18
OO)

√

34/32 + δ18
OO

≃
√

32

34
= 0.97

The latter approximation applies for small δ18
OO. However, it is very doubtfull that this sim-

ple reasoning applies; the link between molecular and macroscopic phenomena is typically
less direct.
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The observations for 13C in the oxydative photosynthesis L are: 13δ C = −8 for CO2 in
the atmosphere, and −28 from carbohydrate in C3-plants [152, p44]. The Rref = 0.01191
for carbon in the PDB standard [152, p34]. So R = 0.011091 for 13CO2 and 0.010750
for 13CH2O. This gives δ13

CC = R/(1 + R) = 0.010969 for 13CO2 and δ13
CX = 0.010750 for

13CH2O. The odds ratio for 13CO2 is β13 L
CC =

1/δ13
CC−1

1/δ13
CX−1

= 0.97982; a small deviation from 1

gives a strong fractionation.
Selection from food, reserve and structure as pools is less likely. Food is processed as

whole items; at the interface of reserve and structure mobilization SUs are at work locally
with no “knowlegde” of the neighbouring reserve molecules. Selection is more likely in
mobilized fluxes that have several fates; isotopes can affect binding strength in a molecule
and so the energy required to transform the compound; compounds with light isotopes
are more easily degraded, so more likely to be used for catabolic, rather than anabolic
purposes.

Fractionation from fluxes

Definition: Suppose that a molecule of a compound has more than one possible fate in a
transformation. Selection occurs if the probability on the fate of a molecule depends on
the presence of one or more isotopes. Notice that a change in isotope ratio can well be the
result of reshuffling, rather than selection. Reshuffling always occurs, selection will be rare.
We here assume that each molecule in a well-mixed pool has the same probability to be
selected to partake in a transformation, independent of its isotope composition; selection
only interferes with the fate of the mobilized molecule. It is conceivable, however, that
selection occurs in the mobilization process, not in the destination.

Suppose that the fluxes of substrates J̇Sk are partitioned into two fluxes (e.g. a catabolic
and an anabolic one) as J̇Ska = κa

kJ̇Sk and J̇Skc = κc
kJ̇Sk, with 1 = κc

k+κa
k. The partitioning

is, however, selective for the isotope of element i in compound j.
We must have n0k

ij J̇jk = n0ka
ij J̇jka + n0kc

ij J̇jkc or n0k
ij = n0ka

ij κa
k + n0kc

ij κc
k. Again we write

n0k
ij = δ0

ijnij and introduce an odds ratio β0ka
ij on an isotope of type 0 of element i in com-

pound j in transformation ka. The number of isotopes in the anabolic flux integrated times
a time increment follows Fisher’s noncentral hypergeometric distribution. This results in
the approximation

n0ka
ij ≃ 2n0k

ij β0ka
ij

√

B2 + 4(1 − β0ka
ij )β0ka

ij n0k
ij κa

k − B
with B = n0k

ij − κc
k − (n0k

ij + κa
k)β

0ka
ij

n0kc
ij =

n0k
ij − n0ka

ij κa
k

κc
k

If β0ka
ij = 1, we have n0ka

ij = n0k
ij and the process is unselective. We must have

n0k
ij ≥ n0ka

ij κa
k and B2 + 4(1 − β0ka

ij )β0ka
ij n0k

ij κa
k ≥ 0

Notice that only molecules can be selected on the basis of having a particular isotope
of a particular element; the selection is not on elements independently. Once the selective
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element i is determined for a compound j, β0ka
hj = 1 for all h 6= j. The selection on a single

isotope of a particular atom in a particular compound is the simplest possibility; many
more complex forms of selection can exist.

Suppose that substrate S is subjected to selection with respect to element I and that
αika and αikc are the reshuffling parameters of the anabolic and the catabolic sub-fluxes.
So the fractions κa

k and κc
k apply to flux J̇S. Let n0k

IS = nISδ0
IS. In adding these two fluxes,

we should take into account that the anabolic flux experiences a different isotope frequency
for element I than the catabolic flux: J̇0I

Sk = J̇0I
Ska

+ J̇0I
Skc

= (n0ka
IS κa

k + n0kc
IS κc

k)J̇Sk. Let J̇0I∗
Sk

be J̇0I
Sk, but with element S replaced by this modified flux J̇0I

Sk. The reshuffle parameters
αIk are not affected by selection. The coefficients n0I

Ip in J̇0I
Pk are now given by

0 = J̇0I
Pk + αIkJ̇0I∗

Sk with αIkdiag(J̇Sk) = αIkadiag(J̇Ska) + αIkcdiag(J̇Skc)

Application to the standard DEB model

The focus is on the isotope dynamics of reserve E and structure V with food X as substrate
in the standard DEB model. This model assumes that dioxygen is a non-limiting substrate,
which excludes applications in micro-aerobic environments (e.g. parasites inside hosts),
where we have to deal with transitions from aerobic metabolism to fermentation. Drinking
is an extension of the standard model (and includes modules for evaporation), see section
4.8.1 for remarks on isotope dynamics linked to double labelled water.

The three basic fluxes assimilation, dissipation and growth each have a catabolic and
an anabolic aspect. The rato of the use of dioxygen in the anabolic and catabolic fluxes is
not equal to that of the organic substrate, so the situation is more complex than described
in the previous section. For simplicity’s sake, we now assume that the atoms of the mineral
products all originate from the organic substrate or from dioxygen. Since it is known that
e.g. carbon dioxyde is both product and substrate, at least in some transformations, this
assumption need not be correct and applications might urge to change this assumption.

Under extreme starvation conditions shrinking might occur; the anatomy of this trans-
formation is basically identical to that of dissipation.

The chemical indices for the minerals M = (C,H,O,N) and the organic compounds
O = (X,V,E, P )

nM =











1 0 0 nCN

0 2 0 nHN

2 1 2 nON

0 0 0 nNN











; nO =











nCX nCV nCE nCP

nHX nHV nHE nHP

nOX nOV nOE nOP

nNX nNV nNE nNP











are assumed to be known and 0 = nMY k
Ms +nOY k

Os so Y k
Ms = −n−1

MnOY k
Os for any choice

of organic substrate s. Many aquatic organisms use ammonia as N-waste, so nCN = 0,
nHN = 3, nON = 0, nNN = 1. Since n−1

M is well-defined, Y k
Ms is known, once Y k

Os is given.

Assimilation

Assimilation A is defined as the transformation

Y A
XEX + Y A

OEO → Y A
EEE + Y A

PEP + Y A
HEH + Y A

NEN + Y A
CEC
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for food X, dioxygen O, reserve E, feaces P , water H, N-waste N , carbon dioxide C. The
organic yield coefficients are

Y A
OE = ( Y A

XE Y A
V E Y A

EE Y A
PE )T = ( − 1

yEX
0 1 yPX

yEX
)T

from which follow the mineral yield coefficients Y A
ME = ( Y A

CE Y A
HE Y A

OE Y A
NE )T =

−n−1
MnOY A

OE; the assimilation flux J̇EA is determined by DEB theory.

The anabolic fraction is κa
A = yEX = 1/yXE, so κc

A = 1 − yEX . If yEX + yPX = 1, we
have Y A

CX = 0.

If selection occurs for isotope 0 of element I of food X in assimilation A, we need
to use the apparent coefficient n0Aa

IX for reserve, rather than the actual coefficient n0A
IX ,

using β0Aa
IX . Likewise we need to use n0Ac

IX for feaces with β0Ac
IX . We have isotope flux

J̇0I
XA = (n0Aa

IX κa
A + n0Ac

IX κc
A)J̇XA.

Dissipation

The catabolic aspect of dissipation just oxidises reserve into minerals. Somatic main-
tenance, which is one of the components of the dissipation flux, is partly used for the
turnover of structure, which means that structure is both a substrate and a product. No
net synthesis of structure occurs in association with dissipation.

Dissipation D is defined as the transformation

Y D
EEE + Y D

V EV + Y D
OEO → −Y D

V EV + Y D
HEH + Y D

NEN + Y D
CEC

for reserve E, structure V , dioxygen O, water H, N-waste N , carbon dioxide C.

Y D
OE = ( Y D

XE Y D
V E Y D

EE Y D
PE )T = ( 0 0 1 0 )T

from which follow the mineral yield coefficients Y D
ME = ( Y D

CE Y D
HE Y D

OE Y D
NE )T −

n−1
MnOY D

OE; the dissipation flux J̇ED is given by DEB theory. The parameter Y D
V E = yD

V E

is new, and only plays a role in isotope dynamics, because in the bookkeeping of elements
the substrate term cancels against the product term. The definition of this parameter is
J̇V Da = yD

V EJ̇ED, so it links the decomposition of structure to the full dissipation flux of
reserve.

The anabolic fraction is κa
D, is also a new model parameter and κc

D = 1 − κa
D. Part of

the atoms from the newly synthesized structure might originate from structure, so there is
some modeling flexability here for the isotope dynamics. The simplest assumption is that
all structure originates from reserve. So for selection of isotope 0 of element i in reserve
E in the dissipation process D, we might use the appearent coefficient n0Da

iE for structure
with β0Da

iX . We have isotope flux J̇0i
ED = (n0Da

iE κa
D + n0Dc

iE κc
D)J̇ED.

During shrinking, the product-yield of structure is less than the substrate-yield, but
otherwise also some synthesis of structure still occurs and the equations remain the same.
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Growth

Growth G is defined as the transformation

Y G
EV E + Y G

OV O → Y G
V V V + Y G

HV H + Y G
NV N + Y G

CV C

for reserve E, dioxygen O, structure V , water H, N-waste N , carbon dioxide C.

Y G
OE = ( Y G

XE Y G
V E Y G

EE Y G
PE )T = ( 0 −yV E 1 0 )T

from which follow the mineral yield coefficients Y G
ME = ( Y G

CE Y G
HE Y G

OE Y G
NE )T =

−n−1
MnOY G

OE; the growth flux J̇EG is determined by DEB theory.
The anabolic fraction is κa

G = yV E = 1/yEV , so κc
G = 1 − yV E. We must have yEV > 1.

Since all structure originates from reserve in the anabolic route. If selection occurs on
reserve with isotope 0 in element I in reserve E in growth G, we need to use the appearent
coefficient n0Ga

IE for structure, rather than the actual coefficient n0G
IE, using β0Ga

IE . We have
isotope flux J̇0I

EG = (n0Ga
IE κa

G + n0Gc
IE κc

G)J̇EG.

Changes in isotope fractions

The previous sections quantified the coefficients n0k
ij , i.e. the isotope frequency in element

i of compound j, relative to the carbon frequency in that compound in the various fluxes.
Now we focus on the dynamics of the fraction of isotopes in the pools.

Let fraction δ0
ij denote the amount isotopes of element i in the pool of compound j as

a fraction of the amount of element i in that pool, i.e. nijMj and let n0
ijMj denote the

amount of isotopes of type 0 of element i in the pool of compound j. So

d

dt
δ0
ij =

d

dt

n0
ijMj

nijMj

=
d
dt

n0
ijMj

nijMj

− δ0
ij

d
dt

Mj

Mj

=

∑

k n0k
ij J̇jk

nijMj

− δ0
ij

∑

k J̇jk

Mj

=
∑

k

(

n0k
ij

nij

− δ0
ij

)

J̇jk

Mj

=
∑

k

(

n0k
ij

nij

− δ0
ij

)

max(0, J̇jk)

Mj

The last equality holds because for the processes with J̇jk < 0, so for which compound j
serves as substrate rather than as product, we have n0k

is = δ0
isnis = n0

is.
We now apply this for j = E, V and k = A,Da, G to the standard DEB model. The

changes in isotope fractions δ0
iE and δ0

iV , given those in the substrates δiX(t) and δOO(t)
are

d

dt
δ0
iE =

(

n0A
iE

niE

− δ0
iE

)

J̇EA

ME

;
d

dt
ME = J̇EA + J̇EC

d

dt
δ0
iV =

(

n0G
iV

niV

− δ0
iV

)

J̇V G

MV

−
(

n0Da
iV

niV

− δ0
iV

)

J̇V Da

MV

;
d

dt
MV = J̇V G + J̇V Ds

where J̇V Da represents the (negative) flux of structure turnover as part of the somatic
maintenance process and the (negative) flux J̇V Ds the shrinking, which only occurs during
extreme starvation.
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Effects of temperature

Temperature affects rates, and selection depends on odds ratios, which are dimensionless.
So effects of temperature on fractionation is only indirect, via effects on physiological rates
(assimilation, dissipation, growth). A promising candidate for selection is dissipation. An
increase in temperature causes an increase in dissipation, so an increase in the rate at
which the isotope-fraction in structure increases. Isotope-enrichment in the food chain
has several components: 1) the isotope-fraction of food increases, which cause an increase
in the isotope fraction of reserve and structure of the predator 2) body size typically
increases with the trophic level, so the life span and mean age, which makes that dissipation-
linked enrichment has more time to proceed (independent of food characteristics). So
the observation that isotope-fractions increase with the trophic level does not imply an
enrichment in the assimilation process.

If the trajectory of isotope-enrichment is well-captured with enrichment in dissipation
only (including responses to changes in food availebility and temperature), this would give
support for the position of maintenance in the metabolic organisation within the context of
DEB theory. Notice that the Marr-Pirt model (for prokaryotes) specifies that structure is
used for maintenance, rather than reserve, so it would be impossible to obtain enrichment
linked to dissipation with this model.

Products

Apart from faeces, other products can be formed, and products that accumulated in solid
form (hair, nails, shells, bones, earplugs, otoliths, wood) are of special interest, because
these products ‘write’ a record of the food-temperature history, which can be reconstructed
using chemical identifiers, including the isotope signal. DEB theory specifies that these
products are formed in the catabolic fluxes of assimilation, dissipation and/or growth.
Given that fractionation occurs at the separation of the anabolic and catabolic sub-fluxes
of assimilation, dissipation and growth, the isotope frequency of an element in the products
of any of these three fluxes might equal that before separation, that of the catabolic or
that of the anabolic flux.

Derivation of Eq (4.7) & (4.8)
{133}

The derivation is as follows, using Table 3.4 at {122} for conversions

d

dt
l =

d

dt
(MV /MV m)1/3 =

d
dt

MV

3M
2/3
V M

1/3
V m

=
ṗGηV G

3M
2/3
V M

1/3
V m

=
ṗGηV G

3l2MV m

=
ṗG

3l2µGV MV m

=
ṗG

3l2[EG]MV m/[MV ]
=

ṗG

3l2[EG]Vm

=
ṗG

3l2[EG]Em/[Em]

=
ṗG

3l2κgEm
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d

dt
e =

d

dt

MEMV m

MV MEm

=
MV m

MEm

d

dt

ME

MV

=
MV m

MEm

(

M−1
V

d

dt
ME − ME

M2
V

d

dt
MV

)

=
MV m

MV MEm

(

d

dt
ME − ME

MV

d

dt
MV

)

=
MV m

MV MEm

(

ṗA − ṗC

µE

− ME

MV

ṗGηV G

)

=
1

l3MEm

(

ṗA − ṗC

µE

− ME

MV

ṗGηV G

)

=
1

l3µEMEm

(

ṗA − ṗC − ṗG
ME

MV

µE

µGV

)

=
1

l3µEMEm

(

ṗA − ṗC − ṗG emEm
µE

µGV

)

=
1

l3µEMEm

(

ṗA − ṗC − ṗG e
yEV

κg

µE

µGV

)

=
1

l3µEMEm

(

ṗA − ṗC − ṗG
e

κg

)

=
1

l3Em

(

ṗA − ṗC − ṗG
e

κg

)

The maintenance process is here assumed to produce ammonia as single nitrogen waste.
It is theoretically also possible that some dinitrogen is formed in this process. The results
of [64] show that this hardly affect to macrochemical reaction equation.

Derivation of Eq (4.9)
{133}

Notice that
(

wE wV

)

(

e0 ebl
3
b

0 l3b

)

=
(

wEe0 wEebl
3
b + wV l3b

)

.

If the write out the product with the factor [MEm]Vm, we arrive at the initial wet weight
Ww(0) = [MEm]VmwEe0, where [MEm]Vme0 is the initial amount of C-moles of reserve.
The wet weight at birth is Ww(ab) = [MEm]Vm (wEebl

3
b + wV l3b ), where [MEm]Vmebl

3
b is the

C-moles of reserve at birth and [MEm]Vml3b is the C-moles of structure at birth. If we
replace the molecular weights wE and wV , by those corresponding to dry-weights, we get
the result in dry-weights, rather than wet weights.

Derivation of Eq (4.10)
{133}, l-1

Notice that [MV ]Vb stands for the C-moles of the structure of a neonate, so having volume
Vb. Further, E0 − Eb is the energy that is used from the reserve during the incubation
period, so µ−1

E (E0 −Eb) is the number of C-moles that is used from the reserve during this
period.

Multiple-reserve systems can behave as one-reserve systems
{134},
4.3.4 The section on the composition of reserve and structure is illustrated with a bacterium

that lives on glycerol, which must have many, rather than a single reserve (see comments
on evolution). This is still consistent with DEB theory for multiple reserves discussed
at 5.2, if the concentrations of the nutrients don’t limit growth and all rejected reserve
fluxes are excreted, κEi

= 0. In that case we have mEi
= jEiA/k̇E in steady state (see

Eq (5.18) for d
dt

mEi
= 0), which means that mEi

is constant if jEiA is constant, so if
the concentration of the i-th nutrient in the medium is constant. Figure 4.2 presents the
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situation in a chemostat, which means that the concentration of nutrients depend on the
growth rate. If the concentration of the non-limiting nutrients is large relative to the half
saturation constant, we have jEiA ≃ jEiAm, which is independent of the growth rate and
the non-limiting reserves count as parts of the structure in the analysis of the chemical
composition.

Powers as polynomials
{135}, l12

Table 3.5 shows that all powers are cubic polynomials in the (scaled) length, which means
that the basic powers assimilation, dissipation (see (3.58) at {134} for the definition) and
growth can be written as







ṗA

ṗD

ṗG





 =







cA0 cA1 cA2 cA3

cD0 cD1 cD2 cD3

cG0 cG1 cG2 cG3

















l0

l1

l2

l3











≡ cl

for appropriate choices for the coefficients c. The flux of dioxygen (one way to quantify
respiration) can by written as

J̇O =
(

ηOA ηOD ηOG

)







ṗA

ṗD

ṗG





 =
(

ηOA ηOD ηOG

)

cl

=
(

cO0 cO1 cO2 cO3

)

l

In other words, this flux, like all other mass fluxes, are cubic polynomials in length as well
(for isomorphs). Notice that some of the coefficients c depend on the reserve, so on the
nutritional status of the organism, and some coefficients are zero. Figure 4.3 illustrates
that this is very similar to allometric functions, using the same number of parameters and
having an equally good fit. The big difference is that there is a very good explanation for
the polynomials, and no explanation for the allometric function. This matters when we
want to predict effects of nutrition for instance.

Derivation of Eq (4.12)
{135}

The derivation of Eq (4.12) is as follows. We use (4.3) and (4.5) to find J̇M = −n−1
MnOηOṗ.

The first element of this vector is the one that we need if we exclude assimilation by ṗA = 0
and product formation by ηPD = ηPG = 0. From Eq (4.5) we find

ηṗ = ( 0 ηV GṗG −(ṗD + ṗG)/µE 0 )T

The first row of n−1
MnO is for nC∗ = 1, because we work in C-moles:

( 1 − nNX
nCN

nNN
1 − nNV

nCN

nNN
1 − nNE

nCN

nNN
1 − nNP

nCN

nNN
)

Minus the product of this first row and ηṗ directly gives Eq (4.5)
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Respiration vs catabolism
{136}, last
paraRespiration (use of dioxygen or production of carbon dioxide) in absence of assimilation is

only approximately proportional to the catabolic rate if the overhead costs of growth are
relatively large. If not, respiration can deviate from this and the more general expression
(4.12) should be used, with has a less direct link with k̇M . If constraint (4.4) applies, how-
ever, and the respiration quotient is constant (independent of the length of the organism),
respiration in absence of assimilation is proportional to the catabolic rate.

Aging
{139}

Meanwhile we have developed a theory for aging in which damage-amplification occurs
during aging, to account for the survival patterns that are found in endotherms [346]. Ef-
fects of caloric restrictions on life span are well predicted. The model has many similarities
with the one discussed at {139}, but also some differences and is also more complex. A
curiosity is that Gompertz model is a special case of the new model, while the Weibull
model is a special case of the model that is discussed in the DEB book.

Derivation of Eq (4.23)
{144}

Eq (4.23) can be derived as follows. We know that volume V ∝ l3, and from Table 3.6 at
{123} we learn that the catabolic power ṗC ∝ el3/(g + e). Notice that several constants
disappear in the proportionality sign, only the scaled reserve density e and the scaled
length l vary. The hazard rate is proportional to ṗC/V , so to e/(g + e). Therefore, it can
be written as ḣ(e, l) = ḣae

1+g
e+g

. The term 1 + g might seem to fall out of the blue sky.

It is just a constant, which is introduced to give the proportionality constant ḣa a simple
interpretation: the maximum hazard rate. This interpretation follows from the fact that
e can vary only between 0 and 1. We were allowed to introduce this new constant 1 + g,
because it is a constant and it does not introduce a new parameter, since g was already
present.

Derivation of Eq (4.24)
{144}

Eq (4.24) can be derived as follows. We know that volume V ∝ l3, and from (3.44) we
learn that the catabolic power ṗC ∝ e(l2v̇/Lm + k̇M l3)/(g + e) ∝ el3(g/l + 1)/(g + e).
Notice that Vh = 0 for unicellular isomorphs, because they do not heat their body to
maintain a constant temperature. Following the same argumentation as is used for (4.23),
we now introduce two new constants, 1 + g and 1 + g/ld for the purpose of giving ḣa the
interpretation of a maximum aging rate.

Otoliths as composite products
{147}

Like wood of plants and shells of molluscs, otoliths in fish can be considered as products
which helps to convert observations from otoliths to expectations for growth and food
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intake in the past (collaborative work with Laure Pecquerie). We assume that otoliths
remain isomorphic, except at metamorphosis, where they make an instantaneous change
from a disc-like shape to a more complex one. The shape correction function of otoliths
can be quantified as MØ(UH) = Mb

Ø + (UH > U j
H)(Mp

Ø −Mb
Ø). So d

dt
M = 0, except at

UH = U j
H . The physical otolith length LØ relates to the volumetric otolith length LØ as

LØ = LØ/δLØ, where δLØ = δb
LØ or δp

LØ, depending on UH . The physical otolith surface
area (which we need for the degradation process of otoliths) is proportional to the squared
volumetric otolith length, but the proportionality factor makes a jump at metamorphosis.

Suppose that otoliths are products with volume VØ and volumetric length LØ = V
1/3
Ø .

Like all product formation, change in otolith volume is a weighted sum of contributions
from assimilation, dissipation and growth. The otolith is in the otosac and suppose that
the otosac is isomorphic with volume δSV , that the use of otolith material in the fluid in
the otosac is proportional to the concentration of otolith material in this fluid and that
the precipitation of utilized material is proportional to the volume of fluid in the otosac,
relative to the volume of the otosac. The rest of mobilized otolith material is excreted into
the environment. The change in otolith volume then becomes

d

dt
VØ =

(

ṗA

[EØA]
+

ṗD

[EØD]
+

ṗG

[EØG]

)

(

1 − VØ

δSV

)

The change in otolith volumetric length is d
dt

LØ = 1
3
L−2

Ø
d
dt

VØ and change in (body) vol-
umetric length d

dt
L = 1

3
L−2 d

dt
V = 1

3
L−2ṗG/[EG]. So the change in volumetric length as

function of the change in otolith volumetric length is

dL
dLØ

=
δLØ

δL

1
3
L−2ṗG/[EG]

1
3
L−2

Ø (ṗA/[EØA] + ṗD/[EØD] + ṗG/[EØG])(1 − L3
Ø/δSL3)

=
δLØ

δL

ṗG/[EG]

(ṗA/[EØA] + ṗD/[EØD] + ṗG/[EØG])(L2/L2
Ø − LØ/δSL)

where

ṗA = {ṗ∗Am}fL2; ṗD = ṗM + ṗJ + (1 − κR)ṗR; ṗM = [ṗM ]L3

ṗJ = k̇JEH ; ṗR = (1 − κ)ṗC − ṗJ ; ṗG = κṗC − ṗM ; ṗC = [E]
v̇∗L2 + k̇ML3

1 + κ[E]/[EG]

with f = 0 for UH < U b
H , κR = 0 for UH < Up

H . Furthermore {ṗ∗Am} = {ṗAm}M(L).
We can remove energies via division by {ṗAm} at a reference temperature and maturity,

i.e. Si = ṗi/{ṗAm}, with i = A,D,G,C,R,B,M, J with dim(Si) = L2:

SC =
ṗC

{ṗAm}
=

L2e

g + e
(M(L)g + L/Lm); SM =

ṗM

{ṗAm}
=

κL3

Lm

; SJ =
ṗJ

{ṗAm}
= k̇JUH

to obtain

dL
dLØ

=
δLØ

κgδL

v̇SG

(v̇ØASA + v̇ØDSD + v̇ØGSG)(L2/L2
Ø − LØ/δSL)

d

dt
LØ =

(v̇ØASA + v̇ØDSD + v̇ØGSG)(1 − L3
Ø/δSL3)

3δLØL2
Ø
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with

SA = M(L)fL2; SD = SM +SJ +(1−κR)SR; SG = κSC −SM ; SR = (1−κ)SC −SJ

and
v̇ØA = {ṗAm}/[EØA]; v̇ØD = {ṗAm}/[EØD]; v̇ØG = {ṗAm}/[EØG]

Notice that dim(v̇i) = L/t, with i = ØA, ØD, ØG, Ø. The removal of energies from the
equations comes with a reduction of one parameter, namely

U b
H , U j

H , Up
H , k̇M , k̇J , g, κ, v̇, v̇Ø

combined with
[EG], [EØA], [EØD], [EØG] versus v̇ØA, v̇ØD, v̇ØG,

given f(t). If food density X(t) is given, rather than scaled functional response f(t), we
need one extra parameter, the half saturation coefficient K. The conversion from the
energy allocated to reproduction ṗR to eggs involves the overhead factor 1 − κR. The
module for the buffer handling rule has additional parameters. The velocities v̇i might
be negative, provided that LØ > 0 for all possible environmental scenario’s for which the
individual can survive. They do not depend on temperature, because we obtained them
by via {ṗAm} at a standardized temperature. Notice also that if v̇ØA = v̇ØD = 0 and δS

large, we have dL
dLØ

= δLØ

δL

L2
Ø

κgL2
v̇

v̇ØG
and L3 = δLØ

δL
v̇

κgv̇ØG
L3

Ø if LØ = 0 when L = 0.

Otolith color

Otoliths typically have layers of transparent keratine-like protein, and opaque aragonite
plus protein. This observed sequence of layers can be explained if the deposition on the
otolith that is associated with growth and (possibly) assimilation has aragonite, and that
linked to dissipation has not. Otoliths of embryos are opaque, and embryos don’t have
assimilation, so contribution from growth and/or maintenance must have aragonite. In
winter, when food intake is so low that somatic maintenance costs is partly paid from the
reproduction buffer and growth is ceased, otolith depositions have no aragonite, so the
contribution from dissipation must be positive and must have no aragonite, while that of
growth must also be positive and must have aragonite. If fully grown the deposition has
no aragonite, so if the contribution of assimilation is positive, it can have no aragonite. On
the assumption that degradation does not affect the opacity, opacity is given by

O(t) =
v̇ØASA + v̇ØGSG

v̇ØASA + v̇ØDSD + v̇ØGSG

which assumes value 1 if aragonite content is maximum, and 0 in complete absence of
aragonite. The relative contributions of assimilation and growth linked depositions to
opacity can be weighted unequally.

The color bands are used to assess growth. The human eye recognizes the band bound-
aries as maximum changes in color. Color change (in length of otolith) is given by

dO

dLØ

=
dO

dt

dt

dLØ

=

∑

k v̇Øk
d
dt

Sk − O
∑

i v̇Øi
d
dt

Si

(
∑

i v̇ØiSi)δ
−1
LØ

d
dt

LØ

for i = A,D,G; k = A,G
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where we need

d

dt
SA = fL2 d

dt
M + ML2 d

dt
f + Mf2L

d

dt
L

d

dt
M = (UH > U b

H)(UH < U j
H)(

d

dt
UH/U b

H)/(3M2)

d

dt
f = f 2 K

X2

d

dt
X

d

dt
SD =

d

dt
SM +

d

dt
SJ + (1 − κR)

d

dt
SR

d

dt
SG = κ

d

dt
SC − d

dt
SM

d

dt
SR = (1 − κ)

d

dt
SC − d

dt
SJ

d

dt
SC =

L

g + e
(Mg +

L

Lm

)(
gL

g + e

d

dt
e + 2e

d

dt
L) +

L2e

g + e
(g

d

dt
M +

d

dt

L

Lm

)

d

dt
SM =

3κL2

Lm

d

dt
L

d

dt
SJ = k̇J

d

dt
UH

If X(t) is described by a cubic spline or a Fourier series, the evaluation of d
dt

X is straight-
forward.

Isotopes in otoliths

To follow isotopes in otoliths, it is most convenient to work with masses, rather than
energies or lengths. We also need more chemical detail. The chemical composition of
the contributions from assimilation, dissipation and growth to the otolith can differ; the
chemical indices are denotes by nk

ij for k = A,D,G. Each C-mole contributes differently
to volume, which makes that the otolith volume relates to the otolith mass as

VØ = MA
Ø/[MA

Ø ] + MD
Ø /[MD

Ø ] + MG
Ø /[MG

Ø ]

where the parameters [MA
Ø ], [MD

Ø ] and [MG
Ø ] are treated as constants. If [MA

Ø ] = [MD
Ø ] =

[MG
Ø ] = [MØ], the volume of the otolith simplifies to VØ = (MA

Ø +MD
Ø +MG

Ø )/[MØ], which
might be used as a first approximation to reduce the number of parameters.

Working with masses invites for working with yields, so we apply the relationships

[MA
Ø ]v̇ØA = {J̇EAm}yA

ØE; [MD
Ø ]v̇ØD = {J̇EAm}yD

ØE; [MG
Ø ]v̇ØG = {J̇EAm}yG

ØE.

Product formation, including otoliths, affects mineral fluxes. This can be avaluated by
extending the sets of organic yields for assimilation, dissipation and growth with that on
product formation, and the organic chemical indices with those of for otoliths, and obtain
the mineral fluxes from the elemental balance equaltion. Since otoliths are very small, the
correction is likely to be minute.
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The changes in mass of otolith, the color, the chemical indices, the isotope indices and
the isotope fractions of the otolith amount to

d

dt
MA

Ø = yA
ØEJ̇EA

(

1 − VØ

δSV

)

d

dt
MD

Ø = −yD
ØEJ̇ED

(

1 − VØ

δSV

)

d

dt
MG

Ø = −yG
ØEJ̇EG

(

1 − VØ

δSV

)

O(t) =
yA

ØEJ̇EA − yG
ØEJ̇EG

yA
ØEJ̇EA − yD

ØEJ̇ED − yG
ØEJ̇EG

niØ(t) =
nA

iØyA
ØEJ̇EA − nD

iØyD
ØEJ̇ED − nG

iØyG
ØEJ̇EG

yA
ØEJ̇EA − yD

ØEJ̇ED − yG
ØEJ̇EG

n0
iØ(t) =

n0A
iØyA

ØEJ̇EA − n0D
iØ yD

ØEJ̇ED − n0G
iØ yG

ØEJ̇EG

yA
ØEJ̇EA − yD

ØEJ̇ED − yG
ØEJ̇EG

δ0
iØ(t) =

n0
iØ(t)

niØ(t)

with J̇EA, J̇EG ≤ 0. Notice that the chemical indices nij and the isotope indices n0
ij are

relative to carbon and that nA
CØ = nD

CØ = nG
CØ = nCØ = 1. Notice also that the otolith is

not mixed, so we don’t have dilution by growth of the otolith.
Several possibilities can be delineated for n0k

iØ. The simplest set of possiblities is that no
fractionation occurs at otolith formation, which we will examine in more detail. The isotope
indices n0k

iØ are obtained from n0k
iØ = −∑s αik

Øsn
0k
is /Y k

Øs, where for elements i = C,H,N we
have substrate s = X for transformation k = A and s = E for k = D,G. For the element
oxygen, i = O, we have two substrates, the second one being dioxygen, s = O. Since
otoliths are very small, the effect of their production on the reshuffling parameters α will
be minute, and we can link the isotope indices directly to that of reserve or structure. The
contribution of dioxygen for oxygen in otoliths should be reconsidered. Since fractionation
occurs at the anabolic/catabolic forks of the three fluxes, the allocation to otoliths can
occur before or after the forks, so we have three possibilities per flux

n0A
iØ = nA

iØ

n0A
iX

niX

or nA
iØ

n0Aa
iX

niX

or nA
iØ

n0Ac
iX

niX

n0D
iØ = nD

iØ

n0D
iE

niE

or nD
iØ

n0Da
iE

niE

or nD
iØ

n0Dc
iE

niE

n0G
iØ = nG

iØ

n0G
iE

niE

or nG
iØ

n0Ga
iE

niE

or nG
iØ

n0Gc
iE

niE

This does not exhaust all possibilities; part of the atoms in otoliths can originate from
structure in the anabolic sub-flux of somatic maintenance. If we include the contribution
from growth into the anabolic flux (the second option), we have κa

G = yV E + yG
ØE and

κc
G = 1 − κa

G and for assimilation κa
A = yEX + yA

ØE and κc
A = 1 − κa

A. For dissipation the
situation is simpler because κa

D is a free parameter, independent of other parameters.
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Formula State Enthalpy Entropy
kcal/mol cal/mol.K

CO2 g -94.05 51.07
H2O l -68.32 16.71
O2 g 0 49.00
NH3 aq. -19.20 26.63

Table 4.4: Formation enthalpies
and absolute entropies of CO2,
H2O and O2 at 25˚C were taken
from [102]. The formation enthalpy
and absolute entropy for NH3 at
25˚C were taken from [14].

With the presently available information, we can neglect the contribution from assimi-
lation to otoliths, yA

ØE = 0, but future work with biomarkers might change that.
Simulation results show that, even in absence of effects of temperature on the odds

ratios, seasonal cycles in temperature result in a covariance of temperature and the isotope
fractions in otoliths.

Thermodynamic parameters
{154}

The entropies and chemical potentials for microbial populations in a chemostat are dis-
cussed in [530], for individual isomorphs in [328]. The value of the entropy of living
biomass did differ from Battley’s empirical rule [26] and destructive methods. We expect
that changes in entropy are especially important in transients from anaerobic and aero-
bic conditions and in large transients in pressure (deep ocean to surface). This comment
presents the results in [328] for an isomorph.

Strong homeostasis implies that the specific enthalpies, chemical potentials and en-
tropies of reserve and structure are constant. Our methods can be applied under anaerobic
as well as aerobic conditions if we replace dioxygen by the products that are formed.

Enthalpy and dissipating heat

Given the molar enthalpies for the minerals, h
T

M =
(

hC hH hO hN

)

from the litera-

ture (see Table 4.4), the molar enthalpies of the organic compounds, h
T

O =
(

hX hV hE hP

)

can be obtained from the energy balance equation

0 = h
T

MJ̇M + h
T

OJ̇O + ṗT+ =
(

hO − hMn−1
MnO

)T
J̇O + ṗT+,

by measuring the net heat dissipated heat by the organism, i.e. ṗT+. This heat can be
negative if heat from the environment is required to keep the temperature of the individual
constant. Generally measurements of dissipating heat at four different food levels are
required to obtain the four enthalpies for the organic compounds; if the enthalpies of food
X and faeces P are known then only measurements of dissipated heat at two different food
densities are required.

The dissipated heat can be estimated for other food densities, knowing the enthalpies
of organic compounds, using the method of indirect calorimetry that establishes a linear
dependence between the mineral fluxes and the dissipated heat (see also [289, p155]).

The specific enthalpy of biomass equals hW = mEhE+hV

mE+1
.
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Chemical potentials and entropy

The specific chemical potential µ of a compound converts a flux of this compound (in
moles per time) into a flux of Gibbs energy, for instance the assimilation energy flux is
ṗA = µEJ̇EA. The chemical potentials µ have to be computed simultaneously with the
molar entropies s. Work that is involved in changes in volumes are typically negligibly
small at the surface of the earth, but in the deep ocean, this work has profound effects on
energetics and biochemistry [160, 513]. Neglecting this effect, the chemical potential and
entropies of food µX and sX , structure µV and sV , reserve µE and sE, and faeces µP and
sP can be obtained with

0 = (µM + TsM)T J̇M + (µO + TsO)T J̇O + ṗT+

=
((

hM − µM − TsM

)

n−1
MnO − hO + µO − TsO

)T
J̇O,

by measuring the temperature T of the organisms and computing the organic and mineral
flows at 8 different food densities (or 4 different food densities if molar entropies and
chemical potentials of food X and faeces P are known), where µM and sM collect the
values of the molar chemical potentials and molar entropies for the four minerals, while
µO and sO do that for the organic compounds, as before.

The rate of entropy production by the organism σ̇ is a measure of the amount of
dissipation that is occurring. It can be quantified for each food density if the temperature
of the organism and the entropies of the organic compounds are known:

0 = σ̇ +
ṗT+

T
+ sT

MJ̇M + sT
OJ̇O.

The chemical potentials of organic compounds are essential to obtain the energy parameters
{ṗAm}, [EG], {ṗT}, [ṗM ] and [ṗJ ], see Table 3.3.

The specific entropy of biomass equals sW = mEsE+sV

mE+1

Aerobic conditions

Formula are simpler for aerobic conditions because for most important reactions in aerobic
biological systems T ∆s is very small compared to ∆h and therefore the enthalpy of the
reaction ∆h+ is approximated using its Gibbs energy ∆µ+, since at constant temperature
we have ∆µ = ∆h − T ∆s ≃ ∆h [156].

The entropies of the organic compounds sO can be obtained with

0 = sT
MJ̇M + sT

OJ̇O,

by computing the organic and mineral flows at 4 different food densities (or 2 different food
densities if molar entropies of food X and faeces P are known) and constant temperature.

The specific chemical potentials of the organic compounds µO can be computed with

0 = ṗ◦T+ + µT
OJ̇O + µT

MJ̇M,



85

where ṗ◦T+ is the net heat release by all chemical reactions. If the temperature of the
organism is constant, the net heat release ṗ◦T+ is equal to the net heat dissipated by the
organism ṗT+. The computation can be done by measuring directly the dissipated heat
ṗT+ ≃ ṗ◦T+, at 4 different food densities (or 2 different food densities if chemical potentials
of food X and faeces P are known), that is approximately equal to the total heat release
by all chemical reactions ṗ◦T+. Alternatively the dissipated heat can be obtained with the
method of indirect calorimetry.

The rate of entropy production by the organism σ̇ can be quantified if the temperature
of the organism is known: σ̇ = − ṗT+

T
.

Heat ∝ dioxygen flux
{154}

In microbiology, heat is frequently taken to be proportional to the dioxygen flux. We can
now try to understand how this translates to constraints on biomass composition, and we
can specify the proportionality factor in terms of DEB parameters.

Let

n−1
M = uM =











uC

uH

uO

uN











=













1 0 0 − nCN

nNN

0 2−1 0 − nHN

2nNN

−1 −4−1 2−1 n
4nNN

0 0 0 n−1
NN













; n ≡ 4nCN + nHN − 2nON

and

nO =











nCX nCV nCE nCP

nHX nHV nHE nHP

nOX nOV nOE nOP

nNX nNV nNE nNP











=
(

nX nV nE nP

)

and

ηO =











−ηXA 0 0
0 0 ηV G

µ−1
E −µ−1

E −µ−1
E

ηPA ηPD ηPG











=
(

ηA ηD ηG

)

The dioxygen flux can thus be written as J̇O = −uOnOJ̇O, see Eq (4.3). Dissipating heat
is given by

ṗT+ = −µT
MJ̇M − µT

OJ̇O

= (µT
Mn−1

MnO − µT
O)J̇O

see Eq (4.36) and (4.3). The question now translates as: under what constraints do we
have ṗT+ = −µOT J̇O, and how does the constant µOT relate to parameter values? So we
have that

µOT = − ṗT+

J̇O

=
(µT

Mn−1
MnO − µT

O)J̇O

uOnOJ̇O

=
(µT

MuMnO − µT
O)ηOṗ

uOnOη̇Oṗ
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must be constant, while the three elements of ṗ can vary. This can only happen if this
relationship applies to each of the three powers ṗ:

µOT =
(µT

MuMnO − µT
O)ηA

uOnOηA

=
(µT

MuMnO − µT
O)ηD

uOnOηD

=
(µT

MuMnO − µT
O)ηG

uOnOηG

so
µT∗

MuMnOηO = µT
OηO with µT∗

M = ( µC µH µO − µOT µN )

If η−1
O exists, this further reduces to the constraint µT∗

MuMnO = µT
O. It still depends

on some coefficients η via µOT , which is in µT∗
M.

Faeces as only product

Suppose ηPD = ηPG = 0, while ηPA 6= 0. This situation occurs when faeces is the only
product, as in animals; η−1

O does not exist. Substitution for dissipation gives

µOT =
µT

MuMnE − µE

uOnE

which does not depend on any coefficient η. Let

µT = µT∗
MuMηO = ( µ1 µ2 µ3 µ4 )

We then must have that µ2 = µV , µ3 = µE, and ηPAµ4 − ηXAµ1 = ηPAµP − ηXAµX .

No product

Suppose ηPA = ηPD = ηPG = 0 (no product; this situation can occur with bacteria). We
now have µ1 = µX , so the constraints no longer depend on coefficients η. Substitution of
the η’s gives

µOT =
µT

MuM(nE − µEηXAnX) − µE(1 − µXηXA)

uO(nE − µEηXAnX)

=
µT

MuMnE − µE

uOnE

=
µT

MuM(nE − µEηV GnV ) − µE(1 − µV ηV G)

uO(nE − µEηV GnV )

or, for nO = ( nX nV nE ) and µT
O = ( µX µV µE )

µT
O = µT∗

MuMnO = (µT
MuM − µOT uO)nO

uOnEµT
O = (µT

MuMuOnE − µT
MuMnEuO + µEuO)nO

=
(

µT
MuM(uOnE − nEuO) + µEuO

)

nO

Notice that uOnE is a scalar and nEuO a (4 × 4)-matrix. Although the result does not
depend on the detailed dynamics of the DEB model, it does depend on an important
property of the standard DEB model: all mass fluxes are weighted sums of assimilation,
dissipation and growth.
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Ammonia as N-waste

nCN = 0, nHN = 3, nON = 0 and nNN = 1, so n = 3 and

uM =
1

4











4 0 0 0
0 2 0 −6

−4 −1 2 3
0 0 0 4











This can be used to work out a numerical example.

Frame of reference {155}, l-8
The idea is that we start in an aerobic situation, using a combustion frame of reference,
and then correct for product formation under anaerobic conditions. So we replace the
chemical potential of dioxygen (set to zero in the combustion frame of reference) by that
of ethanol.
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Chapter 5

Multivariate DEB models

Classification of substrates {160}
The substrates are classified as substitutable or complementary and binding schemes as
sequential or parallel. These four classes comprise the standard kinetics see Figure 5.1. Let
us characterize the states of the SUs in bounded fractions with vector θ, while 1T θ = 1
and 0 ≤ θi < 1 for all states i. The change in bounded fractions of SUs can be written as
d
dt

θ = k̇θ, for a matrix of rates k̇ with diagonal elements k̇ii = −∑j 6=i k̇ij, while k̇ij ≥ 0, so

1T k̇ = 0. Using a time scale separation argument, a flux of metabolite X can be written as
J̇X = J̇T θ∗, with weight coefficients J̇ and fractions θ∗ such that 0 = k̇θ∗. Mixtures of the
four classes of standard kinetics have the property that k̇ =

∑

i k̇i, where k̇ is the matrix of
rates of the mixture, and k̇i that of a standard type. Such mixtures are discussed in [298] in
connection with the gradual transition from substitutable to complementary compounds.

SUs can be organized in a metabolic chain or network, sometimes they are spatially
organized in a metabolon and pass intermediate metabolites to each other by channeling.
They might use the open-handshaking protocol for dissociation, meaning that the disso-
ciation process is independent of the binding state of the neighbouring SUs, the closed-
handshaking protocol, meaning that dissociation only occurs if the neighbouring SUs are
in the free unbounded state, or a mixture of both protocols. Closed handshaking involves
communication, and typically physical contact (so spatial structure). If handshaking is
fully closed, the whole metabolon acts as if it is a single SU. For an application of this to
the TCA cycle see [327].

Sequential processing
{160}

The derivation of the uptake flux for two substrates under sequential processing is as follows
for N1 being the number of carriers bound to substrate 1, and N2 that to substrate 2, with
the total number of carriers N = N0 + N1 + N2 being constant:

d

dt
N0 = N1k̇1 + N2k̇2 − N0(ρ1J̇1 + ρ2J̇2)

d

dt
N1 = N0ρ1J̇1 − N1k̇1
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substitutable complementary
yCAA → C; yCBB → C yCAA + yCBB → C
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Figure 5.1: Interaction of sub-
strates A and B in transformations
into product C can be understood
on the basis of a classification of sub-
strates into substitutable and com-
plementary, and of binding into se-
quential or parallel. The symbol
θ∗1∗2

represents a SU that is bound
to the substrates ∗1 and ∗2, the
dot representing no substrate, so
θ·· represents a free SU. The sym-
bol y∗1∗2

denotes a stoichiometric
coupling coefficient. The schemes
can be generalized to more com-
plex transformations to include co-
metabolism and intermediate cases
between substitutability and com-
plementarity, without involving new
theoretical problems. From [290].

d

dt
N2 = N0ρ2J̇2 − N2k̇2

The steady state frequencies are

N∗
0 =

N

1 + ρ1J̇1/k̇1 + ρ2J̇2/k̇2

N∗
1 =

Nρ1J̇1/k̇1

1 + ρ1J̇1/k̇1 + ρ2J̇2/k̇2

N∗
2 =

Nρ2J̇2/k̇2

1 + ρ1J̇1/k̇1 + ρ2J̇2/k̇2

In Eq (5.1) the term (N − N0)k̇X corresponds with N1k̇1 + N2k̇2, so

k̇X =
N∗

1 k̇1 + N∗
2 k̇2

N − N∗
0

=
ρ1J̇1 + ρ2J̇2

ρ1J̇1/k̇1 + ρ2J̇2/k̇2

k̇−1
X =

ρ1J̇1

ρ1J̇1 + ρ2J̇2

k̇−1
1 +

ρ2J̇2

ρ1J̇1 + ρ2J̇2

k̇−1
2 = θ1k̇

−1
1 + (1 − θ1)k̇

−1
2

We have found formulations of Synthesizing Units that embrace sequential and parallel
processing, as well as substitutable and complementary compounds [64, 67, 297]. Such
theory is essential to understand e.g. why cows can do with much less grass if you give
them some proteins in addition, and co-metabolism. We also developed formulations for the
dynamics of the carriers for the uptake of various substrates by micro-organisms [64, 65].
Such theory is necessary to understand diauxic growth, where one substrate is used first,
before another one is consumed. This theory also comes with an extension of the SU theory
to include uni- and bi-lateral inhibition.
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Figure 5.2: Left: Interaction between the conversions S1 → P and S2 → P , with preference
for the first transformation. θ∗ indicates the fraction of synthesizing units that are bound to
substrates. Right: The standard inhibition scheme, where S2 inhibits the transformation S1 → P .

Derivation of Eq (5.2)
{161}

The derivation of Eq (5.2) from (5.1) is as follows. The equilibrium number of carriers in the
binding phase N∗

0 is found from d
dt

N0 = 0, which leads to (N −N∗
0 )k̇X = N∗

0 (ρ1J̇1 + ρ2J̇2),

and gives N∗
0 = Nk̇X

k̇X+ρ1J̇1+ρ2J̇2
. The fraction of carriers in the binding phase is θ = N∗

0 /N =

k̇X

k̇X+ρ1J̇1+ρ2J̇2
and the number of carriers is here taken to be proportional to the amount of

structure, with proportionality constant n. The assimilation equals the bounded substrate.
Substrate i binds with rate nρiJ̇iθ per unit of structure, so the total specific assimilation

equals jX = nρ1J̇1θ + nρ2J̇2θ = n k̇X(ρ1J̇1+ρ2J̇2)

k̇X+ρ1J̇1+ρ2J̇2
. This directly simplifies to Eq (5.2).

Inhibition and preference
{164}

We here deal with interacting substitutable substrates that are bound in a parallel fash-
ion. Standard inhibition makes part of the SUs unavailable for catalyzing transformations
(Figure 5.2). Stronger forms of interaction can occur if one substrate is able to replace
another that is already bound to an SU (Figure 5.2).

Let jS1
and jS2

be the fluxes of substrate S1 and S2 that arrive at an SU, and ρS1
and

ρS2
be the binding probabilities. The binding kinetics, i.e. the changes in the bounded

fractions of SUs, for scaled fluxes j′S1
= ρS1

jS1
, j′S2

= ρS2
jS2

and 1 = θ· + θS1
+ θS2

are

d

dt
θS2

= j′S2
θ· − (j′S1

+ k̇S2
)θS2

,

d

dt
θS1

= j′S1
(θ· + θS2

) − k̇S1
θS1

,

where k̇S1
and k̇S2

are the dissociation constants of the SU-substrate complexes.

Supply kinetics

For the binding fraction at steady state, the production flux of P equals jP = yPS1
j+
S1

+
yPS2

j+
S2

, while the fluxes of S1 and S2 that are used are

j+
S1

= k̇S1
θ∗S1

=
k̇S1

j′S1

k̇S1
+ j′S1

,
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j+
S2

= k̇S2
θ∗S2

=
k̇S1

k̇S2
j′S2

k̇S2
+ j′S1

+ j′S2

.

Although their derivation has been set up slightly differently, this formulation is used in
[65] to model substrate preference and diauxic growth in microorganisms. The use of genes
coding for substrate-specific carriers is here linked to the use of carriers; the expression of
one gene inhibits the expression of the other. When embedded in a batch culture, the
uptake rate of substrates S1 and S2 by biomass X (of V1-morphs) with reserve density mE

in a batch culture is given by

d

dt
S1 = −jS1

X; jS1
= κS1

jS1mfS1
; fS1

=
S1

S1 + KS1

,

d

dt
S2 = −jS2

X; jS2
= κS2

jS2mfS2
; fS2

=
S2

S2 + KS2

; κS2
= 1 − κS1

,

d

dt
X = ṙX; ṙ =

k̇EmE − k̇M

mE + yEV

,

d

dt
mE = yES1

jS1
+ yES2

jS2
− mE k̇E,

d

dt
κS1

= (ṙ + ḣ)

(

w′
S1

κS1
fS1

w′
S1

κS1
fS1

+ w′
S2

κS2
fS2

− κS1

)

,

where j∗m is the maximum specific uptake flux of substrate ∗, f∗ is the scaled functional
response and K∗ the half-saturation coefficient for substrate ∗. The coefficient yE∗ is the
yield of reserve E on substrate ∗, k̇E the reserve turnover rate, k̇M the maintenance rate
coefficient and ṙ the specific growth rate. The fraction κS1

between 0 and 1 quantifies
the relative gene expression for the carrier of substrate S1 and w′

S1
the inhibition of the

expression of the gene for the carrier of substrate S1 by the expression of the gene for the
carrier of substrate S2; without loss of generality we can assume that 1 = w′

S1
+w′

S2
. Notice

that a single substrate induces full gene expression (κS1
→ 1 if fS2

= 0). The typically
very low background expression rate ḣ serves an antenna function for substrates that have
been absent for a long time. This readily extends to an arbitrary number of substrates.
See Figure 7.19 and [65] for an illustration of the application of this theory.

Demand kinetics

If the flux of P is given (and constant), we require that

jP = yPS1
k̇S1

θS1
+ yPS2

k̇S2
θS2

is constant at value k̇P , say, by allowing k̇S1
and k̇S2

to depend on θ∗. The following rates
fulfill the constraint:

k̇S1
= k̇P /θ and k̇S2

= wk̇P /θ with θ = yPS1
θS1

+ yPS2
wθS2

,

where the preference parameter w = k̇S2
/k̇S1

has the interpretation of the ratio of disso-
ciation rates. For the fractions in steady state, the fluxes of S1 and S2 that are used to
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produce P are

j+
S1

= (k̇P − yPS2
j+
S2

)yS1P and j+
S2

= wk̇P

θ∗S2

θ∗
=

2ak̇P /yPS2

2a + yPS1
(
√

b2 − 4ac − b)
,

with a = wj′S2
k̇P yPS2

, b = yPS1
c + ((1 − w)j′S1

+ j′S2
)k̇P , c = −j′S1

(j′S1
+ j′S2

). Tolla [554]
proposed this model to quantify the preference to pay maintenance (flux jP ) from reserve
(flux jS1

) rather than from structure (flux jS2
). Only under extreme starvation conditions,

when reserve is insufficient, is maintenance met from structure. This is less efficient,
because structure is synthesized from reserve. Since the structure-specific maintenance
cost is constant, this formulation is demand driven, rather than the more typical supply
driven. The DEB model specifies the reserve flux jS1

. Since the turnover of structure
is constant, jS2

is constant. We want to minimize payment of maintenance costs from
structure; the worst case is that jS1

= 0 and all must be paid from structure, which gives
j′S2

= k̇P yS2P . The preference parameter w allows for an absolute preference for reserve for
w → 0, and a preference for structure for w → ∞. Figure 5.2 presents a numerical study
that shows that this model can mimic a switch model, without having a switch.

Another variation on the demand version of (partly) substitutable compounds was
studied by [336], where carbohydrate reserve is preferred above protein reserve for pay-
ing the energy-maintenance in zooplankton, but protein reserve is required to pay the
building-block maintenance. This increase in metabolic flexibility has the consequence
that a nutrient-light-phytoplankton-zooplankton system evolves to a situation in which it
becomes both energy and nutrient limited, rather than a single limitation only.

Co-metabolism {164}
Suppose that substrates A and B are substitutable and are bounded parallelly and that
the binding probability of each substrate depends on binding with the other substrate as
described and applied in [67]. We study the process 1A → yCA C and 1 B → yCB C. So
we have three binding probabilities of each substrate; for substrate A we have the binding
probabilities

0 if A is already bounded

ρA if A and B are not bounded

ρAB if B is bounded, but A is not
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No interaction occurs if ρA = ρAB; full co-metabolism occurs if ρA = 0. See Figure 5.3.
Sequential processing occurs if ρAB = ρBA = 0. The dissociation rates k̇A and k̇B of product
C, and the stoichiometric coefficients yAC and yBC , might differ for both substrates. The
binding period is measured as the period between arrival of substrate and dissociation of
product, so it includes the production period.

For j′A = jAρA, j′′A = jAρAB, j′B = jBρB, j′′B = jBρBA, the fractions of bounded SUs
follow the dynamics

1 = θ·· + θA· + θ·B + θAB

d

dt
θ·· = −(j′A + j′B)θ·· + k̇AθA· + k̇Bθ·B

d

dt
θA· = j′Aθ·· − (k̇A + j′′B)θA· + k̇BθAB

d

dt
θ·B = j′Bθ·· − (k̇B + j′′A)θ·B + k̇AθAB

d

dt
θAB = j′′BθA· + j′′Aθ·B − (k̇A + k̇B)θAB

Assuming pseudo steady state (i.e. d
dt

θ∗∗ = 0 for θ∗∗ = θ∗∗∗), the production flux amounts
to

jC = jC,A + jC,B = yCAk̇A(θ∗A· + θ∗AB) + yCBk̇B(θ∗·B + θ∗AB)

=
yCAk̇A

(

j′Ak̇B + j′′A
j′B(k̇A+k̇B)+j′′B(j′A+j′B)

j′′A+j′′B+k̇A+k̇B

)

+ yCBk̇B

(

j′Bk̇A + j′′B
j′A(k̇A+k̇B)+j′′A(j′A+j′B)

j′′A+j′′B+k̇A+k̇B

)

j′Ak̇B + j′Bk̇A + k̇Ak̇B +
j′′Aj′B k̇B+j′′Bj′Ak̇A+j′′Aj′′B(j′A+j′B)

j′′A+j′′B+k̇A+k̇B

If B represents a xenobiotic substrate, and A a natural one, the case ρA = ρAB and
ρB = 0 is of special interest. The use of A is not effected by B, but B can only be processed
if A is present. The expression for the product flux simplifies for j′A = j′′A and j′B = 0 to

jC =
yCAk̇A

1 + k̇Aj′−1
A

+
yCBk̇B

1 + k̇Aj′−1
A

j′′B(j′A + k̇A + k̇B)

j′′B(j′A + k̇B) + k̇B(j′A + k̇A + k̇B)

The accepted flux of substrate B, so the specific biodegradation rate of B, is j+
B = yBCjC,B

with yBC = y−1
CB, and jC,B is given by the second term in the expression for jC . We need

this scheme for co-metabolism to describe e.g. that the conversion of grass to cow and of
sheep brain to cow is much less efficient than of the combination.

Derivation of Eq (5.7)
{165}

Eq (5.7) first gives the simple product flux for an SU that is processing single substrate
(namely a photon-flux). It then gives an approximation jL2,A ≃ −zL2

jL,F that is motivated
by the reasoning that the maximum photosynthesis is dominated by the maximum of the
next step, namely the photon-flux jL1,Am. The numerical effect of jL2,Am can only be felt
if its value is small relative to jL1,Am; so the approximation is motivated to reduce the
number of parameters.
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Derivation of Eq (5.10)
{166}

Eq (5.10), and the eq just above this one, has a term (1+z−1
C ) to give the parameter jCh,Am

the interpretation of the maximum specific assimilation flux of carbohydrates. This can be
seen by letting the substrate fluxes jC,A (CO2-flux) and jL,F (photon-flux) go to infinity.
(For XC → ∞ we have fC → 1.) Since jCH ,Am as well as (1 + z−1

C ) are just numbers,
their product is also just a number. The advantage of this notation is that we can now
write for the carbohydrate assimilation jCH ,A = fCH

jCH ,Am, where 0 ≤ fCH
< 1 is a scaled

functional response.

Photosynthesis & photorespiration
{167}

Figure 5.4 illustrates the scheme of photo-synthesis and photo respiration.

Behaviour {168}
SU dynamics is build on the conservation of time, where an SU can be either in the binding
or in the handling phase. Applications in feeding, especially of animals, frequently require
more than two states of the SU.
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Social interaction [330]

Especially among animals at the demand end of the supply-demand spectrum can be seen
as an association between two individuals that dissociates without transformation; the
effect on the feeding rate is via loss of time that depends in a particular way on the
population density; the process is formally equivalent to an inhibition process of a special
type. Figure 5.5 shows schemes for the cases that socialization can be initiated during food
processing (parallel case) or can not (sequential case), while searching for food cannot be
initiated during socialization. Socialization can be intra- and/or inter-specific.

For species Y that interacts intra-specifically only and feeds on food X, the possible
“binding” fractions are 1 = θ·· + θX· + θ·Y + θXY . The changes in the “binding” fractions
for the parallel case are

d

dt
θ·· = k̇XθX· + k̇Y θ·Y − (ḃXX + ḃY Y )θ··,

d

dt
θX· = ḃXXθ·· + k̇Y θXY − ḃY Y θX·,

d

dt
θ·Y = ḃY Y θ·· + k̇XθXY − ḃXXθ·Y ,

where ḃ∗ are the affinities and k̇∗ dissociation rates. For the sequential case, we exclude all
double binding.

The scaled functional response equals f = θ∗· x with

θ∗· = (1 + x + y)−1 sequential case

=

(

1 + x + y +
xy

1 + w′ + w′y

)−1

parallel case

where scaled food density x = X/KX and scaled population density y = Y/KY are scaled
with saturation constants KX = k̇X/ḃX and KY = k̇Y /ḃY , i.e. ratios of the dissociation
rates and the affinities. The socialization parameter w′ = k̇X/k̇Y is the ratio of the disso-
ciation rates for food and social interaction and plays the role of an inhibition parameter.

If food X is supplied to a population of socially interacting consumers Y in a chemostat
run at throughput rate ḣ, the changes in food and population densities are given by

d

dt
X = ḣ(Xr − X) − fjXmY, (5.1)

d

dt
Y = (ṙ − ḣ)Y, (5.2)

with specific growth rate ṙ = k̇Ef−k̇Mg
f+g

, where k̇M is the maintenance rate coefficient, k̇E the

reserve turnover rate and g the energy investment ratio. At steady state we have ḣ = ṙ.
Figure 5.6 illustrates the effects of socialization in a single-species situation. After fin-

ishing a food-processing session, a sequentially interacting individual starts food searching,
but one interacting in parallel first has to complete any social interaction that started dur-
ing food processing. If social interaction is parallel, it can always be initiated; if sequential,
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Figure 5.6: No socialization (0), and sequential (s) and parallel (p) socialization in a single-species
population in a chemostat. Parameter values: substrate concentration in the feed Xr = 10
mM, maximum specific substrate uptake rate jXm = 1 h−1, energy investment ratio g = 1,
maintenance rate coefficient k̇M = 0.002, reserve turnover rate k̇E = 0.2 h−1, half-saturation
coefficients Kx = 0.1 mM and Ky = 0.1 mM, socialization w′ = 0.01. The latter parameter only
occurs in the parallel case.

it can only be initiated during searching. This explains the substantial difference between
both models; sequential socialization has relatively little impact because low growth rates
accompany low densities (because of maintenance), and so rare social encounters, whereas
high growth rates accompany high food levels, so most time is spend on food processing and
not on social interaction. The models are more similar for higher values of K and/or w′.
While the sequential model is well known [30, 103], the parallel model is here formulated
for the first time.

Sleeping [330]

The neuronal system is, sensitive to ROS, and requires sleep for repair [519, 520]. Since the
required sleeping time tends to be proportional to the specific respiration rate, large-bodied
individuals have more time to search for food, which partly compensates the disadvantage
that the require minimum higher food levels, with consequences for intra- and inter-specific
competition. The size-dependent time allocation to sleeping gives, in principle, deviations
from the standard DEB model, but it a way that will be difficult to detect empirically.

The link between ageing, sleeping and energetics is via the respiration rate (which is
fully specified by DEB theory) and the time-budget.

κ in V1-morphs
{168}

Section 5.2 on several reserves is primarily intended for V1-morphs with bacteria and
“algae” in mind. For this reason, little attention is given to the κ-rule for allocation to
reproduction, and its implications. Its explicit inclusion would involve a set of rules for
the buffers of reserves that are allocated to reproduction, a specification of the reserves at
hatching and a more elaborate set of rules for excretion and feed back of unused reserves.



98 5. Multivariate DEB models

Maintenance and excretion{170}
For a k-reserve system, we have 2k maintenance parameters: jEiM and jV Mi

for i =
1, ., k, where jV Mi

≥ yV Ei
jEiM . The actual fluxes of reserve and structure allocated to

maintenance are jM
Ei

and jMi
V , respectively, and might vary in time, where jM

Ei
≤ jEiM and

jV Mi
≤ jV Mi

. See the section on “Maintenance from reserve and structure” of chapter 7.
If no structure is used to pay (somatic) maintenance costs the specific gross growth rate

jV G equals the specific net growth rate ṙ, but if (some) maintenance is paid from structure
at rate jM

V <
∑

i jV Mi
, then the growth rates relate to each other as ṙ = jV G − jM

V and the
specific rejected flux Eq (5.16) becomes

jEiR = (k̇Ei
− ṙ)mEi

− jM
Ei

− yEiV (ṙ + jM
V )

where jM
Ei

< jEiM is the specific flux of reserve i spend on somatic maintenance. The
decision to allocate structure to maintenance is made for each reserve separately, so jM

V =
∑

i j
Mi
V .
The dilution by growth is controlled by the specific net growth rate, so jEiC = (k̇E −

ṙ)mEi
, and the balance equation for the reserve density Eq (5.17) becomes

d

dt
mEi

= jEiA − jEiC + κEi
jEiR

Organs, tumours & flocs
{177}

We have extended the theory for organs and tumours [349, 345]. Later work revealed that
the model for tumour growth is the workload model for allocation that is discussed below.
The growth of microbial flocs and tumours have similarities and is further discussed in
[66, 349]. The host-tumour interactions allow us to understand why particular tumors
continue to grow, while others don’t, and why tumours in young individuals grow faster
than in older ones. The growth-trajectory of tumours depends very much on parameter
values. Caloric restriction reduces tumour growth, but the effect of it fades eventually.

Static generalization of the κ-rule: heart
{179}

Suppose that we decompose structural volume V in that of some organ (e.g. the heart) VH

and of the rest VR, so V = VR + VH , and generalize the κ rule as

κκH ṗC = [EGH ]
d

dt
VH + [ṗMH ]VH

κ(1 − κH)ṗC = [EG]
d

dt
VR + [ṗM ]VR(1 + LhV

−1/3
R )

ṗC =
g[E]

g + [E]/[Em]

(

v̇V
2/3
R + k̇MVR(1 + LhV

−1/3
R )

)

Suppose that [E] = f [Em] is constant. Substituting

κ[ṗC ]

[EG]
= k̇C(V ) =

f

f + g

(

v̇

V 1/3
+ k̇M

(

1 +
Lh

V 1/3

))
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gives for eH = [EG]/[EGH ] and k̇MH = [ṗMH ]/[EGH ]

d

dt
VH = eHκH k̇CVR − k̇MHVH

d

dt
VR = (1 − κH)k̇CVR − k̇MVR(1 + LhV

−1/3
R )

This dynamics still has full isomorphy as special case, and can show near-allometric
relationships between organ and whole body weight. See Figure 5.7.

Dynamic generalization of the κ-rule: Velum vs Gut
{179}

The differential growth of velum and gut in bivalve larvae turns out to be described well
by a work-load model [453], see Figure 5.8; in retrospection the tumour growth model is a
workload model as well (see below).

We assume that the filtering rate is fully controlled by the size of filtering organ (velum)
of volume VF , and the digestion by the food-processing organ (gut) of volume VX . The
total structural volume thus amounts to V = VF + VX + VG, where VG is the general, i.e.
non-assimilatory part of the body.

Isomorphs are organisms that do not change in shape during growth. Isomorphy implies
that VF = θF V , for constant fraction θF , while Ḟ = {Ḟ}(VF /θF )2/3, where {Ḟ} does not
depend on the size of structure. The same applies for VX , and J̇X = {J̇X}(VX/θX)2/3. This
couples organ size and function.

The arrival rate of food particles in density X at the individual that filters at rate Ḟ
equals ḞX. We assume a parsimonious design, so the filtering rate is such that ḞX = J̇X

and the amount of rejected particles is negligibly small. This makes that the filtering rate
equals Ḟ = (Ḟ−1

m + XJ̇−1
Xm)−1, and half-saturation constant equals

K =
J̇Xm

Ḟm

=
{J̇Xm}
{Ḟm}

(

VX/θX

VF /θF

)2/3

=
{J̇ ′

Xm}
{Ḟ ′

m}

(

VX

VF

)2/3

= K ′
(

VX

VF

)2/3

with {J̇ ′
Xm} = {J̇Xm}θ−2/3

X and {Ḟ ′
m} = {Ḟm}θ−2/3

F and K ′ = {J̇ ′
Xm}/{Ḟ ′

m}. The feeding

rate amounts to J̇X = f{J̇ ′
Xm}V

2/3
X with scaled functional response f = X

K+X
.

Notice that this expression for the half-saturation constant is identical with that for
nutrient uptake by plant roots [289, p153], where this uptake depends on the transport of
water in the soil, and so on the evaporation by the shoot, thus on the surface area of the
shoot. This resemblance of saturation constants is more than superficial if we look beyond
morphology to functions of organs, where shoot and velum or root and gut have functional
properties in common.

According to the DEB theory, the assimilation and catabolic powers are, for reserve
density [E] = E/V , given by

ṗA = µEAJ̇X = f{ṗ′Am}V
2/3
X

ṗC = [E](v̇V 2/3 − d

dt
V )
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Figure 5.7: Whole body weight and heart weigth as function of time since birth in duck species.
Data from [161]. The static generalisation of the κ-rule can capture the recreasing relative size
of the heart.
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Figure 5.8: Macoma larvae develop
a large velum and a small gut at low
food levels (left), and the other way
around at high food levels (right).

with {ṗ′Am} = µEA{J̇ ′
Xm} and energy conductance v̇ = {ṗAm}/[Em], where {ṗAm} =

µEA{J̇Xm} and [Em] is the reserve density capacity. Reserve dynamics is given by d
dt

E =
ṗA − ṗC , or for scaled reserve density e = [E]/[Em]

d

dt
e = fv̇′V

2/3
X /V − ev̇V −1/3

with energy conductance v̇′ = {ṗ′Am}/[Em]
The workload of the filtering and digestion organs can be defined as

fF = Ḟ /Ḟm = 1 − fX and fX = J̇X/J̇Xm = f

We further make the observations that

d

dVF

J̇X =
2

3
J̇X

1 − f

VF

and
d

dVX

J̇X =
2

3
J̇X

f

VX

Allocation

So far, this is all standard DEB theory; we just introduced some notation that prepares
for differentiated growth of organs. This can be done naturally within the framework of
the DEB theory by a generalization of the κ-rule, see [289]. Assuming that the costs of
structure and its somatic maintenance are independent of the type of structure, the κ-rule
can be generalized for κF = 1 − κX as

κκAκF ṗC = [EG]
d

dt
VF + [ṗM ]VF

κκAκX ṗC = [EG]
d

dt
VX + [ṗM ]VX

κ(1 − κA)ṗC = [EG]
d

dt
VG + [ṗM ]VG

where κA is the fraction of the catabolic power that is allocated to the assimilation ma-
chinery, i.e. to VA = VF + VX and 1 − κ to maturity maintenance plus maturation (or
reproduction in adults). Summing these three equations gives

κṗC = [EG]
d

dt
V + [ṗM ]V = κ[E](v̇V 2/3 − d

dt
V ) (see former section), so

d

dt
V =

v̇eV 2/3 − k̇MgV

e + g
and

κṗC

[EG]
=

e

e + g
(v̇V 2/3 + k̇MV )
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with maintenance rate coefficient k̇M = [ṗM ]/[EG] and investment ratio g = [EG]/κ[Em].
Using the catabolic power we just obtained and dividing by [EG] we arrive at

d

dt
VF = κAκF

e

e + g
(v̇V 2/3 + k̇MV ) − k̇MVF

d

dt
VX = κAκX

e

e + g
(v̇V 2/3 + k̇MV ) − k̇MVX

d

dt
VG = (1 − κA)

e

e + g
(v̇V 2/3 + k̇MV ) − k̇MVG

Together with given volumes at birth, VFb, VXb and VGb, and the expression for d
dt

e we
already obtained, these equations fully determine growth of body parts. As long as the
fractions κ are constant, this is still the standard DEB model if VFb = κAκF Vb and VXb =
κAκXVb, which makes that VF = κAκF V and VX = κAκXV at any time, so θF = κAκF and
θX = κAκX .

We now deviate from this standard by allowing that κF (and so κX = 1 − κF ) is not
longer constant, but can vary in time, depending on the feeding conditions (where food
density X varies in time); fractions κA and κ are kept constant and the parameters with
primes as well. Moreover we assume that the coupling between organ size and function
does not change with the relative size of the organ.

We will study two models for allocation of reserve to organs:

workload model: κF = fF

efficiency model: κF =
d

dVF

J̇X

(

d

dVF

J̇X +
d

dVX

J̇X

)−1

=
(

1 +
VF

VX

X

K

)−1

and compare their numerical behaviour with the standard DEB model.

Model properties

Numerical studies of the body parts as functions of age require the specification of food
density X(t), modified saturation constant K ′, energy conductance v̇, modified energy
conductance v̇′, allocation fraction κA, investment ratio g and maintenance rate coefficient
k̇M . Moreover we need to specify the situation at birth for the structures VF , VX and VG,
and the scaled reserve density e. In this section we analyze some properties of the models
at constant food density.

If VGb = (1 − κA)Vb, the relative general structure will not change in time. Further if

eb = fb
v̇′

v̇

(

VXb

Vb

)2/3
, with fb = X

Kb+X
and Kb = K ′

(

VXb

VFb

)2/3
, the scaled reserve density e(t)

will not change in time for the standard DEB model. The choice v̇′ = v̇κ
−2/3
A seems natural

because it scales the scaled reserve density between 0 and 1.
Weak homeostasis still applies if the relative sizes of the organs become constant, which

is well before growth ceases; although relative growth is not a first order process, the time
constant k̇−1

M quantifies the rate at which relative growth ceases. The scaled reserve density
is no longer confined to the interval (0,1) for arbitrary choices of v̇′, also not for the standard
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DEB model, because we now link uptake to the size of an organ, rather to that of the whole
body. The steady state value is e∗ = f ∗ (κAκ∗

X)2/3 v̇′/v̇ and the asymptotic total structural

volume is V ∗ = V∞ =
(

e∗v̇
gk̇M

)3
.

The assimilatory machinery is a fixed fraction of the total structure for all models. The
steady state relative volumes of VF and VX and their ratio equals

V ∗
F

V ∗
= κAκ∗

F ;
V ∗

X

V ∗
= κAκ∗

X ;
V ∗

F

V ∗
X

=
κ∗

F

κ∗
X

We obtain the following results at steady state for eA = κ
2/3
A v̇′/v̇

quantity workload efficiency

half-saturation constant K∗ K ′3/5X2/5 K ′1/2X1/2

functional response f ∗ (1 + (K ′/X)3/5)−1 (1 + (K ′/X)1/2)−1

partition fraction κ∗
X f ∗

(

1 + (K ′/X)3/4
)−1

scaled reserve density e∗ f ∗5/3eA f ∗κ
∗2/3
X eA

These functional responses are special cases of what is known as Hill’s functional re-
sponse f(X) = (1 + (K/X)n)−1; this model has an origin in biochemistry [198], and its
application in ecology was empirical only.

Both the workload and efficiency models usually show enhanced growth, compared to
the standard DEB model, both at low and high food densities. This is revealed by the
steady state value of the scaled reserve density; the ultimate (total) volumetric length is
proportional to this quantity, see Figure 5.9. The steady state relative size of the filtering
organ decreases with the food density more steeply in the efficiency model, compared to the
workload model. There are parameter combinations for which the standard DEB model
shows more growth than the efficiency model, but the workload model always showed most
growth, apart from a short initial period for some parameter combinations. Allocation
proportional to relative maintenance workload was also found to be realistic for tumour
growth [349], in relation to the state of the host and effects of caloric restriction. Moreover
the workload model links up better with the adaptation model [65] that was found to be
adequate to capture diauxic growth of micro-organisms. This model for the regulation
of the relative abundance of carriers for the uptake of various substrates also uses the
workload of the carriers as key for the production of the various substrate-specific carriers.

The conclusion is that the workload model allows for an adequate adaptive behaviour
of the morphology to the current food situation. This extension of the standard DEB
model ‘costs’ two extra parameters, VFb and VXb, given the restrictions that are mentioned
in this section. (The standard DEB model requires the specification of Vb; together with
VFb and VXb this specifies VGb, and we choose κA = 1 − VGb/Vb. There is little need to
quantify VF and VX explicitly in the standard DEB model, but if we want to do this, we
will need VFb and VXb as well, so that our extension to variable organ size is then without
new parameters.) This extension seems to be most effective in terms of the number of
extra parameters that are required. Moreover it gives a mechanistic explanation of Hill’s
functional response with the important restriction that our Hill’s functional response only
applies to steady state uptake, after morphological adaptations are completed. The organ
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Figure 5.9: The scaled reserve density e∗ (left), and the relative size of the velum V ∗
F /V ∗ (right) as

a function of the scaled food density X/K ′ at steady state. Three models are shown: the standard
DEB, the workload and the efficiency model. The ultimate volumetric length is proportional to

the scaled reserve density. Parameter values: ratio of energy conductances v̇′/v̇ = κ
−2/3
A , and

allocation to assimilation machinery κA = 0.4.

sizes will generally deviate substantially from the allometry relationship with total body
size during growth.

State of plants
{180}, l2
below ta-
ble

The sentence “structure, and three reserves for root and shoot” is meant to mean that
both root and shoot have a structure and three reserves, which makes 8 state variables in
total.

Comparison of interactions
{182}

Figure 5.10 compares the various form of interaction between autotrophic and heterotrophic
(sub)systems to illustrate the gradual transition between symbiontic and non-symbiontic
systems.
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Figure 5.10: The upper-left diagram shows fluxes as appropriate for a reproducing heterotroph∗,
such as many animals. A simplification is possible for dividing heterotrophs, which remain in the
juvenile phase, by combining allocations to somatic and maturity maintenance, and to somatic and
maturity growth (second diagram). An extension is required to cope with simultaneous limitation
of substrate, which involves excretion (third diagram). Autotrophs require three reserves (a
generalized, carbon and nitrogen one; fourth diagram). Symbiontic partners (e.g. in coral, lower
left diagram) link excretion fluxes, while plants have extra translocation processes between root
and shoot. From [290].
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Chapter 6

Uptake and effects of non-essential
compounds

1,1-compartment model [318]
{191}

We here derive why and how uptake and elimination parameters covary for the different
chemicals, with direct consequences for how toxicity parameters (nec and killing rate)
covary. We also show how variations on the one-compartment model translate in variations
in these scaling relationships. The type of reasoning has similarities with the body size
scaling relationships; like the partition coefficient, the ultimate length of isomorphs is a
ratio of two rates.

We think of a cylinder filled with two homogeneous media that do not mix, and a
compound that can move freely from one medium to another across the interface with
surface area S. The total number of molecules of the compound is taken to be constant,
contrary to a 1-compartment model where the concentration on the environment of the
compartment is taken to be constant or a specified forcing function of time. Ni molecules
are in medium i of constant volume Vi, with i = 0, 1, so the concentration is ci = Ni/Vi.
We introduce a one-dimensional spatial axis, perpendicular on the plane of the interface
between the two media, and do not correct for a possible curvature of this interface; the
depth of medium i is Li = Vi/S. The standard 1,1-compartment model amounts for
j = 1 − i to

d

dt
ci = L−1

i (vjicj − vijci) or
d

dt
Ni = kjiNj − kijNi (6.1)

where vij is the exchange velocity (i.e. a mass transfer coefficient) and kij = vij/Li the

exchange rate of the compound. At equilibrium we have that ci

cj
= vji

vij
= Lj

Li

kji

kij
= Pij,

where Pij is called the partition coefficient.
To simplify the notation, we write x for the partition coefficient P01, choose L0 = L1

and try to find how the elimination rate depends on x. Let us say that the elimination
rate k01 is some function f of x, i.e. k01 ∝ f(x), which we want to know. We solve the
problem in two steps.

We first demonstrate that the partition coefficient can be written as a quotient of
two similar terms, one depending only on i, and the other only on j. For this purpose we
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suppose that an extremely thin slice separates two media; the compound can cross the slice
freely. The assumption of well-mixed compartments, which is basic to one-compartment
models, excludes any concentration gradients. If M denotes the number of molecules in
the slice, we get

d

dt
Ni = hiM − kiNi (6.2)

d

dt
M = kiNi + kjNj − h+M (6.3)

where the hazard rate hi quantifies the specific escape rate from the slice to medium i,
while h+ = hi + hj. On each side of the slice, the compound cannot ‘feel’ the presence
of the other medium; only in the slice can the compound ‘sense’ both media, ki does not
depend on any property of medium j. We have that M is very small with respect to the
total amount of molecules, implying that hi ≫ ki and that the dynamics of M is fast with
respect to that of Ni.

Suppose that M is in pseudo-equilibrium, so M∗ = kiNi/h+ + kjNj/h+. Substitution
of this result in (6.2) gives

d

dt
Ni = Njkjhi/h+ − Nikihj/h+ (6.4)

From (6.1) it follows that kij = kihj/h+. The exchange rate, therefor, depends on the

properties of medium i and j. The partition coefficient is Pij = Lj

Li

kj

ki

hi

hj
= gi

gj
, with

gi = hik
−1
i L−1

i . The partition coefficient can thus indeed be written as a ratio of two
similar terms, each depending on a single medium only. The term gi is the value of some
function of properties of the compound and medium i that we could quantify with a variable
yi, for instance, while gj is the value of that same function, but now applied to medium
j rather than i. If the elimination rate can be written as kij ∝ f ′(yi)/f

′(yj), we have the
condition f(x) = 1/f(1/x). This means that the unknown function f belongs to the class
of the power functions: f(x) = xα, for some arbitrary value of the coefficient α (at this
moment in our reasoning).

The second step in our derivation is the use of the skew-symmetry argument, which
boils down to interchanging media. We know that the uptake rate k10 = f(1/x), so we have

that f(1/x)
f(x)

= x. This condition allows for a large class of functions, but in combination with

our previous condition f(1/x) = 1/f(x), it leads to a unique solution, namely f(x)−2 = x
or f(x) = x−1/2.

The final result is that

kij ∝ vij ∝ 1/
√

Pij and kji ∝ vji ∝
√

Pij

which relates rate parameters to a steady state. The argument for these relationships are
all basic to the one-compartment model, apart from the assumption that the rates can
be written as a function of the partition coefficient, which is by no means self evident.
Notice that the temperature, mixing rates, molecular size of the compound, surface area
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Figure 6.1: The 10log nec (left), killing rate (middle) and elimination rate (right) of alkyl
benzenes (top) and benzenes, alifatic compounds and phenols (bottom) as a function of the 10log
octanol/water partition coefficient. The slopes of the lines, i.e. −1, 1 and −0.5, respectively, follow
from simple theoretical considerations. The data in the top panels are from the 4d bio-assays on
survival of the fathead minnow, as presented in [158]. The partition coefficients were obtained
from [483] or calculated according to [479]. The data in the bottom panels are from [368] (necs,
killing rates), [190] (elimination rates). The toxicity data originate from [73, 157, 74, 71, 72], as
reported in [159].

of exchange, and other modifying factors affects the proportionality constants of the rates,
not how they depend on the partition coefficient.

If medium 0 represents some organism, and medium 1 the aquatic environment in
which the concentration is constant at level c1, the model reduces to 1,0-compartment
model, better known as the 1-compartment model

c0(t) = c0(0) exp{−k01t} + c1P01 (1 − exp{−k01t})
= c0(0) exp{−k01t} for c1 = 0

= c1P01 (1 − exp{−k01t}) for c0(0) = 0

The rate k01 now has the interpretation of the elimination rate. The time we have to
wait to saturate the tissue of a blanc organism to a fraction x of the ultimate level is
tx = −k−1

01 ln(1 − x). It is independent of the concentration in the environment and of
the uptake rate, and equals the time required to reach a fraction 1 − x of the original
concentration in the tissue if an exposed organism experiences a blanc environment. We
mention these trivialities in preparation of further discussions.

Figure 6.1 presents tests against the empirical evidence of the relationship between
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Figure 6.2: The log nec as a function of the log
killing rate for aldehydes, alifates and biocides.
Data from [159]. The slope is -1, as resulting
from theoretical predictions.

killing rate, elimination rate and nec with the partition coefficient, and Figure 6.2 does
so for the relationship between the killing rate and the nec. The latter test avoids the
uncertainties involved in the relationships with the partition coefficient and is, therefore,
more direct. lc50 values at a fixed exposure time are functions of the toxicity parameter,
and so covary in predictable ways among chemicals with a related physiological mode of
action, see Figure 6.3.

The one compartment model is obviously a very simple one, in which both media are
well mixed. We will now study an extension of the model, in which the media are no longer
well-mixed.

Film models{195}
Film models are widely used in environmental chemistry. They are popular because they
account for spatial structure of transport in a very simple, yet appealing way, but they
suffer from the problem that the films, i.e. the non-mixed layers, can typically not be
identified in a direct way. This complicates the link between model predictions and data,
as discussed in [318].

Suppose that the media are now separated by rather thin layers of thickness Li, see
Figure 6.4. We will use the notation that the depth of the layer L = 0 at the mixed bulk
for both media, and L = Li at the interface. The volume between lengths La and Lb is
given V (La, Lb) = (Lb − La)S, in both media. The density n of the compound in layer i
relates to the number of molecules as Ni(La, Lb, t) =

∫ Lb
La

ni(L, t) dL; we have concentration
ci(La, Lb, t) = Ni(La, Lb, t)/V (La, Lb). If the bulk has depth Li, there are Ni = ni(0)Li

molecules in the bulk, which makes that the total amount of molecules in medium i is
N+

i = ni(0)Li + Ni(0, Li). The volume of the well-mixed medium is Vi = LiS, and of
the total medium is V +

i = (Li + Li)S, so the (mean) concentration is c+
i = N+

i /V +
i . The

concentration in the bulk is ci = ci(0) = ni(0)/S. We need this notation to compare the
different models that we will discuss.

Assuming that the initial densities ni(L, 0) are given such that the boundary conditions
in (6.7), the dynamics for the densities is given for i = 1−j by partial differential equations
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Figure 6.3: lc50.14 d of chlorinated aromatics for guppies as a function of Pow. Data from [242].
Curves for other exposure times are for comparison and follow from the three parameters: nec
(c0), killing rate (b) and elimination rate (ke).

par c0 b ke

units µM d−1µM−1 d−1

Left 5/Pow 3.413 10−7Pow 45.03/
√

Pow

Right 1.5 105/Pow 8.21 10−6Pow 30.17/
√

Pow

The lc50 data give little information about the nec’s (c0). The relationships demonstrate that
the extrapolation to other exposure times is very sensitive to this.

(pde’s)

0 =
∂

∂t
ni(L, t) − di

∂2

∂L2
ni(L, t) for L ∈ (0, Li) (6.5)

with boundary conditions at L = 0 for vi = di/Li

0 =
∂

∂t
ni(0, t) − vi

∂

∂L
ni(0, t) (6.6)

and boundary conditions at L = Li

0 = vjinj(Lj, t) − vijni(Li, t) + di
∂

∂L
ni(Li, t) (6.7)

The latter boundary conditions are believed to be new, despite the popularity of the film-
models.

For increasing diffusivity’s di, and/or decreasing thickness of the non-mixed layers Li,
this two-film model reduces to the 1,1-compartment model of the last section (to be dis-
cussed in the following sections). So it is an extension of the same idea that accounts for
lack of mixing in the boundary area.

This model has rather complex properties, so we will study simplifications of it.
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1,1 2,2 3,3 ∞,∞

Figure 6.4: The sequence of physical systems that we study in this paper, called n,n-
compartments. The medium 0 is confined to the upper compartment in the cylinder, medium 1 to
the lower one; they cannot cross the thin line that separates them, while the compound can but
with possibly different concentration-specific rates. The compound can also cross the very thin
lines within the media, but with the same specific rates. Starting from the simplest situation at
the left, n = 1, the system converges for n = 2, 3, · · · to the two-film system at the right in which
we have continuous concentration gradients in the layers on each side of the interface between
the media.

Steady-flux approximation

Suppose now that transport in the films is steady, i.e. the density profiles do not change
in time, so ∂

∂t
ni(L, t) = 0. Suppressing argument t, we then have according to (6.5) that

0 =
d2

dL2
ni(L) for L ∈ (0, Li)

The density profiles in the films are thus linear:

d

dL
ni(L) = (ni(Li) − ni(0)) /Li

The mass balance across the bi-film gives Li
d
dt

ni(0) = −Lj
d
dt

nj(0), which leads via (6.6) to
(nj(Lj) − nj(0))vj = −(ni(Li) − ni(0))vi. Substitution of this result in (6.7) gives ni(Li)
as a weighted sum of ni(0) and nj(0). Back-substitution in (6.6) finally leads to the first
order kinetics for the bulk densities d

dt
ni(0) = ke(Pijnj(0) − ni(0)) with elimination rate

ke = ki(1 + Pijvi/vj − vi/vij)
−1

for vivj < vijvj + vjivi. The restriction of this approximation is that the change in bulk
densities ni is sufficiently small to allow the transport flux in the bi-film to be steady
and that transport within the film is strictly limiting; this is not necessarily true. If the
transport within the bi-film is very slow, relative to the exchange velocities across the
interface, vivj ≪ vijvj + vjivi, the elimination rate simplifies to ke ≃ ki(1 + Pijvi/vj)

−1,



113

-4

-2

0

2

4

6

8

-4 -2 0 2 4 6
-4

-2

0

2

4

6

8

-4 -2 0 2 4 6
-4

-2

0

2

4

6

8

-4 -2 0 2 4 6
-4

-2

0

2

4

6

8

-4 -2 0 2 4 6
-4

-2

0

2

4

6

8

-4 -2 0 2 4 6

10 log Pow

1
0
lo

g
t x

Figure 6.5: A log-log plot of the time to reach
an x-level saturation in the tissues of an or-
ganism exposed in an environment with a con-
stant concentration of a compound in a two-
film model, using the steady-flux approximation.
The curves correspond with different values of
the velocity v1; the upper curve has the lowest
velocity. Parameters: v0 = 1, v1 = .001, .01,

.1, 1, 3.6 mm h−1. v01 = P
−1/2
ow , v10 = P

1/2
ow ,

k0 = 10 h−1, x = 0.1. Notice that the v1 = 3.6
mm h−1 is close its maximum value in this pa-
rameter combination to ensure positive elimi-
nation rates; the steady-flux approximation is
probably very poor in this situation.

while ni(Li) ≃ Pijnj(Lj). Boundary condition (6.7) shows that this can only be a crude
approximation indeed, because a gradient is required to drive diffusive transport, and the
concentration jump across the interface only equals the partition coefficient in absence of
a gradient in the films.

The time we have to wait to saturate the tissue of a blanc organism to a fraction x of
the ultimate level is tx = −k−1

e ln(1 − x). Figure 6.5 illustrates how this time relates to
the Pow. We see that the elimination rate ke is now a hyperbolic function of the partition
coefficient. This result is reported by Schwarzenbach et al [512] for air-water exchange,
by Flynn and Yalkowsky [147] for artificial membranes, and by Gobas and Opperhuizen
[165] for fish. For low Pow values, the elimination rate hardly depends on the Pow and for
large values it is inversely proportional to Pow. As a consequence, the opposite holds for
the uptake rate. The result of Thomann [549] is largely consistent with this relationship, if
applied to the proper range of Pow values. Notice that this reasoning does not make use of
the considerations for how the exchange rates kij depend on Pij as presented in the earlier
section; this is because they do not occur independently in this steady-state flux model,
but only in combination as a ratio in the form of Pij.

The steady-flux approximation of two-film model has a one-film model as special case,
where e.g. Lj → 0 or vj → ∞. The elimination rates then reduces to ke = ki(1− vi/vij)

−1,

and we must have that vi < vij. Since vij ∝ 1/
√

Pij, this approximation is only valid in a
limited range of Pij values, depending on the value of vi.

This illustrates a serious problem with this steady-flux approximation: contrary to
the full pde formulation, we cannot reduce this approximation in a smooth way to the
well-mixed special case of a one-compartment model. If we would increase the diffusivi-
ties di and/or reduce the thickness of the non-mixed layers Li, we are forced to increase
the exchange rates kij as well to ensure that the transport in the layers is still in pseudo
steady-state. In other words: the dynamics of the system disappear, and the whole system
equilibrates instantaneously. We will see k01 and k10 will occur independently in other
approximations of the two-film pde model that do not suffer from this problem. This
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approximation is popular in situations where the bulk volumes are infinitely large and
represent the ocean and the atmosphere, for instance. It than becomes a reasonable as-
sumption to take a constant flux from one medium into the other, without changes in the
bulk concentrations. This application is quite different from that in toxico-kinetics, where
one medium represents a initially blanc fish, and the other an aquarium with a compound,
and we study the toxico-kinetics and effects in transient states.

2,2- and 2-compartment approximations

In this approximation we assume that the layers adjacent to the interface are well-mixed
and write Ni1 for the amount in the boundary layer of medium i, and Ni for the amount
in the bulk of medium i (see Figure 6.4). The volume of the layer is Vi1 and of the bulk Vi,
which makes that the concentration in the layer is ci1 = Ni1/Vi1 and in the bulk ci = Ni/Vi.
The total amount in medium i is N+

i = Ni + Ni1, the total volume is V +
i = Vi + Vi1, and

the total (mean) concentration c+
i = N+

i /V +
i . The set of pde’s is now approximated by

the linear ordinary differential equations (ode’s) for ki = vi/Li and li = LiL−1
i

d

dt
c = kc with c =











c0

c01

c10

c1











and k =











−k0l0 k0l0 0 0
k0 −k0 − k01 k10 0
0 k01 −k1 − k10 k1

0 0 k1l1 −k1l1











This linear system can be integrated explicitly, with solution c(t) = exp{kt}c(0).
For large k0, the model for N+

0 reduces to the one-compartment model, just as the pde
model, for which this model is an approximation. The link between this 2,2-compartment
model and the two-film pde model is discussed in the next subsection.

In order to compare this model with the one compartment one, we again study the
time tx we have to wait saturate the tissue of a blanc organism to a fraction x of the
ultimate level. This study has to be done numerically, and Figure 6.6 summarizes the
results. The small rate dominates the waiting time; for large Pow, this is the elimination
rate; the diffusivity does not depend systematically on Pow. The figure shows that the
second film acts as an extra resistance, which becomes stronger for increasing Pow. While
the one-film model has slope 0.5 in the linear sections, the slope is 1 for the two-film model
at low diffusivities, and 0.5 for large ones. For low diffusivities, the relationship is similar
to the one we found for the steady-flux approximation (i.e. hyperbolic). The results for
the two-film model clearly show that we can smoothly go from a hyperbolic relationship
(transport dominated by diffusion in the film) to a square-root relationship (transport
dominated by exchange across the interface), by changing the parameters of the system.

n,n-compartment approximations

We can partition the single mixed-layers of the 2,2-compartment model into 2, 3, · · · , n
layers. We write Vij = LijS for the volume, and Lij for the depth of sublayer j in medium
i, with j = 1, 2, . . . , n. For the sake of notational simplicity, we here take the numbers of
sub-layers equal in both media and choose all sub-layers in each medium of equal depth,
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Figure 6.6: A log-log plot of the time to reach an x-level saturation in the tissues of an organism
exposed in an environment with a constant concentration of a compound with a single film (left)
and a double film (right). The curves correspond with different values of the diffusivity in a two-

compartment model; the upper curve has the lowest diffusivity. Parameters: l0 = 1, k01 = P
−1/2
ow ,

k10 = P
1/2
ow , k0 = 0.01, 0.1, 1, 10, 100 h−1 (left), k0 = k1 = 0.04, 0.4, 4, 40, 400 h−1 (right), x = 0.1.

Notice that the one-film model has slope 0.5, while the two-film model has slope 1 in the linear
sections for low diffusivities and high partition coefficients (i.e. low elimination rates), and 0.5 for
large diffusivities.

which gives Lij = Li/n. Both Vij and Lij decrease inversely proportional to n if the
depth of the (total) boundary layer Li =

∑n
j=1 Lij is taken to be constant. The vector of

concentrations and the matrix of coefficients become for ki = vi/Li and li = LiL−1
i

c = ( c0 c01 · · · c0n c1n · · · c11 c1 )T

and

k =













































−k′
0l

′
0 k′

0l
′
0 0

k′
0 −2k′

0 k′
0

. . . . . . . . .

k′
0 −2k′

0 k′
0

k′
0 −k′

0 − k′
01 k′

10

k′
01 −k′

1 − k′
10 k′

1

k′
1 −2k′

1 k′
1

. . . . . . . . .

k′
1 −2k′

1 k′
1

0 k′
1l

′
1 −k′

1l
′
1













































The first item to discuss is how the values for rates k′
i and k′

ij and the scale length l′i relate
to each other for different choices of the number of sub-layers n. The mean residence time
of a molecule in the (total) boundary layer should not depend on the number of sub-layers.
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Figure 6.7: The time trajectory of the concentration in the bulk c0(t), for n = 1, 2, 3, 20 compart-
ments in medium 0 and no compartments in medium 1, while the concentration in the medium
1 is zero, c1 = 0. The diffusivities are k0 = 0.1n2 h−1, while the scaled length l0 = 1/(n − 1).
Notice that for n = 1 we do not have a diffusion layer and the value for the diffusivity and scaled
length are irrelevant; the bulk then eliminates exponentially.

By requiring k′
i = n2ki and k′

ij = (1+n)kij and l′i = li/(n− 1), we achieve that an increase
of n increases the level of detail of the model, without affecting the overall properties.

By increasing the number of sub-layers n → ∞, while decreasing the depth of each
sublayer dL such that the depth of the non-mixed layer Li = n dL is constant, this set of
ode’s converges to the pde model, with the concentration in sublayer j becomes the surface
area-specific density: cij(t) → ni(Lij/n, t)/S, and ki → diL

−2
i and kij → vijL

−1
i .

Numerical analysis shows that the increase of the number of layers does not have a
large quantitative effect, see Figure 6.7.

Derivation of Eq (6.14)
{195}

Section 6.3 formula (6.14) is derived as follows. We start from (6.1) at {190} on the basis
of mass, rather than concentration. Remember that the elimination flux is proportional
to the internal concentration ([MQ]), rather that to the amount, and both exchange fluxes
are proportional to surface area. So we multiply the accumulation rate (k̇aVm) and the
elimination rate (k̇e) with a squared scaled length. Then we divide by volume and account
for the dilution by growth. Finally we divide by the BCF:

d

dt
MQ = (k̇acd − k̇e[MQ])Vml2

= (k̇acd − k̇e[MQ])Vml2

= (PV dcd − [MQ])Vmk̇el
2

d

dt
[MQ] = (PV dcd − [MQ])k̇e/l − [MQ]

d

dt
ln V

d

dt
cV = (cd − cV )k̇e/l − cV

d

dt
ln l3
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where V = Vml3, [MQ] = MQ/V , PV d = k̇a/k̇e, cV = [MQ]/PV d,
d
dt

ln V = V −1 d
dt

V =
l−3 d

dt
l3.

Derivation of Eq (6.15)
{197}

Eq (6.15) can be understood as follows. The mass of compound Q in the body is partitioned
into three pools: that in structure V , in reserve E and in the reproduction buffer ER, so
MQ = MQV +MQE +MQR. We assume that the partitioning is in equilibrium. This means
that MQE = MQV PEV ME/MV , where PEV is the reserve-structure partitioning coefficient

defined as PEV =
MQE/ME

MQV /MV
at equilibrium with respect to the transport of compound Q

between the (three) pools. The reserve and the reproduction buffer have the same chemical
composition, so MQR = MQV PEV MER/MV . Substitution gives MQ = MQV (1+PEV (ME +
MER)/MV ). Table 3.4 at {122} gives ME = eMEm, and likewise we write MER = eRMEm.

This leads to MQ = MQV (1 + MEm

MV
PEV (e + eR)) = MQV (1 + [MEm]

[MV ]
PEV (e + eR)). The

significance of the last equality is that [MV ] and [MEm] are constants, because of the strong
homeostasis assumption. The final step is to substitute the biomass-structure partition
coefficient PWV = 1+ [MEm]

[MV ]
PEV (e+eR). For individuals that do not build up a reproduction

buffer (eR = 0), and live in a constant environment (which means that e settles at a constant
value), PWV becomes constant as well.

Internal concentrations {202}
We present further evidence that toxic effects should be linked to internal concentrations
in [196, 211]. Effects disappear as soon as internal concentrations are below a threshold
value and re-appear if they are above this value [449]. Theory for effects during variations
of external concentrations is given in [446].

NEC {206}
We demonstrated that the NEC estimates has nice statistical properties, and that con-
fidence intervals obtained via profile likelihood functions are valid, even for a very small
number of test organisms [9]. Even if the NEC varies in value among individuals, its mean
is recovered accurately from a low number of test organisms; the accurate recovery of the
scatter requires more individuals [17].

Half saturation constant {211}
The half saturation constant for Daphnia can be interpreted as the ratio of the maximum
feeding rate and the maximum filtering rate, see {74}: K = JXm/Fm and the scaled
functional response is f = X

K+X
. So if a compound affects the maximum feeding rate

only, the half saturation constant is affected as well. The same applies for the maximum
filtering rate. If both rates are reduced by the same factor, the half saturation constant
is independent of the chemical stress. If experiments are done at abundant food, the half
saturation constant is irrelevant.



118 6. Uptake and effects of non-essential compounds

The reserve dynamics (in the blank) is given by Eq (3.10):

d

dt
[E] = (f{ṗAm} − v̇[E])V −1/3

d

dt
e = (f{ṗAm}/[Em] − v̇e)V −1/3

In the evaluation of effects of toxicants it matters which two of the three parameters
{{ṗAm}, [Em], v̇} are considered as the primary parameters, and which one as a compound
parameter. The most natural choice is to consider [Em] = {ṗAm}/v̇ as a compound param-

eter and the energy investment ratio is g = [EG]v̇
κ{ṗAm}

. Under stress on the parameter {ṗAm},
the reserve dynamics then becomes

d

dt
es = (f − es)v̇V −1/3

with the implication that the effects on assimilation reduces the reserve density [E], but
not the scaled reserve density e, because the effect is scaled out, i.e. 0 < es ≤ 1. In other
words: the reserve density is not scaled with the maximum one in the blank, but with
the maximum one in the stressed situation. This dynamics only applies if the compound
affects the digestion efficiency, so the food uptake rate in not affected, but the assimilation
rate is. It also applies if the maximum feeding rate is affected, but then only at abundant
food, so e = 1 (which makes that the half saturation constant is irrelevant).

The reproduction rate (in the blank) is given by Eq (3.48). Using Eq (3.52) for the
maximum reproduction rate

Ṙm = κR[ṗM ]
1 − κ

κE0

(Vm − Vp)

In the stressed situation for effects on the max spec assimilation rate, the costs for
structure, for an egg or on the specific maintenance costs we have

Ṙms = κRs[ṗM ]s
1 − κ

κE0

(Vms − Vp)

or
Ṙms

Ṙm0

=
κRs

κR0

[ṗM ]s
[ṗM ]0

(lms/lm0)
3 − l3p

1 − l3p

The reason for linking affects to κR rather than E0 is pragmatic only, because the rule
that the reserve density of the embryo at birth equals that of the mother at egg formation
leads to a complex expression for the costs of an egg that involves maintenance and costs
for structure parameters. By replacing that rule by a numerically simpler one, namely
that the reserve density at birth is independent of the nutritional status of the mother
avoids all these problems, but introduces an extra parameter, namely the costs of an egg.
An additional implication is that growth at constant food cannot longer be exactly von
Bertalanffy, except for a single special food density.

Stage transitions occur if the cumulative investment into maturation exceeds a thresh-
old. This only occurs when the amount of structure exceeds a threshold if [ṗJ ] = [ṗM ](1−
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κ)/κ. If the compound affects [ṗM ], but not [ṗJ ], stage transitions no longer occur at a
fixed amount of structure (and becomes dependent on food history). For simplicity’s sake,
we assume that [ṗM ] and [ṗJ ] are affected in the same way, with the implication that Vp is
not affected.

For the reproduction rate we arrive at

Ṙ =
Ṙm

Vm − Vp

(

e

g + e

(

v̇

k̇M

V 2/3 + V

)

− Vp

)

+

We can check that Ṙ = Ṙm if e = 1 and V = Vm = ( v̇
gk̇M

)3. In the case of stress we have

for l = (V/Vm0)
1/3

Ṙs =
Ṙms

Vms − Vp

(

e

gs + e

(

v̇

k̇Ms

V 2/3 + V

)

− Vp

)

+

=
Ṙms

(lms/lm0)3 − l3p

(

el2

gs + e

(

v̇

k̇MsV
1/3
m0

+ l

)

− l3p

)

+

=
Ṙms

(lms/lm0)3 − l3p

(

el2

gs + e

(

lms

lm0

gs + l

)

− l3p

)

+

=
Ṙm0

1 − l3p

κRs

κR0

[ṗM ]s
[ṗM ]0

(

el2

gs + e

(

lms

lm0

gs + l

)

− l3p

)

+

If we consider v̇ as a primary parameter, effects on {ṗAm} do not have consequences for v̇,
so v̇s/v̇0 = 1 in the table at {213}.

If the toxicant increases the cost of an egg proportional to the internal concentration,
we have to multiply e0 by (1 + s), which amounts to the same as dividing the fraction of
energy that is fixed in embryos, κR, by (1 + s).

The various modes of action affect the scaled parameter as follows

model target κRs

κR0

gs

g0

k̇Ms

k̇M0

[ṗM ]s
[ṗM ]0

lms

lm0

hazard ḣovum exp{−s} 1 1 1 1
costs κR (1 + s)−1 1 1 1 1

maint. [ṗM ] 1 1 1 + s 1 + s (1 + s)−1

struct. [EG] 1 1 + s (1 + s)−1 1 1
assim. {ṗAm} 1 (1 − s)−1 1 1 1 − s

The list of possible modes of action is not complete. Compounds might well effect e.g.
the energy conductance v̇, and endocrine disruptors are likely to affect the partitioning
fraction κ.

Receptor-mediated effects
{213}

By considering several endpoints simultaneously, we have found empirical support for
receptor-mediated effects [214].
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Table 6.1: The following notation is used for discssing the effects of mixtures of chemical com-
pounds.

cA, cB mM external conc for compound A, B
kA, kB d−1 elimination rate for A, B

PAd, PBd l C-mol−1 BCF for A, B
Q0

A, Q0
B mmol C-mol−1 internal NECs for A and B

C0
A, C0

B mM external NECs for A and B
BA, BB C-mol mmol−1d−1 killing rate for internal compound A, B
bA, bB mM−1d−1 killing rate for external compound A, B
DAB C-mol2 mmol−2d−2 internal interaction rate between A, B
dAB mM−2d−2 external interaction rate between A, B
h0 d−1 hazard rate in the blank

Population consequences
{217}

The population consequences of effects on individuals is discussed in [307].

Effects of mixtures of chemical compounds
{217}

Several possibilities exists for how combinations of chemical compounds interact in the
nec [16], which are discussed below. See Table 6.1 for the notation.

Hazard rate

Suppose that compounds A and B compete for capacity to cancel effects and that Q0
A and

Q0
B are the internal NECs. No effects occur if

1 > QA/Q0
A + QB/Q0

B

If this condition is not fullfilled, compounds A an B take fractions

wA =
QA

Q0
A

(

QA

Q0
A

+
QB

Q0
B

)−1

; wB =
QB

Q0
B

(

QA

Q0
A

+
QB

Q0
B

)−1

of the effect cancel capacity. The internal concentrations of A and B that cause effect are

Qe
A = max(0, QA − wAQ0

A); Qe
B = max(0, QB − wBQ0

B)

The internal concentrations and the hazard rate is given by

QA(t) = cAPAd(1 − exp(−tkA)); QB(t) = cBPBd(1 − exp(−tkB))

hc(t) = BAQe
A(t) + BBQe

B(t) + DABQe
A(t)Qe

B(t)

Compounds A and B do not interact if DAB = 0. This situation seems to be called “con-
centration addition” or “independent action”, which are two words for the same concept
in this context.
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From internal to external concentrations

Substitute CA = QA/PAd; CB = QB/PBd; bA = BAPAd; bB = BBPBd; dAB = DABPAdPBd.

CA(t) = cA(1 − exp(−tkA)); CB(t) = cB(1 − exp(−tkB))

wA(t) =
CA(t)

C0
A

(

CA(t)

C0
A

+
CB(t)

C0
B

)−1

; wB(t) =
CB(t)

C0
B

(

CA(t)

C0
A

+
CB(t)

C0
B

)−1

Ce
A(t) = max(0, CA(t) − wA(t)C0

A); Ce
B(t) = max(0, CB(t) − wB(t)C0

B)

hc(t) = bACe
A(t) + bBCe

B(t) + dABCe
A(t)Ce

B(t)

The complete hazard rate is given by h(t) = h0 + hc(t), where h0 is the hazard rate in the
blank.

Effects occur at finite time t0 if

1 < cA/C0
A + cB/C0

B

A consequence of this competition model for cancel capacity is that Ce
A > 0 if Ce

B > 0,
and vice versa. This occurs at time t0, where

1 = CA(t0)/C
0
A + CB(t0)/C

0
B

= (1 − exp(−t0kA))cA/C0
A + (1 − exp(−t0kB))cB/C0

B

This time point t0 must be obtained numerically, but with octave’s fsolve convergence is
fast from the initial choice t0 = 0.

From hazard rate to survival probability

The survivor probability is given by

S(t) = exp(−
∫ t

0
h(s) ds) = exp(−h0t) for t < t0

For t > t0 the integration of the hazard rate should be done numerically.
For relative large negative vlues of the interaction rate, the hazard rate can become

negative, which means that we have take the maximum of zero and the specified value.
For positive values, the hazard rate is not necessarily monotonous in time. This is not a
formal problem, but somewhat counter-intuitive.

Fixed cancel capacity

The formulation above allows changes in the use of the cancel capacity after the moment
effects show up. This corresponds perhaps better to a receptor-based situations. Alterna-
tively the use of this capacity can be frozen at the moment effects show up. We then have
constant values for

C0B
A = (1 − exp(−t0kA))cA; C0A

B = (1 − exp(−t0kB))cB

wA = (1 − exp(−t0kA))cA/C0
A; wB = (1 − exp(−t0kB))cB/C0

B
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The survivor probability can now be evaluated analytically (given the numerically obtained
value for t0) fot t > t0

S(t) = exp(−h0t − bAgA(t) − bBgB(t) − dABgAB(t))

gA(t) = −cAtA + (cA − C0B
A )(t − t0); gB(t) = −cBtB + (cB − C0A

B )(t − t0)

gAB(t) = cAcBtAB − cA(cB − C0A
B )tA − (cA − C0B

A )cBtB + (cA − C0B
A )(cB − C0A

B )(t − t0)

tA = k−1
A (exp(−kAt0) − exp(−kAt)); tB = k−1

B (exp(−kBt0) − exp(−kBt))

tAB = (kA + kB)−1(exp(−(kA + kB)t0) − exp(−(kA + kB)t))

Implementation

The formulation with the fixed weight coefficients is coded in debtool/tox/fomort2, with
the dynamic weight coefficients in debtool/tox/fomort2r; the “r” relates to “receptor”. The
script file mydata fomort2 illustrates how to use it, including the generation of Monte Carlo
data (using debtool/lib/prob/surv count), and the formal statistical test dAB = 0. The
routines /debtool/lib/regr/scsurv3, nmsurv3, psurv3, dev3 have been written to estimate
par values.

Note: the numerical derivatives in scsurv3 are found to be not accurate enough for the
numerical integrations in fomort2r.
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Case studies

Varying half saturation constants due to pseudo-faeces
{221}

Filter feeders like bivalves filter material that does not make it to the gut, but nonetheless
affect their feeding. We partition feeding into acquisition A with NA functional units and
digestion D with ND functional units. The numbers N∗ are proportional to the surface
area of the individual; an acquisition unit might be a filtering hair, and a digestion unit
a site in the gut wall at which absorption occurs. Food X is present in density X and
non-digestible particles Y (here called silt particles) in density Y . Food is passed from the
acquisition units to the digestion units by channeling using a closed handshaking protocol
(so no acquired food is spoiled) and silt is excreted as pseudo-faeces and is not passed to
the digestion units.

We now find expressions for the feeding and filtering rates, where food and silt compete
for access to the acquisition units, in a way that is consistent with the standard DEB model,
which specifies that in absence of silt, food intake can be written as JX = {JXm}fV 2/3

with f = X/(X + K).

Closed handshaking between A and D

We follow [327] for closed handshaking, and include pseudo-faeces production. For 1 =
θA
· + θA

X + θA
Y and 1 = θD

· + θD
X , the changes in the fractions of A and D are

d

dt
θA
· = (θD

X − θA
X)kX + θA

Y kY − θA
· (bXX + bY Y )

d

dt
θA

Y = θA
· bY Y − θA

Y kY

d

dt
θD
· = θD

XkD − (θD
X − θA

X)kXNA/ND

where bX and bY are the affinities of X and Y ; k−1
X and k−1

Y are the mean handling times
of X and Y by the acquisition machinery, and k−1

D is the mean handling time of X by the
digestion machinery. The steady state fractions are

θA∗
· = kXkY kDND/Θ
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θA∗
X = kY bXX(kXNA − kDND)/Θ

θA∗
Y = kXkDNDbY Y/Θ

θD∗
X = kXkY NAbXX/Θ

Θ = kXkY NAbXX + kDND(kXkY − kY bXX + kXbY Y )

Feeding & pseudo-faeces production

The feeding and pseudo-faeces production rates are

JX = NAθA∗
· bXX = NDθD∗

X kD =
kXkY kDNANDbXX

kXkY kDND + (kXNA − kDND)kY bXX + kDNDkXbY Y

JY = NAθA∗
· bY Y = NAθA∗

Y kY =
kXkY kDNANDbY Y

kXkY kDND + (kXNA − kDND)kY bXX + kDNDkXbY Y

Consistency test with standard DEB model: Y = 0

JX =
kXkDNANDbXX

kXkDND + (kXNA − kDND)bXX
=

{JXm}V 2/3X

K + X

for {JXm}V 2/3 = kXkDNAND

kXNA−kDND
and K = kXkDND

(kXNA−kDND)bX
. Result: the model is DEB-

consistent for NA, ND ∝ V 2/3; the half saturation coefficient K is then independent of
structural volume V and the maximum food uptake JXm ∝ V 2/3.

Re-parametrization

To remove parameters that are difficult to measure from the behaviour of individuals, we
introduce the silt saturation coefficient KY = kY /bY and relative affinity δY X = bY /bX .
Substitution gives the ingestion rates for food and silt particles

JX =
{JXm}V 2/3X

K ′(Y ) + X
with K ′(Y ) = K(1 + Y/KY )

JY = δY X JX Y/X

If no selection in acquisition occurs, we have δY X = 1, which means that this model for how
silt affects food uptake has one extra (compound) parameter KY which is inverse to the
product of the mean handling time of a silt particle, k−1

Y , and its affinity, bY ; its dimension is
silt density. Faeces production is proportional to food consumption; the conversion depends
on food quality parameters. Pseudo-faeces production equals silt consumption JY ; mucus
production might also have a contribution, depending on the choice of quantifiers.

The filtering rate of an individual that completely clears the filtered water equals
F (X,Y ) = JX/X = JY /Y for δY X = 1. The maximum filtering rate is at X = 0,
Y = 0, so

Fm = F (0, 0) =
JXm

K
=

kXkDNAND

kXNA − kDND

(kXNA − kDND)bX

kXkDND

= NAbX
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Apparent saturation coefficient

Notice that if food density X would vary at constant silt density Y , we have that the
apparent half saturation coefficient K ′(Y ) = K(1 + Y/KY ) is constant, and the standard
DEB formulation applies, but its value depends on the constant silt density Y . Suppose
that Y is site-specific, then K ′ is linear in the silt density Y . We can invert the argument
and obtain Y = KY (K ′/K − 1), where K is the minimum among K ′’s if there is a “clean”
site in the set of measurements. If measurements of (mean) silt densities Y are available,
we can test the relationship between K ′ and Y , and arrive at an estimate for silt saturation
coefficient KY = Y/(K ′/K − 1).

Starvation
{221}

As long as growth is non-negative, standard dynamics applies. If (full or partial) starvation
continues, the response can be at the following levels

1 continue the standard reserve dynamics till death follows; don’t change the κ-rule for
allocation; use the buffer for reproduction (little data are available to tell us how exactly,
but see [129] for studies on polychaetes and [440] for studies on anchovy); if necessary shrink
(i.e. pay somatic maintenance from structure). Variant: migrate to better locations.

2 continue the standard reserve dynamics till death follows; change the κ-rule for allo-
cation; reduce on maturation maintenance and reproduction; use buffer for reproduction
if necessary; shrink if necessary.

3 change the reserve dynamics to pay somatic maintenance only; no allocation to ma-
turity maintenance and reproduction use buffer for reproduction if necessary; shrink if
necessary. Variant: switch to dormant state, partially reducing somatic maintenance costs.

4 change the reserve dynamics by converting reserve to eggs (seeds); convert structure
to eggs (as far as possible). This is the case of emergency reproduction, typically followed
by death. Popular strategy among plants.

Sometimes systems start to respond at level 1, but then continue to level 2, 3 and 4.

Maintenance from reserve and structure

Caroline Tolla [555, 554] proposed that somatic maintenance is payed from reserve as well
as from structure with a (strong) preference for payment from reserve. If reserves are
not sufficient, the payment from structure gradually becomes more important, without
any switch. The motivation comes from the turnover of structure as part of the somatic
maintenance costs. The formal significance is to relate the Droop to the Marr-Pirt model.
If reserve turnover increases, the maximum reserve capacity decreases, but in the limit,
maintenance costs are paid from assimilation in the DEB model and from structure in
the Marr-Pirt model, where maintenance is not distinguishable from death as far as the
change in state variables is concerned, but an obvious difference exists in term of products.
The difference between payment from assimilation rather than from structure is felt when
growth switches sign.
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Figure 7.1: The interaction between the con-
versions E → P and V → P , with preference to
the first transformation. See the comment for
{164} for a simplified version.

d

dt
θ.. = k̇V θ.V + k̇EV θEV + k̇EθE. − ρV jV θ.. − ρEjEθ..

d

dt
θ.V = ρV jV θ.. − ρEV jEθ.V − k̇V θ.V

d

dt
θEV = ρEV jEθ.V − k̇EV θEV

d

dt
θE. = ρEjEθ.. − k̇EθE.

For a given size, the flux of maintenance products P is constant, so we require that

jP = yPE k̇EθE. + yPE k̇EV θEV + yPV k̇V θ.V

is constant by allowing k̇E, k̇EV and k̇V to depend on θ∗∗.

Equal dissociation rates

Proposal for rates that fulfill the constraint:

k̇E = k̇EV = k̇V = k̇P /θ with θ = yPEθE+ + yPV θ.V and θE+ = θE. + θEV

for constant k̇P . We must have that jP = k̇P .

Constant flux of structure to SU for maintenance

Within the context of the DEB theory, the flux jV is constant, because the turnover of
structure represents an substantial part of the maintenance costs. Substitution of k̇∗ and
jV in

d

dt
θ.. = k̇P (1 − θ..)/θ − (ρV jV + ρEjE)θ..

d

dt
θ.V = ρV jV θ.. − ρEV jEθ.V − k̇P θ.V /θ

d

dt
θE+ = jE(ρEV θ.V + ρEθ..) − k̇P θE+/θ

The steady state solutions are explicit, but complicated. For ρE = ρEV and ρEjE = j′E
and ρV jV = j′V , the steady state solutions simplify considerably.
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Figure 7.2: The flux of reserve and of structure
for somatic maintenance. Numerical study for
α = 0 (switch model), 0.1 and 1 (equal dissoci-
ation rates), k̇P = 0.04, yPV = .12, yPE = .1,
ρE = 1, ρEV = 1. Reserve has absolute priority
over structure to pay somatic maintenance costs
in the switch model.

The fluxes of reserve and structure that are allocated to maintenance are

jM
V = θ∗.V k̇P /θ∗

jM
E = (k̇P − yPV jM

V )yEP

while jE is released from the reserve. For V1-morphs: jE = (k̇E − ṙ)ME, with ṙ being the
specific growth rate.

Unequal dissociation rates

Suppose now that k̇V = αk̇P /θ; substitution in the constraint that jP is constant learns for
jP = k̇P that θ = yPEθE+ +αθ.V yPV . If jV is constant again, we must have ρV jV = k̇P yV P .
Substitution of k̇∗ and jV in

d

dt
θ.. = k̇P (αθ.V + θE+)/θ − (k̇P yV P + ρEjE)θ..

d

dt
θ.V = k̇P yV P θ.. − ρEV jEθ.V − αk̇P θ.V /θ

d

dt
θE+ = jE(ρEV θ.V + ρEθ..) − k̇P θE+/θ

The fluxes of reserve and structure that are allocated to maintenance are

jM
V = αθ∗.V k̇P /θ∗

jM
E = (k̇P − yPV jM

V )yEP

For ρEV = ρE, j′E = ρEjE, j′V = ρV jV , the flux of structure that is allocated to
maintenance is

jM
V =

2Ak̇P /yPV

2A + yPE(
√

B2 − 4AC − B)

with A = αj′V k̇P yPV , B = yPEC + ((1 − α)j′E + j′V )k̇P , C = −j′E(j′E + j′V ).
Figure 7.2 illustrates the effect of unequal dissociation rates; they span the whole range

from equal dissociation rates to the switch model.
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From the microscopic to the macroscopic level

We now consider the individual-level implications of the preference model. The mainte-
nance product P is a generalized compound consisting of CO2, H2O, O2 (negative flux),
NH3, and possibly other compounds. To translate the microscopic level to the macroscopic
level without lost of generality, we can assume yPE = 1, k̇P = jEM , yPV = jEM/jV M ,
where jEM is the specific reserve flux for maintenance if all would have been paid from
researve, and jV M is the specific structure flux for maintenance is all would be paid from
structure. Notice that jEM and jV M are parameters; the actual maintenance fluxes are jM

E

and jM
V , with jM

E ≤ jEM and jM
V ≤ jV M . The fluxes j′E and j′V have formal dimension

number-per-time and can, therefor, be added at the molecular level. At the macroscopic
level, however, fluxes of different generalized compounds cannot be added in a meaningful
way. To solve this problem we have to convert the flux of structure to a flux of reserve and
take j′V = yEV jV M , j′E = jEC . An implicit constraint is jV M ≥ jEM/yEV .

Substitution of these values gives

jM
E = jEM(1 − jM

V /jV M); jM
V = jV M

2A

2A +
√

B2 − 4AC − B

with A = αj2
EM , B = C + ((1 − α)jEC + yEV jV M)jEM , C = −jEC(jEC + yEV jV M).

Switch model

For α → 0 the preference model approaches the switch model, which amounts to

jM
E = min{jEM , jEC} and jM

V = jV M(1 − jM
E /jEM)

Marr-Pirt model

Maintenance in the Marr-Pirt model always paid from structure, so the loss-fluxes to
maintenance are

jM
E = 0 and jM

V = jV M

Notice that this model cannot be obtain from the simplified preference model, because
reserve can replace structure in the SU-structure complex. We need to remove this simpli-
fication to arrive that the Marr-Pirt limit.

Growth of V1-morphs with one reserve

For V1-morphs, the mobilized reserve flux amounts to jEC = mE(k̇E − ṙ). The specific
growth rate is

ṙ = yV E(jEC − jM
E ) − jM

V

= yV E((k̇E − ṙ)mE − jM
E ) − jM

V

=
mE k̇E − jM

E − yEV jM
V

mE + yEV
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Preference model

jM
V is a function of jE = (k̇E− ṙ)mE, and so of ṙ; we indicate this with jM

V (ṙ). The sequence

ṙi+1 =
mE k̇E − jEM − (yEV − jEM/jV M)jM

V (ṙi)

mE + yEV

rapidly converges, ṙi → ṙ, in a few steps, starting from ṙ0 = 0. If jV M = jEM/yEV , the

growth rate reduces to ṙ = mE k̇E−jEM

mE+yEV
.

Switch model

Payment from structure starts when

jEC = jM
E ; jM

V = 0; ṙ = 0; mE = jEM/k̇E ≡ ms
E

The growth rate after this moment switches from ṙ = mE k̇E−jEM

mE+yEV
to

ṙ =
mE k̇E − jM

E − yEV jM
V

mE + yEV

=
mE k̇E − jM

E − yEV (1 − jM
E /jEM)jV M

mE + yEV

=
mE k̇E − yEV jV M − (1 − yEV jV M/jEM)jM

E

mE + yEV

=
mEyEV k̇EjV M/jEM − yEV jV M

yEV + mEyEV jV M/jEM

=
mE k̇E − jEM

mE + jEM/jV M

Since limmE↑ms
E

ṙ = limmE↓ms
E

ṙ = 0, the growth rate is continuous around the switch, but

not differentiable for jV M 6= jEM/yEV . This also applies to d
dt

mE. For jV M = jEM/yEV

the preference and the switch model are identical for growth.

Droop-Marr-Pirt model

We have

ṙ =
mE k̇E

mE + yEV

− jV M

Growth of V1-morphs with multiple reserves

Since for each reserve we have a contribution to maintenance, it is theoretically most
elegant to mobilise structure for each reserve separately, and at each maintenance SU it
is decided how much reserve and how much structure is used. So the total specific flux of
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structure that is used amounts to jM
V =

∑

i j
Mi
V , where the summation is over all reserves.

Writing ṙ = jG
V − jM

V , the specific growth rate for two reserves (i = 1, 2) follows from

jG
V = ṙ + jM

V =





∑

i

(

mEi(k̇Ei − ṙ) − jM
Ei

yEi,V

)−1

−
(

∑

i

mEi(k̇Ei − ṙ) − jM
Ei

yEi,V

)−1




−1

Food intake after starvation
{222}

A phenomenon shared by many taxa is that food (substrate) intake after a period of star-
vation is substantially higher during a short period. Morel [404] modeled a fast short-term
uptake (at maximum specific rate jh

XAm) in combination with a much lower longer-term
uptake (at maximum specific rate jl

XAm) in algae by assuming empirically that nutrient
uptake decreases linearly with the reserve density like

jX(X,mE) = f
(

jh
XAm − (jh

XAm/jl
XAm − 1)mE k̇E/yEX

)

with f =
X

K + X
d

dt
mE = yEXfjh

XAm − (1 − f + fjh
XAm/jl

XAm)mE k̇E

m∗
E =

yEXfjh
XAm/k̇E

1 − f(1 − jh
XAm/jl

XAm)
=

XyEXjl
XAm/k̇E

X + Kjl
XAm/jh

XAm

The maximum reserve density is mEm = yEXjl
XAm/k̇E. If nutrients are just internalized,

rather than transformed, we typically have yEX = 1. For jh
XAm → jl

XAm, the standard food
intake is recovered. A change in assimilation does not affect the way how growth depends

on reserve (density), so ṙ = mE k̇E−jEM/κ
mE+yEV /κ

.

A problem with this empirical extension to include fast short-term uptake is that it
modifies the well-tested long-term uptake. A variant of this idea that leaves the long-term
uptake unaltered is

jX(X,mE) = fjh
XAm − (jh

XAm/jl
XAm − 1)mE k̇E/yEX with f =

X

K + X
d

dt
mE = yEXfjh

XAm − mE k̇Ejh
XAm/jl

XAm with m∗
E = yEXfjl

XAm/k̇E

To avoid negative uptake rates, we must have

k̇E

jl
XAm

− k̇E

jh
XAm

>
fyEX

mE

In animals very short-term food uptake after starvation is typically even higher due
to filling of the digestive system (stomach plus gut). This can be modeled similarly and
linked to a more detailed module for digestion, as discussed in 7.3 at {239}.
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Food intake reconstruction from weight data
{227}

The reconstruction of food intake is as follows: From Ww = (dV + dEe)V , we know that
V = Ww/(dV + dEe) and d

dt
W = (dV + dEe) d

dt
V + dEV d

dt
e, which gives d

dt
e = (dV +

dEe)( d
dt

ln Ww − d
dt

ln V )/dE. From Eq (3.18) at {94} we know that d
dt

ln V = v̇(V −1/3(e −
lh) − L−1

m )/(e + g). Given observed values for Ww(t), and so of d
dt

Ww(t), this allows us to
obtain e(t) by numerical integration, starting from e(0). Now we use Eq (3.11) at {85} to
get f(t) = e(t) + V 1/3(t) d

dt
e/v̇ or V 2/3(t)f(t) = e(t)V 2/3(t) + V (t) d

dt
e/v̇.

Composition of reserve & structure
{227}

The linear decrease of compounds during starvation can be used to gain info on the com-
position of reserve and structure, using the following reasoning.

We first try to understand the decrease of a compound C in an organism during star-
vation, having measurements of how the amount MC (in C-mol) changes in time t. At
the start of the experiment, the organism has amounts of structure MV and reserve ME.
Suppose that reserve mobilization during starvation is just enough to cover the somatic
maintenance costs. The amount of structure MV remains constant, so if we focus on some
compound C, e.g. protein, and follow it backward in time, with the time origin at the
moment on which the reserve is fully depleted, we have

MC(t∗) = MCV + (MCE/ME)t∗J̇EM

where MC(t∗) is the amount of compound at revered time t∗, MCV the (constant) amount
of compound in structure, MCE/ME the constant density of the compound in reserve and
J̇EM the (constant) rate of use of reserve for somatic maintenance purposes.

Reverting time back into the standard direction, we substitute t = t0 − t∗ and obtain

MC(t) = MCV + (MCE/ME)(t0 − t)J̇EM

= MC0 − tJ̇CM with J̇CM = (MCE/ME)J̇EM and MC0 = MCV + J̇CM t0

This shows that each compound can decrease linearly at its own rate, even under the strong
homeostasis assumption, which prescribes that the densities of the compound in reserve
MCE/ME and in structure MCV /MV remain constant.

It also shows that, if we only know how the compound changes in time, we have access to
MC0 and J̇CM , but not to the more informative MCV and MCE (i.e. info on the composition
of structure and reserve).

We do have some relative information on the composition of reserve, if we know the time
trajectories of several compounds: J̇C1M/J̇C2M = MC1E/MC2E. If we would know when
the reserve is depleted (namely at time t0), we have access to the composition of structure
MCV /MV , since MC(t0) = MCV , but the individual will probably start to use structure
to pay maintenance costs during prolonged starvation (causing deviations from linear de-
crease). Moreover it is likely that the reserve buffer that is allocated to reproduction is
used under extreme starvation. This makes it difficult to have access to t0.

Suppose now that we have info for all compounds, that is
∑

i MCiV = MV and
∑

i MCiE =
ME. Although the actual number of chemical compounds is formidable, they can be
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Figure 7.3: The amounts of en-
ergy in starving oyster. Data
from [583]. Parameters are pre-
sented in Table 7.1.

Figure 7.4: Composition of reserve (horizontal lines) and
structure (curves) of the oyster as derived from Table
7.1. The maximum time at which the reserve could have
been depleted is 668 d. The fractions are plotted cumula-
tively, assuming that proteins, lipids and carbohydrates
together comprise 100 % of all biomass. Structure has less
carbohydrates than reserve and more protein and lipid.

grouped into a limited number of chemical categories (e.g. proteins, lipids etc). We have
∑

i J̇CiM = J̇EM , so J̇CiM/
∑

j J̇CjM = MCiE/ME. We also have
∑

i MCi0 = MV + J̇EM t0,

so MV =
∑

i MCi0 − t0
∑

i J̇CiM , which we know if we would have and estimate for t0. We
obviously must have that t0 <

∑

i MCi0/
∑

i J̇CiM . The composition of structure is then
found from MCiV /MV = (MCi0 − t0JCiM)/MV .

Figures 7.3 and 7.4 give an example of application. Remark that RNA might also
contribute to biomass, but is neglected here. A puzzling thing in this example is that the
data seem to concern energies per 100 g wet weight. Is the rest of the weight water only?
I treated the data as if they refer to 100 g wet weight at time zero.

Food intake reconstruction from reproduction data
{227}

Collaborative work with Stella Berger: Food intake can also be reconstructed from re-
production data of e.g. Daphnia hyalina. Data include body length, egg length, width &
number of eggs in the brood pouch in weekly hauls from enclosures. The general idea is to
reconstruct food density and then try to link measured quantities in the enclosures, such
as chlorophyll concentration, POM, and DOC to this reconstructed food density to learn
more about the nutritional value of these quantities for daphnids. These links are less
than direct (daphnids cannot digest chlorophyll or cellulose)and involves the (unknown)
half saturation constant.

These data also allow the study of maternal effects: is the reserve density at birth
indeed equal to the reserve density of the mother at egg formation as the DEB theory
assumes? Eggs initially fully consist of reserve. If reserve density at birth is small, initial
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Table 7.1: The parameter estimates from Figure 7.3, conversions, and their translation into
composition info for 3 choices for the time at which the reserve is depleted; 1 cal = 4.184 J; the
caloric values are from Kooijman (2000) {137}.

100 g wet weight total protein lipid carbohydrate

µCMC0, kcal 64.81 30.54 16.80 16.87

µC J̇CM , kcal/d 0.1042 0.0408 0.0200 0.0358

µC , kJ/C-mol 401 616 516
MC0, C-mol 0.570 0.319 0.114 0.137

J̇CM , mmol/d 0.426 0.136 0.290

MCE/ME , mol/mol 0.500 0.159 0.341
MCV /MV , mol/mol, t0 = 200 d 0.546 0.191 0.263
MCV /MV , mol/mol, t0 = 400 d 0.537 0.185 0.278
MCV /MV , mol/mol, t0 = 600 d 0.531 0.181 0.288

egg size will be small as well, but less than linear: a low amount of initial reserve leads
to low maturation, so long incubation and high cumulated maintenance costs. Hatching
(which coincides with start of feeding in Daphnia) occurs if maturity exceeds a threshold
value. The differences in egg size are small only since only half of the initial reserve is used
during the embryo stage in daphnids [328].

Two different ideas on the main sources of scatter are evaluated

1 each individual experienced a different food history and I use the observed number
of eggs N to estimate the scaled functional response f for each individual. To find
f , N = tRṘ with reproduction rate Ṙ given in Eq 3.31 was solved numerically for
each individual, starting from the analytical solution using the scaled reserve U0

E for
f = 1. Using these values of f , the sum of squared deviations between observed
egg volumes and expected egg volume v̇0U

0
E was minimized to find an estimate for

the conversion factor v̇0. In this scenario all scatter is in the local food density
of individual daphnids. The environment is supposed to be spatially and temporary
heterogeneous. These individuals have identical parameter values. Since eggs grow in
volume during incubation (see below), we need to correct the measured egg volumes
for growth during development. The “observed” initial egg volume VOi of individual i
is estimated by

∑

j wjV0j/
∑

j wj, where wij = exp{−cf (fi−fj)
2−cV (VOj−VOm)2} and

V0m is the minimum observed egg volume. So the closer the reconstructed functional
response is to the individual at hand and the smaller the egg volume is, the larger is
the weight coefficient for the estimated initial egg volume.

2 individuals in a single haul experienced the same food history and I use the different
individuals in one haul to estimate a common scaled functional response. To find f ,
the sum of squared deviations was minimized between the observed number of eggs
N and the expected number of eggs tRṘ with Ṙ given in Eq 3.31 for individuals
of different lengths, simultaneously with that between observed and expected egg
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volumes. In this scenario part of the scatter is in the translation of food to eggs, and
part in difference of parameter values amount individuals. Since eggs grow in volume
during incubation (see below), the smallest egg volume each haul represents the best
estimate for the initial volume for that scaled functional response if individuals do
not synchronize moulting cycles.

Reproduction rate is given by

Ṙ = ((1 − κ)SC − k̇JUp
H)κR/U0

E

with SC =
J̇EC

{J̇EAm}
= L2 ge

g + e

(

1 +
L

gLm

)

where the scaled reserve density e is replaced by the scaled functional response f . The
initial scaled reserve U0

E is computed in debtool/animal/initial scaled reserve and depends
on κ, g, k̇J , k̇M , v̇, U b

H .
The volume of an ellipse of radii a, b, c equals 4πabc/3. Expressed in egg length Ll = 2a

and egg width Lw = 2b = 2c, egg volume equals Ve = LlL
2
wπ/6.

We have no reproduction, Ṙ = 0, if (1 − κ)SC = k̇JUp
H , which happens for

f 0
R =

(

(1 − κ)(L2 + L3k̇M/v̇)/(k̇JUp
H) − g−1

)−1

Using only individuals with eggs, we know that the reconstructed f must be in the interval
(f 0

R, 1). Notice that the larger the individual, the lower the reserve density can be to
continue reproduction. We have no growth, d

dt
L3 = 0, if κSC = κL3/Lm, which happens

for
f 0

G = L/Lm

Notice that the larger the individual, the higher the reserve density must be to fulfill the
somatic maintenance costs.

Reproduction is at maximum for an individual at length L for f = 1 at level

Ṙm =

(

1 − κ

g + 1

(

g +
L

Lm

)

L2 − Sp
H

)

κR

U0
E

The maximum number of eggs accumulated over a time interval tR is Nm = tRṘm, so if
Nm represents the maximum observed number we have tR ≥ Nm/Ṙm. If tR does not meet
this constraint we can obtain estimates of f that exceed the value 1.

The range of lengths of individuals with eggs is (1.12, 2.36) mm, which translates in
estimates Lp = 1 mm and Lm = 2.75 mm. The latter value is well above the maximum
observed length because maximum length can only be reached after prolonged exposure to
abundant food, which is not likely in natural situations. The range of egg lengths is (0.137,
0.488) mm, which translates in an estimate Lb = 0.48 mm. The range of egg volumes is
(0.0006, 0.1) mm3, this covers a range of a factor 16. In view of the finding that around
half of the initial reserve is still present at birth in D. magna [328], this factor is much too
large to be explained by differences in initial reserve. I conclude that during the incubation
period, the volume of the egg must grow due to the uptake of water.
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The values κ = 0.8, v̇ = 3.24 mm d−1, k̇J = k̇M = 1.7 d−1 are chosen from D. magna
[328] for a reference temperature of 20◦C, while g = 0.44 4.48/2.75 = 0.69 was corrected
for differences in max body length. This leads to U b

H = 0.0046 d mm2 and Up
H = 0.042

d mm2 to arrive at the mentioned values for Lb and Lp. The implications are age at birth
ab = 0.51 d and von Bertalanffy growth rate ṙB = 0.23 d−1 at f = 1. About half of the
initial reserve is used during the embryonic stage at f = 1 with these parameter settings.

The maximum number of eggs in the brood pouch is 41 in an individual of length 2.24
mm. To accommodate all these eggs with the above-mentioned parameter values, we need
an inter-moult period of tRκR = 4.8 d, which seems somewhat long for κR = 0.95. If data
on the real period would be available, this could be used to adjust κ or g, which both have
a large effect on the minimum period that is required. Two large observed number of eggs,
depress the reconstructed scaled considerably.

The conversion from v̇0 initial scaled reserve U0
E to initial volume was obtained by

regression, like the scale functional responses. Notice that all parameters with length in
their units refer to physical length, not volumetric length. The shape coefficient for D.
hyalina is probably close to δM = 0.54.

The estimates can be improved by including ecophysiological info on DEB parameters
of D. hyalina.

Both scenario’s produced similar f(t) reconstructions, see Figure 7.5. The 4 experi-
ments showed a very similar profile, but the peak in experiment 1 and 2 is before that of 3
and 4. A major difference is that in the scenario 1, some individuals have such a large num-
ber of eggs, that the DEB parameters are forced to values such the mean scaled functional
response in rather low. If only scenario 2 would have been tried, a wider choice of DEB
parameters would have been possible, such that the reconstructed mean scaled functional
response fluctuates on wider range of values. The large number of eggs in few individuals
is then explained by deviating parameter values for those individuals. Scenario 2 involves
relationships between number of eggs in the brood pouch and body length. Given the
scatter, these relationships generally applied well.

The maternal effect is supported weakly only, see Figure 7.5, but reports in the literature
on the contrary, i.e. that large eggs are produced at low food density (e.g. [164]), are not
confirmed; I did not check the empirical basis of their claims. Apart from the problem of
an increase in egg volume during development, another source of scatter in egg volume is
that some individuals are likely to be in the stage of converting the reproduction buffer
to eggs in the brood pouch. The number of eggs in the brood pouch might be small at
the moment of sampling, but much larger a few moments later. Notice that the expected
initial egg size is an U-shaped function of the functional response. The left branch has no
ecological relevance because at the minimum of the function we have f = Lb/Lm = f 0

G, so
no growth at birth. For k̇J = k̇M this also means no maturation, so no birth. This calls
for a revision of the parameter values, so for more info on the energetics of D. hyalina.

By decomposing observed egg volume into contributions from reserve and structure,
they can also be used to study to what extend synchronization of moulting cycles oc-
cur among individuals. The dry weights can be used to further test ideas on reserve, in
combination with reproduction. Weights have contributions from structure, reserve, repro-
duction buffer, and eggs. By adding assumptions about the relationship between number
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Figure 7.5: The reconstructed scaled functional response as function of the week number (left),
and the egg volume as function of the scaled functional response (right), for scenario 1 (top) and
2 (bottom). Colour coding for the functional responses: Experiment 1 green, 2 red, 3 blue, 4
magenta. The blue crosses represent measured egg volumes, the green points the estimated initial
egg volumes and the red curve the expected initial egg volume.

of individuals in a haul and that in the enclosure, these data can also be used to study
population dynamics and the effect of sampling on population dynamics.

Food intake reconstruction from otolith data [442]
{227}

Collaborative work with Laure Pecquerie: Suppose that the opacity O as function otolith
length LO is known from data for a particular individual fish as well as all required param-
eter values. How can we find the scaled functional response f(t) for t ∈ (tb, t†), where tb
is the time at mouth opening. First feeding is often detected on the otolith by a specific
check.

We here make a number of simplifications, but none of them is essential, however, and
all of them can be avoided. We assume that the maturity and somatic maintenance rate
coefficients are equal, k̇J = k̇M and so we have the scaled maturity UH = V (1 − κ)g/v̇
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and d
dt

UH = 3(1 − κ) L2

k̇MLm

d
dt

L and SJ = 1−κ
κ

SM , SR = 1−κ
κ

SG. Temperature affects

k̇M and v̇ given at reference temperature Tref via a temperature correction factor cT =
exp

(

TA

Tref
− TA

T

)

. Since the temperature effects on these two rates cancel in Lm = v̇
k̇Mg

,

we only have to take those on v̇ into account. The estimation of T translates into the
estimation of T = TA(TA/Tref − ln cT ). We can also use more elaborate methods to relate
physiological rates to temperatures that take deviations from the Arrhenius relationship
into account at the high and low boundaries of the environmental temperature range.
We further assume that shrinking does not occur. This typically can happen at extreme
starvation when the individual is relatively large, and we assume that the reproduction
buffer of such individuals is large enough to cover maintenance costs.

The final simplification is for the food density, where we will not reconstruct the food
density itself, but the scaled functional response f , defined as the ingestion rate as a fraction
of the maximum ingestion rate for an individual of that size. The scaled functional response
is a dimensionless scalar between zero and one. The motivation is that this method does
not involve the identification of the food source. On the contrary, reconstructed scaled
functional responses then can be used to identify the food source.

The available info is now

dO

dLO

=

(

v̇OG
d

dt
SG − O

∑

i

v̇Oi
d

dt
Si

)

3O2L2
O

v̇2
OGS2

G(1 − L3
O/δSL3)

for i = D,G

with

SD = (SM + (1 − (L > Lp)κR)(1 − κ)SG)/κ

SG = κSC − SM

SC = L2e
g + L/Lm

g + e

SM =
κL3

Lm

d

dt
SD = (

d

dt
SM + (1 − (L > Lp)κR)(1 − κ)

d

dt
SG)/κ

d

dt
SG = κ

d

dt
SC − d

dt
SM

d

dt
SC =

L

g + e
(g +

L

Lm

)(
gL

g + e

d

dt
e + 2e

d

dt
L) +

L2e

g + e

d

dt

L

Lm

d

dt
SM = 3κ

L2

Lm

d

dt
L

d

dt
e = ((L > Lb)f − e)v̇/L

d

dt
L =

v̇

3

e − L/Lm

e + g

We assume that Tref and the 11 parameters TA, Lb, Lp, κ, κR, g, k̇M , v̇, v̇OD, v̇OG, δS are
known. Given O(t0), LO(t0), L(t0) and e(t0) we might try to find f(t0), cT (t0) and work our
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Figure 7.6: The construction (green) of the opacity profile from the functional response trajec-
tory and reconstruction of the functional response trajectory from the opacity profile. The first
reconstruction (red) uses the ’true’ trajectory of the correction factor for temperature, the second
reconstruction (blue) assumes a constant temperature correction factor. The match of the first
reconstruction with the construction is almost perfect, so the green curves hide behind the red
ones. Parameters: Lb = 1 cm, Lp = 1.5 cm, v̇ = 0.526 cm d−1, v̇OD = 1.186 × 10−5 cm d−1,
v̇OG = 1.1 × 10−4 cm d−1, k̇M = 0.015 d−1, g = 6, κ = 0.65, κR = 0.95, δS = 1/20.

way backwards in time. This scheme, however, turns out to be hopelessly unstable, to the
extend that it is useless. A stable scheme is to start from birth and integrate over otolith
length, not time. This is possible because otolith length increases strictly monotoneously
in time (contrary to body length). Feeding starts at birth, so opacity at birth has no
information about the food level. So we have to assumme that between the first and the
second data point food density is constant, and changes linearly in time since then at rates
that we reconstruct from opacity data.

A continuation method for this change from one data point to the next one turns out
to be satisfactory, except when growth is resumed after starvation. For these points we
need a more robust method.

Figure 7.6 illustrates the reconstruction using parameters that are appropriate for an-
chovy. The first reconstruction uses the ’true’ trajectory of the correction factor for tem-
perature and reconstructs the otolith and body length trajectories perfectly. The scaled
functional response and the reserve density trajectories are also perfectly reconstructed,
except if the reserve density no longer supports growth. The second reconstruction assumes
a constant temperature correction factor of 1, still leading to a very good reconstruction.

The reconstruction of f(t) from O(LO) data is coded in routine o2f}in toolbox “animal”
of software package “debtool”. The inverse routine, to construct O(LO) from f(t) data,
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as done in routine f2o}can be useful for checking the method. The comparison of the
reconstructed body length at otolith collection with the measured one is other very useful
check for consistency of the reconstruction method.

A weak component of our reconstruction method is the required knowlegde about the
temperature trajectory during the lifetime of the fish. It turns out, however, that the
(irrealistic) assumption that the temperature was constant, depite that fact that it changed
in reality, hardly affected the reconstructed food history in our simulations. The second
reconstruction in Figure 7.6 illustrates this.

Modifications of this reconstruction can make use of other types of data and/or infor-
mation, for instance that temperature extremes should match known points on the yearly
cycle. Such calibrations transform an “exact” reconstruction problem into a minimiza-
tion of deviations between predictions and measurements, but doubtlessly will improve the
quality of the reconstruction.

Shrinking
{231}

The process of shrinking ideally involves an extra parameter jV M that quantifies the specific
flux of structure that is required to cover the maintenance costs if no reserve is available
to contribute to these costs. The specific growth rate for V1-morphs amounts to

ṙ = k̇E
(e − ld)+

e + g
− jV M

(ld − e)+

ld

where index + indicates: take the maximum of zero and the value between the brackets, as
usual. Either the first or the second term on the right-hand side is zero. In this formulation
reserve kinetics does not change during shrinking, so it remains d

dt
e = (f − e)k̇E, see {86},

and reserve has absolute priority above structure to pay the maintenance costs. We also
do not account for adjustments of κ in this formulation, because its role remains hidden
for V1-morphs.

Diffusion limitation {235}
The theory on diffusion limitation has been extended and applied to describe how flocs of
micro-organisms grow, where the big flocs develop a dead kernel, destabilize and disinte-
grate [66]. Almost all microbial growth in sewage plants is in this mode.

Excretion of digestive enzymes
{238}

Prokaryotes have no phagocytosis and, therefore, they have to excrete enzymes to di-
gest substrate molecules that cannot pass the membrane. These enzymes transform sub-
strate into product (metabolites); the resulting metabolites can be taken up and used for
metabolism. We here compare this digestion mode with endocellular digestion, assuming
that the concentration of (solid) substrate is very large relative to the biomass (so the
decrease of solid substrate is negligibly small) and the enzyme molecules have a limited
active life span.
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Figure 7.7: The enzyme (red) and metabolite (green) profiles for social (top left) and solitary
(top right) digestion for times 100, 200,., 500 h. The magenta and blue curves are the steady
state profiles for enzyme and metabolite. Parameters: J̇E = 1 mmol h−1, ḊE = 0.03 µm2 h−1,
ḊP = 0.03 µm2 h−1, k̇E = 0.01 h−1, k̇P = 0.01 h−1, k̇ = 20 h−1, LR = 0.5 µm. See Figure 7.8 for
the yield of metabolite on enzyme as function of time.

At lower substrate concentrations, extracellular feeding becomes rapidly even less effi-
cient, because enzymes loose time in their unbound state.

Intracellular digestion

Suppose the digestive enzyme becomes inactive at constant specific rate k̇E, and the mean
production time per product molecule is k̇−1

P . The maximum yield of product per enzyme
molecule thus amounts to ym

PE = k̇P /k̇E and serve as a reference for extracellular digestion.
Although no metabolites become lost, this mode of digestion comes with costs of phago-
cytosis, and processing of inactive enzymes. The latter might represent a cost or a further
benefit.

Social digestion

Suppose now that bacteria are tightly packed in a one-cell thick layer a solid substrate,
and they excrete enzyme molecules at specific rate {J̇E} (moles per surface area of cell per
time). If the cells are spherical with radius LR, they excrete enzymes at rate {J̇E}4πL2

R.
One cell occupies surface πL2

R in the layer, so a unit surface area has (πL2
R)−1 cells. In

surface area S of medium enzymes are excreted at rate J̇E = 4{J̇E}S (mol/t). Assuming
that the cells are half embedded in the medium and the maximum specific uptake rate
{JPm} is large enough to ensure that the concentration nE(LR)/S at the cell membrane

is small, the uptake rate of a cell is {JPm}πL2
R

nE(LR)
nEK

, where nEK is the half saturation

density. In surface area S of medium the uptake rate is JP = {JPm}S nE(LR)
nEK

(mol/t). The

yield of metabolite on enzyme equals yPE = {JPm}
{JE}

nE(LR)
4nEK

= {JPm}
JE

nE(LR)
nEK

.

Choosing the origin of length L in the center of a cell on the solid medium (for reasons
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that are obvious in the case of solitary feeding), the change in densities of enzyme and
product concentrations is for diffusivities ḊE and ḊP

0 = J̇E + DE
∂

∂L
nE(LR, t)

0 =
∂

∂t
nE(L, t) + k̇EnE(L, t) − ḊE

∂2

∂L2
nE(L, t)

0 = J̇P − DP
∂

∂L
nP (LR, t)

0 =
∂

∂t
nP (L, t) − k̇P nE(L, t) − ḊP

∂2

∂L2
nP (L, t)

The steady state profiles follow from the balance for enzyme molecules
∫∞
LR

nE(L) dL =

J̇E/k̇E, which have solution

nE(L) =
J̇ELE

ḊE

exp
(

LR − L

LE

)

for LE =
√

ḊE/k̇E

nP (L) =
k̇P

k̇E

ḊE

ḊP

(

J̇ELE

ḊE

− nE(L)

)

We have d
dL

nP (LR) = J̇E k̇P

ḊP k̇E
. The uptake equals J̇P (t) = ḊP

d
dL

nP (LR, t), while J̇E k̇P /k̇E

metabolites is produced when the extracellular enzyme buffer is full. The difference is lost
in the environment. The yield coefficient at infinite time is yPE = J̇P /J̇E. We define the

relative efficiency to be θ = yPE

ym
PE

= J̇P k̇E

J̇E k̇P
. Initially, when nE(L, 0) = nP (L, 0) = 0, we have

θ = 0; it takes a long time to build up to θ = 1, when all of the medium (apart from the
direct neighborhood of the bacteria) has metabolite density nP (∞).

Solitary digestion

Suppose now that a single spherical cell of radius LR lives half embedded on a homogeneous
medium and excretes enzyme molecules at specific rate {J̇E} (moles per cell’s surface
area per time) or at rate J̇E = {J̇E}4πL2

R in total. Cell’s uptake rate of metabolites is

{JPm}2πL2
R

nE(LR)
nEK

, so the yield of metabolites on enzyme is yEP = {JPm}

{J̇E}

nE(LR)
2nEK

.

The change in densities of enzyme and product concentrations is for diffusivities ḊE

and ḊP

0 = J̇E + DE
∂

∂L
nE(LR, t)

0 =
∂

∂t
nE(L, t) + k̇EnE(L, t) − ḊE

∂2

∂L2
nE(L, t) − 2

ḊE

L

∂

∂L
nE(L, t)

0 = J̇P − DP
∂

∂L
nP (LR, t)

0 =
∂

∂t
nP (L, t) − k̇P nE(L, t) − ḊP

∂2

∂L2
nP (L, t) − 2

ḊP

L

∂

∂L
nP (L, t)
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Figure 7.8: The relative to the yield of metabolite on enzyme for intracellular digestion, the
yield for social extracellular digestion builds up slowly in time, while that for solitary digestion
really takes a long time and builds up to a lower level. The red arrows stand for enzyme flux, the
green ones for metabolite flux.

The steady state profile of the enzyme and metabolite is

nE(L) =
J̇E

ḊE

LEL2
R/L

LE + LR

exp
(

LR − L

LE

)

nP (L) =
k̇P

k̇E

ḊE

ḊP

(

J̇E

ḊE

LELR

LE + LR

− nE(L)

)

Figure 7.7 compares enzyme and metabolite profiles for the social and solitary digestion
modes. Although the results depend on parameter values, quite a bit of metabolites are
unavailable for the cell, and the problem is much worse for solitary cells. It also takes
a long time to build up some yield, compared with intracellular digestion. The enzyme
profile reaches its steady state much earlier than the metabolite profiles; the metabolites
first must flush the whole medium before a steady state profile can build up.

Notation{241}, Fig
7.15 The notation in the caption of figure 7.15 is not fully consistent, since {J̇Xm} is here

quantified in mg POM/h, while the symbol assumes that it is quantified in C-mol per time.
The book has no symbol for “weight per time”, so we have to use wX to convert C-mol to
weight of food. So a better notation for the assimilation power is ṗA = J̇X{ṗAm}/{J̇Xm} =
wX J̇X{ṗAm}(wX{J̇Xm})−1, where {ṗAm}(wX{J̇Xm})−1 = 11.5 J mg POM−1.

Yield of biomass on substrate{243}
The table below (9.12) gives the yield Y = Yg

g
f

f−ld
f

, while the specific growth rate is

r = k̇e
f−ld
f+g

for V1-morphs (see {108}). Simple substitution of f and ld = gk̇M/k̇E gives
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Figure 7.9: When the inverse yield is plotted
against the inverse growth rate, an U-shaped
curve results. The parameters are Yg = 62.84
mg cell/mmol glucose, k̇E = 5.93 h−1 and k̇M =
0.042 h−1. This data set is used by [497] to
demonstrate that bacteria down-regulate their
maintenance in association with substrate avail-
ability. The fit shows, however, that this is
not the only possible explanation for these data,
since the DEB theory assumes that the specific
maintenance costs do not depend on food den-
sity and still fits the data.

Y −1 = k̇E

Yg

1+k̇E ld/(gr)

k̇E−r
= Y −1

g
1+k̇M/r

1−r/k̇E
. This specifies a three-parameter relationship between

1/Y and 1/r, which fits the data of Russell & Baldwin (1979) on Streptococcus bovis in
glucose-limited medium as reported in [497] very well. See Figure 7.9.

The yield of biomass on substrate YWX is not a DEB parameter, and depends on the
growth rate. Since the specific growth rate of 0.2 h−1 is rather large, the contribution of
maintenance is small. If we include bacteria with low reserve capacities YWX is about equal
to yV X = yV E yEX , where only yEX is likely to depend on the chemical potential of the
substrate, i.e. yV X ≃ ηV AµX with ηV A = 0.001 C-mol/ kJ. Since animals are biotrophs, so
their food mainly consists of polysaccharides, lipids and proteins, we expect that yV X = 0.4
till 0.6 C-mol/C-mol for animals (see the table at {137}).

Mechanism for reserve dynamics
{246}

The simplest catabolic flux that partially obeys the weak homeostasis and partitionability
requirements is first-order kinetics, [pC ] = kE[E], which is implied if all reserve molecules
have a constant probability rate for being used by metabolism for maintenance and growth.
This results in the specific growth rate ṙ = d

dt
ln V = (k̇E[E]−[ṗM ])/[EG] and reserve density

kinetics d
dt

[E] = [ṗA]−(k̇E + ṙ)[E]. As long as surface area is proportional to volume (these
morphs are called V1-morphs, this kinetics is weakly homeostatic because reserve density
[E] settles for constant [ṗA] = ṗA/V at a value that does not depend on the size of the
organism. It is not weakly homeostatic for other morphs, such as isomorphs, i.e. organisms
that do not change in shape during growth, surface area is proportional to volume2/3.
This specific catabolic flux is first-degree homogeneous in the reserve density and zero-
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degree homogeneous in structure, but also in the specific maintenance and growth costs
(because that latter three quantities do not occur in the specific catabolic rate). First-order
dynamics is, therefore, not partitionable.

Since reserve primarily consists of polymers (RNA, proteins, carbohydrates, lipids),
an interface exists between reserve and structure. For isomorphs structural homeostasis
means that the surface area of the reserve-structure interface is proportional to the ratio
of the amount of reserve and a length measure for the structure; for V1-morphs this means
that it is proportional to the amount of reserve. The mobilization rate of reserve is now
taken to be proportional to the surface area of the reserve-structure interface and allocated
to the SUs for maintenance and growth, called the catabolic SUs. The mobilized reserve
flux that cannot be bounded to these units is returned to the reserve, while the bounded
flux is further processed for maintenance and growth. Maintenance is demand-driven and
the flux is proportional to the amount of structure, while growth is supply-driven. The
amount of SUs is such that weak homeostasis results, which turns out to be proportional to
the amount of structure. Originally this proportionality constant would not have been the
value that results in weak homeostasis, as illustrated in Figure 7.10, so the proper setting
in an evolutionary achievement.

Polymers as such do not take part in metabolism as substrates, their use as substrate
involves monomerization. The decomposition of many types of source polymers and other
compounds into a limited number of types of central metabolites before polymerization into
biomass (growth) is known as the ‘funnel’ concept [236]. The next step in the evolutionary
development of reserve dynamics is to avoid the rejection of mobilized reserve by the
creation of local pools of monomers from which the SUs take their substrate, and linking
the pool size of the monomers of reserves to that of the polymers (this is implied by
the strong homeostasis assumption). The avoidance of rejection of mobilized reserve is
especially important for large body sizes (in eukaryotes) and reproduction via eggs or seeds
(so much later in the evolution). The result for V1-morphs is that [ṗC ] = (k̇E − ṙ)[E], with

the consequence that the specific growth rate amounts to ṙ = k̇E [E]−[ṗM ]
[E]+[EG]

and the reserve

density kinetics to d
dt

[E] = [ṗA] − k̇E[E].

Now more technically recapitulated, the derivation of the reserve dynamics has the
following steps
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• reserve and structure are spatially segregated

• the mobilization of reserve is at a rate proportional to the surface area of the reserve-
structure interface and allocated to catabolic SUs

• rejection of mobilized reserve occurs because the catabolic SUs being busy; the re-
jected flux returns to the reserve

• the bounded (somatic) catabolic SUs dissociate to the demand-driven maintenance
SUs and via growth, see Figure 7.11

• the number of catabolic SUs is such that weak homeostasis is achieved, which depends
on the specific rate of reserve mobilization relative to the dissociation rate, see Figure
7.10

The surface area of the interface of reserve and structure is proportional to ME for V1-
morphs and to ME/L for isomorphs (for which length L ∝ M

1/3
V ) if structural homeostasis

applies. The reserve is mobilized at rate J̇EC = ME k̇E for V1-morphs and at rate J̇EC =
ME v̇/L for isomorphs.

The dynamics of the fraction of unbounded SUs for V1-morphs is

d

dt
θ· = (1 − θ·)k̇ + jEM/n − θ·k̇EmE/n

where n = N/MV denotes the specific number for SUs, k̇ the dissociation rate of the SUs
and jEM = J̇EM/MV the specific somatic maintenance costs. The steady state fraction of
unbounded SUs then amounts to

θ∗· =
k̇ + jEM/n

k̇ + k̇EmE/n

while the specific growth rate equals ṙ = (1 − θ∗· )n yV E k̇ = mE k̇E−jEM

mEx+yEV
for x = yEV k̇E

nk̇
. The

mobilized reserve flux of size ME k̇E is partitioned into the flux ME(k̇E − ṙ) that is accepted
and used for somatic maintenance at rate jEMMV and growth (i.e. structure is synthesized
at rate ṙMV ), and the flux MExṙ that is rejected and returned to the reserve. The latter
flux can be seen (formally) as a synthesis of reserve, which helps to see that for x = 1
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Table 7.2: Three steps in the evolution of reserve dynamics, and the implications for the spe-
cific catabolic flux, the specific growth rate and the dynamics of the reserve density. Symbols:
[E] = E/V reserve density, V structural volume, L = V 1/3 structural length, [ṗC ] = ṗC/V
specific catabolic flux, [ṗM ] = ṗM/V specific maintenance flux, [ṗA] = ṗA/V (volume-)specific
assimilation flux, {ṗA} = ṗA/L2, surface area-specific maintenance flux, [EG] specific costs for
structure, k̇E reserve turnover rate, v energy conductance.

module spec catab spec growth reserve density

[ṗC ] ṙ = d
dt lnV d

dt [E]

first order [E]k̇E
[E]k̇E−[ṗM ]

[EG] [ṗA] − [E](k̇E + ṙ)

V1-morphs [E](k̇E − ṙ) [E]k̇E−[ṗM ]
[E]+[EG] [ṗA] − [E]k̇E

isomorphs [E](v̇/L − ṙ) [E]v̇/L−[ṗM ]
[E]+[EG] ({ṗA} − [E]v̇)/L

(so n = yEV k̇E/k̇), homeostasis is most effective because reserve is then synthesized at the
same specific rate as structure, so the reserve density is not affected.

The dynamics of the reserve density becomes

d

dt
mE = jEA − mE(k̇E + ṙ(1 − x))

where jEA is the specific assimilation rate, which depends on substrate density and so typi-
cally fluctuates in time. The catalyzing SUs at the reserve-structure interface experience a
local chemical environment that changes with − d

dt
ln mE|jEA=0. Figure 7.10 gives the stan-

dard deviation of this quantity as function of x, when the assimilation rate jumps randomly
between 0 and some fixed value; so the assimilation process follows an alternating Poisson
process. This standard deviation equals zero for x = 1, but increases almost proportional
to the deviation from this value. The tuning of the number of SUs can be seen as one of
the mechanisms organisms use to improve homeostasis.

The specific catabolic flux [pC ] = [EG]ṙ + [ṗM ] = [E](k̇E − xṙ) is partitionable for

all positive values of x. This is because [ṗC ] = [E] [EG]k̇E+x[ṗM ]
x[E]+[EG]

= [E] [EG]′k̇E+[ṗM ]
[E]+[EG]′

. So, x

only affects the apparent growth costs, [EG]′ = [EG]/x. In the specific growth rate r, and
also affects the apparent turnover rate and the maintenance rate. The abundance of SUs,
therefore, affects parameter values, not model structure.

Monomers being part of the reserve, the strong homeostasis assumption implies that
the amount of monomers MF is a fixed fraction of the reserve, MF ∝ ME. It might be by
rapid inter-conversion of the first order type. The problem is then how the cost is paid,
because the energy drain that is involved should be evident in the respiration rate, while
eggs hardly respire initially. A more likely possibility is that monomerization is product
inhibited and ceases if the monomers per polymer reach a threshold. The monomerization
cost is then covered by maintenance and growth. For an individual with an amount of
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Figure 7.12: The poly-β-hydroxybutyrate
(PHB) density (on the basis of C-mol/C-mol)
in aerobic activated sludge at 20◦C. The fitted
curve is an exponential one with parameter
0.15 h. Data from [43]. She pointed in her
thesis to [11] who found that the number of
PHB granules per cell is fixed at the earliest
stage of polymer accumulation. This supports
the structural homeostasis hypothesis.

structure MV and reserve ME, the kinetics of the amount of monomers MF could be

d

dt
ME = −ME(k̇EF − mF

mE

k̇FE);
d

dt
MF = yFEME(k̇EF − mF

mE

k̇FE)

with mE = ME/MV and mF = MF /MV . This kinetics makes that in steady state
m∗

F

m∗

E
= k̇EF

k̇FE
. The monomerization occurs at the E-V interface, which has a surface area

proportional to E/L in isomorphs, where structural length L ∝ M
1/3
V . This makes that

kEF and kEF are proportional to L−1 as well.

Empirical support for reserve dynamics
{247}

Janneke Beun obtained empirical support for the first order dynamics of reserves on the
basis of densities. See Figure 7.12.

Structural homeostasis, derivation of Eq (7.12) - (7.22)
{247}

Eq (7.12)-(7.22) can be derived as follows.

The κ-rule states: κṗC = ṗG+ṗM . Since ṗG = µGV
d
dt

MV , we have κṗC = µGV
d
dt

MV +ṗM ,
or

d

dt
MV = µ−1

GV (κṗC − ṗM)

= ηV GκṗC − µ−1
GV [ṗM ]V for ηV G = µ−1

GV and [ṗM ] = ṗM/V

= ṗCηV C − µ−1
GV [ṗM ]MV /[MV ] for ηV C = ηV Gκ and [MV ] = MV /V

= ṗCηV C − MV k̇M which is (7.14)

with k̇M = [ṗM ]
µGV [MV ]

= [ṗM ]
[EG]

. Eq (7.13) follows by analogy because allocation to membranes
is treated similarly as allocation to structure.
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From (7.14) we have that

d

dt
ln V =

d

dt
ln MV = M−1

V

d

dt
MV = [ṗC ]ηV C/[MV ] − k̇M .

Starting from (7.12) and applying the chain rule for differentiation:

d

dt
[E] = [ṗA] − [ṗC ] − [E]

d

dt
ln V

substituting d
dt

ln V

d

dt
[E] = [ṗA] − [ṗC ] − [E]([ṗC ]ηV C/[MV ] − k̇M)

[ṗC ] =
[ṗA] − d

dt
[E] + k̇M [E]

1 + [E]ηV C/[MV ]
which is (7.16)

From (7.13) we get by division through V

[ṗC ] = µCCV −1

(

d

dt
MC + MC k̇C

)

substitute (7.17) and (7.18)

= µCC
{MCn}
[En]

V −1/3

(

d

dt
[E] +

2

3
[E]

d

dt
ln V + [E]k̇C

)

substitute d
dt

ln V

= µCC
{MCn}
[En]

V −1/3

(

d

dt
[E] +

2

3
[E]([ṗC ]ηV C/[MV ] − k̇M) + [E]k̇C

)

now solve [ṗC ]

=
{MCn}V −1/3

[En]ηCC

d
dt

[E] + [E](k̇C − 2
3
k̇M)

1 − {MCn}V −1/3

[En]ηCC

2
3

ηV C

[MV ]
[E]

with ηCC = µ−1
CC

=
d
dt

[E] + [E](k̇C − 2
3
k̇M)

[En]ηCC

{MCn}V −1/3 − 2
3

ηV C

[MV ]
[E]

=
d
dt

[E] + [E](k̇C − 2
3
k̇M)

k̇C

v̇
V 1/3 − 2

3
ηV C

[MV ]
[E]

for v̇ =
{MCn}k̇C

[En]ηCC

equating this to (7.16) and solving for d
dt

E

d

dt
[E] =

k̇C

v̇
V 1/3[ṗA] − [E]

(

2
3

ηV C

[MV ]
[ṗA] − k̇C

v̇
V 1/3k̇M + k̇C − 2

3
k̇M

)

− [E]2k̇C
ηV C

[MV ]

1 + k̇C

v̇
V 1/3 + 1

3
ηV C

[MV ]
[E]

for ηCC → ∞ and k̇C → ∞ such that ηCC/k̇C , and so v̇, remains constant

=

1
v̇
V 1/3[ṗA] − [E]

(

1 − 1
v̇
V 1/3k̇M

)

− [E]2 ηV C

[MV ]
1
v̇
V 1/3

= [ṗA] − [E]
(

v̇V −1/3 − k̇M

)

− [E]2
ηV C

[MV ]
v̇V −1/3 which is (7.22)
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Number of vesicles {248}
Paragraph 3 “ Suppose that the number of vesicles .. see Figure 7.2” tries to explain the
supposed kinetics of vesicles. Suppose that the amount of structure increases, but not
the amount of reserves; this cannot happen in the natural dynamics of the system, but
we, as experimenters, can simply change the value of the state variables. The amount of
membranes is proportional to EV −1/3, so the amount of membranes has to shrink, which
means that the vesicles have to reorganize themselves into a smaller number of bigger
vesicles, with the same total volume (because we did not change the amount of reserve).
This reorganization is assumed to be fast relative to the change of the state variables (here
the amount of structure). Please realize that when two spherical vesicles of equal size meet
and merge into a single vesicle with a double volume, it cannot have a spherical shape.
This is because the amount membrane that wraps the merged vesicle is too large for a
spherical shape.

Dilution by growth
{249}

Paragraph 4 discusses the problem when effects of dilution by growth on reserve dynamics
are small. If reserve dynamics, rather than reserve density dynamics, would be a first order
process, we would have d

dt
E = ṗA− v̇EV −1/3, so that d

dt
[E] = [ṗA]− v̇[E]V −1/3− [E] d

dt
ln V .

The effects of dilution by growth are small if d
dt

ln V ≪ v̇V −1/3, i.e. V −2/3 d
dt

V ≪ v̇. Specific
growth in volume equals that in C-moles, V −1 d

dt
V = [MV ]−1 d

dt
MV , while growth in C-

moles relates to growth power as d
dt

MV = µ−1
E yV E ṗG, which leads to d

dt
ln V = ṗGyV E

[MV ]µE
.

Using Table 3.5 for ṗG and Table 3.4 for g, MEm and mEm, and V 1/3
m = v̇

k̇Mg
we arrive

at V −2/3 d
dt

V = v̇
g

e−l−lh
1+e/g

. This quantity is much smaller than v̇ if e − l − lh ≪ g + e, or
g ≫ −l − lh. Obviously, we always have that g > 0. This result simply means that the
effects of dilution by growth are small for large g, and the dilution by growth can never
dominate reserve dynamics. This latter is obvious, since growth is fueled by the use of
reserves, so we can never have the combination of a large dilution by growth and a small
use of reserve.

7.1 Organelle-cytosol interactions
{250}

Here we consider the problem of how to deal quantitatively with the dual function of many
cellular compounds: their use as source for energy as well as building blocks [327]. Because
of this duality, the fate of metabolites should generally depend on the cellular growth rate.
To focus ideas, let us briefly discuss a specific example.

The nine transformations of the linear metabolic pathway of the tricarboxylic acid
(TCA) cycle amount to the oxidation of the acetyl group of acetyl-CoA to CO2:

C2H3O-SCoA + 3 NAD+ + FAD + GDP3− + P2−
i + 2 H2O →

2 CO2 + 3 NADH + FADH2 + GTP4− + 2 H+ + H-SCoA
The H-SCoA re-binds to pyruvate or fatty acid for the next cycle; the reduced co-enzymes
NADH and FADH2 are re-oxidized by dioxygen in a multi-step transformation. The free
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Figure 7.13: The resources that are mobilized from the reserve by the catabolic flux are allo-
cated to maintenance and growth, i.e. increase in structure. When the reserve density increases,
the catabolic flux and the allocation to growth increase, but not the allocation to maintenance
(right panel; widths of arrows indicate the sizes of fluxes). The flux of substrate to the enzy-
matic pathway is proportional to the catabolic flux. The mixture of products and intermediary
metabolites that are released from a linear pathway and allocated to maintenance (or growth) is
constant. This paper solves the problem of how the non-linear dynamics of the pathway should
be organized to fulfill this complex task.

energy is used to convert ADP and Pi to ATP via a proton gradient across the mitochondrial
inner membrane, as is well known. What is usually less emphasized in text books is that
the intermediary metabolites (e.g. citrate, succinate, fumarate, malate) are also used as
building blocks. So not all the pyruvate that is passed to mitochondria should be combusted
completely. Cells’ need for building blocks, relative to that for ATP, depends on the
growth rate, and hence on the rate of pyruvate allocation to mitochondria. The six non-
membrane-bound enzymes of the TCA cycle are released from the gel-like mitochondrial
matrix by gentle ultrasonic vibration as a very large multi-protein complex [363]. This
spatial organization suggests interactions between the enzymes that might be responsible
for the regulation of the proper ATP/building blocks ratio.

We first reformulating the dual function problem more precisely in quantitative terms
and place it in the context of the Dynamic Energy Budget theory. We then show how
Synthesizing Units can be used to model cell’s regulatory functions for linear and cyclic
pathways, and finally we set up a Metabolic Control Analysis for the situation where
metabolites are used to synthesize enzymes that transform these metabolites.

7.1.1 Formal problem

Consider an n-step linear metabolic pathway, as illustrated in Figure 7.13, which is medi-
ated by enzymes S1, · · · , Sn with the following i-th step:

Xi−1 → yXiXi−1
Xi + yPiXi−1

Pi with i = 1, · · · , n. (7.1)

A molecule of intermediary metabolite Xi−1 is transformed into yXiXi−1
molecules of an-

other intermediary metabolite Xi and yPiXi−1
molecules of product. (Alternatively, the
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yield coefficients y are probabilities that a metabolite transforms respectively to the next
metabolite in the pathway or to the product.) Other substrate molecules might be in-
volved as well, but their availability is assumed to be such that they do not limit the
rate of transformation. The product Pi might actually be composed of a set of (possibly
different) molecules, rather than a single molecule. Products are, therefore, taken to be
generalized compounds, which are mixtures of chemical compounds such that the chemical
composition of the mixture does not change. Without loss of generality we can identify
the last intermediary metabolite Xn with the last product Pn. The substrate flux JX0

to
the pathway is given by a model for the whole cell and might vary (slowly) in time. If all
intermediary metabolites would follow the full pathway (which they generally do not), we
have the overall transformation

X0 →
n
∑

i=1

yPiX0
Pi with yPiX0

= yPiXi−1
Πi−1

j=1yXjXj−1
for i = 2, · · · , n (7.2)

We now consider the situation where some intermediary metabolites follow only part of
the pathway and step out of the transformation process at the various nodes of the pathway
and become available for two cellular functions: maintenance and growth of structure, see
Figure 7.13. Cellular maintenance and growth require the intermediary metabolites Xi

and products Pi in possibly different relative amounts:
∑

i

yXiXM
Xi +

∑

i

yPi+1XM
Pi+1 → XM (7.3)

∑

i

yXiXG
Xi +

∑

i

yPi+1XG
Pi+1 → XG (7.4)

where XM and XG are taken to be generalized compounds that are involved in the main-
tenance and growth process, respectively, and the yield coefficients y are taken to be
stoichiometric constants (i.e. fixed constant whose values follow are constraint by mass
conservation). This latter requirement yields the important conclusion that all products
and intermediary metabolites that are released from the pathway depend linearly on the
growth rate. To see this, note that the released material at growth rate zero is allocated
to maintenance. If more material is released than is needed for maintenance, the extra
material is allocated to growth. If, for example, the growth rate is doubled, then twice
as much material per unit of time is needed for growth, provided that structure does not
change in composition. Maintenance has priority over growth. Accordingly, the flux ratio
JXG

/JXM
depends on the flux JX0

in a very special way, as will be discussed below.
The problem now is that the mass balance at the whole-cell level forces us to assume

that the chemical composition of the mixture of metabolites and products that is allocated
to maintenance is constant. The same applies to the mixture that is allocated to growth,
while the composition of both mixtures will differ. This mass balance does not and cannot
account for leaks from a pathway, where leaks are defined to be fluxes that are not associ-
ated to maintenance or growth (or any other process that the whole-cell model specifies).
What does this imply for the dynamics of the pathway? How is pathway kinetics linked
to cellular requirements for particular compounds? The cell has many pathways and if
each pathway produced compounds that are not allocated to maintenance or growth, any
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model at the cellular level would be problematic, unless the cellular model incorporated
the details of the then (very large) set of models for all different pathways. Such a complex
model would hardly contribute to further insight concerning cellular metabolic functions
and would be highly impractical in most applications. Consequently, we here discuss a
consistency issue between a whole-cell model and model for the dynamics of a pathway.

The cellular requirements can be expressed in the overall transformation

X0 → YXMX0
XM + YXGX0

XG (7.5)

where the variable stoichiometric coefficients Y depend on the flux of substrate JX0
to the

pathway. Both these coefficients and the flux must be specified by a model for the whole
cell, which we will now specify.

7.1.2 Problem in DEB context

To make a clear notational distinction between the two levels of organization (pathway
and cell), we will mark all yield coefficients (i.e. mass-mass couplers) that link the levels
with ◦.

Substrate X0 is released from the reserve as part of the catabolic flux, so

JX0
= y◦

X0EJE,C or for jX0
= JX0

/MV jX0
= y◦

XMEjE,C (7.6)

Generalized compound XM participates in the maintenance flux, so

JXM
= y◦

XMEJE,M or for jXM
= JXM

/MV jXM
= y◦

XMEjE,M (7.7)

while generalized compound XG is used for building structure, so

JXG
= y◦

XGV JV,G or for jXG
= JXG

/MV jXG
= y◦

XGV r (7.8)

Compound XG differs from the structure XV by the inclusion of compounds that are used in
the overhead of growth and by that fact that more than one pathway will deliver compounds
that are used in growth. For yXMX0

= y◦
XME/y◦

X0E and yXGX0
= y◦

XGV /(y◦
X0EyEV ), the

variable yield coefficients required in (7.5) can now be expressed in terms of DEB fluxes as

YXMX0
=

JXM

JX0

=
yXMX0

1 + yEV r/jEM

and YXGX0
=

JXG

JX0

=
yXGX0

1 + jEM/(yEV r)
(7.9)

The enzymes that are involved in the metabolic pathway are, by definition, part of the
reserve and/or structure since these two components constitute the whole cell. So the
amount of the i-th enzyme, MSi

, can be written as weighted sums of reserve and structure:

MSi
= nSiEME + nSiV MV = (nSiEmE + nSiV ) MV with mE =

jEM + ryEV

kE − r
, (7.10)

where chemical index nij specifies how much of i is present in compound j. The first
index,i, typically refers to an chemical element present in compound j, but in the situation
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SUi SUi+1
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JXi−1,F

�6
JXi−1,R

-

JXi,P

-

JXi,F

�6
JXi,R

-

JXi+1,P

Figure 7.14: The arrival (F , for “feeding”),
rejection (R) and production (P ) fluxes for
two Synthesizing Units that are involved in a
metabolic pathway. In a linear pathway for
i = 1, · · · , n we have that JXi,P = JXi,F .

of a generalized compound j, it can also relate to a compound. The yield coefficient yij

specifies how much of i is formed per (C-)mol of j in a transformation. Both n’s and y’s
are mol mol−1; n’s refer to chemical compositions, y’s to transformation efficiencies. This
notation is standard in microbiology.

The costs for synthesis of the enzymes appear in the yield coefficients for assimilation
and growth:

yXE = 1/yEX = y◦
XE +

∑

i

nSiE yXSi
(7.11)

yEV = y◦
EV +

∑

i

nSiV yESi
(7.12)

Turnover costs of enzymes that are part of the structure should be included in the specific
maintenance costs as

jE,M = j◦E,M + kSi
nSiV y∗

ESi
(7.13)

where y∗
ESi

= yESi
if no reserve components are saved from the decomposition of enzyme

Si; generally we have y∗
ESi

≤ yESi
. The turnover of enzymes that are part of the reserve

is implied by the reserve turnover. If both nSiE > 0 and nSiV > 0, we must have that
kSi

= kE to avoid a distinction between enzyme molecules that are part of the reserve and
of the structure.

Notice that the intermediary metabolites of the metabolic pathway, Xi, don’t appear
in the reserve or structure; strict consistency requires that their amounts are negligibly
small, and no need exists to evaluate their concentrations in the highly spatially structured
internal environment of the cell. The maintenance compound XM will be excreted in one
form or another, just like part of the growth compound XG, while another part of XG

will be included in the structure XV . This completes the placement of our dual function
problem in the context of the DEB theory for we now have defined and related the various
fluxes at the cellular level that specify the fluxes and the variable yield coefficients in (7.5).

7.1.3 Fluxes through linear pathways

We now specify the fluxes through the linear metabolic pathway as a function of the arrival
flux of substrate to the pathway, including the branches of rejected fluxes of intermediary
metabolites and products. We need interaction between SUs in the pathway, because
without interaction, some intermediate metabolites always escape further transformation,
while the cell might not need them for maintenance or growth. For this purpose we
introduce n − 1 handshaking parameters αi, 0 ≤ αi ≤ 1, that affect the release of product
and the binding of substrate between SU i and i + 1. The unbound fraction of the i-th
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SU changes such that if the handshaking parameter αi = 0, the handshaking is open and
the SUs operate independently. If αi = 1, however, the handshaking is closed and no
intermediary metabolites Xi are released if the binding probability ρi = 1; an SU only
releases its product if the receiving neighbour SU is in the binding state. This coordinates
the activities of all the SUs in the pathway and quantifies the distributed release of products
and intermediary metabolites. If the handshaking parameter αi is set to zero, all control
is “bottom up” because the SUs do not interact and the behaviour of the whole follows
(in complex ways) from the behaviour of the units. If the handshanking parameters are
increased, the control becomes increasingly “top down”, cf [514] since the behaviour of the
whole feeds back to the behaviour of the units. If the handshaking is closed for all SUs
in the pathway, αi = 1 for i = 1, · · · , n − 1, and binding is sure, ρi = 1 for i = 1, · · · , n,
then the full pathway acts as if it is just a single SU (see appendix) and all metabolites X0

that are processed are transformed into products. The behaviour of the units is then fully
controlled by the behaviour of the whole.

We use a time scale argument to derive the arrival (F ), rejection (R) and production
(P ) fluxes of intermediary metabolites in terms of the steady state binding fractions of the
SUs. (We use F for “feeding” to indicate arrival rates to avoid confusion with assimilation,
which we also need; when a metabolite flux is “fed” to an SU, it does not mean that all will
be “eaten”). All intermediary metabolites Xi that are produced by the i-th SUs, arrive
at the i + 1-th SUs, so JXi,F = JXi,P . The appendix gives the derivation of the pathway
kinetics, which amounts for i = 1, · · · , n− 1 to the following changes of unbound fractions,
θi, of SUs:

d

dt
θi = (1 − αi(1 − θi+1) − θi) ki − (θi + αi−1(1 − θi)) ρiJXi−1,F /MSi

(7.14)

d

dt
θn = (1 − θn)kn − (θn + αn−1(1 − θn)) ρnJXn−1,F /MSn (7.15)

Setting the change in the fractions, (7.14, 7.15) equal to zero, we obtain for the unbound
fractions of the i-th SUs at steady state (denoted by ∗) as

θ∗i =
(1 − αi + αiθ

∗
i+1)ki − αi−1ρiJXi−1,F /MSi

ki + (1 − αi−1)ρiJXi−1,F /MSi

for i = 1, · · · , n − 1 (7.16)

θ∗n =
kn − αn−1ρnJXn−1,F /MSn

kn + (1 − αn−1)ρnJXn−1,F /MSn

(7.17)

where the arrival flux JX0,F of substrate to the pathway is given. Since SU i exists in MSi

copies, and produces yXiXi−1
intermediary metabolites Xi from each molecule Xi−1, the

production fluxes are

JXi,P = (1 − αi(1 − θi+1) − θi) ki yXi,Xi−1
MSi

for i = 1, · · · , n − 1 (7.18)

JXn,P = (1 − θn)kn yXn,Xn−1
MSn (7.19)

The set of equations (7.16–7.19) determine the unbound fractions θi and arrival rates JXi,F

for all SUs. Since mass conservation implies that the rejection fluxes equal the difference
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between the arrived and the processed fluxes, the rejection fluxes are

JXi,R = JXi,P (1 − (θi+1 + αi(1 − θi+1)) ρi+1) (7.20)

= JXi,P − JXi+1,P /yXi+1,Xi
for i = 0, · · · , n − 1 (7.21)

JXn,R = JXn,P (7.22)

Note that, if αi = ρi = 1, no rejection of Xi, i = 0, · · · , n−1, occurs, so JXi,R = 0. This
is how closed handshaking is constructed. A nice property of this construction is that more
than once a particular enzyme turns out to be a consortium of several smaller ones. As long
as the members of the consortium pass metabolites by direct channeling (i.e. the enzyme-
product complex does not release the product molecule into the liquid environment, but
the molecule is directly bound to a neighbouring enzyme molecule in a enzyme-substrate
complex), such a discovery has no consequence for the pathway model. Constraints apply
to parameter values; the handshaking parameters restrict the maximum flux that can be
processed. With an open handshaking protocol all excess flux is simply rejected, but
that possibility becomes increasingly restricted by gradually closing the handshaking. The
physical impossibility to allocate more than can be processed leads to unbound fractions
outside the interval (0,1). Any choice of parameter values should be tested for its validity.

This completes the model specification of cells’ regulatory functions in terms of the
handshaking and the binding parameters. The fluxes and bound fractions can be obtained
analytically for n = 2, but you don’t want to see the result. The result is of little relevance
for our purpose, fortunately, because the DEB model already specifies the fluxes. Our
interest is in the implied constraints; the next section shows that these can be obtained
without explicitly solving for the fluxes.

7.1.4 Matching the pathway and the DEB model

We specified the flux of substrate to the pathway (7.6), and the (variable) yield coefficients
(7.9), the maintenance flux

JE,M ≡ jE,MMV (7.23)

and the growth flux

JE,G = JE,C − JE,M = yEV JV,G and JV,G = rMV with r =
kEmE − jE,M

mE + yEV

, (7.24)

which together quantify the transformation at the cellular level (7.5). We also specified
how the fluxes of substrates for maintenance and growth (7.18 – 7.22) as released by the
pathway depend on the flux of substrate to the pathway. Now we are ready for the core of
this paper: How does the pathway model for metabolites link with the DEB model for the
cell under the various growth conditions? The cell will experience a varying concentration
of substrate in the environment, which results in a varying reserve density, and hence a
varying allocation to growth. Can we avoid leaks under all conditions? We here use the link
between two levels of organization to extract information about cells regulatory activities.
This exercise will reveal useful constraints on parameter values.
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The specific flux of substrate X0 to the pathway equals by equations JE,C ≡ jE,CMV =
(kE − r)ME, (7.24) and (7.6)

jX0,F = nX0E jE,C = nX0E(jE,M + ryEV ) = nX0E(kE − r)mE = nX0E
jE,M + kEyEV

1 + yEV /mE

(7.25)

where the specific growth rate r and the reserve density mE can vary in time. We now
equate the release of intermediary metabolites and products from the pathway to their use
by the cell. Given (7.3, 7.4), (7.7) and (7.8), the specific required fluxes of intermediary
metabolites and products are,

jXi,P = jPi
/yPiXi

= yP
XiE

jEM + yP
XiV

r for i = 1, · · · , n (7.26)

with yP
XiE

= yPiXM
y◦

XME/yPiXi
and yP

XiV
= yPiXG

y◦
XGV /yPiXi

jXi,R = jXi
= yXiE jEM + yXiV r for i = 0, · · · , n − 1 (7.27)

with yXiE = yXiXM
y◦

XME = yP
Xi,E

− yP
Xi+1,E/yXi+1,Xi

and yXiV = yXiXG
y◦

XGV = yP
Xi,V

− yP
Xi+1,V /yXi+1,Xi

The first equality sign in (7.26), and in (7.27), is a consequence of the following consider-
ations for the links between the fluxes that are required by the cell and those released by
the pathway. The released intermediary metabolites Xi, i = 0, · · · , n − 1, are the rejected
fluxes JXi,R; the released products Pi, i = 1, · · · , n, are linked to the production fluxes
of the metabolites one step earlier. Since both intermediate metabolite Xi and product
Pi are stoichiometrically linked to Xi−1, product Pi is linked to Xi with yield coefficient
yPiXi

= yPiXi−1
/yXiXi−1

.
We must have that jXi,P > jXi,R for all growth rates r, which implies from (7.26) and

(7.27) that yPiXM
> yPiXi

yXiXM
and yPiXG

> yPiXi
yXiXG

.

Are fluxes of substrates for growth proportional the growth rate?

If primes denote differentiation with respect to the specific growth rate r, the linearity of
all production and rejection rates in r translates into j′′Xi,R

= 0 and j′′Xi,P
= 0. Double

differentiation of (7.16) - (7.22) with respect to r results in the following relationships
for jXiP = JXiP /MV , and mSi

= MSi
/MV = nSiEmE + nSiV and scaled reserve density

mE =
jE,M+ryEV

kE−r
.

0 = θ′′i jXi−1P + 2θ′ij
′
Xi−1P for i = 1, · · · , n (7.28)

0 = (αiθ
′′
i+1 − θ′′i )mSi

+ 2(αiθ
′
i+1 − θ′i)m

′
Si

+ (1 − αi(1 − θi+1) − θi)m
′′
Si

(7.29)

for i = 1, · · · , n − 1

Consequently, m′
E = yEV +mE

kE−r
and m′′

E = 2
m′

E

kE−r
. It follows from condition (7.28) that θi

must be a linear fractional function of r, i.e. θi = (c1i − c2ir)/jXi,P for appropriate values
of c1i and c2i. After substitution of (7.25, 7.27, 7.26), the n relationships (7.18, 7.19) can
be rewritten as n equations of the type 0 =

∑4
j=0 cijm

j
E, which only holds for all possible

values of mE if cij = 0 for all 5n coefficients cij. Further analysis shows that this cannot
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be true if the relative needs for metabolites and products differ between maintenance and
growth. Thus our requirement of exact linearity in r cannot be achieved. However, as will
now be shown, this requirement can “almost” be attained.

Numerical studies of (7.16–7.19) reveal that given values for ki and nSiE, and nSiV , the
values for αi and ρi can be chosen such that jXi,P and jXi,R are almost perfectly linear
in the specific growth rate r for i = 1, · · · , n. The best goodness of fit depends on the
abundance parameters; for nSiE = 0, i.e. when the concentrations of enzyme are constant
and do not depend on the growth rate, the best fit is poor, indeed. The yield coefficients
y are in fact parameters at the whole-cell level and have been chosen in Figure 7.15, and
the abundances of all enzymes have been chosen equal, so nSiE = nSE and nSiV = nSV for
all i. The reason is that the channeling mechanism of substrate from one enzyme molecule
to another is then most simple. Another reason is to remove some of the parameters from
the system. The parameter for the maximum specific assimilation rate only served to fix
the maximum specific growth rate; the plots show the full range.

Figure 7.15 (left panel) shows that the production flux of substrate X0, which is released
from the reserve and fed to the pathway, is analytically linear in the growth rate. This is
because the fate of all mobilized reserve, including this substrate, is either maintenance or
growth. At growth rate zero, all compounds are used for maintenance. The DEB model
fully specifies the flux of substrate X0 to the pathway and the pathway model does not
affect it. Intermediary metabolite 4 is produced by the last type of SU in a linear pathway
of four types of SUs, and is passed to the cell (and used for maintenance or growth); it,
therefore, does not show up in the second panel for rejected fluxes. The difference between
the produced and the rejected fluxes for all compounds is used for further processing
in the pathway. The last panel shows that the SUs of the first type are very busy (in
processing substrate 0), but the other types are much less busy with this parameter choice.
Numerical studies indicate that linearity of product and rejected intermediary metabolite
fluxes is more difficult to achieve for increasing degrees of business of the SUs.

We checked by simulating (7.14, 7.15) that the pathway is stable for the parameter
values that are shown for the full range of growth rates; the speed of convergence to the
steady state increases with the specific growth rate. It also holds that, given values for
ki, αi and ρi the values for nSiE, and nSiV , can be chosen such that jXi,P and jXi,R are
close to linear in the specific growth rate r for i = 1, · · · , n. So either the abundance or
the control parameters (binding and handshaking parameters) can be fixed, and the other
can be chosen such that linearity results approximately. The fit to linearity can be further
increased by tuning these four parameters simultaneously for all nodes independently. The
significance of this result is that if the reserve is omitted from the cell model, and/or no
enzyme is associated with reserve, nSiE = 0, production and rejection fluxes deviate from
linearity in the specific growth rate and the pathway model does not match the cell model.
The Marr-Pirt model, for instance, which is a limiting case of the DEB model for vanishing
reserve, has a consistency problem with this pathway model. We believe that this result is
rather general, and applies to a large class of acceptable pathway models.
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Figure 7.15: The production and rejection fluxes, JXi,P and JXi,R, and the fraction of unbound
SUs, θi, as functions of the specific growth rate r in a linear pathway of length n = 4. The
numbers near the curves indicate the position in the pathway, i = 1, ., 4. The handshaking
and binding parameters are chosen such that the fluxes are “almost” linear in r (the amount
of material required for growth is proportional to the growth rate), which makes the fractions
linear fractional functions in r. The linearity is tested by best-fitting linear functions which are
plotted as well. The goodness of fit is within the resolution of the figure. The DEB parameters
are yEV = 1.2, kE = 0.4 h−1, jEM = 0.02 h−1, jEAm = 0.8 h−1 and the substrate concentration
for the pathway in the reserve is nX0E = 0.05.

Fixed pathway parameters
i 1 2 3 4
yXiXi−1

1 1 1 1
nSiE 0.032 0.032 0.032 0.032
nSiV 0.045 0.045 0.045 0.045
ki (h−1) 0.118 0.186 0.543 0.190

Pathway regulation and yield parameters
i 0 1 2 3 4
αi 0.7349 0.6652 0.0001 0.2663
ρi 0.6741 0.9134 0.9556 0.9681
yP

XiE
0.0500 0.0400 0.0368 0.0339 0.0311

yP
XiV

0.0600 0.0300 0.0240 0.0192 0.0153
yXiE 0.0100 0.0032 0.0029 0.0027 0.0311
yXiV 0.0300 0.0060 0.0048 0.0038 0.0154

7.1.5 Fluxes through cyclic pathways

We can test the robustness of the matching of the pathway model with the DEB model
for the whole cell behaviour by studying a metabolic cycle, rather than a linear pathway,
where the compound Xn is identical to X0 and the last SUs follow a handshaking protocol
with the first SUs. See Figure 7.16. When αn denotes the handshaking parameter between
SUs number n and 1 we have the following dynamics of the unbound fractions of the first
and last SU

d

dt
θ1 = (1 − α1(1 − θ2) − θ1) k1 − (θ1 + α0(1 − θ1)) ρ1JX0,F /MS1

+

− (θ1 + αn(1 − θ1)) ρ1JXn,F /MS1
(7.30)

d

dt
θn = (1 − αn(1 − θ1) − θn) kn − (θn + αn−1(1 − θn)) ρnJXn−1,F /MSn (7.31)

The production flux of metabolite Xn and rejection flux for X0 are

JXn,P = (1 − αn(1 − θ1) − θn) kn MSn yXn,Xn−1
(7.32)

JX0,R = JX0,F + JXn,P − yX0X1
JX1,P (7.33)
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Figure 7.16: The problem we try to
solve here is the same as illustrated in
Figure 7.13, but now for a cyclic path-
way. This is to study the robustness
of the solution we found for the alloca-
tion problem for maintenance and growth.

The rejection flux of X0 must again be linear in the specific growth rate r, so that

yX0E = nX0E + yP
XnE − yX0X1

yP
X1E (7.34)

yX0V = nX0E yEV + yP
XnV − yX0X1

yP
X1V (7.35)

Figure 7.17 shows the numerical results for the cyclic pathway; the setup of the figure
is similar to that for the linear pathway, Figure 7.15. Numerical studies indicate that,
compared to linear pathways, the handshaking and binding parameters in cyclic pathways
are easier to tune such that the production and rejecting fluxes are (almost) linear in the
specific growth rate.

Linearity only seems possible, however, as long as most enzyme is in the unbound
state. Although the rejection fluxes are used to minimize the deviations from linearity
in the specific growth rate, the computation of both the pathway and the linear fluxes is
based on the pathway and linear production fluxes, respectively, using mass conservation.
Notice that the yield parameters yX4E and yX4V are lacking, because X4 is assumed to be
identical to X0 and the rejection flux of X4 is included in that of X0.

The conclusion must be that the tuning between the pathway model and the whole-cell
model is not very sensitive to metabolic “details” of the pathway. This suggests that,
probably, branching pathways could also be tuned to consistency with the DEB model for
the whole cell; we did not investigate such pathways in much detail.

7.1.6 Cells’ design

In what might be called ”the principle of parsimony” one expects that the unbound frac-
tions of SUs are low, otherwise the cell is producing non-functional enzymes. These frac-
tions are linear fractional functions of the specific growth rate, which means that for some
value of the growth rate, the fractions are minimal, but this value for the growth rate can
differ among SUs. Parsimony is a much weaker criterion than optimality, and boils down
to the constraint that for each SU a value for the specific growth rate must exist for which
the fraction of unbound SU is small. Again we have to rely on numerical analyzes to study
how the bound fractions of SUs vary as a function of the growth rate. The numerical
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Figure 7.17: The production and rejection fluxes, JXi,P and JXi,R, and the fraction of unbound
SUs, θi, as functions of the specific growth rate r in a cyclic pathway of length n = 4. The
numbers near the curves indicate the position in the pathway, i = 0, 1, ., 4. The handshaking,
αi, binding, ρi, dissociation, ki and abundance, nSiE and nSiV , parameters are chosen such that
the fluxes best fitted the preset linear relationships in r, but all enzymes are assumed to be
equally abundant. So all yield parameters y were preset, but those for rejection follow from those
for production. The linear relationships are also shown, to check the goodness of fit, which is
almost within the graphical resolution. The DEB parameters are yEV = 1.2, kE = 0.4 h−1,
jEM = 0.02 h−1, jEAm = 0.8 h−1 and the substrate concentration for the pathway in the reserve
is nX0E = 0.05.

Pathway parameters
i 1 2 3 4
yXiXi−1

0.5 1 1 1
nSiE 0.065 0.065 0.065 0.065
nSiV 0.032 0.032 0.032 0.032
ki (h−1) 2.70 1.11 0.71 0.41

Pathway regulation and yield parameters
i 0 1 2 3 4
αi 0.5600 0.0018 0.0006 0.0015 0.2350
ρi 0.8100 0.8400 0.8500 0.9100
yP

XiE
0.0500 0.0400 0.0368 0.0339 0.0311

yP
XiV

0.0600 0.0300 0.0240 0.0192 0.0154
yXiE 0.0011 0.0032 0.0029 0.0027
yXiV 0.0154 0.0060 0.0048 0.0038

study is complicated by the fact that it is easy to arrive at combinations of parameter
values that result in biologically non-valid values for certain quantities: αi and ρi must be
in the interval (0,1) for all i, all other parameters must be positive. Even if these conditions
are fulfilled, there can be specific growth rates for which some θi become negative, which
is obviously invalid. As a consequence, the constraints on parameter values must be such
that this situation is avoided too. Since the values of the θ’s follow implicitly from (7.16)
and (7.17), these constraints can only be tested retrospectively, after having selected a set
of parameter values.

Metabolic control theory is a powerful tool to analyze the relative control of design
quantities for fluxes of metabolites in steady state [194]. In Figure 7.18 we present the di-

mensionless (normalized) flux elasticity coefficients εP
0i =

nX0E

JXi,P

∂ JXi,P

∂ nX0E
and εR

0i =
nX0E

JXi,R

∂ JXi,R

∂ nX0E

for all four nodes in a linear pathway as functions of the specific growth rate, using the
parameter values given in the legends of Figure 7.15. The relative abundance of substrate
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Figure 7.18: The elasticity coefficients for production (left) and rejection (right) fluxes, JXi,P ,
and JXi,R, with respect to the abundance of substrate to the pathway nX0E . The upper panels
show a linear pathway, with parameters as given in Figure 7.15; the lower panels show a cyclic
pathway, with parameters as given in Figure 7.17. We take εP

00 = 1.

X0 in reserve XE, i.e. nX0E, is proportional to the flux of substrate X0 to the pathway for
any value of the specific growth rate. The elasticity coefficients for the production fluxes
of the linear pathway are in the range of (0.5-1.0), and for the rejection fluxes in the range
of (1.0-1.5). The elasticity coefficient for the rejection of substrate 0 is very high for low
growth rates.

We can conclude that no simple relationship exists here between the values of the
elasticity coefficients and the transformation rates ki as was observed in linear pathways
where all metabolites follow the full pathway [194]. Moreover the specific growth rate
modifies the relationships substantially. Major differences between our pathways and the
ones studied in the literature [194, 221, 193, 504, 202, 434] are that in our case only
a fraction of the metabolites follow the full pathway and concentrations of intermediate
metabolites do not accumulate. It thus appears that the method is very sensitive for such
“details”.

A major field of application of metabolic control theory is in the evaluation of the effect
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of a possible increase or decrease of a particular enzyme on the performance of the whole
pathway. Starting from a combination of parameter values for which we have a match
between pathway performance and the cell’s needs, a change in a concentration of enzyme
directly results in a mismatch. This illustrates that the application of control theory in
the present context is problematic.

Empirical support for lichen growth
{251}

Strong empirical support for the linear growth of the diameter of the crustose saxicolous
lichen Caloplaca trachyphylla is given by [96].

Shape changes in plants
{253}

The suggestion for a shape correction function for plants that grow in a closed vegetation
is descriptive only. It has just two parameters, Vd and β, and the property that for V = 0
we have M(V ) = (V/Vd)

1/3, which is the shape correction function for V1-morphs, for
V = Vm3−1/β we have M(V ) = 1, which is the shape correction function for isomorphs,
and for V = Vm we have M(V ) = (V/Vd)

−2/3, which is the shape correction function for
V0-morphs, cf {29}. This simple choice can only be an approximation at best; the actual
change in shape will depend on the (sizes of the) neighbouring plants, which differs between
any two individuals. Notice that a closed vegetation consisting of V0-morphic plants have
a lot in common with crusts, that are discussed in 7.7.1 at {250}.

Metamorphosis in juvenile fish
{257}

In collaborative work with Laure Pecquerie, we extend the standard DEB model for an-
chovy with a juvenile I and II stage, separated by metamorphosis, to accommodate the
empirical observation that length increases approximately exponentially with age after
birth. Pigmentation occurs at metamorphosis, which marks the metamorphosis event. In
the embryo, juvenile II and adult stages, anchovy is isomorphic, but in the juvenile I state
V1-morphic. Stage transitions occur for values U b

H , U j
H and Up

H of the scaled maturity
UH = MH/{J̇EAm} = EH/{ṗAm}. Notice that dim(UH) = t L2.

Suppose that between birth b and metamorphosis j the early juvenile changes shape as
a V1-morph, while before birth and after metamorphosis is does not change shape and is
isomorphic; the shape correction function is M(V ) = (min(V, Vj)/Vb)

1/3 for V > Vb.

We here assume that physical length L relates to volumetric length L as L = L/δL,
for constant δL. In principle the value for δL in the embryo and juvenile II + adult stage
could be different, and many possibility for the relationship exists for the juvenile I, since
V1-morphy only concerns the relationship between surface area and structural volume.

So the change in scaled reserve, length and scaled maturity is given by for UH < Up
H :

d

dt
e = (f − e)v̇∗/L;

d

dt
L =

v̇∗

3

e − L/L∗
m

e + g
;

d

dt
UH = (1 − κ)eL2 gM(V ) + L/Lm

g + e
− k̇JUH
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with v̇∗ = v̇ and f = 0 for the embryo and v̇∗ = v̇M(V ). Furthermore L∗
m = v̇∗

k̇Mg
and

Lm = v̇
k̇Mg

. Notice that v̇∗ changes in a continuous (but not differentiable) way across stage

transitions, as does the reserve turnover rate v̇∗/L. For UH > Up
H we have d

dt
UH = 0, and

allocation to reproduction occurs. Notice that for U j
H = U b

H we have no juvenile I stage;
the individual then remains isomorphic during all stages, with v̇∗ = v̇ and M(V ) = 1. The
threshold U j

H is the only parameter that we introduced for the change in shape.
We also have L(0) = 0, UH(0) = 0 and e(ab) = f , where age at birth ab is given implic-

itly by UH(ab) = U b
H . All rate parameters depend on temperature, including the parameter

{J̇EAm} or {ṗAm} with which we scaled the cumulates investment into maturity; for the
scaling, however, we use the constant value that applies to some reference temperature and
avoid complex forms of dynamic scaling.

Names of parameters
{260}, l-
10There is a slight inconsistency in names of parameters here. The term ‘maximum (volu-

metric) length’ and the symbol Lm should better be reserved for Lm = κ{ṗAm}/[ṗM ] to be
consistent with ‘maximum volume’ as introduced at {94}. We then also need a new term,

such as ‘maximum ultimate (volumetric) length’ for L∞m = Lm − Lh = V 1/3
m − V

1/3
h to be

consistent with the label ‘ultimate (volumetric) length’ for L∞ = fLm − Lh. In all cases
we go from volumetric length to actual length by multiplying with the shape coefficient
δM; this should come with a specification of how we take the length, given the shape.
On top of that we have the complication that reserve can contribute to length, and that
it becomes necessary to differentiate between physical length and structural length, see
(2.5) at {31}. The symbols Lm and L∞ only quantify structure, not reserve. Notice that
organisms that have maintenance costs that are linked to surface area (heating, osmotic
work) cannot reach Lm, they can reach only L∞m at abundant food.

Diauxic growth: Inhibition and preference.
{263}

Diauxic growth is the property of populations of microorganisms to first grow more or
less logistically to a certain level in a batch culture, using one substrate only, and then
resume growth to a second higher level, using another substrate. So the use of the second
substrate is delayed until the first substrate is exhausted. This behaviour is species as well
as substrate-combination specific.

Carriers in the outer membrane typically only transport particular substrates from the
environment into the cell. This comes with the requirement to regulate gene expression for
carriers of substitutable substrates to match the substrate availability in the environment.
Data strongly suggest that allocation to the assimilation machinery is a fixed fraction of
the utilized reserve flux, and that the expression of one gene for a carrier inhibits in some
cases the expression of another gene. Inhibition strength is linked to the workload of the
carriers. This regulation mechanism has similarities to that of differentiation.

Figure 7.19 illustrates this for two data sets on the uptake by E. coli K21 of fumarate
and pyruvate and of fumarate and glucose (from [330]). Unlike pyruvate, glucose sup-
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Figure 7.19: The uptake of fumarate (F ) and pyruvate (P ) (see Figure A), and of fumarate
(F ) and glucose (G) (see Figure B) by E. coli K12 in a batch culture. Data from Narang et
al. [418]. Parameters: saturation coefficients (g l−1) KF = 0.089, KP = 0.012, KG = 0.013;
yield coefficients (g g−1 dry weight) yEF = 0.577, yEP = 0.015, yEG = 0.446, yEV = 1.2 (fixed);
max. specific uptake rates (g(h g dry weight)−1), jFm = 1.138, jPm = 40.15, jGm = 2.59; reserve
turnover rate (h−1) k̇E = 4.256; maintenance rate coefficient (h−1) k̇M = 0 (fixed); preference
parameter (-) wP = 0.941wF for pyruvate versus fumarate; wG = 12.15wF for glucose versus

fumarate; background expression (h−1) ḣ = 0 (fixed). Initial conditions: (A) F (0) = 2.0 g l−1,
P (0) = 2.1 g l−1, E. coli(0) = 0.037 g l−1, κF (0) = 0.96, mE(0) = 0.288 g g−1 dry weight; (B)
F (0) = 0.81 g l−1, G(0) = 1.11 g l−1, E. coli(0) = 0.013 g l−1, κF (0) = 0.99, mE(0) = 1.3 g g−1

dry weight

presses the uptake of fumarate. The background expression of carrier synthesis and the
maintenance requirements were set to zero, because the data provide little information on
this. The yield of structure on reserve was fixed (because the data give no information
on biomass composition). The data were fitted simultaneously to ensure that the uptake
parameters for fumarate and the reserve turnover rates are identical in the two data sets
(so removing degrees of freedom). Apart from the initial conditions, 12 parameters were
estimated for six trajectories. The fit is quite good, despite the constraint for the parameter
values for fumarate to be identical. The data in Figure 9A clearly show continued growth
after depletion of substrates, which requires reserves to capture; this cannot be done with
e.g. a Monod model.

Although their derivation has been set up slightly differently, the supply formulation
for inhibition is used in [65] to model substrate preference and diauxic growth in microor-
ganisms, while [555] used a demand formulation (see comment for {221}). See Figure 5.2.
The use of genes coding for substrate-specific carriers is here linked to the use of carriers;
the expression of one gene inhibits the expression of the other. When embedded in a batch
culture, the uptake rate of substrates S1 and S2 by biomass X (of V1-morphs) with reserve
density mE in a batch culture is given by

d

dt
S1 = −jS1

X; jS1
= κS1

jS1mfS1
; fS1

=
S1

S1 + KS1

,
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d

dt
S2 = −jS2

X; jS2
= κS2

jS2mfS2
; fS2

=
S2

S2 + KS2

; κS2
= 1 − κS1

,

d

dt
X = ṙX; ṙ =

k̇EmE − k̇M

mE + yEV

,

d

dt
mE = yES1

jS1
+ yES2

jS2
− mE k̇E,

d

dt
κS1

= (ṙ + ḣ)

(

w′
S1

κS1
fS1

w′
S1

κS1
fS1

+ w′
S2

κS2
fS2

− κS1

)

,

where j∗m is the maximum specific uptake flux of substrate ∗, f∗ is the scaled functional
response and K∗ the half-saturation coefficient for substrate ∗. The coefficient yE∗ is the
yield of reserve E on substrate ∗, k̇E the reserve turnover rate, k̇M the maintenance rate
coefficient and ṙ the specific growth rate. The fraction κS1

between 0 and 1 quantifies
the relative gene expression for the carrier of substrate S1 and w′

S1
the inhibition of the

expression of the gene for the carrier of substrate S1 by the expression of the gene for the
carrier of substrate S2; without loss of generality we can assume that 1 = w′

S1
+w′

S2
. Notice

that a single substrate induces full gene expression (κS1
→ 1 if fS2

= 0). The typically
very low background expression rate ḣ serves an antenna function for substrates that have
been absent for a long time. This readily extends to an arbitrary number of substrates.
See Figure 7.19 and [65] for an illustration of the application of this theory.

Invariance property
{266}, 8.1

Inge van Leeuwen observed that growth, as specified by (3.18), is not sufficient to derive
the invariance property. Reproduction, as specified by (3.48), is also required for this
derivation. From (3.48) also follows that κR2 = κR1; this is mentioned in Table 8.1, but
not in the text. The aging process (4.22) is required to derive that ḧa2 = ḧa1.
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Chapter 8

Comparison of species

Prokaryotic size range
{267}

Prokaryotes span a huge cellular size range; the largest is the colourless sulphur bacterium
Thiomargarita namibiensis with a cell volume of 2× 10−10 m3 [510], the smallest is Pelag-
ibacter ubique at 10−20 m3. This small size has the remarkable implication that it has less
than a single free proton in its cell if its internal pH is 7 as is typical for bacteria. This has
peculiar consequences for the molecular dynamics of metabolism [290].

Fish & molluscs {267}
The application of body size scaling relationships to marine fish and molluscs is discussed
in [567, 566, 83].

Primary parameters
{268}

The shortcut that [ṗJ ] = [ṗM ]1−κ
κ

, or [J̇EJ ] = [J̇EM ]1−κ
κ

, on {112} should not be imple-
mented in the basic theory for simplicity’s sake because this gives problems in some applica-
tions. In several cases size at first maturation seems to depend on food history in practice,
and if toxicants affect [ṗJ ], [ṗM ] or κ, we have to deal with the original rules for stage
transitions anyway. So the parameters Lb and Lp should be replaced by [Eb

H ] ≡ Eb
HL−3

m

and [Ep
H ] ≡ Ep

HL−3
m , and [k̇J ] should be included explicitly while [ṗJ ] should be avoided as

a parameter because it is not constant. The state of maturity is treated as information,
which requires an energy investment to build up, but this information itself does not repre-
sent a mass or energy pool. To avoid a formal conversion from energy to information, the
thresholds are quantified in terms of cumulative energy investment. The normalization of
the thresholds with respect to maximum volume is to achieve that the parameters become
independent of maximum length between species, but the involvement of other parameters
is necessary for this. This might not be handy in e.g. toxicity studies.

Moreover, the half-saturation constant should be treated as a compound parameter
K = {J̇XAm}/{ḃ}, where {ḃ} is the surface area-specific searching rate with dimension
volume of environment per time per surface area of organism. The half-saturation constant



168 8. Comparison of species

is a phenomenological parameter, and the behavioural parameter {ḃ} is much closer to the
underlying processes.

The parameters {J̇XAm} and {J̇EAm} can’t be subjected independently to evolution-
ary adaptation since the conversion efficiency yEX = {J̇EAm}/{J̇XAm} depends on basic
biochemical machinery that is conserved among eukaryotes (it is not possible to synthe-
size more ATP from a glucose molecule). Adaptation of {J̇XAm} by changes in the de-
sign of the motory and the digestive system seems more easy than in {J̇EAm}, which
involves more of the metabolic machinery (design of liver, kidneys etc). For this reason
{J̇XAm} = yXE{J̇EAm} is probably the best choice for being the compound parameter, and
so {J̇EAm} the basic design parameter.

In the light of the newly derived mechanism for the reserve dynamics, the maximum
reserve density should be a compound parameter [Em] = {ṗAm}/v̇, which give a nice
parallel with the maximum length Lm = κ{J̇EAm}/[J̇EM ] since both maxima are now the
result of underlying input/output processes, like the partition coefficient.

To avoid mass-energy conversions in the set of primary parameters, it seems best to
choose mass and volume only for assimilation and maintenance. The resulting set of
primary parameters becomes

symbol dim description process

{J̇EAm} # t−1L−2 surface area-specific max assimilation rate assimilation

{ḃ} l3L−2t−1 surface area-specific searching rate feeding
yEX # #−1 yield of reserve on food digestion
yV E # #−1 yield of structure on reserve growth
v̇ L t−1 energy conductance mobilization

{J̇ET} # t−1L−2 surface area-specific maint. costs heating/osmosis

[J̇EM ] # t−1L−3 volume-specific somatic maintenance turnover/activity

[J̇EJ ] # t−1L−3 volume-specific maturity maintenance regulation/defense
κ - allocation fraction allocation
κR - reproduction efficiency egg formation

[M b
H ] # L−3 spec maturation at birth life cycle

[Mp
H ] # L−3 spec maturation at puberty life cycle

ḧa t−2 aging acceleration aging

With this choice of primary parameters only the first parameter depends on maximum
length. This simplifies the derivation of the scaling relationships. The replacement of
the ageing module, and so of ḧa should be considered. The volume-specific maturation
parameters are only constant if the maturation is divided by the maximum structural
volume, rather than the actual structural volume.

Scaling of length at birth
{270}

If k̇J 6= k̇M the length at birth and puberty can no longer be primary parameters and shuold
be replaced by the maturity at birth and puberty, which both scale with the cubed zoom
factor, z3; the scaled maturity at birth U b

H covaries with z2. This is because the (unscaled)
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Figure 8.1: The scaled initial reserve (left), length at birth (middle), and age at birth (right) as
function of the zoom factor, log-log plotted (base 10). Each plot has three curves, corresponding
to maintenance ratio k = 0.1 (lower), 0.5 (middle), 1 (upper). Parameters: g = 80/z, ub

H = 0.005,
eb = 1. The curves are approximately allometric with slopes for large zoom factors

maintenance ratio k 0.1 0.5 1.0

scaled initial reserve u0
E 0.55 0.83 1.00

scaled length at birth lb -0.14 -0.04 0.00
scaled age at birth τb 0.85 0.89 0.93

maturity at birth M b
H = U b

H{J̇EAm} covaries with z3, and the surface area specific reserve
assimilation rate {J̇EAm} covaries with z.

If k̇J = k̇M , the structural volume at birth is proportional to the maturity at birth, so
length at birth scales with maximum length. If αb >> Bxb

(4
3
, 0), the initial reserve scales

approximately with maximum length to the power 4 and age at birth with maximum length.
These scalings are confirmed in the analysis presented in Figure 8.1. If scaled initial reserve
u0

E scales with z, U
)
E scales with z2 and initial reserve M0

E with z4, as reported Figure 8.6
of [289]. If scaled length at birth lb scales with z0, length at birth Lb = lbLm scales with z.

Figure 8.1 shows that if k̇J 6= k̇M , the scaling is more complex, especially for the length
at birth and the initial reserve; I presented the approximate scaling exponents to comply
with the traditional way to present these types of relationships. It is remarkable that taxa
show a wide scatter in scaling relationships for specially these quantities, while age at birth
shows much less scatter. This suggests that taxa might differ in the maintenance ratio.
The increase in the maintenance ratio k = k̇J/k̇M goes with an increase in the relative
size at birth for any given value of the zoom factor z, but the effect is bigger for the large
bodied species. Since protein turnover is an important component of somatic maintenance
costs, and activity typically a minor component, it is not likely that species differ a lot in
the somatic maintenance costs. I expect that costs for defense (e.g. the immune system)
varies more among species. It is tempting to speculate about the relatively small egg size
of dinosaurs (indicating small maturity maintenance costs) versus the relatively large size
at birth of mammals (indicating hight maturity maintenance costs).
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Table 8.1: Respiration has contributions from growth and maintenance (and assimilation, which
is excluded here). Body weight has contributions from reserve and structure; the parameters dE

and dV stand for the specific density (g cm−3) of reserve (E) and structure (V ). The amount of
structure in this table is proportional to L3, the cubed volumetric length. The heating length Lh

is a positive constant for endotherms, and zero for ectotherms. The length-parameters Lg and
Ls are constant (under certain conditions). The inter-species comparison is based on fully grown
(adult) individuals. From [301].

intra-species inter-species

maintenance ∝ LhL2 + L3 ∝ LhL2 + L3

growth ∝ LgL
2 − L3 0

reserve
structure ∝ L0 ∝ L

respiration
weight ∝ LsL2+L3

dV L3+dEL3 ∝ LhL2+L3

dV L3+dEL4

Max wet weight
{270}, last
lineThe maximum wet weight can be derived as follows: For [E] = [Em] we have from (2.6)

that Ww = (dV +[Em](1+eR)wE/µE)V . Assuming that reserves allocated to reproduction
plays a minor role, this reduces to Ww = (dV + [Em]wE/µE)V = (dV + wE[MEm])V , where
[MEm] = [Em]/µE, see Table 3.4 at {122}. The maximum volumetric length is from (3.23)

for f = 1: V 1/3
∞ = V 1/3

m − V
1/3
h = V 1/3

m (1 − lh), with lh = (Vh/Vm)1/3, see {94}. This makes
that the maximum volume is V = Vm(1 − lh)

3. The maximum wet weight thus amounts
to Ww = (dV + wE[MEm])V 1/3

m (1 − lh).

Scaling of respiration
{273}

The explanation of West and Brown for the inter-specific scaling of respiration, and the
application to growth is compared with the DEB theory by [391].

Table 8.1 presents the differences between intra- ad inter-specific scaling of respiration
with body size, while numerically they work out rather similar.

Minimum size for separation of embryonic cells [294]
{273}

Suppose that the cells in the two-cell stage of an embryo are identical in terms of amounts
of maturity, reserve and structure. If the cells are separated, the three amounts are halved.
Figure 8.2 show the expected results of such an event, which sometimes occurs sponta-
neously. The plots for maturity and structural volume are almost identical in this case
because k̇J/k̇M is very close to 1; the maturity density then remains constant.

The parameter values for Daphnia magna at 20◦C are U b
H = 012 d mm2, g = 0.422,

k̇J = 1.70 d−1, k̇M = 1.71 d−1, v̇ = 3.24 mm d−1, which gives a scaled maturity maintenance
rate of k ≃ 1 and a scaled maturity at birth of ub

H = 0.001 [328]. If one would try to
separate cells in this species, the theory predicts that the initial reserve is not enough the
cover embryonic development. This result is remarkable because these parameters imply
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Figure 8.2: The scaled maturity (left), reserve (middle), and structural volume (right) during
embryonic development. Each plot has three curves. The left (left and right plots) and upper
(middle plot) curves represent the “blank” situation. Then follows the case in which the initial
amount of reserve has been reduced by a factor 0.8, and then the case in which the maturity,
reserve and structure has been halved. Parameters: κ = .8, g = 0.422/1.87, k = .99415; ub

H =
.001, f = 1 and the age of cell separation is here at τb/3.

that a fraction of 0.63 of the initial amount of reserve is still left at birth at abundant food,
see [328]. The explanation is that the mobilization of reserve decreases with the reserve
density. It might be, of course, that maturity at birth is affected by cell separation, which
can still allow this to occur successfully in small bodied species. However, I am unaware
of any empirical evidence for this.

The reserve density capacity [Em] = {J̇EAm}/v̇ scales with structural length. So species
with a larger ultimate body size tend to have a relatively larger reserve capacity. It turned
out that for the combination of parameter values as found for D. magna we have to apply
a zoom factor of at least z = 1.87 to arrive at a minimum maximum body size for which
cell separation might be successful. The resulting parameter values are used in the figure;
the scaling relations only affect the energy investment ratio gz−1, while κ, k and ub

H are
independent of the zoom factor z.

For k > 1, the structural volume at birth increases after halving, and decreases for
k < 1. Since reserve contributes to weight, the weight at birth is close to half of the
original weight at birth, irrespective of the value of k. The age of the two-cell stage is
probably smaller than τb/3, but the results are very similar.

Interactions between qsars and body size scaling rela-

tionships [301]
{292}

Body size affects chemical kinetics in rather complex ways, so do changes in body size. Since
deb theory is about the dynamics of body size, this directly points to the importance of the
link between deb theory and toxico-kinetics. We here briefly review some pertinent items;
each of these items can be discussed in much more detail [300], but this would involve more
details of the deb theory, which is beyond the scope of this paper. It is useful to start
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with an inventory of the possible uptake and elimination routes of the compounds under
consideration, and then consider other chemical and metabolic aspects.

Uptake can be directly from the environment, which is proportional to the surface
area of individuals. The implication is that elimination rates are inversely proportional
to length. So the time it takes to saturate an organism with a chemical compound is
proportional to its (volumetric) length. Uptake can also be via food, and food uptake
scales with surface area intra-specifically, but with volume inter-specifically.

Dilution by growth matters, even at low growth rates. The growth rate depends on
the size of the individual, relative to the maximum size, so intra- as well as inter-specific
scaling relationships contribute.

Elimination can be directly to the environment (involving the surface area), and/or
to the gut contents (involving the feeding rate), and/or via reproduction or some other
species-specific routes. The possible significance of the latter route is obvious from the
observation that a female adult daphnid can produce offspring at the rate of 25% of her
own weight per day. If chemical compounds are in eggs at formation, this can represent an
important elimination route. The reproduction rate (in number of offspring per time) is
proportional to a weighted sum of surface area and volume intra-specifically, and inversely
proportional to a length inter-specifically. Since the mass per offspring is proportional to
volume, allocation to reproduction is proportional to surface area inter-specifically. We
hasten to add that the relative size of offspring is a lot more species-specific (so subjected
to evolutionary adaptation) than the allocation to reproduction [289, 566, 83].

The chemical composition of biomass also depends on size, since the reserve density
(so the ratio of the amounts of reserve and structure) is constant intra-specifically, but
proportional to a length inter-specifically. Reserve might be more rich in lipids than struc-
ture (depending on the taxa that are studied). This observation obviously matters for the
comparison of compounds that differ in Pow.

Chemical transformation in an organism is linked to the metabolic activity of the or-
ganism. Lipophilic compounds are frequently transformed into less lipophilic ones, which
enhances excretion (elimination). These metabolites are, frequently, more toxic. Moreover,
uptake and elimination frequently involve metabolic activity. The standard deb model
specifies all metabolic activities, and the rate at which reserves are mobilized seems to be
the best candidate to link with (the potential for) metabolic transformation and excretion.
It has close links with the respiration rate, a frequently used term, which can stand for a
variety of things that are not proportional to each other in the context of the deb theory as
well as in the context of indirect calorimetry: the use of dioxygen, the production of carbon
dioxide and of heat. Table 8.1 presents the intra- and inter-specific scaling tendencies of
respiration. The numerical behaviour is remarkably close to the well-known observation
by Kleiber [232] that respiration scales with body weight3/4.

A further modification of the role of metabolic transformation in the toxicity of com-
pounds is when the effects are receptor-mediated [214]. The turnover rate of receptors is
possibly linked to the somatic maintenance process, in which case the specific turnover rate
is independent of body size, but it might also be linked to the metabolic activity. We still
need more experience with the application of receptor-mediated models. The observation
that effects are linked to the product of concentration and exposure time motivated many
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toxicologists to think about the involvement of receptors, although their biochemical iden-
tification remained uncertain. This motivation is incorrect, however, if the hazard rate is
linear in the (internal) concentration. This is because even without receptors the effect on
the survival probability is already via the product of concentration and exposure time. The
significance of receptors is in the contribution of the exposure history in the effect, rather
than of the actual exposure. This requires an in-depth analysis of how effects build up in
time and imposes strong constraints on the quality of data. It is only by analyzing multiple
endpoints simultaneously that we found indications that the effects of organophosphorus
esters on fish involve receptors.

These considerations invite for a second thought about effects of chemicals. As long
as lipophilic compounds are accumulated in metabolically rather inactive lipids, they are
less likely to have metabolic effects. Many animals, and especially mammals, have tissues
(the adipose tissue) that are specialized in the storage of such lipids. As soon as these
lipids are used, however, effects might show up. This calls for a much more dynamic view
on the effects of chemicals, and links up with traditions in pharmaco-kinetics and medical
research on the effects of chemicals.

Determinate vs indeterminate growth
{293}

The comparison between determinate and indeterminate growth is further extended in
[356]. This study helps to understand why both allocation schedules still exist. The two-
way classification is too simple in the DEB framework. A copepod (which as a fixed
number of moults) follows the expected von-Bertalanffy growth pattern at constant food
levels. The asymptotic size (i.e. the size after the final moult) depends on food levels in
the expected way. It can only reproduce after the final moult, where it cannot longer
grow. This situation is really frequent, and should be classified as indeterminate growth,
but the ability to resume growth is finally lost. This also occurs in mammals and birds,
for instance (but not in fish). Typical determinate growth is rare, and possibly confined
to holo-metabolic insects

Derivation of Eq (8.7)
{296}

Eq (8.7) can be derived as follows: Reproduction is increasing with age, so we focus at a

high age, where V (a) = V∞. If we substitute this and {ṗAm} = [ṗM ]
κf

V 1/3
∞ in the reproduction

rate given in (8.3), we get for the constant fraction strategy

Ṙc(∞) =
κ

E0

(V∞[ṗM ](1 − κ)/κ − [ṗJ ]Vp)

If we similarly substitute {ṗAm} for the bang-bang strategy, we get

Ṙb(∞) =
κ

E0

(

V 1/3
∞ V 2/3

p [ṗM ]/κ − [ṗM ]Vp − [ṗJ ]Vp

)

So Ṙc(∞) > Ṙb(∞) if
(1 − κ)V∞ − V 1/3

∞ V 2/3
p + κVp > 0
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Evolution
{298}

A proper understanding of metabolic organization cannot be achieved without exploring
its historic roots. The metabolism of individuals has adapted over time to overcome the
consequences of changing living conditions. The question here is how this might have
happened in interaction with the environment. One possibility is through changing the
system itself by mutation and selection. This is a very slow process, but essential for
building up a basic diversity in metabolic performance between different species. This
explains the slow start of evolution. Much faster is the exchange of plasmids that evolved
among prokaryotes [117], which is further accelerated by the process of symbiogenesis,
typical for eukaryotes. The latter also duplicate DNA and reshuffle parts of their genome,
giving adaptive change even more acceleration. Mutation still continues, of course, but
the reshuffling of metabolic modules occurs at rates several orders of magnitude higher.
The response to changes in the environment is further accelerated by the development of
food webs, and therefore of predation, which enhances selection. Owing to their advanced
locomotory and sensory systems, animals play an important role in food webs, and so in
the acceleration of evolutionary change.

The evolutionary route that is discussed below starts from the speculative abiotic ori-
gins of life, then deals with the metabolic diversification that evolved in the prokaryotes,
and finally leads the to metabolic simplification, coupled to the organizational diversifica-
tion of the eukaryotes. We will see how life became increasingly dependent on itself and
how life and climate became increasingly coupled. Syntrophy is the basis of biodiversity
and supplements Darwin’s notion of survival of the fittest, which is based on competitive
exclusion [501].

Before the first cells

A possible exergonic process generating energy in the initial stages of life involves the for-
mation of makinawite crusts at the interface of mildly oxidizing, iron-rich acidulous ocean
water above basaltic floors from which alkaline seepages arose, e.g. [500]. These crusts con-
sist of FeS layers allowing free electron flow from the reducing environment beneath, gen-
erated by the activation of hydrothermal hydrogen. Thus, energy was constantly supplied,
which, moreover, could easily be tapped at the steep gradient formed by the crust. FeS can
spontaneously form cell-like structures on a solid surface [498, 499, 63, 80], and has a high
affinity for the ATP ingredients organophosphates and formaldehyde [484], which can form
ribulose [34, p81]. The released energy could stimulate the formation of larger molecules
at each inner surface, such as phosphorus or nitrogen compounds. The chemically labile
energy-rich inorganic pyrophosphate compounds could have served as energy-transferring
molecules [23, 24], whereas the nitrogen-containing molecules on the inner surface of the
crust could have developed into nucleic acids or, later, into larger peptides. Of these, the
peptides, in turn, could have combined with iron and sulphur complexes in the crust, thus
initiating the formation of ferredoxins, or they could have nested themselves within the
crust, thus forming the second step in the formation of membranes [499].

ATP generation via a proton pump across the outer membrane is probably one of the
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first steps in the evolution of metabolism. The energy for this ATP generation probably
came from some extracellular chemoautotrophic process [573, 498, 499].

A possible scenario for the earliest metabolism is presented in Figure 8.3, which may be
found in the archaean Pyrodictium occulatum [573]. A few enzymes are required and the
substrates are readily available in the deep ocean [120]. Keefe et al. [227], however, argue
that the oxidation of FeS gives insufficient energy to fix carbon dioxide through the inverse
TCA cycle. Yet, this fixation may have occurred along other pathways using accumulated
ATP. Schoonen et al. [508] demonstrated that the energy of this reaction diminishes sharply
at higher temperatures. Contrary to pyrite, greigite (Fe5Ni6S8) has structural moieties that
are similar to the active centers of certain metallo-enzymes, as well as to electron transfer
agents (see, for example, [499], and catalyzes the transformation 2 CO2 + CH3SH + 8 [H]
→ CH3COSCH3 + 3 H2O.

Irrespective of the biochemical “details”, which are still controversial [431], it rightly
places membrane activity central to metabolism, which means that cell size matters. The
membranes of membrane-bound vesicles are at the basis of transformations typical for
life [515]. Membranes need membranes (plus genes) for propagation; genes only are not
enough [88]. Strong arguments in favour of the hypothesis “cells before metabolism” in-
clude the abiotic abundance of amphiphilic compounds (even on arriving meteorites), the
self-organization of these compounds into membranes and vesicles, and their catalytic
properties [101]. This argument only works if amphiphilic compounds tend to accumulate
in very specific micro-environments; otherwise they will be too dilute. The modifica-
tions of substrates that are taken up from the environment to compounds that function
in metabolism were initially probably small, and gradually became substantial. Com-
partmentalization is essential for the accumulation of metabolites and for any significant
metabolism. Norris and Raine [424] suggest that the RNA world succeeded the lipid world,
which is unlikely because the archaean lipids consist of isoprenoid ethers, while eubacte-
rial lipids consist of fatty acids (acyl esters) with completely different enzymes involved in
their turnover [225, 222, 573]. Lipids were probably synthesized first from pyruvate, the
end product of the acetyl-CoA pathway and the reverse TCA cycle, before the extensive
use of carbohydrates.

Koga et al. [238] hypothesized that the eubacterial taxa made the transition from non-
cellular ancestors to cellular forms independently from the archaea (see also [379]. This
seems unlikely, however, because they are similar in the organization of their genes (e.g.
in operons) and genomes, and in their transcription and translation machinery [426, 87].
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Eubacteria do have a unique DNA replicase and replication initiator proteins, however.
These properties apply especially to cells, rather than to pre-cellularly existing forms, and
are complex enough to make it very unlikely that they evolved twice. Woese [587] hy-
pothesized that lateral gene transfer could have been intense in proto-cells with a simple
organization; diversification through Darwinian mutation and selection could only occur
after a given stage in complexity had been reached, that is when lateral gene transfer could
have been much less intense. The eubacteria, archaea and eukaryotes would have crossed
this stage independently. Since all eukaryotes once seem to have possessed mitochondria,
this origin is unlikely for them. Cavalier-Smith [90] argued that archaea and eukaryotes
evolved in parallel from eubacteria since about 850 Ma ago, and that eukaryotes have many
properties in common with actinomycetes. However, the differences in, for example, lipid
metabolism and many other properties between eubacteria and archaea are difficult to
explain in this way. Moreover, carbon isotope differences between carbonates and organic
matter of 2.8-2.2 Ga ago are attributed to archaean methanotrophs [237]. Although so far
the topic remains speculative, a separate existence of eubacteria and archaea before the
initiation of the lipid metabolism and before the origin of eukaryotes through symbiogen-
esis with mitochondria seems to be the least-problematic sequence explaining metabolic
properties among these three taxa.

The ionic strength of cytoplasm of all modern organisms equals that of seawater, which
suggests that life arose in the sea.

Early substrates and taxa

Since genome size might quantify metabolic complexity, it helps to note that some chemoau-
totrophs have the smallest genome size of all organisms [316]; The togobacterium Aquifex
is even more interesting since its metabolism might still resemble that of an early cell.
Although it is also aerobic, it tolerates only very low dioxygen concentrations, which may
have been present when life emerged [203, 224, 8]. Growing optimally at 85 ◦C in marine
thermal vents, it utilizes H2, S0 or S22O−

3 as electron donors and O2 or NO−
3 as electron ac-

ceptors. With a genome size of only 1.55 Mbp, its genome amounts to only one third of that
of E. coli, which is really small for a non-parasitic prokaryote. One of the smallest known
genomes for a non-parasitic bacterium is that of Nanoarchaeum equitans with 0.5 Mbp
[206], but it lives symbiotically with the H2-producing and sulphur-reducing archaean Ignic-
occus, which complicates the comparison. The free-living α-proteobacterium Pelagibacter
ubique, with a genome size of 1.3 Mbp is probably phototrophic (using proteorhopsin) and
uses organic compounds as carbon and electron source [162, 464]. Its metabolic needs are
uncertain, since it is difficult to culture. The phototrophic cyanobacterium Prochlorococcus
has 1.7 Mbp [154]. These small genome sizes illustrate that autotrophy is metabolically
not more complex than heterotrophy.

The early atmosphere was probably rich in carbon dioxide and poor in methane [224],
which changed when methanogens started to convert carbon dioxide into methane so 3.7
Ga ago, using dihydrogen as energy substrate. This problably saved to early earth from
becoming deep frozen. Apart from being a product, methane is likely to have been an im-
portant substrate (and/or product) during life’s origin [191]. Methanogenesis and (anaero-
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bic) methylotrophy are perhaps reversible in some archaea [173]; their metabolic pathways
share 16 genes, and are present in some archaeal and eubacterial taxa. The most probable
scenario for its evolutionary origin is that it first evolved in the planctomycetes, which
transferred it to the proteobacteria and the archaea [95]. This remarkable eubacterial
taxon is unique in sporting anaerobic ammonium oxidation (anammox). The anammox
clade has ether lipids in their membranes and a proteinaceous cell wall like the archaea
[541]. They have advanced compartmentation and a nuclear membrane like the eukaryotes
[361, 153], and are abundant in (living) stromatolites [436]. Fossil stromatolites resemble
the living ones closely [109] and date back some 3.5 Ga ago [576]. Although, this points to a
key role in early evolution, planctomycetes seem too complex as a contemporary model for
an early cell. Moreover, anaerobic methane oxidation (amo) involves sulphate reduction.
Isotope data indicate that sulphate reduction originated 3.47 Ga ago [518]. Sulphate was
rare by then [81] and might have been formed photochemically by oxidation of volcanic
SO2 in the upper atmosphere, or phototrophically by green and purple sulphur bacteria
(Chlorobiaceae, Chromatiacea), [454].
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Evolution of central metabolism

A closer look at the modern central metabolism in an evolutionary perspective might
help to get the broad picture, see Figure 8.4. The four main modules of the central
metabolism evolved one by one within the prokaryotes already, and were recombined,
reverted and reapplied. It implies considerable conjugational exchange between the archaea
and eubacteria, but given the long evolutionary history, such exchanges might have been
very rare. The exchange must have been predated by a symbiontic coexistence of archaea
and eubacteria to tune their very different metabolic systems.

Dioxygen was rare, if not absent, during the time life emerged on earth which classifies
the respiratory chain as an advanced feature. Glucose hardly could have been that central
during the remote evolutionary origins of life, since its synthesis and degradation typically
involves dioxygen. Like all phototrophic eukaryotes, most chemolitho-autotrophic bacteria
fix inorganic carbon in the form of carbon dioxide through the Calvin cycle. At present,
this cycle is part of the phototropic machinery, a rather advanced feature in metabolic
evolution and which is not found in any archaea [507]. It has glucose as its main prod-
uct, which suggests that the central position of glucose and, therefore, of carbohydrates,
evolved only after oxygenic phototrophy evolved. Like the Calvin cycle, eukaryotic and
eubacterial glycolysis (the Embden-Meyerhof pathway) is not found in archaea either; hy-
perthermophilic archaea possess the Embden-Meyerhof pathway in modified form [507, 516]
and generally do not use the same enzymes [379]. This places the pyruvate processing TCA
cycle at the origin of the central metabolism. However, if we leave out the glycolysis as a
pyruvate-generating device, what process was generating pyruvate?

Interestingly, the eubacteria Hydrogenobacter thermophilus and Aquifex use the TCA
cycle in reverse, binding and transforming CO2 into building blocks (lipids, cf [353]), in-
cluding pyruvate. Both species are Knallgas bacteria, extracting energy from the oxidation
of dihydrogen. The green sulphur bacterium Chlorobium, as well as the archaea Sulfolobus
and Thermoproteus [369] also run the TCA cycle in reverse for generating building blocks.
Hartman [188], Wächtershäuser [574] and Morowitz et al. [407] hypothesized the reverse
TCA cycle to be one of the first biochemical pathways. The interest in hydrogen bacte-
ria relates to the most likely energy source for the first cells on earth. Hydrogenobacter
optimally thrives at 70-75 ◦C in Japanese hot springs. It is an aerobic bacterium, using
ammonia and nitrate, but not nitrite and possesses organelles (mesosomes). Several en-
zymes of the PP cycle and the glycolytic pathway are present although their activities are
low [532].

The TCA cycle seems to be remarkably efficient, which explains its evolutionary stabil-
ity. Moreover, it is reversible, which directly relates to its efficiency and the inherent small
steps in chemical potential between subsequent metabolites. Yet, with its nine transforma-
tions, the TCA cycle is already rather complex, and must have been preceded by simpler
CO2-binding pathways [430], such as the (linear) acetyl-CoA pathway of homoacetogens:
2 CO2 + 4 H2 + CoASH→ CH3COSCoA + 3 H2O [207, 362]. Apart from H2, electron
donors for acetogenesis include a variety of organic and C1-compounds. Coenzyme A,
which plays an important role in the TCA cycle, is a ribonucleotide and the main substrate
for the synthesis of lipids, a remembrance of the early RNA world [542]. Several eubacteria
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and archaea employ the acetyl-CoA pathway; they include autotrophic homoacetogenic
and sulphate-reducing bacteria, methanogens, Closterium, Acetobacterium, and others.
The RNA-world is generally thought to predate the protein/DNA-world. RNA originally
catalyzed all cellular transformations; protein evolved later to support RNA in this role.
Many protein enzymes still have RNA-based cofactors (e.g. ribosomes and spliceozomes),
while RNA still has catalytic functions. DNA evolved as a chemically more stable archive
for RNA, probably in direct connection with the evolution of proteins, and possibly with
the intervention of virusses [148, 149]. The step from the RNA to the protein/DNA world
came with a need for the regulation of transcription.

The hyperthermophilic methanogens, such as Methanococcus, Methanobacterium or
Methanopyrus, have also been proposed as contemporary models for early cells [360];
they have the acetyl-CoA pathway, which they run in both the oxidative and the re-
ductive direction [523]. Like Aquifex, they are thermophilic and taxonomically close to
archaea/eubacteria fork (eukaryotes have some properties of both roots), have a small
genome (Methanococcus jannaschii has 1.66 Mbp, coding for only 1700 genes), and they
utilize H2 as electron donor.

A natural implication of the reversal of the TCA cycle is that the direction of glycolysis
was initially reversed as well, and served to synthesize building blocks for e.g. carbohy-
drates. Comparing the carbohydrate metabolism among various bacterial taxa, Romano
and Conway [491] concluded that originally glycolysis must indeed have been reversed.
Thus, the reversed glycolytic pathway probably developed as an extension of the reversed
TCA cycle, and they both reversed to their present standard direction upon linking to the
Calvin cycle, which produces glucose in a phototrophic process. So, what could have been
the evolutionary history of phototrophy?

Phototrophy

Phototrophy probably was invented more than 3.2 Ga ago [590]. Recent evidence suggests
that phototrophy is also possible near hydrothermal vents at the ocean floor [120], where
the problem encountered by surface dwellers, namely that of damage by ultraviolet (UV)
radiation, is absent. In an anoxic atmosphere, and therefore without ozone, UV damage
must have been an important problem for the early phototrophs though and protection
and repair mechanisms against UV damage must have evolved in parallel with phototrophy
[110].

The green non-sulphur bacterium Chloroflexus probably resembles the earliest pho-
totrophs and is unique in lacking the Calvin cycle, as well as the reverse TCA cycle. In the
hydroxypropionate pathway, it reduces two CO2 to glyoxylate, using many enzymes also
found in the thermophilic non-phototrophic archaean Acidianus. Its photoreaction centre
is similar to that of purple bacteria. The reductive dicarboxylic acid cycle of Chloroflexus is
thought to have evolved into the reductive TCA cycle as found in Chlorobium, and further
into the reductive pentose phosphate cycle, which is, in fact, the Calvin cycle [189]. Like
sulphur and iron-oxidizing chemolithotrophs, aerobic nitrifying bacteria use the Calvin
cycle for fixing CO2. The substrate of the first transformation of the monophosphate path-
way for oxidizing C1-compounds, such as methane, is very similar to the C1-acceptor of



180 8. Comparison of species

the Calvin cycle, which suggests a common evolutionary root of these pathways [369]. The
first enzyme in the Calvin cycle, RubisCO is present in most chemolithotrophs and pho-
totrophs and even in some hyperthermophilic archaea. It is the only enzyme of the Calvin
cycle of which (some of) the code is found on the genome of chloroplasts. The enzymes
that are involved in the Calvin cycle show a substantial diversity among organisms and
each has its own rather complex evolutionary history [380]. This complicates the finding
of its evolutionary roots; see Figure 8.4.

The thermophilic green sulphur bacterium Chlorobium tepidum runs the TCA cycle
(and glycolysis) in the opposite direction compared to typical (modern aerobic) organ-
isms [369], indicating an early type of organization [188, 574, 407]. In combination with
the observations mentioned above, this suggests that the present central glucose-based
metabolism evolved when the Calvin cycle became functional in CO2 binding, and the
glycolysis and the TCA cycle reversed to their present standard direction, operating as a
glucose and pyruvate processing devices, respectively (see Figure 8.4). Most phototrophs
use the Calvin cycle for fixing CO2 in their cytosol in combination with a pigment system in
their membrane for capturing photons. Archaea use a low-efficient retinal-protein and are
unable to sustain true autotrophic growth; 5 of the 11 eubacterial phyla have phototrophy.
Bacterio-chlorophyll in green sulphur bacteria is located in chlorosomes, organelles bound
by a non-unit membrane, attached to the cytoplasmic membrane. Green non-sulphur and
purple bacteria utilize photosystem (PS) II; green sulphur and Gram-positive bacteria uti-
lize PS I, whereas cyanobacteria (including the prochlorophytes) utilize both PS I and II
[606]. The cyanobacterium Oscillatoria limnetica can utilize their PS I and II in conjunc-
tion, thus being able to split water and to produce dioxygen. In the presence of H2S as an
electron donor, it uses only PS I, an ability pointing to the anoxic origin of photosynthesis.
Oxygenic photosynthesis is a complex process that requires the coordinated translocation
of 4 electrons. It evolved more than 2.7 Ga ago [50]. Based on the observation that bicar-
bonate serves as an efficient alternative for water as electron donor, Dismukes et al. [111]
suggested the following evolutionary sequence for oxygenic photosynthesis, starting from
green non-sulphur bacterial phytosynthesis that uses organic substrates as electron donor.

The phototrophic system eventually allowed the evolution of the respiratory chain (the
oxidative phosphorylation chain), which uses dioxygen that is formed as a waste product
of photosynthesis, as well as the same enzymes in reversed order. If the respiratory chain
initially used sulphate, for example, rather than dioxygen as electron acceptor, it could
well have evolved simultaneously with the phototrophic system.

The production of dioxygen during phototrophy, which predates the oxidative phos-
phorylation, changed the earth, e.g. [111, 341]. It started to accumulate in the atmosphere
around 2.3 Ga ago, which shortened the life time of atmospheric methane molecules from
10000 to 10 years with the consequence that the earth became a “snowball” [224]. The
availability of a large amount of energy and reducing power effectively removed energy
limitations; primary production in terrestrial environments is mainly water-limited, that
in aquatic environments nutrient-limited. This does not imply, however, that the energetic
aspects of metabolism could not be quantified usefully; energy conservation also applies
in situations where the energy supply is not rate-limiting. Nutrients may have run short
of supplies because of oxidation by dioxygen; this would have slowed down the rate of
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evolution [8]. First, sulphur precipitated out, followed by iron and toward the end of the
Precambrian by phosphate and, since the Cambrium revolution, by calcium as well. Also,
under aerobic conditions, nitrogen fixation became difficult, which makes biologically re-
quired nitrogen unavailable, despite its continued great abundance of dinitrogen in the
environment; see [34, p41]. Since the Calvin cycle produces fructose 6-phosphate, those
autotrophic prokaryotes possessing this cycle are likely to have a glucose-based metabolism.
Indeed, the presence of glucose usually suppresses all autotrophic activity. Several obli-
gate chemolithotrophic prokaryotes, such as sulphur-oxidizers, nitrifiers, cyanobacteria and
prochlorophytes contain this cycle in specialized organelles, the carboxysomes, which are
tightly packed with RubisCO. Facultative autotrophs, like purple anoxyphototrophs, use
the Calvin cycle for fixing CO2, although they lack the carboxysomes.

Diversification and interactions

The prokaryotes as a group evolved a wide variety of abilities for the processing of sub-
strates, whilst remaining rather specialized as species (e.g. [7]. The nitrogen cycle in
Figure 8.5 illustrates this variety, as well as the fact that the products of one group are the
substrate of another.

Some of the conversions of inorganic nitrogen species can only be done by a few taxa.
The recently discovered anaerobic oxidation of ammonia is only known from the plancto-
bacterium Brocadia anammoxidans [505]. None-the-less, it might be responsible for the
removal of one-half to one-third of the global nitrogen in the deep oceans [100]. The aerobic
oxidation of ammonia to nitrite is only known from Nitrosomonas, the oxidation of nitrite
into nitrate is only known from Nitrobacter ; and the fixation of dinitrogen can only be
done by a few taxa, such as some cyanobacteria, Azotobacter, Azospirillum, Azorhizobium,
Klebsiella, Rhizobium, and some other ones [531].

The excretion of polysaccharides (carbohydrates) and other organic products by nutrient-
limited photosynthesizers (such as cyanobacteria), stimulated heterotrophs to decompose
these compounds through the anaerobically operating glycolytic pathway. Thus, other or-
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ganisms came to use these excreted species-specific compounds as resources, and a huge
biodiversity resulted. Apart from the use of each others products, prokaryotes, such as
the proteobacteria Bdellovibrio and Daptobacter, invented predation on other prokaryotes.
When the eukaryotes emerged, many more prokaryote species turned to predation, with
transitions to parasitism causing diseases in their eukaryotic hosts. Predators typically have
a fully functional metabolism, while parasites use building blocks from the host, reducing
their genome with the codes for synthesizing these building blocks. The smallest genomes
occur in viruses, which probably evolved from their hosts and are not reduced organisms
[195, 543]. Prokaryotic mats on intertidal mud flats and at methane seeps illustrate that
the exchange of metabolites between species in a community can be intense [397, 419]. The
occurrence of multi-species microbial flocks, such as in sewage treatment plants [66, 64] fur-
ther illustrates an exchange of metabolites among species. The partners in such syntrophic
relationships sometimes live epibiotically, possibly to facilitate exchange. Internalization
further enhances such exchange [297]. The gradual transition of substitutable substrate to
become complementary is basic to the formation of obligate syntrophic relationships.

Evolution of individual as dynamic system

The evolution of the organism as a dynamic metabolic system can be described in several
steps [330], some of them are illustrated in Figure 8.6.

Variable biomass composition

We start with a living (prokaryotic) cell, surrounded by a membrane. Although it remains
hard to define what life is exactly, it represents an activity and, therefore, requires energy.
The acquisition of energy and (probably several types of) building blocks to synthesize
new structure were separated and the first cells suffered from multiple limitations; they
could only flourish if all necessary compounds were present at the same time. Initially
there were no reserves and hardly any maintenance costs. A cell’s chemical composition
varied with the availability of the various substrates. As soon as the membranes were
rich in lipids (eubacteria) or isoprenoid ethers (archaea), the accumulation of lipophilic
compounds could have been rather passive. The occurrence of lipids and isoprenoid ethers
among prokaryotes is only easy to understand if the archaea and eubacteria were already
separated before these compounds had a role in metabolism. The excretion of waste
products was not well organized.

Strong homeostasis

In a stepwise process, the cells gained control over their chemical composition, which be-
came less dependent on chemical variations in the environment. One mechanism is coupling
of the uptake and use of different substrates. How uncoupled uptake of supplementary
compounds can gradually change into coupled uptake of complementary compounds is dis-
cussed in [298]. With increasing homeostasis, stoichiometric restrictions on growth become
more stringent; the cells could only grow if all essential compounds were present at the
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Figure 8.6: Steps in the evolution of the organization of metabolism of organisms. Symbols: S
substrate, E reserve, V structure, J maturity, R reproduction, MV somatic maintenance, MJ

maturity maintenance. Only two of several possible types are shown. Font size reflects relative
importance. Stacked dots mean sloppy coupling. The top row shows the development of a
prokaryotic system, which bifurcated in a plant and an animal line of development. Modified
from [330].

same time in the direct environment of the cell. The activity of the cells varied with the
environment at a micro-scale, which will typically fluctuate wildly. The reduction in vari-
ability of the chemical composition of the cell came with an increased ability to remove
waste products, i.e. with a process of production of compounds that are released into the
environment.

Although the mechanisms of acquiring homeostasis are understood only partially [298],
it gradually became more perfect and biomass can be considered as being composed of a
single generalized compound called structure. A generalized compound is a mixture of a
set of chemical compounds of fixed composition. This (idealized) condition is called strong
homeostasis.

Reserves

The increased stoichiometric constraints on growth result in a reduction of possible habitats
in which the cell can exist. By internalizing and storing the essential compounds before
use, the cells became less dependent on the requirement for all essential compounds to be
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present at the same time. In this way, they could smooth out fluctuations in availability at
the micro-scale (Figure 8.12). Most substrates are first transported from the environment
into the cell across the membrane by carriers before further processing. By reducing the
rate of this further processing, storage develops automatically. We will return to this in
more detail below. Initially the storage capacity must have been small to avoid osmotic
problems, which means that the capacity to process internalized resources is large relative
to the capacity to acquire them from the environment. By transforming stored compounds
to polymers, these problems could be avoided, and storage capacity could be increased
further to smooth out fluctuations more effectively. This can be achieved by increasing the
acquisition rate or decreasing the processing rate.

The reason for evolutionary selection toward partitionability might well be in the incre-
mental change in the number of different types of reserves, so in the organizational aspects
of metabolism. Partitionability and mergebility are mathematically the same and to some
extend probably reversible in evolution. These changes not only occur within individuals,
but also during the internalization of symbionts.

Excretion

The DEB reserve dynamics implies that the amount of the most limiting reserve co-varies
with growth, and the amounts of non-limiting reserves can or cannot accumulate under
conditions of retarded growth, depending on the excretion of mobilized reserve that is not
used; excretion is an essential feature of multiple reserve systems to avoid accumulation
without boundary. This is because assimilation does not depend on the amount of reserve,
so also not on the use of reserve; it only depends on the amount of structure and substrate
availability. The excretion process can be seen as an enhanced production process of
chemical compounds, but its organization (in terms of the amounts that are excreted under
the various conditions) differs from waste production. Waste production is proportional to
the source process (assimilation, maintenance, growth). Excretion, on the contrary, reflects
an unbalanced availability of resources. The flux is proportional to a fixed fraction of what
is rejected by the SU for growth. The theory of SUs quantifies the rejection flux. When the
diatom Pseudonitzschia becomes silica depleted in an environment that is rich in nitrate,
it starts to excrete domoic acids, which drains its nitrogen reserve. Some bacteria produce
acetate in environments that are rich in organic compounds, but poor in nutrients, which
lowers the pH, which, in turn, has a negative effect on competing species. When only
acetates are left, they use these as a substrate.

Empirical evidence has so far [289, Figure 5.5] revealed that the various reserves have
the same turnover rate. The reason might be that mobilization of different reserves involves
the same biochemical machinery. This possibly explains why the use of e.g. stored nitrate
follows the same dynamics as that of polymers such as carbohydrates and lipids, although
the use of nitrate obviously does not involve monomerization.

Together with waste, excretion products serve an important ecological role as substrate
for other organisms [526]. Most notably polysaccharides that are excreted by phototrophs
in response to nutrient limitation provide energy and/or carbon substrate for heterotrophs,
so they fuel a production process that is known as the microbial loop. Adaptive dynamics
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analysis has indicated the importance of syntrophy in evolutionary speciation [114].
Other excretion products are toxic for potential competitors, such as domoic acid pro-

duced by the diatom Pseudonitzschia spp. in response to nitrogen surplus, which can be
highly toxic to a broad spectrum of organisms, including fish. Nitrogen enrichment of the
environment by human activity enhances the formation of nitrogen reserves, and so the
production of toxicants that contain nitrogen by some algae.

Maintenance

The storing of ions, such as nitrate, creates concentration gradients of compounds across the
membrane that have to be maintained. These maintenance costs might originally have been
covered by extra-cellular chemoautotrophic transformations, but this requires the presence
of particular compounds (e.g. to deliver energy). Maintenance can only be met in this
way if the organism can survive periods without having to meet such costs, i.e. facultative
rather than obligatory maintenance. Most maintenance costs are obligatory, however. The
next step is to pay the maintenance costs from reserves that are used for energy generation
to fuel anabolic work and thus to become less dependent on the local presence of chemo-
autotrophic substrates. Although extreme starvation, causing exhaustion of reserves, can
still affect the ability to meet maintenance costs (see Appendix A.3), such problems will
occur much less frequently.

Maintenance requirements were increased further and became less facultative in a num-
ber of steps, which we will discuss briefly.

Carriers and regulation

Originally carriers (which transport substrate from the environment into the cell across the
membrane) were less substrate-specific and less efficient, meaning that the cell required
relatively high concentrations of substrate. The cell increased the range of habitats in
which it could exist by using carriers that are not fully structurally stable, meaning that
a high-efficiency machinery changes to low efficiency autonomously. The maintenance of a
high efficiency involves a turnover of carriers.

High-performance carriers are also more substrate-specific, which introduces a require-
ment for regulation of their synthesis and for adaptation to substrate availability in the
local environment. The expression of genes coding for the carriers of various substitutable
substrates becomes linked to the workload of the carriers. The principle that allocation
occurs according to relative workload seems to be general and conserved; we will discuss
it again in allocation to organs in relation to multicellular eukaryotes.

Turnover of structure

Not only carriers, but many chemical compounds (especially proteins with enzymatic func-
tions) suffer from spontaneous changes that hamper cellular functions. The turnover of
these compounds, i.e. breakdown and re-synthesis from simple metabolites, restores their
functionality [354], but increases maintenance requirements. This mixture of conversion
machineries with high and low efficiencies is present in structure and so, due to turnover, to
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maintenance, it is converted into structure with high-efficiency machinery. The biochemical
aspects of the process are reviewed in [233].

These increased requirements made it even more important to use reserves, rather than
unpredictable external resources to cover them. When such reserves do not suffice, mainte-
nance costs are met from structure, and cells shrink. Paying maintenance from structure is
less efficient than from reserve directly, because it involves an extra transformation (namely
from reserve to structure). The preference for reserve as the substrate rather than struc-
ture, would have been weak originally, later becoming stronger. Since the turnover rate of
compounds in structure depends on the type of compound (some rates are possibly very
low), the metabolites derived from these compounds do not necessarily cover all metabolic
needs.

The waste (linked to maintenance and the overhead of growth) and the excreted reserves
(linked to stoichiometric restrictions on growth due to homeostasis) serve as substrates for
other organisms, so life becomes increasingly dependent on other forms of life even at an
early stage. Some of these products were transformed into toxins that suppress competition
for nutrients by other species.

Defense systems

The invasion of (micro)habitats where toxic compounds are present, and the production
of toxic waste and excretion products by other organisms, required the installation of de-
fense systems, which increase maintenance costs. Prokaryotes developed a diverse family
of defense proteins, called bacteriocins [486]. Phototrophy requires protection against UV
radiation and these two systems must have been evolved simultaneously [110]. Phototro-
phy possibly evolved from UV protection systems [454], although it is unlikely that it
appeared at the start of evolution, as some authors suggest [585, 86, 189, 52, 53]. The
pathways for anaerobic methane oxidation and methanogenesis possibly evolved from a
detoxicifation system for formaldehyde; this is another illustration of a change in function
of a protection system. A general-purpose protection system against toxic compounds con-
sists of proteins that encapsulate toxic molecules. Another general system is to transform
lipophilic compounds into more hydrophilic (and so more toxic) ones to enhance excretion.
The development of a complex double cell membrane in the didermata (Gram-negative
eubacteria) was possibly a response to the excretion of toxic products by other bacteria
[171], although the outer membrane is not a typical diffusion barrier [353]. When dioxygen
first occurred in the environment as a waste product of oxygenic photosynthesis, it must
have been toxic to most organisms [111, 341]; the present core position of carbohydrates
in the central metabolism of eukaryotes and its use in energy storage is directly linked to
this waste product. The reactive oxygen species (ROS) play an important role in ageing
[346], and induced the development of defense systems using peroxidase dismutases to fight
their effects. While eukaryotes learned not only to protect themselves against dioxygen,
but even make good use of it, they became vulnerable for hydrogen sulphide that is ex-
creted by anearobically photosynthesysing green and purple sulphur bacteria. Biomarkers
(isorenieratene) from these bacteria suggest that the great mass extinctions of the Permian,
Devonian and Triassic are linked to the toxic effects of hydrogen sulphide and the lack of
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dioxygen [577, 168]. Viruses probably arose early in the evolution of life, and necessitated
specialized defense systems that dealt with them. These defense systems further increased
maintenance costs.

Increase of reserve capacity

Substrate concentration in the environment is not constant, which poses a problem if
there is a continuous need to cover maintenance costs. An increase in maintenance costs
therefore requires increased storage capacity in order to avoid situations in which main-
tenance costs cannot be met. The solution is to further delay the conversion of substrate
metabolites to structure, creating a pool of intermediary metabolites. The optimal capac-
ity depends on the variability of substrate availability in the environment and (somatic)
maintenance needs. Transformation to polymers (proteins, carbohydrates) and lipids will
reduce concentration gradients and osmotic problems, and thus maintenance costs, but
involves machinery to perform polymerization and monomerization. The development of
vacuoles allows spatial separation of ions and cytoplasm to counter osmotic problems. One
example is the storage of nitrate in vacuoles of the colourless sulphur bacteria Thioploca
spp. [220], which use it to oxidize sulphides first to sulphur, for intracellular storage, and
then to sulphate for excretion together with ammonium [433]. Cyanobacteria only develop
vacuoles at low pH [595]. Organelles like acidocalcisomes also play a role in the storage of
cations [113].

A further step to guarantee that obligatory maintenance costs can be met is to ca-
tabolize structure. This is inefficient and involves further waste production (so requiring
advanced excretion mechanisms), but at least it allows the organism to survive lean periods.

Reserves can contribute considerably to the variability of biomass composition; phy-
toplankton composition greatly affects the rate at which phytoplankton bind atmospheric
carbon dioxide and transport carbon to deep waters [428], known as the biological carbon
pump. The activity of the biological carbon pump strongly influences climate.

Morphological control on metabolism

Morphology will influence metabolism for several reasons: assimilation rate is proportional
to surface area, maintenance rate to volume and catabolic rate to the ratio of surface area
and volume. This means that surface-area-volume relationships are central to metabolic
rates. The shape of the growth curve (and so the timing of developmental events) is directly
related to the changes in morphology of the cell.

κ-rule and the emergence of cell cycles

Control on morphology and cell size will increase stepwise. Initially the size at division
would be highly variable among cells. This variance will be decreased by the installation of
a maturation process, where division is initiated as soon as the investment in maturation
exceeds a threshold level. This state of maturity creates maturity maintenance costs.
Allocation to this maturation program is a fixed fraction 1 − κ of the catabolic flux,
gradually increasing from zero. Such an allocation is only simple to achieve if the catabolic
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flux does not depend on the details of allocation. If the SUs for maturation operate similar
to those for somatic maintenance and growth, the fraction κ is constant and depends on
the relative abundance and affinity of the maturation SUs.

The metabolic relevance of cell size is in membrane-cytoplasm interactions; many cat-
alyzing enzymes are only active when bound to membranes [24], and cellular compartmen-
talization affects morphology and metabolism. The turnover of reserve decreases with a
length measure for an isomorphic cell, which comes with the need to reset cell size. Apart
from the increase of residence time of compounds in the reserve with a length measure, the
cell’s surface area to volume ratio decreases with increasing cell size, as does the growth
potential. The increase in metabolic performance requires an increase in the amount of
DNA and in the time spent on DNA duplication. The trigger for DNA duplication is given
when investment into maturation exceeds a given threshold, meaning that a large amount
of DNA leads to large cell sizes at division. Prokaryotes partly solved this problem by
telescoping generations (DNA duplication is initiated before the previous duplication cycle
is completed) and by deleting unused DNA [538].

The existence of a maturity investment threshold can be deduced phenomenologically.
If the specific maturity maintenance costs [ṗJ ] relates to the somatic maintenance costs [ṗM ]
as [ṗJ ] = [ṗM ]1−κ

κ
, the threshold is exceeded if the amount of structure exceeds a threshold;

κ represents the fraction of the utilized reserve that is allocated to somatic maintenance
plus growth. For all other values of [ṗJ ], the amount of structure at the transition depends
on the nutritional history. This argument can be used in reverse to estimate the specific
maturity maintenance costs from size-at-transition data. If the cells are separated at the
two-cell stage of the embryo sea urchin Strongylocentrotus droebachiensis, the embryonic
period is hardly affected, but the size at the transition to the larval stage is halved [187].
Thus it is possible to manipulate the threshold value experimentally, meaning that its
biochemical identification is within reach.

Reduction of number of reserves

Many eukaryotes started feeding on dead or living biomass with a chemical composition
similar to themselves. This co-variation in time of all required metabolites for growth
removed the necessity to deal with each of those reserves independently. By linking the
uptake of various metabolites, the various reserves co-vary fully in time because their
turnover times are equal, as was discussed above. This improved homeostasis, and allowed
further optimization of enzyme performance.

From an organization point of view, reserves play a key role in product formation. If
biomass would have a constant composition (so no reserve), one of the three basic (energy)
fluxes of assimilation, maintenance and growth would follow from two of them plus the
mass balance. Reserve provides the degree of freedom that is essential to uncouple the
three energy fluxes, meaning that all products in single reserve - single structure systems
can be written as a weighted sum of these three energy fluxes. These products include
water, carbon dioxide, nitrogen waste, faeces, but also products that remain useful to
the individual like chitin (in fungi), cellulose and wood (in plants) and carbonates (in
corals). These products differ from biomass by not requiring maintenance, which is why
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for example fungi, like trees, have low maintenance costs when expressed on the basis of
total dry weight. Non-limiting resources, such as dioxygen in aerobic environments, and
heat also follow these kinetics. This explains why indirect calorimetry is successful, where
dissipating heat is taken to be a weighted sum of the dioxygen, carbon dioxide and nitrogen
waste fluxes. The κ-rule means that new allocation destinies (maturity maintenance and
maturation or reproduction) do not affect the simple rule that all mass and heat fluxes are
weighted sums of the three basic fluxes if we extend the maintenance flux to include the
collection of transformations that do not relate to synthesis of biomass.

Syntrophy and compartmentalization.

The evolution of central metabolism testifies from its syntrophic origins [316, 330]. Its
possible prokaryotic start is summarized in Figure 8.4. The examples of contemporary
models [360, 491] illustrate that the metabolic systems themselves are not hypothetical,
but the evolutionary links between these systems obviously are. This is not meant to
imply, however, that the taxa also would have these evolutionary links. Some species of
Methanococcus have most genes of the glycolysis; Thermoproteus possesses a variant of the
reversible Embden-Meyerhof-Parnas and the Entner-Douderoff pathways; Sulfolobus has
oxidative phosphorylation. These contemporary models are not just evolutionary relicts;
the picture is rather complex.

Some important features are that heterotrophy evolved from phototrophy, which itself
evolved from lithotrophy, and that all cycles in the central metabolism of typical modern
heterotrophs ran in the opposite direction in the evolutionary past.

This reconstruction suggests that lateral gene exchange between eubacteria and archaea
occurred during the evolution of central metabolism. Initially cells could exchange RNA
and early strands of DNA relatively easily [587]; restrictions on exchange became more
stringent with increasing metabolic complexity. Many authors suggest that considerable
lateral gene exchange occurs in extant prokaryotes [386, 171, 331, 377] by conjugation,
plasmids and viruses [543].

While prokaryotes passed metabolic properties from one taxon to another by lateral ex-
change of genes, eukaryotes specialized in symbiotic relationships and even internalization
of whole organisms to acquire new metabolic properties.

Mitochondria

The problem of the origins of mitochondria is not fully resolved. Part of the problem is
that mitochondria and hosts exchanged quite a few genes, and the genome of mitochondria
reduced considerably, down to 1% of its original bacterial genome [141]. The mitochondrial
DNA in kinetoplasts, however, is amplified and can form a network of catenated circular
molecules [344]. Mitochondria probably evolved from an α-group purple bacterium [13] in
an archaean [376, 379, 21]. However, arguments exist for the existence of mitobionts in the
remote past [398], from which mitochondria and prokaryotes developed; the mitobionts dif-
ferentiated before they associated with various groups of eukaryotes. The amitochondriate
pelobiont Pelomyxa palustris has intracellular methanogenic bacteria that may have com-
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Figure 8.7: Scheme of symbiogenesis events; the first two primary inclusions of prokaryotes (to
become mitochondria and chloroplasts respectively), were followed by secondary and tertiary
inclusions of eukaryotes. Each inclusion comes with a transfer of metabolic functions to the host.
The loss of endosymbionts is not illustrated. See Figure 8.4 for definitions of the modules of
central metabolism and for the ancestors of mitochondria and chloroplasts. The outer membrane
of the mitochondria is derived from the endosymbiont, and that of the chloroplasts from the host;
mitochondria were internalized via membrane rupture, chloroplasts via phagocytosis. Modified
from [316]. The scheme explains why all eukaryotes have heterotrophic capabilities.

parable functions. Other members of the α-group of purple bacteria, such as Agrobacterium
and Rhizobium can also live inside cells and function sport dinitrogen fixation. Rickettias
became parasites, using their host building blocks and reducing their own genome to viral
proportions.

It is now widely accepted that all eukaryotes have or once had mitochondria [490, 171,
228, 134, 521, 533]. Their internalization marks the origin of the eukaryotes, which is
possibly some 1.5 Ga [237] or 2.0 Ga [476] or 2.7 Ga [70] ago. In fact the eukaryotes may
have emerged from the internalization of a fermenting, facultative anaerobic H2- and CO2-
producing eubacterium into an autotrophic, obligatory anaerobic H2- and CO2-consuming
methanogenic archaean [376], the host possibly returning organic metabolites. Once the
H2-production and consumption had been cut out of the metabolism, aerobic environments
became available, where the respiratory chain of the symbiont kept the dioxygen concen-
tration in the hosts cytoplasm at very low levels. The internalization of (pro)mitochondria
might be a response to counter the toxic effects of dioxygen. This hypothesis for the origin
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of eukaryotes explains why the DNA replication and repair proteins of eukaryotes resemble
that of archaea, and not that of eubacteria. Notice that the eukaryotization, as schematized
in Figure 8.7, just represents a recombination and compartmentation of existing modules
of the central metabolism (cf Figure 8.4). Syntrophic associations between methanogens
and hydrogenosomes are still abundant; ciliates can have methanogens as endosymbionts
and interact in the exchange [142].

The penetration of mitochondria into its host required membrane rupture and healing,
without causing cell death. The predatory bacterium Daptobacter can penetrate the cy-
toplasm of its bacterial prey Chromatium. This may be analogous to early events in the
symbiotic acquisition of cell organelles [170]. The outer membrane of the double membrane
around mitochondria might be of negibacterial origin [86], which supports the rupture in-
terpretation. At least one example exists of prokaryotic endosymbiosis (β-proteobacteria
that harbour γ-proteobacteria [115]) in absence of phagocytosis. More examples exist of
penetration through the membrane without killing the victim instantaneously (e.g. [170].
His present view, shared by others, is that it happened only once and the logical implication
is just in a single individual. If phagocytosis would have been well established prior to the
entry of a mitochondrion, it is hard to understand why it did not occur more frequently.

The non-lethal penetration that has lead to mitochondria possibly occurred once only,
which explains the metabolic similarity among all eukaryotes, compared to the diversity
among prokaryotes. Since opisthokonts were the first to branch, and animals probably first
appeared in the sea, this internalization event presumably occurred in a marine environ-
ment. The fungi, notably the chytrids, diverged from the animals (unicellular relatives
of the choanoflagellates) some 0.9 - 1.6 Ga ago [546]. In view of the biology of mod-
ern nucleariids and chytrids, this might have occurred in a freshwater environment. This
evolutionary origin mitochondria illustrates the narrow borderline between parasitic and
symbiotic relationships.

The shape of the cristae of mitochondria is nowadays an important criterion in tracing
the evolutionary relationships among protists [438], which points to a slow intracellular evo-
lution. Hydrogenosomes are generally thought to have evolved from mitochondria in anaer-
obic or micro-aerobic environments. As testified by the presence of mitochondrion-derived
genes, some parasitic or commensal groups (entamoebidae, microsporidia, diplomonads,
parabasalia, some rumen chytrids, several groups of ciliates) lost their mitochondria [490].
Such genes have not been found (yet) in the amitochondriate oxymonads, retortamonads,
Postgaardi and Psalteriomonas. The absence of mitochondria is perhaps primitive in the
pelobionts and the free-living Trimastrix [438]. Other organelles, such as peroxysomes and
glyoxisomes, probably also have endosymbiotic origins [86, 226]; they follow a growth and
fission pattern that is only loosely coupled to the cell cycle. Organelles such as centrioles,
undulipodia, and the nuclear membrane, possibly have an endosymbiotic origin [373], but
others oppose this point of view.

Membrane plasticity

No prokaryote seems to be able to form vesicles, while membrane transport (including
phagocytosis and pinocytosis, vesicle mediated transport) is basic in eukaryotes [125, 169],
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and essential for endosymbiotic relationships. Eukaryotes also have ATP-fueled cytoplas-
matic mobility driven by myosin and dynein.

The absence of phagocytosis or pinocytosis in prokaryotes has been used as argument
in favour of an independent origin of prokaryotes and eukaryotes [86, 586]. The protein
clathrin plays a key role in membrane invagination, and is not known in prokaryotes. Simi-
larities in the DNA and RNA code and in the whole biochemical and metabolic organization
of prokaryotes and eukaryotes suggest an evolutionary link. Cavalier-Smith [86, 90] argued
that eukaryotes descend from some actinobacterium that engulfed a phototrophic posibac-
terium (an (-proteobacterium) as mitochondrion, which later lost phototrophy, and used it
as a slave to produce ATP. The ability to phagotize is central to his reasoning. Actomyosin
mediates phagocytosis and actinobacteria have proteins somewhat related to myosin, al-
though they do not phagotize. If he is right that the outer membrane of mitochondria is
derived from the original posibacterium, and not from the host, there is little need for the
existence of phagocytosis prior to the entry of a posibacterium to become a mitochondrion.
Bell [32, 33] proposed that a lysogenic pox-like DNA virus introduced clatrine-like proteins
in an archaean that promoted membrane plasticity. This option also helps to understand
the origins of the nuclear membrane, of linear chromosomes with short telometic repeats,
of capped mRNA and to extrude it across the viral membrane into the cytoplasm. Virusses
might have evolved early [149, 150].

The subsequent development of membrane plasticity has been a major evolutionary
step, that allowed phagocytosis; cells no longer needed to excrete enzymes to split large
molecules of substrate into smaller metabolites for uptake with low efficiency, but diges-
tion could be carried out intracellularly, avoiding waste and the necessity for cooperative
feeding. Fungi possibly never developed this ability and animals evolved from fungi [377]
suggesting that the animal lineage developed phagocytosis independently. Recent phylo-
genetic studies [535] place the phagocytotic nucleariids at the base of the fungi, however,
suggesting that the fungi lost phagocytosis, and that it only developed once. Most animals
also excrete enzymes (like their fungal sisters), but since this is in the gut environment, most
metabolites arrive at the gut epithelium for uptake. Plantae (glaucophytes, rhodophytes
and chlorophytes) gave up phagocytosis, but chromophytes, which received their plastids
in the form of rhodophytes, still sport active phagocytosis [10] despite their acquired pho-
totrophic abilities. Phagocytosis allowed the more efficient use of living and dead organisms
as a resource. Scavenging, predation and new forms of endosymbioses became widespread.

We are beginning to understand the evolutionary roots of cell motility [44], including
changes in shape in response to environmental stimuli, and extension of protrusions like
lamellipodia and filopodia to allow particles to be enclosed in a phagocytotic cup, which
is based on the spatially controlled polymerization of actin. The eubacterial pathogens
Listeria monocytogenes and Shigella flexneri exhibit actin-based movement in the host
cytoplasm [435]. Actin and tubulin have also been isolated from the togobacterium Ther-
matoga maritimum [136]; apart from their role in motility, these proteins also play a key
role in the cytoskeleton of eukaryotes, which is used by transporters for the allocation of
metabolites to particular destinations. All eukaryotic cytoskeleton elements are presently
known from prokaryotes [167].

The evolution of membrane plasticity must have taken place in a time window of some



193

700 Ma, since biomarker data suggest that the first eukaryotic cells appeared around 2.7
Ga [70] ago (around the time cyanobacteria evolved).

Before the arrival of plastids, eukaryotes were heterotrophic. Cyanobacteria are mixotrophic,
which makes it likely that their plastids before internalization were mixotrophs as well.
Very few, if any, eukaryotes with plastids became fully specialized on phototrophy, remain-
ing mixotrophic to some extent. Theoretical studies show that the spontaneous evolu-
tionary specialization of mixotrophs into organo- and phototrophs is difficult in spatially
homogeneous environments [559]. In spatially heterogeneous environments, however, such
as in the water column where light extinction favours phototrophy at the surface and
heterotrophy at the bottom, such specialization is relatively easy [558].

Membrane plasticity had a huge impact on cellular organization. The presence of vac-
uoles increased the capacity to store nutrients [351], and vesicle-mediated intracellular
transport reorganized metabolism [125]. By further improving intracellular transport us-
ing the endoplasmatic reticulum and further increasing storage capacity, cells could grow
bigger and be more motile. Bigger size favours increased metabolic memory, and increased
motility allows the organism to search for favourable sites. The eukaryotic endoplasmatic
reticulum, build of actin and tubulin networks has a precursor in prokaryotes in the form
of MreB proteins [136], so also here, we see gradual improvement.

Plastids

Long after the origin of mitochondria some cyanobacteria evolved into plastids[372, 545],
which made phototrophy available for eukaryotes. Like that of mitochondria, this internal-
ization event possibly occurred only once in eukaryotic history [105, 387, 90, 591, 106, 489],
see Figure 8.7, but this is controversial [536].

Sequence data suggest that glaucophytes received the first plastids, and that rhodophytes
evolved from them some 2.0 Ga [503, 544] ago (or 1.2 Ga according to [237]), while chloro-
phytes (including plants) diverged from rhodophytes 1.5 Ga ago. The glaucophytes have
a poor fossil record, and now consist of a few freshwater species. Where the plastids of
glaucophytes retained most of their genome and properties, whereas that of rhodophytes
and chlorophytes became progressively reduced by transfer of thousands of genes to the
nucleus [378] and by gene loss.

The present occurrence of glaucophytes weakly suggests that the internalization of a
plastid occurred in a freshwater environment. The rhodophytes have their greatest diversity
in the sea, and most of their hosts (that possess rhodophyte-derived chloroplasts) are most
diverse in the sea, while chlorophytes and their hosts are most diverse in fresh waters. So
the habitat in which the internalization occurred is uncertain.

The secondary endosymbiosis event that seeded the chromophytes was some 1.3 Ga ago
[592] (see Figure 8.7). Rhodophytes became integrated into heterokonts, haptophytes and
cryptophytes, while chlorophytes became integrated into euglenophytes and chlorarachnio-
phytes; heterokonts and haptophytes became integrated into dinoflagellates, which them-
selves (especially Gymnodinium adriaticum) engaged into endosymbiotic relationships with
animals (corals, other cnidarians and molluscs). Alveolates, to which dinoflagellates, cili-
ates and sporozoans belong, generally specialized in kleptoplastides (i.e. functional plastids
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that are acquired by feeding). The presence of plastids in the parasitic kinetoplastids and
of cyanobacterial genes in the heterotrophic percolozoans (= Heterolobosea) suggests that
secondary endosymbiosis did not take place in the euglenoids, but much earlier in the
common ancestor of all excavates, where chloroplasts became lost in the percolozoans [12].
Apart from dinoflagellates, cryptophytes (especially Chrysidiella) and diatoms engaged
in endosymbiotic relationships with radiolarians and foraminiferans, and chlorophytes did
so with animals (sponges, Hydra, rotifers and Platyhelminthes). Intracellular chloroplast
populations seem to behave more dynamically in kleptomanic and endosymbiotic relation-
ships [537], compared to fully integrated systems. The coupling of the dynamics of the
subsystems can be tight as well as less tight.

Vacuoles and cell structures

Apart from membrane plasticity and organelles, a property unknown in prokaryotes is the
vacuole [351], which is used for storing nutrients in ionic form and carbohydrates; sucrose, a
precursor of many other soluble carbohydrates, typically occurs in vacuoles. This organelle
probably evolved to solve osmotic problems that came with storing substrates. The storage
of water in vacuoles allowed plants to invade the terrestrial environment; almost all other
organisms depend on plants in this environment. The DEB theory predicts that the storage
capacity of energy and building-blocks scales with volumetric length to the power of four;
since eukaryotic cells are generally larger than prokaryotic ones, storage becomes more
important to them. Diatoms typically have extremely large vacuoles, which occupy more
than 95% of the cell volume, allowing for a very large surface area (the outer membrane,
where the carriers for nutrient uptake are located), relative to their structural mass that
requires maintenance. In some species, the large chloroplast wraps around the vacuole like
a blanket. Since, according to the DEB theory, reserve does not require maintenance, the
large ratio of surface area to structural volume explains why diatoms are ecologically so
successful, and also why they are the first group of phytoplankton to appear each spring.
Archaea and posibacteria do have gas vacuoles, but their function is totally different from
that of eukaryotic vacuoles.

The Golgi apparatus, a special set of flat, staked vesicles, called dictyosomes, develops
after cell division from the endoplasmatic reticulum. They appear and disappear repeatedly
in the amitochondriate metamonad Giardia. The nuclear envelope can disappear in part
of the cell cycle in some eukaryotic taxa and it is also formed by the endoplasmatic retic-
ulum. The amitochondriate parabasalid Trichomonas does not have a nuclear envelope,
while the planctobacterium Gemmata oscuriglobus has one. The possession of a nucleus
itself is therefore not a basic requisite distinguishing between prokaryotes and eukaryotes.
The situation is quite a bit more complex than molecular biology textbooks suggest.; e.g.
the macronuclei (sometimes more than one) in ciliates are involved in metabolism, while
the micronuclei deal with sexual recombination. Although some prokaryotic cells, such as
the planctobacteria, are packed with membranes, eukaryotic cells are generally more com-
partmentalized, both morphologically and functionally. Compounds can be essential in
one compartment, and toxic in another [380]. Eukaryotic cilia differ in structure from the
prokaryotic flagella, and are therefore called undulipodia to underline the difference [372].
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The microtubular cytoskeleton of eukaryotes is possibly derived from protein constricting
the prokaryotic cell membrane during fission, as both use the protein tubulin [136].

Genome organization

The organization of the genome in chromosomes, with a spindle machinery for genome
allocation to daughter cells, enhanced the efficiency of cell propagation by reducing the
time needed to duplicate DNA [94], and harnessed plastids, whose duplication is only
loosely coupled to the cell cycle in prokaryotes. Since animals such as the ant Myrmecia
croslandi and the nematode Parascaris univalens have only a single chromosome [241],
acceleration of DNA duplication is not always vital. It allows more efficient methods of
silencing viruses, by changing their genome and incorporating it into that of the host (half
of eukaryotic “junk DNA” consists of these silenced viral genomes). Eukaryotes had to
solve the problem of how to couple the duplication cycles of their nuclear genome and
that of their mitochondria and chloroplasts. Dynamin-related guanosine triphosphatases
(GTPases) seem to play a role in this synchronization [432]. The nuclear membrane of
eukaryotes and planctomycetes possibly allows a better separation of the regulation tasks
of gene activity and cellular metabolism by compartmentalization, which might have been
essential to the development of advanced gene regulation mechanisms.

Chromosomes are linked to the evolution of reproduction, which includes cell-to-cell
recognition, sexuality and mating systems. Moreover, many eukaryotes have haploid as
well as diploid life stages, and two or more (fungi, rhodophytes) sexes [230]. Although
reproduction may seem to have little relevance to metabolism at the level of the individual,
metabolic rates at the population level depend on the amount of biomass and, hence, on
rates of propagation. Eukaryotes also have a unique DNA topoisomerase I, which is not
related to type II topoisomerase of the archaea [151], which further questions their origins.

Despite all their properties, the eukaryotic genome size can be small; the genome size
of the acidophilic rhodophyte Cyanidoschyzon is 8 Mbp, only double the genome size of
E. coli [94]; the chlorophyte Ostreococcus tauri has a genome of only 10 Mbp, and the
yeast Saccaromyces cerivisiae of 12 Mbp [108]. Typical eukaryotic genome sizes are much
larger than that of prokaryotes however. Apart from silencing of viruses, most of this
extension relates to gene regulation functions that are inherent to cell differentiation and
the evolution of life stages.

Merging of individuals in steps

Collaboration in the form of symbioses based on reciprocal syntrophy is basic to biodi-
versity, and probably to the existence of life [1, 105, 118, 119, 478, 525]. The merging of
two independent populations of heterotrophs and autotrophs into a single population of
mixotrophs occurred frequently in evolutionary history [477, 548]. This process is known
as symbiogenesis [373] and is here discussed following [298].

Endosymbiotic relationships are not always stable on an evolutionary time scale. All of
the algal groups have colourless representatives, which imply that they are heterotrophic.
Many species with chloroplasts are known to have heterotrophic abilities as well, which
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classify them as mixotrophs. Half of the species of dinoflagellates, for instance, do not
have chloroplasts, probably due to evolutionary loss [87]. The integration is a step-wise
process, where plastids’ genome size is reduced by gene loss, substitution and transfer to
the hosts’ genome, possibly to economize metabolism [86]. Chloroplasts of chlorophytes
have a typical genome size of 100 genes, but the genome sizes of chloroplasts of rhodophytes
and glaucocystophytes are substantially larger. The chloroplasts of cryptophytes and chlo-
rarachniophytes still contain a nucleomorph with some chromosomes [371], believed to be
derived from their earlier rhodophyte and chlorophyte hosts. The endosymbionts of radi-
olarians, foraminiferans and animals maintained their full genome. The tightness of the
integration is, therefore, reflected at the genome level.

Generally little is known about the population dynamics of intracellular organelles [432].
Mitochondria constitute some 20% of the volume of mammalian cells, but this varies per
tissue and individuals’ condition. Their number per cell varies between 1000 and 1600 in
human liver cells, 500 and 750 in rat myoblasts, some 80 in rabbit peritoneal macrophages,
and 1 in mammalian sperm cells [36]. In the case of a single mitochondrion, the growth and
division of the mitochondrion must be tightly linked to that of the cell, but generally the
dynamics of mitochondria is complex and best described by stochastic models [49]. Mito-
chondria crawl around in eukaryotic cells [36] and can fuse, resulting in a smaller number
of larger mitochondria, and can even form a network, as observed in gametes of the green
alga Chlamydomonas, for instance. In yeast and many unicellular chlorophytes, a single
giant mitochondrion alternates cyclically with numerous small mitochondria. Moreover,
the host cell can kill mitochondria and lysosomes can decompose the remains. Likewise,
chloroplasts can move through the cell, sometimes in a coordinated way. Chloroplasts can
transform reversibly into non-green plastids (proplastids, etioplastids and storage plastids)
with other cellular functions.

Apart from changes in numbers, plastids can change in function as well. They can
reversibly lose their chlorophyll and fulfill non-photosynthetic tasks, which are perma-
nent in the kinetoplasts (e.g. the endoparasite Tripanosoma) and in heterotrophic plants
(Petrosaviacea, Triurdaceae, some Orchidaceae, Burmanniaceae, the prothallium-stage of
lycopods and ophioglossids, the thalloid liverwort Cryptothallus mirabilis [456, p377]), in
parasitic plants (Lennoaceae, Mitrastemonaceae, Cytinaceae, Hydnoraceae, Apodanthaceae,
Cynomoriaceae, Orobanchaceae, Rafflesiaceae, Balanophoraceae, some Convolvulaceae),
and in predatory plants (some Lentibulariaceae), for instance. This list of exclusively
heterotrophic plants suggests that heterotrophy might be more important among plants
than is generally recognized.

The evolution of organelles strongly suggests an increasingly strong coupling between
species that were once more independent. This places eukaryotic cellular physiology firmly
in an ecological perspective, and motivates the application of ecological methods to sub-
cellular regulation problems. This mutually dependent dynamics is the focus of the present
review, and includes that of intracellular parasites.

The physiological basis of endosymbiosis is probably always reciprocal syntrophy, where
each species uses the products of the other species. The classic example is a heterotroph-
alga/chloroplast symbiosis. The heterotroph feeds on nitrogen-containing organic sources
(such as animal prey by corals) and produces ammonia as a waste product; the alga or



197

A

θ··

θS· E
�

��
R
�

��	

S

B

θ··

θ·PθS· E
@

@I
	
@

@@R

P

�
��
R
�

��	

S

C

θ··

θ·P

θSP

θS· E
@

@I
	
@

@@R

P

�
��
R
�

��	

S

I

P

@
@@R
@

@I�

S

�
��	

�
��I

D

θ··

θ·P

θSP

θS·

@
@@R

P
�

��	

S

P

@
@@R S

�
��	

6

�
E

Figure 8.8: The evolution of the transformation from substrate S, and later also from product P ,
into reserve E. The interaction of substrate and product in the transformation to reserve evolved
from sequential-substitutable (B), via parallel-substitutable (C), to parallel-supplementary (D).
The symbol θ represents a synthesizing unit (SU) that is free θ··, bound to the substrate θS·, to
the product θ·P , or to both θSP .

chloroplast requires light and carbon dioxide and produces carbohydrates as a waste prod-
uct (especially if its growth is nutrient limited) [412, 413, 414]; ammonia-carbohydrate
exchange forms the basis of the symbiosis. Mitochondria receive pyruvate, FAD, GDP, P,
and NAD from the cytoplasm, and return FADH, GTP, NADH and intermediary metabo-
lites from the Krebs cycle. One-way syntrophy, where one species uses the product of the
other, but not vice versa, is here treated as a special case of reciprocal syntrophy.

This focus on metabolic aspects of symbioses is not meant to imply that other aspects
are unimportant. An intriguing example is the α proteobacterial symbiont Wolbachia of
Ecdysozoa (including arthropods and nematodes), which affects sex determination [92,
218, 405, 581]. Other well-known examples are animal symbionts of plants, which promote
pollination and seed dispersal. Symbioses on the basis of a mixture of syntrophic and
non-metabolic relationships also exist: the Latin-American tree Cecropia stores glycogen
in specialized plastids in tissue, which is eaten by ants that furiously attack anything that
touches the tree.

Starting from two free-living populations in the same environment that follow the DEB
rules, eight steps of reductions of degrees of freedom can be delineated to arrive at a fully
integrated endosymbiotic system that can be treated as a single population for all practical
purposes and again follow the DEB rules. All those steps in the asymptotic behaviour of
the populations can be made on an incremental basis, i.e. by a continuous and incremental
change in (some) parameter values. The general idea is that the parameter values are
under evolutionary control. Figure 8.13 illustrates some of the steps.

1 Reciprocal syntrophy

Originally two species coexist by living on a different substrate each, so they initially
might have little interaction and just happen to live in the same environment. Each species
excretes products in a well-mixed environment. A weak form of interaction starts when the
products are used by the other species as a substitutable compound for their own substrate,
a situation which we can call reciprocal syntrophy. Gradually the nutritional nature of
the product changes with respect to the substrate from substitutable to supplementary,
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and the two species become involved in an obligatory symbiotic relationship; they can no
longer live independently of each other; see Figure 8.8. The mechanism can be that the
partners’ product is a metabolite of an organism’s own substrate; eventually the metabolic
pathway for that metabolite becomes suppressed and later deleted [538]. A well-known
example is the human inability to synthesize vitamin C, which is generally interpreted as
an adaptation to fruit eating; the genes for coding vitamin C synthesis are still present
in the human genome, but they are not expressed. The theory behind the uptake of
compounds that make a gradual transition from being substitutable to supplementary is
discussed in [64], together with tests against experimental data on co-metabolism.

Figure 8.9 gives the steady-state amounts of structures of hosts and symbionts as func-
tions of the throughput rate of the chemostat for the various steps in symbiogenesis. The
throughput rate equals the specific growth rate at steady-state. The maximum throughput
rate is less than the potential maximum growth rate; equality only holds for infinitely high
concentrations of substrate in the inflowing medium. The amounts of structures are zero
at a throughput rate of zero because of maintenance; the curves for the Monod and Droop
models would decrease monotonously. At step 0, where substrates are substitutable to
products, the introduction of the partner enhances growth. This is clearly visible in the
curve for the host around the maximum throughput rate for the symbiont. Growth stimu-
lation also occurs for the symbiont, of course, but this is less visible in the figure since the
host is always present when the symbiont is present with this parameter setting; without
the host, the biomass and the maximum throughput rate of the symbiont would be less.
The maximum throughput rates for hosts and symbionts can differ as long as substrate
and products are substitutable, but not if they are supplementary (steps 1 to 6). The
amounts of structures then can’t decrease gradually to zero for increasingly high growth
rates (steps 1 to 5), because product formation, and thus product concentration, will then
also decrease gradually to zero, while the equally rapid growing partner needs a lot of
product. Figure 8.9 also shows that the transition from substitutable to supplementary
products (from step 1 to 2) comes with a substantial reduction in the maximum growth
rate if no other mechanism ensures an easy access to the products; the concentration of
products in a well-mixed environment is very low. It is therefore likely that this transition
is simultaneous with rather than prior to subsequent steps in symbiogenesis (i.e. spatial
clustering, so spatial structure). We will return to this point later.

Examples of product exchange with little spatial clustering can be found among micro-
organisms in animal guts. The species originally describes as Methanobacillus omelian-
skii turned out to consist of a chemotrophic ‘S-organism’, which consumes ethanol, and
produces di-hydrogen, and a methanogen, which consumes di-hydrogen and dioxide. Ru-
minococcus albus ferments glucose to acetate, ethanol and di-hydrogen, but in the presence
of fumarate-fermenting Vibrio succinogenes, R. albus produces acetate, and not the ener-
getically expensive ethanol; this is only possible when V. succinogenes removes di-hydrogen
[142]. This exchange pattern is typical for methanogen-partner interactions.

Transitions from syntrophy to competition and parasitism occur. The dung beetle
(family Scarabaeidae), which feeds on mammalian faeces, is an example of the use of a
product that is associated with hosts’ assimilation. A transition to competition is found
in sharksuckers Echeneis, which feed on fish fragments derived from the shark’s meals.
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Figure 8.9: Steady-state values of the amounts of structure of hosts (dashed curves) and sym-
bionts (drawn curves) as functions of the throughput rate of the chemostat for the different steps
in symbiogenesis. If substrates and products are substitutable (0) symbiosis is facultative and the
host can live independently of the symbiont. With this parameter setting the hosts’ maximum
growth rate is higher. If substrates and products make their transition to become supplementary
(1), and especially if they are supplementary (2), symbiosis is obligatory. The environment is
homogeneous in steps 0-2 and 5-8, but in step 3 symbionts can live in the free space, in the
hosts’ mantle space, as well as within the host. The parameter settings are such that the internal
population of symbionts out-competes the mantle and free-living populations; the curve for the
symbionts in step 3 corresponds to the internal population; other values for the transport param-
eters allow the coexistence of all three populations, or any selection from these three. Step 4 has
internal symbionts only, but the mantle space can differ from the free space in concentrations of
substrates and products. These differences disappear in step 5 (by increasing the transport rates
between both spaces). Product transfer is on flux basis in step 6, rather than on concentration
basis (steps 0-5); the symbioses can grow much faster and the amounts of structure are again
zero at the maximum throughput rate. The transition from step 5 to 6 can be smooth if the host
can reduce the leaking of product. The merging of both structures (7) and reserves (8) don’t
have substantial effects at steady-state. The single structure in steps 7 and 8 can handle two
substrates; each structure in steps 0-6 handles only one.
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Antbirds of the family Formicariidae feed on well-camouflaged locusts that jump to escape
from an advancing front of army ants (subfamily Dorylinae); syntrophy here completes the
transition to direct food competition.

We have discussed the use of products in ways that do not affect the production pro-
cess directly. The use of products can be associated, however, with a change of product
flux in complex ways which we will not analyze in depth. The honey guider Indicator
guides mammals (e.g. badgers and humans) to bees’ nests, itself feeding on the wax that
is left over after the nest has been opened by the guided animal. The birds’ activity might
increase its average feeding rate as well as that of the guided animal. The house dust
mite Glycyphagus domesticus enhances human skin flake production by inducing allergic
reactions in humans, and so increases its food supply. The moth Hypochrosis increases tear
production of big mammals, such as Asian elephants, by poking its tongue into mammals’
eye. Both mites and moths ‘milk’ their hosts, so increasing the hosts’ product formation,
which is here associated with the hosts’ maintenance process. Syntrophy involves a tran-
sition to biotrophy in the sucking of mammalian blood by mosquitos or in the extraction
of plant saps by mistletoes or aphids. A transition to predation or parasitism is found in
young pearl fish Carapus, which feed on the gonad tissue of sea cucumbers.

The concentration of products in the environment and the biomass ratios of the species
can vary substantially in time. In the unlikely case that substrates, products or biota all
remain in a given local homogeneous environment, it initially takes an amount of substrate
to build up product concentrations, but once these concentrations and the populations
settle to a constant value, the environment no longer acts as a sink and the situation is very
similar to a direct transfer of product from one species to the other during steady-state. The
inefficiency of product transfer in well-mixed environments becomes clear during transient
states and if the product decays away (chemically, by physical transport or biologically
mediated). A lot of product will not reach the partner, and population levels will be low.

2 Spatial clustering

Exchange of compounds between the species is enhanced by spatial clustering; most in-
dividuals of the small-bodied species live in a narrow mantle around an individual of the
large-bodied species, see Figure 8.10. Although the real mantle will not have a sharp
boundary with the outer environment, we treat it as a distinct and homogeneous envi-
ronment that can exchange substrate and products with the outer environment and with
the volume inside the host. The individuals of the large-bodied species secrete all product
into their mantle; both products and substrates can leave or enter the mantle with certain
specific rates according to a generalized diffusion process. We take the mantle’s volume (at
the population level) just proportional to the structural mass of the large-bodied species
(which seems reasonable at the population level). Diffusion and related transport processes
mean that the mantle is actually not homogeneous; concentration gradients will build up,
as discussed in [289, p235]. This level of detail is not required, however, for our present
aim.

The emigration rate of the small-bodied species to and from the mantle space will
be relatively small. Since the growth rate will be much higher in the mantle, the small-
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Figure 8.10: The cell surface of the
colourless amitochondriate euglenoid Postgaardi

mariagerensis is fully covered with elongated
rod-shaped heterotrophic bacteria. Based on an
electronmicrograph in [522]; the length of the
cell is 60 µm.

bodied species accumulates in the mantle space of the large-bodied one, depending on the
transport rates for substrates and products to the other environment, and on intra-specific
competition. Under rather general conditions for the maximum specific assimilation rate,
the specific maintenance and growth costs, and the hazard rate (i.e. the instantaneous
death rate), the population inside the mantle space even out-competes that outside. This
spatial clustering does not involve optimization arguments.

Many species create a special environment to grow their symbionts. Examples are
animals intestines, which harbour the gut flora, or pits in the leaves of the floating fern
Azolla and Gunnera, which harbour blue-green bacteria (Anabaena) that fix dinitrogen;
some flowering plants, such as Alnus, leguminosae, Hippophaë, have special structures in
the roots for harvesting the bacteria Rhizobium for the same purpose. Cockroaches lose
their gut flora at moulting, and inoculate from mother’s faecal supplies. The water flea
Daphnia magna is a popular species used for ecotoxicity testing [302]. This led to the
discovery that repeated media refreshment reduces daphnids’ condition, which is probably
caused by a wash-out of the gut flora; daphnids natural schooling behaviour thus may be
related to re-inoculation of the gut flora.

3 Physical contact: epibionts

The exchanging products now hardly accumulate in the environment, and compound ex-
change is direct on the basis of fluxes. The exchange is further optimized if the partners
live in direct physical contact with each other, since losses will be even smaller. Such sit-
uations frequently occur in nature. The surface of the euglenoid Postgaardi is completely
covered with bacteria (Figure 8.10). Product exchange is probably the reason that many
micro-organisms live in flocks, rather than in free suspension [66]. Ascomycetes make
physical contact with green algae in lichens. Basidiomycetes do so with vascular plants in
ectomycorrhizas. Cyanobacteria, Prochloron, live on the outer surface of didemnids.

If the products decay away, the two species can still improve product exchange by in-
ternalization, where the small-bodied species (endosymbionts) lives inside the large-bodied
one (host). This requires phagocytosis, which is absent in prokaryotes, but widely spread
among eukaryotes. During this internalization process, the host acquires the product of
its symbiont both from the mantle space, as well as from inside its own body. The natural
description of the uptake process of product in the mantle space is on the basis of the con-
centration of product, in combination with a generalized diffusion process that transports
the product to the hosts’ product-carriers in the outer membrane. While the symbionts’
access to the hosts’ product is enhanced by internalization, its access to the substrate can
be reduced because that substrate now has to pass through the hosts’ outer membrane.
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From outside the host the endosymbiont is no longer visible and it appears as if the host is
now feeding on two substrates, rather than one. The argument becomes subtle if the host
transforms the symbionts’ substrate before it reaches the symbiont.

The internal population eventually out-competes the population in the mantle space,
and the endosymbiont can lose its capacity to live freely due to adaption to its cytoplasmic
environment, which is under the hosts’ homeostatic control. It is curious to note that the
chloroplasts of chromista (which include diatoms, brown algae and many other “algal”
groups), live inside the hosts’ endoplasmatic reticulum, while they live outside it in other
groups [87]. The passage of the extra membrane during the internalization process is
obviously conserved during evolution, which suggests that the internalization process is
rare and reveals the evolutionary relationships between these protist taxa.

Our numerical studies did not account for transport mechanisms that enhance the
intracellular accumulation of products. A much higher maximum growth rate can be
obtained by decreasing the parameters that control the leaking of products and substrates
from the cell, for example. The low maximum growth rate shown in Figure 8.9 steps 2-5
suggests that the control of transport may be a rather essential feature of symbiogenesis.
These transport parameters also determine the fate of the three populations of symbionts
(free-living, epibiotic, and internal). They can all co-exist or each of them can out-compete
the others, depending on these parameter values. The competitive exclusion principle,
which states that the number of species of competitors cannot exceed the number of types
of resources at steady-state, only holds for homogeneous environments. The values that
are used in Figure 8.9 step 3 lead to extinction of the epibiotic and free-living populations.
The mantle space still can differ in concentrations of substrates and products in step 4,
while in step 5 the transport rates of these compounds from the mantle to the free space
and vice versa are so large that the environment is homogeneous again. It is clear that
these differences hardly effect the dynamics with this choice of parameter values, the curves
in steps 3, 4 and 5 are very similar; the differences clear for smaller transport rates.

The uptake of product evolves from concentration-based to flux-based (see Figure 8.11);
this comes with an increase of the maximum throughput rate and a qualitative change in
behaviour of the steady-state amounts of structure around this growth rate: the symbiosis
becomes independent of the extracellular product concentration. The role of the products
partly degrades from an ecological to a physiological one. Figure 8.9 illustrates this in step
6, where the steady-state amounts of structure at the maximum throughput rate is (again)
zero, while the maximum throughput rate is substantially increased compared with that
for step 5.

Many examples are known for endosymbioses. The nitrogen-fixing cyanobacterial sym-
bionts of the diatoms Rhizosolenia and Hemiaulus live between the cell wall and the
cell membrane [568, 569]. Pogonophorans (annelids) and Xyloplax (echinoderms [19])
do not possess a guts, but harbour chemoautotrophic bacteria inside their tissues. The
parabasalian flagellate Caduceia theobromae bears two species of ectosymbiotic and one
species of endosymbiotic bacteria, which assist wood digestion in termite guts. Cyanobac-
teria live inside the fungus Geosiphon and the diatoms Richelia, Hemiaulus and Rhopalodia.
Several species of heterotrophic bacteria live endosymbiotically in Amoeba proteus.

The location of mitochondria inside cells further testifies to the optimization of trans-
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Figure 8.11: The feeding process of host (top) and symbiont (bottom) on substrate (S1 and S2)
from the environment and product (P1 and P2) that is produced by the partner. The first column
delineates three populations of symbionts: free, epi- and endosymbionts. The second column
only delineates endosymbionts, but still uses intracellular concentrations of products to quantify
feeding. With the degradation of intracellular product from an ecological to a physiological
variable, feeding is specified in terms of fluxes (third column).

port by spatial clustering. Mitochondria cluster close to blood capillaries in mammalian
muscle cells and form interdigitating rows with myofibrils to enable peak performance dur-
ing contraction [36]. The association of mitochondria with the nuclear envelope is thought
to relate to the demand of ATP for synthesis in the nucleus, and to the reduction of dam-
age to DNA by reactive oxygen species. The association of mitochondria with the rough
endoplasmatic reticulum is less well understood but might be related to the movement of
mitochondria within cells.

4 Weak homeostasis for structure

The ratio of the amounts of structure of the partners varies within a range that becomes
increasingly narrow. At constant substrate levels the population sizes grow exponentially,
but their ratio becomes constant, a condition that we term ‘weak homeostasis’ for structure.
The ratio might still depend on the substrate levels at steady-state. The importance of
products taken up from the environment becomes small; almost all products are exchanged
within the body of the host. If the products are fully supplementary to the substrates,
some excess product might still leak from host’s body, due to stoichiometric restrictions in
its use. If part of the product is still substitutable for the substrate, such a leak is unlikely.

Many photosymbionts seem to have a rather constant density in hosts’ tissues, although
knowledge about digestion of symbionts by hosts as part of a density regulation system is
frequently lacking. Our analysis shows that product exchange is such a strong regulation
mechanism, that other regulation mechanisms are not necessary to explain a relatively
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constant population density of endosymbionts. This does not exclude the existence of
regulation mechanisms, of course. Regulation mechanisms might affect the coupling of
parameters that control product formation.

5 Strong homeostasis for structure

The ratio of the amounts of structure of the partners becomes fixed and independent of
the substrate concentrations at steady-state. We suggest that the mechanism is by tuning
the weight coefficients for how product formation depends on assimilation, maintenance
and growth.

If the endosymbiont is limited in its growth by hosts’ product(s), simple constraints
apply to ensure that the endosymbiont and the host have equal specific growth rates,
and that the ratio of their structures is independent of the hosts’ substrate concentration
at steady-state. The constraints are that (1) their reserve turnover times are equal, (2)
endosymbionts’ assimilation capacity is large with respect to the realized assimilation, (3)
no products are produced in association with growth, (4) some products are produced in
association with assimilation, (5) the ratio of the weight coefficients for product formation
in association with maintenance and growth is the following function of maintenance rate
coefficients

yi
PM

yi
PE

= yi
EV

k̇j
M/k̇i

M − 1

k̇j
M/k̇E + 1

,

where yi
PM is hosts’ yield of product on reserve in the maintenance flux, yi

PE is hosts’
yield of product on reserve in the assimilation flux, yi

EV is the hosts’ yield of structure
structure on reserve, k̇E the reserve turnover rate, k̇M the maintenance rate coefficient of
the host, k̇i

M , and of the endosymbiont, k̇j
M . All yield coefficients are expressed in terms of

C-mol per C-mol; a C-mol is a mol of C-atoms, so 1 mol glucose equals 6 C-mol glucose.
Hosts’ specific product formation is given by ji

P = yi
PEji

E +yi
PM k̇i

M , where ji
E is the specific

assimilation flux, i.e. the synthesis rate of hosts’ reserve from substrate and product in
terms of C-mol of reserve per C-mol of structure per unit time.

The large assimilation capacity of the endosymbiont (condition 2) is necessary to avoid
wastage of hosts’ products. If the conditions are not exactly fulfilled, strong homeostasis is
not strict and (small) changes in biomass composition remain possible. Strict homeostasis
probably only exists in the human mind, but this does not affect the usefulness of the
concept. It has an intimate relationship with stoichiometric restrictions on growth; the
time-varying resources have to be incorporated into fixed ratios.

The conditions for strong homeostasis are independent of the details of hosts’ assimila-
tion process. The host might be product as well as substrate limited. The product and the
substrate might also be substitutable compounds, such as in the case of algal symbionts
of heterotrophs, where the algal carbohydrates serve as an alternative energy source for
the host. The significance of these carbohydrates in the hosts’ diet might be complex,
while the strong homeostasis condition still holds true. If prey is abundant, and the host’s
maximum assimilation capacity is reached, the extra carbohydrates contribute little to the
hosts’ assimilation. This dynamics is consistent with the rules for sequential processing
of substitutable substrates by synthesizing units [289] and explains why symbiotic and
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aposymbiotic hosts grow equally fast at high substrate levels, as has been observed in cili-
ates and hydras [223, 415]. At low prey abundance (the typical situation in the oligotrophic
waters around coral reefs), the extra carbohydrates do contribute to the hosts’ diet and
propagation.

The fact that the conditions for strong homeostasis are independent of the hosts’ as-
similation process also implies the independence of details of the endosymbionts’ product
formation. This simplifies matters considerably, because the excretion of carbohydrates by
algal symbionts is not a process covered by fixed associations with assimilation, mainte-
nance and/or growth. It is an active excretion due to stoichiometric constraints of carbo-
hydrates and ammonia (from the host) to form new algal biomass. This excretion process
is discussed in the next step of integration: the single structure-two reserves case, where
the algae have a carbon and a nitrogen reserve.

If the host is limited in its growth by endosymbionts’ products, similar constraints apply
to ensure a constant ratio of structures that is independent of endosymbionts’ substrate;
the role of host and endosymbionts are just interchanged in this situation. In the case
of limitation by substrate of both partners, more stringent constraints apply on energy
parameters.

The constraint of small actual assimilation rates might help to explain why symbioses
are most frequently found in oligotrophic environments; regulation of relative abundances
is more difficult under non-limiting environmental conditions.

Eventually the ratio of amounts of host and symbiont structures also remains constant
during transient states, a condition that we term strong homeostasis for structure. We can
now replace endosymbionts’ and hosts’ structure by a single combined structure, with two
reserves. The reduction is possible without loss of generality on the basis of the concept
of a generalized compound that we introduced earlier. This step is in reality usually
accompanied by a transfer of (part of) the endosymbionts’ DNA to that of host [381];
endosymbionts are now called organelles.

The numerical effect of the merging of the structures is small with our parameter choice
(Figure 8.9 from step 6 to step 7). The technical details of the merging are discussed in
Appendix B.

Examples of endosymbioses that approach strong homeostasis are mitochondria, hy-
drogenosomes, chloroplasts and other plastids and peroxysomes. The number of these
organelles per host cell depends very much on the species. Diatoms frequently have just a
single chloroplast, which implies that the growth and division cycle of the chloroplast must
be tightly linked to that of the cell.

6 Coupling of assimilation pathways

The assimilation routes for the organic substrate(s) become coupled, especially in situa-
tions where substrate levels covary in time. The reason for the covariation can be purely
physical when the substrates originate from a common source (for example another organ-
ism with a rather constant chemical composition, or some erosion process of rocks which
extracts minerals in fixed ratios). An alternative possibility is that specialization on a
single substrate occurs. Details of product exchange are no longer visible in the dynamics
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Figure 8.12: (A) A cyclic pattern of two nutrient concentrations, as experienced for example
by algae. (B) The expected biomass concentrations in the case of a single structure, and two
reserves. The curves correspond to increasing reserve turnover times from top to bottom. The
two curves with extreme turnover values are shown with solid lines; the larger this turnover time,
the lower the intracellular storage capacity for nutrients. The graphs show that the mean growth
rate increases with the storage capacity under these conditions, but that the nutrients must be
stored independently.

of the integrated system; products now have a strict physiological role, where they still
determine the relative importance of the different sub-structures, and so the substrate up-
take capacity. We no longer need to know of their existence to predict how the population
responds to environmental factors. If substrates co-vary in fixed ratios in the environment,
the range of the ratio of amounts of reserves becomes increasingly narrow.

In situations where substrate abundances do not co-vary in time, coupling of the as-
similation processes will not occur, and the host will maintain two reserves (see below).
Another pattern of development is then likely: part of the unused reserve that is allocated
to growth is returned to that reserve, with the result that each reserve can accumulate
and reach very high levels when the other reserve limits growth. The logic is, when the
substrate ratio in the environment changes, the reserve density will (eventually) change,
so will the ratio of fluxes of used reserves. After paying the maintenance costs, the re-
duced flux arrives at the synthesizing units for the growth of structure. The chemical
composition of structure is constant, however, so there are stoichiometric restrictions on
the reserve fluxes that can be used, and part of one of the fluxes will remain unused and will
be partly excreted into the environment. This is how algae excrete carbohydrates under
nitrogen limitation, or nitrogen-containing toxicants under e.g. silica limitation. Quanti-
tative details are discussed in [289, 297]. An important implication is that the density
of the growth-limiting reserve always increases with the growth rate, but the density of
the non-limiting reserve can increase as well as decrease with the growth rate; spectacular
accumulation of reserves can only occur for the non-limiting reserves at low growth rates.

The functionality of this storing mechanism can be illustrated with algal growth in
the sea, where carbohydrate reserves are boosted at the nutrient-poor surface layers where
light is plentiful, and the nutrient reserves are filled in the dark bottom layers of the photic
zone, which are usually rich in nutrients [311]. Thanks to the uncoupled reserves the alga is
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able to grow in an environment that would otherwise hardly allows growth. It is the wind,
rather than light or nutrients, that is in proximate control of algal growth (Figure 8.12).

7 Coupling of reserve dynamics

At constant substrate levels, the reserve ratio of the growing populations settles at a
constant value, but the value of this ratio can still depend on the substrate levels. This
condition has been called weak homeostasis for reserves. The chemical composition of
biomass can still depend on the growth conditions in complex ways. If the assimilatory
pathways are coupled, reserve dynamics are coupled almost automatically, because the
coupling of structures already require that the reserve turnover rates are equal. Data on
reserve dynamics in algae so have shown that the reserve turnover rates are equal even
when the assimilatory pathways are not coupled [289]. This can be understood from the
machinery that is used to mobilize reserves and use them for growth. Ribosomal RNA
(rRNA) is an important component of this machinery, and most of the cellular pool of
rRNA is directly related to the amount of reserve [289]. This explains why the rRNA
content of cells and organisms depends on the growth rate; the coupling is so strict that
the rRNA content is sometimes used to measure growth [78, 205].

The numerical effect of the merging of the reserves is small using the present parameter
values (Figure 8.9 from step 7 to step 8). The merging only requires that the reserve
turnover rates are equal, and the ratio of concentrations of substrate remains constant.

Examples of fully coupled single reserve systems can be found in carnivores, where the
rather constant chemical composition of the prey provides the mechanism for the coupling
of assimilation of the various nutrients that are required by the carnivore. Parasites also
experience a rather constant chemical environment inside their host. Other examples can be
found in heterotrophs in eutrophic environments, where a single resource is often limiting,
all other resources being available in excess.

8 Strong homeostasis for reserves

The ratio of intra-host reserves becomes fixed and independent of the substrate levels at
steady-state. Eventually, the ratio remains fixed during transient states and we arrive
at a strong homeostasis for reserves. We can now replace the two reserves by a single
combined one. Notice that the reserve ratios no longer depend on growth conditions, but
the reserve levels still do. So the chemical composition of biomass also still depends on
growth conditions, but in a less complex way.

The increasingly tight coupling of the dynamics of several types of reserves relates to
the situation where maintenance and growth drain reserves in fixed and equal ratios. It
is the reason why the metabolic performance of cats can be understood using a single
reserve, while that of algae cannot. When a carnivore changes its diet over an evolutionary
time scale to become a herbivore, using food with a less constant chemical composition,
it frequently continues to be less flexible in its metabolism. This is why the metabolic
performance of cows can still be understood using a single reserve. The conversion of
grass into cow biomass (reserves) is poor from an energy point of view; the conversion
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Figure 8.13: Future host (a single individual is indicated) and future symbionts originally live
independently (A). When they start exchanging products, an accumulation of symbionts in the
hosts’ mantle space occurs (B), followed by an internalization (B). A merging of structures then
can occur (D), followed by a merging of reserves (E). A new entity then exists. The light ar-
eas in the hosts and symbionts indicate reserves, the dark regions indicate structure; reserves
integrate after structures. The mantle space around the hosts’ body is indicated where hosts’
product accumulates that stimulates symbionts’ growth. The text describes these and other steps
quantitatively.

efficiency can be greatly improved using protein-rich food supplements. The one reserve -
one structure system is obviously a highly simplified model that can only approximate the
gross behaviour of real-world physiological systems at best.

9 Cyclic endosymbiosis by specialization

Symbiogenesis, as described here, allows the host to use substrates, which it could not use
without the symbionts. The opposite process is specialization on a single substrate, where
the endosymbiont is no longer functional. This has occurred for instance in aerobic mito-
chondriate species that invaded anaerobic environments. In some species the mitochondria
evolved into hydrogenosomes, but in others the mitochondria were lost. The loss of plas-
tids has occurred in at least some species of all major groups of organisms, while in some
parasitic groups, such as the kinetoplastids, they assume other functions. Specialization
on metabolic substrates seems to be linked directly to the loss of genes. The loss of non-
functional machinery increases the growth rate [538]; the reduction of the amount of DNA
causes a reduction in the time required to copy it, which reduces mean cell size. This size
reduction increases the surface area to volume ratio, and substrate uptake is proportional
to surface area. Some properties of the symbiont might be retained, however, as testified
by mitochondrion-derived genes in species that have lost their mitochondria.
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Generally, (endo)symbiosis might be considered to be a process by which metabolic
properties are acquired several orders of magnitude faster than by the Darwinian route
of mutation and selection [374]. Darwin’s mutation/selection route can be particularly
cumbersome, because all intermediary stages have to be vital enough to continue the
acquisition with incremental steps; almost all metabolic pathways involve several, or even
many, enzymes. This provides constraints on the type of properties any particular organism
can acquire along the Darwinian route. Such constraints do not apply to acquisition of
metabolic traits by endosymbiosis.

Specialization with its accompanying losses of organelles, completes the endosymbiotic
cycle, which has been repeated many times in the evolutionary history of life, and has
created a bewildering biodiversity.

Multicellularity and body size

Although some individual cells can become quite large, with inherent consequences for
physiological design and metabolic performance [204, 475], multicellularity can also lead to
really large body sizes. Multicellularity evolved many times in evolutionary history, even
among the prokaryotes, but particularly among the eukaryotes. It allows a specialization
of cells to particular functions, and the exchange of products is inherently linked to special-
ization. Think, for instance, of filamental chains of cells in cyanobacteria where heterocysts
specialize in N2 fixation. To this end, specialization requires adaptations for the exclusion
of dioxygen and the production of nitrogenase. The existence of dinitrogen-fixation uni-
cellular cyanobacteria shows that all metabolic functions can be combined within a single
cell, which is remarkable as its photosynthesis produces dioxygen, inhibiting dinitrogen
fixation. A temporal separation of the processes solves the problem, but restricts dinitro-
gen fixation during darkness; specialization can be more efficient under certain conditions.
The mixobacterium Chondromyces and the proteobacteria Stigmatella and Mixococcus
have life cycles that remind us of those of cellular slime moulds, involving a multicellular
stage, whereas acetinobacteria, such as Streptomyces resemble fungal mycelia (e.g. [126].
Pathogens, such as viruses can kill individual cells without killing the whole organism,
which is an important feature of multicellularity, and is basic to the evolution of defense
systems.

Cell differentiation is minor in poriferans, reversible in coelenterates and plants, and
irreversible in vertebrates. The number of cells of one organism very much depends on
the species, and can be up to 1017 in whales [488], which requires advanced communica-
tion. Many larger organisms, including opisthokonts (fungi plus animals), tracheophytes,
rhodophytes and phaeophytes, evolved elaborate transport systems to facilitate exchange
of metabolites among the cells and with the environment. Animals evolved advanced lo-
comotory abilities, which requires accurate coordination by a nervous system. This latter
system not only took tasks in information exchange and processing, but also in metabolic
regulation. Animals also evolved an immune system, which supplements chemical defenses
to fight pathogens.
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Differentiation and cellular communication

Multicellularity has many implications. Cells can be organized into tissues and organs,
which gives metabolic differentiation once more an extra dimension. It comes with a need
for regulation of the processes of growth and apoptosis of cells in tissues [494], in which
communication between cells plays an important role. Animals (from cnidarians to chor-
dates) use gap junctions between cells of the same tissue, where a family of proteins called
connexins form tissue-specific communication channels. They appear early in embryonic
development (in the eight-cell-stage in mammals) and are used for nutrient exchange, cell
regulation, conduction of electrical impulses, development and differentiation. Together
with the nervous and endocrine systems, gap junctions serve to synchronize and integrate
activities. When cell-to-cell communication systems fail, tumours can develop; only a small
fraction of tumours result from DNA damage [348]. Plants use plasmodesmata to intercon-
nect cells, which are tubular extensions of the plasma membrane of 40-50 nm in diameter,
that traverse the cell wall and interconnect the cytoplasm of adjacent cells into a symplast.
Higher fungi form threads of multi-nucleated syncytia, known as mycelia; sometimes septa
are present in the hyphae, but they have large pores. Otherwise, the cells of fungi only
communicate via the extracellular matrix (Moore, 1998). Rhodophytes have elaborate pit
connections between the cells [112] which have a diameter in the range 0.2-40 µm filled with
a plug that projects in the cytoplasm on either side. Ascomycetes and Basidiomycetes have
similar pit connections, but lack the plug structure and the cytoplasm is directly connected
unlike the situation in rhodophytes.

Emergence of life stages: adult and embryo

Several groups of bacteria evolved to a multicellular state in the form of reproductive bodies
(myxobacteria, actinomycetes), chains with cell differentiation (cyanobacteria), mats, films
or flocs [66]. When eukaryotization had occurred, multicellularity became complex and
arose independently in almost all major taxa. This came with the invention of reproduction
by eggs in the form of packages of reserve with an very small amount of structure: the
juvenile state thus gave rise to both the adult and the embryo state. Embryos differ
from juveniles by not taking up substrates from the environment. That is to say they do
not (yet) use the assimilation process for energy and building-block acquisition, although
most do take up dioxygen. The spores of endobacteria can be seen as an embryonic stage
for prokaryotes. Adults differ from juveniles by allocation to reproduction, rather than
further increasing the state of maturity. Unlike dividing juveniles, adults do not reset
their state (i.e. the amount of structure, reserve and the state of maturity). Animals,
notably vertebrates, and embryophytes, notably the flowering plants, provide the embryo
fully with reserve material. Egg size, relative to adult size, has proved highly adaptable in
evolutionary history.

If the cumulative investment into maturity exceeds a threshold, further allocation to
maturity is ceased and mobilized reserve is redirected to reproduction. Logically, and
perhaps also biochemically, this threshold corresponds with that of cell division by unicel-
lulates.



211

The fact that allocation to reproduction is incremental, and eggs are not incrementally
small, implies the installation of a buffer with destiny reproduction, and a set of buffer-
handling rules. Some organisms produce an egg as soon as this buffer allows, as in some
rotifers, while others accumulate over a year, as in corals or mussels, or over several years,
as in some trees.

Foetal development in some animals (notably mammals) is a further variation on this
theme. Vegetative propagation was invented independently in many taxa; even animals as
advanced as the sea cucumber Holothuria parvula sport propagation by division [135].

Quite a few references suggest the existence of determinate and indeterminate growth
patterns, especially in animals, where no growth occurs during reproduction in determinate
growers. These patterns could be captured, in principle, by a change in the value of κ [356].
The combination of weak homeostasis and partitionability still allows that κ is a function
of the amount of structure. However, the von Bertalanffy growth curve fits most growth
data for isomorphs at constant food availability very well, which means that growth is not
at the expense of reproduction and that κ is constant. It simply depends on the value of the
maturity threshold for puberty whether or not growth still proceeds during reproduction,
so there need not be a fundamental difference in metabolic organization between these
patterns.

If growth is of the von Bertalanffy type at a constant low food density, and food
availability increases after growth ceases, will an organism resume growth? Many species
fail to do so, depending how long growth has already ceased. This loss of metabolic
flexibility is possibly linked to the ageing process, and follows similar patterns as, for
example, the occurrence of post-reproductive periods in many species. These patterns can
be included in the DEB theory by linking parameter values to ageing-induced damage,
similar to the strategy that has been shown to be effective for the effects of toxicants [302].

The holometabolic insects are a clear (and possibly the only) example of determinate
growers; they insert an extra embryo stage (called the pupal stage) in their life cycle and
do not grow as adults. Some species of Octopus and Oikopleura and some flowering plant
species sport suicide reproduction, where growth is suddenly interrupted and some of the
structure is rapidly converted to eggs or seeds, typically followed by death. Like torpor
and migration, these strategies probably evolved to survive bleak periods.

Further increase in maintenance costs

Multicellular organization and an active life-style, especially in eukaryotes, results in a
series of extra maintenance costs. Concentration gradients across the more abundant
and dynamic membranes become more important, as well as intracellular transport and
movements of the individual. The invasion of the fresh-water habitat required a solution to
the osmotic condition. Many eukaryotes use pulsating vacuoles for this purpose. Invasion
of the terrestrial habitat required an answer to the problem of desiccation. Many animals
and some plants elevate the temperature of parts of their body metabolically to enhance
particular physiological functions. Birds and mammals have taken this to extremes. Most
maintenance costs are proportional to the amount of structure, but some (osmotic and
thermoregulatory work) are proportional to organism’s surface area. All these processes
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increased maintenance requirements further, but also improved the metabolic performance.
Such organisms became less dependent on the local chemical and physical conditions.

Some animals developed ovovivipary, i.e. they carry their eggs inside the body during
the embryonic stage. This offers much better protection, and the mother is not confined to a
particular site during breeding or parental care. Some animals (e.g. Peripatus, some sharks,
placentalia) developed a placenta to transfer reserve from the mother to the foetal system.
Foetal development is similar to that of embryos inside eggs, but their developmental rate
is no longer restricted by the availability of reserve [289]. Many parental animals feed
their offspring in the early juvenile stages, which is important for nutrition and for the
inoculation of symbiotic digestive microorganisms.

Some animals and plants increase their body temperature temporarily (some flowers
during gamete and fruit development, insects during flight, some fishes in certain regions of
their body) or more permanently (mainly birds and mammals). This was a next step in the
evolution of homeostasis, and resulted in a considerable further increase in maintenance
costs that had to be balanced by an equivalent increase in their ability to acquire resources.
Since cooling is linked to surface area, the impact on the energy budget depends on the
body size; this has been quantified in the DEB theory [289] in a straightforward way.

Differentiation

The transition to a multicellular state has been made in almost all large taxa, including
prokaryotes. It comes with cell differentiation into tissues and organs; the organs then take
the role of organelles. The dynamics of organ sizes can be quantified effectively by further
partitioning the flux of mobilized reserve (the κ-rule). If the fraction that is allocated to
a particular body part is fixed, and the specific maintenance costs equal those of other
body parts, isomorphic growth results. Although this frequently covers the main patterns,
deviations can be observed that can be understood by linking the allocation fraction to
the relative workload. This even holds for tumours, where the workload is quantified as
their maintenance requirement, relative to that of the host [349]. This allocation produces
realistic predictions for how tumour growth depends on the physiological state of the host;
tumour growth is more aggressive in young (small) individuals, compared to old (large)
ones, and in well-fed individuals, compared to those that experience caloric restriction.
It also gives realistic predictions for how velum versus gut size in bivalve larvae depends
on food availability [293] (see Figure 5.8). The relative workload of the velum, which
functions in filtering, equals one minus the relative workload of the gut, which functions
in food processing. The relative size of the velum and gut adapts rather quickly to the
feeding conditions, growth is isomorphic after the adaptation period. The feeding rate of
adapted individuals depends on food density according to the Hill’s equation, rather than
the Holling type II relationship that would result if the relative organ size was constant.
By partitioning food handling into a mechanical phase that is sequential to food searching
and a digestion phase that is parallel to food searching, the observed differences from the
standard Holling type II functional response in fish larvae can be understood [358].

Likewise, the allocation to adipose tissue can be linked to feeding, allocation to the
liver to particular dietary components (e.g. alcohol in humans), and allocation to muscles
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in sportsmen, etc.

Plants differentiated their structure into a root for nutrient uptake linked to water
uptake and a shoot for gas exchange, photon acquisition and evaporation of water; the
latter dominates water uptake by the root, which means that the ratio of the surface area of
the root and the shoot appears in the saturation coefficient for nutrient uptake by the roots.
In addition plants developed translocation of reserves between root and shoot, which are
fixed fractions of the mobilized flux (consistent with the κ-rule for allocation). These links
between root and shoot imply compensating development of both types of structure [289];
a reduction in light affects the root more than the shoot, and a nutrient reduction affects
the shoot more than the root. Plants typically alter their morphology in predictable ways;
they start as V1-morphs immediately after germination, then undergo an isomorphic phase,
finally ending as a V0-morph when the neighbouring plants in their habitat prohibit further
extension of functional surface area of the roots and shoots. Leaves typically last one year,
and fall after recovering (some of) the reserve. This means that plants live syntrophically
with the soil biota (especially bacteria and fungi), that feed on this organic rain and release
the locked nutrients as waste for renewed uptake by the plants. Moreover, almost all plant
species have an endomycorrhiza, i.e. specialized fungi of the phylum Glomeromycetes that
are probably involved in drought resistance and nutrient uptake. The Brassicacaea, which
are specialists on nutrient-rich soils, do not have endomycorrhizae. Some 30 % of plants
also have an ectomycorrhiza and many use animals for pollination and dispersal.

Ageing and sleeping

When the cyanobacteria eventually enriched the atmosphere with dioxygen, many species
adapted to this new situation and energy acquisition from carbohydrates was greatly im-
proved by using dioxygen for oxidation in the respiratory chain. Although means to cope
with free radicals, such as reactive nitrogen species (RNS), were already present, the
handling of reactive oxygen species (ROS) became important to reduce damage to the
metabolic machinery and especially to DNA. This especially holds true for tissues of cells
with non-reversible differentiation; this excludes e.g. plants. Specialized proteins (peroxi-
dase dismutases) were developed and their effectiveness was tuned to compromise between
survival of the juvenile period and the use of ROS to generate genetic variability among
gametes. The latter is important to allow adaptation to long-term environmental changes
that are too large for adaptation within a given genome. Big-bodied species are vulnera-
ble; the body size scaling relationships implied by the DEB theory show that the length
of the juvenile period scales with body length among species whereas the reproductive
rate decreases with length. Therefore large-bodied species must have efficient peroxidase
dismutases and, therefore, reduce the genetic variability among their gametes, while hav-
ing few offspring. High feeding levels for an individual mean high respiration rates and a
short lifespan. Survival probability changes with age in predictable ways [346] and involves
acceleration of ageing. This acceleration is linked to mitochondrial damage (in aerobic eu-
karyotes), which produce ROS, the amount of mitochondria per cell is up-regulated to
achieve an adequate production of intermediary metabolites from the TCA cycle [327]; the
TCA cycle and the respiratory chain are both inside the mitochondria.
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The various evolutionary lines to multicellularity arose with a variety of communication
strategies among cells. Many fungi merged their cells in hyphae; heterokonts and plantae
(rhodophytes and chlorophytes) linked their cells via protoplasm connections and the lat-
ter (especially the embryophytes) developed transport systems via apoptosis to reallocate
metabolites. Animals continued the use of (prokaryotic) gap junctions, which allow for
limited transport of particular metabolites only, and developed both a transport system
(blood and lymph) and a (relatively) fast signaling system (the neuronal system). The lat-
ter allowed for the development of signal processing from advanced sensors (light, sound,
smell, electrical field, pain) in combination with advanced locomotory machinery for food
acquisition (mostly other organisms or their products). Advanced methods for food ac-
quisition also came with a requirement for learning and the development of parental care.
The neuronal system is, however, sensitive to ROS, and requires sleep for repair [519, 520].
Since the required sleeping time tends to be proportional to the specific respiration rate,
large-bodied species have more time to search for food. Their speed and the diameter of
their home range increases with length, which enhances their ability to cope with spatial
heterogeneity. Because the maximum reserve density also increases with length, the time
to death by starvation will increase which enhances their ability to copy with temporal
heterogeneity. At the extreme, the largest whales leave their Antarctic feeding grounds,
swim to oligotrophic tropical waters to calve, feed the calf some 600 l of milk per day for
several months, and then swim back with their calf to their feeding grounds where they
resume feeding. Such factors partly compensate for the disadvantages of a large body size
and the associated high minimum food densities.

From supply to demand systems

Plants evolved extreme forms of morphological and biochemical adaptations to the chemical
and physical conditions in their direct environment and remained supply systems. Animals,
by contrast, especially birds and mammals, excel in behavioural traits designed to meet
their metabolic needs. They evolved into demand systems, “eating what they need”, with
those needs having reduced variability. This co-evolved with an increase in the difference
between standard and peak metabolic rates, closed circulation systems, advanced forms
of endothermy, immune systems and hormonal regulation systems. The physical design of
these organisms, such as the capacity of transport networks, is designed to meet the peak
metabolic performance, but gives little information about standard metabolic performance.
The evolutionary history of demand systems makes clear that we can only understand their
metabolic performance in the light of that of supply systems. The demand of demand
systems represents an evolutionary fixation of the performance of supply systems under
“typical” environmental conditions.

Behaviour and time budgets

Animals, especially those functioning at the demand-end of the supply-demand spectrum,
can acquire their food so efficiently that time is available for behaviour other than food
acquisition and food processing, such as social interaction. The Holling type II functional
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response for how feeding rate depends on food density is identical to the Michealis-Menten
product formation by enzymes because individuals and enzymes use their time in either
searching for substrate or processing of substrate. If other behaviour traits compete for
time, predictable deviations from this relationship result. Since specific food uptake is no
longer a function of food density only but also of population density, stable coexistence is
possible of two species that compete for a single substrate, even in spatially homogeneous
and constant environments. Together with the syntrophic basis of coexistence, this can be
an important mechanism in the evolution of biodiversity.

The cell-individual-population continuum

The boundaries between cells, individuals, colonies, societies and populations are not sharp
at all. Fungal mycelia can cover up to 15 hectares as in the basiodiomycete Armillaria
bulbosa, but they can also fragment easily. Cellular slime moulds (dictyostelids) have a
single-celled free-living amoeboid stage, as well as a multicellular one; the cell boundaries
dissolve in the multicellular stage of acellular slime moulds (eumycetozoa), which can now
creep as a multi-nucleated plasmodium over the soil surface.

The mycetozoans are not the only amoebas with multi-nuclear stages; Mastigamoeba
(a pelobiont) is another example[37]. Many other taxa also evolved multi-nucleated cells,
plasmodia or stages, e.g. ciliates, Xenophyophores, Actinophryids, Biomyxa, Loukozoans,
Diplomonads, Gymnosphaerida, Haplosporids, Microsporidia, Nephridiophagids, Nucle-
ariidae, Plasmodiophorids, Pseudospora, Xanthophyta (e.g. Vaucheria), most classes of
Chlorophyta (Chlorophyceae, Ulvophyceae, Charophyceae (in mature cells) and all Clado-
phoryceae, Bryopsidophyceae and Dasycladophyceae)) [438, 200]; the Paramyxea have cells
inside cells.

Certain plants, such as grasses and sedges, can form runners that give off many sprouts
and cover substantial surface areas; sometimes, these runners remain functional in trans-
porting and storing resources as tubers, whereas in other cases they soon disintegrate. A
similar situation can be found in, for example, corals and bryozoans, where the tiny polyps
can exchange resources through stolons.

Behavioural differentiation between individuals, such as between those in syphonophorans,
invites to consider the whole colony an integrated individual, whereas the differentiation
in colonial insects and mammals is still that loose that it is recognized as a group of
coordinated individuals.

These examples illustrate the vague boundaries of multicellularity, and even those of
individuality. A sharpening of definitions or concepts may reduce the number of transition
cases to some extent, but this cannot hide the fact that we are dealing here with a con-
tinuum of metabolic integration in the twilight-zone between individuals and populations.
This illustrates that organisms, and especially eukaryotes, need each other metabolically.

Direct syntrophic interactions

The demand of nutrients and energy in the form of carbohydrates has led to many syn-
trophic relationships between carbohydrate-supplying photoautotrophs and nutrient-supplying
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heterotrophs. Pure photoautotrophs are probably rare, if they exist at all; either they have
mixotrophic capabilities, or they form associations with heterotrophs. Being able to move
independently and over considerable distances, jellyfish, for example, are able to commute
between anaerobic conditions at lower water strata for nitrogen intake and higher ones
for photosynthesis by their dinozoan endosymbionts supplying them with energy stored in
carbohydrates. Dinozoans are engaged in similar relationships with hydropolyps (corals)
and molluscs; extensive reefs testify of the evolutionary success of this association.

A close relationship between chlorophytes (or cyanobacteria) and fungi (mainly as-
comycetes) evolved relatively recently, i.e. only ca. 450 million years ago, in the form
of lichens and Geosiphon [511]. The fungal partner specialized in decomposing organic
matter, which releases nutrients for the algae in exchange for carbohydrates, not unlike
the situation in corals. Similarly, mycorrhizas exchange nutrients against carbohydrates
with plants, which arose in the same geological period. The endomycorrhizas (presently
recognized as a new fungal phylum, the glomeromycetes) evolved right from the beginning
of the land plants; the ectomycorrhizas (ascomycetes and basidiomycetes) evolved only
during the Cretaceous. These symbioses seemed to have been essential for the invasion of
the terrestrial environment [517].

Some plants can also fix dinitrogen with the help of bacteria, encapsulated in specialized
tissues. A single receptor seems to be involved in endosymbiontic associations between
plants on the one hand and bacteria and fungi on the other [539], but the recognition
process is probably quite complex [437] and not yet fully understood. Associations between
the dinitrogen-fixation cyanobacterium Nostoc and the fern Azolla have been known for
some time, but the association with the bryophyte Pleurozium schreberi has only recently
been discovered [104]; this extremely abundant moss covers most soil in boreal forests and
in the taiga. The cyanobacteria are localized in extra-cellular pockets in these examples,
but in some diatoms they live intracellularly. See Rai et al. [463] for a review of symbioses
between cyanobacteria and plants.

Heterotrophs not only have syntrophic relationships with photoautotrophs, but also
with chemolithotrophs. A nice example concerns the gutless tubificid oligochaete Olav-
ius algarvensis, with its sulphate-reducing and sulphide-oxidizing endosymbiontic bacteria
[122]. These symbionts exchange reduced and oxidized sulphur; the fermentation prod-
ucts of the anaerobic metabolism of the host provide the energy for the sulphate reducers,
whereas the organic compounds produced by the sulphide oxidizers fuel the (heterotrophic)
metabolism of the host. Taxonomic relationships among hosts can match that among sym-
bionts [120], which suggest considerable co-evolution in syntrophic relationships.When tree
leaves fall on the forest floor, fungi release nutrients locked in them by decomposition; the
soil fauna accelerates this degradation considerably [580]. Without this activity by fungi
and the soil fauna, trees soon deplete the soil from nutrients, as most leaves last for only
one year, even in evergreen species. As mentioned, trees, and plants in general, also need
mycorrhizas to release nutrients from their organic matrix. Moreover, most of them also
need insects, birds or bats and other animals to be pollinated (e.g. [460, 25], and yet other
animals for seed dispersal. Thus, berries, for example of Caprifoliaceae, Solanaceae and
Rosaceae, are ‘meant’ to be eaten [527]; some seeds have edible appendices (e.g. Viola) to
promote dispersal, but others have no edible parts in addition to the seed, such as Adoxa
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and Veronica, and germinate better after being eaten by snails or birds and ants, respec-
tively. Still other seeds stick to animals (e.g. Boraginaceae, Arctium) for dispersal. Fungi,
such as the stinkhorn Phallus and the truffle Tuber, also interact with animals for their
dispersal.

By shading and evaporation, trees substantially affect their microclimate, and thereby
allow other organisms to live there as well. This too can be seen as an aspect of metabolism.
As mentioned, non-photosynthesizing plastids are still functional in plants; such plants
can still have arbuscular mycorrhizas, as are found in the orchid Arachnitis uniflora [197].
Although the plant cannot transport photosynthetically produced carbohydrate to their
fungal partner Glomus, it is obviously quite well possible that other metabolites are in-
volved in the exchange. The complex role of plastids shows that the plant is not necessarily
parasitizing the fungus.Like plants, animals need other organisms (e.g. for food).

The processing of food requires symbiosis too. We briefly discuss some aspects. Many
animals feed on cellulose-containing phototrophs, but no animal can itself digest cellu-
lose. Most animals have associations with prokaryotes, amoebas and flagellates to digest
plant-derived compounds [525]. These micro-organisms transform cellulose to lipids in the
anaerobic intestines of their host animal; the lipids are transported to the aerobic envi-
ronment of the tissues of the animal for further processing. Attine ants even culture fungi
to extract cellulases [375]. Many symbioses are still poorly understood, such as the Tri-
chomycetes, which live in the guts of a wide variety of arthropods in all habitats [399]; the
role of smut fungi (Ustilaginales) in their symbioses with plants also seems more complex
than just a parasitic relationship [562]. Faeces, especially that of herbivores, represent
nutritious food for other organisms. This is because proteins often limit food uptake, im-
plying that other compounds must be excreted; protein supplements to the grass diet of
cows can greatly reduce the amount of grass they need.

Organisms specialized on the use of faeces as a resource are known as coprophages.
Examples are the bryophyte Splachnum, which lives off faeces of herbivores (S. luteum
actually lives off that of the moose Alces alces); the fly Sarcophaga which lives off cattle
dung; the fungus Coprinus which lives off mammalian faeces, similar to beetles of the dung
beetle family Scarabaeidae.

Dead animals are processed by a variety of other animals; burrowing beetles of the
family Silphidae specialize in this activity, for instance. Almost all animal taxa engage in
carrion feeding, since the chemical make up of organisms does not differ that much; because
of their great capacity of moving around, animals are often the first to arrive at the feast.
Many examples illustrate that it is just a small step from feeding off dead corpses to that
of living off live ones. Predation, a specialization of most animals, has many consequences,
and some can actually be ‘beneficial’ for the prey: nutrient recycling, selection of healthy
individuals, reduction of competition by weak individuals, reduction of transmission of
diseases, and enhancing the co-existence of prey species are all implications of predation.

Intricate relationships between organisms evolved, especially in prey-predator interac-
tions, such as those between insects and plants (e.g. [509]. A low predation pressure on
symbiotic partners enhances their stable co-existence [264], whereas co-existence becomes
unstable at a high pressure and easily leads to the extinction of both prey and predator.
This points to a co-evolution of parameter values quantifying the dynamics in prey-predator
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systems. The time scale of the effects on fitness is essential; short-term positive effects can
go together with long-term negative effects of behavioural traits on fitness. Time scales
and indirect side-effects that operate through changes in food availability are important
aspects that are usually not included in the literature on evolutionary aspects of life history
strategies.

Indirect symbiontic syntrophy

In this section, we only give some examples of the many indirect trophic relationships that
exist between species. Phytoplankters bind nutrients in the photic zone of the oceans, sink
below it, die and are degraded by bacteria. Subsequently, a temporary increase in wind
speed brings some of the released nutrients back to the photic zone by mixing and enables
photosynthesis to continue. The sinking of organic matter is accelerated by grazing zoo-
plankters. The result of this process is that, over time, phytoplankters build up a nutrient
gradient in the water column, that CO2 from the atmosphere becomes buried below the
photic zone, and that organic resources are generated for the biota living in the dark waters
below this zone and on the ocean floor. Mixing by wind makes phytoplankters commute
between the surface, where they can build up and store carbohydrates by photosynthesis,
and the bottom of the mixing zone, where they store nutrients. Reserves are essential
here for growth, because no single stratum in the water column is favourable for growth;
their reserve capacity must be large enough to cover a commuting cycle, which depends on
wind speed. Although nutrient availability controls primary production ultimately, wind
is doing so proximately. The rain of dead or dying phytoplankters fuels the dark ocean
communities, not unlike the rain of plant leaves fueling soil communities, but then on a
vastly larger spatial scale. Little is known about the deep ocean food web; recent studies
indicate that cnidarians (jelly fish) form a major component [107].

When part of this organic rain reaches the anoxic ocean floor, the organic matter
is decomposed by fermenting bacteria (many species can do this); the produced hydro-
gen serves as substrate for methanogens (i.e. archaea), which convert carbon dioxide into
methane. This methane can accumulate in huge deposits of methane hydrates, which serve
as substrate for symbioses between bacteria and a variety of animals, such as the ice worm
Hesiocoeca, a polychaete. The total amount of carbon in methane hydrates in ocean sedi-
ments is more than twice the amount to be found in all known fossil fuels on Earth. If the
temperature rises in the deep oceans, the hydrates become unstable and result in a sudden
massive methane injection into the atmosphere. This happened e.g. 55 Ma years ago (e.g.
[594], the Paleocene-Eocene Thermal Maximum (PETM) event, which induced massive
extinction. We are just beginning to understand the significance of these communities on
ocean floors and deep underground.

The colonization of the terrestrial environment by plants may in fact have allowed reefs
of brachiopods, bryozoans and molluscs (all filter feeders) to flourish in the Silurian and the
Devonian (360–438 Ma ago); the reefs in these periods were exceptionally rich [588]. With
the help of their bacterial symbionts, the plants stimulated the conversion from rock to soil,
which released nutrients that found their way to the coastal waters, stimulated algal growth,
and, hence, the growth of zooplankton, which the reef animals, in turn, filtered out of the
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water column. Although plant megafossils only appeared in the Silurian, cryptospores,
which probably originate from bryophytes were very abundant in the Ordovician (438–505
Ma ago) [534]. So the timing of the terrestrial invasion and the reef development supports
this link. The reefs degraded gradually during the time Pangaea was formed toward the
end of the Permian, which reduced the length of the coastline considerably, and thereby
the nutrient flux from the continents to the ocean. Moreover, large continents come with
long rivers, and more opportunities for water to evaporate rather than to drain down to the
sea; large continents typically have salt deposits. When Pangaea broke up, new coastlines
appeared. Moreover, this coincided with a warming of the globe, which brought more
rain, more erosion, and high sea levels, which caused covering of large parts of continents
by shallow seas. This combination of factors caused planktontic communities to flourish
again in the Cretaceous, and completely new taxa evolved, such as the coccolithophorans
and the diatoms. This hypothesis directly links the activities of terrestrial plants to the
coastal reef formation through nutrient availability. Although plants reduce erosion on a
time scale of thousands of years, they promote erosion on a multi-million years time scale
in combination with extreme but very rare physical forces that remove both vegetation and
soil. The geological record of the Walvis Ridge suggests that the mechanism of physical-
chemical forces that remove the vegetation, followed by erosion and nutrient enrichment of
coastal waters in association with recolonization of the rocky environment by plants might
also have been operative in e.g. the 0.1 Ma recovery period following the PETM event
(Kroon, personal communication).

A direct quantitative relationship exists between the fossil carbohydrates (methane
hydrates, coal, oil, gas, all of biotic origin) and dioxygen in the atmosphere. Although
dioxygen, a by-product of oxygenic photosynthesis, was doubtlessly very toxic for most
organisms when it first occurred freely in the atmosphere; today most life is dependent
upon it, both directly, as well as indirectly, such as the ozone shield against UV radiation.
So phototrophs generate dioxygen that is used by heterotrophs; again a form of syntrophy.

Effects of life on climate

The evolutionary interrelationships between life and climate are discussed in [291].

Climate modeling mainly deals with energy (temperature) and water balances. Heat
and water transport and redistribution, including radiation and convection in atmospheres
and oceans, depends on many chemical aspects which means that climate modeling cannot
be uncoupled from modeling biogeochemical cycling. I here focus on radiation, as affected
via albedo and absorption by greenhouse gases.

Water

Because of its abundance, water is by far the most important greenhouse gas. Its origin
is still unclear; some think it originates from degassing of the hot young planet [332],
others think from meteoric contributions in the form of carbonaceous chondrites [40], which
possibly continues today.
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Plants modify water transport in several ways. Although plants can extract foggy water
from the atmosphere particularly in arid environments (by condensation at their surface as
well as via the emission of condensation kernels), they generally pump water from the soil
into the atmosphere, and increase the water capacity of terrestrial environments by pro-
moting soil formation in bare environments (chemically, with help of bacteria [41]) thereby
reducing water runoff to the oceans. This became painfully clear during the flooding dis-
asters in Bangladesh, that followed the removal of Himalayan forests in India. On a short
time scale, plants greatly reduce erosion; their roots prevent or reduce soil transport by
common mild physical forces. In combination with rare strong and usually very temporal
physical forces that remove vegetation (fires in combination with hurricanes or floods, for
instance), however, plants increase erosion on a longer time scale, because plants enhance
soil-formation in rocky environments. Because such ‘catastrophes’ are rare, they have lit-
tle impact on short time scales. The effects of plants on climate and geochemistry were
perhaps most dramatic during their conquest of dry environments in the middle Devonian.
It came with a massive discharge of nutrients and organic matter into the seas, that lead
to anoxia and massive extinctions in the oceans [5].

Plants, therefore, affect the nutrient (nitrate, phosphate, silica, carbonates) supply
to the oceans in complex ways, and thus the role of life in the oceans in the carbon
cycle. Plants pump water from the soil into the atmosphere much faster in the tropics
than in the temperate regions because of temperature (high temperature comes with large
evaporation), seasonal torpor (seasons become more pronounced toward the poles, so plants
are active during a shorter period in the year toward the poles) and nutrients in the soil
(plants pump to get nutrients, which are rare in tropical soils).

Plants substantially influence their local environment, and facilitate colonization by
other forms of life, which follows a sequence of ecosystem succession. As holds for most
forms of life, plants, and especially the flowering plants, need other organisms (fungi,
animals) for survival and propagation. Their massive appearance in the Carboniferous
greatly affected global climate, via effects on the carbon cycle [39]. Most climate models
keep the mean global relative humidity constant at 50%, e.g. [99], but this assumption can
be questioned.

Carbon dioxide

Carbon dioxide is the second most important greenhouse gas. Its dynamics involves the
global carbon cycle, which is still poorly known quantitatively. This is partly due to the
coupling with other cycles.

Carbon dioxide is removed from the atmosphere by chemical weathering of silicate rocks,
which couples the carbon and silica cycles. This weathering occurs via wet deposition, and
gives a coupling between the carbon and the water cycle. When ocean down-washed
calcium carbonate and silica oxide precipitate and become deeply buried by continental
drift in earth’s mantle, segregation occurs into calcium silicate and carbon dioxide; volcanic
activity puts carbon dioxide back into the atmosphere. Geochemists generally hold this
rock cycle to be the main long-term control of the climate system.

Westbroek [582] argued that the role of life in the precipitation processes of carbonates
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and silica oxide became gradually more important during evolution. Mucus formers (by
preventing spontaneous precipitation of super-saturated carbonates) and calcifiers have
controlled carbonates since the Cretaceous. Diatoms (and radiolarians) have controlled
silicates since the Jurassic [333]. Corals and calcifying plankton (coccolithophores and
foraminiferans) have an almost equal share in calcification. In freshwater, charophytes are
in this guild. For every pair of bicarbonate ions, one is transformed into carbon dioxide for
metabolism, and one into carbonate. Planktonic derived carbonate partly dissolves, and
contributes to the build up of a concentration gradient of inorganic carbon in the ocean.
This promotes the absorption of carbon dioxide from the atmosphere by seawater.

The dry deposition of carbon dioxide in the ocean is further enhanced by the organic
carbon pump, where inorganic carbon is fixed into organic carbon, which travels down to
deep layers by gravity. This process is accelerated by predation where unicellular algae
are compacted into faecal pellets, and partial microbial decomposition recycles nutrients
to the euphotic zone, boosting primary production. The secondary production also finds
its way to the deep layers.

Most of the organic matter is decomposed in the deep ocean. The net effect is a
depletion of inorganic carbon from the euphotic zone, which promotes the transport of
carbon from the atmosphere into the oceans. This process is of importance on a time scale
in the order of millennia (the cycle time for ocean’s deep water), and so is relevant for
assessing effects of an increase of atmospheric carbon by humans. It is less important on
much longer time scales.

In nutrient-rich shallow water, organic matter can accumulate fast enough to form
anaerobic sediments, where decomposition is slow and incomplete and fossilization into
mineral oil occurs. Although textbooks on marine biogeochemistry do not always fully
recognize the role of plants in the global carbon cycle, cf [355, p 139], coal deposits in
freshwater marshes are substantial enough to affect global climate. Oil formed by plankton
and coal by plants mainly occurs on continental edges, and affects climate on the multi-
million time scale.

Methane

Methane is the third most important greenhouse gas; 85 % of all emitted methane is
(presently) produced by methanogens (in syntrophic relationships with other organisms,
sometimes endosymbiotic) in anaerobic environments (sediments, guts) [370, 143]. The
flux is presently enhanced by large scale deforestation by humans via termites. Apart
from accumulation in the atmosphere, and in fossilized gas, big pools (2 103–5 106 Pg) of
methane hydrates rest on near shore ocean sediments. Since methane can capture infrared
radiation 25 times better than carbon dioxide, on a molar basis, a release of the methane
hydrates can potentially destabilize the climate system [342]. Oxidation of methane is a
chief source of water in the stratosphere [79], where it interferes with radiation.

Like carbon dioxide, the methane balance is part of the global carbon cycle. Since
most of life’s activity is limited by nutrients, the carbon cycle cannot be studied without
involving other cycles. Nitrogen (nitrate, ammonia) is the primary limiting nutrient, but
iron might be limiting as well in parts of the oceans [15, 91]. After assuming that dinitrogen
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fixing cyanobacteria could eventually relieve nitrogen limitation, Tyrell [561] came to the
conclusion that nitrogen was proximately limiting primary production, and phosphate was
ultimately doing so. The question remains, however, are cyanobacteria active enough?
Many important questions about the nitrogen cycle are still open, even if oceans represent
a sink or a source of ammonia, nitrates and nitrous oxide [208]. The latter is after methane,
the next most important greenhouse gas, which can intercept infrared radiation 200 times
better than carbon dioxide.

Most nutrients enter the oceans via rivers from terrestrial habitats, which couples both
systems and makes coastal zones very productive. The surface area of this habitat has
obviously been under control by continental drift and seawater level changes, and therefore
with ice formation and temperature. These remarks serve to show the link between climate
and biochemical cycles.

Dioxygen

Complex relationships exist between the carbon and oxygen cycles. Dioxygen results from
photosynthesis, so there is a direct relationship between dioxygen in the atmosphere and
buried fossil carbon. The latter probably exceeds dioxygen on a molar basis, because of e.g.
the oxidation of iron and other reduced pools in the early history of the earth. Photores-
piration links dioxygen to carbon dioxide levels; both gases bind competitively to rubisco
and drive carbohydrate synthesis in opposite directions. This effect of dioxygen is possibly
an evolutionary accident that resulted from the anoxic origins of rubisco. Spontaneous
fires require at least 75 % of present day dioxygen levels, and oxygen probably now sets
an upper boundary to the accumulation of organic matter in terrestrial environments, and
so partly controls the burial of fossilized carbon [589]. The extensive coal fires in China
at 1 km depth, that occur since human memory, illustrate the importance of this process.
Model calculations by Berner [38] suggest, however, that dioxygen was twice the present
value during the Carboniferous. If true, this points to the control of fossil carbon accu-
mulation by oxygen being weak. The big question is, of course, to what extent humans
are perturbing the climate system by enhancing the burning of biomass and fossil carbon.
The massive burning of the worlds’ rain forests after the latest el Niño event makes it clear
that their rate of disappearance is accelerating, despite the world-wide concern.

Albedo

Apart from greenhouse gases, the radiation balance is affected by albedo. Ice and clouds
are the main controlling components. Cloud formation is induced by micro-aerosols, which
result from combustion processes, volcanoes and ocean spray derived salt particles. Phyto-
plankton (diatoms, coccolithophorans) affects albedo via the production of dimethyl sulfide
(DMS), which becomes transformed to sulphuric acid in the atmosphere, acting as conden-
sation nuclei. The production is associated with cell death, because the precursor of DMS
is mainly used in cell’s osmo-regulation. Plants, and especially conifers, which dominate
in taiga and on mountain slopes, produce isoprenes and terpenes [68], which, after some
oxidation transformations, also result in condensation nuclei. Since plants cover a main
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part of the continents, plants change the colour, and so the albedo of the earth, in a di-
rect way. Condensation nuclei derived from human-mediated sulfate emissions now seem
to dominate natural sources, and possibly counterbalance the enhanced carbon dioxide
emissions [93].

Ice affects the climate system via the albedo and ocean level. If temperature drops, ice
grows and increases the albedo, which makes it even colder. It also lowers the ocean level,
however, which enhances weathering of fossil carbon and increases atmospheric carbon
dioxide. This affects temperature in the opposite direction, and illustrates a coupling
between albedo, and the carbon and water cycles.

Effects of climate on life

Climate affects life mainly through temperature, and in terrestrial environments, by pre-
cipitation and humidity. Nutrient supply and drain is usually directly coupled to water
transport. The transport of organisms themselves in water and in air can also be cou-
pled to climate. The effects are in determining both geographical distribution patterns,
abundance and activity rates.

The effects of body temperature of physiological rates are well described by the Ar-
rhenius relationship within a species-specific range of temperatures, which approximately
results in a two-to-three-fold increase in rate (respiration, feeding, reproduction, growth,
etc) for a 10 degrees increase in body temperature. At the lower temperature boundary,
most organisms can switch to a torpor state, while instantaneous death results when tem-
perature exceeds the upper boundary. Many species of organism that do not switch to
the torpor state, escape bad seasons by migration, some of them traveling on a global
scale. Endotherms (birds and mammals) are well known examples of spectacular migra-
tions; their energy budgets are tightly linked to the water balance. The capacity to survive
periods of starvation has close links with body size; these periods tend to be proportional
to volumetric body length.

Plant production increases in an approximately linear way with annual precipitation,
which illustrates the importance of water availability in terrestrial environments. Plants
use water for several purposes, one of them being the transport of nutrients from the soil
to their roots. This is why the ratio of the surface areas of shoots and roots enters in
the saturation constants for nutrient uptake by plants. Precipitation also affects nutrient
availability via leakage.

Because multiple reserve systems have to deal with excretion, assimilation is much
more loosely coupled to maintenance and growth compared to single reserve systems. The
way temperature affects photosynthesis (i.e. the formation of carbohydrates from photons,
carbon dioxide and water) differs from how it affects growth (synthesis of structure), with
the consequence that the excretion of carbohydrates (mobilized from its reserve, but re-
jected by the SUs for growth) depends on temperature. This means that the importance
of the microbial loop is temperature dependent. Single reserve systems, by contrast, do
not excrete in this way and so do not have this degree of freedom, with the consequence
that all their rates (assimilation, maintenance, growth, reproduction, respiration) depend
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on temperature in (more or less) the same way. The logic is in the biochemistry behind
the transformation from food to biomass (growth, reproduction). This machinery does
not have the flexibility to operate with a temperature-dependent efficiency. Studies on the
temperature dependence of rates typically do not consider the mass balance of the system.
If temperature affects animal assimilation differently than growth, body composition or
product formation would depend on temperature as well; this has never been observed in
“lower” animals to our knowledge. Temporal heterogeneity, acclimatisation, the role of
reserve in body composition and the separation of effects of food intake and temperature
hamper this line of research.

Extensive pampa and savannah ecosystems, as well as the recently formed fijnbos vege-
tation in Southern Africa require regular fires of a particular intensity for existence. Many
plant species require fire to trigger germination.

Local differences between seasons in temperate and polar areas are large with respect to
global climate changes during the evolution of the earth, which complicates the construction
of simple models that aim to be realistic.



Chapter 9

Living together

Symbiontic relationships
{299}

The number of known symbiontic relationships continues to increase. Mites and collemboles
turn out to play a key role in the fertilization of mosses [98].

The flagellate Hatena (Katablepharidophyta) has the (single) symbiont Nephroselmis
(Prasinophyceae, Viridiplantae). The symbiont retains its nucleus, mitochondria, plastid,
and occasionally the Golgi body, but the flagella, cytoskeleton and endomembrane system
are lost. Its eye-spot, which is inside the plastid, is always near the apex of the host and the
host use it for phototaxis. When the host divides, a one daughter gets the symbiont, and
the other develops a feeding apparatus to engulf a new symbiont, after which the feeding
apparatus degenerates [425].

The opistobranch Phyllodesmium feeds on soft symbiontic corals and houses coral’s
algal symbionts in its complex midgut. The zooanthellae not only remain active photo-
synthesically, but also give the slug exactly the same color as its coral prey, which makes
it difficult to detect [445]. The opistobranch Elysia harbors the chloroplast of its prey
Vaucheria (Xanthophyta). Since Elysia parents don’t pass the chloroplasts to their off-
spring, the acquisition of chloroplasts is the first thing to do in its 10-month life.

Derivation of Eq at bottom
{303}

Eq at the bottom and that for MV 1/MV 2 can be derived as follows: We are looking for
conditions under which MV 1/MV 2 remains constant, and is independent of the specific
growth rate ṙ. So if MV 1 is growing at rate ṙ, MV 2 must also grow at that rate. This must
hold for all rates, so also for ṙ = 0. If f = g1k̇M1/k̇E1, we have that ṙ1 = 0 (see formula for
ṙ1 and set numerator equal to zero) and jP = ζPM k̇M1g1 + ζPAk̇E1f = k̇M1g1(ζPM + ζPA)
(see below the formulas for ṙ1 and ṙ2). We set the numerator of ṙ2 equal to zero and obtain
k̇E2jP

jP,Am2

MV 1

MV 2
= k̇M2g2. Substitution of jP and rearranging terms gives

MV 1

MV 2

=
g2

g1

k̇M2

k̇M1

jP,Am2

k̇E2

1

ζPM + ζPA
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which is the formula that is presented. Equating the polynomial coefficients in ṙ1 to

zero, as explained in the text, we have ζPM

ζPA

(

k̇M1

k̇E
+ k̇M1

k̇M2

)

= 1 − k̇M1

k̇M2
. Rearrangement of

terms gives ζPM = ζPA
k̇−1

M1
−k̇−1

M2

k̇−1
E +k̇−1

M2

, so ζPM + ζPA = ζPA
k̇−1

M1
+k̇−1

E

k̇−1
E +k̇−1

M2

. Substitution into the equa-

tion for MV 1/MV 2 directly gives the result in the last line. The formula for ME1/ME2

can be derived from the observations that ME = MV mEmf (from Table 3.4 at {122}),
and the scaled functional response f of the recipient is jP

jP,Am2

MV 1

MV 2
. This gives ME1

ME2
=

MV 1

MV 2

mEm1

mEm2
f

jP,Am2

jP

MV 2

MV 1
= mEm1

mEm2

jP,Am2

jP
f . We now substitute jP , which reduces for ζPG = 0

and k̇E1 = k̇E to jP = ζPM k̇M1g1 + ζPAk̇Ef = fk̇EζPA

(

1 + k̇M2−k̇M1

k̇M2+k̇E

g1

f

)

. The latter follows

after substitution of ζPM for the value obtained above. Substitution of mEm1

mEm2
= MEm1

MEm2

MV 2

MV 1

directly leads to the formula for ME1/ME2 that is presented on the bottom line.

Symbioses
{304}

The dynamic aspects of symbioses that are based on syntrophic relationships are studies
in depth in [298, 297].

Droop vs DEB
{315}

The demonstration that the one reserve - one structure DEB model for V1-morphs without
maintenance reduces to the Droop model is as follows. The Droop equations [121] are:

d

dt
Q = u − µQ (9.1)

µ/µ′
m = 1 − kQ/Q (9.2)

u/um = s/(ks + s) (9.3)

quantity Droop DEB
specific growth rate µ ṙ

asymptotic growth rate µ′
m k̇E

cell nutrient quota Q mE + nXV

subsistence quota kQ nXV

specific uptake rate u jXA

max spec uptake rate um jXAm

half saturation constant ks K
nutrient concentration s X

Since k̇E = jXAm/mEm, see {122}, the specific reserve dynamics (3.55) becomes

d

dt
mE = jEAmf − k̇EmE

For nutrient X (think of elemental nitrogen, for instance), we have yEX = 1, so jEAm =
jXAm and (9.3) shows that u = jEAmf . To see that Droop’s cell quota kinetics is equivalent
to DEB reserve kinetics for zero maintenance costs, k̇M = 0, we need to demonstrate that



227

µQ is equivalent to k̇EmE, since d
dt

Q is equivalent to d
dt

mE. Multiplication of (9.2) with Q
leads to µQ = µ′

m(Q−kQ). Since Q−kQ is equivalent to mE, we only need to demonstrate
that µ′

m is equivalent to k̇E, where µ′
m is the specific growth rate at infinite reserve density.

Since ṙ = k̇e
e−ld
e+g

= k̇Ee−k̇Mg
e+g

with e = mE/mEm (see {108} and {122}), we indeed have

that ṙ → k̇E for mE → ∞ (which is obviously not possible in the cell since the maximum
reserve density is mEm = jXAm/k̇E). A minor difference between the Droop and the DEB
models is the use of units. Where DEB theory uses C-mol (because this is most handy
when evaluating mass conservation), Droop’s model is frequently applied on (dry) weights.

Droop aimed to relate cell quota to the specific growth rate as observed in chemostats
in steady state. He had no dynamic system in mind, and emphasized its empirical nature.

Derivation of Eq (9.19)
{318}

Eq (9.19) can be derived as follows: Notice that the general strategy of the chapter is to
start on ground that should be familiar to microbiologists and step by step more DEB
elements are introduced. So we have to show that (9.19) reduces to (9.12) by removing
DEB elements. The first step is to exclude aging, so ḣa = 0. The second step is to remove
reserve, so [Em] → 0. We work here with compound parameters, rather than with primary
ones, so we have to study each of the compound parameters to evaluate the consequences.

We have g = [EG]
κ[Em]

, so g → ∞. We also have ld = k̇Mg

k̇E
= [ṗM ]

κ[ṗAm]
, so ld remains fixed.

The implementation of these changes in (9.19) results in d
dτ

x1 = YgXm(f − ld)x1 − x1 =

Yg
f−ld

f
Xmfx1 − x1 = Y Xmfx1 − x1 with Y = Yg

f−ld
f

. This latter relationship is given in

the table at the bottom of {315} for the Marr-Pirt model. Notice the absence of dots in
the equations, because we work in scaled time, that is dimensionless.

Time scale separation
{328}

Simplifying approximations for batch dynamics by Jean-Christophe Poggiale. Assume that
we have the following model for V1-morphs in a batch reactor (Figure 9.1)

d

dτ
x0 = I − jXmfx1

d

dτ
e = kE (f − e)

d

dτ
x1 =

kEe − kMg

e + g
x1

Let us assume that e is a fast variable with respect to x0 and x1. It follows that e
reaches a quasi-steady state value f , which is a function of the slow variables:

f (x0) =
x0

Kx + x0

We can thus replace e by f in the third equation, which leads to the two dimensional
model (Figure 9.2):
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Table 9.1: Definition, values and units of the parameters.

Symbol Parameter Name Value Unit

İ input rate of substrate 1 mM h−1

jXm maximum specific uptake rate 0.125 mM h−1

Kx half-saturation constant for uptake 5 mM

k̇E Reserve turnover rate 0.925 h−1

k̇M Maintenance turnover rate 0.04 h−1

g Investment ratio 0.5 -

d

dτ
x0 = I − jXmfx1

d

dτ
x1 =

(kE − kMg) x0 − kMgKx

x0 (1 + g) + gKx

x1

Furthermore, if we assume that x0 is also fast with respect to x1, then x0 also reaches a
quasi-steady state value obtained by vanishing the first equation. We thus get f = I

jXmx1
.

Finally, we can replace f by its value in the third equation and we consequently a one-
dimensional model (Figure 9.3):

d

dτ
x1 =

kEI

I + gjXmx1

(

1 − kMgjXm

kEI
x1

)

x1 = r (x1)
(

1 − x1

K

)

x1

where

r (x1) =
kEI

I + gjXmx1

and K =
kEI

kMgjXm

Bifurcation theory
{345}

Work on the bifurcation analysis of tri-trophic food chains has been extended including om-
nivory and symbiontic relationships [59, 246, 263, 338, 264]. We also studied bi-trophic food
chain in which the prey has reserves [255, 297, 336]. The substantial system consequences
of a varying nutritional value of prey for predation is studied in [335]. Nice overviews
of bifurcation analysis for population dynamics can be found in [256, 244]. Chaos in a
bi-variate prey-predator systems is described in [247],

Closed nutrient-producer-consumer system

When one organism eats another one with a chemical composition that can vary, there
is a need to deal with conversion efficiencies of prey into predator in a bit more detail
than is usual [297]. Things simplify considerably when, like the basic formulation of DEB
theory assumes, biomass can be decomposed into a single reserve and a single structure,
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Figure 9.1: This figure shows the dynamics of the standard DEB - model

which do not change in composition. The assimilation process of the predator than should
specify how the two components of its prey, together with nutrients from the environment,
transform into predator reserves. Think for instance of daphnids feeding on algae. Alga’s
main carbon component, cellulose, is of no nutritional value for the daphnid. It is the
starch and lipids in alga’s reserves that are daphnids’ main energy sources, while it also
needs ammonia and phosphate, for instance, as building blocks. Daphnids can obtain part
of these nutrients from the intra-cellular reserves of the alga, sometimes they can also
obtain them directly from the environment. So the nutritional value of the alga for the
daphnids is not a constant, but varies, and depends on environmental conditions.

The implications of a variable nutritional value of the producer (alga) for the consumer
(daphnid) can be illustrated with the simple dynamical system

mN = N/P − nNC C/P − nNP (9.4)

d

dt
P = ṙP P − jPAC with ṙP =

k̇NmN

yNP + mN

and jPA =
jPmP

K + P
(9.5)

d

dt
C = (ṙC − ḣ)C with ṙC = (1/ṙCP + 1/ṙCN − 1/(ṙCP + ṙCN))−1 (9.6)

ṙCP = yCP jPA − k̇MP and ṙCN = yCN mN jPA − k̇MN

where consumers’ reserve density mN follows from mass conservation, for a total amount
of nutrient N ; all nutrient that is not in producers’ or consumers’ structure is in producers’
reserve. The chemical indices nNP and nNC stand for producers’ and consumers’ nutrient
content per carbon. The amount of nutrient in the environment is taken to be negligibly
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Figure 9.2: This figure compares the 2D-model dynamics to that of the DEB - model.

small. The consumer has a constant hazard rate ḣ, and dead producers decompose in-
stantaneously. The producers’ reserve turnover rate is k̇N , and producers’ maintenance is
neglected. Consumers’ reserves are not taken into account. These simplifications of the
DEB theory amount to Droop’s kinetics for the consumer (with a very small half satura-
tion constant, and a very large specific maximum uptake rate), and Marr-Pirt’s kinetics
for the consumer. The Marr-Pirt’s kinetics results from the DEB model as a limit for
increasing reserve turnover rates. The expression for the growth rate follows from the
SU kinetics and the assumption that assimilates from producers’ reserve and that from
structure are complementary and parallelly processed with a large capacity. There is little
need to set a maximum to the capacity here, because that is already set by the maximum
specific assimilation rate jPAm. Notice the SU formalism here deals with rates, rather then
concentrations, as is basic to its derivation.

Figures 9.4 and 9.6 show the asymptotic dynamics of the system, while Figure 9.5 gives
typical orbits. We observe that it shows the typical paradox of enrichment: the system
starts oscillating above a certain nutrient level. If consumers require the reserve of the
producers, it also has a lower bound for the nutrient level, due to the maintenance costs of
the consumer and the system has an upper boundary for nutrient, above which it cannot
exist. If the consumers do not require the reserve of the producers, both the homoclinic and
the tangent bifurcation points disappear. This means, the upper bound for the nutrient
level disappears (the larger the nutrient level, the larger the amplitude of the oscillations,
cf [420]) with unrealistic low minima. The lower bound also disappears in the sense that
the system goes extinct at very low nutrient levels by a gradual decrease of the consumer
population. Notice that consumers cannot invade the producer population with a very



231

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time

S
tr

uc
tu

re

Figure 9.3: This figure compares the logistic-like growth dynamics to that of the DEB - model.

small inoculum size in the case of co-limitation by producers’ reserve, but it can in absence
of this co-limitation; see Figure 9.4. We can conclude that the nutritional details of the
producer/consumer interaction affect their kinetics in a qualitative way. Muller et al [410]
discuss a very similar producer-consumer model, which deviates slightly in the specification
of consumers’ growth (implementation of maintenance and of maximum growth).

Stochastic formulation

The implementation of stochastic events requires the notion of individuals (notably their
number), and gives the density of a single producer Pε and consumer Cε an explicit and
independent role [312].

Table 9.2 gives the possible events F feeding, S searching, Ds dying of Cs and Dh dying
of Ch, the intensities λ̇i and the steps sizes at time t. The last process G, the growth of
the producers, is supposed to be a deterministic continuous process, not a stochastic point
process; the producers continue growing between the Poissonian events, i.e. d

dt
P = ṙP P

where the specific growth rate ṙP is given in (9.5), producers’ reserve density mN changes
as (9.4) and the (variable) yield YCP is given by YCP = ṙC/jP . Between the stochastic
jump events mN , ṙP and YCP change smoothly and deterministically, while the consumer
densities Cs and Ch remain constant. At a time-incremental basis, mN , ṙP and Y CP are
stochastic, because they are functions of P and C = Cs + Ch. Together with the initial
conditions P (0), Cs(0) and Ch(0), this fully specifies the stochastic dynamics, which we
will call the S-model (stochastic model). Again we have the constraint mN(0) > 0 on the
initial conditions.
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Figure 9.4: The bifurcation diagrams for the producer (top) and the consumer (bottom) dy-
namics in a closed system, using the total amount of nutrient as bifurcation parameter. The
producer follows Droop’s kinetics, the consumer follows Marr-Pirt’s kinetics and has a constant
hazard rate; there is no free nutrient in the environment. Left: The consumer is not limited by
producers’ reserve, so ṙC = ṙCP . Right: Producers’ reserve and structure are complementary
for consumers. At very low nutrient levels, the system cannot exist. At intermediary nutrient
levels, the system has a point attractor. A transcritical (TC, left) or tangent (Te, right) and a
Hopf bifurcation point (H−) mark the boundaries of these intermediary nutrient levels. At larger
nutrient levels, the system oscillates with increasing amplitude. A homoclinic bifurcation point
(G=, right) marks the upper boundary of this interval; the system cannot exist at higher nutrient
levels (right), while producers’ minima become extremely small for growing nutrients levels (left).
Parameters: ḣ = 0.005 h−1, nNP = 0.15 mol

mol
, nNC = 0.25 mol

mol
, yCN = 5.5 mol

mol
yCP = 2 mol

mol
, K = 10

mM, jPm = 0.15 mol

mol h
, k̇N = 0.25 h−1, k̇MP = 0.02 h−1, k̇MN = 0.01 h−1.
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Figure 9.5: Orbits of the producer-consumer system of Figure 9.4 for nutrient levels just below
(left, N = 15.3 mM) and above (right, N = 15.5 mM) the homoclinic bifurcation point. Orbits
that start within the stippled separatrix of the top figure result in a stable oscillation (one such an
orbit is indicated), while other orbits lead to extinction. This separatrix breaks open for higher
nutrients levels (right figure), and all orbits lead to extinction (one such an orbit is indicated).
The saddle point, and the spiral source are indicated.

Table 9.2: The possible stochastic events F , S, Ds and Dh, the intensities λ̇F , λ̇S , λ̇Ds and λ̇Dh

and the steps sizes (dP , dCs, dCh), given the state (P , Cs, Ch) of the system at time t. The growth
process G is deterministic and continuous. Mass balance restrictions make that the steps in the
three variables are coordinated. The coefficient δt varies in time, due to stoichiometric constraints
on the growth of the consumers from structure as well as varying reserve of the producers. The
system is closed for nutrient, so for producers and consumers as well, while nutrient uptake by
the producers is large enough to cause negligibly small concentrations of free nutrient.

event type i F feeding S searching Ds dying of Cs Dh dying of Ch G growing

intensity λ̇i k̇
P Cs
K Cε

k̇
Ch
Cε

ḣC
Cs
Cε

ḣC
Ch
Cε

ṙP
P
Pε

dP −Pε 0 0 0 Pε

ch
an

ge

dCs −Cε Cε −Cε 0 0

dCh δtCε −Cε 0 −Cε 0

Trajectories for the producer and consumer populations at different values for the to-
tal amount of nutrient in the system are given in Figure 9.7. We can see that the Hopf
bifurcation point is hardly important for the stochastic models, but the focus point is. Be-
tween the focus and the Hopf bifurcation point the deterministic model ports an overshoot
behaviour, which lasts longer and has a larger amplitude if closer to the Hopf bifurcation
point. Asymptotically, however, the deterministic system settles at the point attractor.
The stochastic model, on the contrary, sports irregular semi-oscillatory behaviour in this
interval of values for the total amount of nutrient. The oscillations become more regular
and the amplitude increases if closer tot the Hopf bifurcation points. Around the focus
point the model behaviour changes smoothly, but around the Hopf bifurcation point the
asymptotic behaviour of the deterministic model change abruptly. while its transient be-
haviour and the behaviour of the stochastic model changes smoothly. In summary, the
stochastic model responds more smoothly to changes in the total amount of nutrient.
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Figure 9.6: The two-dimensional bifurcation diagram for the producer-consumer system as in
Figure 9.4, using the total nutrient level and consumers’ hazard rate as bifurcation parame-
ters. The consumer requires producers’ structure and reserve (left) or producers’ structure only
(right). Three areas are indicated: n no co-existence, s stable co-existence, u unstable co-existence
(oscillations). The tangent (Te), Hopf (H−) and Homoclinic (G=) bifurcation curves meet in a
Bagdanov-Takens point in the top figure; the transcritical (TC) and Hopf (H−) bifurcation curves
diverge in the bottom figure.

Primary production in oceans
{350}

For applications such as the implementation of primary production modules in ocean cir-
culation models, and the study of speciation in an adaptive dynamics context, we felt the
need to simplify the canonical community even more till a mono-species community of
mixotrophs [311, 559, 558]. Such communities share some characteristics with canonical
communities. It turns out that spatial gradient are essential in understanding the specia-
tion of mixotrophs into auto- and heterotrophs. Self-shading seems essential to understand
why mixotrophs tend to dominate in oligotrophic environments.
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Figure 9.7: The trajectory of the stochastic model for different values for the total amount of
nutrient N . The fat dots are the linearly interpolated values with equal time units apart. For
low N -values, the start is at the stable equilibrium of the expected value of stochastic model,
which is at the intersection of the d

dtP = 0 and the d
dtCh = 0 isoclines (while d

dCh
Cs = 0; solid

curves). For large N -values (N = 2.7, 3.0), the start is at a random point of the limit cycle of
the NTS-model. The isoclines of the deterministic model are plotted as well (stippled). Notice
that for N = 2.3 few points of the S-model are at the mean, because of its tendency to cycle. For
N < 2.6 1000 time units are used, and 5000 for N > 2.6. The various bifurcation points for the
total amount of nutrient are:

tangent focus Hopf global

deterministic 1.217 1.520 3.165 7.11
stochastic 1.229 1.535 2.801 6.96
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Chapter 10

Evaluation

Lumping species
{365}

[298] shows that it is possible to merge to two different species that each follow the DEB
rules by incremental changes of parameter values across generations such that a single
new species emerges that again follows the DEB rules. Since such merging has frequently
occurred in evolutionary history, this should be an property of all models that claim to be
not species-specific. Net-production models do not have this property. [327] shows that
DEB reserves are essential to avoid leaks of metabolites from a cell, if a compound in the
catabolic flux is fed to a linear or circular pathway that gives products that are allocated to
maintenance and growth. Leaks cannot be avoided in net-production models, which makes
it more difficult to make net-production models consistent with biochemical models.
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Notation and symbols

Dirac function{409}, l7
Jacques Bedaux pointed out that the explanation (x = xs)/dx ≡ δ(x − xs) should be
introduced, where δ is the Dirac delta function. We then have

∫ x
x1=−∞ δ(x1 − xs) dx1 =

(x ≥ xs).

Notation differences between the first and the second edition{410}
Some notational differences between first and second editions of the DEB book.
[281] [289] interpretation

m kM maintenance rate coefficient
- m∗ structure-specific molar mass of compound ∗

Ṁ ṗM energy flux allocated to maintenance

Ḣ ṗT energy flux allocated to heating

ṗ ḣ individual-specific predation probability rate
K XK half saturation constant
[G] [EG] energy requirement to grow a unit volume of structure

ν̇ k̇E specific energy conductance (in V1-morphs)

Ḋ ḣ dilution rate of chemostat

- Ḋ diffusivity

İ J̇X ingestion rate
W1 XW total biomass density in C-moles per volume

The motivation behind these changes was that the second edition deals more elaborately
with masses and mass fluxes, which involves many new symbols. This made it necessary
to link the symbol more closely to its dimension group.

The comment for {260} relates to the length symbols.

Notation differences between the second and the third edition{410}
It turned out to be essential to become more consistent in the signs of mass fluxes and yields.
In the second edition, fluxes such as the catabolic flux J̇EC and the food flux J̇XA were
typically taken positive. This gave inconsistencies in some cases, which I tried to remove
be taking them negative if the level of observation is the whole individual; a negative sign
of a flux is linked to the disappearance of that compound from a pool, but this depends
on the level of observation. This sign-problem is complex, however, and depends on the
level of observation and the choice of state variables (i.e. pools). Parameters are always
positive, and yield coefficients written with a lower case y are taken as parameters, but
yield coefficients written with an upper case Y are ratios of fluxes (so they are variables,
which might vary in time). An example of a subtle consequence is: J̇XA = {J̇XA}L2,
with {J̇XA} = −{J̇EA}/yEX , where primary parameter yEX > 0 and quantity {J̇XA} < 0.
The yield of structure on reserve in the growth process is Y G

V E = −yV E, with primary
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parameter yV E > 0. The negative sign results from the fact that structure appears, but
reserve disappears.

The mass-specific fluxes j will be treated as positive, with the consequence that J̇EM =
−jEMMV , while jEM = k̇MyEV , because maintenance acts as a sink for reserve. Hazard
rates, ḣ, and energy fluxes, ṗ, are always taken to be positive.

Since the theory substantially extended, and new variables need to be considered, quite
a few new symbols appeared.

Notation and symbols (replacement of original)

Some readers will be annoyed by the notation, which sometimes differs from the one usual
in a particular specialisation. One problem is that conventions in e.g. microbiology differ
from those in ecology, so not all conventions can be observed at the same time. The
symbol D, for example, is used by microbiologists for the dilution rate in chemostats, but
by chemists for diffusivity. A voluminous literature on population dynamics exists, where
it is standard to use the symbol l for survival probability. This works well as long as one
does not want to use lengths in the same text! Another problem is that most literature
does not distinguish structural biomass from energy reserves, which both contribute to e.g.
dry weight. So the conventional symbols actually differ in meaning from the ones used
here.

Few texts deal with such a broad spectrum of phenomena as this book. A consequence
is that any symbol table is soon exhausted if one carelessly assigns new symbols to all
kinds of variables that show up.

The following conventions are used to reduce this problem and to aid memory.

Symbols

• Variables denoted by symbols that differ only in indices, have the same dimensions.
For example ME and MV are both moles.

• The interpretation of the leading character does not relate to that of the index char-
acter. For example, the M in ME stands for mass in moles, but in k̇M it stands for
maintenance.

• Some lowercase symbols frequently relate to uppercase ones via scaling; {e, E},
{m,M}, {j, J}, {l, L}, {w,W} and {x,X}.

• Structure V has a special role in DEB notation. The structural volume VV is abbre-
viated as V . Many quantities are expressed per structural mass, volume, or surface
area. Likewise the energy of reserve EE is abbreviated as E.

• Analogous to the tradition in chemistry, quantities which are expressed per unit of
structural volume have square brackets, [ ]. Quantities per unit of structural surface
area have braces, { }. Quantities per unit of weight have angles, 〈 〉, (with indices w
and d for wet and dry weight). This notation is chosen to stress that these symbols
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refer to relative quantities, rather than absolute ones. They do not indicate concen-
trations in the chemical sense, because most of the compounds concerned are not
soluble.
Parentheses, square brackets and braces around numbers refer to equations, refer-
ences and pages respectively.

• Rates have dots, which merely indicate the dimension ‘per time’. Dots (and primes)
do not stand for the derivative as in some mathematical and physical texts (see the
subsection ‘Expressions’). Dots, brackets and braces allow an easy test for some
dimensions, and reduce the number of different symbols for related variables. If
time has been scaled, i.e. the time unit is some particular value making scaled time
dimensionless, the dot has been removed from the rate that is expressed in scaled
time.

• Molar values have an overbar.

• Random variables are underscored. The notation x|x > x means: the random vari-
able x given that it is larger than the value x. It can occur in expressions for the
probability, Pr{}, or for the probability density function, φ(), of distribution function,
Φ().

• Vectors and matrices are printed in bold face. A bold number represents a vector
or matrix of elements with that value; so J̇1 is the summation of matrix J̇ across
columns and 1T J̇ across rows; x = 0 means that all elements of x are 0.

• Organic compounds are quantified in C-mol, which stand for the number of C-atoms
as a multiple of the number of Avogadro. So 6 C-mol of glucose equals 1 mol of
glucose. Notice that for simple compounds, such as glucose we have both the option
to express it in mole or C-mole, but for generalized compounds we can only express
them in C-mole. So we always use C-mole.

• Yield coefficients are indicated by y if they are constant and by Y if they can vary
in time. Moreover, y is taken to be non-negative, while Y can be negative, if one
compound is appearing, and the other disppearing. They represent ratios of molar
fluxes, so yV E = JEG/JV G is the ratio of the flux of reserve E (here meant to be
a type) that is allocated to growth G (here meant to be a process) and the flux of
structure V that is synthesized in the growth process. As a consequence we have
yEV = y−1

V E; the yield coefficients y∗∗ are treated as positive constant mass-mass
couplers. Likewise, we write YWX for the C-moles of biomass that is formed per
consumed C-mole of substrate. This is not constant, however, and depends on the
specific growth rate.

Indices

Indices are catenated, the first subscript frequently specifying the variable to which the
symbol relates. For example MV stands for a mole of structural biomass, where V is struc-
tural biovolume. Some indices have a specific meaning
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∗ indicates that several other symbols can be substituted.
It is known as ‘wildcard’ in computer science.
As superscript it denotes the equilibrium value of the variable.

′ indicates a scaling as superscript.
i, j are counters that refer to types or species; They can take the values 1, 2, · · ·
m stands for ‘maximum’. For example J̇Am is the maximum value that J̇A can attain.
+ can refer to the sum of elements, such as V+ =

∑

i Vi, or to addition, such as Xi+1.
Indices for compounds refer to

C carbon dioxide C− bicarbonate E reserve ER reprod. reserve
H water, maturity M minerals NH ammonia NO nitrate
O dioxygen O org. compounds P product (faeces) Q toxic compound
V structural mass X food

Indices for processes refer to
a aging A assimilation C catabolism D dissipation
F feeding G growth J mat. maintenance M som. maintenance
R reproduction T+ dissipating heat T heating (endotherms)

Expressions

• An expression between parentheses with an index ‘+’ means: take the maximum of
0 and that expression, so (x − y)+ ≡ max{0, x − y}. The symbol ‘≡’ means ‘is per
definition’. It is just another way of writing, you are not supposed to understand
that the equality is true.

• Although the mathematical standard for notation should generally be preferred over
that of any computer language, I make one exception: the logic boolean, e.g. (x < xs).
It always comes with parentheses and has value 1 if true or value 0 if false. It appears
as part of an expression. Simple rules apply, such as

(x ≤ xs)(x ≥ xs) = (x = xs)

(x ≤ xs) = (x = xs) + (x < xs) = 1 − (x > xs)
∫ x
x1=−∞(x1 = xs) dx1/dx = (x ≥ xs)
∫ x
x1=−∞(x1 ≥ xs) dx1 = (x − xs)+

• The following operators occur:
d
dtX|t1 derivative of X with respect to t evaluated at t = t1
∂
∂tX|t1 partial derivative of X with respect to t evaluated at t = t1

Eg(x) expectation of a function g of the random variable x

var x variance of the random variable x: E(x − Ex)2

cv x coefficient of variation of the random variable x:
√

var x/Ex

cov (x, y) covariance between the random variables x and y: E(x − Ex)(y − Ey)

cor (x, y) correlation between x and y: cov (x, y)/
√

var x vary

xT transpose of vector or matrix x (interchange rows and colums)

... catenation across columns: n = (nM
...nO)
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Units, dimensions and types

The SI system is used to present units of measurements. My experience is that some
readers are unfamiliar with the symbol ‘a’ for year.

In the description of the dimensions in the list of symbols, the following symbols are
used:

− no dimension L length (of individual) e energy (≡ ml2t−2)
t time l length (of environment) T temperature
# number (mole) m mass (weight)

These dimension symbols just stand for an abbreviation of the dimension, and differ in
meaning from symbols in the symbol column. A difference between the dimensions l and L
is that the latter involves an arbitrary choice of the length to be measured (e.g. including
or excluding a tail). The morph interferes with the choice. The dimensions differ because
the sum of lengths of objects for which l and L apply, does not have any useful meaning.
The list below does not include symbols that are used in a brief description only. The page
number refers to the page where the symbol is introduced.

The choice of symbols relates to dimensions, and not to types. Three types are specified
in the description in the list: constant, c, variable, v, and function, f . This classification
cannot be rigorous, however. The temperature T , or example, is indicated to be a constant,
but it can also be considered as a function of time, in which case all rate constants are
functions of time as well. On the other hand, variables such as food density X, can be held
constant in particular situations. Variables such as structural biovolume V are constant
during a short period, such as is relevant for the study of the process of digestion, but not
during a longer period, such as is relevant for the study of life cycles. The choice of type
can be considered as a default, deviations being mentioned in the text.

List of frequently used symbols

symbol dim type interpretation

a t v age, i.e. time since gametogenesis of fertilization
ab t v age at birth (hatching), i.e. end of embryonic stage
ap t v age at puberty, i.e. end of juvenile stage
a† t v age at death (life span)

{ḃ} l3#l3L−2t−1c specific searching rate

ḃ† l3#−1t−1 c killing rate by xenobiotic compound
Bx(a, b) - f incomplete beta function
c0 # l−3 c no-effect concentration of xenobiotic compound in the environment
cd # l−3 v concentration of xenobiotic compound in the water (dissolved)
cX # l−3 v concentration of xenobiotic compound in food
cV # l−3 v scaled concentration of xenobiotic compound in tissue: [MQ]PdV

d∗ mL−3 c density of compound ∗
Ḋ l2t−1 c diffusivity
e - v scaled energy density: [E]/[Em] = mE/mEm
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e0 - v scaled energy costs of one egg/foetus: E0/Em

eb - v scaled energy density at birth
eH - v scaled maturity density: guH/l3

eR - v scaled energy allocated to reproduction: ERE−1
m

E e v non-allocated energy in reserve
E0 e v energy costs of one egg/foetus
Em e c maximum non-allocated energy in reserve: [Em]Vm

ER e v energy in reserve with allocation reproduction
EJ e v accumulated energy investment into maturation
Eb

J e v maturation threshold for feeding (birth)
Ep

J e v maturation threshold for reproduction (puberty)
[E] eL−3 v energy density: E/V
[Eb] eL−3 v energy density at birth
[EG] eL−3 c volume-specific costs for structure
[Em] eL−3 c maximum energy density

f - v scaled functional response: f = X
XK+X = x

1+x

Ḟ l3t−1 v filtering rate

Ḟm l3t−1 c maximum filtering rate

g - c energy investment ratio: [EG]
κ[Em]

g∗ e#−1 c molar gibbs energy of compound ∗
G e v Gibbs energy of the system

ḣ t−1 v number-specific predation probability rate (hazard rate)

ḣa t−1 c aging rate for unicellulars: [EG]
κµQC

k̇E+k̇M
g+1

ḧa t−2 c aging acceleration: ∝ [EG]
κµQC

ḣm t−1 c max. throughput rate in a chemostat without complete washout
h∗ e#−1 v molar enthalpy of compound ∗
H e v enthalpy of the system

j∗ # #−1t−1 v structure-specific flux of compound ∗: J̇∗/MV

J̇∗ # t−1 v flux of compound ∗
J̇∗1,∗2

# t−1 v flux of compound ∗1 associated with process ∗2

J̇ # t−1 v matrix of fluxes of compounds J̇∗1,∗2

{J̇Xm} #L−2t−1 c surface-area-specific max ingestion rate

[J̇Xm] #L−3t−1 c volume-specific maximum ingestion rate: {J̇Xm}V −1/3
d

k - c maintenance ratio: k̇J/k̇M

k̇e t−1 c elimination rate of xenobiotic compound

k̇E t−1 c specific-energy conductance: {ṗAm}V −1/3
d [Em]−1 = [ṗAm]/[Em]

k̇J t−1 c maturity maintenance rate coefficient

k̇M t−1 c somatic maintenance rate coefficient: [ṗM ]/[EG]
K∗ # l−3or−2 c saturation coefficient of compound ∗; default: food

l - v scaled body length: (V/Vm)1/3

lb - c scaled body length at birth: (Vb/Vm)1/3

ld - c scaled cell length at division: (Vd/Vm)1/3 = k̇Mg/k̇E

lh - c scaled heating length: (Vh/Vm)1/3

lp - c scaled body length at puberty: (Vp/Vm)1/3
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L L v physical length: V 1/3/δM

Lb L c physical length at birth: V
1/3
b /δM

Ld L c physical length at cell division

Lm L c maximum physical length: V
1/3
m /δM

Lp L c physical length at puberty: V
1/3
p /δM

m∗ # #−1 v mole of compound ∗ relative to MV : M∗/MV

mEm # #−1 v max molar reserve density: MEm/MV = [MEm]/[MV ]
M∗ # v mole of compound ∗
M(V ) - f shape (morph) correction function: real surface area

isomorphic surface area
[MEm] # L−3 c maximum reserve density in non-embryos in C-moles [Em]/µE

[Msm] # L−3 c maximum volume-specific capacity of the stomach for food
[MV ] # L−3 c number of C-atoms per unit of structural body volume V
n∗1∗2

##−1 c number of atoms of element ∗1 present in compound ∗2

n0
∗1∗2

##−1 c number of isotopes 0 of element ∗1 present in compound ∗2

n0∗3
∗1∗2

##−1 c number of isotopes 0 of element ∗1 present in compound ∗2 in process ∗3

n # #−1 c matrix of chemical indices n∗1∗2

N # v (total) number of individuals:
∫

a φN (a) da
ṗ∗ e t−1 v energy flux (power) of process ∗
ṗT+ e t−1 v total dissipating heat
ṗ e t−1 v vector of basic powers: (ṗA ṗD ṗG)
{ṗAm} eL−2t−1 c surface-area-specific maximum assimilation rate

[ṗAm] eL−3t−1 c volume-specific maximum assimilation rate: {ṗAm}V −1/3
d

[ṗJ ] eL−3t−1 c volume-specific maturity maintenance rate: ṗJ/V
[ṗM ] eL−3t−1 c volume-specific somatic maintenance rate: ṗM/V

{ṗT } eL−2t−1 c surface-area-specific heating rate: ṗT V −2/3

P∗1∗2
- c partition coeff. of a compound in matrix ∗1 and ∗2 (moles per volume)

Pow - c octanol/water partition coefficient of a compound
PPX - c faeces/food partition coefficient of a compound
PV d l3L−3 c biomass/water (dissolved fraction) partition coefficient of a compound
PV W - c structural/total body mass partition coefficient of a compound
q(c, t) - v survival probability to a toxic compound
ṙ t−1 c number-specific population growth rate

ṙB t−1 c von Bertalanffy growth rate: (3/k̇M + 3fV
1/3
m /v̇)−1 = k̇Mg/3(f + g)

ṙm t−1 c (net) maximum number-specific population growth rate
ṙ◦m t−1 c gross maximum number-specific population growth rate

Ṙ # t−1 v reproduction rate, i.e. number of eggs or young per time

Ṙm # t−1 c max reproduction rate
s - v stress value
s0 - c stress value without effect
s∗ e T−1 #−1 v molar entropy of compound ∗
S eT−1 v entropy of the system
t t v time
td t v inter division period
tD t c DNA duplication time
tg t v gut residence time
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tR t v time at spawning
ts t v mean stomach residence time
T T c temperature
TA T c Arrhenius temperature
Tb T c body temperature
Te T c environmental temperature

uE - v scaled reserve: UEg2k̇3
M/v̇2

uH - v scaled maturity: UHg2k̇3
M/v̇2

UE tL2 v scaled reserve: ME/{J̇EAm}
UH tL2 v scaled maturity: MH/{J̇EAm}
v̇ L t−1 c energy conductance (velocity): {ṗAm}/[Em]

vb
H - c scaled maturity volume at birth:

Mb
Hg2k̇3

M

v̇2{J̇EAm}(1−κ)

V L3 v structural body volume
Vb L3 c structural body volume at birth (transition embryo/juvenile)
Vd L3 c structural cell volume at division
Vh L3 c structural volume reduction due to heating: {ṗT }3[ṗM ]−3

Vm L3 c maximum structural body volume: (κ{ṗAm})3[ṗM ]−3 = (v̇/k̇Mg)3

Vp L3 c structural body volume at puberty (transition juvenile/adult)
Vw L3 c physical volume
V∞ L3 c ultimate structural body volume
V L3 v maximum structural body volume compared to reference: z3Vm1

w∗ m#−1 c molar weight of compound ∗
Wd m v dry weight of (total) biomass
Ww m v wet weight of (total) biomass
x - v scaled biomass density in environment: X/XK

X∗ # l−3or−2 v biomass density of compound ∗ in environment; default: food
Xr # l−3 c substrate density in feed of chemostat
y∗1∗2

# #−1 c constant yield coefficient that couples molar flux ∗1 to molar flux ∗2

Y∗1∗2
# #−1 v yield coefficient that couples molar flux ∗1 to molar flux ∗2: J̇∗1

/J̇∗2

Y k
∗1∗2

# #−1 v yield coefficient that couples molar flux ∗1 to molar flux ∗2 in process k: J̇∗1k/J̇∗2k

z - v zoom factor to compare body sizes
α∗3
∗1∗2

- c reshuffle coefficient for element ∗1 of compound ∗2 in process ∗3

β0∗3
∗1∗2

- c odds ratio of isotope 0 of element ∗1 of compound ∗2 in transformation ∗3

Γ(x) - f gamma function
δ - c aspect ratio
δl - c shape parameter of generalized logistic growth

δM - c shape (morph) coefficient: V 1/3/L
δ0
∗1∗2

- v fraction of isotope 0 of element ∗1 in compound ∗2: n0
∗1∗2

/n∗1∗2

η∗1∗2
# e−1 c coefficient that couples mass flux ∗1 to energy flux ∗2: µ−1

∗2∗1

η # e−1 c matrix of coefficients that couple mass to energy fluxes
θ - v fraction of a number of items: 0 ≤ θ ≤ 1
κ - c fraction of catabolic power energy spent on maintenance plus growth
κA - c fraction of assimilation that originates from well-fed-prey reserves
κE - c fraction of rejected flux of reserves that returns to reserves
κR - c fraction of reproduction energy fixed in eggs
µ∗ e#−1 c chemical potential of compound ∗
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µ∗1∗2
e#−1 c coefficient that couples energy flux ∗1 to mass flux ∗2: η−1

∗2∗1

µM e#−1 c vector of chemical potentials of ‘minerals’
µO e#−1 c vector of chemical potentials of organic compounds
ρ - c binding probability of substrate

τ - v scaled age: ak̇M

φN (a) # t−1 v number of individuals of age in interval (a, a + da)
φx(x)dx - f probability density of x evaluated in x
Φx(x) - f distribution function of x evaluated in x:

∫ x
0 φx(x1) dx1

σ̇ e T−1t−1 v entropy production of the system
ζ∗1∗2

# #−1 c coefficient that couples mass flux ∗1 to energy flux ∗2: µEmEmµ−1
∗2∗1
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[447] A. R. R. Péry, A. Bethune, J. Gahou, R. Mons, and
J. Garric. Body residues: a key variable to analyze toxi-
city tests with Chironomus riparius exposed to copper-
spiked sediments. Ecotoxicology and Environmental
Safety, 61:160–167, 2005.
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