Dikerogammarus villosus (Killer shrimp):  

Predictions & Data for this entry

Model:  abj  

MRE = 0.111
SMSE = 0.146

Zero-variate data
ab 14 14.25 (0.01796)dage at birthPoec2007
tp 60 58.49 (0.02525)dtime since birth at pubertyPoec2009
am330 329.4 (0.001938)dlife spanPiscDevi2003
Lb0.19 0.1922 (0.01141)cmtotal length at birthPoec2009
Lp0.65 0.6792 (0.04489)cmtotal length at pubertyPoec2009
Li 2 1.765 (0.1173)cmultimate total lengthMaieKley2011
Wwi115 121.7 (0.05797)mgultimate wet weightMaieKley2011
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
tWd see Fig. 1 (0.1025)experimental timedry weightGabePush2011
tL see Fig. 2 (0.1505)experimental timelengthGabePush2011
tL2 see Fig. 3 (0.05621)experimental timelengthGergRoth2008
tL3 see Fig. 3 (0.04649)experimental timelengthGergRoth2008
tL4 see Fig. 3 (0.02718)experimental timelengthGergRoth2008
LW see Fig. 4 (0.367)lengthwet weightDobrMajk2016
LW2 see Fig. 4 (0.3997)lengthwet weightMaieKley2011
Tab see Fig. 5 (0.09304)temperatureage at birthPoec2007
WR see Fig. 6 (0.3175)wet weigthegg numberPoec2007
tL5 see Fig. 7 (0.05269)timelengthPoec2009
Pseudo-data at Tref
DataGeneralised animalDikerogammarus villosusUnitDescription
v 0.02 0.01339cm/denergy conductance
kap 0.8 0.803-allocation fraction to soma
kap_R 0.95 0.95-reproduction efficiency
p_M 18 950.2J/d.cm^3vol-spec som maint
k_J 0.002 0.0021/dmaturity maint rate coefficient
kap_G 0.8 0.8003-growth efficiency


  • We assume 11 days time between broods at reference temperature (20C). This is about the age at birth from the Tab data set, assuming that development starts directly after the last brood has been released. We do not have any information of the actual time between broods, and it might take longer than 11 days because of a mating period, or shorter if a new brood is already developing before the last has been released.
  • The estimation does converge but the routine does not stop before a large amount of steps. The resulting parameters remain similar.


  • [DobrMajk2016] A. Dobrzycka-Krahel, W. Majkowski, and M. Melzer. Length-weight relationships of Ponto-Caspian gammarids that have overcome the salinity barrier of the southern Baltic Sea coastal waters. Marine and Freshwater Behaviour and Physiology, -:1--7, 2016.
  • [GabePush2011] F. Gabel, M. T. Pusch, P. Breyer, V. Burmester, N. Walz, and X. F. Garcia. Differential effect of wave stress on the physiology and behaviour of native versus non-native benthic invertebrates. Biol. Invasions, 13:843--1853, 2011.
  • [GergRoth2008] R. Gergs and K. O. Rothhaupt. Feeding rates, assimilation efficiencies and growth of two amphipod species on biodeposited material from zebra mussels. Freshwater Biology, 53:2494--2503, 2008.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.
  • [MaieKley2011] G. Maier, A. Kley, Y. Schank, M. Maier, G. Mayer, and D. Walosczek. Density and temperature dependent feeding rates in an established and an alien freshwater gammarid fed on chironomid larvae. J. Limnol., 70:123--128, 2011.
  • [PiscDevi2003] C. Piscart, S. Devin, J.-N. Beisel, and J.-C. Moreteau. Growth-related life-history traits of an invasive gammarid species: evaluation with a Laird-Gompertz model. Can. J. Zool., 81:2021--2041, 2003.
  • [Poec2007] M. Poeckl. Strategies of a successful new invader in European freshwaters: fecundity and reproductive potential of the Ponto-Caspian amphipod Dikerogammarus villosus in the Austrian Danube, compared with the indigenous Gammarus fossarum and G. roeseli. Freshwater Biology, 52:50--63, 2007.
  • [Poec2009] M. Poeckl. Success of the invasive Ponto-Caspian amphipod Dikerogammarus villosus by life history traits and reproductive capacity. Biol Invasions, 11:2021--2041, 2009.

Bibtex files with references for this entry

Andre Gergs, 2017/06/28

accepted: 2017/10/27

refer to this entry as: AmP Dikerogammarus villosus version 2017/10/27 bio.vu.nl/thb/deb/deblab/add_my_pet/