

Welcome and Summary of the Tele-course

Starrlight Augustine

starrlight@tecnico.ulisboa.pt

University of Lisboa/ Vrije Universiteit

Amsterdam Institute for Life and Environment

School: 4-13 June 2023 *Baton Rouge, Louisiana, United States* deb2023.sciencesconf.org

Overview

- Orientation
- How to receive and provide feedback
- Structure of the course, objectives
- Summary tele-course

Orientation>Websites

- Database
- Manuals
- Code repositories
- Frequent updates
- Short videos

Questions

"There are no stupid questions, only stupid answers"

We welcome all questions. With a well formulated question one is 99% on the way to a solution.

We all come with a broad spectrum of experience cross-disciplinary communication can be challenging, and should remain respectful.

Orientation

Learning Objectives

- Formulate a research question
- Know core DEB concepts and associated alternative concepts
- Acquire the skills necessary to estimate DEB parameters using real-world data.
- Critically evaluate and discuss the biological realism of DEB parameters
- Apply DEB (parameter estimation) techniques to support and enhance one's own research projects.
- Demonstrate the capacity to apply DEB theory to address contemporary issues in conservation, environmental impacts, and resource management.

Contents of 8-day practical workshop

- "AmP workshop" estimate parameters for your species (14.5H)
- "DEB in practice" guided exercises on applications (11 H)
- Lectures (19H)
- "Group discussions" present your discussion topic (6 H)
- "Plenary discussions" (2 H)
- "Pet presentations" (3 H)

AmP workshop (16.5 hrs)

Group discussion (6 hrs)

- Formulating research questions
- Sharpening research questions
- Group input and inspiration

TOPIC 1 (Jun 05, 06 & 07): "Metabolic scaling, life-history theory, and DEB"

TOPIC 2: (June 09,10 & 12) "From stylized facts to DEB model(s)"

Plenary Discussion (2H)

Thurs 08 & Tues 13

We switch groups around after the 1st prenary Make you you have a reporter for each group to present general results to the group for the plenary

Moderated debate around the discussion topic

"DEB in practice" - guided exercises on applications (11 H)

Summary of Tele-course

What are key concepts behind the DEB theory?

"cornerstones"

Life-cycles: creating maps

Why are DEB defined life-stages and not terminology used by specialists of each group?

How to model a complex life-cycle? Approach, Discussion

Complex life-cycles as variations of the Standard DEB model "std"

Example of complex life-cycles:

Lamprey life-cycle:

Lamprey life-cycle

Figure 14-15. Life cycle of *P. marinus* in the NW of the Iberian Peninsula.

Lamprey life-cycle by species

41-45 species

18 species have the "parasite" "juvenile" stage

23-27 are brook lampreys which:

- remain in their streams.
- have non-trophic periods of metamorphosis and sexual maturation are superimposed.
- are the only vertebrates known to have "non-trophic adults"

Lamprey life-cycle by species

Important Questions:

- Where is feeding?
- Where is puberty?
- Where is allocation to reproduction happening?
- What is metamorphosis

Life-cycles: Life-stages and events

	event		life stage
0	start of development	0b	embryo <mark>(non-feeding)</mark>
b	birth (start feeding)	bj	larva (juvenile)
x	weaning/fledging	bx	baby (mammals), nestling (birds)
j	end of acceleration	jp	juvenile (post larval)
p	puberty	pi	adult
e	emergence (insects)	je	pupa (holometabolic insects)
i	death	ei	imago (egg-laying stage of insects)

What is a metabolic switch

Life-cycles: Morphological vs Functional

1 simple DEB model - complex life-cycles with many morphological life-stages and transformations

Iorphological events and life-stages					
metamorphosis, pupation					
settlement of bivalves					
emergence of dragonflies, midges					
larvae					
imagos					

Metamorphosis: "Indirect development"

- Invertebrate taxa: insects, echinoderms
- Non-vertebrate chordates: cephalochordates and urochordates
- Vertebrate chordates: lampreys, eels, flatfishes, amphibians

Those who do not metamorphosis: direct-developers

All models can be extended with more stages of maturity: one for each stage:

Fig. 2.1 Larval development of Pacific lamprey: a early neurula stage 11; b pre-hatching stage 13; and c hatching stage 14 (*Photo* © Mary L. Moser)

Fig. 2.2 Pacific lamprey prolarva (stage 15; see Sect. 2.1.2) (*Photo* © Mary L. Moser)

Embryo staging Atlas:

<u>stage 1</u>: zygote

stage 14: hatching

<u>stage 17</u>: prolarvae begins to burrow

<u>stage 18</u>: onset of exogenous feeding

Cornerstones

Conservation

Homeostasis

Conservation

Η

Exploit conservation of energy and masses

Energy conservation is straight forward.

Mass conservation is not because elements are trapped in molecules.

chemical indices & chemical potentials

Η

K

 $C_6H_{12}O_6$

the c-mol

 $C_6H_{12}O_6 \longrightarrow 6$ C-moles of : CH_2O

P

macro-chemical reaction equations

Oxygenic photosynthesis:

Respiration (mitrochondria)

Н

Metabolism of the individual ?

macro-chemical reaction equations

Stoichiometry

Anabolic and catabolic aspects to reactions

https://www.youtube.com/watch?v=wJyUtbn005Y

Н

3 basic transformations:

$\text{compounds} \rightarrow$	minerals, \mathcal{M}				org. comp. \mathcal{O}			
\leftarrow transformations	O carbon dioxide	H water	O dioxygen	Z nitrogenous waste	pool X	Λ structure	E reserves	A faeces
assimilation A	+	+	2 <u>—2</u> 1	+	<u></u>		+	+
growth G	+	+	_	+		+	_	
dissipation D	+	+	_	+			-	

Homeostasis

strong

constant composition of pools (reserves/structures) generalized compounds, stoichiometric contraints on synthesis

weak

constant composition of biomass during growth in constant environments

determines reserve dynamics (in combination with strong homeostasis)

structural

constant relative proportions during growth in constant environments

isomorphy

С

Delimitation of pools respecting strong homeostasis

We need to specify elemental frequencies

We need to specify chemical potential : Joules per C-mol

We need a way to convert volumes to mass

Weak homeostasis

get_nNEV

Gets chemical indices for nitrogen of reserve and structure, from data for biomass

Contents

- Syntax
- Description
- Remarks
- Example of use:

Syntax

m_Em, n_NEV] = = get_nNEV (f, n_NW, m_Em)

Description

Potassium limited growth of *E. coli* at 30 °C Data Mulder 1988; DEB model fitted OD increases by factor 4 during nutrient starvation internal reserve fuels 9 hours of growth

Starrlight

Questions?