

AmP projects: setting up

Starrlight Augustine

starrlight@tecnico.ulisboa.pt

University of Lisboa/ Vrije Universiteit Dina Lika

lika@uoc@gr University of Crete

School: 4-13 June 2023 *Baton Rouge, Louisiana, United States* deb2023.sciencesconf.org

Overview

- Set up individual objectives and plan for the "own project" time : 14.5 Hrs
- Final day: 3 hours total of AmP presentations.
 Groups of 1 till three people. 7 min/person or 10 min/ group

Main topic of this lecture: Auxiliary theory

Learning Objectives

- Know the difference between core DEB theory assumptions and auxiliary theory assumptions
- Know how to navigate the AmP database and associated resources to find user-defined predictions for you type of data

Know your data labels

debportal.debtheory.org/docs/AmPestimation.html

First change equations and assumptions in your notes

Only after that can change them in the code

When modelling with the PC you need to distinguish between an error coding a quantity and a model term that need to be changed because assumptions have been updated.

Some suggestions

- Have zotero standalone with DEB library
- Have handy the papers with the most useful appendixes (or main papers) with the equations you will be using.
- Always have DEB notation handy. Follow the nomenclature in the equations but also how the code relates to the symbols.
- Write units in comments next to quantities in code

Data finding takes the most time

- Stay on top of references and units for data.
- Make notes of important details to help modelling and interpretation
- Do not transform data in the data file

Work with standardized nomenclature

DEB nomenclature

Standardized link between symbols and code

		E_0	E_0
		a_b, a_p	aT_b
		a_m	
units	←	L_b, L_p	
		L_{∞}	
		W^b_w	
		W^p_w	Ww_p
		W_w^∞	
		N_{∞}	

Work with your own equation notes

$$L(t) = L_{\infty} - (L_{\infty} - L_b) \exp(-t\dot{r}_B) \quad \text{or } t(L) = \frac{1}{\dot{r}_B} \ln \frac{L_{\infty} - L_b}{L_{\infty} - L}$$

$$\dot{r}_B = \frac{1}{3/\dot{k}_M + 3fL_m/\dot{v}} = \frac{\dot{k}_M/3}{1 + f/g}$$

$$L_{\infty} = fL_m - L_T$$

$$^{\$ \text{ time-length}}$$

$$rT_B = kT_M/ 3/ (1 + f_tL/g); L_i = L_m * f_tL; L_b = L_m * get_lb([g k v_Hb], f_tL);$$

$$L = L_i - (L_i - L_b) * \exp(-rT_B * tL_f(:,1)); \text{ $ cm, structural length}} \text{ at time}$$

$$ELw_f = L/ del_M; \qquad \text{$ cm, shell length}$$

00

L E 0

at time

Calculating Quantities with DEBtool:

Symbol	Units	Interpretation	
E_0	J	initial energy in egg	initial_scaled_reserve
a_b, a_p	d	age at birth, puberty	get_tj
a_m	d	age at death	get_tm_mod
L_b, L_p	cm	structural length at birth, puberty	get_tj
L_{∞}	cm	ultimate volumetric length	$s_{\mathcal{M}} f L_m$
W^b_w	g	wet weight at birth	$L_b^3(1+f\omega)$
W^p_w	g	wet weight puberty	$L_p^3(1+f\omega)$
W^∞_w	g	ultimate wet weight	$L^3_{\infty}(1+f\omega)$
N_{∞}	#	life time reproductive output	cum_reprod (std-DEB) or
			cum_reprod_j (abj-DEB)

Finding predictions

Know your labels !!! debportal.debtheory.org/docs/Uni-variate_data.html

[species, nm] = select_predict('f = spline1(t, tf)'); select_predict(nm, 'males')

Abstract World

Examples of "maps" :

Embryo yolk and body:

Examples of "maps"

DNA and RNA weights

Examples of "maps":

Python regius eats mice

User defined functionin the predict file to include weight of gut content:

function dXeL = dXeL(t, XeL, vT, pT_Am, g, L_m, L_T)
% routine for predict_Python_regius
% digestion at max rate
%unpack state variables
X = max(0, XeL(1)); e = XeL(2); L = XeL(3);
dX = - (X > 0) * pT_Am * L^2;
de = - dX/ L^3 - e * vT/ L;
r = vT * (e/ L - (1 + L_T/ L)/ L_m)/ (e + g);
dL = L * r/ 3;
dXeL = [dX; de; dL];
end

Length as quantifier for structure

mydata-file

Set the data

- metadata information about: the species, eco-codes, the types of data, the author, etc
- data value, units, labels, references, temperature (for time and rates)
- pseudo data were set automatically, can be modified

Data

(real)data

Empirical observations of physiological processes

- zero-variate (single measurements)
- uni-variate (lists of values for an independent and an associated dependent variable)
- Read <u>here</u> for more types of data

pseudo-data

Prior knowledge of a selection of parameter values Fill possible gaps in information in the real data

mydata-file

```
%% set weights for all real data
weights = setweights(data, []);
```

```
%% set pseudodata and respective weights
[data, units, label, weights] = addpseudodata(data, units,
label, weights);
```

```
%% pack auxData and txtData for output
auxData.temp = temp;
txtData.units = units;
txtData.label = label;
txtData.bibkey = bibkey;
txtData.comment = comment;
```


pars_init-file

Rename the file and the function: pars_init_Squalus_acanthias

Choose the model

Set the initial parameter values for estimation

including info for units, labels and if it is a free parameter (i.e., parameter that is allowed to change during the estimation procedure)

- Primary
- Auxiliary
- Environmental
- Chemical

Structures in Matlab

- A Structure is a collection of data representing a single idea or "object"
- Inside a structure there is a list of fields each being a variable name for some sub-piece of data
- Different type of data for each "field"
- Syntax

```
VariableName . Field
```


Structure example

<u>A single variable (named metaData) which</u> contains many fields. Each field has its own name and its own type.

- metaData.phylum
- metaData.class
- metaData.order
- metaData.family
- metaData.species

metaData.species_en = 'Spurdog';

- = 'Chordata';
- = 'Chondrichthyes';
- = 'Squaliformes';
- = 'Squalidae';
- = 'Squalus_acanthias';

Structure example

<u>Many variables (named data, units, label, bibkey, temp)</u> which contain many fields (e.g. zero-variate data, ab, ap). Variables give different information for a given field.

Structures in Matlab

Use function struct

s = struct(field1,value1,field2,value2)

Creates a structure array with multiple fields

Pack/unpack variables

vars_pull : pack & unpack variables into & from structures, according to the syntax and inputs.

Example : unpack variables from data
vars_pull(data)

creates or overwrites variables ab and ap in the calling function with the contents of the corresponding named fields