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1 Introduction

The present work aims to: (i) describe the model formulation for processes that control

metabolism, reproduction and life expectancy of the sardine (S. pilchardus), based on the

Dynamic Energy Budget (DEB) theory (Kooijman, 2000); (ii) describe a methodology

for parameter estimation with Bayesian methods based on measurable quantities. The

model was designed to agree with the assumptions and propositions already described

in Sousa et al. (2007), and uses the most recent notation of DEB theory (Kooijman

et al., 2007). The equations in the model are written so that energy and mass flow, the

dynamics of state variables, and measurable quantities are expressed as functions of the

basic parameters, and only they. This avoids the need for extra variables and equations,

in some cases at the cost of rendering those presented not so readily interpretable.

2 Model Description

The model presented here is a basic DEB model with one reserve and one structure, whose

chemical composition always reamains constant (strong homeostasis). Mass fluxes of the

different elements and compounds are considered in order to ensure the conservation of
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Table 1: DEB parameters.
symbol units description process

TA K Arrhenius temperature all

k̇15 − reaction rate at 15◦C all

{ḃ} m3 d−1 m−2 surface area-specific searching rate feeding

{J̇XAm} molC d−1 m−2 surface area-specific max ingestion rate feeding

yEX molC molC−1 yield of reserve on food assimilation

yV E molC molC−1 yield of structure on reserve growth

υ̇ m d−1 energy conductance catabolism

{J̇ET } molC d−1 m−2 surface area-specific maintenance heating

[J̇EM ] molC d−1 m−3 volume-specific somatic maintenance maintenance

k̇J d−1 volume-specific maturity maintenance maintenance

κ − allocation fraction catabolism

Eb
H ε threshold of energy investment at birth maturation

Ep
H ε threshold of energy investment at puberty maturation

κR − reproduction efficiency reproduction

[Ms
R] molC m−3 volume-specific egg/sperm batch mass reproduction

a m3ε−1 d−1 endogenous damage constant mortality

b m3 predation-related constant mortality

c - fisheries catchability constant mortality

d - fisheries selectivity intercept mortality

e m−3 fisheries selectivity slope mortality

mass. Ammonia, water and carbon dioxide are assumed as the mineral excretions, and

faeces are assumed as the only product of the organism. The conservation of energy is

also ensured.

An organism is described by means of four state variables: reserve energy (E), struc-

tural volume (V ), reserve energy invested into maturation (EH) and egg/sperm mass

(MR). We assume that growth is isomorphic.

2.1 Energy flow [ε d−1]

• Feeding

ṗX =
{J̇XAm}V 2/3µX

1 + {J̇XAm}
X{ḃ}

• Assimilation

ṗA =
ṗXyEXµE

µX

• Structure maintenance

ṗM = [J̇EM ]µEV
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Table 2: Chemical indices.
symbol units description Element

nNX molN molC−1 chemical index of nitrogen in food nitrogen

nNV molN molC−1 chemical index of nitrogen in structure nitrogen

nNE molN molC−1 chemical index of nitrogen in reserve nitrogen

nNP molN molC−1 chemical index of nitrogen in product nitrogen

nHX molH molC−1 chemical index of hydrogen in food hydrogen

nHV molH molC−1 chemical index of hydrogen in structure hydrogen

nHE molH molC−1 chemical index of hydrogen in reserve hydrogen

nHP molH molC−1 chemical index of hydrogen in product hydrogen

nOX molO molC−1 chemical index of oxygen in food oxygen

nOV molO molC−1 chemical index of oxygen in structure oxygen

nOE molO molC−1 chemical index of oxygen in reserve oxygen

nOP molO molC−1 chemical index of oxygen in product oxygen

Table 3: Other model parameters.
symbol units description

δM m m−1 shape coefficient

µE ε molC−1 chemical potential of reserve

µX ε molC−1 chemical potential of food

[MV ] molC m−3 density of structure
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Figure 1: Energy fluxes (ṗ∗), mass fluxes (J̇∗), processes (ellipses), sources and sinks

(dashed rectangles) and state variables (solid rectangles) in the DEB model.
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• Heating

ṗT = {J̇ET}µEV 2/3

• Catabolism

ṗC =
υ̇V 2/3 + yV E

µE [MV ]
(ṗM + ṗT )

V
E

+ κyV E

µE [MV ]

• Growth

ṗG = κṗC − ṗM − ṗT

• Maturity maintenance

ṗJ = k̇JEH

• Maturation and reproduction

ṗR = (1− κ)ṗC − ṗJ

2.2 Fluxes of Compounds and Mass Balance

The general equation that ensures mass conservation is

0 = nMinJ̇Min + nOrgJ̇Org

where J̇Min[mol d−1] is the vector with the molar fluxes of the mineral compounds (carbon

dioxide J̇CO2 , water J̇H2O, dioxygen J̇O2 , nitrogenous waste J̇Nwaste); nMin[mol molC−1]

and nOrg[mol molC−1] represent the chemical indices of the mineral and organic com-

pounds, respectively; J̇Org is the vector with the molar fluxes of the organic compounds

(food J̇X , structure J̇V , reserve J̇E + J̇ER
, and product J̇P ). The assumptions are:

(i)J̇Nwaste represents ammonia excretions: J̇Nwaste ≡ J̇NH3 ; (ii) product is interpreted

as faeces, and faeces production is coupled to food intake only.

2.2.1 Mass Flow of Organic Compounds [molC d−1]

• Food

J̇X =
ṗX

µX
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• Structure

J̇V =
ṗGyV E

µE

• Reserve

J̇E =
ṗA − ṗC

µE

• Eggs/Sperm

J̇ER
= (1− kRep)

ṗRκR

µE

where

kRep =





1, if EH < EP
H

0, otherwise

• Products

J̇P =
ṗA − ṗX

µP

2.2.2 Mass Flow of Mineral Compounds [mol d−1]

• Ammonia

J̇NH3 = −
(
nNX J̇X − nNV J̇V − nNE

(
J̇E + J̇ER

)
+ nNP J̇P

)

• Water

J̇H2O = −1

2

(
nHX J̇X − nHV J̇V − nHE

(
J̇E + J̇ER

)
+ nHP J̇P + 3J̇NH3

)

• Carbon dioxide

J̇CO2 = −
(
J̇X − J̇V −

(
J̇E + J̇ER

)
+ J̇P

)

• Dioxygen

J̇O2 = −1

2

(
nOX J̇X − nOV J̇V − nOE

(
J̇E + J̇ER

)
+ nOP J̇P + J̇H2O + 2J̇CO2

)
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2.3 Dynamics of state variables

• Structure, V [m3]
dV

dt
=

J̇V

[MV ]

V o = 0

• Reserve, E[ε]
dE

dt
= ṗA − ṗC

Eo = µE

{
δM

(
µEx(1− κ)

Eb
H

) 1
3

− Bx(4/3, 0)[J̇EM ]κ
1
3

3υ̇

(
yV E

[MV ]

) 4
3

}−3

where

x−1 = 1 +
ṗAyV Eκ

µE[MV ]V 2/3υ̇

• Maturity, EH [ε]

dEH

dt
=





ṗR, if EH < Ep
H

0, otherwise

Eo
H = 0

• Eggs/Sperm, MR[molC]

MR =





0, if EH < Ep
H

κR

µE

∫ t

t?
ṗR(t) dt, otherwise

The initial value of t? is the time when maturity was reached. If MR = V [M s
R],

then the organism spawns and t? ≡ t. This approach assumes an unique spawning

event that empties the reproduction buffer.

2.4 Mortality

• Probability of surviving endogenous damage

PE(t) = exp

{
−a

∫ t

tb

[
1

V (t1)

∫ t1

tb

(∫ t2

tb

ṗC(t3)dt3

)
dt2

]
dt1

}

tb represents time at birth, t the current time and PE(t) the probability of being

alive in the interval [tb, t], considering endogenous damage
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• Probability of surviving starvation

PS(t) =





1, if E > 0

0, otherwise

• Probability of surviving predation

PP (t) = exp

(
− b

V

)

• Probability of retention in fishing gear

PF (t) =
c

1 + exp (d + eV )

• General survival probability

P [t† > t] = PE(t)PS(t)PP (t)(1− PF (t))

3 Parameter estimation with Bayesian methods

The DEB parameters listed above are species-specific and their values are unknown.

Instead of the traditional approach to DEB parameter estimation (van der Meer, 2006;

Sousa et al., 2006; Kooijman et al., 2007), we use the Bayesian method described in the

next paragraphs.

The goal is to find a distribution for each parameter such that the mean is a compro-

mise solution between the one provided by prior information and the one that maximizes

the likelihood associated with experiments and measurments performed on specimens of

our species of interest. Since in many cases this posterior distribution cannot be found

in closed form, we use Markov chain Monte Carlo (MCMC) methods to explore it. Thus

we steer away from assuming that the vector of parameters follows a multivariate Normal

distribution. This brings large benefits when analyzing correlations between parameters

and when constructing adequate credibility intervals for them.

3.1 Prior distributions

Basing on both theory and data available for similar species, we start by defining a

suitable probability distribution for our species’ parameters. As the Normal and the
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Gamma distibutions are good candidates, this requires us to define the mean and the

variance for each parameter. The mean can be given by a weighted average of the

parameters for similar species, where the weights reflect the degree of proximity. The

variance can be given by weighting the estimated parameter variances for the similar

species, or be inversely proportional to the richness of information we have beforehand:

number of similar species, proximity to the most similar species, etc.. The best method

to define the prior mean and variance - as well as the distibution itself - is a hot subject

in Bayesian statistics. We point out, however, that if our species is well-studied these

choices have little influence on the final results.

3.2 Posterior distributions

A significant amount of published work can be used to provide information about our

parameters. This happens because many experiments yield measurable quantities that are

linked to the DEB parameters, through the equations listed in section 4. The process of

combining the prior with the likelihood generally does not yield a distribution in closed

form (i.e., it is no longer Normal or Gamma). Thus, to learn about the parameters’

posterior distribution, we use an overrelaxed slice sampler (Neal, 2003) and a MCMC

method. We switch to a regular slice sampler every ten iterations of the MCMC. The

approach is analogous for all parameters, so we let y denote a general parameter. We

also denote yn as a newly sampled value of y and yp as a value sampled in the previous

iteration of the MCMC. The following paragraph summarizes the rationale and algorithm

of the slice sampling approach.

In both slice samplers, a slice of the distribution is defined, where the density is always

greater than a threshold given by a random fraction (between 0 and 1) of the density

at yp. In the regular sampler yn is sampled independently from yp. In the overrelaxed

sampler, the full conditional distribution is assumed to have just one mode, and yn is

chosen so that yp and yn are on opposite sides of the mode. This approach accelerates

convergence to the posterior distribution. We follow the scheme of Neal (2003) to define

the initial slice, trim its edges and obtain yn. The initial slice is set to have a width

of 20% the standard deviation of the prior distribution, and is randomly placed in the
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parameter’s domain (usually R+), provided that it includes yp. A random variate with

standard uniform distribution is drawn and multiplied to the likelihood of y to obtain

the threshold. With an iterative procedure, the limits of the initial slice are extended

or contracted so that the posterior at its edges remains bigger than the threshold. Once

the lower (L) and the upper (U) edges of final slice are defined, the overrelaxed slice

sampler chooses the new candidate according to yn = L + U − yp, while the regular slice

sampler uses yn = L + z(U − L), where z is a random variate with standard uniform

distribution. The candidate is accepted if its posterior exceeds the threshold. Otherwise,

the overrelaxed slice sampler sets yn = yp, while the regular slice sampler redefines the

slice using yn as one of the edges and samples a new candidate. As Neal (2003) points

out, for unimodal distributions the candidate is almost never rejected, as long as the

edges of the slice are accurately estimated.

For convergence diagnostics, we use the methods developed by Heidelberger and Welch

(1983); Gelman and Rubin (1992); Geweke (1992); Raftery and Lewis (1992b,a); Brooks

and Gelman (1998), which are available in the package Bayesian Output Analysis Program

(BOA) (Smith, 2005) within R (R Development Core Team, 2005). We use the default

values of BOA to define the length of the burn-in stage, thin the chain, check stationarity

and define the adequate sample size to achieve the precision required, when sampling

from the posterior distribution.

4 Measurable quantities

For most of the quantities below we have already found references (papers or webpages)

with available data. In these cases, we provide the respective reference in parentheses.

For those that have no supporting data, we indicate what kind of information in the

model would be provided, thus explaining why they are necessary.

• Food consumption, J̇X [molC d−1], and faeces production, J̇P [molC d−1] (this would

provide information about yEX , µE, µP and µX)

J̇P =
J̇X

µP

(yEXµE − µX) + ε1

The error term, ε1, has Normal distribution with mean zero and variance σ2
1, whose
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(vague) prior distribution is Gamma and posterior distribution is also Gamma. The

same applies to all subsequent error terms.

• Composition of starved larvae (composition of structure)

• Composition of newly fertilized eggs (composition of reserve)

• Maximum clearance rate, ḞMax [m3 d−1] (Garrido et al., 2007)

ḞMax ≡ ṠGO = {ḃ} (δML)2 + ε2

where Ṡ[m d−1] is the swimming speed, G[m2] is the mouth gape, O[non-dimensional]

is the fraction of time spent with the mouth open, and L[m] is the body length.

• Decay of prey concentration, X(t)[molC m−3] (Garrido et al., 2007)

X(t) = X(0) exp

(
− (δML)2 N{J̇XAm}

X(0)VT

t + ε3

)

where VT [m3] is the tank volume, L[m] is the body length of fish, and N is the

number of fish. It is assumed that at the beginning of the experiment, the feeding

rate per unit of surface area is equal to its maximum, {J̇XAm}.

• Von Bertalanffy growth coefficient, ṙB[ε molC−1] (Fishbase: www.fishbase.org)

ṙB =
[J̇EM ]

3[MV ]
yV E

+ 3κ{J̇XAm}
υ̇

+ ε4

We assume here that food is abundant.

• Asymptotic length, L∞[m] (Fishbase)

L∞ =
κ{J̇XAm}yEX

δM [J̇EM ]
+ ε5

• Number of eggs/sperm in the gonad right before spawning, B [−], and the body

mass after the gonad has been surgically removed, M−R[molC] (Ganias et al., 2004)

B =
[M s

R]V µE

Eo
+ ε6

Again we assume that food is abundant and hence

x−1 = 1 +
{J̇XAm}yEXyV Eκ

[MV ]υ̇
,
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which simplifies the computation of Eo, and

M−R = [MV ]V +
E

µE

= V

(
[MV ] +

{J̇XAm}
υ̇

)
,

making

B =
[M s

R]M−RµE

Eo
(
[MV ] + {J̇XAm}

υ̇

) + ε6

• Length at maturity, Lp[m] (Fishbase)

Lp =
1

δM

(
Ep

Hκ{J̇XAm}yEXyV E

µE[MV ](1− κ)

) 1
3

+ ε7

• Length at birth, Lb[m] (Fishbase)

Lb =
1

δM

(
Eb

HyV Eκ

µE[MV ](1− κ)

) 1
3

+ ε8

• Age at birth, ab[d], as a function of temperature (Miranda et al., 1990)

ab =
3V

1/3
b

υ̇
+ ε9

• Longevity in the absence of food, a†[d] Miranda et al. (1990)

∫ a†

0

ṗC(t)dt = Eo

That is, in the absence of external food the embryo develops until it hatches and

survives for some time more, until the reserve is completely exhausted. The time it

takes for a juvenile to die depends on how much reserve the egg had to start with,

and depends on the catabolic power.

• Mortality related parameters (Mendes and Borges, 2006)

Time series data of fish landings and effort

5 Conclusions

The present work is a first approach towards modelling the population dynamics of sardine

shoals off the Portuguese coast. In future work we wish to:
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• implement the model in 0-D;

• couple the model to a 3-D hydrodynamic and biogeochemical model;

• write a paper.
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