next up previous
Next: Question: Up: Scaling of dynamic systems Previous: Question:

Answer:

$\dim{K} = \dim(S)$ because $f =
\frac{S} {S + K}$
f is dimensionless because $f =
\frac{S} {S + K}$
$\dim(j_S) = \dim(S)/ (\mbox{time} \, \dim(X))$
$\dim(y_{XS}) = \dim(X)/\dim(S)$
$\dim(\dot{r}) = \mbox{time}^{-1}$

A possible choice for the dimension of S and X is: $\mbox{C-mol}
\, . \, \mbox{length}^{-3}$. This does not imply, however, that yXS is necessarily dimensionless; we have $\dim(y_{XS}) =
\frac{\mbox{\footnotesize C-mol X}} {\mbox{\footnotesize C-mol S}}$and $\dim(j_S) = \frac{\mbox{\footnotesize C-mol S}}
{\mbox{\footnotesize time} \, . \,\mbox{\footnotesize C-mol X}}$.



Bas Kooijman
2000-12-14