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Chapter 0

Basic methods

These exercises concern the background document Basic methods for Theoretical Biology,
which is assumed to be known to participants of the DEB tele-course.

0.1 Dimensions

0.1.1 Answer:

Formally: no problems if dim(b) =
√

time and dim(a) = dim(y)/
√

time. It is unlikely,
however, that the model has a (simple) physical interpretation with such dimensions.

0.1.2 Answer:

This model can have a simple physical interpretation if dim(c) = time and b is dimension-
less, while dim(a) = dim(y)time−1. More generally: dim(c) = time dim(d)2, which implies
dim(b) = time dim(d)−1, where d has simple but otherwise arbitrary physical dimensions.
The fitting of this model to data {ti, yi}ni=1 yields two parameters only, not three.

If you multiply a and b with a number and divide c by that number, y does not change.

0.2 Scaling of dynamic systems

0.2.1 Answer:

dimK = dim(S) because f = S
S+K

f is dimensionless because f = S
S+K

dim(jS) = dim(S)/(time dim(X))
dim(yXS) = dim(X)/ dim(S)
dim(ṙ) = time−1

A possible choice for the dimension of S and X is: C-mol . length−3. This does not
imply, however, that yXS is necessarily dimensionless; we have dim(yXS) = C-mol X

C-mol S and

dim(jS) = C-mol S
time .C-mol X .
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0.2.2 Answer:

Five parameters: initial substrate concentration S(0), initial population density X(0),
saturation coefficient K, max specific uptake rate jS, yield coefficient yXS.

0.2.3 Answer:

The scaled system will have 5 − 3 = 2 parameters, because we can (usually) remove one
parameter per variable.

One choice for rescaling is: s = S/K, x = X/(K yXS), τ = t jS yXS. The system then
becomes

d

dτ
s = −fx

d

dτ
x = fx

with f = s
1+s

and two parameters: s(0) = S(0)/K, x(0) = X(0)/(K yXS).

0.2.4 Answer:

Since we have no information about X(t), we choose x = X/(K yXS).

d

dt
S = −ṙmKfx

d

dt
x = xfṙm

with four parameters: S(0), x(0), K, ṙm = jS yXS. The latter parameter has the interpre-
tation of the maximum specific growth rate.

0.2.5 Answer:

Theoretically: yes, because we can estimate x(0) and K, so yXS = X(0)/(K x(0)). This is
remarkable, because we have no direct measurements about the conversion from substrate
to biomass. Practically, however, we will see that in presence of a little scatter, the uncer-
tainty in the values for x(0) and K is large, which makes the uncertainty in the value of
yXS huge. More elaborate models for biomass growth not necessarily allow to extract the
conversion efficiency from these data.

0.3 Theoretical identification of parameter values

0.3.1 Answer:

dim(K) = dim(X), because f = X
X+K

.

f must be dimensionless, because f = X
X+K

.
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dim(Lb) = dim(L) = length, because L(0) = Lb.
dim(Lm) = dim(L) = length, because L(∞) = fLm, and f is dimensionless.
dim(ṙB) = time−1, because tṙB must be dimensionless; it occurs as an argument of a
transcendental function.
dim(k̇M) = dim(ṙB) = time−1, because ṙB = (3/k̇M + 3fLm/v̇)−1.
dim(v̇) = length/time, because dim((fLm/v̇)−1) = dim(ṙB) = time−1.
g must be dimensionless because dim( v̇

gk̇M
) = dim(Lm) = length; dim(v̇) and dim(k̇M) are

known.

0.3.2 Answer:

Three (compound) parameters only: Lb, fLm and ṙB.

0.3.3 Answer:

Five parameters are identifiable: Lb, K, k̇M , g and v̇. Functions of these parameters,
such as f , ṙB and Lm are identifiable as well, obviously. The relationship between L and t
gives information about Lb, L(∞) and ṙB (see previous question); the relationship of L(∞)
with X gives information about K and Lm; the relationship between ṙB with L(∞) gives
information about k̇M and v̇; the relationship between Vm and {v̇, k̇M , g} gives information
about g. There might well be practical problems with obtaining these parameter values
from the two data sets.

0.3.4 Answer:

dim(dV ) = dim(dE) = weight . length−3. Six parameters: dV +f1dE
dV +f2dE

, K, (dV + f1dE)Vb,

Vb/(f
3
1Vm), k̇−1M +f1V

1/3
m /v̇, k̇−1M +f2V

1/3
m /v̇. In conclusion we can state that these compound

parameters are not very informative.
The parameter v̇ is not identifiable, because it has dimension length/ time, but no

lengths are measured.

0.3.5 Answer:

Six parameters are identifiable: dV Vb, dE/dV , K, k̇M , g and d
1/3
V v̇, or functions of these

(compound) parameters. Knowledge about the values of X can be used in this case to
obtain K and f ; this is because the relationship between Wb = (dV + fdE)Vb and X has
three parameters, K, dV Vb and dEVb, and we have three observations.

0.4 Fitting data

0.4.1 Answer:

After setting the path to debtool/lib, the required code of a script file with the name
exer.m should read something like this:
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aL = [0 1; 1 4; 2 5; 3 5.5]; % age-length data

function L = bert(p,aL) % define the von Bert curve

L = p(2) - (p(2) - p(1)) * exp(-p(3) * aL(:,1));

end

p = nrregr(’bert’, [1 6 1]’, aL); % estimate parameters

[cov, cor, sd] = pregr(’bert’, p, aL); % get standard deviation

[p, sd] % show result

shregr options(’default’) % initiate plot settings

shregr(’bert’, p, aL) % make a plot

This should work when you save this script file and run exer in the directory where you
parked exer.m. You can check the correct location by typing ls, which should list exer.m.

0.5 Inner and outer products

0.5.1 Answer:

Inner product: x’*y. Outer product: x*y’.

0.5.2 Answer:

sum(x.*y). Notice that this equals x’*y.

0.6 Mean and variance

0.6.1 Answer:

Your function can look like this:

function [m, cov, cor] = mcc (x)
[n, k] = size(x);
m = sum(x,1)’/ n;
cov = x’ * x/ n - m * m’;
sd = diag(cov).̂ 0.5
cor = cov./ (sd * sd’);
endfunction

Fill variable x like: x = [1 1.5; 2 1.5; 3 2]
Run your function mcc like: [m, cov, cor] = mcc x
We get

m =

(
2.00
1.66

)
cov =

(
0.666 0.166
0.166 0.055

)
cor =

(
1.000 0.866
0.866 1.000

)
Notice that this function also works for more than 2 variables.
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0.7 Profile likelihood

0.7.1 Answer:

The ln likelihood function for data {xi}ni=1 is `(λ) = lnλ
∑n
i=1 xi − nλ −

∑n
i=1 lnxi!. The

ML-estimate is λ̂ =
∑
i xi/n. The profile ln likelihood function is

`p(λ) = 2(`(λ̂)− `(λ)) = 2n(λ− λ̂)− 2 ln(λ/λ̂)
n∑
i=1

xi = 2nλ− 2nλ̂(1 + ln(λ/λ̂))

We have to subtract the first term in the second-order Tayler expansion and multiply by 2
to arrive at a function that is comparable with the profile ln likelihood function and obtain

`t(λ) = (λ− λ̂)2
d2

dλ2
`(λ̂) = (λ− λ̂)2λ̂−2

∑
i

xi = n(λ− λ̂)2/λ̂

The 95% confidence interval is given by

{λ|`p(λ) < 3.8415} or {λ|`t(λ) < 3.8415}

Large sample theory has been applied here, so the results only holds for large n. Practice
learns, however, that the first confidence interval is close to correct for much smaller values
of n than the second interval. The practical problem is that the calculation of the profile
likelihood function is generally computationally intensive.

The code can look like this: we create an empty script-file with the name prof.m and
write in that file for Octave:

x = [3, 2, 4, 3]; % data

n = length(x); % number of data-points

lm = mean(x); % ML estimate for Poisson-parameter

l = linspace(0,3 * lm, 100); % vector of parameter values

f1 = 2 * n * l - 2 * n * lm * (1 + log(l/ lm)); % prof-lik function

f2 = n * (l - lm) .̂ 2/ lm; % tangent parabola

plot(l, f1, ’g’, l, f2, ’r’, ... % plot functions in green and red

[0; 3 * lm], [3.84; 3.84], ’6’); % draw line for conf. intervals in black

We now run the script-file by typing prof in the Octave comment-line.

0.8 Root finding

0.8.1 Answer:

We first specify the function for which we want to find the root. Your function looks like

function f = finda (a)

global x y;

[nx k] = size(x); [ny k] = size(y);
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varx = sum((x(:,2) - a * x(:,1)).̂2)/ nx;

vary = sum((y(:,2) - a * y(:,1)).̂2)/ ny;

v = x(:,1)’ * x(:,2)/varx + y(:,1)’ * y(:,2)/ vary;

w = x(:,1)’ * x(:,1)/varx + y(:,1)’ * y(:,1)/ vary;

f = a - v/w;

end

Now we find the root and use your function like:
x = [1 2; 2 2.2; 3 2.3]; y = [2 5; 3 6; 4 6.1]; global x y;
[a, error] = fsolve(’finda’, 0.1)
[a, error] = fsolve(’finda’, 2)
Check the value of error to make sure that the numerical procedure converged. It can
easily result in nonsense. Notice that the two calls have different results; the one with the
highest value for the likelihood function is the proper estimate. Consult Matlabs’ manual
for fsolve.



Chapter 1

Basic concepts

1.1 Physical versus volumetric length

1.1.1 Answer:

Physical length depends on shape and requires a definition of how the length is taken;
volumetric length is independent of shape and represents the cubic root of the physical
volume. Both reserve and structure contribute to physical volume; structural length is
the cubic root of structural volume. Isomorphy implies that physical length is propor-
tional to volumetric length. Auxiliary theory assumes that a well-chosen physical length
is proportional to structural length.

1.2 Temperature correction

1.2.1 Answer:

We should expect a rate of 0.2 exp(8000/(273 + 20)− 8000/(263 + 37)) cm d−1.

1.2.2 Answer:

No, mussels and sparrows don’t have the same shape, so a direct comparison of these
rates makes no sense. We can remove the effect of shape by turning to volumetric lengths,
but we still have the problem that mussels would rapidly die at 40◦C, and a sparrow at
20◦C. We can infer a theoretical Arrhenius temperature for the sparrow if we know some
characteristic rate (such as the energy conductance) for the mussel at 20◦ and the sparrow
at 41◦C, and assume that they are the same for both species. This Arrhenius temperature
can then be used to make the comparison, given that our assumption holds.

9
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Chapter 2

Standard DEB Model

2.1 Hyperbola

2.1.1 Answer:

Let h = k = 0, and b = a, so x2 − y2 = a2. Introduce v = x + y and w = x − y, so
x = (v + w)/2 and y = (v − w)/2. Substitution gives vw = a2. Translate v = X + K,
v = 1− Y and set a2 = K, which results in (1− Y )(X + K) = K, or X = Y (X + K), or
Y = (1 +K/X)−1.

2.2 Homogeneous functions

2.2.1 Answer:

∂z
∂x

= ay(t) and ∂z
∂y

= ax(t); dx
dt

= b and dy
dt

= −c exp{−ct}, so dz
dt

= ab exp{−ct}(1− ct).

2.2.2 Answer:

1 degree 3

2 degree 1

3 degree 0

4 degree 3

5 degree 3:

6 degree 1:

7 non-homogeneous

8 degree 0:

11
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2.2.3 Answer:

Let g(t) = f(tx, ty) = tnf(x, y) and introduce x = tX and y = tY . Use the chain rule for
differentiation to prove that

d

dt
g(t) = ntn−1f(X, Y ) = X

∂

∂x
f(tX, tY ) + Y

∂

∂y
f(tX, tY )

then let t = 1.

2.3 Reserve dynamics

2.3.1 Answer:

Structural massMV relates to structural volume V asMV = [MV ]V , where [MV ] is constant
due to the assumption of strong homeostasis. So ṙ = M−1

V
d
dt
MV = V −1 d

dt
V . Structural

(volumetric) length L relates to structural volume V as V = L3 by definition. Since
d
dt
V = d

dt
L3 = 3L2 d

dt
L, we have ṙ = 3L−1 d

dt
L. The change in reserve density is

d

dt
mE = M−1

V

d

dt
ME − ṙmE

= jEA −M−1
V ME(

v̇

L
− ṙ)− ṙmE for jEA = J̇EA/MV

= jEA −mE
v̇

L

No change in reserve density occurs if mE = jEAL/v̇. It remains constant during growth
(of juveniles and adults) if jEA ∝ L and the proportionality factor is constant. This
holds if J̇EA ∝ L2 and food density remains constant. DEB theory assumes that J̇EA =
f{J̇EAm}L2, where the scaled functional response is a function of food density, with a
maximum of 1 and the proportionality factor {J̇EAm} is constant. Reserve density in
juveniles and adults is at maximum at steady state if assimilation is at maximum; For

MV = [MV ]L3 it then has value mEm = jEAmL
v̇

= J̇EAmL
MV v̇

= {J̇EAm}L3

[MV ]L3v̇
= {J̇EAm}

[MV ]v̇
. Weak

homeostasis means that the chemical composition of the whole body (reserve and structure)
remain constant during growth at constant food density. This reserve dynamics as function
of the states of the individual (amounts of reserve and structure) is the only one that
satisfies this condition. The assumptions behind this reserve dynamics are

1 food is first converted to reserve that is mobilised

2 the mobilisation rate only depends on the state of the individual: amounts of reserve
and structure

3 reserve and structure obey strong homeostasis

4 the individual is isomorphic
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5 weak homeostasis applies

The difference with first order dynamics is in the dilution by growth. First order dynamics
would result in J̇EC = ME

v̇
L

rather than J̇EC = ME( v̇
L
−ṙ). Since the DEB reserve dynamics

uniquely follows from assumption 1-5, first order dynamics is not weakly homeostatic, even
if assumptions 1-4 apply. The mean residence time of a molecule in reserve is ME

J̇EC
=

ME

ME( v̇
L
−ṙ) = ( v̇

L
− ṙ)−1. Notice that is time decreases with increasing length.

2.4 Maximum growth

2.4.1 Answer:

At constant food, length changes as d
dt
L = ṙB(L∞ − L), so d2

dt2
L = −ṙ2B(L∞ − L). Since

the latter continuously decreases, growth in length is maximal at birth, so L = Lb.
Weight is proportional to cubed length, and cubed length changes as d

dt
L3 = 3L2 d

dt
L =

3L2ṙB(L∞ −L) and d2

dt2
L3 = 3ṙ2B(L∞ −L)(2L∞ − 3L). The latter equals zero if L = 2

3
L∞,

so growth in weight is maximal at L = max(Lb,
2
3
L∞).

Relative growth of length is maximal if d
dt

(
L−1 d

dt
L
)

= 0, i.e. if L d2

dt2
L =

(
d
dt
L
)2

. Sub-
stitution shows that the equation has no meaningful solution, while the relative growth in
length only decreases. This implies that it is maximal at birth.

Relative growth of weight is maximal if d
dt

(
L−3 d

dt
L3
)

= 0, which leads to the same
result as for relative growth of length.

Notice that growth of length and weight behave quite differently, but relative growth
of length and weight are behave quite similar.

2.5 Numerical behaviour of growth and reproduction

2.5.1 Answer:

Observe that lengths and reproduction satiate monotoneously to an asymptotic value for
isomorphs at constant food, while weight-curves are sigmoidal, because they relate to cubed
length. Also observe that organisms do not complete the juvenile stage at low food levels.

2.6 Reserve buffer for reproduction

2.6.1 Answer:

Allocation to reproduction is in continuous time, so allocation per time increment is incre-
mentally small only, not sufficient to produce an embryo. Buffer handling rule can span a
wide spectrum:

• some rotifers produce on egg after the other.
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• waterfleas produce eggs clutch-wise, coupled to the moulting cycle.

• mussels spawn once a year, coupled to the season.

• albatrosses nest every other year.

• bamboo trees set seed once every seven or so years.



Chapter 3

Energy, compounds and metabolism

3.1 Body mass and composition

3.1.1 Answer:

If we exclude contributions from the reproduction buffer to weight for simplicity’s sake,
the relationship between mass in gram and C-mole is for ∗ = E, V

Wd = wEME + wVMV ; w∗ = 12nC∗ + 1nH∗ + 16nO∗ + 14nN∗

Ww = wwEME + wwVMV ; ww∗ = 12nC∗ + 1nwH∗ + 16nwO∗ + 14nN∗

where nCE = nCV = 1 per definition (of C-mole) and nwHE = nHE + 2xE, nwOE = nOE + xE,
nwHV = nHV + 2xV , nwOV = nOV + xV . So wE + 18xE = wwE and wV + 18xV = wwV . Notice
that water does not affect the quantification of mass in C-moles (ME and MV ), only the
molecular weights (wE and wV ). The question is to specify the moles of water per carbon
in reserve and structure, xE and xV . The values of xE and xV must be found from

0 = 10Wd −Ww which was given

0 = 10(wEME + wVMV )− wwEME − wwVMV

0 = (10wE − wwE)mE + 10wV − wwV
0 = (9wE − 18xE)mE + 9wV − 18xV

As implied from what was given, the ratio of dry weight Wd and wet weight Ww (both in
gram) does not seem to depend on the ratio mE = ME/MV of mass of reserve ME and
mass of structure MV (both in C-mole). Our result shows that this is only possible if the
molecular weights of dry reserve and structure are equal, wE = wV and the fraction of water
in reserve and structure must be equal, xE = xV = x. The implication is x = wV /2 = wE/2.
So for nHE = nHV = 1.8, nOE = nOV = 0.5 and nNE = nNV = 0.2, we have for dry
mass wE = wV = 24.6 g/mol, x = 12.3 g/mol and the chemical indices for wet mass are
nwHE = nwHV = 1.8 + 2 × 12.3 = 26.4 and nwOE = nwOV = 0.5 + 12.3 = 12.8. The resulting
molecular weight for wet mass is wwE = wwV = 12+1×26.4+16×12.8+14×0.2 = 246 g mol−1,
which checks the result. Our result also shows that a constant (so nutrition independent)
ratio between wet and dry weight can only be an approximation at best.

15
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3.1.2 Answer:

The definition of the fraction of energy in ingested food that is fixed in reserve is κX =
ṗA/ṗX . The definition of the yield coefficient of reserve on food is yEX = J̇EA/J̇XA.
The relationship between energy and mass fluxes for food and reserve is ṗX = J̇XAµX
and ṗA = J̇EAµE, respectively. So κX = J̇EAµE

J̇XAµX
= yEXµE/µX . Notice that κX is really

dimensionless, but the units of yEX are a mole of E per mole of X; yEX is not really
dimensionless because E and X are different types.

3.1.3 Answer:

In the context of the standard deb model, carbon in food can end up in reserve, faeces
and carbon dioxide. The conservation of carbon implies 1 = yCX + yPX + yEX . The yield
of carbon dioxide on food is given by yCX = 1 − yPX − yEX . If yEX = 1, we must have
yCX = yPX = 0.

3.2 Metabolic transformation

3.2.1 Answer:

Section 4.3.1 on metabolic transformation applies Section 3.5 on macrochemical transfor-
mation. The three transformations are for Y A

XX = Y G
EE = Y D

EE = 1:

assimilation A: Y A
XX X + Y A

OX O → Y A
EX E + Y A

PX P + Y A
CX C + Y A

HX H + Y A
NX N

growth G: Y G
EE E + Y G

OE O → Y G
V E V + Y G

CE C + Y G
HE H + Y G

NE N

dissipation D: Y D
EE E + Y D

OE O → Y D
CE C + Y D

HE H + Y D
NE N

Since assimilation is the only process that involves Y A
EX or Y A

PX , the superscript A is
suppressed; a similar reason applies to superscript G for Y G

V E. Moreover Y is replaced by
−y in these cases to express that the yield coefficients are constant and to make y positive.
Eq (3.12) can be applied to find the yield coefficients. For assimilation we have for the
chemical element C, H O and N in the rows with yXX = 1:


0
0
0
0

 =


1 0

1.8 0
0.5 2
0.2 0


(
−yXX
Y A
OX

)
+


1 1 1 0 0
2 1.8 0 2 3

0.5 0.5 2 1 0
0.15 0.15 0 0 1



yEX
yPX
Y A
CX

Y A
HX

Y A
NX


This can be rearranged to separate known from unknown

1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1



Y A
CX

Y A
HX

Y A
OX

Y A
NX

 = −


1 1 1

1.8 2 1.8
0.5 0.5 0.5
0.2 0.15 0.15


 −yXXyEX

yPX
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and solved
Y A
CX

Y A
HX

Y A
OX

Y A
NX

 = −


1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1


−1

1 1 1
1.8 2 1.8
0.5 0.5 0.5
0.2 0.15 0.15


 −1

yEX
yPX

 = −


1 1 1

0.6 0.775 .675
−1.05 −1.138 −1.088

0.2 0.15 0.15


 −1

yEX
yPX



The same can be done for growth for yEE = 1 with the results


Y G
CE

Y G
HE

Y G
OE

Y G
NE

 = −


1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1


−1

1 1
2 1.8

0.5 0.5
0.15 0.15


(
−yEE
yV E

)
= −


1 1

0.775 0.675
−1.24 −1.09
0.15 0.15


(
−1
yV E

)

And for dissipation


Y D
CE

Y D
HE

Y D
OE

Y D
NE

 = −


1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1


−1

1
2

0.5
0.15

( −yEE )
=


1

0.775
−1.137

0.15


The assumptions that we used are

• the basic structure of the standard DEB model (food is first converted to reserve
that is mobilised for other transformations)

• strong homeostasis (the chemical indices are fixed)

• dioxygen is a substrate that is non-limiting (Chapter 5 deals with multiple substrates)

Notice that reproduction is only represented in the form of overhead costs as part of the
dissipation flux. From a chemical point of view reserve of the mother is ‘transformed’ into
reserve of the offspring, which has the same composition.

The yields relate to the fluxes as Y A
EX = J̇EA/J̇XA = −yEX and Y A

V E = J̇V G/J̇EG =
−yV E. The dissipation flux collects all fluxes that represent the mineralisation of reserve;
this includes somatic and maturity maintenance, maturation and overhead of reproduction.

The yield coefficients have units dim(yEX) = mol E
mol X

and dim(yV E) = mol V
mol E

. Although the
difference is subtle, the yield coefficients are not dimensionless, since X, E and V represent
different types.

The relationships between mass and energy fluxes are ṗX = µX J̇XA, ṗA = µEJ̇EA, ṗG =
µEJ̇EG and ṗD = µEJ̇ED, were µX and µE are the chemical potentials of food and reserve,
respectively. The flux ṗG represents the flux allocated to growth, while κGṗG = µV J̇V G is

the flux fixed in new structure. So yV E = J̇V G

J̇EG
= κGṗG/µV

ṗG/µE
= κGµE

µV
.

The total flux of dioxygen is J̇O = Y A
OX ṗX/µX + Y D

ODṗD/µE + Y G
OGṗG/µE.
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3.2.2 Answer:

The situation in standard DEB model with its two pools is much simpler: food is trans-
formed to reserve and reserve to structure. While food density might fluctuate wildly,
growth changes smoothly are a result of the buffering capacity of the reserve pool. Now
this buffering does not exist. What are the implications?

The four possible transformations are X → yEXE, X → yV XV , E → yV EV and
V → yEVE, suppressing all mineral substrates and products. We have here yV E 6= y−1EV
and the values must be such that possibly limiting mineral compounds (such as ammonia)
are always products, never substrates. (Dioxygen is a typically substrate under aerobic
conditions, but is supposed to be non-limiting; facultative fermentation is discussed Chap-
ter 4.) This also applies to the standard DEB model, but we now have 4 transformations,
not 2. The interconversion of E and V causes a non-uniqueness that must but eliminated,
somehow, for instance by assuming that for each time increment we have one of three
possible cases:

X

E V
1
AAK ���

X

E V
2
���

-

X

E V
3
AAK

�

Suppose that biomass was growing at specific rate ṙ0 = ṙ(t) at t, so d
dt
MW (t, ṙ0) =

ṙ0MW (t, ṙ0), with MW (t, ṙ0) = MV (t) (1 +mE(ṙ0)) and mE(ṙ) is some known smooth

function of ṙ. To make it more concrete for mE = e{J̇EAm}
v̇[MV ]

(see Table 3.3), the standard

DEB model assumes e = g k̇M (1+LT /L)+ṙ
v̇/L−ṙ (Eq (2.21)), so mE(ṙ) is monotonically increasing

(for ṙ < v̇/L, which is always the case). This can only be linked to the intake rate if the
scaled functional response is constant for sufficiently long period; the difference with the
present situation is that this link is direct, and mE(ṙ) might be a different function.

The amount of food that is transformed in the infinitesimally small time interval
(t, t + dt) is MX(t) = J̇XA(t) dt, where J̇XA(t) might fluctuate wildly, including a white-
noise process. This food is converted to biomass at some unknown specific rate ṙ1 =
ṙ(t + dt), so MW (t + dt, ṙ1) = MV (t + dt) (1 +mE(ṙ1)), where we need to find ṙ1 =
(MW (t+ dt, ṙ1)/MW (t, ṙ0)− 1) /dt. Given mE and ṙo and ME and MV at t such that
ME/MV = mE(ṙ0), we need to solve ṙ1 and so θ in one of three cases

Case 1:
ME + θyEXMX

MV + (1− θ)yV XMX

= mE(ṙ1) with ṙ1 = J̇XA
θyEX + (1− θ)yV X

ME +MV

Case 2:
ME − θME

MV + yV XMX + θyV EME

= mE(ṙ1) with ṙ1 =
yV X J̇XA + (yV E − 1)θME/dt

ME +MV

Case 3:
ME + yEXMX + θyEVMV

MV − θMV

= mE(ṙ1) with ṙ1 =
yEX J̇XA + (yEV − 1)θMV /dt

ME +MV

Case 1 applies if a solution for θ exists between 0 and 1. If not, case 2 applies if ṙ1 < ṙ0
and d

dṙ
mE(ṙ1) > 0 or ṙ1 > ṙ0 and d

dṙ
mE(ṙ1) < 0. Otherwise case 3 applies.

The problem we have to study is that a sudden change in food density X(t) translates
into a sudden change in ingestion rate J̇XA and so in growth rate ṙ1 and biomass composi-
tion mE(ṙ1). In the cases 2 and 3, θ is not necessarily small (so θ/dt can be large), so that a
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possibly large fraction of one generalized compound needs to be transformed into the other
and in the next incrementally small time interval it might be reversed. These backward
and forward transformations represent not only an energy (and mineral) loss, but it might
be physically impossible to do this within a time increment. Stochasticity in the feeding
rate directly translates into stochasticity in the composition. Animals are organisms that
feed on other organisms. If food organisms would also follow this rule, food would have a
stochastic composition, which translates into a stochastic conversion efficiency. So apart
from being physically impossible, the construct also becomes hopelessly complex in situ-
ations where food availability is erratic. The discrete nature of food particles also causes
problems of a related nature, since nothing is smoothing the transitions. The conclusion
is that working with a variable composition in absence of a smoothing buffer is asking for
problems and the only way to avoid these problems is to partition biomass into pools of
constant composition.

3.3 Enzyme kinetics

3.3.1 Answer:

The RU then resembles enzyme kinetics better for increasing k̇A and k̇B, the SU for de-
creasing values. This relates directly to the way RU and SU are obtained as limiting cases
of enzyme kinetics.

3.3.2 Answer:

The maximum relative difference is about 0.25, which is reached for nA = nB → ∞ and
J̇A = J̇B → 0; under these conditions the impact is maximal of the waiting time of the
other compound. The relative difference is not much in many practical cases (i.e. low
values for nA and nB), which is important because we frequently do not know the absolute
stoichiometry.

3.3.3 Answer:

Yes; we can decrease the amount of time that transformations have to be delayed because
the SU has to wait for the last-arriving substrate by increasing the number of copies of
substrate and that of product.

3.3.4 Answer:

The relative differences in binding fractions can be considerable; the substrate-SU complex
is relative more abundant than the substrate-RU or substrate-enzyme complexes, because
the dissociation rates for SUs is zero.
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3.3.5 Answer:

The end-result is a mix of enzyme, product in concentration XC = min(XA/nA, XB/nB)
and substrate A in the concentration XA − nAXC or substrate B in concentration XB −
nBXC ; one of the substrates completely disappeared.

If substrate i, for i ∈ {A,B}, is left over, and the other substrate hardly limited the
transformation, the initial appearence rate of product C is J̇C = JCm/(1 + X−1i k̇C/ḃi).
The rate is almost constant, most of the time, but later drops gradually, depending on
the parameter values. If this applies, we can solve the waiting time t till the practical
end of the transformation from tJ̇C = niXi, which gives t = ni(Xi + k̇C/ḃi)/J̇Cm. This
is an underestimation, because the transformation slows down, and the other substrate
could have been co-limiting. The latter can be taken into account in a rough way, by
t = ni(Xi + k̇C/min(ḃi, ḃj))/J̇Cm. This still represents an underestimation.

3.3.6 Answer:

For the sequential-substitutable case we have for θ =
(
θ·· θA· θ·B θAB

)T
d

dt
θ·· = k̇AθA· + k̇Bθ·B − (ρAJ̇A + ρBJ̇B)θ··

d

dt
θA· = ρAJ̇Aθ·· − k̇AθA·

d

dt
θ·B = ρBJ̇Bθ·· − k̇Bθ·B

d

dt
θAB = 0 so

d

dt
θ = k̇ssθ with k̇ss =


−ρAJ̇A − ρBJ̇B k̇A k̇B 0

ρAJ̇A −k̇A 0 0

ρBJ̇B 0 −k̇B 0
0 0 0 0


For the sequential-complementary case

d

dt
θ·· = k̇CθAB − ρAJ̇Aθ··

d

dt
θA· = ρAJ̇Aθ·· − ρBJ̇BθA·

d

dt
θ·B = 0

d

dt
θAB = ρBJ̇BθA· − k̇CθAB so

d

dt
θ = k̇scθ with k̇sc =


−ρAJ̇A 0 0 k̇C
ρAJ̇A −ρBJ̇B 0 0

0 0 0 0

0 ρBJ̇B 0 −k̇C
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For the parallel-substitutable case

d

dt
θ·· = k̇AθA· + k̇Bθ·B − (ρAJ̇A + ρBJ̇B)θ··

d

dt
θA· = ρAJ̇Aθ·· + k̇BθAB − ρBJ̇BθA· − k̇AθA·

d

dt
θ·B = ρBJ̇Bθ·· + k̇AθAB − ρAJ̇Aθ·B − k̇Bθ·B

d

dt
θAB = ρBJ̇BθA· + ρAJ̇Aθ·B − k̇AθAB − k̇BθAB so

d

dt
θ = k̇psθ with k̇ps =


−ρAJ̇A − ρBJ̇B k̇A k̇B 0

ρAJ̇A −ρBJ̇B − k̇A 0 k̇B
ρBJ̇B 0 −ρAJ̇A − k̇B k̇A

0 ρBJ̇B ρAJ̇A −k̇A − k̇B


For the parallel-complementary case

d

dt
θ·· = k̇CθAB − (ρAJ̇A + ρBJ̇B)θ··

d

dt
θA· = ρAJ̇Aθ·· − ρBJ̇BθA·

d

dt
θ·B = ρBJ̇Bθ·· − ρAJ̇Aθ·B

d

dt
θAB = ρAJ̇Aθ·B + ρBJ̇BθA· − k̇CθAB so

d

dt
θ = k̇pcθ with k̇pc =


−ρAJ̇A − ρBJ̇B 0 0 k̇C

ρAJ̇A −ρBJ̇B 0 0

ρBJ̇B 0 −ρAJ̇A 0

0 ρBJ̇B ρAJ̇A −k̇C
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Chapter 4

Univariate DEB models

4.1 Wood production

4.1.1 Answer:

Volume V grows as d
dt
V = 0.1 d

dt
Lm3/a, and diameter LD grows in a ways that can easily

be expressed in terms of L.

4.1.2 Answer:

Since wood production ceases, if we believe Preston et al, wood production cannot be
associated with assimilation and dissipation, because these processes do not cease. It
must therefore be associated with growth only. Other data, however, suggest that wood
production continues if the tree is already fully grown.

4.2 Carbon dioxide production

4.2.1 Answer:

The carbon dioxide flux cannot be zero if yEX < 1, because the anabolic component
of assimilation is than producing carbon dioxide, and no other process is fixing it. The
condition is, however, more stringent. The specific substrate flux is jXA = fjXAm, the
specific maintenance flux of reserve is jEM = yEV k̇M and that for growth is jEG = yEV ṙ =
yEV

f−ld
f+g

k̇E, with yEV = y−1V E and ld = gk̇M/k̇E. So the carbon dioxide flux is zero if

yV E(yEX − 1)fjXAm = k̇M + (1− yV E)k̇E
f − ld
f + g

or

0 = (yEX − 1)jXAmf
2 +

(
g(yEX − 1)jXAm − k̇MyEV − (yV E − 1)k̇E

)
f + (yEV − 1)k̇M

This can be summarized by 0 = af 2 + bf + c. The scaled functional response f can be
solved from this quadratic equation in f . A positive real solution for f exists if yEX > 1,

23
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and 0 < f < 1 if
√
b2 − 4ac− b > 2a, or −c < b+ a. A zero carbon dioxide flux is possible

for some substrate density if

(1 + g)(yEX − 1)jXAm + (1− yV E)k̇E > k̇M

Some text books mention that for each produced carbon dioxide molecule, two methane
molecules have been consumed by a methanotroph. This exercise shows, however, that
such a fixed relationship does not exist; it is very sensitive for environmental conditions.

Methane burning in assimilations’ catabolic component should generate enough energy
to drive assimilations’ anabolic component. So µX j

C
XA > (µE −µX)jAXA or µX(1− yEX) >

(µE − µX)yEX or yEX > µE/µX .
Notice that, like carbon dioxide, ammonia is taken up as well as excreted. We know

apriori that ammonium uptake always exceeds excretion at steady state.

4.3 Numerical behaviour of fluxes and states

4.3.1 Answer:

Initially embryos have a negligibly small structure, which implies that the structure-specific
fluxes are very large. Weights include reserve and structure. The initial amount of reserve
is substantial, so weight-specific fluxes are not blown up. Embryos get more reserve from
the mother than juveniles can possibly obtain by eating. This is why embryos can grow
faster than juveniles on a relative basis.

4.3.2 Answer:

You will see that if the elemental compositions of reserve and structure do not differ a
lot, the respiration ratio stays more or less constant. This explains why respiration ratios
are usually taken to be constant in experimental animal physiology. You can also see that
if the composition differ substantially, the respiration ratio varies a lot with size. This
explains why respiration ratios are usually not taken to be constant in microbiology.

4.3.3 Answer:

The comment for section 4.3.3 explains the evaluation.

4.4 Practical identification of parameter values

4.4.1 Answer:

The constraint on the maintenance rate coefficients implies that stage transitions occur
at fixed amounts of structure. We need (compound) DEB parameters first, which are
independent of food availability, and then use these to obtain the quantities of interest.
Start Octave, set the path to DEBtool/animal and type p = [1; 1; 5; 7; 0.01]; [q,
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U] = get pars g(p) . The result UE = 7.195, 1.6606 d.cm2 represents the scaled reserve
at age 0 and ab, so the fraction of reserve that is left over at birth is 1.66/7.195 = 0.23. We
now type [r, U] = iget pars g(.7,q) . The result UE = 6.7707, 1.1624 d.cm2 shows
that the fraction of reserve that is left over at birth now equals 1.16/6.77 = 0.17, and that
the ultimate length is r(3) = 3.5 cm, the age at birth r(4) = 7.4 d, and the von Bertalanffy
growth rate r(5) = 0.0108 d−1. Notice that the von Bertalannfy growth rate is now higher,
and the ultimate length lower than at abundant food, but the growth curves at different
food levels do not intersect. The effect of the reduced food availability on the fraction
of reserve that is left over at birth is relatively large because the reserve density at birth
drops from 1 till 0.7, and because a lower initial reserve increases the age at birth, and so
the cumulative maintenance costs.

4.4.2 Answer:

Type get pars r([1; 1; 3; 5; 7; 0.01; 0.7]) and find the answer κ = 0.729. This
estimate depends on the length at puberty because of the maturity maintenance costs are
competing with allocation to reproduction.

4.4.3 Answer:

Type [q, U] = get pars s([1 0.7; 4.4 4.4; 10.2 10.1; 25 17.5; 0.03 0.042; 2.6

1]’) . The answer is: κ = 0.81, g = 0.21, k̇J = 0.36 d−1, k̇M = 0.54 d−1, v̇ = 2.8 cm/d,
M b

H/{J̇EAm} = 1.46 d cm2 and Mp
H/{J̇EAm} = 20.7 d cm2.

The fractions of reserve that are left over at birth is 30.46/41.65 = 0.73 for f = 1 and
21.14/32.57 = 0.65 for f = 0.7. The ages at birth are ab = 5.1 d for f = 1 and 5.2 d,
respectively.

All values that have cm in their units depend on length. these are v̇, M b
H/{J̇EAm} and

Mp
H/{J̇EAm}.

4.5 Parameter estimation

4.5.1 Answer:

If the temperature is constant, rate parameters are constant. Living in the thermal neutral
zone means no energy is required to maintain a constant body temperature (at 37/circC),

so {ṗT} = 0. The von Bertalannfy growth rate is ṙB = k̇M/3
1+f/g

, see Eq. (2.24), and the

energy investment ratio is g = v̇[MV ]

κ{J̇EAmyV E
= v̇dV yEV

κwV {ṗAmµE
, see Table 3.3.
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Chapter 5

Multivariate DEB models

5.1 Simultaneous nutrient limitation

5.1.1 Answer:

You will see large effects for small throughput rates. When you think of a community
as a more complex chemostat, this observation should motivate you to include nutrient
recycling in all basic community models.

5.1.2 Answer:

We can expect this for non-limiting reserves that are hardly excreted.

5.2 Plant physiology

5.2.1 Answer:

You will see that for proper combinations of parameter values plants’ allocation to roots
versus shoots partly compensates adverse effects on growth rates, despite the fact that
such a response is not incorporated explictly in the DEB model.

5.2.2 Answer:

You will see that for proper combinations of parameter values a peak in shoots’ reserve
density occurs during a short period, just after germination. Notice that the occurrence of
this behaviour has not been incorporated explicitly in the DEB model; it is a consequence of
how roots and shoots exchange metabolites. This, however, does not exclude the existence
of regulation mechanisms for the growth and absorption of cotyledons.
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5.3 Kidney size and function

5.3.1 Answer:

The flux of nitrogen waste can be written as J̇N = ηNAṗA+ηNDṗD +ηNGṗG (cf page 147 of
the DEB book). All powers ṗ∗ are cubic polynomials in (scaled) length (cf page 123). This
means that nitrogen waste production can be written as a cubic polynomial in (scaled)
length

J̇N = J̇N3l
3 + J̇N2l

2 + J̇N1l + J̇N0

The coefficients J̇N∗ can be obtained by straightforward substitution in the expressions
given at page 123 where we take e = 1.

A reasonable approximation for the cortex volume is Vc = δ (L3 − (L− Lc)3), where
δ is a dimensionless coefficient that takes care of the kidney shape, L is a typical length
measure of the kidney, and Lc is the thickness of the cortex.

If cortex thickness Lc would be proportional to kidney length L, cortex volume would be
proportional to L3, and so proportional to body volume. Since nitrogen waste production
is a weighted sum of squared and cubed length, this would imply that the work load of the
cortex tissue decreases with body size.

Let us now allow more complex relationships between cortex thickness and kidney
length, and linearize this function: Lc(L) = Lc0 + δcL. Obviously we must have L > Lc0,
and we assume that the kidney is not functional for smaller body sizes. The cortex volume
now amounts for δm = 1− δc to

Vc = δ
(
(1− δ3m)L3 + 3δ2mLc0L

2 − 3δmL
2
c0L+ L3

c0

)
The workload of cortex tissue remains constant during development if

J̇N3 = J̇Nr(1− δ3m)

J̇N2 = 3J̇Nrδ
2
mLc0/L0

J̇N1 = −3J̇NrδmL
2
c0/L

2
0

J̇N0 = J̇NrL
3
c0/L

3
0

Where J̇Nr is a reference flux, and L0 a reference length. These 4 equations determine J̇Nr,
L0, δc = 1− δm and Lc0 as function of parameters of the DEB.



Chapter 6

Effects of compounds on budgets

6.1 Ageing

6.1.1 Answer:

The DEB module has 2 ageing parameters: the ageing acceleration ḧa and the Gompertz
stress coefficient sG. If the growth period is short, these two parameters can be reformulated
in the Weibull and Gompertz ageing rates, ḣW and ḣG. Both the Weibull and the Gompertz
ageing models also have 2 parameters. The general Gompertz model and the Weibull model
with shape parameter 3 are special cases of the DEB module, but because of the larger
shape plasticity of the DEB module, the general Weibull model can be approximated
very well, see Section 6.1.1 of the comments on ‘Empirical Weibull curves’. Part of this
larger plasticity is due to the energetics module of the DEB model; the Weibull and the
Gompertz models don’t have such a coupling. Only if tissue differentiation is irreversible
and if other causes of death play a minor role, species are affected by ageing (as an effect
if free radicals).

6.2 Toxicokinetics

6.2.1 Answer:

See DEBtool/tox/mydata acc. The result is an elimination rate of 0.9 d−1, and a BCF of
4.88 l/g. The standard deviations are very large.

6.2.2 Answer:

See DEBtool/tox/mydata acceli. The result is an elimination rate of 0.58 d−1, and a BCF
of 5.47 l/g. The standard deviations are still large, but much smaller than for accumula-
tion data only. Notice that the fit for the accumulation phase is less good, because the
elimination phase suggest different parameter values.
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6.2.3 Answer:

Because the size of the animals differed, it is likely that the BCF is constant, but the
elimination rates differ, so we choose for the parametrization C(t) = K(1− exp{−k̇et}.

We now write a script file where we fill the data, define the regression functions, esti-
mate the parameters and obtain the standard deviations.
tc1 = [0 1 2 3 4 5; 0, 3.1 5.9 8.1 9. 9.5]’;

tc2 = [0 1 2 3 4 5; 0, 2.9, 5.7, 7.9 8.9 9.4]’;

function f = myacc0(p,tc)

K = p(1); ke = p(2);

f = K*(1-exp(-tc(:,1)*ke));

end

p0 = nrregr("myacc0",[10 .3]’,[tc1;tc2]);

ssq0 = ssq("myacc0",p0,[tc1;tc2]);

function [f1,f2] = myacc1(p,tc1,tc2)

K = p(1); ke1 = p(2); ke2 = p(3);

f1 = K*(1-exp(-tc1(:,1)*ke1));

f2 = K*(1-exp(-tc2(:,1)*ke2));

end

p1 = nrregr("myacc1",[15 .3 .3]’, tc1, tc2);

ssq1 = ssq("myacc1",p1, tc1, tc2);

6 * log(ssq0/ssq1)

The result is 0.414, which is not significant at the 5 % level, because under the null hy-
pothese this represents a random trial from a Chi-square distribution with 1 degree of
freedom.

6.3 Concentration-Survival relationships

6.3.1 Answer:

Type t = [0 1]’; c = [0 1 2 4 8 16]’;

S = [10 10 10 10 10 10; 10 9 10 8 4 1];

p = nmsurv2(‘‘fomort’’, [.02 1.5 .6 1]’,t,c,S);

p = nmsurv2(‘‘fomort’’, p, t, c, S);

lc50(p([2 3 4]),1);

The elimination rate walks to large values in this example, which explains the conver-
gence problems. The standard deviation of the NEC can only be obtained here by fixing
the elimination rate. The standard deviations appear after:
[cov, cor, sd] = psurv2(‘‘formort’’, [p, [1 1 1 0]’], t, c, S); [p, sd]

The result is NEC = 2.9 (sd 1.1) mg/l, the LC50.1d = 6.9 mg/l.
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6.3.2 Answer:

Without any recalculation we know that the blank mortality rate , the killing rate and the
elimination rate is two times as small. This follows directly from a change in time-units.

6.3.3 Answer:

The NEC will be multiplied by the factor x, and the killing rate will be divided by that
factor.

6.3.4 Answer:

Type t = [0 1 2 3 4 5]’; c = 5; S = [100 69 17 3 0 0]’; p = scsurv2(‘fomort’,

[1e-8 1.5 .6 1; 0 1 1 1]’, t, c, S); lc50(p([2 3 4],1),t)

The result is NEC = 0.73 mM, the LC50 for day 1 2 3 4 5 is 7.2, 2.9, 1.9, 1.5, 1.3 mM.

6.4 Extrapolation from acute to chronic LC50 values

6.4.1 Answer:

Set 1 has the lowest ultimate LC50, because the LC50 for set 1 decreases more between
day 2 and 3.

6.4.2 Answer:

Type:
tc1 = [1 2 3; 23.5 8 4.5]’;

tc2 = [1 2 3; 23.5 7.9 4.5]’;

p1 = lc503(tc1, [.5 1 .1]);

lc50(p1,4); p2 = lc503(tc2,p1); lc50(p2,4);

The LC50.4d appears because the output of lc50 is not assigned to a variable. The
ultimate LC50’s equal the NEC, which are in p1(1) and p2(1), respectively. They appear
by typing: [p1, p2] . This can be checked by typing:
lc50(p1,1e8); lc50(p2,1e8)

The values are 0.362 and 0.748 mg/l.
Notice that the small difference between the LC50.2d for the two sets, results in a factor

2 difference in the NEC. This illustrates the unstability of extrapolation while the LC50 is
still decreasing.

6.4.3 Answer:

Type: shregr(‘‘lc50’’,p1,tc1) . The mean squared deviation is zero, because three
LC50 values exactly determine three parameter values.
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6.4.4 Answer:

Type: tc=[tc1;4 3]; p=nrregr(‘‘lc50’’,p1,tc); lc50(p,[5 6]);

The answer is LC50.5d = 2.25 mg/l and LC50.6d = 1.78 mg/l.

The graphical check is done by typing:
shregr options(‘‘default’’); shregr(‘‘lc50’’,p,tc);

The fit should by quite good, but the mean squared deviation is not longer zero.

6.5 Extrapolation of effects from one compound to

that of another

6.5.1 Answer:

The ratio of the Pow values for compound 2 and 1 is 108/107 = 10. The toxicity parameters
for compound 2 are: NEC = 1/10 mM, killing rate = 10 mM−1 d−1 and the elimination rate
= 0.01/

√
10 d−1. The LC50.2d is found from DEBtool/tox/lc50, by typing: lc50([0.1,

10, 0.01/sqrt(10)],2)

The result is 35.63 mM. The LC50.2d for compound 1 is 113.27 mM.

6.6 Effects of pH on toxicity

6.6.1 Answer:

Type: t = [0 1 2 3 4]’;

cph = [0 2 4 8 16; 7.8 7.7 7.4 7.0 6.5]’;

S = [10 10 10 10 10; 10 10 10 10 8; 10 10 10 8 4; 10 10 9 6 1; 10 9 6 3 0];

p = [1e-8 0.1 4 .2 0.5 1 8.0; 0 1 1 1 1 1 0]’;

q = nmsurv2("fomortph",p,t,cph,S);

p = scsurv2("fomortph",q,t,cph,S);

The routine nmsurv2 does not come to full conversion, but that is not necessary to
get scsurv2 converged. The calculations lead to NECS of 0.00665 and 0.00678 mM for the
molecular and ionic forms. Notice that the number of estimated parameters is rather large
relative to the available information from data. This implies substantial uncertainty in the
values. Check this with the standard deviations.
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6.7 Effects on reproduction

6.7.1 Answer:

The result is
mode of action NEC EC50.21 d EC50.∞ d
assimiliation 1.61 2.72 2.58
maintenance costs 1.38 2.75 2.20
growth costs ∗ 2.95 2.82
reproduction costs 0.50 2.50 0.81
neonate survival 1.38 2.51 1.82

∗: Effects via growth resulted in slow kinetics, with a NEC-time of 11.72 mM d.
The NEC differ by a factor 3 for the various modes of action.

6.8 Interpolation methods for sublethal effects

6.8.1 Answer:

If the change in body length is always of the log-logistic type, it amounts to:
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The first observation is that relative growth at any given concentrations is that in the blank
minus something that depends on concentration and exposure time.

Since it is very probable that d
dt
ce,t < 0 and d

dt
βt > 0, growth at any given concentration

ceases before that in the blank. Suppose that shrinking can be excluded. While d
dt
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We here see an unpleasant implication: the change in the EC50 and the slope depends on
the behaviour in the blank. This line of thought should be worked out in further detail.
The aim of this exercise has been to show that fitting a sigmoid curve to length data comes
with implicit assumptions of the growth process.

6.8.2 Answer:

We find that for Ṙ(c, t) = d
dt
N(c, t) and Ṙ0,t = d

dt
N0,t, and N0,t = N0,t0 + (t − t0)Ṙ0 for

some appropriate value for t0 (after which the reproduction in the blank is constant):
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Ṙ(c, t)
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Suppose that some exposure time exists after which the reproduction rate at concentration
c remains constant, so N(c, t) = Nc,t0 + (t− t0)Rc. The slope and the EC50 can then also
no longer change ( d

dt
βt = 0 and d

dt
ce,t = 0), because the slope and the EC50 would become

functions of N0,t0 , while they should be independent of what happens in the blanc. So
the second term disappears, and the equation applies for all t, which results in Nc,t0/Ṙc =
N0,t0/Ṙ0. This result cannot hold, because it depends on an arbitrary choice for t0.

Generally, the concentration-response curve at 22 d cannot be of the log-logistic type
if that at 21 d is of the log-logistic type. This devalidates the routine application of this
response curve in cases like this, and all the statistics that comes after the assumption that
this model would be correct. The present derivation rests on the existence of moments in
time after which the reproduction rate does not change. This is consistent with empirical
data; this line of thought might be generalized to relax this condition. For the time being,
again the conclusion must be that fitting a sigmoid curve to the cumulative number of
offspring per female comes with far reaching implicit assumptions about the reproduction
process. In this case it might well be that the result can only imply non-sense.

6.9 Effects on populations

6.9.1 Answer:

The result is
mode of action NEC EC50.2d EC50.∞d unit

init mort 2.85 4.34 4.34 mM
mort. 2.98 4.31 2.99 mM
growth rate 3.39 4.21 3.41 mM

Notice that the EC50 does not depend on time if the compound affects initial mortality
only. The NECs differ just a little, the EC50.2d even less; the EC50.∞d is more sensitive
to the mode of action. The goodness of fit is excellent in all cases.

6.9.2 Answer:

Population growth is assumed to be exponential in the blank, although this cannot be
checked in the present numerical example. The living populations are always growing ex-
ponentially at all modes of action, but the measurements include dead cells. This means
that the measured populations deviate from exponential growth if the effects are on mor-
tality and initial mortality. The population growth rate (of the living population) equals
that in the blank for effects on initial mortality.



Chapter 7

Extensions of DEB models

7.1 Responses to starvation

7.1.1 Answer:

The reponses can be ranked as follows

-1 Migration to avoid (predictable) starvation.

0 No response; the reserve will decrease according to the same rules as during feeding.
Growth will cease at a certain reserve density threshold; reproduction continues.

1 Allocation to maturity maintenance and reproduction is ceased at a certain reserve
density threshold; this threshold is decreased to the no-growth threshold.

2 Structure is degraded to pay somatic maintenance costs.

3 Somatic maintenance is reduced by ceasing activety (dormancy) and allocation to
heating (in endotherms).

4 Suicide reproduction or spore formation. The individual sacrifices itself for the benefit
of its progeny.

7.2 Stomach dynamics

7.2.1 Answer:

The waiting time is t = −[Msm]V 1/3 lnα/{J̇Xm}.

7.2.2 Answer:

Gut residence time is also proportional to length.
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7.2.3 Answer:

The ratio of the waiting times for stomach emptying of mother and baby is (4/64)1/3 = 2.5,
which implies that the baby has to eat 2.5 × 3 = 7.5 times a day to experience the same
fluctuations. It is because the baby takes milk, and the mother less nutritial food, that
the baby can do with a lower frequency.



Chapter 8

Co-variation of parameters

8.1 Identification of primary parameters

8.1.1 Answer:

K = {J̇XAm}/{Ḟm} is a compound parameter, but {J̇XAm} = {J̇EAm}/yEX is that as well,
like Em = {J̇EAm}/v̇. Since yEX is basic to the biochemical machinery, which all eukaryotes
share, it must a primary parameter and is intensive. {J̇EAm} is preferred above {J̇XAm}
as primary parameter, because it is evolutionarily easier to change the feeding capacity
than the assimilation capacity. Moreover, it is more close to the maximum length, which
depends on maintenance. The searching rate {Ḟm} is close to the underlying processes,
compared with the half-saturation coefficient K and is an intensive parameter. The energy
conductance has a direct relationship with the mechanism of reserve mobilisation, so it
is chosen to be a primary parameter, and is intensive. Moreover the maximum reserve
capacity shares the property with the maximum length as being a ratio of incomming and
outgoing fluxes; both ratios are compound parameters. With the choice of {Ḟm}, yEX ,
{J̇EAm}, v̇ as primary parameter and K, {J̇XAm}, Em as compound parameters, only one
primary parameter is a design parameter, the rest is intensive.

8.2 Scaling relationships

8.2.1 Answer:

1) All parameters can be classified as intensive or design parameters.
2) Simply functions of design parameters are intensive.
3) Maximum length is a function of only one design parameter.

8.2.2 Answer:

1) Effects per molecule inside the individual don’t depend of the partition coefficient.
2) Toxico-kinetics is quantified by the one-compartment model (or extensions of it)
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3) This model is based on fugacity, which implies a skew symmetry for the roles of both
media.

8.3 Effect of changes in parameter values

8.3.1 Answer:

If you decrease κ, investment to reproduction increases, but this does not necessarily
translate into more offspring. This is because food uptake is coupled to size, and so to
growth, and offspring has to be produced from food (via reserves). An increase maintenance
has many consequences for scaling relationships and size control.



Chapter 9

Living together

9.1 Chemostat dynamics

9.1.1 Answer:

You will see that biomass density is at maximum in absence of maintenance, while it is
zero in presence of maintenance. The rate at which biomass density increases as a function
of very small troughput rates depend on the specific maintenance costs.

9.1.2 Answer:

Product density can be a rather complex function of throughput rate if the coupling coef-
ficients to assimilation and growth become negative.

9.1.3 Answer:

The substrate balance in the chemostat is

d

dt
X = (Xr −X)ḣ− XjXAm

X +K
XV

which gives X∗V = (Xr−X)(X+K)ḣ
XjXAm

at steady state. The specific growth rate equals the

throughput rate at steady state, so ṙ∗ = f∗k̇E−gk̇M
f∗+g

= ḣ. So f ∗ ≡ X∗

X∗+K
= g k̇M+h

k̇E−h
and

X = K f
1−f . Product formation (see page 148 of the DEB book) equals: jP = ζPM k̇Mg +

ζPAk̇Ef
∗ + ζPGgḣ. The product balance in the chemostat is

d

dt
XP = XV jP −XP ḣ

so that the steady state product concentration is X∗P = X∗V jP/ḣ. This completes the
biological part. Reactor’s design parameters are the reactor volume V , the substrate
concentration in the feed Xr and the throughput rate ḣ.
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The balance equation for the financial costs is simple: The total money flux is

Ṡ = $P J̇P − $X J̇X − $V J̇V

where $∗ represents the mole-specific financial costs, and the molar product flux J̇P =
ḣV X∗P , the molar substrate flux in the feed J̇X = ḣV Xr, and the biomass flux J̇V = ḣV X∗V .

We now maximize S as function of the design parameters of the reactor. Since the
money flux is linear in the reactor volume, the latter cannot be optimised yet. A realistic
inclusion of the financial costs for stirring and cooling into the money flux can define the
optimal size of the reactor.

This scheme can be made more realistic by including costs for labour and maintenance
of the reactor, climate control, marketing, processing of substrate and medium in the
effluent, or regeneration costs for the medium, for instance. Some costs, such as costs for
transportation and for the medium, can be included in the coefficients $∗ as long as they
are linear in the amounts.

The next step is to code the money flux and maximise is numerically given estimates
of the parameter values. This is not difficult in Octave or Matlab.

This application illustrates the typical situation that the DEB theory has to be sup-
plemented with application-specific components to arrive at practical results.

9.1.4 Answer:

Since the chemostat is dwelled by V1-morphs, their total biomass can be conceived of as
a single individual. The unusual elements are that this ‘super’ V1-morph grows without
becoming bigger, because the chemostat has a drain, and that the growth rate is human-
controlled rather that the result of physiological processes that can be manipulated in an
indirect way only.

9.2 Alga-grazer systems

9.2.1 Answer:

It is possible to find combinations of parameter values for which the grazer hardly benefits
(i.e. becomes more abundant) from grazing: it is killing the “chicken with the golden
eggs”. It is also possible to find parameter combinations for which the prey/predator ratio
is rather insensitive to changes in substrate, which corresponds with a weak homeostasis
situation. This marks the transition to a symbiontic system that can be captured with a
single structural component.



Chapter 10

Evolution

10.1 Homeostasis

10.1.1 Answer:

The primary function of reserve is to incorporate metabolic memory. Bacteria live off many
substrate, which they take up from the environment independently, while animals live off
other organisms that already have all substrates that they need.

10.2 Reorganisation

10.2.1 Answer:

Partitionning, and especially merging, occurred frequently as part of the process of coupling
and uncoupling of reserves, so increasing and decreasing the number of reserves, such that
the overall dynamics is not affected. Organisational simplicity of integrated units is a
functional constraint for robustness and regulatory systems.

10.3 Evolutionary memory

10.3.1 Answer:

The earliest mammals were carnivores, which explains why feeding on plants was rather
problematic and the conversion efficiency from grass to cow is that low. The chemical
composition of plants and animals differ more than within animals. Increasing the num-
ber of reserves was not an option (for several reasons). Quite a few plant taxa are not
green and can’t, therefore use photons as energy substrate. The earliest eukaryotes where
heterotrophic; plants acquired phototrophy by symbiogenesis, but without refraining from
heterotrophy. To mention another example: All plants and animals have mitochondria,
which they acquired by symbiogenesis.
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Chapter 11

Evaluation

11.1 Empirical evidence

11.1.1 Answer:

The explanations are given in Tables 11.2 and 11.3 of the comments.

11.2 Production versus assimilation models

11.2.1 Answer:

SfG models typically ignore the embryo stage and subtract respiration from assimilation
before considering production. Maintenance is typically identified with respiration (but
not in DEB theory). Explicitly or not, growth overheads are typically included in respira-
tion, which points to a fundamental problem in SfG-models. They also have problems to
combine weak homeostasis with reserve, see Section 11.3 of the comments on topological
alternatives.
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