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Abstract

1 This paper describes the influence of design characteristics on the statistical inference
for an ecotoxicological hazard-based model, using simulated survival data. The design
characteristics of interest are the number and spacing of observations (counts) in time,
the number and spacing of exposure concentrations (within ¢,,;, and c¢;,qz) and the initial
number of individuals at time 0 in each concentration. A comparison of the coverage prob-
abilities for confidence limits arising from the profile-likelihood approach and the Wald-
based approach is carried out. The Wald-based approach is very sensitive to the choice
of design characteristics whereas the profile-likelihood approach is more robust and unbi-
ased. Special attention is paid to estimating a parametric no-effect concentration in realistic
small-sample situations, since this is the most interesting parameter from an environmental
protection point of view.
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1 Introduction

Evaluation of environmental or human risks posed by potentially hazardous pollutants or chem-
icals, requires results from chemical analyses and results from toxicity tests. During the last
decade, toxicity tests have played an increasingly important role in hazard identification and
in calculation of toxicity measures as basis for the estimation of a safe level for a substance in
the environment or the estimation of an acceptable daily intake. The estimations involve safety
factors to include inter- to intra-species, acute-to-chronic and laboratory-to-field extrapolations
(Chapman et a. 1998). A solid basis for such extrapolations requires a wide-ranging test bat-
tery. Survival is one factor evaluated in the ecotoxicological test battery (others are inhibition
of growth and reproduction, and mutation).

Possible endpoints of these toxicity tests are NOEC’s (No Observed Effect Concentrations),
EC,-values (Concentration showing 2% Effect) or NEC’s (No Effect Concentration). The
NOEC has been severely criticized on statistical grounds by several authors (Pack 1993, Suter
1996). The main objection is that the calculation of the NOEC is based on a statistical test,
and statistical tests are not designed to estimate a parameter. This methodological problem has
several negative consequences:
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the NOEC is not a safe concentration (non-significant does not mean non-existent)

it is always one of the toxicity-test concentrations

nothing can be derived about its precision

only part of the data is being used
e the value of the NOEC depends on the chosen statistical test

As an alternative FC',-values have been proposed by Pack(1993) and NEC’s by Kooijman(1993).
In several workshops organized by SETAC and OECD it was concluded and recommended that
the NOEC should be abandoned, that regression-based estimation procedures should be used
and that time should be incorporated in the analytical procedures for toxicity tests (OECD,
1998). More research was required to validate threshold and time to response models and to find
optimal experimental designs (Chapman et a. 1996). Apart from the statistical debate about
the NOEC there is a continuing debate about the existence of thresholds in response curves of
biological systems (Cairns, 1992). According to Van Straalen (1997) an answer to this problem
cannot be given without a mechanistic interpretation of the concentration-response relation-
ship. The approach of Kooijman and Bedaux (1996) is regression based and incorporates time
of exposure. It is also mechanistic, based on biological assumptions.

This paper aims to evaluate the effects of experimental design on statistical inference concerning
the ecotoxicological survival model of Bedaux and Kooijman (1994). The evaluation is based
on Monte-Carlo simulations and is focused on statistical properties of the NEC.

In aquatic ecotoxicological survival experiments the individuals are living in a well defined
medium containing a range of concentrations of the test compound. The physico-chemical
environment is kept constant during the test period and the exposed units are optimally fully
randomised to treatment conditions to eliminate external effects. Each individual is only ex-
posed to one concentration. The numbers of surviving organisms are registered at the end of the
experiment, but preferably also at several intermediate time-points. An example of a data-set
from a toxicity survival experiment is shown in table 1. It concerns the effect of the pesticide
dieldrin on guppies (mean length 4.5 cm) at 15° C. The data clearly show that toxic effects are
time dependent: after one day only the high concentrations show a large effect, after 7 days also
the intermediate concentrations show large effects.

The experimental design characteristics of interest, in this study, are: the number and spacing
of observation times ¢;, the number and spacing of exposure concentrations c; (Within ¢,
and c;,4,) and the initial number of individuals z;, at time 0 in each concentration c;. The
simulation study was designed to look at the influence of the above mentioned characteristics
on the following issues:

e The size and shape of the confidence sets of the estimated parameters. The profile-
likelihood approach is compared with the standard Wald-based approach.

e The extreme values or outliers of parameter estimates.
e The kinetic type (explained in the model description).

e The censoring of time of death of each individual.



Table 1: Number of surviving guppies Poecilia reticulata in natural sea water after exposure to
the pesticide dieldrin. Data from IMW-TNO Laboratories, Delft.

concentration dieldrin (ug 171)
time(d)| 0 32 56 10 18 32 56 100
0 20 20 20 20 20 20 20 20
20 20 20 20 18 18 17 5
20 20 19 17 15 9 6
20 20 19 15 9
20 20 19 14
20 20 18 12
20 19 18 9
20 18 18 8

~NoO ok, WwDN -
NW R~ M~

QO OFrN

O O OO

O O OO oo

Datasets like the one presented above are typical in toxicity assessment of environmental sam-
ples and of new chemicals. Very little is known about how the accuracy of the methods used for
making inference about the endpoints (i.e. no-effect concentrations) in such experiments de-
pends on the experimental design. Chapman et al. (1996) recommend that research is required
into the effect of statistical accuracy and precision of the number and spacing of concentrations.
The purpose of the current simulation study is to explore the dependency between experimental
design and inference made about the endpoints, using simulated survival data.

2 THE SURVIVAL MODEL

2.1 BIOLOGICAL BACKGROUND AND HAZARD MODELING

The survival model we investigate is based on simple biological assumptions (Bedaux and Kooi-
jman 1994). The central assumption is that the hazard rate (defined as the instantaneous prob-
ability, per time increment, that death strikes at a certain age given survival up to that age) is
proportional to the concentration of the chemical compound in the animal as far as it exceeds
the internal no-effect level Qy. The uptake dynamics are described by a one compartment model
involving the uptake rate &, and elimination rate k..

The concentration in the test environment is considered constant over time and is denoted c.
The initial concentration of the compound in the animal, is considered negligible.

This leads to

Q1) = "e(1 — exp(—ke)) o

The environmental no-effect concentration ¢, is defined as the highest value of ¢ at which Q(¢; ¢)
does not exceed @), even after long exposure. It can be easily seen that co = Qoke/ku.

Now we can write .
Qt; ) = Qo = = [e(1 — exp(=ket)) — o] -

If ¢ > ¢o then and Q(t; ¢) will exceed Qg at ty = (—1/k.) In(1 — ¢y/c). The hazard rate h(t; c)
is by assumption proportional to Q(¢; ¢c) — Qo and if we include a background mortality rate,



h(t;c)

S(t; c)

Figure 1: Internal concentrations for various values of ¢ and the related hazard functions and
survivor functions (including background mortality).

the total hazard rate can now be written as
Bt ) = A+ ki (c(1 — exp(—ket)) — ¢o) @

where \ is the background mortality rate (assumed constant), and (x) . refers to the maximum
of z and 0. A constant background mortality is a reasonable assumption, because the duration of
the experiment is short compared with the mean life time of the organisms used. The parameter
k: is the product of the bioconcentration factor &, /k. and the proportionality constant between
the internal concentration and the (toxic) hazard rate. It is called the killing rate and it expresses
the degree of toxicity above the no-effect concentration with respect to survival. Figure 1 shows
curves of the internal concentration @, the hazard rate 4 and the survivor function S for various
values of c.



Parameter Symbol Estimate Units Std. Dev.
Blank mortality rate A 0.00835 d! 0.00490
No-effect concentration Co 520 pgl™t 0.465
Killing rate ki 0.0376 lug~'d~' 0.00777
Elimination rate k. 0.791 4! 0.281
Deviance 36.43

95% Confidence interval:

Wald-based approach Co [4.29:5.30]

Profile Likelihood approach Co [2.72:2.84] U [4.09:6.92]

Table 2: Results of Maximum Likelihood estimation on the data in table 1, note that separate
confidence intervals are possible using the profile likelihood approach.

2.2 SURVIVAL MODEL

Though above described assumptions are fairly simple in a biological context, the survivor
function S(t; ¢) of time of dying (defined as the probability that a random variable exceeds a
specific value) is non-linear and contains four parameters.

exp (%T‘C(e_keto —e ket — k(e — o) (t — to) — )\t) ifc>coandt >t
S(t, C) = A e .
€ otherwise

The four parameters are the no-effect concentration ¢, the Killing rate £; , the elimination rate
k. and the background mortality rate A (assumed constant). Model (3) is referred to as "normal
Kinetics”.

The maximum likelihood estimates of the model parameters for the data presented in table 1
are shown in table 2 together with the 95% confidence intervals arising from the Wald-based
approach and the profile likelihood based approach. In figure 2 the data are shown together with
the fitted model curves.

3)

2.3 SPECIAL SITUATIONS

In two important special situations, when the elimination rate &, becomes very small (k. — 0)
or very large (k. — o0), the Kkinetics is referred to as ”slow Kinetics” or "fast kinetics”. If
k. — 0, then ¢y — 0 and ky — oo, and model (3) reduces to

S(t;c) = exp (—%/@rc((t - x—CO)Jr)2 - /\t> . 4)

The three parameters are the Killing acceleration x4, given by x; = lim k;k., the background
mortality rate A and the compound parameter x, = ¢¢/k.. The ratio z,/c equals %, the time
at which the internal no-effect concentration is exceeded. The name ‘killing acceleration’ re-
flects both the roots and the time dimension of this parameter: the killing acceleration basically
derives from the killing rate, the essential difference being in the dimensions of these two pa-
rameters.

When k., — oo model (3) reduces simply to

S(t;c) = exp (—kit(c — co)4 — AL). (5)
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Figure 2: Empirical data from table 1 with estimated survivor curves.

2.4 STATISTICAL ASPECTS OF EXPERIMENTS AND MODEL STRUCTURE

Several features of the model lead to potential difficulties. The importance of these problems
will be addressed using simulations. The potential difficulties are:

1. The experimental set-up induces right intervally censoring due to the fixed length of the
experiment. The fixed observation time-points reduces the information of the exact time
of death between consecutive observation times.

2. The estimator of ) is a discrete variable if the number of individuals per concentration
below the ¢, is small.

3. The no-effect concentration makes the survivor function non-differentiable in the points
(¢,to(c)). This may affect the asymptotic properties of the maximum likelihood estimates.

4. The Killing rate in fact is a compound parameter, equal to the product of the bioconcen-
tration factor k&, /k. and the proportionality constant between hazard and internal concen-
tration. This generates a dependence between the elimination rate and the killing rate.
Further the fraction k;/k. occurs in the survivor function. The dependence might influ-
ence the asymptotic properties of the estimated parameters.

3 Estimation of the parameters

The experimental response is the number of surviving organisms z;; at a fixed time ¢;, i =
0,1,...,r exposed to the concentrations c;,j = 1, ..., k, where ¢c; = 0, the control condition.
The probability p;; that an organism, exposed to the concentration c;, will die between ¢,_; and
t; is given by p;; = q(ti—1,¢j) — q(ti, ¢;). The number of organisms n;; which died in that
period is given by n;; = z;_1 ; — x;;. The number of organisms surviving at ¢, will be denoted
by n,11,; and the probability of surviving at ¢, is denoted by p, 1 ; and equals S(t,, c;).



The probability that the number of surviving organisms is z;; can now be written as a product
of multinomial probabilities:

r+1 . Tij
Prob(z;; = xi;) = Prob(n;; = nij) H zo! [ P

i=1 j

(6)

Parameter estimation based on the simulated data is done using the maximum likelihood method.
The log-likelihood function is given by

r+1 k

i (245)) Z Z ni;j In(p;), With 6 = (co, ky, ke, M) (7)

=1 j=

where the constant term only containing multinomial coefficients has been ignored. Maximum
likelihood estimates can be found by solving the vector equations G(6) = 0l/06 = 0 (McCul-
lagh and Nelder 1989).

As a rough measure of goodness-of-fit the deviance of the model is used. The deviance is
defined as twice the difference between the maximum achievable log likelihood and that at-
tained under the fitted model. The maximum achievable log likelihood I,,,(z;;) is obtained by
estimating each p;; without any constraints, i.e., p;; = n;;/zo; and substituting this into (7).
The difference in deviances of nested models can be used as a test statistic in the likelihood-
ratio test. The distribution of the test statistic is asymptotically x? distributed where d is the
difference between the number of parameters of the two nested models. The deviance should
not be used to test the absolute goodness-of-fit, since the asymptotic theory does not always
apply because many of the expected counts E(n;;) are too small.

4 Inference about the model parameters

The confidence limits for the estimated parameters are calculated based on the likelihood ratio
interval, described as the profile likelihood by Williams (1986) and Aitken (1986). If L(6]|X)
denotes the likelihood function, then the profile likelihood of 6;, P(6;) is definded as

P(6;) = MaxL(6] X, 6;) 8)

or, in words, P(#;) is obtained by fixing the parameter 6; and estimating all other parameters.
The 100(1 — «)% profile likelihood interval for 6; is given by the solution to

2log [P(0;)/P(6;)] = 3 (1 — ) 9)

where x?(1 — «) is a percentile of the chi-square distribution with one degree of freedom.

The 100(1 — )% asymptotic Wald-based confidence interval is based on the asymptotic lin-
earization result § ~ N (6, D(6)), which holds under appropriate regularity conditions, (Seber
1989). The variance-covariance matrix of the maximum likelihood estimate D(6) can be cal-
culated as the inverse of the information matrix (6) (defined as minus the expectation of the
matrix of the second derivatives (McCullagh and Nelder 1989)). For large n the 100(1 — «) %
interval for 6; is given by

0; £ 1%/ Dyiag (6;) (10)

where t,,_4 is the ¢-distribution with n — 4 degrees of freedom. The t-distribution is used in
combination with asymptotic theory since it is common practice.
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Several measures can be applied to compare the two methods of calculating confidence sets.
One intuitively reasonable way is to describe their coverage probabilities, relative to the true
parameter values, as a function of design characteristics. A second is to compare the size of the
confidence sets conditioned on the coverage probabilities as a rough measure of precision. A
third way, of special interest from an environmental perspective, is whether the estimated cy is
over- or under-estimated. It is critical if the true value of the no-effect concentration is below
the lower estimated confidence limit (over-estimation). This is of practical interest because we
want to avoid the situations that we judge an environmental risk to be small while it is actually
large. Further it is of practical interest to formulate a criterion on which the reliability of the
different confidence sets can be judged, i.e. when can we trust the asymptotic large sample
intervals, the profile likelihood intervals and when are these intervals suspect?

One way of evaluating the assumptions for the profile likelihood estimation of the confidence
sets is by comparing the deviance from the maximum likelihood estimation with the deviance
obtained by fixing an estimated parameter. The difference should asymptotically follow a x?(1)
distribution. By calculating the tail (inverse) probability (of the differences in the deviances
from the full and the reduced model), and then the c.d.f. of these, the result should be asymp-
totically uniform distributed.

The estimation of the parameters, the estimation of the profile-likelihood and the calculation of
the large-sample parameter variance were performed using the DEBtox program (Kooijman and
Bedaux 1996). The processing of these results and the graphics were performed using S-PLUS
(S-PLUS1995).

5 Monte-Carlo simulations

5.1 GENERATION OF DATA.

Given the model, the chosen parameter values, the chosen time points and the chosen concen-
tration levels, the cumulated probability of dying can be calculated for each concentration-time
point (using equation (3)). The initial number of individuals at each concentration level is cho-
sen and for each individual a random number is generated (between 0 and 1, using a slightly
modified and adapted version of RANL1 (Press et a. 1992)). This random number is compared
with the cumulated probabilities belonging to the concentration. When the random number ex-
ceeds the cumulated probability at a concentration / time point the individual is considered dead
at that time point. This procedure is used to obtain an observation matrix such as table 1, and to
arrive at parameter estimates. These estimates are then compared with the chosen values.

5.2 DESIGN CHARACTERISTICS.

It is common practice for aquatic ecotoxicity survival tests to have 5 to 7 concentrations plus
1 control, i.e. k ranges from 6 to 8. In this study the range of concentrations is a bit wider: &
ranges from 5 to 10. The nonzero-concentrations are spaced equidistantly on a log scale. The
simulations are divided into several scenarios, each scenario was designed to explore the issues
listed in the introduction.

The first three simulation scenarios were carried out with the following parameter values (cq =
2.0, k; = 0.05, k. = 0.5 and A=0.01) and time-points (0, 1...,7). The choice for the parameter
values was based on the results in table 2.



Scenario 1: 1000 simulations with each combination of (£ = 4 to 9 concentrations in expo-
nential series, as 0, 100U—Y/¢=1) for j = 1,..., k — 1) and (initial number of individuals per
concentration, zo; = [5,6,7,9, 11,15, 25, 35, 50, 75, 100]).

Scenario 2: If a number of individuals z,,,,, is available for a toxicity test, several experimental
designs can be chosen by varying &, the number of concentratons, and z;, the number of
individuals per concentration. To study the effect of this choice, z,,,,,, was varied in the range
[40;100] and all possible combinations of £ and z; were investigated (with the minimum limits
of k = 4 and zy; = 4). The concentrations were, as in scenario 1, chosen in exponential series.
Scenario 3 To study the effect of censoring in time, 1000 simulations were made and each
simulation results in 3 data-sets with decreasing information in time. The first dataset contains
the exact time of death of all the individuals. This means full information. The second contains
the exact time of death until time-point 7, i.e. the first dataset censored at time point 7. The
third contains a discrete version of the second dataset — the summed number of dead individuals
inthe time intervals0to 1,1t02,...,6t0 7.

Scenario 4 The effect of concentrations below ¢,, was analysed by making 5000 simulations
with the parameter values (¢ = 10.0, k&t = 0.05, k. = 0.5 and A=0.01), time-points (0,1...,7),
xo; = 50, and concentrations ((c*,12.1,14.5,19.5, 28.2, 42.5, 100), where ¢* in turn equals the
four values: {10.0,6.67,3.33,0.0})

The reproducibility and simulation size were checked by making additional simulations with
the same k, zo; combinations and additional simulations with N;,,, =2000, . . ., 4000.

6 Results

6.1 KINETICS

Before discussing the coverage probabilities for the profile likelihood and large sample approach
a short comment is needed concerning the estimated kinetic type. The observation matrix is
generated using normal kinetics (equation 3), but the estimation procedure is free to choose
the Kkinetic type resulting in the smallest log likelihood. If slow Kinetics is chosen, most of
the kinetic parameters have a new meaning, another numerical value and unit and therefore no
direct comparison is possible for all the parameters. The percentage of estimations resulting in
slow kinetics is shown in figure 3. No slow Kinetics occur, when the total number of individuals
exceeds 100, therefore these combinations (of ¢; and z,;) are omitted from the figure. It is
evident that the percentage is decreasing with the increasing nhumber of concentrations and
individuals. This is due to a better determination of the kinetic parameters k. and k;. The
kinetic parameters describe the curvature of the survivor function surface. The iso-animal lines
in figure 3 indicate that less slow kinetics occur when using a higher number of concentrations
with fewer animals per concentration. This gives more points on the surface and the curvature
is better described.

The percentage of slow kinetics is influencing the coverage probabilities of the different param-
eters in the following way:

6.1.1 Large-Sample Inference

For slow kinetics the parameters cy, k. and their standard deviations are by definition identically
0. This is because the concentration in the animal builds up without limit, so we are sure that
it exceeds the actual no-effect concentration eventually. Thus k; becomes «;. The parameter A
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% estimations resulting in slow kinetics
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Figure 3: Probability of slow kinetics (in %) - no slow kinetics occur for more than 25 initial
individuals per concentration.

is not influenced. The adjustment for slow kinetics for ¢y, k. and k; are calculated by assuming
that the percentage of true parameters values outside the confidence limits are the same for slow
and normal kinetics. This method is preferred over discarding the datasets from the analysis.
The assumption is thought to favour the unbiasedness of the Wald-based approach compared to
the profile likelihood based approach.

6.1.2 Profile Inference

In case of slow kinetics the point estimate of ¢, will be zero. Then, for physical reasons, the
lower confidence bound for ¢, is set identical to 0. The upper bound can still be calculated, so
there is no need for an adjustment.

6.2 RESULTS FROM SCENARIO 1

Bias, 95% Confidence limits, Large Sample. If the results are unbiased we expect 6; to be in
the 95%-confidence interval (cfi.) in 95% of the cases. The coverage probabilities, adjusted for
slow kinetics of the nominal 95% confidence limits for the large sample approach regarding the
four parameters are shown in figure 4.

The estimation of the background mortality rate X is strongly dependent on the number of
animals used as the percentage outside the cfi. ranges from 5 to 50%. The bias is large for small
sample sizes. There is a small effect due to the distribution of the animals; many animals per
concentration improves the coverage probability.

The estimation of the elimination rate &, is not as sensitive as A. The percentage outside the cfi.
ranges from 5 to 13%, and the effect of animal distribution is the opposite; many concentrations
improve the coverage probability. The surface appears complex with no single maximum.

The estimation of the killing rate £; is the least sensitive, the percentage outside the confidence
interval ranges from 4 to 8%, and no clear effect of animal distribution is present.

For the no effect concentration ¢ , the percentage outside the cfi. ranges from 5 to 25%, and no
clear effect of the animal distribution can be observed.
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Figure 4: Coverage probabilities for 95% large sample confidence intervals

When the number of animals and concentrations is decreasing the number of extreme parameter
values and outliers is increasing.
The reason for the large bias of the large sample confidence limits, for small sample sizes, could
be due to several causes, including

e The skewness of the simulated parameter results (small samples, illustrated in figure 5)

The non-differentiability of S(¢; ¢) in the points (¢4(c), ¢).

The right censoring in time of the observations.

The second order symmetric Taylor approximation of the likelihood function is too crude.

The influence of the correlation between £; and k., as illustrated in figure 5.

The discreteness of A for small initial number of animals, as illustrated in figure 5.
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Figure 5: The upper 8 plots are £ = 10 concentration groups with zo; = 100 animals per
concentration group, showing the large sample situation. The lower 8 plots are £ = 10 and
zo; = 9, showing the small sample situation. The plots illustrate the violated assumptions, that
influence the asymptotics, when sample sizes decrease.
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Figure 6: Coverage probabilities for 95% profile likelihood confidence intervals

Bias, 95% Confidence limits, profile likelihood. Ecotoxicological tests are usually performed
with a legislative purpose or a classification purpose. Therefore the most interesting parame-
ter, in that content, is the no-effect concentration ¢, and the profile likelihood interval is only
calculated for the estimated ¢, values. The coverage probability is shown in figure 6.

The percentage outside the cfi. ranges from 3 to 9%. There is only a small effect due to sample
size and no effect due to the distribution of the animals. The contour plot suggests a complicated
surface.

Precision. The dependency between design characteristics and precision of the estimated pa-
rameters is illustrated in figure 7. The precision is expressed as: the mean of the estimated pa-
rameter minus the lower 95 % profile confidence limit conditioned on normal kinetics and that
the estimated parameter is included in the interval: E(co — Lowss|(normal kinetics), cq € 95%).
As expected the precision increases with increasing number of concentrations and number of
individuals. This pattern is, as expected, the same for all parameters using the large sample
approach.

Oveestimation/Underestimation. To evaluate the over or under-estimation of the cg, the pro-
portion of the estimated ¢, values outside the confidence region was divided by the proportion
below the lower limit. As stated above, from an environmental protection point of view, it is
critical if the ratio is below 2. It should be noted that nothing in the estimation theory states
that the profile likelihood interval, as opposed to the large sample interval should be symmetric.
In general there is no design-dependent over- or underestimation for the profile likelihood ap-
proach, but a very large overestimation for the large sample approach increasing as the sample
size decreases, as illustrated in figure 8. This result is also valid for A, k. and k;. Adjust-
ment for slow kinetics is done as described previously, by assuming that the percentage of true
parameter values outside / below the confidence limits are the same for slow and normal kinetics

6.3 RESULTS FROM SCENARIO 2

The aim of scenario 2 is to describe how the estimation depends on the distribution of a given
number of individuals, i.e. 54 individuals can be assigned to 6 concentrations with 9 individuals

13
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Figure 8: Overestimation/Underestimation of c,: Percent true parameter values outside the 95%
confidence interval divided by percent true parameter values below the 95% confidence interval
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Figure 9: Results from scenario 2: Percent estimations resulting in slow Kinetics, percent cg
inside the estimated 95% confidence limits, and precision

per concentration, or to 9 concentrations with 6 individuals per concentration etc. The minimum
and maximum number of animals used were 40 and 100 respectively. The large sample confi-
dence intervals perform poorly so only the profile likelihood for ¢ is considered.

Kinetics. The probability of ending in slow Kinetics (figure 9) depends on the design charac-
teristics and in order to end up with normal Kinetics the number of concentrations should be
increased. The increased number of concentrations gives more points describing the curvature
of the response surface and thereby the kinetic parameters. See also the remarks about slow
kinetics in scenario 1.

Bias, 95% Profile-Likelihood Confidence Interval. The coverage probabilities of the 95% profile
confidence limits regarding the cy-parameter is calculated and the results presented in figure 9.
The results from the previous scenario 1 concerning the robustness of the profile likelihood
intervals and the general level of coverage is confirmed here and there is no clear dependency
of design characteristics.

Precision. There is no evidence that the design has influence on the precision, though the
precision is increased with an increasing number of individuals.

6.4 RESULTS FROM SCENARIO 3

Two major results can be derived from this “time to event” study:

e It is efficient to count the number of survivors in fixed time intervals. No substantial informa-
tion is gained by observing the batch around the clock and thereby obtaining information about
the exact time of death. This is concluded based on the upper nine plots in figure 10, where no
significant difference is observed between the profile likelihood for the dataset with 7 discrete
time-points and the exact time of death in 7 time-points.

e It is however important to continue the experiment until something has happened in the lower
concentrations since substantial information is gained. Large changes are observed in the point
estimate and in the profile likelihood function as the number of time points is increased (lower
three plots in figure 10).
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Figure 10: The legend for the upper nine ¢, profile likelihood plots: x is the exact time of death
in the time interval [0,7]; + is exact time of death in the time interval [0;all animals are dead]
and - - - is the cumulated deaths in the discrete time intervals (0, 1], (1,2],..., (6, 7]. The lower
three plots show the profile likelihood for ¢y, and the information gained by continuing over
time for discrete observation intervals (0, 1], (1,2], ..., (6, 7]. In all twelve plots ¢y = 2.
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Figure 11: Effect on the profile likelihood, derived from the location of concentrations below
co. () corresponds to cx = 0 and (b) corresponds to cx = 10 (the ¢y-value)

6.5 RESULTS FROM SCENARIO 4

The location of the concentrations below ¢y are not influencing the mean point-estimate of the
no-effect concentration or the empirical variance of the 5000 re-estimated parameter values. The
location influences the profile likelihood and thereby the confidence sets. In figure 11, empirical
cdf’s for the lower profile likelihood confidence limits are shown. If the lowest concentration is
far from cg, the confidence band becomes more irregular.

7 Discussion and recommendations

The presented simulation study has favoured a large variation in the design characteristics rather
than the examination of a large set of parameter values. The robustness of the conclusions out-
lined in the following should therefore not be looked upon as proofs.

It seems, based on the current study, that the coverage probability of the estimated confidence
limits for the ¢, parameter is, for small sample sizes, improved using the profile likelihood
method compared with the large sample approach. It is assumed that comparable improve-
ments could be achieved for the other parameters. Therefore the profile likelihood method is
recommended when sample sizes are moderate or small. This is in good agreement with the
theoretical results discussed in Morgan (1996).

The accuracy of the estimated parameters depends on the experimental design. The optimal
design for estimating a given set of parameters depends on the nature of the parameter, whether
it describes a level or curvature. In this paper the trade-off is between the accuracy of \, & and
IQ:T, k. since a large initial number of animals per concentration favour estimation of ), c,, op-
posed to many concentrations that favour estimation of £, k.. If any of these factors are sparsely
chosen, then a compensation by continuing the experiment in time is possible. This may lead
to problems with the physico-chemical environment, aging, etc. Then a constant background
mortality will not be acceptable any more.

If ¢y is the main parameter of interest the experiment needs to be prolonged until the lower
concentrations have caused an effect. Otherwise the surface and its cutoff point ¢, is determined
by- or extrapolated from mortality at high concentrations and short-time exposure while the aim
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of the study is the estimation of ¢, after a long exposure.

It is only recommended to use resources to count the number of dead animals e.g. once a day
since no substantial information is gained by reporting the exact time of death. The observation
time points must off course be related to the kinetics of the tested compound or environmental
sample.
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