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Abstract

This paper is devoted to the study of food chain models under batch and chemostat
conditions where nutrient recycling is taken into account. The food chain is formed
by a nutrient and two populations, prey and predator (producers and consumers).
Species at both trophic levels digest their food source only partly. The unusable
parts of the food not used for growth is ejected in the reactor as faeces together with
metabolic products. The excreted material together with death material, detritus,
is decomposed and this gives the recycling of the nutrient. In closed (batch-type
environment) systems the elemental matter needed by producers must be provided
through recycling where light energy from the environment supplies the necessary
energy that fuels the life processes. In open (chemostat-type environment) systems
this energy is added to the system via the chemical energy stored in the organic
compounds in the inflow. An aggregation method is developed for situations in
which each trophic level is characterized by differing time scales. This allows us the
reduce the dimension of the model which gives good approximations after the fast
transient. We will show that in the chemostat case first-order approximations are
needed in order to get the same qualitative long-term dynamics for both the full and
the reduced model.
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1 Introduction

We study the effects of material recycling on the long-term dynamic behaviour of a simple
food web. Recently it is found that effects of nutrient recycling plays an important role to
the stability of ecosystems (DeAngelis, 1992). With nutrient recycling, waste-products and
dead organisms from the biotic trophic levels are mineralised, possibly by a decomposer,
into the abiotic nutrient. In the literature closed (batch-type environment) and open
(chemostat-type environment) ecosystems are analysed.

In a batch reactor system the biological components and the nutrient are added to a
closed system and thereafter the system is self-sustaining. In (Nisbet and Gurney, 1976)
an elucidating model for carbon cycling in a closed ecosystem is described. In that model
respiration products are converted directly to inorganic material, carbon dioxide CO2, at a
fixed rate proportional to the biomass of the population. This implies the assumption that
the presence of decomposers does not significantly influence the rate of provision of mate-
rial for decomposition and that decomposition is sufficiently fast to neglect time delays in
the decomposition process. Two types (dissolved and particulate) of nutrients are distin-
guished in (Aota and Nakajima, 2000) where they study coexistence of phytoplankton and
bacteria with nutrient recycling in a close ecosystem. Phytoplankton can use only dissolved
(inorganic) nutrients while the bacteria degrade particulate nutrient (dead bodies of phy-
toplankton and bacteria) as well. In (Kooijman and Nisbet, 2000) the complete mass and
energy turnover in a daphnids–algae–bacteria (consumers–producers–decomposers) com-
munity in a closed bottle is evaluated. The daphnids consume both algae and bacteria.
The algae use solar energy to convert carbon dioxide CO2 to organic compounds. Dif-
ferent model formulations for the consumers were considered. Bacteria, the decomposers,
digest their faeces and those of the algae, and dead Daphnia, both instantaneously and
completely.

In a chemostat there is a continuous flow of the nutrient through the reactor containing
the populations. Chemostat conditions might resemble some ecosystems in a very simple
model for a lake of other aquatic habitats, see also (DeAngelis, 1992). In (Beretta et al.,
1990; Ruan, 1993; Ruan, 2001) a distributed time lag in the recycling is introduced to model
time required to regeneration of nutrient from dead biomass by bacterial decomposition
whereby the dynamics of the decomposer is not modelled.

The production of degradable material at each trophic level occurs as side effects of three
biological processes. These three processes involved in the living of each population are the
assimilation, maintenance and growth process, (Kooijman, 2000). Only a part of the food
ingested by species is assimilated and the unusable parts are ejected in the reactor in the
form of faeces. Subsequently, a part of the assimilated material is used for synthesis of new
biomass and the other part forms metabolic products associated with the maintenance
and the growth process, that are excreted in the reactor. With our model formulation
products are formed at two rates as waste-products by the three processes. One product is
formed at a rate proportional to the biomass, modelling metabolic waste-products which
are assumed to be degraded instantaneously into nutrients. We neglect formation of death
material which would be also proportional to biomass. Another product is formed at a rate
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proportional to the ingestion rate modelling the production of faeces which are degraded
exponentially a fixed recycle rate. This yields extra state variables for each trophic level.
Remark that the decomposers are not modelled explicitly.

One of our objective is to obtain a better insight in the dynamical properties of the
system by reducing the dimension. We use aggregation methods for this purpose. With
perfect aggregation new global variables are defined which allows one to describe the dy-
namics of the system in a condensed way (Iwasa et al., 1987; Iwasa et al., 1989). In previous
papers, we used perturbation techniques to perform approximate aggregation which have
been applied to complex ecological models with different time scales (Auger et al., 2000a).
The method works when the fast system possesses a stable equilibrium (Auger and Pog-
giale, 1996) and also with a stable limit cycle (Poggiale and Auger, 1996). Here we shall
take advantage of the different time scales for the trophic levels of the food chain to ap-
ply aggregation methods, singular perturbation techniques, to simplify the models for the
dynamics of the system.

In (Rinaldi and Muratori, 1992a; Rinaldi and Muratori, 1992b; Muratori and Rinaldi,
1989; Muratori and Rinaldi, 1992) a singular perturbation technique is applied to slow-fast
systems. The model is the Rosenzweig-MacAthur model where the lowest trophic level
grows logistically when not predated, that is nutrients are not modelled explicitly; they
determine implicitly the carrying capacity. The trophic interactions are modelled using the
Holling type II functional response. Different time-scales for the trophic levels is obtained
by assuming a low efficiency for the trophic levels, that is, the maximum growth rate of
each population is a small fraction of its maximum ingestion rate.

Since we study the effects of nutrient recycling we use a mass-balance model where the
nutrients are modelled explicitly. We assume here complete recycling of the nutrients in
the food chain. This facilitates the use of mass conservation laws with the formulation of
the model. In (Kooi et al., 1998), we applied aggregation methods to bi-trophic food chains
under two environmental conditions, batch and chemostat, where the batch condition is
a special case of the chemostat condition with dilution rate equal zero. The model was a
mass-balance model where nutrients are modelled explicitly. We assumed different time
scales for the trophic levels, but we kept the efficiencies at their normal magnitude. As
a consequence, there is no complete time scale separation. The model analysed in (Kooi
et al., 1998) is a special case of the model analysed here with no maintenance and zero
recycle rates of the faeces and metabolic products.

Under chemostat conditions the reduced system has a stable equilibrium while the full
model possesses a stable limit cycle when the nutrient is abundant. We will show that
first-order approximations are needed for getting oscillating long-term dynamics for both
the full and the reduced system. Then, the reduced system has two slow manifolds and the
trajectory follows one slow manifold. When this manifold becomes unstable, the trajectory
jumps to the other manifold. The trajectory continues to move along this manifold until it
becomes unstable and the trajectory jumps back to the first manifold, and so on and this
forms a quasi-limit cycle.
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2 Model description

In this section we give the model for a predator–prey–nutrient system in a closed or open
environment with nutrient recycling. Thereafter the relationship with models proposed
and analysed in the literature is described.

Every food web being a closed system is based on producers that convert carbon dioxide
CO2 to organic compounds. This process is carried out predominately by photosynthetic
organisms that convert light energy to chemical energy; the chemical energy is stored
within the organic compounds that are formed. These autotrophic organisms are plants
in terrestrial systems and photosynthetic organisms such as the algae in marine systems.
Most algae have also heterothrophic capabilities to supplement their energy and nutrient
requirement and are called mixothrophs. The produced organic carbon becomes available
to heterotrophic consumers. Hence, in closed systems, with no exchange of matter with the
environment, energy is supplied to the system as light energy (solar radiation), otherwise
the community will dissipate the available energy since biological processes are dissipative
by the generation of waste heat, and therefore the community disappears. The waste heat
leaves the system by convection or radiation.

In open systems consisting of heterotrophic organisms there is an input of allochthonous
organic matter and chemical energy at the same time. There is no inflow of light energy,
but there is loss of energy via chemical energy in the matter that leaves the system and
via convection or radiation of waste heat. When an autotroph or mixothroph is part of
the food chain in an open system, light energy is supplied besides the chemical energy of
the input matter.

We assume that the reactor is spatially homogeneous and with a time-invariant input
of the nutrient while all community components are washed-out at possibly different rates.
We denote the nutrient concentration by x0, prey biomass by x1 and predator biomass by
x2. The produced degradable materials excreted by the prey population are denoted by
p1 and z1 and those produced by the predator population by p2 and z2. The model with
nutrient recycling, reads

dx0

dτ
= (xr − x0)D0 − I0,1f0,1(x0)x1 + α1p1 + β1z1 + α2p2 + β2z2 , (1a)

dx1

dτ
= µ0,1f0,1(x0)x1 −m1x1 −D1x1 − I1,2f1,2(x1)x2 , (1b)

dx2

dτ
= µ1,2x2f1,2(x1)−m2x2 −D2x2 , (1c)

dp1

dτ
=

(
(I0,1 − µ0,1)f0,1(x0)x1 − α1p1

)
−D1p1 , (1d)

dp2

dτ
=

(
(I1,2 − µ1,2)f1,2(x1)x2 − α2p2

)
−D2p2 , (1e)

dz1

dτ
= m1x1 − β1z1 −D1z1 , (1f)

dz2

dτ
= m2x2 − β2z2 −D2z2 , (1g)
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where fi−1,i(xi−1) are the scaled Holling type II functional responses for i = 1, 2 defined by

fi−1,i(xi−1) =
xi−1

ki−1,i + xi−1

. (2)

In Figure 1 the material fluxes through the food chain are depicted. The equations given
above are derived by applying mass conservation laws for each compartment indicated in
Figure 1. See Table 2 for a definition of the parameters. For biologically realistic situations
some the of the parameters are related as follows: Ii−1,i > µi−1,i > 0 and 0 ≤ mi < µi−1,i

while µ1,2 < µ0,1.
The three processes involved in the living of each population are the assimilation, main-

tenance and growth process. The formation rate of faeces (Ii−1,i−µi−1,i)fi−1,i(xi−1)xi is the
ingestion rate minus the growth rate times the biomass of the population. The formation
rate of the metabolic products mixi is proportional to the biomass of the population. The
decomposers are not modelled explicitly but the materials released by the species in the
reactor are degraded exponentially into nutrients, the terms αipi and βizi.

Some terms in system (1) may have different biological interpretations. For instance,
mi, i = 1, 2 are often called respiration rate constants and the Di’s are removal rates
possibly due to natural death or wash-out.

The two environmental conditions considered in this paper are the batch reactor and
the chemostat reactor. When Di = 0, i = 0, 1, 2 there is no input of nutrients at the basis
of the food chain nor output at all trophic levels. This describes the batch reactor. For
this closed system no mass is exchanged with the environment. On the other hand, when
Di = D, i = 0, 1, 2, the equations describe the dynamics of a food chain in a chemostat
reactor where D > 0 is the dilution rate and xr > 0 the concentration of the nutrient in
the reservoir.

In this model formulation instantaneous recycling of the respiratory products and the
faeces is obtained by assuming a fast nutrient recycling rate, that is αi À µi−1,i and
βi À µi−1,i > mi. Then, the last four equations (1d–1g) give

α1p1 = (I0,1 − µ0,1)f0,1(x0)x1 , (3a)

α2p2 = (I1,2 − µ1,2)f1,2(x1)x2 , (3b)

β1z1 = m1x1 , (3c)

β2z2 = m2x2 , (3d)

where we used that Di are negligible small with respect to αi and βi for i = 1, 2. These
expressions must be substituted in (1a) which together with (1b) and (1c) forms an reduced
model for the predator-prey system in the chemostat. Here we will assume that βi = ∞,
i = 1, 2, that is instantaneous degradation of the labile maintenance-associated products
and we neglect natural death. We take 0 < αi < ∞, that is the particulate nutrients are
regenerated by bacteria which are assumed to be available ad libitum, so that we do not
model their dynamics explicitly. Notice that when αi = βi = 0, i = 1, 2 the model boils
down to the predator–prey model without recycling analysed in (Kooi et al., 1998).
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In (Ruan, 1993; Ruan, 2001) a model is described and analysed for a zooplankton-
phytoplankton-nutrient (consumer–producer–nutrient) system where the zooplankton as
well as the phytoplankton consume nutrients. In that formulation no additional state
variables are introduced for the respiratory products nor faeces, but the zooplankton is re-
cycled instantaneous similar to the conditions (3). There is a term similar to the metabolic
product term, but the biological interpretation is solely physiological death and not due to
metabolic respiration.

In (Ruan, 1993) the phytoplankton and the zooplankton die with species specific rates
and are recycled at a possible different nutrient recycle rate

dx0

dτ
=(xr − x0)D − I0,1f0,1(x0)x1 + γ1m1x1 + γ2m2x2 +

(I0,1 − µ0,1)f0,1(x0)x1 + (I1,2 − µ1,2)f1,2(x1)x2 , (4a)

dx1

dτ
=µ0,1f0,1(x0)x1 −m1x1 −Dx1 − I1,2f1,2(x1)x2 , (4b)

dx2

dτ
=µ1,2x2f1,2(x1)−m2x2 −Dx2 , (4c)

where γi < 1 indicating that only a part of the dead material is recycled. This model,
which is system (1) where (3) is taken into account, is a straightforward extension of
the phytoplankton–nutrient model analysed in (Beretta et al., 1990). In (Ruan, 2001)
the plankton model (4) was extended with delayed nutrient recycling. In our notations
equation (4a) becomes

dx0

dτ
=(xr − x0)D − I0,1f0,1(x0)x1 + γ1

∫ t

−∞

F (t− s)x1(s) ds+ γ2

∫ t

−∞

G(t− s)x2(s) ds+

(I0,1 − µ0,1)f0,1(x0)x1 + (I1,2 − µ1,2)f1,2(x1)x2 .

The instantaneous recycling of model (4) is obtained by assuming F (s) = G(s) = δ(s),
where δ is the Dirac delta function.

In the next section we will use aggregation techniques to derive reduced systems of the
following full system where ε enforces time-separation

dx0

dτ
= (xr − x0)D0 − I0,1f0,1(x0)x1 + α1p1 +m1x1 + α2p2 + εm2x2 , (5a)

dx1

dτ
= µ0,1f0,1(x0)x1 −m1x1 −D1x1 − εI1,2f1,2(x1)x2 , (5b)

dx2

dτ
= ε

(
µ1,2x2f1,2(x1)−m2x2

)
−D2x2 , (5c)

dp1

dτ
= (I0,1 − µ0,1)f0,1(x0)x1 − α1p1 −D1p1 , (5d)

dp2

dτ
= ε(I1,2 − µ1,2)f1,2(x1)x2 − α2p2 −D2p2 . (5e)

Notice that the incorporation of the time-scale effects, modelled in the same way as in
the previous paper (Kooi et al., 1998), differs from that done in (Rinaldi and Muratori,
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1992a; Rinaldi and Muratori, 1992b; Muratori and Rinaldi, 1989; Muratori and Rinaldi,
1992). In those papers the maximum ingestion rate of the predator, I1,2, is not multiplied
by ε, only the maximum growth rate, µ1,2, is. As a result in their model the efficiency
decreases when ε → 0. Here, the maximum ingestion rate of the predator I1,2 as well as
its maximum growth rate µ1,2 are multiplied by ε. In this way the efficiency (ecology) or
yield (microbiology) remains unchanged when ε is varied.

3 Model analysis

3.1 Parameter values

The full model (5) will be analysed using numerical bifurcation analysis. The parameter
values are after (Nisbet et al., 1983a) and given in Table 2. They are realistic for a two-
trophic microbial food chain consisting of substrate, bacterium and ciliate. The values
for the new parameters, the faeces recycle rates αi are assumed to be the same as the
maximum growth rate of the bacterium. The results are presented in one-parameter and
two-parameter bifurcation diagrams. In a one-parameter bifurcation diagram the equi-
librium biomass or extreme values during a limit cycle, are plotted as function of one
bifurcation parameter for instance the nutrient input, whereby all other parameters are
held constant. Parameter values at which the asymptotic dynamic behaviour changes
suddenly, fix bifurcation points.

In some realistic cases, like a food chain of sewage-bacterium-worm (for example the
water nymph Nais elinguis, a oligochaete species) often found in waste-water treatment
plants (Ratsak et al., 1993), there are differences in the order of magnitudes of the ingestion
and growth rates. Parameter values for this model are also given in Table 2 and will be
used when we do simulations associated with the aggregation technique.

3.2 Bifurcation analysis

For an introduction to bifurcation analysis the reader is referred to (Guckenheimer and
Holmes, 1985; Kuznetsov, 1998) and to (Bazykin, 1998) for the application to ecosystem
models. Bifurcation analysis gives information about the long-term dynamic behaviour of
nonlinear dynamic systems. The structural stability is studied with respect to so-called
free or bifurcation parameters. When such a parameter is varied, a value at which the
asymptotic dynamics changes abruptly (for instance the solution becomes a stable limit
cycle instead of a stable equilibrium) is called a bifurcation point. Numerical bifurcation
packages, such as auto: (Doedel et al., 1997) and locbif, content: (Khibnik et al.,
1993; Kuznetsov and Levitin, 1997; Kuznetsov, 1998) are available to calculate bifurcation
points.

Two bifurcations types appear to be important with the study of our model: the
transcritical bifurcation which determines the boundary of coexistence of species in the
parameter space and the Hopf bifurcation at which point the equilibrium of the system
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becomes unstable and the asymptotic dynamics becomes oscillatory. The phenomenon that
the system becomes unstable at higher levels of nutrient supply was found by Rosenzweig
(Rosenzweig, 1971) with the Rosenzweig-MacArthur model for a predator–prey system and
is known as the paradox of enrichment. Thereafter it was found analysing many related
predator–prey models under various environmental conditions. Generally, the system not
only starts to oscillate, but these oscillations become also severe.

A wide class of predator–prey models possess similar bifurcation diagrams, see for
instance (Nisbet et al., 1983b; Gurney and Nisbet, 1998). In these bifurcation diagrams
the long-term dynamics is studied depending on environmental conditions. For the batch
reactor the nutrient availability at the start of the experiment and the removal rate (due
to harvesting or mortality) of the predator are often used as bifurcation parameters. In the
chemostat case the natural bifurcation parameters are the concentration of the nutrients
in the inflow and the dilution rate.

3.3 Perturbation theory

The reader is referred to (Hoppensteadt, 1993; Jones, 1995; Kevorkian and Cole, 1995) for
an introduction to perturbation theory and to (Auger et al., 2000a) for the application in
ecological modelling. Regular perturbation theory deals with systems of the following form

dx

dτ
= f(x, y, ε) , (6a)

dy

dτ
= εg(x, y) , (6b)

where ε ∈ R+ is small. Singular perturbation theory on the other hand deals with systems
of the form:

ε
dx

dt
= f(x, y, ε) , (7a)

ε
dy

dt
= εg(x, y) , (7b)

where t = ετ . Hence, τ is the fast time variable and t the slow variable. The terms regular
and singular are used because the solutions depend regularly or singularly on ε at ε = 0
(Hoppensteadt, 1993). Notice that in the singular perturbation problem, when ε is put
equal to zero in (7) these equations have a structural different form than the unperturbed
original system.

With both cases, the first step consists in setting ε = 0 which gives the set of fast
equilibria. In the first case, system (6), we get the fast system dx/dτ = f(x, y(0), 0). The
equilibria of this differential equation are given by: f(x, y, 0) = 0. For small ε values the
procedure consists in a limited expansion with respect to this parameter

dx

dτ
= f(x, y, 0) + ε

∂f

∂ε
(x, y, 0) + · · · . (8)
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Thereafter (6b) is solved where the solution of the fast system x is substituted.
In the second case, system (7), we get the algebraic equation of the so called “slow

manifold”: f(x, y, 0) = 0. With good hypothesis, this is equivalent to x = F (y) and we
can then substitute x by F (y) in the second equation, then: dy/dt = g(F (y), y). Observe
that we divided by ε as we are dealing with a singular perturbation problem. The procedure
is generally mathematically justified by the application of a set of Theorems due to Fenichel
(Fenichel, 1971; Jones, 1995).

Thus the main steps are:

1. Find the equilibria for the fast system (with ε = 0) defined by the time-derivatives of
x1, p1 and p2 where x2 serves as constant parameter.

2. Analyse the hyperbolic stability of these equilibria.

3. Substitute the stable equilibrium values in the derivatives of x2. This defines the slow
system. When the fast equilibrium is stable, the slow system provides an approxima-
tion of the full system.

In some cases, there are multiple equilibria for the fast system, some are stable, the
other are unstable. Here, we will deal with the case where there are two equilibria for
which the stability condition depends on the value of the slow variables. After the fast
transient, because of the dynamics of the slow variables, the stability of the two fast
equilibria switches. In other words, there are two slow manifolds and the dynamics starts
at one and suddenly it moves fast to the other one and continues there, leading to the stable
equilibrium (Auger et al., 2000b) or following a slow manifolds when it becomes unstable
jumps suddenly to the first slow manifold again, and so on leading to a quasi-limit cycle
(Kooi et al., 1998).

4 Batch reactor conditions

The model under batch conditions, that is a closed system with no material exchange with
the environment, is obtained from model (5) with Di = 0, i = 0, 1, 2. The total biomass,
for instance measured in C-mol, denoted by C and defined by

C(t) = x0(t) + x1(t) + p1(t) + x2(t) + p2(t) , (9)

is time-invariant, C(t) = C(0), due to mass conservation. This equality will be used to
eliminate the variable x0. By replacing x0 by C−x1−p1−x2−p2, system (5) with Di = 0,
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i = 0, 1, 2, reads:

dx1

dτ
= x1

(
µ0,1

C − x1 − p1 − x2 − p2

k0,1 + C − x1 − p1 − x2 − p2

−m1

)
− εI1,2

x1x2

k1,2 + x1

, (10a)

dx2

dτ
= εx2

(
µ1,2

x1

k1,2 + x1

−m2

)
, (10b)

dp1

dτ
= (I0,1 − µ0,1)

C − x1 − p1 − x2 − p2

k0,1 + C − x1 − p1 − x2 − p2

x1 − α1p1 , (10c)

dp2

dτ
= ε (I1,2 − µ1,2)

x1

k1,2 + x1

x2 − α2p2 . (10d)

This makes it possible to deal with the four dimensional full system for the state variables
x1, x2, p1, p2, where C is used as a bifurcation parameter.

The equilibria are with ε = 1

x∗
1 =

k1,2m2

µ1,2 −m2

, (11a)

x∗
2 =

k1,2 + x∗
1

I1,2

(
µ0,1

C − x∗
1 − p∗1 − x∗

2 − p∗2
k0,1 + C − x∗

1 − p∗1 − x∗
2 − p∗2

−m1

)
, (11b)

p∗1 =
(I0,1 − µ0,1)m1

µ0,1α1

x∗
1 , (11c)

p∗2 =
(I1,2 − µ1,2)m2

µ1,2α2

x∗
2 , (11d)

where x∗
2 is still given implicitly where the positive root of the resulting quadratic equation

is taken.
The total biomass C has to be sufficient high to get coexistence of prey or even both

prey and predator in the reactor. The value of C at the boundary of the region with
coexistence, is called a transcritical bifurcation TC, one where only the prey can persist
and one where the predator can persist too.

Mathematically the first point is found when the following conditions are satisfied. The
equilibrium with biomass of the prey is zero, x̂1 = x̂2 = 0, is such that the growth rate of
the prey is zero too, dx1/dτ = 0. That is, we are at the boundary of the region where the
prey can invade the nutrient system. Equations (10c) and (10d) give p̂1 = p̂2 = 0. The
resulting equations are

Ĉ = x̂0 , (12a)

0 = µ0,1f0,1(x̂0)−m1 . (12b)

These two equations for the positive equilibrium values x̂0 fix the value Ĉ. We obtain

Ĉ = x̂0 =
k0,1m1

µ0,1 −m1

. (13)
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At the second transcritical bifurcation that marks the point where the predator can
invade the nutrient–prey system, the equilibrium with biomass of the predator is zero, x̃2 =
0 and furthermore the growth rate of the predator is zero too, dx2/dτ = 0. Equation (10d)
gives directly p̃2 = 0. The resulting equations are

C̃ = x̃0 + x̃1 + p̃1 , (14a)

0 = µ0,1f0,1(x̃0)−m1 , (14b)

0 = µ1,2f1,2(x̃1)−m2 , (14c)

0 = (I0,1 − µ0,1)f0,1(x̃0)x̃1 − α1p̃1 . (14d)

Equations (14) give

x̃0 =
k0,1m1

µ0,1 −m1

, (15a)

x̃1 =
k1,2m2

µ1,2 −m2

, (15b)

p̃1 =
(I0,1 − µ0,1)m1x̃1

µ0,1α1

. (15c)

Equation (14a) is a consequence of complete recycling of the nutrients which gives con-
servation, in this case in absence of the predator. Substitution of (15) in (14a) gives the

transcritical bifurcation value C̃.
When increasing C, system (10) shows a Hopf bifurcation which marks the origin of

oscillatory behaviour. No closed form expressions are available and we have to calculate
this point numerically.

5 Two time scales batch reactor case

In this section, we study the case where two different time scales, that is small ε. The fast
system is obtained by putting ε = 0 in system (10). It is formed by (10a), (10c and (10d)
where x2 is treated as a parameter.

dx1

dτ
= x1

(
µ0,1

C − x1 − p1 − x2 − p2

k0,1 + C − x1 − p1 − x2 − p2

−m1

)
, (16a)

dp1

dτ
= (I0,1 − µ0,1)

C − x2 − p2 − x1 − p1

k0,1 + C − x2 − p2 − x1 − p1

x1 − α1p1 , (16b)

dp2

dτ
= −α2p2 . (16c)

The equilibria of this three-dimensional system for the three fast variables x1, p1 and
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p2 read

x∗
1 =

µ0,1α1(C − x2 − Ĉ)

m1(I0,1 − µ0,1) + µ0,1α1

, (17a)

p∗1 =
(I0,1 − µ0,1)m1

µ0,1α1

x∗
1 , (17b)

p∗2 = 0 , (17c)

where x2 is the slow variable of which the dynamics is described by an ordinary differential
equation (ode) derived below.

Because the ode (16c) for p2 is decoupled from the two odes (16a) and (16b, it is
sufficient to study their 2×2 Jacobian matrix evaluated at the equilibrium x1 and p1 given
in (17a) and (17b). It can be shown that

i) If C < Ĉ + x2 the equilibrium (x1; p1; p2) = (0; 0; 0) is stable and is the unique
non-negative equilibrium.

ii) If Ĉ + x2 < C the trivial equilibrium (x1; p1; p2) = (0; 0; 0) is unstable and the non-
trivial (x1; p1; p2) = (x∗

1; p
∗
1; 0) is stable and is the unique positive equilibrium.

These equilibria (17a) for x1, (17b) for p1 and (17c) for p2, where x2 is a parameter, is
substituted in (10b) with ε = 0. This yields the slow system for the slow variable x2

dx2

dt
= x2

(
µ1,2

x1

k1,2 + x1

−m2

)
, (18)

where t = ετ again. The equilibrium is

x∗
2 = C −

m1k0,1

µ0,1 −m1

−
m1(I0,1 − µ0,1) + µ0,1α1

µ0,1α1

m2k1,2

µ1,2 −m2

= C − C̃ , (19)

where we used (15). We conclude that

i) If C < Ĉ then (x1; x2; p1; p2) approaches (0; 0; 0; 0).

ii) If Ĉ < C < C̃ then (x1; x2; p1; p2) approaches (x
∗
1; 0; p

∗
1; 0). The slow system is

dx2

dt
= −m2x2 . (20)

iii) If C̃ < C then (x1; x2; p1; p2) approaches (x∗
1; x

∗
2; p

∗
1; 0). The resulting slow system is

(18).

The points at which the reduced model changes, fixed by C = Ĉ and C = C̃ are
transcritical bifurcation points for both the reduced model and the full model given in (14)
and (15). With respect to this, the reduced model reflects the asymptotic dynamics of the
full model well.
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In Figures 2 and 3 simulation results for the prey and predator biomass densities, x1(τ),
x2(τ), and for the nutrient density, x0(τ), are depicted for the reduced and full model where

C = 300 > C̃. After the transient, the solution of the reduced model is close to that of
the full model. The differences for the equilibria of both models is explained as follows.
Comparing (10b) and (18) gives that in equilibrium we have x∗

1 = x∗
1 and subsequently

p∗1 = p∗1, see (10c) and (17b). The difference between x∗
2 and x∗

2 is due to the fact that the
consumption term of the predator feeding on the prey, (εI1,2 x1/(k1,2 + x1)) x2 is neglected
in (16a) and not in (10a). After τ ≈ 600, the biomass density of the predator x2(τ) is
large and this explains the difference between x∗

2 and x∗
2, and partly the difference between

p∗2 (17c) and p∗2 (11d). Furthermore we have x∗
0 = Ĉ and therefore x∗

0 is time-invariant.
This follows directly from substitution of the expressions (17) in the expression for C in
(9). This explains the difference between x∗

0 and x∗
0 in Figure 3.

When ε > 0 there is a C so that the full system has a Hopf bifurcation. In Figure 4 we
depict the two-parameter bifurcation diagram where C and ε are the bifurcation parame-
ters. The curve denoted by H is the Hopf bifurcation curve that approaches the ε = 0 axis
when C →∞. Hence, for a fixed strictly positive value of ε and when C is greater than its
value on the H-curve (1200 in Figure 4), the reduced system has a stable equilibrium, as
is shown in this section, while the full system converges to a stable limit cycle when time
goes to infinity. In other words, the approximation is valid for a very small ε when C is
large.

This illustrates that for practical cases when ε > 0, the reduced system gives not
always good approximations for the long-term dynamics. In the next section we deal with
the chemostat case where we retain first-order terms with the construction of an reduced
model. This gives a better long-term approximation. Such an approach can be applied
with batch conditions discussed here in the same manner.

6 Chemostat conditions

The model under chemostat conditions, is obtained from model (5) with Di = D, i = 0, 1, 2.
We define now the total biomass measured in C-mol H(t) by

H(t) = x0(t) + x1(t) + x2(t) + p1(t) + p2(t) . (21)
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By replacing x0 by H − x1 − p1 − x2 − p2, system (5) with Di = D, i = 0, 1, 2, reads:

dH

dτ
= −εD(H − xr) , (22a)

dx1

dτ
= x1

(
µ0,1

H − x1 − p1 − x2 − p2

k0,1 +H − x1 − p1 − x2 − p2

−m1 − εD − εI1,2

x2

k1,2 + x1

)
, (22b)

dx2

dτ
= εx2

(
µ1,2

x1

k1,2 + x1

−m2 −D
)
, (22c)

dp1

dτ
= (I0,1 − µ0,1)

H − x2 − p2 − x1 − p1

k0,1 +H − x2 − p2 − x1 − p1

x1 − α1p1 − εDp1 , (22d)

dp2

dτ
= ε (I1,2 − µ1,2)

x1

k1,2 + x1

x2 − α2p2 − εDp2 . (22e)

First we analyse this model where ε = 1 with numerical bifurcation techniques. The
two-parameter bifurcation diagram for the model with and without nutrient recycling is
given in Figure 5. The transcritical bifurcation curve which determines the boundary of
coexistence of species in the parameter space is denoted by TCr and the Hopf bifurcation
curve, that bounds the region where the system oscillates, is denoted by Hr. We recall that
the parameter values given in Table 2 are from (Nisbet et al., 1983a). The transcritical
bifurcation curve TC and Hopf bifurcation curve H are the two bifurcation curves for that
model without nutrient recycling, thus α1 = α2 = 0.

For a fixed dilution rate the density of the nutrient in the inflow has to be sufficiently
high to get coexistence of both prey and predator in the reactor. Equations similar to
those for the batch reactor (14), describe this transcritical bifurcation. The following
substitutions have to be made: C → H and mi → mi +D and α1 → α1 +D. In this way
we obtain now a relationship between the two parameters D and xr, that is, the function
x̃r(D) of which the graph is the bifurcation curve TCr in Figure 5.

When the nutrient supply is increased further, the positive equilibrium becomes unsta-
ble at a Hopf bifurcation H and a stable limit cycle originates. At that point the real part
of two complex conjugate eigenvalues equals zero. Explicit expressions for the relationship
between the two parameters D and xr do not exist. Therefore, the Hopf bifurcation curve
has to be approximated numerically.

In Figure 6 the long-term biomass values for the predator x2 are depicted as a function
of xr for a fixed D = 0.08. If xr is lower that its transcritical bifurcation TCr value the
prey is the only organism in the reactor. If the xr-values is higher than its TCr-value the
predator can invade the system when it is introduced in small amounts and there is a stable
coexistence. When xr is increased and the Hr-value is reached, this equilibrium becomes
unstable. For higher xr values the system oscillates and the maximum and minimum
values of the stable limit cycles are plotted in Figure 6. With rather high xr values the
minimum values become very low. For comparison in Figure 6 results are also given for
the nutrient-prey-predator model without recycling, α1 = α2 = 0, also for D = 0.08.
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7 Two time scales chemostat reactor case

We will now apply the singular perturbation theory in the case that the prey dynamics
feeding on nutrient is fast and that the predator dynamics feeding on the prey is slow (ε¿
1) is formed by the two odes (22b) and (22d). We will consider a zero-order approximation
and a first-order approximation where all ε terms are retained. The bifurcation analysis of
the resulting fast system can be done analytically for the zero-order approximation. For
the first-order approximation we have to resort to calculated bifurcation diagrams.

7.1 Zero-order approximations

The fast system is exactly the same as in the batch reactor case (16) where constant C

has to be replaced by H which is now an extra parameter, and we introduce Ĥ = Ĉ =
m1k0,1/(µ0,1 −m1).

The two dimensional slow system for the variables H and x2 reads

dH

dt
= −D(H − xr) , (23a)

dx2

dt
= x2

(
µ1,2

x1

k1,2 + x1

−m2 −D
)
, (23b)

where for x1 the expression (17a) is substituted. Similar to the batch case we introduce

H̃ =
m1k0,1

µ0,1 −m1

+
m1(I0,1 − µ0,1) + µ0,1α1

µ0,1α1

(m2 +D)k1,2

µ1,2 −m2 −D
. (24)

Then, the equilibria are

H
∗
= xr , (25)

x∗
2 = xr − H̃ . (26)

We conclude that

i) If xr < Ĥ then (x1; x2; p1; p2) approaches (0; 0; 0; 0),

ii) If Ĥ < xr < H̃ then (x1; x2; p1; p2) approaches (x
∗
1; 0; p

∗
1; 0),

iii) If H̃ < xr then (x1; x2; p1; p2) approaches (x
∗
1; x

∗
2; p

∗
1; 0).

Notice that contrary to the batch reactor case, the slow system is now two-dimensional
instead of one. In the batch reactor case C serves as a constant while here H is a variable
which converges to a constant xr for time goes to infinity. This mathematical detail has
large consequences. The bifurcation diagram Figure 5 shows that for D > 0 the full system
becomes unstable when xr is increased and the Hopf bifurcation curve Hr is passed, while
the reduced system where D = 0 is assumed in deriving the fast system, has still a stable
equilibrium in those situations. Hence the zero-order approximation approach fails when
this occurs. Therefore we propose a first-order approximation in the next subsection.
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7.2 First-order approximation

The terms proportional to εI1,2 as well as εD are retained and this yields the first-order
approximation. The fast system reduces to the three odes, (22b), (22d) and (22e).

The two slow variables H and x2 are now parameters of the fast system. For small
values of xr there is a stable interior equilibrium. However, when xr is large the full system
has multiple equilibria as a consequence of the predator consumption term proportional to
εI1,2, and this complicates the analysis and therefore we perform a numerical bifurcation
analysis where we used locbif. In (Kooi et al., 1998) we derived analytic expressions for
the chemostat case without recycling and maintenance: αi = mi = 0, i = 1, 2.

The calculated bifurcation one-parameter diagram is shown in Figure 7 where xr = 1600
and D = 0.001. The single bifurcation parameter is the slow variable x2. When asymptotic
dynamics is concerned, it is sufficient to consider H(t) = xr, (Thieme, 1992; Smith and
Waltman, 1994) and since we are mainly interested the long-term dynamics, we tookH(t) =
xr. There are two stable slow manifolds, AD and BC, and one unstable slow manifold,
AC. The multiple solutions are the trivial solution x2 = 0 and two roots of a quadratic
equation obtained by taking the right-hand side of (22b) equal zero. Observe that the fact
that the resulting equation is quadratic in x1 results from the predator consumption term
proportional to εI1,2 which was neglected in the zero-order approximation. A transcritical
bifurcation, where the graph of the quadratic function crosses the x1 axis, is denoted by
x2TC

and a tangent bifurcation, where the discriminant of this quadratic function is zero,
is denoted by x2T

.
Depending on the initial conditions x1(0), p1(0) and p2(0), as well as x2(0), the system

converges quickly towards a stable equilibrium of the fast system. When x2(0) < x2TC

it goes to the positive stable part of the non-trivial branch (left side of D) and when
x2(0) > x2T

to the stable part of the trivial branch (right side of B).
When x2TC

< x2(0) < x2T
there are two stable equilibria of the fast system. If x1(0)

lies below the curve AC in Figure 7, the system converges quickly to the trivial branch
(between B and C). If on the other hand x1(0) lies above the curve AC, the system goes
to the non-trivial branch (between A and D). In other words, the unstable fast manifold,
curve AC is a separatrix.

When the two parameters xr and D are so that x1T
< x∗

1 = (m2+D)k1,2/(µ1,2−m2−D)
there is a stable equilibrium and both reduced and full system converge when time goes
to infinity to this positive equilibrium. If, on the other hand, x1T

> x∗
1 then the reduced

system possesses a quasi-limit cycle, such as the trajectory ABCD in Figure 7, while the full
system shows a limit cycle also shown in Figure 7. Hence, this figure is also the phase-plane
plot for the full system where xr = 1600 and D = 0.001.

Observe that generally when H 6= xr these manifolds move slowly. On the stable trivial
fast equilibrium manifold BC the asymptotic dynamics is described by

dH

dt
= −D(H − xr) (27a)

dx2

dt
= −Dx2 , (27b)
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where x1 = 0 and p1 = 0 are substituted in (22a) and (22c). On the stable non-trivial fast
equilibrium manifold DA the dynamics is described by (22a) and (22c)

dH

dt
= −D(H − xr) (28a)

dx2

dt
= x2

(
µ1,2

x1

k1,2 + x1

−m2 −D
)
, (28b)

where x1 and p1 are the solutions of the equilibrium equations (22b) and (22d).
Subsequently for both the trivial and non-trivial equilibrium manifolds the density of

the nutrient, x0(t), may be calculated by the conservation relationship: x0(t) = xr−x1(t)−
p1(t)− x2(t)− p2(t). In Figure 7 we show these solutions for the reduced system x1(t) and
x2(t) as well as the stable limit cycle of the full system x1(t) and x2(t).

8 Discussion and conclusions

In the batch reactor the system where recycling of the nutrient takes place, evolves to
a state where the biomass is distributed over the different trophic levels, while without
recycling all biomass ends finally at the predator level and the other levels are exhausted.

In (Nisbet et al., 1983b) it is shown that with the Monod model being a special case
of the Monod-Herbert model where mi = 0, i = 1, 2, the transcritical bifurcation curve
TC and the Hopf bifurcation curve H intersect the horizontal axis where D = 0. The
results for the Monod-Herbert model depicted in Figure 5, and already given in (Nisbet
et al., 1983a), show that these bifurcation curves TC and H do not intersect the D = 0
axis but approach this axis when xr goes to infinity. That is a stable equilibrium exists
for non-zero, but possibly small, dilution rates. From these results it was concluded in
(Nisbet et al., 1983a) that maintenance has a stabilising effect. In Figure 5 the curves TCr

and Hr where maintenance is modelled and also nutrient recycling is taken into account
the bifurcation curves intersect the D = 0 axis as with the Monod model. Thus, nutrient
recycling counteracts the stabilising effect of maintenance.

In Figure 6 the biomasses are given for the model with and without recycling, that is the
Monod-Herbert model. Comparing the results for both models shows that for model (22)
the oscillations are more severe and at troughs in the cycle the biomasses can become very
small. However, when this occurs, the deterministic model formulation fails to hold true
and extinction due to demographic stochasticity is likely (Rosenzweig, 1971).

Figures 2 and 3 illustrate the power of the aggregation technique. After the short tran-
sient, the solution of the reduced model is close to that of the full model. The transcritical
bifurcations of the reduced model and full model, which terminates invasion of the prey
trophic level, occur at exactly the same bifurcation parameter values, Ĉ and C̃.

For large C-values, however, the time scales have to differ a lot (εµ1,2/µ0,1 ¿ 1) in
order to obtain reasonable approximations. When ε is not small enough, the solution of
the full model converges to a stable limit cycle while the solution of the reduced model
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converges to a stable equilibrium. A first-order approximation approach would give the
same qualitative long-term dynamics for both the full and the reduced model.

The zero-order approximation in the chemostat case, indicates a stable equilibrium for
the reduced model (where D = 0) and a limit cycle for the full model (when D > 0 but
small). Obviously a hypothesis for applicability of the Fenichel Theorem is not satisfied.
This can be explained in biological terms as follows. With D = 0 the reservoir, from which
the nutrient is supplied into the reactor, is decoupled from the chemostat reactor and the
situation resembles the batch reactor case. Hence, the parameter xr is meaningless when
D = 0. As a result, as time goes to infinity the total biomass H converges to xr if D > 0,
but is time-invariant when D = 0. Since in the aggregation approach the dilution rate D
is multiplied by the perturbation parameter ε, there is a discontinuity for ε = 0.

The first-order approximation approach gives a better long-term approximation without
extra computational efforts. With the first-order approximation reduced model for the
chemostat case, the transcritical bifurcations of the reduced model and full model occur
at exactly the same bifurcation parameter values. Furthermore, the tangent bifurcation
parameter values of the reduced model coincide with those at the Hopf bifurcation of the
full system. This implies that the reduced and full model start to oscillate when xr is
increased leaving D unchanged, at exactly the same parameter value.

The differences between the quasi-limit cycle of the reduced system and the limit cycle
of the full system shown in Figure 7 are related to the “delayed bifurcations” associated
with the tangent and transcritical bifurcations of the reduced system, see (Diener and
Diener, 1983; Eckhaus, 1983; Schecter, 1985; Rinaldi and Muratori, 1992b; De Feo and
Rinaldi, 1998). This phenomenon is more significant when in the parameter space the
system is close to a bifurcation point.

In this article we show that bifurcation theory and singular perturbation theory pro-
vide tools for the analyse of mathematical models of simple ecosystems when different time
scales for the trophic levels exist. The reduced model is lower dimensional and is therefore
easier to handle analytically and numerically. Numerical simulation of the reduced model
requires less computing time important with sensitivity studies and parameter estimation.
Application of the zero-order approximation perturbation technique does in the chemostat
case not always yield useful results. We showed that in those cases a first-order approxi-
mation is needed to get the same qualitative long-term dynamics for both the full and the
reduced model.
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Table 1: Parameters and state variables for both full and reduced model: t=time, m=biomass,
v=volume of the region of interest.

Parameter Unit Interpretation
t t Time
τ t Fast time variable
x0 m · v−1 Nutrient density
xi m · v−1 Biomass density
xr m · v−1 Nutrient concentration in reservoir
D t−1 Dilution rate
mi t−1 Maintenance rate coefficient
ki−1,i m · v−1 Saturation constant
Ii−1,i t−1 Food uptake rate coefficient
µi−1,i t−1 Population growth rate coefficient
yi−1,i — Yield
αi t−1 Faeces recycle rate
βi t−1 Metabolic products recycle rate

Table 2: Parameter set for the substrate-bacterium-ciliate model (ε = 1) after (Nisbet et al.,

1983a), and the substrate-bacterium-worm model (ε¿ 1) after (Kooi et al., 1998). In both cases

we have Ii−1,i = µi−1,i/yi−1,i and mi = 0.05µi−1,i. The values for the faeces recycle rates αi,

i = 1, 2 are taken equal to the maximum growth rate of the prey µ0,1. The nutrient density and

the biomass density as well as the saturation constants ki−1,i measured in gram can be converted

in C-mol with 24.6 gram dry weight per C-mol (Kooijman, 2000), where we assume that the

chemical composition of the nutrient, prey and predator are the same for the sake simplicity.

Parameter Units i = 1 i = 2
ε = 1 ε¿ 1

yi−1,i – 0.4 0.6 0.6
µi−1,i h−1 0.5 0.2 0.01
ki−1,i mg dm−3 8 9 50
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Figure captions

Figure 1: Material fluxes through the food chain with recycling. Food is ingested with rate
Ii−1,ifi−1,ixi. Per unit of time, the part (Ii−1,i − µi−1,i)fi−1,ixi is unusable and transferred
into faeces pi. The faeces are decomposed at an exponential decay rate αi. Maintenance-
associated products zi are formed at a rate mixi. These products are decomposed at an
exponential decay rate βi.
Figure 2: The biomasses of the predator and prey for the full system x2, x1 and the reduced
system x2, x1 as a function of time t, with C = 300 and initial conditions: x0(0) = 145,
x1(0) = 150, p1(0) = 0, x2(0) = x2(0) = 5 and p2(0) = 0. Solid lines are for the full system
xi(t), and dashed lines are for the reduced system xi(t), i = 1, 2.
Figure 3: The nutrient density for the full system x0 and the reduced system x0 as a
function of time t, with C = 300. Initial conditions as in Figure 2 thus x0(0) = 145. Solid
lines are for the full system x0(t) and dashed lines are for the reduced system x0(t).
Figure 4: Two-parameter bifurcation diagram for the model under the batch conditions (10).
The bifurcation parameters are ε and the initial biomass in the reactor C. Values assigned
to physiological parameters and reference values for the perturbation parameters are listed
in Table 2. The curve H marks supercritical Hopf bifurcation curves.
Figure 5: Two-parameter bifurcation diagram for the predator–prey model in the chemo-
stat with (α1 = α2 = 0.5) and without (α1 = α2 = 0) recycling (22). The bifurcation
parameters are the dilution rate D and the nutrient concentration in reservoir xr. Values
assigned to physiological parameters and reference values for the perturbation parameters
are listed in Table 2. The curves TC, TCr mark transcritical bifurcation curves, H and
Hr mark supercritical Hopf bifurcation curves.
Figure 6: One-parameter bifurcation diagram for the predator–prey model in the chemo-
stat with (α1 = α2 = 0.5) and without (α1 = α2 = 0) recycling (22). The bifurcation
parameter is the nutrient concentration in reservoir xr where D = 0.08. Values assigned
to physiological parameters and reference values for the perturbation parameters are listed
in Table 2. Solid curves are the stable equilibria and the extreme values of the stable limit
cycles. Dashed curves indicate the unstable equilibria.
Figure 7: Phase-plane plot for the full system as well as the one-parameter bifurcation
diagram of fast system of the model with recycling (22) where xr = 1600 mg dm−3 and
D = 0.001 h−1. Values assigned to physiological parameters and reference values for the
perturbation parameters are listed in Table 2 for ε ¿ 1. The closed solid curve is the
limit cycle (x1(t), x2(t)) for full system. The trajectory ABCD is the quasi-limit cycle for
reduced system. Point A indicates a tangent bifurcation point and point C a transcritical
bifurcation point, both for the reduced system. Two stable branches of the fast equilibrium
manifolds are B→C and D→A. The fast unstable equilibrium manifold curve AC is the
separatrix.
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