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Preface 

 
Modelling finds all of its importance in its reasoning. Indeed, the model 

formulation for a phenomenon implies having identified the problem previously and 
putting forward knowledge-based assumptions about the environment in which this 
phenomenon takes place. Indeed, apart from assumptions about biota, knowledge of 
the environment is necessary to model e.g. population dynamics. Modelling allows 
to: (i) put in evidence, quantify and simplify the process descriptions in the 
considered environment; (ii) determine not-measured parameters and understand non 
expected experimental results; (iii) structure next experiments, if the formulated 
model describes the studied phenomenon correctly. Finally, modelling may lead to a 
prediction step.  

The spatial and temporal scale that is chosen for the formulation is crucial as 
each process and interaction has its own scale at which it is important. The models 
which were proposed to study the bacterial population dynamics are mostly 
empirical: they don’t describe the processes at the individual level but they aim to 
represent the results at the population level. Moreover, they are mostly formulated on 
the basis of experiments done in equilibrium situations, making them inappropriate in 
changing environmental conditions.  

This thesis finds its basis in such problems. It improves mathematical 
formulations for the study of variable environments through the development of a 
mechanistic approach for the model construction. More precisely, we focused here 
on bacterial communities dynamics and the corresponding biogeochemical processes. 
Several steps were achieved: (i) the treatment of bacterial dynamics by classical 
models analysing the organic matter degradation, (ii) the comparison of classical 
models analysing the bacterial dynamics (the models by Monod and Droop) and a 
mechanistic one based on the Dynamics Energy Budget theory (DEB), (iii) the 
improvement of the description of bacterial communities dynamics and the 
biogeochemical processes. Firstly, as the variable environments imply starvation 
conditions, we described one of the possible adaptation strategies: the shrinking 
process of the cell in unfavourable conditions. Then, we developed a complete 
mechanistic model describing the biogeochemical processes of the nitrogen cycle and 
we study the impact of benthic population on the expression of bacterial metabolism.  
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General introduction 

 
Microbial activities play an important role in ecosystems and are used in 

different fields: health sciences (pathogen capacity, epidemiology, 
vaccination); agronomy and food research (optimization of plant and animal 
productions); environmental protection (mineral and organic cleanup, 
degradation of xenobiotics, and sprouts dissemination control). Among 
others, microbial activities are responsible for biogeochemical processes at 
the root of organic matter degradation. This degradation process releases 
minerals that serve as source for the first level of the trophic chain in the 
ecosystems.  

Modelling finds all of its importance in its reasoning. Indeed, formulating 
some model for biological processes and thus expressing the relations 
between variables implies having identified the problem previously and 
putting forward knowledge-based assumptions about the environment in 
which they occur. Indeed, modelling and experimentation should be done in 
parallel. The experimental results allow model formulations that lead to a 
better understanding of the system and to a structuring of other experiments, 
as a cycle. First, modelling permits to understand and quantify the role of 
each process in the environment under consideration. Then, it allows to 
underline and simplify the description of the predominant processes, testing 
some assumptions. Moreover, it can be a useful step in data verification, if 
the formulated model describes the phenomenon correctly. But modelling can 
also help to structure the experiments by a preliminary analysis. Furthermore, 
this approach can determine not-measured parameters and enable to 
understand interactions between processes and in particular when some 
experimental results are unexpected. Finally, modelling may achieve the 
prediction step.  

1 
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The degradation of organic matter has been modelled in different ways. 
Some biogeochemical models describe the interaction between organic 
matter and bacteria in the water column, but also include other processes 
such as carbon production, the transfer of matter to higher trophic levels and 
the different carbon pools (Anderson and Williams, 1998; Anderson and 
Williams, 1999; Anderson and Ducklow, 2001; Baretta-Bekker et al., 1995; 
Blackburn et al., 1996; Dearman et al., 2003; Lancelot et al., 2002; Spitz et 
al., 2001). For the benthic system, the early diagenesis models (Berner, 1980; 
Boudreau, 1996; Boudreau, 1997; Soetaert et al., 1996) are actually the most 
employed models. They use either Partial Differential Equations (PDE’s) 
(Berner, 1980; Crank, 1976; Guinasso and Schink, 1975; Matisoff, 1982), or 
Ordinary Differential Equations (ODE’s) (François-Carcaillet, 1999), and 
allow the analysis and the quantification of the mixing activity at the 
macroscopic scale (François-Carcaillet, 1999; Lawton, 1994; Wardle et al., 
1997). The considered biological processes are: (i) the non-local mixing 
processes of particles and interstitial water linked to macro-meiobenthic 
organisms (compound distributions as a function of depth); (ii) the 
degradation processes linked to the bacterial compartment. The various 
physical characteristics of the sediment, such as the sedimentation rate or the 
sediment porosity, can also intervene. 

However, their assumptions remain simplistic leading to some intrinsic 
problems to their formulation. Firstly, they are essentially based on empirical 
mathematical formulations. By definition, empirism (emperia in Greek means 
experiments) is based on experiments (in the broad sense) as the unique 
source of knowledge (1). Then, these empirical models are obtained from 
experimentations realised in equilibrium situations. But, natural 
environments are rarely at equilibrium. Finally, only few benthic models 
describe the microbial communities which are supposed to be in stationary 
state and large environmental perturbations will inevitably affect these 
communities. These perturbations can be natural such as the temperature, 
nutrient or salinity variations or can be anthropic such as the deposit of a 
hydrocarbon layer on the sediment that can quickly create an anoxic 
environment. Thus, their response to these perturbations must be described 
precisely in order to better represent the ecosystem response to environmental 
perturbations. 

 

(1) “Empirism” is a late school in Greek medicine in which practice was based on the 
observation of symptoms keeping off any speculation on invisible causes that were only 
accessible by reasoning. At that time, people believed that the earth was a disc and the sun 
turned around it, deducing that the earth was the centre of the universe and humans were 
superior. Galilee put the solar system in evidence by a scientific approach. 
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1.1  Variable environments 
We take an interest in variable environments because environments vary 

in reality. Indeed, even in “in vitro” experiments, the environment is not 
really constant depending on the considered scale. Different factors can have 
an impact on the considered ecosystem. The nature of the interactions is not 
always clearly determined and it can be difficult to judge the real effects. 
Since environments are complex, with lots of interactions between many 
variables, it cannot be always clearly decided when an environment is 
homogeneous and constant.  

The fate of the organic matter is conditioned by: physical (particles, size 
distribution, erosion, and porosity), biological (sedimentary mixing by 
benthic organisms), biochemical (metabolism by microbial communities) and 
chemical processes in the environment, which all interact. 

We will focus on the sedimentary column system. Among the biological 
processes, the mixing activity of macrobenthic organisms, known as the 
bioturbation process, is one of the major processes in the aquatic ecosystem 
functioning. The consumption, digging and movement activities of the 
macrobenthic fauna lead to significant sediment reworking and alter physical 
and chemical properties of lakes, rivers and oceans. Indeed, the bioturbation 
activity in the sedimentary column leads to different particles and solute 
fluxes. 

Moreover, this macrobenthic fauna has a direct impact on the bacterial 
biomass distribution (Fig. 1.1, case of an upward - conveyor belt). It ensures 
(i) a « passive » vertical fall in the burrow of sediment and adsorbed bacteria; 
(ii) an « active » transport of sediment and adsorbed bacteria through the 
digestive tract; (iii) a transport of bacteria attached on the organism; (iv) the 
development of some bacterial populations on excretion products; (v) 
macrobenthic organisms produce nutrients that support and feed on some 
bacterial populations (the « gardening » effect). 

Finally, the bioturbation activity leads to the formation of anaerobic 
micro niches in the aerobic sediment and the other way around (Fig. 1.2, the 
intake of reduced matter from the surface and of oxidised matter from the 
depth); these oxygenation modifications (spatial and temporal) affect 
bacterial metabolism and bring bacterial communities to a recomposition and 
a restructuration, modifying the organic matter degradation rates.  
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Fig. 1.1. The effect of bioturbation activity on bacterial biomass distribution. 
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Fig. 1.2. In the sediment, the distribution of dissolved dioxygen is linked to the 
mixing activity of macrobenthic organisms.  

Thus, macro fauna has a significant impact on bacterial communities: a 
direct effect on bacterial transport and an indirect effect on the formation of 
micro niches. Due to this complexity and to understand the environment 
changes, it is crucial to model the microbial communities dynamics that is 
responsible for biogeochemical processes.  
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1.2 Modelling bacterial dynamics  
The individual is usually not the main study subject in population 

dynamic models; the different species are grouped in functional units. The 
choice of the temporal and spatial scale for the formulation is important. 
Each process and interaction has its own characteristic domain in the time-
space scale. By changing the scale, some processes become more important 
while others negligible (Fig. 1.3).  
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Fig. 1.3. The scales in space and time at which the different levels can successfully 
be modelled are interlinked. Dynamics Energy Budget theory starts at the individual, 
because mass and energy balances are most clear at this level, and evolution affects 
this level as primary target.  

1.2.1  Classical models 

At the moment, some classical models, formulated at the individual scale 
(as Monod, Marr-Pirt and Droop), enable to analyse and quantify the 
dynamics of bacterial communities. All of them assume first an absorption 
process of the substrate from the environment, which is described by a 
hyperbolic function, and then the use of this substrate for growth. They differ 
in the way the substrate is used. We can distinguish:  

(i) The Monod model (Monod, 1942) considers a growth rate proportional to 
the absorption rate.  

(ii) The Marr-Pirt model (Marr and Ingraham, 1962; Marr et al., 1963; Pirt, 
1965) introduces the maintenance notion, that is the continuous use of 
matter in order to satisfy the needs of the individual.  
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(iii) The Droop model (Droop, 1968) introduces the quota or reserve notion, 
stored matter which fuels growth. Thus there are two steps: assimilation 
then growth.  

All of these model formulations are extensively presented in Chapter 3. 
However, since their formulation is simple, their assumptions are strong and 
differences in properties cannot always be translated in differences in 
population dynamics because of this simplicity. Indeed, they all assume a 
constant and homogeneous environment and they describe a system with 
only one limiting substrate by the use of the empirical hyperbolic function. 
Consequently, they offer a non-appropriate description of bacterial dynamics 
in case of perturbations in environmental conditions, such as those generated 
by macrobenthic organisms, or in case of multiple substrates.  

1.2.2  The Dynamical Energy Budget (DEB) theory 

The Dynamic Energy Budget theory (DEB, Kooijman, 1993) is 
formulated for individuals and quantifies the input and output fluxes of 
matter precisely, respecting the mass conservation law. In a general theoretic 
framework, it proposes a growth model for an individual based on 
mechanistic assumptions for the acquisition and the use of energy. Indeed, 
the DEB theory describes (Fig. 1.4) the way the individual assimilates 
substrates (S: food, light, nutrients) in the reserve compartment (E) and uses 
this stored energy, firstly for the maintenance and then for the growth process 
leading to the increase of structural biomass (V).  

Cell

S E V

P

A M

G

Cell

S E V

P

AA M

GG

 
Fig. 1.4. Representative scheme of the key processes of the Dynamic Energy Budget 
theory applied to a bacterial cell - A: assimilation, G: growth, M: maintenance. S 
represents the substrate, V the structural mass, E the reserve and P the maintenance 
product. The total biomass is: B = V + ε E where ε is the conversion coefficient of 
energy into mass. These processes are linked to respiration processes.  
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The uptake of substrates is based on fluxes of arriving substrates, not on 
substrate concentrations. The interest to work with fluxes is evident; it can 
capture photons and nutrients in one formulation and allows spatially 
heterogeneous environments. This theory was successfully applied to 
different organisms (microorganisms, Brandt, 2002; Evers, 1991b; insects, 
Péry et al., 2002; flat fishes, van der Veer et al., 2001; molluscs, van Haren 
and Kooijman, 1993). I took here a particular interest in the modelling of 
microorganisms. 

Absorption/consumption 

The organism extracts energy, electrons and building blocks (carbon, 
nitrogen, vitamins, etc.) from substrates by the absorption process. For 
unicellulars, substrates can be chemically simple (glucose) or complex 
(heptadecane), according to the species. For example, the chemio-
organotrophic bacteria obtain their energy through oxydo-reduction reactions 
and their carbon from the organic compounds.  

Assimilation 

The intracellular storage of matter is realised through the assimilation 
process. Energy and building blocks are fixed in reserves (E: carbohydrates, 
triglycerides and lipids, RNA, proteins); if mobilised, it becomes available 
for metabolic use. During assimilation, a part of the absorbed matter is 
rejected in the environment as faeces and other products. The amount of 
stored matter depends on the nutritional conditions. Indeed, the assimilation 
rate is proportional to the absorption rate with a constant conversion 
coefficient defined as the assimilation yield. But, the use of reserve does not 
depend on substrate availability. The reserve notion allows growth to depend 
on the internal state of the cell and not directly on the external nutrient 
density. Furthermore, we define a reserve density (e = E/V, reserve per unit 
of structure) in order to deal with its dynamics. Indeed, reserves cannot be 
considered as concentrations as their dispersion is not homogeneous in the 
individual.  

Maintenance 

The cell needs to maintain itself to conserve its integrity and the 
gradients in concentrations of metabolites across the cellular membrane; this 
is well accepted in microbiology. Maintenance does not depend on the 
available material but is a necessity, depending on the amount of structural 
mass. This is predominant whatever the environmental conditions are. It is a 
collection of processes: biomass turnover, transport, movement and defence. 
But it excludes the net production (growth and the reproduction) as they have 
their own cost and dynamics. There is no maintenance for the reserves 
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therefore we talk about somatic maintenance. Garby and Larsen (1995) have 
shown that the efforts linked to the mechanical work can be neglected.  

Growth 

Once maintenance is realised, the growth of structural biomass (proteins, 
carbohydrates, lipids, DNA) can occur from the remaining mobilised 
reserves. It depends on the reserve density and on structural mass. The 
differentiation in mobile (reserve) and non-mobile (structural biomass) matter 
allows a changing composition of the whole individual, depending on the 
environmental state. Indeed, structural biomass and reserve don’t change in 
their composition, but their relative amounts can change.  

Other processes: maturation and reproduction 

Maturation and reproduction (spore formation in some bacteria) are 
realised from reserves. Events in the cell cycle, such as the initiation of DNA 
duplication, are linked to the state of maturity. Then DNA duplication itself 
takes a fixed amount of time, followed by cell division. A cell divides itself 
by binary fission which can be considered to be fast. Furthermore, if the 
maturity and somatic maintenance costs relate to each other in a special way, 
the division takes place at a fixed structural mass. In the case of V1-morphs, 
which change in shape during growth such that their surface area is 
proportional to their volume, the individual and population levels coincide; it 
makes no difference if the population consists of many small or a few large 
individuals. The difference between these two levels is small for all 
organisms that divide into two for reasons given in Kooijman (2000, p118).  

Respiration 

The processes previously described, assimilation, maintenance and 
growth, all contribute to the respiration process, i.e. heat production or 
dioxygen consumption, or carbon dioxide production. For aerobic micro-
organisms, dioxygen consumption is linked to a substantial decrease of 
reserves. The respiration rate increases with the reserve density and decreases 
during starvation. We will study the nitrogen cycle and all the 
biogeochemical processes that are involved. 

The reserve dynamics and the specific growth rate for a microbial 
population (V1-morph model) are described in Appendix 1.A. 
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1.3  Enzymatic kinetics 
We take an interest in the substrate interactions, which involves enzyme 

kinetics, in order to study the uptake of multiple substrates. The classical 
models described previously mostly use products of hyperbolic functions for 
the absorption, which is based on Michaelis-Menten kinetics (Eq. 1.1). 
Indeed, Leonor Michaelis and Maud Menten defined an expression 
corresponding to Fig. 1.5, which is at the root of absorption models, for the 
determination of the enzymatic reaction rate jX of a limiting substrate X. 

 X Xm
X

Xj j
X K

=
+

 (1.1) 

 
Fig.1.5. Michaelis-Menten kinetics - X is the 
substrate, jX the enzymatic reaction rate, jXm 
the maximal reaction rate, KX the half 
saturation constant. 

 

All the variables and parameters are described in Appendix A, at the end 
of the manuscript.  

1.3.1 Synthesizing Units (SU) 

Compounds used by organisms for metabolism require enzymes for their 
chemical transformation. The synthesizing units (SUs) can be considered as a 
simple generalisation of the classical concept of enzyme (Kooijman, 1998). 
More specifically, SUs are generalised enzymes or complexes of enzymes 
which bind substrate molecules to synthesize molecules of product or a set of 
products. Compared to the classical kinetics of enzyme-mediated binding and 
dissociation, there is one simplification and one generalisation. The 
generalisation is that product fluxes are linked to arriving substrate fluxes, 
not to substrate concentrations. In spatially homogeneous environments the 
arriving flux can be taken proportionally to the concentration using a 
diffusion/advection argument; however more complex relationships are also 
possible. The simplification is that the back dissociation rate (the enzyme 
reversibility in their reaction), without any transformation, is supposed to 
occur at a negligible rate. 

 



10 Chapter 1 

To simplify the dynamics, DEB theory uses time scale separation for the 
processes at molecular and individual scale. To this end, it considers changes 
in fractions of SUs that are in the various binding states, and expresses 
processes at the individual level as function of these fractions at steady state. 
Considering fractions instead of numbers is a good simplification. Firstly, as 
a substrate molecule will be used by only one enzyme molecule, the number 
of enzyme molecules doesn’t necessarily increase the velocity of the reaction. 
Enzyme molecules can compete for substrate in an arriving flux of substrate 
molecules; spatial organization matters here. Secondly, if we take the number 
of enzyme molecules into account, we must describe precisely the formation 
and disappearance processes of enzymes in order to respect the mass 
conservation law but also the interaction processes (as the competition for 
substrate). This can complicate the model formulation.  

The fraction of SUs in the different binding states is indicated by θ** for 
binding state **, so that: 

** 1θ =∑  

In a supply system (i.e. a system that depends on the availability of 
material), the change in the fractions of bound SUs can be written as linear 
ordinary differential equations as: dθ / dt = Aθ  where θ  is the vector of the 
fractions in the different binding states of the SU and A the matrix of kinetic 
velocities. In this case, the kinetic velocities fulfil the following constraints 
whatever the environmental conditions are: 

ii ij
j i

a a
≠

= −∑  and 1 0T TA =  

where 1T is the transposed vector filled with the value one. 

We will see later than in the other case, in demand systems (i.e. systems 
that are controlled by production), contrary to supply systems, the change in 
fractions is no longer linear, and the constraints no longer apply.  

The concept of SUs can further be generalised and represent states of an 
entity, several compartments, and not necessarily a generalised enzyme in a 
biogeochemical process. The link between the different states, mostly 
represented by arrows in this manuscript, corresponds to the transformation 
conditions, from one state to another one, defining the interactions within any 
system.  

 



General introduction  11 

1.3.2 Substrate interactions 

Brandt (2002) depicted the way substrates are subjected to transformation 
(Fig. 1.6). We can define 4 modes of transformation of two substrates S and 
X into product C according to the relative role of substrates in product 
formation and to their interaction during processing.  
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Fig. 1.6. Transformation modes of two substrates S and X into products C (Brandt, 
2002). θ** is the fraction of Synthesizing Units in a particular binding state. 
Substrates can be either substitutable or complementary. Bindings can be either 
sequential or parallel.  

Substrates can be:  

(i) either substitutable, meaning that substrates can independently be 
transformed in C products. For two substrates A and B, we have:  

yAC  A → C   and   yBC  B → C 

(ii) or complementary, meaning that the process requires several 
substrates simultaneously, in fixed relative amounts to synthesize the final 
product. The lack of one substrate prevents the consumption of the other. For 
two substrates A and B, we have:  

yAC A + yBC B → C 

Moreover, the binding process can be either: (i) parallel meaning that the 
substrates do not interfere with each other in the binding process; or (ii) 
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sequential meaning that the different substrates interfere in the binding 
process. Indeed, they can be in competition or in inhibition. The Fig. 1.6 
represents the competition interaction.  

The inhibition process can control the transformation at three levels: (i) 
the accessibility of initial substrate – to achieve an enzymatic reaction, the 
substrate has to be accessible for the enzyme and thus to penetrate in the 
cellular compartment where the reaction occurs; (ii) the enzyme activity (the 
retroactive inhibition) – when the product of the transformation is 
accumulated. This can inhibit the enzyme which controls the first reaction, 
changing its form, and thus blocks the transformation; (iii) the synthesis of 
enzymes that catalyse the transformation.  

1.3.3  Particular case: the organic matter degradation in the 

nitrogen cycle 

In this manuscript, we will study only bacterial chemo-organo-
heterotrophs: organisms that obtain their energy from oxidation of organic 
compounds. Many organic molecules are potential substrates for the 
microbial growth and the number of reactions is huge. Nitrogen is the most 
important element of living organisms after oxygen, hydrogen and carbon 
and it mostly limits the primary productivity rate in most ecosystems. Thus, 
we will focus on the main processes taking place in the nitrogen cycle in the 
marine sediments: mineralization of organic matter (OM) (Eq. 1.2 for oxic 
and Eq. 1.3 for anoxic), nitrification (Eq. 1.4) and denitrification (Eq. 1.5). 

2 3
MinOxk

MinOxOM O P NH CO H O+ ⎯⎯⎯→ + + +2 2  (1.2) 

3 2 2An Oxidant MinAnoxk
MinAnoxOM P NH CO H O+ ⎯⎯⎯→ + + +  (1.3) 

3 2 3 22 NitkNH O HNO H+ ⎯⎯→ + O

2 2

 (1.4) 

3 3 2
Denitk

DenitOM HNO P NH CO N H O+ ⎯⎯⎯→ + + + +  (1.5) 

where PProcess is the product of the considered biogeochemical process and an 
oxidant can be methane, sulphate, etc. 

Bacteria can use the different electron acceptors of the nitrogen cycle for 
the functioning of its respiratory chain. I will consider the competition 
between the different electron acceptors. For the OM degradation, the most 
energetically favourable is the oxic mineralization (O2), then the 
denitrification (NO3) and finally the anoxic mineralization (an oxidant). But, 
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all these respiration processes have also regulation rules, depending on the 
environmental conditions.  

The oxic mineralization (Eq. 1.2) reduces the organic matter (OM) to 
ammonium using dioxygen. The nitrification (Eq. 1.4) is principally an 
aerobic microbial process where reduced nitrogen compounds (ammonia) are 
oxidized to nitrate with a consumption of dioxygen. The denitrification (Eq. 
1.5, Gayon and Dupetit, 1882) is an important step in the nitrogen cycle. This 
anaerobic respiration process is generally defined as the dissimilative 
reduction of nitrate to the dinitrogen (N2). It is realised by a whole range of 
enzymes. Dioxygen inhibits these enzymes with different sensitivity. Thus, 
depending on the dioxygen concentration, we will obtain a different final 
product of the denitrification. The anoxic mineralization (Eq. 1.3) is an 
anaerobic process (inhibited by dioxygen) which allows the transformation of 
OM in ammonium through an oxidant. It is inhibited by dioxygen and nitrate 
at the enzyme activity level. 

1.4  Thesis outline 
This work aims to improve present models analysing the bacterial 

dynamics by considering a mechanistic approach in order to study variable 
environments. This approach consists of describing the bacterial 
compartment at the enzymatic level, the interactions between different 
substrates and the relation between substrates and the considered community. 
Among others, the mechanistic approach allows a reuse of the parameter 
values. For example, if the composition of one species is known and the 
studied species has similar properties from a biological point of view, we 
could assume that its composition is identical to the first one. This will lead: 

(i) for degradation aspects, to the study of interactions between processes 
playing a preponderant role in the nitrogen cycle; for example, to 
determine the use of nitrate as function of the oxygenation conditions or 
to assess the role of the oxygenation oscillations on some biogeochemical 
processes. This model will help to quantify the velocity of organic matter 
degradation in variable conditions.  

(ii) for bacterial aspects, to determine the physiological state of bacteria in 
the different environmental conditions. 

For this, we have (i) to put assumptions on the role of each process and 
their interactions, (ii) to quantify them, (iii) to determine non measurable 
parameters, (iv) to interpret experimental results and (v) to verify the original 
assumptions. 
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This thesis improves the models analysing the organic matter degradation 
in the sedimentary column (based on the early diagenesis equation of Berner 
(1980)) by taking the bacterial dynamics into account. Chapter 2 shows the 
importance of bacterial dynamics using simulations. This work refers to a 
paper published in Acta Biotheoretica (Talin et al., 2003) as described in 
Appendix B at the end of the manuscript. 

Then, it compares and improves the present models for bacterial 
dynamics by accounting for their functionality. For this, we have constructed 
a mechanistic model for the dynamics of bacterial communities in sediments, 
developed from the DEB theory (Kooijman, 2000). This new formulation is 
tested against experimental data. Chapter 3 makes a comparative analysis of 
classical microbial populations models, with an application to a set of data 
(Bonin et al., 1992).  

Chapter 4 presents an improvement of the DEB theory (see 
Appendix 1.A for the problems of the DEB theory) by giving a new 
description of adaptation in case of nutrients limitation: the shrinking process 
(Appendix 1.B). Structure will be used only when reserve is not enough. This 
leads to an inhibition formulation for maintenance which is controlled by 
product formation (demand system). This work is submitted to Journal of 
Theoretical Biology (Tolla et al., Submitted) as presented in Appendix C at 
the end of the manuscript. We compare the new formulation with existing 
ones (Unilateral Binding Inhibition = UBI; Brandt, 2002; Kuijper, 2004, p35) 
and some simplified forms (Appendix 4.D).  

Finally, Chapter 5 analyses the effect of bioturbation on the nitrogen 
cycle. In this case, we assume that the principal effect of macrobenthic 
activities on microbial communities is changing the environmental 
oxygenation (RedOx oscillations). We applied here the new inhibition 
formulation developed in Chapter 4 on a supply system corresponding to 
biogeochemical processes: inhibition of a biogeochemical process of the 
nitrogen cycle by the presence of an inhibitory compound (as dioxygen for 
anaerobic processes). 

Work that has not been included in this thesis and has been submitted to 
Canadian Journal of Fisheries Aquatic Sciences (Appendix D at the end of 
the manuscript) simulates the influence of tubificids (Tubifex and 
Limnodrilus) on O2

 
concentrations in hyporheic sediments. The model took 

the hydrodynamic properties into account, the microbial respiration, and the 
paper stimulated effects of tubificids on microbial activity in the system. This 
study leads to a lot of problems, however, because of its assumptions. First, 
the bacterial composition is fixed and the populations are supposed to grow 
exponentially, thus it doesn’t vary with the presence of tubificids. Then, the 
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dioxygen concentration depends significantly on the interaction between 
tubificids and bacterial communities, and the tubificids distribution has an 
important impact on the biogeochemical functioning of the sediment. 
However, the interaction between Tubifex and bacteria is not well described. 
Indeed, the model is empirical and takes the different interactions into 
account in a comprehensive way. Thus in case of environmental 
perturbations, the model will not explain the change in the ecosystem 
correctly. These observations allow to identify the next steps in sediment 
research. 

Appendix 1.A. The reserve dynamics – construction 
of the specific growth rate in the DEB model. 

We treat bacterial cells as V1-morphs, i.e. individuals that change in 
shape during growth such that their surface area is proportional to their 
volume. This has as consequence that the dynamics of a population, i.e. a set 
of individuals, has a very simple relationship with changes of individuals. 
The change in the total amounts of structure and reserve is the sum of the 
change of the individual amounts. We have the following balance equation 
for reserve dynamics: 

 A C
E E

d E J J
dt

= −  with  (1.A.1) C G
E EJ J J= + M

E

where  

: the absolute reserve flux allocated to assimilation

: the absolute catabolic flux of reserve i.e. the reserve turnover

: the absolute reserve flux allocated to growth

: the absolute reserve flu

A
E
C
E
G
E
M
E

J

J

J

J x allocated to maintenance

⎧
⎪
⎪
⎨
⎪
⎪
⎩

Appendix A at the end of the manuscript gives more variables and 
parameters description.  

Assumption 1: strong homeostasis 

The DEB theory assumes a constant composition for the reserve (E) and the 
structure (V) but a variable ratio between both generalised compounds, thus 
biomass composition can vary; biomass is a weighted sum of structure and 
reserve (B = V + ε E with ε  a constant) 

With the reserve density e = E/V and from Eq. 1.A.1, we obtain the 
following equality:  
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( ) 1    d d de dV de d e dVE eV V e E
dt dt dt dt dt V dt V dt

= = + ⇔ = −  (1.A.2) 

Only the growth process has an impact on the amount of the structure of 
the individual:  

 
dV dVrV V r

dtdt
= ⇒ =  (1.A.3) 

where r is the specific growth rate. 

The absolute flux *J Π  of the substrate * allocated to the process Π is 
linked to the specific flux (by unit of structure) by * *J j VΠ Π= . By replacing 
Eqs. 1.A.1 and 1.A.3 in Eq. 1.A.2, we obtain: 

 A C
E E

de j j r
dt

= − − e M
E with C G

E Ej j j= +  (1.A.4) 

The specific catabolic flux (Eq. 1.A.4) is determined by some restrictions 
on the reserve density dynamics.  

Assumption 2: weak homeostasis 

If substrate density in the environment is constant, the reserve density 
becomes constant, even if the total biomass is changing: a small and a big 
population will have the same reserve density. 

Thus, the Eq. 1.A.4 becomes:  

( )?A
E

d e j f
dt

= −  

where f(?) is the unknown function of the reserve density, independent on the 
structural volume. Moreover, f(?) does not depend directly on the absorption/ 
assimilation process as the reserve use only depends on the individual states, 
given by the reserve and the structure. 

Assumption 3: reserve partitionability 

The DEB theory assumes that any particular compound in a single reserve 
system follows the same dynamics (Fig. 1.A.1). The catabolic flux, i.e. the 
flux that is mobilised from the reserve, depends on the amounts of reserve 
and structure. Multiplying this flux by an arbitrary factor has the same effect 
as multiplying the reserve with that factor. This condition is required to 
reduce the number of reserves smoothly, as has occurred in evolution 
(Kooijman et al., 2003).  
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Fig. 1.A.1. The reserve partitionability assumption in the DEB theory where 
maintenance is realised only from reserve. A: assimilation, M: maintenance, G: 
growth and e: reserve density. κA is an arbitrary fraction of assimilation. f(?) is the 
unknown function of the reserve density dynamics. 

So f must be homogeneous in the first degree in e such as                        
α f(e|θ) = f (α e|θ) with θ  a set of parameters. Furthermore, from the weak 
homeostasis assumption, at substrate steady state, the reserve density is 
constant.  

0        0        A A
E E

d e j e
dt

θ θ= ⇒ − = ⇒ = j e  

The assimilation flux is maximal (jAEm), if the substrate density is high. 
Reserve density is maximal (em) if assimilation flux is maximal.  

AEm mj eθ =  

θ corresponds to the reserve turnover rate hE. We have thus: 

 A C A
E E E E

de j j re j h
dt

= − − = − e M with C G
E E Ej j j= +  (1.A.5) 

Assumption 4: maintenance has priority over growth 

Mobilised reserve is first used for maintenance; the rest is used for growth.  

As reserve and structure are conditioned by the strong homeostasis 
assumption, the structure production becomes proportional to the flux that is 
allocated to growth:  

  (1.A.6) G
V VEj y j= G

E
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where yEV is the yield coefficient that is assumed to be constant.  

The specific maintenance costs are assumed to be constant. The first 
case, developed by Kooijman (2000), is when maintenance is realised only 
from reserve:  

 G
Vr j=  and M

E EP Mj y k=  (1.A.7) 

where kM is known (since Pirt, 1965) as the maintenance rate coefficient and 
yEP a yield coefficient.  

By replacing Eqs. 1.A.6 and 1.A.7 in Eq. 1.A.5, we obtain the following 
specific growth rate (Kooijman, 2000): 

 G E EP
V

EV

h e y kr j
y e
−

= =
+

M  (1.A.8) 

From the previous assumptions (Eqs. 1.A.5 to 1.A.7), we have:  

A C A
E E E EP M EV

d E J J J y k V y rV
dt

= − = − −  

This formulation leads to a flux of matter back to reserve, when the 
specific growth rate becomes negative, so that it can only be used as long as 
growth is positive. This formulation also has a thermodynamic problem: the 
maintenance costs from reserve and from structure are identical, while 
payment via structure has an extra step in synthesis. 
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Appendix 1.B. the specific growth rate improved by 
accounting for the shrinking process. 

If e < kM / hE, the specific growth rate becomes negative and structure 
starts to shrink. Formally this should involve a second maintenance 
parameter, namely the amount of structure that is required for maintenance. 
To improve the DEB theory and adapt it to starvation conditions we propose 
in Chapter 4 another specific growth rate with the condition that maintenance 
is realised from reserve in favourable conditions and from structure in 
starvation conditions. The specific growth rate is thus:  

  where G
V Vr j j= − M M M

PE E PV V My j y j k+ =  (1.B.1) 

where G
Vj  and M

Vj  are respectively the specific flux associated to the growth 
and the maintenance processes and yPE and yPV the yield coefficients in the 
maintenance process. 

By replacing Eqs. 1.A.6 and 1.B.1 in Eq. 1.A.5, we obtain:  
M

G ME E
V V

EV EV

h e j ej j
y e y e

−
= +

+ +
 thus 

M
MEVE E
V

EV EV

yh e jr j
y e y e

−
= −

+ +
 (1.B.2) 

The reserve and structure fluxes allocated to maintenance are described 
in Chapter 4. 

In this case, there is no back of matter in reserve when the specific 
growth rate becomes negative (assumptions Eqs. 1.A.5, 1.A.6, 1.B.1, 1.B.2):  

( )M M
EV E E EV VA C A

E E E
EV

y h j y jd E J J J eV
dt y e

+ +
= − = −

+
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Relations between bacterial 
biomass and carbon cycle in 
marine sediments: an early 
diagenetic model. 

 
Abstract 

A new model for early diagenetic processes has been developed that explicitly 
accounts for microbial population dynamics. Following a mechanistic approach 
based on enzymatic reactions, a new model has been proposed for oxic 
mineralization and denitrification. It incorporates the dynamics of bacterial 
metabolism. We find a general formulation for inhibition processes for which some 
of other mathematical relations are particular cases. Moreover a fast numerical 
algorithm has been developed. It allows us to perform simulations of different 
diagenetic models in non steady states. We use this algorithm to compare our model 
to a classical one (Soetaert et al., 1996). Dynamic responses on a perturbation of the 
particulate organic carbon (POC) input are studied for both models. The results are 
very similar for stationary cases, but with variable inputs, the model that accounts for 
bacterial biomass dynamics shows noticeable differences, which are discussed.  

 

 

 

Keywords: simulation - bacterial dynamics - biogeochemical processes. 
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2.1  Introduction 
Different physical, chemical and biological processes modify the organic 

matter that is deposited on the sediments. Those acting up to thousand years 
are called early diagenetic processes. Any estimation of the fluxes of organic 
matter in the ocean is based on the quantification of the early diagenetic 
processes. Indeed, when deposited on the sediment, the organic matter can be 
trapped definitely in the sediment in some cases and its degradation speed 
depends on the processes involved. 

Among the diagenetic processes, the present paper focuses mainly on the 
modelling of the microbiological ones. In the sediment column, there are 
some oxic microniches in the anoxic layer. Bacteria degrade the organic 
matter via a different metabolism that depends on the physical and chemical 
sediment properties. The rupture of the dioxygen gradient has thus a direct 
effect on the processes used by bacteria to alter the organic matter, by 
inducing RedOx oscillations, which in turn will change the total degradation 
rate. As a consequence, the quantification of these processes and their 
interactions provides a better understanding of the dynamics of the different 
chemical compounds in the sediments. 

We aim to analyse the dynamics of diagenetic processes in the sediment 
that is submitted to perturbations. These perturbations may be either natural 
(phytoplanktonic bloom) or the result of human activities (oil spill). It is the 
reason why we take the biological compartments into account explicitly since 
any perturbation should modify living communities, which in turn have 
different responses in their function with respect to their environment. In this 
paper: 

We present a mechanistic diagenetic model where the formulation of 
biological processes is based on bacterial metabolism, which involves 
enzymatic processes. In order to keep the model at the ecosystem level a 
rather simple, we use quasi-steady state assumptions for the enzymatic 
processes. 

We propose an advanced numerical program (in FORTRAN 90) to 
perform simulations; this program allows us to make simulations of the 
diagenetic system of a few months in a few minutes; this implies that we can 
study the impact of different perturbation scenarios (in non-steady states). 

These points provide the basis of the theoretical background for the study 
of perturbations of the benthic environment. We here only deal with two 
processes: oxic mineralization and denitrification. This choice is based on the 
two following reasons: (i) we need at least two different electrons acceptors 
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to analyse the interaction of two types of bacterial metabolism, (ii) we want 
to work with the simplest model and oxic mineralization in combination with 
denitrification are the main processes at the short time scale (few months) in 
the first centimetres of sediment. Nitrification is a process that is associated 
to oxic mineralization and consequently, an extra term is added to describe 
the effect of nitrification on the amount of nitrate. 

In the following section, we recall some generalities about usual 
diagenetic models in order to explain where our approach is different and 
why it can be useful. The third section concerns the description of our new 
model. The fourth section is devoted to the numerical scheme. Finally, we 
compare two models (with and without bacterial biomass dynamics) and 
discuss the results. 

2.2  Diagenetic models 
Early diagenetic models (Berner, 1980; Boudreau, 1996; Boudreau, 

1997; Soetaert et al., 1996) provide the quantification of fluxes and reaction 
rates based on measured profiles in different sediments. Usually based on the 
Berner's diagenetic equation (1980), they are the most frequently employed 
models for the benthic system. This equation is applied to dissolved as well 
as solid chemical species, and is a partial differential equation (PDE) 
incorporating physical transport processes and biogeochemical reactions. Its 
mathematical formulation appears under the following general shape: 

 
2

2

C C C
D W

t zz
∂ ∂ ∂

R= − −
∂ ∂∂

Σ  (2.1) 

Time variation = Diffusion + Advection + Reaction; 

with C the tracer concentration, D the diffusion coefficient, W the advection 
velocity and ΣR the biogeochemical reactions rates.  

 Diffusion process allows local transport of matter from one point to 
another one with random motion (Crank, 1976). The diffusion coefficient 
includes biodiffusion, bioirrigation and molecular diffusion effects.  

 Advection is an environmental bulk transport with the velocity W; it is 
the expression of different physical processes like (i) burial linked with 
particles sedimentation at the sediment interface (W is the sedimentation 
velocity) (Aller and De Master, 1984; Benninger et al., 1979; Fisher et 
al., 1980; Goldberg and Koide, 1962; Guinasso and Schink, 1975), (ii) 
compaction which corresponds to a reduction of sediment volume under 
the action of overlying sedimentary column weights (W is then the 
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particle or interstitial water movement resulting of this phenomenon) 
(Berner, 1980; Boudreau, 1997), (iii) advection phenomena linked to 
benthic organisms activity like the one gathered in “non-local” transport 
of “conveyor-belt” organisms (Boudreau, 1997; Fisher et al., 1980; Rice 
et al., 1986; Robbins, 1986). 

 The reaction terms R describe (i) the kinetics of the different compounds 
(organic matter, dioxygen, nitrate, manganese, etc.) via biochemical 
reactions, (ii) the sinks and sources of “non-local” transport model as 
sediment ingestion by conveyor-belt organisms or as irrigation 
(Boudreau, 1997). 

Berner's equation is the basis of more complex and more realistic models. 
For instance, Soetaert et al. (1996) proposes a model with two types of 
organic matter (with different labilities) which are subjected to transport 
(diffusive and advective) and biochemical reactions (oxic mineralization, 
denitrification, etc.). This model is applied to different types of marine 
sediments, such as deep and coastal environments. In this kind of model, 
attention is paid to the sequence of different biochemical reactions in the 
sediment according to a gradient of decreasing dioxygen concentration with 
respect to depth. 

However, in many papers, the impact of microbial organisms is not 
sufficiently taken into account. More precisely, only few models investigate 
the relations between bacterial biomass and organic carbon in 
biogeochemical models (in the column water: Anderson and Williams, 1999; 
in the sediments: Boudreau, 1999). Generally, the models do not explicitly 
take into account the dynamics of bacterial community. The assumption of 
steady state for bacterial populations densities is implicitly made, which 
supposes that bacteria are always present. It leads to relative simple 
biochemical terms in the models, which is very useful according to the 
complexity induced by the large number of involved processes. 

Classically, the biochemical processes have the following form 
(Boudreau, 1996; Rabouille and Gaillard, 1991; Soetaert et al., 1996):  

minox 2

minox, 2s

R O C
OxMin

K O
=

+
  for oxic mineralization (2.2) 

denit 3 2

denit, 3 2 inhib,denit

1S
s

R NO C ODenit
K NO O K

⎛ ⎞
= −⎜⎜+ +⎝ ⎠

⎟⎟   for denitrification (2.3) 
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with  

denit minox

denit,

minox,

,  : Maximum degradation rate for organic carbon
 : Half-Saturation Constant (HSC) for nitrate limitation
 in denitrification

  : HSC for oxygen limitation in oxic mineralizat

s

s

R R
K

K

inhib,denit

ion
 : HSC for oxygen inhibition in denitrificationK

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

The inhibition of denitrification induced by dioxygen is described by 
means of a decreasing function with respect to the dioxygen concentration. 
This function is based on empirical arguments which formulation depends on 
the authors. For instance, Rabouille et al. (2001) has drawn up denitrification 
process on the following way:  

 
3

3 2

2

max 3 2

3

exp
NO

R
m NO m O

R NO C ODenit
K NO K

⎡ ⎤⎛ ⎞
⎢ ⎥= −⎜ ⎟⎜ ⎟+ ⎢ ⎥⎝ ⎠⎣ ⎦

 (2.4) 

with  

3

2

3

max   : Maximum oxidation rate of the organic mater by NO3

  : Monod constant for oxygen diminution

 : Monod constant for nitrate consumption

NO

m O

m NO

R

K

K

⎧
⎪
⎨
⎪
⎩

These examples show that the biochemical part is usually based on 
Michaelis-Menten kinetics, possibly associated to an inhibition factor in case 
of competition between different electrons acceptors. For both denitrification 
process formulations, DenitS and DenitR, it can be noted that the inhibition 
term is large when the dioxygen concentration increases, keeping the 
denitrification rate low.  

The stationary state assumption for bacterial biomass leads to some 
theoretical limitations. Natural (phytoplanktonic bloom) or anthropic 
(hydrocarbon layer) perturbations of the environment will cause disturbances 
in living communities governing diagenetic processes; dynamical 
mineralization will be modified in return. Moreover, some bioturbation 
processes (Boudreau, 1986) lead to the creation of aerobic microniches in the 
anaerobic sediment (Fenchel, 1996). These oxygenation modifications lead to 
a transfer between RedOx area, a re-oxidation process and RedOx 
oscillations increase, inducing a recombination of bacterial communities and 
thus a modification of bacterial metabolism. Modelling microbial dynamics 
in relation with bioturbation is then important to understand the environment 
evolution. 
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2.3  Microbial activity modelling 

2.3.1  Degradation rates 

We here propose a new mathematical model for the sedimentary 
diagenetic processes, based on Berner’s diagenetic equation (1980). Our 
formulation incorporates physical processes and biogeochemical reactions 
realised by bacteria. It takes bacterial dynamics into account explicitly. We 
will describe differences between a classical model composed of 
biogeochemical reactions developed by Soetaert et al. (1996) and our new 
model. This comparison will be made in the section on numerical results. 

Our interest concerns the vertical distribution of dissolved dioxygen, 
solid organic carbon (POC), dissolved nitrate and bacterial biomass in the 
first centimetres of sediment column. The reaction terms of our model are 
obtained from enzymatic mechanisms of oxic mineralization and 
denitrification chemical reactions.  

Concerning the nitrification process, we only deal with the nitrification 
that is associated with oxic mineralization, resulting from the transformation 
of produced ammonium to nitrate. For the sake of simplicity, we have 
decided to avoid inserting the extra variable corresponding to the 
concentration of ammonium. Indeed, it supposes a complete and 
instantaneous transformation of ammonium produced by oxic mineralization. 
Thus, in order to remain rather close to the real set of processes, we took the 
nitrification kinetics proportional to mineralization. The proportionality 
coefficient is denoted γN and we will explain this part more precisely later on. 

The way we use to build the oxic mineralization rate is a common way in 
biochemistry, but it is rarely applied in biogeochemistry. Since we use the 
same way for building the denitrification rate, we recall the method here.  

The chemical reaction associated to oxic mineralization can be described 
schematically by: 

 .2 . 1'org O mink kC O C C Pθ θ θ+ + ⎯⎯→ ⎯⎯→ + +  (2.5) 

Organic carbon Corg can be transformed into mineral carbon Cmin. 
Available enzymes can belong to two states free or used. The fraction of free 
enzymes is denoted θ. and the fraction of enzymes bound to a dioxygen 
molecule is denoted θO. A temporary enzymatic complex CθO is formed 
during the reaction. P1 symbolises the reduced oxic mineralization products 
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released by enzymes at the end of degradation sequence. k and k' are the 
reactivity rates. 

The dioxygen kinetics, which gives the oxic mineralization rate, is given 
by: 

 2
2 .

dO kO C
dt

θ= −  (2.6) 

according to the Mass Action Law. The equation of temporal evolution for .θ  
resulting of Eq. 2.6 can be written as:  

 .
2 . ' O

d
kO C k C

dt
θ

θ θ= − +  (2.7) 

Let Θ = θ. + θO, Eq. 2.7 becomes:  

 (.
2 . ' O

d
kO C k C

dt
)θ

θ θ= − + Θ −  (2.8) 

Given difference in the time scale between enzymatic processes and 
biogeochemical processes, we can assume that the total number of enzyme is 
constant at the short time scale. It means that, at the geochemical time scale, 
dθ. / dt = 0 (Quasi Steady State assumption), and thus: 

 *
.

2

'
'
k

k kO
θ Θ

=
+

 (2.9) 

where θ* is the SU at steady state. Entering Eq. 2.9 in Eq. 2.6, we find:  

 minox 22 2 2

2 minox, 2
2

' '
'' s

R OdO k kO k OC C
kdt k kO K OO
k

Θ Θ
= − = − = −

+ ++
C

.

 (2.10) 

It is the classical form of Michaelis model of the Eq. 2.2 with Rminox = k’ 
Θ and Kminox,s = k’ / k. 

As for the oxic mineralization, we now consider the enzymatic reaction 
for denitrification process. In this case, enzymes react preferentially with 
dioxygen. A system of two reactions is needed to describe the complete 
enzymatic reaction of the organic carbon degradation: 

 
1 13 . 2'org NO mink kC NO C C Pθ θ θ+ + ⎯⎯→ ⎯⎯→ + +  (2.11) 

 
22 3 .NO orgkC O NO C 2Oθ θ+ ⎯⎯→ + + +  (2.12) 
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This set of reactions could be described by the following system of 
differential equations: 

 3
1 3 . 2 2 NO

dNO
k NO C k C O

dt
θ θ= − +  (2.13) 

 .
1 3 . 1 2' NO NO

d
k NO C k C k C O

dt 2
θ

θ θ θ= − + +  (2.14) 

Assuming a constant total concentration of enzymes Θ = θ. + θNO at the 
short time scale (Quasi Steady State Assumption) the stationary state of Eq. 
2.14 is given by:  

 * 1 2 2
.

1 3 1 2 2

'
'

k k O
k NO k k O

θ
+

= Θ
+ +

 (2.15) 

Entering this result in Eq. 2.13: 

3 1 2 2 1 2 2
1 3 2 2

1 3 1 2 2 1 3 1 2 2

1 31 2 2
1 3 2 2

1 3 1 2 2 1 3 1 2 2

1
1 3
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' '
'

' '
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'

dNO k k O k k O
k NO C k C O

dt k NO k k O k NO k k O
k NOk k O

C k NO k O
k NO k k O k NO k k O

k
C k NO

k NO k k O

⎛ ⎞+ +
= − Θ + Θ −⎜ ⎟+ + + +⎝ ⎠

⎛ ⎞+
= Θ − +⎜ ⎟+ + + +⎝ ⎠

−
= Θ

+ +
(2.16) 

The inhibition role of dioxygen can be seen in the denominator. To 
compare this result to Soetaert et al. (1996) (Eq. 2.3) – a classical Michaelian 
form with an inhibition factor – Eq. 2.16 can be written as: 

 

'
3 1 3 2

1 1 1
3 3

1 2 2

denit 3 2

denit, 3 inhib,denit 2

1
' '

1
s

dNO k NO OC
k k kdt NO NO O
k k k
R NO OC

K NO K O

⎛ ⎞
⎜ ⎟
⎜ ⎟= − Θ −
⎜ ⎟+ +⎜ ⎟
⎝ ⎠
⎛ ⎞

= − −⎜ ⎟⎜ ⎟+ +⎝ ⎠

2+  (2.17) 

 

Kinhib,denit is no more a constant but a linear function of NO3. 
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s
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⎧ = Θ
⎪
⎨ =⎪⎩

 (2.18) 

In conclusion, we find a denitrification rate that is rather close to that 
used by Soetaert et al. (1996) in which the inhibition 'constant' is no longer 
constant but is nitrate dependent. This method provides a mechanistic basis 
for the denitrification rate used in our biogeochemical model and for the role 
of biota in the diagenetic processes. 

2.3.2  Bacterial Biomass 

We add a variable for the bacterial biomass, which should be related to 
the amount of available enzymes Θ. For the sake of simplicity, we here 
assume that the total amount of available enzymes is proportional to bacterial 
biomass B: 

 EBΘ =  (2.19) 

Indeed a good description of the bacterial growth rate should use an 
energy budget model to get a relationship between metabolic activities and 
bacterial population growth (Kooijman, 1993). This is the topic of future 
work. We here assume a logistic growth of the bacterial population, with the 
intrinsic growth rate and the carrying capacity being functions of substrates 
(carbon, dioxygen and nitrate). Indeed, we assume that the intrinsic growth 
rate is proportional to consumed substrate: the more bacteria are active, the 
more they duplicate. The carrying capacity is supposed to be proportional to 
the available carbon resource, qualifying substrate availability and its 
accessibility by the biomass density. A simple differential equation based on 
these assumptions is: 

 ( ) 1Bac
B

B B

dB BOxMin Denit B
dt K
K C

α

γ

⎧ ⎛ ⎞
⎪ = + −⎜⎨ ⎝⎪ =⎩

⎟
⎠  (2.20) 

The coefficient  αBac traduces the bacteria population production rate 
according to the resource. When αBac = 1, this production rate is maximal and 
the bacteria profile will be almost proportional to that of POC (with γB as 
proportionality coefficient). We choose αBac = 0.3 (see Tab. 2.I and Fig. 2.3) 
because this value seems to be realistic (Goldman and Dennett, 2000). 
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2.3.3  The complete model 

We propose a model, which extends usual ones in the sense that it 
describes the bacterial biomass explicitly. If the bacterial biomass is 
maintained to a constant value then we get a usual formulation. In other 
words, if: 

 ( ),B t z 1=  (2.21) 

then our reaction terms are identical to Soetaert et al. (1996). 

The reaction part depends on the number of bacteria; so without bacteria, 
the organic components will not be degraded. Moreover, bacteria do not 
move by themselves; adsorbed to sediment particles, they will be moved with 
the sediment. 

In our case, porosity is considered to be constant. This relation is used to 
link dissolved and particulate elements: 

 
vol particle 1

vol dissolved
φ

φ
−

=  (2.22) 

where φ is porosity.  

A model with four state variables based on Berner's equation and 
describing particulate organic carbon (noted C), dioxygen, nitrate and 
bacteria mass, can now be formulated, given dynamic spatial variation: 
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(2.23) 

where Rminox = k’, Rdenit = k1’, Kinhib,denit is a linear function of nitrate, KB a 
linear function of POC and αBac is the transformation rate of POC in bacterial 
biomass (the growth efficiency). In this study, we consider a spontaneous 
nitrification reaction of the ammonium, produced by the oxic mineralization 
process. The transformation of ammonium induces an increase of nitrate with 
rate  linked to the nitrification process. 3

2

NO
Oy
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2.4  Numerical schemes 
In order to study the numerical solution of our mathematical model, we 

choose the finite volume method. The set of equations is integrated for a 
small volume CV (control volume) where the computed values are supposed 
to be constant. With Ostogradsky’s theorem, volume integrals can be 
changed into surface integrals on the CV faces (Ferzinger and Peric, 1999) 
and system becomes of the type: 

( ) ( ) 0z
V S S V

C Cdv Cwz nds D z nds R C dv
t z

β∂ ∂⎛ ⎞+ − −⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫ ∫ =  (2.24) 

where n is the outer-oriented normal vector; the CVs are based on a Cartesian 
2D mesh (node centred) with irregular steps. Each CV face is labelled with 
its cardinal direction (just North and South in our 1D case). 

This efficient computation method also adds the benefit to integrate the 
mass conservation equation naturally.  

For spatial discretisation, the simplest but accurate method of the 
midpoint rule is used for the approximation of surface integrals. For example, 
the integral of the value f at a North cell face is: 

 n n nSn n nF fdS f S f S= = ≈∫  (2.25) 

The same low-level approximation is used for the volume integrals and 
the value of the integral of q is Vqp where V is the control volume (C and qp 
the value of q at the CV centre. To approximate the values at the CV faces, 
we use linear interpolation between the two nearest nodes.  

The interpolation for the diffusive flux is also based on the assumption of 
a linear profile between two consecutive CV centres and, for example, the 
spatial gradient of C at the North face is:  

 N P

n N P

C CC
z z z

−∂⎛ ⎞ ≈⎜ ⎟∂ −⎝ ⎠
 (2.26) 

P represents the node; lowercase is used for faces and uppercase for 
nodes.  

The boundary conditions are the particular values given to each equation 
of the system at the borders of modelled space. These conditions must be 
well defined; the solutions must exist and be unique. If the concentration is 
given at the boundary, it is a Dirichlet condition; if the spatial concentration 
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gradient is given at the boundary, it is a Neumann condition. To the represent 
POC input, mostly dominated by bioturbation effects, a Neumann condition 
is used. For dissolved elements (dioxygen and nitrate), the concentration at 
the water-sediment interface is defined by a Dirichlet condition.  

If the boundary of the modelled space expresses a physical 
impermeability for an element, it is not necessary to define a boundary 
condition (advection and diffusion fluxes are null). For bacteria populations, 
we choose to consider no sink or source from the surface, so the fluxes for 
the surface-face of the CV are zero. 

For numerical diffusion, instability problems or computational costs, it is 
sometimes interesting to compute each different term of the convection-
diffusion equation separately with an appropriate temporal scheme. Douglas 
and Rachford (1956), Peaceman and Rachford (1955) proposed this splitting-
up for the first time. An explicit method is used for the non-linear reaction 
terms while a more accuracy implicit method is used for the transport 
equation. This splitting-up method can only be used for small disturbances, 
which means that dynamical fields have small local variations in time and 
space. 

For the Eq. 2.24, we have: 
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∫ ∫ ∫

∑∫ ∫
∂  (2.27) 

Consequently, we consider the transport terms and the reactions terms in 
the equations system separately. The time dependent equations of reaction 
terms are calculated first and then, this partial result is applied for the 
transport terms to find the result for the next time-step. We obtain for the 
explicit and implicit Euler method:  
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∫ ∫ 1*n++
 (2.28) 

where we used the shorthand notation Cn+1 = C (tn + ∆t) and the * indicates 
that is not the final value of the solution at tn+1. 
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To avoid instability and excessive numerical diffusion problems, we 
choose an implicit method to solve the system of linear equations for 
transport. However, given the large number of required computations, we 
need to use the accuracy of iterative methods like GMRES or bi-CGSTAB as 
proposed van den Vorst (1992). We used the Fortran 90 library "smlib v1.1" 
for sparse matrix calculations created by Meese (1998), which has routines 
for these iterative methods. Based on these tools, which compute only non-
zero elements, we have written accurate routines for products of sparse 
matrices, the solution of systems of linear equations and for matrix 
inversions. 

2.5  Simulations and Numerical results 

2.5.1  Steady State 

One-dimensional simulations are realised in a sedimentary column of 30 
centimetres. We used a 200 nodes grid with constant steps of 0.5 millimetres 
for the first 8 centimetres and increasing for the rest.  

We consider sediment porosity (φ) and temperature (T) to be constant 
throughout the sedimentary column (φ = 0.8, T = 15°C). Dissolved dioxygen 
and nitrate diffusion coefficients (respectively DO and DNO) - corresponding 
to molecular diffusion and bioirrigation, depending on biodiffusion - are also 
constant in the surface layer of sedimentary column (6 first centimetres). 
Their values are calculated by Soetaert et al. (1996) from sediment 
temperature and porosity, coefficient for temperature dependency of 
diffusion coefficient and molecular diffusion coefficient at 0°C of these 
compounds. We assume the bulk of sediment to be constant. The particles 
sedimentation rate is considered constant during time and throughout the 
sedimentary column (W = 1cm/10years). 

All the compound values, their dynamical fields and associated reactions 
are described in the following Tab. 2.I.  
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Tab. 2.I. Initial value of state variables and parameters used in the MODELS I and II. 

Notation value 
State Variables at the surface 

C  9000 µmol.l-1d-1 

O2 130 µmol.l-1 
NO3 20µmol.l-1 

Parameters 
Physical and numerical geometry 
zmax 30 cm 
N 300 
∆z 0.05 cm 
∆t 0.001 d 
Physical fields and constants 
W 1cm/10 yr. 
DO2 3.0 cm2.d-1 
DNO3 2.7 cm2.d-1 
DM O2 1.0 cm2.d-1 
DM NO3 0.9 cm2.d-1 
φ 0.8 % 
Biological 
DB DC 0.05 cm2.d-1 
αBac 0.3 l.(µmol C)-1 
γB 2.52E-04 %.(µmol C)-1 
Biogeochemical 
Rminox, Rdenit 0.04 d-1 
Kminox, s 3 µmol O2.l-1 
Kdenit, s 30 µmol NO3.l-1 
Kinhib, denit

 10 µmol O2.l-1 
2O

Cy  1 mol O2.(mol C)-1 
3NO

Cy  0.8 mol NO3.(mol C)-1 
3

2

NO
Oy  14 mol NO3.(mol O2)-1 
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Our study consists in a comparison of two models. The first one, the so-
called MODEL I, does not take bacterial biomass explicitly into account and 
is obtained from Eq. 2.23 where the bacterial biomass is maintained fixed at a 
unit value B(z,t) ≡ 1. It corresponds to usual type of models. The second 
model (MODEL II) is the one we developed in this paper and is actually 
given by Eq. 2.23. We start from a steady state configuration where almost 
all compounds are degraded and simulate a perturbation. Then we analyse the 
impact of taking the bacterial biomass explicitly into account via the 
responses of the different dissolved compounds to the perturbations. As a 
consequence, we first study a stationary state with constant input of chemical 
compounds (POC, O2 and NO3) at the surface. Even if only a few parts of 
early diagenetic processes are modelled here, realistic numerical values are 
used. 

The coefficient KB, which defines the maximum bacteria number locally 
present in the sedimentary column, depends linearly on POC concentration 
(Eq. 2.20). The larger the proportionality coefficient γB, the more the bacteria 
number in the environment will grow and the more mineralization processes 
become important. An analysis of the effect of this parameter γB on the 
bacterial biomass at steady state and on the POC quantity is presented on Fig. 
2.1. The value of γB is chosen such that both models have the same quantity 
of POC in the sedimentary column in steady state.  

In order to have a reference for the comparison between MODEL I and 
MODEL II, we started with the same total mass of POC for both models at 
steady state, which is obtained by putting γB = 2.52E-04 (Fig. 2.2).  

Vertical profiles at steady state are shown on Fig. 2.2 for both models. 
Starting from the water-sediment interface, POC is degraded by O2 and an 
exponential decreasing of these compounds could be observed. The NO3 
concentration is increased by the nitrification at the surface. The most 
important differences can be seen for dioxygen and nitrate profiles. MODEL 
II uses, on the whole, a smaller quantity of electron acceptors for degrading 
the same amount of POC.  

Given, the inputs of compounds at the surface and the bacteria growth 
coefficients, steady vertical profiles are obtained where almost compounds 
disappear (see Fig. 2.3). The differences between both models are coming 
from the vertical repartition of bacteria. Since MODEL I is similar to 
MODEL II if state variable B is fixed at 1, comparisons between models are 
possible. At this steady state, the profile for bacteria is almost proportional to 
that of POC for MODEL II. This repartition, mostly important in the surface 
layer, activates oxic mineralization effects. With a low quantity of biomass, 
MODEL I and II lead to similar results.  
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Fig. 2.1. Analysis of the effect of proportionality coefficient γB, included in the 
expression of the carrying capacity KB (Eq. 2.20), on the bacterial biomass at steady 
state and on the POC quantity. 
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Fig. 2.2. Vertical steady state profiles comparison of POC, O2 and NO3 between the 
MODEL I (solid line) and the MODEL II (dashed line) with the same total mass of 
POC (γB = 0.024). 
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Fig. 2.3. The vertical bacterial biomass profile with MODEL II (dashed line) 
compared with the POC profile (solid line). At steady state, both profiles are 
proportional. As a reference, a vertical straight line indicates the value of bacterial 
biomass assumed by MODEL I. 

2.5.2  Perturbations 

Starting from the precedent stationary state, a perturbation in POC input 
is applied. This is a theoretical perturbation where the amount of available 
carbon flux at the water-sediment interface is doubled. We aim to understand 
the bacterial response to an increased input at the surface. Fig. 2.4 shows the 
dynamics for both models simultaneously; the simulation resulting from the 
MODEL I is represented in solid lines while that obtained with MODEL II is 
in dashed lines. The number of each simulation corresponds to the days since 
the initial perturbation. The large differences for POC concentrations are the 
consequence of the response of bacterial biomass to the increase of the POC 
flux. 
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Fig. 2.4. Profiles evolution comparison of POC, O2 and NO3 concentrations between 
both models. The outline, resulting from the MODEL I simulation, is represented in 
solid line and in dashed line the profile evolutions of MODEL II. The number 
associated to each outline corresponds to the number of evolution day since the 
initial perturbation. 

The POC is half-degraded in the first centimetres of sediment. The 
system needs a long time to come back to a steady state, which is not yet 
reached after more than 1000 days for the MODEL I. The dioxygen 
concentration decreases fast and anoxic conditions reach the 2 centimetres 
layer after a month. When the new equilibrium state is approached, the 
sediment is anoxic after the depth of 1 centimetre. The nitrate concentration 
starts to vanish in both models only after a few days when POC penetrates in 
a weakly oxic layer. The nitrate peak concentration comes near the surface to 
settle down at a depth of 2 millimetres. 

Although, both models have similar trends, the burying of POC for 
MODEL II, is very limited and a new equilibrium seems to be reached faster 
(Fig. 2.5). 
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Fig. 2.5. The profiles of bacteria for MODEL II compared with POC profiles 
evolution 

The bacterial biomass dynamics follows that of the POC concentration. 
This increasing biomass has an important influence on the disappearance of 
POC. These simulations show a problem with our mathematical model since 
bacterial biomass is still important, even when there are no electron acceptors 
(see Fig. 2.4). This artefact can be avoided by adding terms corresponding to 
biomass loss (maintenance, mortality). This will be done in future work. 

Fig. 2.6 presents the rates of the biogeochemical processes, oxic 
mineralization and denitrification, that are taken into account in the models 
presented in this paper. Both models are presented in the same figure for 
comparison. Once again, we can see the role of the extra variable associated 
to bacterial biomass. Indeed, it can be seen that the oxic mineralization is 
intensified and the denitrification is reduced in MODEL II with respect to 
MODEL I. The deposition of organic matter leads to an intense bacterial 
production, which in turn translates into higher biogeochemical activities. 
This mineralization activity leads to a nitrate production and an activity peak 
of denitrification at a depth of 2 millimetres. 
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Fig. 2.6. Intensity comparison of the biogeochemical processes (oxic mineralization 
and denitrification) between the MODELS I (solid line) and II (dashed line). The 
number associated to each outline corresponds to the number of evolution day since 
the initial perturbation. 

Finally, we compare the matter assessment in the whole sediment 
column. This step should be important in practice since it concerns the role of 
modelling. Indeed, this type of models is often used to calculate assessment 
in order to know, for instance, if the sediment is a source or a sink of carbon, 
nitrogen, and so on. The results are presented in Fig. 2.7. We can see that the 
POC quantities are very different for both models. However, we also note 
that the significant differences for dioxygen and nitrate concentrations at the 
start of the perturbation vanish with the disappearance of compounds. The 
bacterial biomass increased proportional to the burying of POC. 
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Fig. 2.7. The temporal evolution comparison of POC, O2 and NO3 amounts in the 
whole sedimentary column between the MODELS I (solid line) and II (dashed line). 
The bacterial biomass of the MODEL II has been multiplied by 4 to adjust its outline 
to the POC one's. 

2.6  Conclusion 
We presented a diagenetic model where the bacterial biomass is 

explicitly taken into account. We built the model for microbial activity on a 
mechanism based on enzymatic processes. We then obtained the model for 
the column of sediment by using time scale separation and the quasi-steady 
state assumption. Dilão and Domingos (2000) suggested this method to build 
trophic chains; we show here that this approach is even more powerful and is 
useful to build general ecosystem models on mechanistic arguments. This 
method is a particular case of the aggregation of variables method described 
in Auger and Poggiale (1998). 

We have shown that the model without explicit bacterial biomass gives 
significant differences in the dynamics of the profiles as well as in the 
assessments. We shall sum up three points, which we consider as important 
in our approach.  

First of all, we note that the added particulate organic carbon is rapidly 
degraded when bacteria are taken into account: when the environment is 
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enriched, the bacterial biomass is enhanced in the upper sediment layer. This 
phenomenon cannot be simulated by MODEL I which exhibits an organic 
matter burial in deeper layers.  

The second point concerns the process intensities (oxic mineralization 
and denitrification). Simulations show that the oxic mineralization is 
enhanced at the sediment surface with MODEL II while the denitrification is 
reduced. This can be the result of the strong activity of the large bacterial 
biomass in the oxic zone. Since the POC is rapidly consumed, the deeper 
layer is poorer with respect to organic matter and thus the denitrification 
intensity is smaller. In MODEL I, where the bacterial biomass is constant, the 
added carbon is buried and transported in the anoxic zone where it is 
denitrified. This can also be seen in the nitrate profiles for both models: 
MODEL I exhibits a low profile for nitrate concentrations with respect to 
MODEL II.  

The last point deals with the simulation of the assessment: we see that the 
POC amount in the sediment is much larger in MODEL I than in MODEL II. 
This is the result of the previous points. However, we must say that there is 
no bacterial biomass loss in our model. This loss should in fact be a source of 
POC and a more complete model should give a lower difference in the 
assessment. 

From a numerical point of view, the use of an implicit temporal scheme 
was not necessary for the diffusion and convection rates, but it allowed the 
testing of the computational speed and the quality of results relatively to time 
and space steps. The finite volume method seems to be appropriate for this 
kind of modelling. The program was written of all models based on the 
equation of Berner; it turns to be effective. The program can be used for 2D 
simulations too, and simulations of dynamical response to macrobenthos 
perturbation will be tested. The chosen numerical discretisation was found to 
be efficient. 
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Abstract 

A comparison of classical models analysing the bacterial dynamics (as Monod 
and Droop) and a DEB based model has been realised through an application to a set 
of data. For each model, we took an interest in the quantitative and the qualitative 
fitting but also in the parameter variation with the increase of the dioxygen 
concentration. For the Monod model, the bacterial growth ceases as soon as the 
substrate disappeared from the environment. The two other models which are very 
close qualitatively offer a good fit to this set of data. In this case, the maintenance 
doesn’t play an important role and the Droop model, which takes reserve into 
account, is enough. Moreover, the model complexification decreases the mean 
distance between simulations and data but it clearly increases the variability from 
initial parameter value. Indeed, the model complexity in terms of numbers of 
parameters and variables must match the availability of data. Furthermore, all the 
parameters show a strong dependence on the increase of the dioxygen concentration. 
In simplified model, this strong variability in parameter values can come from some 
essential processes not taken into account. Although too complex for this particular 
data set, the DEB model obtains parameter values that are useful for perturbation 
studies.  
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3.1  Introduction 
Monod, Marr-Pirt and Droop are classical models of microbial growth in 

the chemostat, formulated at the population level. These models are not 
structured which means that all the individuals of the population are assumed 
to be identical (Kooi and Kooijman, 1994b). They link substrates and 
microbial biomass and they offer a good description of population growth for 
high substrates concentrations (Kooijman et al., 1991).  

This paper compares the classical models for the bacterial dynamics and 
a new mechanistic model based on the DEB theory, through an application to 
a set of data (Bonin et al., 1992). The Appendix A, at the end of the 
manuscript, offers a detailed description of all the parameters and variables 
used in this manuscript. 

3.2  Model descriptions 

3.2.1  The DEB model for V1-morphs 

The DEB theory has parameters at the individual level. Hanegraaf and 
Muller (2001) have developed a DEB model for V1-morphs and applied it to 
bacterial communities. They showed that this model explains the changes in 
the composition of bacterial biomass as a result of the change in growth rate. 
We propose here a mechanistic model, based on the DEB theory, describing 
the bacterial dynamics at the individual level and processes from enzymatic 
kinetics. From the DEB theory for the V1-morphs (Kooijman, 2000), we 
have:  

 ( )

A
X X

A G M
E E E

G
V

d X I j V
dt
d E j j j V
dt
d V j V
dt

⎧ = −⎪
⎪
⎪ = + +⎨
⎪
⎪ =⎪⎩

 (3.1) 

where X represents the substrate concentration, e the reserve density (unit of 
reserve by unit of structure), V the structural biomass density. IX represents 
the substrate supply,  is the specific flux of compound * associated to the *j

Π
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process Π (with here A: assimilation, G: growth and M: maintenance) and can 
be determined from enzyme kinetics. 

The specific flux associated to the assimilation process 

The assimilated substrate is converted to reserve. We can write the 
following enzymatic kinetics:  

'

. .
X Xa a

X EXX y Eα α α+ ⎯⎯→ ⎯⎯→ +  

where yEX is the yield coefficient of reserve on substrate in the assimilation 
process, α. is the free fraction of the synthesizing units (SUs) associated to 
assimilation process, αX the fraction of SUs that is bound to the substrate X; 
we have α. + αX = 1; aX and aX’ are respectively the binding and the 
dissociation rates. Refer to Appendix A for more description of parameters 
and variables.  

From the previous enzymatic kinetics, we obtain the following system:  

.

X

α
α

α
⎛ ⎞

= ⎜
⎝ ⎠

⎟  and  
'

'
X X X

X X X

j a
A

j a
ρ
ρ
−⎛ ⎞

= ⎜ ⎟
−⎝ ⎠

where ρX is the binding probability of X, ρX jX = aX X is the specific flux of X 
or the substrate availability for the assimilation process, such as: 

d A
dt
α α=  

By assuming a different time-space scale for the processes at the 
enzymatic and at the population levels, we solve the previous system at quasi 
steady state. Thus: 

*
.

' *

A
X X X

A
E EX X

j j

j y a X

ρ α

α

⎧ = −⎪
⎨

=⎪⎩
    with    

'
* * *

. . '1  and X
X

X X

a
a a X

α α α= − =
+

 

where α.
* and αX

* are the SU fractions at steady state free and bound to 
substrate X bound respectively. For the assimilation process, we have:  

 A
X XAm

X

Xj j
X K

=
+

 (3.2) 
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This is similar to the Michaelis-Menten kinetics with: 

'
XAm Xj a=  and 

'
X

X
X

a
K

a
=  

where jXAm the maximal specific absorption flux of the substrate, f(X) a 
Michaelis-Menten function with KX the half saturation constant. 

The cell will use the mobilized reserve for maintenance first and then the 
rest for growth. 

The specific maintenance flux 

If the maintenance is realised only from reserve, it is not necessary to 
describe the kinetics. Indeed, the maintenance cost (kM) is supposed to be 
constant for a given cell size, i.e. by unit of structure. The specific flux of 
reserve allocated to maintenance is: 

 M
E EP Mj y k=  (3.3) 

The specific growth rate 

The corresponding kinetics for growth can be written as follows for an 
enzyme molecule γ :  

'

. .
E Eg g

E EE yγ γ γ+ ⎯⎯→ ⎯⎯→ + VV  

The use of reserves in the DEB theory follows from two conditions: (i) 
the reserve dynamics is partitionable; (ii) the reserve dynamics is weak 
homeostatic (refer to Appendix 1.A). We obtain:  

 A
E E

de j h e
dt

= −  and G E EP
V

EV

h e y k
j

y e
−

=
+

M  (3.4) 

where hE e is the flux from reserve, yEP kM is the maintenance cost realised 
from reserve, e + yEV is the total energy costs for biomass (reserve plus 
structure). 

By replacing Eqs. 3.2 to 3.4 in Eq. 3.1, we finally obtain the following 
ordinary differential equations:  
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( )

( )

X XAm

E

E EP M

EV

dX I j f X V
dt
de vf X h e
dt

h e y kdV V
dt y e

⎧
= −⎪

⎪
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−⎪
=⎪ +⎩

 
( )

X

EX XAm

Xf X
X K

y jν

⎧ =⎪ +⎨
⎪ =⎩

 (3.5) 

This model gives a biological interpretation of the parameters jXAm and 
KX, but it also has one more parameter hE.  

We have the following cases: 

If hE e > yEP kM → r > 0: part of the reserve flux is used for the maintenance 
(thus maintenance is only realised from reserve). 

If hE e < yEP kM → r < 0: there is not enough reserve to realise maintenance, 
part of the structure is used which leads to the shrinking phenomenon. But in 
starvation conditions, this formulation leads to a return flux in reserve E and 
to a thermodynamic problem (see Appendix 1.A). 

3.2.2  The classical models 

The classical models are particular cases of the DEB model (Kooi and 
Kooijman, 1994b).  

The Monod model is frequently used for the growth if only one substrate 
is limiting growth. It assumes that the growth rate is proportional to the 
substrate assimilation rate. Biomass growth ceases as soon as the substrate 
disappears. The Monod model is a particular case of the DEB theory under 
the following conditions: 

( )

( ) max

  and    and  0       and  

if   1 

E
EV E M

EV

E

EV

h
y h k r e e

y
h

f X r r
y

→∞ →∞ = ⇒ = =

= → = =

f X
 (3.6) 

Marr and Pirt introduce the maintenance notion which gives some 
stability to the model. This group of processes is realised from the structure 
in the Marr-Pirt model and is not differentiable from death. But both losses 
lead to different products that don’t have the same role in the ecosystem 
functioning. Like the Monod model, it presupposes a constant composition of 
the bacterial biomass. The Marr-Pirt model is a particular case of the DEB 
theory with the following conditions: 
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( )
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(3.7) 

The Droop model assumes that the growth rate is a function of the 
limiting nutrients inside the cell. There is no direct relation between the 
growth rate and the extra-cellular nutrient concentrations. This is the notion 
of reserve or quota allowing the growth process to continue for a while after 
the disappearance of substrate.  

The Droop model was initially formulated with the number of individuals 
(N) and a quota that represents the overall nutrient (i.e. chemical element) in 
an individual (Q in mol X.N-1). A transformed Droop model, considering an 
amount of structural biomass instead of an individual number and reserve 
instead of quota can be obtained from the DEB model with the following 
conditions.  

max

min

if 
0   0  

if 0

EV E
E

M E
EVEV

EV

e y r r h
h e

k r h e
e y r re y

y

>> → = =⎧
⎪= ⇒ = ≥ ⇒ ⎨ << → = = →+ ⎪
⎩

 (3.8) 

However, the Transformed Droop model conserves the same dynamical 
properties than the initial Droop model and allows the mass conservation 
law.  

The Tab. 3.I, proposed by Kooijman (1993), gives a classification of the 
previously described models, from their construction assumptions. Kooi and 
Kooijman (1994b) show that classical models have a less efficient fit to data 
than the DEB model. The introduction of both reserve and maintenance to the 
Monod model is necessary to describe the microbial dynamics that they 
studied. The introduction of only reserve leads to a bad fit compared to the 
Monod model. 

 



Comparison of bacterial dynamics models 49 

Tab. 3.I. Classification of the present models analysing the bacterial dynamics, 
according to their construction assumptions. 

  Reserve 
  e = 0 e > 0 

m = 0 Monod Droop Maintenance 
m > 0 Marr-Pirt DEB 

3.3  Models comparison through an application 

3.3.1  Data and fitting assumptions 

The studied bacterial strain has been isolated from coastal marine 
sediment. It has been identified as being Pseudomonas nautica with the 
reference Pseudomonas nautica n° 617 / 1.85. It is a facultative aerobic strain 
which means by definition that it is able to fulfil both the oxic mineralization 
and the denitrification processes and thus to use independently dioxygen, 
nitrate, nitrite and nitrous oxide as electron acceptor for its respiratory 
functioning. This characteristic allows us to study the competition between 
the different electron acceptors.  

The experimental study by Bonin et al. (1992) aimed to determine the 
effect of oxygenation on the enzymatic activity associated to the oxic 
mineralization and the denitrification processes. It consists of following the 
bacterial growth of Ps nautica in a batch culture. The cells were cultivated 
under aerobic and anaerobic conditions, and in presence and absence of 
nitrate. For each experiment, they applied an initial concentration of nitrate, 
carbonated substrate (sodium lactate: C3H5O3Na) and dioxygen in 
percentage. From one experiment to another one, they applied different 
dioxygen concentrations at steady state (0, 10 %). The nitrogen, necessary to 
construct its living material, can be obtained either from the substrate 
(complex organic matter) or from the dissolved ammonium or nitrate present 
in the environment. But to be used in metabolism, the nitrate will have to be 
previously transformed into ammonium first.  

As the N2, N2O and NO compounds are in gaseous form, Bonin et al. 
(1992) measured (i) the respiratory activities through the consumption and/or 
the production kinetics of the different denitrification step and more 
particularly the nitrate and nitrite concentrations, (ii) the amount of 
carbonated substrate that remained at the end of the experiment and (iii) the 

 



50 Chapter 3 

optical density (O.D.) which is an indicator of bacterial biomass (number of 
cell) with the following relation for Pseudomonas nautica (Marinobacter):  

  6 -1 O.D.  6.78 10  cells.ml⎯⎯→ 1

As the model can be very complex relative to the amount of data and of 
measured parameters, we made some assumptions:  

(i) We neglect the nitrification process which constitutes a nitrate supply 
by means of the transformation of ammonium. In that way, we 
assume that the bacterial strain is unable to realise this process.  

(ii) We also neglect the mortality term which is important at a larger 
space time scale than the experimental one.  

(iii) The carbon and the dioxygen concentrations are assumed to be 
constant as the experimental results only provide the initial carbon 
value and consider dioxygen at steady state during each experiment.  

(iv) The terminal oxydase, responsible for the oxic mineralization, is 
always present in the environment and its concentration is supposed 
to be constant. 

3.3.2  Fitting method 

To justify the mechanistic model, we compared the different models 
(Monod, Droop and DEB) through the parameter values that minimize the 
Euclidian distance between model simulations and experimental results via 
the simplex method (Matlab, fminsearch). For each model, we took an 
interest in the quantitative and the qualitative fitting but also in the parameter 
variation with the increase in the dioxygen concentration.  

Distance 

We first calculated the weighted Euclidian distance between 
experimental data and the model simulations (the biomass and the dissolved 
nitrate concentrations) under the different environmental conditions (different 
dioxygen concentrations at steady state). The distance for the compound X is:  

 ( ) 22
1

1

ˆ ,...,
m

X X X ni i
i

D y y p p
=

⎡ ⎤= −⎣ ⎦∑  

where  is the observed concentration of X and yXi the concentration of X 
obtained from simulations with parameters (p1, ..., pn) at time step i (1 < i < 
m). 

ˆX iy
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We have two elements: the biomass (DB) and the nitrate (
3NOD ) that are 

not comparable in terms of units. To normalise and give significance to the 
sum of the distances, we weight by the following stoichiometric coefficient:  

 
[ ]max

3 max

obs

obs

B
NO

γ =
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 such that 
3

2 2 2
B ND D Dγ= + O  (3.9) 

where [Bobs]max and [NO3obs]max are the maximal observed biomass and 
dissolved nitrate concentrations. Thus the overall distance D is expressed by 
unit of biomass.  

We then minimize this function D of several variables (p1, ..., pn) by the 
simplex method (function fminsearch in Matlab). 

Local or global minimum 

We want to know if a minimum obtained for a set of parameters is local 
or global, by searching the form of the least square distance curve. This study 
can be realised by varying the initial parameter values of the fit. In this way, 
we could see if the fitted parameter values are optimal and independent of the 
initial parameter values. For example, if the curve is flat in its minimum, we 
will find a lot of parameter values for a same distance.  

From the different simulations, we measure the mean (M) and the 
variability (V) of the parameter p. Contrary to the classical standard 
deviation, the variability of the p parameter is without dimension and must be 
comparable from one model to another one or from one parameter to another 
one: 

 ( ) ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

n

i i

i

p
pp

pV
1

2

 (3.10) 

where pi is the value of the parameter p obtained after the fit i, n the total 
number of numerical simulations with different initial parameter values for 
the same data set, and p  the mean of all the fit on the same data set. 
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3.3.3  Results 

Reserve as a part of the total volume 

Kooijman (2000) showed that the contribution of the reserve in the total 
cell volume is negligible. Consequently, the living biomass volume comes 
essentially from the structure compartment. Indeed, in the equation               
B = V + εVe, after the fit of B, the ε value is estimated between 10-1 and 10-

16. Moreover, there is a significant change of the parameter values if the 
reserve would contribute to the total volume of the bacterial biomass but 
without changing significantly the distance D. In this study, we will neglect 
the contribution of the reserve in the total volume of the bacteria.  

Qualitative and quantitative study 

We study qualitatively which model and which parameter set has the 
minimal curved shape (sigmoïdality) compared to the data, quantitatively we 
measure the Euclidian distance between the experimental data and the 
different model simulations.  

Then, to compare the different approaches and to determine which 
process takes an important place in this data, we fix some parameter values: 

(i) in the Droop model from the Monod one,  

(ii) in the DEB model from the Droop and Monod ones. 

The Fig. 3.1 shows the Monod, Droop and DEB model fits to the data 
from Bonin et al. (1992) with all the parameter values variable and the Fig. 
3.2 with some parameter values fixed. 

The Tab. 3.II describes the correspondent distance (Eq. 3.9), the mean 
parameter values and their variability (Eq. 3.10) of the Monod, Droop and 
DEB models for different steady state dioxygen concentrations (0% and 
10%), in black without any parameters fixed and in grey the fit with some 
parameters fixed (in bold).  
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Fig. 3.1. Models fit with variable parameter values: Monod (dot line), Droop (dashed 
line) and DEB (line) to the data set from Bonin et al. (1992, dots): for dioxygen at 0 
and 10%. The corresponding Euclidian weighted distances and the set of parameter 
values are presented in Tab. 3.II. 
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Fig. 3.2. Models fit with some parameter values fixed: Monod (dot line), Droop 
(dashed line) and DEB (line) to the data set from Bonin et al. (1992, dots): for 
dioxygen at 0 and 10%. The corresponding Euclidian weighted distances and the set 
of parameter values are presented in Tab. 3.II. 
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Tab. 3.II. Parameter values of the Monod, Droop and DEB models for different 
steady state dioxygen concentrations (0% and 10%). In black without any parameters 
fixed, in grey the fit with some parameters fixed (bold). Indeed, some parameter 
values of the Droop model are fixed from the Monod one, and for the DEB model 
from Droop and Monod ones. M is the mean parameter value obtained after the fit 
from different initial parameter values and V its variability (Eq. 3.10). D is the mean 
of Euclidian weighted distance between the experimental data (nitrate and biomass) 
and the model simulations (Eq. 3.9). jNAm is the maximal assimilation rate of nitrate 
and KN  the half saturation constant. The extreme results are not taken into account. 

O2 = 0% O2 = 10%  
M V M V 

 Monod 
jNAm 21,24 4,48E-10 20,24 1,11E-10 
KN 1,48 5,89E-9 12,6 3,02E-10 

hE/yEV 0,26 3,37E-11 1,34 1,1E-10 
D 0,022 7,3E-10 0,31 0 
 Droop 

jNAm 21 21,24 0,03 0 12,71 20,24 0,3 0 
KN 1,2 1,48 7,2 0 0,31 12,6 24598 0 

v = hE 3,7 1,05 8 0,25 1,37 1,028 0,352 0,075 
yEV 14,4 4,3 5,11 0,21 1,18 0,72 0,975 0,023 
e0 1,4 2,27 560 3,4E-2 3,08 7,31 20,2 0,848 
D 1,8E-2 1,6E-2 0,08 0 0,24 0,25 0,015 0,001 
 DEB 

jNAm 23,98 21,24 0,66 0 10,49 20,24 0,09 0 
KN 1,74 1,48 20 0 1,8 12,6 2264 0 
v 1,9E-5 1,05 101 0 0,25 1,028 6,5 0 
e0 27,72 2,27 1354 0 0,1 7,31 1E+11 0 
yEV 3,7E-2 4,3 6,9E+5 0 0,59 0,72 5 0 

yEP kM 0,4474 5E-4 65,8 ∞ 0,58 1,8E-11 7,6 24,5 
hE 0,23 1,03 963 2E-3 0,8 1 0,17 3,41 
D 1,5E-2 1,4E-2 5,3E-3 Div / 0 0,19 0,2 Div / 0 Div / 0 
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The Monod model fit at 0% and 10% of dioxygen is efficient for the 
nitrate but the biomass growth stopped earlier than the experimental data. 
Indeed, the bacterial growth ceases as soon as the substrate disappeared from 
the environment. This result is intrinsic to the model formulation.  

The two other models offer a good fit to this set of data. They are very 
close qualitatively, except for the case of 10% of dioxygen with variable 
parameter values (Fig. 3.1). Indeed, the DEB model, that takes into account 
the reserve and the maintenance notions, indicates a possible fit of the 
biomass data, while the Droop model shows a nitrate disappearance sooner 
than the set of data. 

The corresponding mean distance (Tab. 3.II) between observations and 
numerical simulations is higher for the Monod model than for the two other 
models which are really close. Indeed, the model complexification decreases 
the mean distance between simulations and data but it clearly increases the 
variability from initial parameter value: it is much more difficult to find a 
global minimum. More particularly, the maintenance parameter (in the DEB 
model) doesn’t change the qualitative behaviour or improve the distance. 
Indeed, the maintenance may not play an important role in this data set.  

Parameters evolution with the dioxygen increase 

Among the other results, all the parameters show a strong dependence on 
the increase of the dioxygen concentration (Tab. 3.II). The numerical 
experiments suggest a variability of the value of the half saturation constant 
of nitrate KN, from one dioxygen concentration to another one, weaker for the 
models that account for reserve and maintenance than for the Monod model. 
Indeed, in simplified model, this strong variability in parameter values, from 
one dioxygen concentration to the other one, can come from some essential 
processes not taken into account.  

The half saturation constant KN and the initial amount of reserve (e0) 
show the highest variabilities (V). 

The maximum assimilation rate of nitrate jNAm decreases with the increase 
in dioxygen concentration. Indeed, in oxic conditions, the nitrate is no more 
the substrate use as electron acceptor. Furthermore, with variable parameter 
values, the maintenance cost is higher for 0% of dioxygen than for 10%.  

For the Monod model, the parameters variability compared to the initial 
values is negligible for 0%. For a 10% oxygenation, we obtain two possible 
sets of parameter values, that correspond to two local minima and for which 
the distance between model and data is small. We have represented the set 
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with the smallest distance. Note that the ratio between jNAm and KN is constant 
when we started from different initial values. 

For the Droop model, the ratio between jNAm and KN is not longer 
constant, but the ratio between v and g doesn’t vary in this model. Then, we 
fixed some of the parameter values from the Monod model (mean values of 
jNAm and KN obtained from the Monod fit, the bold numbers in Tab. 3.II) and 
we estimated the others (v = hE, yEV and E0).  

The parameter variability (V), when we started from different initial 
values, is higher for the more complex models than for the Monod one, 
whatever the dioxygen concentration is. This strong variability can come 
from an over-parameterisation. To avoid this, we fixed some of the parameter 
values (the bold numbers in Tab. 3.II) and we estimated the others.  

The variability with the change of the initial parameter value is smaller 
with equivalent distances. This technique improved the fit of the Droop and 
DEB models (Fig. 3.2). 

The over-parameterisation problem increases with the number of 
parameters. This phenomenon inevitably resulted from our methodology. 
Indeed, the data only provides the nitrate and bacterial biomass evolutions at 
the surface while the model specifies the intrinsic processes to these curves.  

3.3.3  Discussion - conclusion 

In conclusion, it is not necessary to make classical models more complex 
for this kind of data which are at constant environmental conditions and 
which involve only few measured variables. Indeed, in this case, the Droop 
model, which takes reserve into account, is enough. Present empirical models 
allow to reproduce a particular ecosystem under constant conditions, but in 
case of environmental change, the parameter values change and the 
reproducibility gets lost. The mechanistic model, which is close to the 
biological processes, needs more data to be parameterised and analysed. 
Indeed, the model complexity in terms of numbers of parameters and 
variables must match the availability of data. It has been constructed to study 
the effect of variable environmental conditions as produced by the 
bioturbation activity of the macrobenthos. Although too complex for this 
particular data set, our model obtained parameter values that are useful for 
perturbation studies.  

Kooijman (2000, p321) showed that two different models can pass by the 
same points with different parameter values, when they are more complex 
that the data. In our case, for example, measurements of the carbonated 
substrate would have completed this study. The half saturation constant value 
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equals to zero for the Droop model, but is different from zero for the Monod 
model. The parameter values depend on the studied environment but also on 
the considered species, characterizing a special ecosystem. Its evaluation is 
important but to find the correct value we have to get enough data and also 
have to select the correct predominant processes of the considered ecosystem.  

As the dioxygen concentration has an important impact on the parameter 
values, it would be necessary to introduce the concentration of dioxygen as a 
variable, in order to compare the constant parameters previously obtained. 
The next step to validate and complete the model is to set up new 
experiments and measure more variables. Moreover, it would be interesting 
to study the effect of parameter values on model predictions by simulations.  
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A kinetic inhibition 
mechanism for maintenance. 

 
Abstract 

To fulfil their maintenance costs, most species use mobile pools of metabolites 
(reserve) in favourable conditions, but can also use less mobile pools (structure) 
under food-limiting conditions. While the Marr-Pirt model always pays maintenance 
costs from structure, the presence of reserve inhibits the use of structure for 
maintenance purposes. The standard Dynamic Energy Budgets (DEB) model 
captures this by simply supplementing all costs that could not be paid from reserve 
with structure. This is less realistic at the biochemical level, and involves a sudden 
use of structure that can complicate the analysis of the model properties. We here 
propose a new inhibition formulation for the preferential use of reserve above 
structure in maintenance that avoids sudden changes in the metabolites use. It is 
based on the application of the DEB theory for synthesizing units, which can easily 
become rather complex for demand processes, such as the maintenance. We found, 
however, a simple explicit expression for the use of reserve and structure for 
maintenance purposes and compared the numerical behaviour with that of the Marr-
Pirt model in oscillating conditions, by using parameter values from a fit of the 
models to data on yeasts in a batch culture. We conclude that our model can better 
handle variable environments. This new inhibition formulation has a wide 
applicability in modelling metabolic processes. 

 
 

Keywords: maintenance - inhibition formulation - DEB theory - Synthesizing 
Units. 
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4.1  Introduction  
Many applications of models for population dynamics require a tight link 

between the properties of individuals and that of populations. The Dynamic 
Energy Budget (DEB) theory for the metabolic organisation of individuals 
has been designed specifically for this purpose. Generally, the evaluation of 
population consequences involves the theory of structured population 
dynamics, but for V1 morphs (i.e. individuals that change in shape during 
growth such that their surface area is proportional to their volume), the 
structured dynamics collapses to a rather simple set of ODE’s. The 
population dynamics of dividing organisms (such as most unicellulars) can 
be well approximated by that of V1-morphs. DEB theory delineates reserve 
apart from structure, and it has the nice property that the single reserve-single 
structure system for V1-morphs reduces to the Droop model (Droop, 1968) in 
the case of neglectably small maintenance costs, to the Marr-Pirt model (Pirt, 
1965) in the case of neglectably small reserve capacity, and to the Monod 
model (Monod, 1942) if both maintenance costs and reserve capacity are 
neglectably small. Applications to the transient state of food chains (where 
wild oscillations occur) showed, however, that these quantities cannot be 
ignored (Kooi and Kooijman, 1994b). 

The reduction of the DEB model to the Marr-Pirt model (as discussed in 
Brandt et al., 2003; Brandt et al., 2004; Evers, 1991a; Kooijman et al., 1991) 
involves an intriguing problem around the payment of maintenance costs, 
that is the focus of this paper. Maintenance is the collection of processes to 
stay alive, excluding net production (growth and reproduction). It comprises 
the turnover of structure, the activity (transport and movement), the 
maintenance of concentration gradients and of defence systems. The 
maintenance costs are taken to be proportional to the amount of structure. 
The present standard formulation in the DEB model (Kooijman, 2000) is that 
maintenance is paid from reserve; payment is supplemented with structure if 
the mobilized reserve flux is too small. This involves a metabolic switch (see 
Eq. 4.1 for the specification of the switch (S) model), that can become a 
problem if starvation periods are common, as frequently happens in the field 
(Gurney et al., 2003). Switches can easily give rise to inaccuracies in 
numerical simulations to the extent that they can dominate the result. This 
especially applies to individual-based population models (IBM’s), where the 
number of switches is proportional to the number of individuals in the 
population. An accurate numerical scheme requires the evaluation of the 
exact moments at which point events occur, which can be computationally 
quite intensive if the number of events is large.  

 



A kinetic inhibition mechanism for maintenance 61 

The Marr-Pirt model (Harvey et al., 1967; Marr and Ingraham, 1962; 
Marr et al., 1963; Pirt, 1965) has no reserve and maintenance is always paid 
from structure. This shrinking is biochemically unrealistic. The difference 
becomes important as soon as product formation is involved, such as 
ammonia, which is used as substrate by many organisms. By accounting for 
reserve(s), the DEB model can handle growth rate related to changes in the 
chemical composition of biomass, and reserve is typically enriched in 
nitrogen. In many applications, it is also essential to distinguish maintenance 
from death, as the products of maintenance are mostly simple minerals 
(carbon dioxide, ammonia), and that of death is organic matter that might 
serve as energy substrate for other organisms.  

Gurney et al. (2003) and Gurney and Nisbet (2004) studied, by means of 
the DEB theory, the impact of starvation on the resource allocation and the 
adaptation to poor nutritional conditions. In contexts like these, the details on 
how maintenance is actually paid do matter and the outcome is quite sensitive 
to the possible use of structure under starvation conditions and the inhibition 
of the use of structure by the reserve in non-limiting conditions. 

Section 2 of this paper presents a model, based on the DEB theory, for 
the preferential use of reserve to pay maintenance costs that does not suffer 
from switches. We call this model the preference (P) model. It turns out to be 
rather complex for applications in population dynamics; so, we provide a 
simplified version (SP model) which conserves the same properties.  

Section 3 compares the SP and S models and implements the 
maintenance modules in a population model. We then compare the previous 
population models with the Marr-Pirt (MP) model using the parameter values 
of a batch culture of yeast (Evers, 1991b; Ratledge et al., 1984). Finally, we 
present a numerical study of the properties of the complete SP and the MP 
models, under varying environmental conditions. Our results are discussed in 
the last section.  

4.2  Models description 

4.2.1  Biological processes and general assumptions  

In the DEB theory, biomass is partitioned in reserve and structure. Their 
amounts characterize the individual’s state. We here focus on unicellulars, 
and don’t pay attention to maturation and reproduction for reasons given in 
Kooijman (2000, p118). Reserve is the available material for the metabolic 
use defined as a temporary biomass; it is a generalised compound, a mixture 
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of different kinds of protein, lipid, etc. The reserve notion allows for the 
growth to be dependent on the internal state of the organism and not directly 
on the external concentrations of nutrients and substrates. Structure 
represents the part built from reserve and that cannot be remobilized. 
Resources are taken up from the environment and converted to reserve 
(assimilation); mobilized reserve that is not allocated to maintenance is 
converted to structure (growth); see Fig. 4.1. The DEB theory assumes that 
only the structure needs to be maintained, and the turnover of structure 
comprises a substantial part of the maintenance costs (Fig. 4.1). The 
maintenance rate is taken to be proportional to the amount of structure.  

 
Fig. 4.1. Scheme of the mechanistic assumptions for the uptake and the use of 
resources in the DEB theory. The processes are A: assimilation, M: maintenance and 
G: growth, with the state variables S: substrates, E: reserve compartment and V: 
structural biomass. Maintenance is a part of the structure turnover (the loop). It is 
paid preferentially by reserve (dashed line) but if reserve is not enough it is paid by 
structure. The MP model is a particular case of the DEB model considering that A is 
proportional to G and the dashed line equals to 0. 

The rate at which reserve is mobilized only depends on the amounts of 
reserve and structure and the amount of reserve decreases during starvation. 
At low reserve levels, allocation rules to the different processes can change to 
increase the survival period of the individual (Dawes, 1985). Growth usually 
continues in the first part of the starvation period. Some organisms are able to 
cease reproduction process. Moreover, when the reserve density drops below 
a threshold value (prolonged starvation), a variety of possible biological 
behaviours can occur, such as dormancy (Archuleta et al., 2005) or 
migration, depending on the species and the environmental factors. Some 
bacteria can survive starving for many years (Morita, 1985; Postgate, 1990). 
Many species can, to some extent, shrink in structural mass during starvation, 
as a way to pay their somatic maintenance costs (Dawes, 1976). Such a 
shrinking process has been observed in bacteria (Barcina et al., 1997) as well 
as in invertebrates (molluscs, Downing and Downing, 1993) and vertebrates 
(shrews, Genoud, 1988) or even humans (Lumey et al., 1995). Maintenance 
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is preferentially paid from reserve, rather than from structure for efficiency 
reasons. Since structure is synthesized from reserve as well, payment via 
structure involves an extra step that comes with overhead costs. 
Consequently, maintenance costs are paid from reserve when the 
environmental conditions are good or from structure when the reserve is 
exhausted (Fig. 4.1).  

4.2.2  Mathematical formulations 

The preferential use of reserve to pay maintenance costs can be modelled 
as an inhibition process: the reserve inhibits the use of structure for the 
maintenance. Indeed, structure will be used for maintenance only when 
reserve will not be enough. We first recall the switch model and then derive a 
smooth preference model. A description of variables and parameters is given 
in the Appendix A, at the end of the manuscript. 

The Switch (S) model 

The S model (Kooijman, 2000) assumes that reserve allocation to 
maintenance has absolute priority above growth. If the flux of mobilized 
reserve is not sufficient to pay maintenance, the rest is paid from structure. 
The required flux of maintenance is kMyEP if paid from reserve or kMyVP if 
paid from structure. So, the specific loss-fluxes to maintenance are: 

 ( )min ,M
E E M EPj j k= y  and ( )/M M

V M E EPj k j y y= − VP  (4.1) 

where M
Ej  is the specific flux of reserve allocated to maintenance, M

Vj  the 
specific flux of structure allocated in maintenance and jE the specific flux of 
mobilized reserve that is the reserve flux per unit of structure. 

From Eq. 4.1, if jE is larger than or equal to the maximum maintenance 
cost paid from reserve, all the maintenance costs are paid from reserve; if jE 
is smaller, part of the maintenance costs are paid from structure. Note that if 
jE = 0, all of the maintenance costs are paid from structure. 

The preference (P) model and its simplification (SP) 

From the enzymatic point of view, we can consider structure and reserve 
as substitutable substrates for the maintenance process (Brandt et al., 2004). 
Each has its own set of products that is released in the environment.          
Fig. 4.2(A) illustrates our implementation of inhibition based on the concept 
of Synthesizing Units (SU, Kooijman, 1998, 2000) dealing with fluxes rather 
than concentrations. In this formulation, the SU can bind both E (reserve) and 
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V (structure) but it can bind V only if E is not bound. V does not affect the 
binding or transformation of E. However, E affects also the use of V if the 
last one is already bound; it leads to a release of V. P is the product of the 
reaction. Appendix 4.A gives the mathematical formulation of the P model.  

Since the P model is rather complex, there is a practical need for 
simplification. Fig. 4.2(B) and Appendix 4.B present the simplified 
preference (SP) model, where the two dissociation rates kE and kEV are equal. 
This allows for rather simple explicit expressions for the use of reserve and 
structure for maintenance purposes under the various nutritional conditions, 
with just a single parameter for the inhibition quantification. 

 
Fig. 4.2. Scheme of the SU states in the P model (A) and the SP model (B). Both 
models describe the interaction between transformations of reserve (E) in product (P) 
and structure (V) in product (P) for maintenance, with a preference for the first one. 
The Appendix A describes parameters and variables. The arrow between A and B 
indicates the transformations to obtain the SP model from the P model. 

4.3  Results 

4.3.1  Comparison of fluxes 

We here compare the fluxes of reserve and structure allocated to 
maintenance for the S and the SP models, using a time scale separation 
argument to motivate that the binding fractions of SUs vary in pseudo-
equilibrium. Fig. 4.3 illustrates the specific fluxes allocated to maintenance 
of reserve M

Ej  (grey) and structure M
Vj  (black) as functions of the available 

reserve flux jE. Since turnover is a main part of the maintenance costs, we 
assume that the specific flux of mobilized structure, jV is also constant     
(ρVjV = kMyVP, Appendix 4.B); the part that is not used returns to the structure.  
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Fig. 4.3. Comparison between the S 
(lines) and the SP (curves) models 
through a simulation of the specific 
reserve (grey) and structure (black) 
fluxes allocated to maintenance as 
function of the available reserve 
with α = 0.1, kM = 0.04 t-1, yPV = 
0.12, yPE = 0.1 and ρE = ρEV = 1. 

 

The behaviour of the SP model is controlled by the parameter α: the 
proportionality ratio between dissociation rates of the SU-structure and the 
SU-reserve complexes; see Appendix 4.A. When α decreases to zero, the 
product release from the SU-structure complex is stopped, as long as there is 
some reserve used for the maintenance. So, α quantifies the ability of the 
organism to use a minimal structure amount. For vanishing α, the SP model 
reduces to the S model and the switch appears. The variation of the binding 
probabilities, ρE and ρEV, affects the threshold value of the reserve density at 
which the switch occurs. If ρEV <1, the switch of the SP model is at higher 
reserve mobilization rates than the S model. The S model is a particular case 
of the SP model, and the SP model a particular case of the P model. 

4.3.2  Parameters estimation in constant environment 

We now incorporate the SP and the S modules in a DEB-based 
population model in a varying environment and compare them with the Marr-
Pirt (MP) model, using parameter values that we obtained from fitting the 
models to a set of data.  

Appendix 4.C shows how the SP and the S modules can be implemented 
in the DEB growth model, and also presents the MP model. We use data 
from Ratledge et al. (1984), on a nitrogen limited yeast, Apiotrichum 
curvatum, growing in a batch culture for the parameter settings that are given 
in Tab. 4.I. Fig. 4.4 shows the fits of the SP and the MP models. We assume 
that yPV and kM are identical for the SP and the MP models. In Fig. 4.4, the S 
model is also simulated using the parameter values of the SP model. 

Contrary to the MP model, the SP model fits the data perfectly. Growth 
ceases in the MP model as soon as substrate is exhausted, while in fact it 
continues for a while, due to the use of reserve. The biomass-trajectory of the 
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MP model is below that of the S and SP models, for the same substrate-
trajectory. This observation comes from the condition that yPV < yPE yEV 
meaning that it is more expensive to pay maintenance via structure than via 
reserve. This is consistent, since the MP model assumes that maintenance is 
paid from structure only. 

As long as there is some reserve, the fraction of SU-reserve complex is 
positive, but if the reserve is fully depleted, the SU-structure complex 
becomes dominant. The behaviour of SUs in the SP model is very sensitive 
for the values of ρEV and α, while there is hardly an effect at the population 
level. This is illustrated in Fig. 4.4. We conclude that the values of α and ρEV 
are very important at the molecular level, but not at the population level. The 
implication is also that we need data at the molecular level to estimate these 
parameters appropriately. 

 
Fig. 4.4. Data (dots) from Ratledge et al. (1984) on the growth of the yeast 
Apiotrichum curvatum on nitrate in a batch culture versus time (h). The dotted curve 
is the fit of the MP model; the line is the fit of the SP modules and the dashed line the 
simulation of the S model, both implemented in a DEB-based model for V1 morphs. 
The S and the SP models are superimposed. See Tab. 4.I for parameter values and 
Appendix 4.C for more details on models formulation. N is the substrate amount in 
the culture (gN.l-1), e the reserve density (gN.gV-1), V the structural biomass (gV.l-1) 
and spec. maint. fluxes represents M

Ej  (gN.gV-1.h-1) and M
Vj  (h-1). 
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Tab. 4.I. Estimated parameter values of the SP and the MP models from the set of 
data from Ratledge et al. (1984). See Appendix A, at the end of the manuscript, and 
Appendix 4.C for the definition of parameters. Here, E represents the nitrogen 
reserve and gV the gram of structural biomass. The S model simulations are realised 
from the SP model parameter values. 

Parameters Unit Value Origin 
N (t=0) gN.l-1 0.387 Ratledge et al., 1984 
V (t=0) gV.l-1 0.28 Ratledge et al., 1984 

kM h-1 3.25 10-3 Hanegraaf and Muller, 2001 
yPV gP.gV-1 0.9 yPE yEV Estimated 

The SP model parameters 
e (t=0) gN.gV-1 0.051 Evers, 1991b 

jNAm gN.gV-1.h-1 0.013 Evers, 1991b 
KN gN.l-1 0.05 Evers, 1991b 
yEV gN.gV-1 0.829 Kooijman, 2000 
yEN - 17.1637 Estimated 
hE h-1 0.1821 Estimated 
yPE gP.gN-1 1.1797 Estimated 
α - 0.035 Estimated 

jV’ = ρVjV h-1 1 Estimated 
ρE = ρEV - 1 Estimated 

The MP model parameters 
jNAm gN.gV-1.h-1 0.0703 Estimated 
KN gN.l-1 3.48 Estimated 
yVN gV.gN -1 19.57 Estimated 
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4.3.3  Simulations in varying environments 

In this section, we compare the MP with the SP model in varying 
environments. The initial values of structure and reserve and the parameter 
values are the same as in the previous fit (Tab. 4.I). 

We simulate systems with a substrate supply given in gN.l-1.h-1 by: 

 ( ) ( )( )exp cos 1NI t A D Pt⎡ ⎤= −⎣ ⎦  (4.2) 

where A is the amplitude of the oscillations, D the dispersion of the input 
peak and P its pulsation. 

We have the following cases: (i) a batch culture as previously (Eq. 4.2, 
A= 0 so that IN (t) = 0, Figs. 4.4 and 4.5); (ii) a fed-batch culture with a 
constant substrate supply (Eq. 4.2, P = 0 so that IN is a constant, Fig. 4.6); 
and (iii) with a periodically oscillating substrate supply (Fig. 4.7).  

In order to study the influence of the supply quality, the total amount of 
supplied substrate in cases (ii) and (iii) is taken to be the same and such that 
the cumulative amount of supplied substrate during the “experiment” equals 
the initial amount in case (i): . Some 

amplitude variations of Nint will be compared.  

max -1
int 0

0.387 .
t

NN I dt gN l= =∫

The comparison of Figs. 4.4 and 4.5 shows that the distance between the 
MP and SP models increases with the amount of substrate. The biomass in 
the MP model tends to grow faster than in the SP model because of the 
absence of reserve (Fig. 4.5). Similarly, the structural biomass in the MP 
model decreases as soon as substrate is exhausted, while the decrease is 
delayed if reserve is present (as in the SP model).  
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Fig. 4.5. Simulation of the SP (line), S (dash line) and the MP (dot line) models in a 
batch culture (IN = 0) with initial substrate amount of 3.87 gN.l-1 versus time (h). The 
S and SP models are superimposed. See Tab. 4.I for parameter values. N is the 
substrate amount in the culture (gN.l-1), e the reserve density (gN.gV-1), V the 
structural biomass (gV.l-1) and spec. maint. fluxes represents M

Ej  (gN.gV-1.h-1) and 
M
Vj  (h-1), Input is IN (gN.l-1.h-1), Cumul V the cumulative structural biomass (gV.l-1). 

Biomass in the MP model grows more slowly at low substrate levels 
(Figs. 4.6 and 4.7); this model underestimates the cumulative structure and 
overestimates the substrate. Indeed, for low substrate amounts (N << KN), we 
have:  

 NAm
NAm

N N

jNj
N K K

≅
+

N  (4.3) 

For the MP model jNam / KN equals 0.02 (l.gV-1.h-1), while it equals 0.26 
for the SP model. This is the reason for the time delay of the structure 
dynamics of the MP model in varying environments (Fig. 4.7). 
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Fig. 4.6. Simulation of the SP (line), S (dash line) and the MP (dot line) models in a 
fed-batch culture with a constant substrate supply versus time (h). The integrated 
supply is equal to 0.387 gN.l-1. The S and SP models are superimposed. See Tab. 4.I 
for parameter values. N is the substrate amount in the culture, e the reserve density, V 
the structural biomass and spec. maint. fluxes represents M

Ej  and M
Vj , Cumul V the 

cumulative structural biomass and Input = IN. 

 
Fig. 4.7. Simulation of the SP (line), S (dash line) and the MP (dot line) models in a 
fed-batch culture with an oscillating substrate supply versus time (h). The integrated 
supply equals 0.387 gN.l-1. The S and SP models are superimposed. See Tab. 4.I for 
parameter values. N is the substrate amount in the culture, e the reserve density, V the 
structural biomass and spec. maint. fluxes M

Ej  and M
Vj , Cumul V the cumulative 

structural biomass and Input = IN. 
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Figs 4.5 to 4.7 also show when the cells make the switch of using 
structure for maintenance.  

The MP and SP models can have a similar behaviour in constant 
environments at low substrate levels, with the same parameter set (results not 
shown), but they become different in varying environments. 

Figs. 4.6 and 4.7 show that the amount of structure at the end of the 
experiment increases with the amplitude of the oscillations, while the 
cumulative amount of supplied substrate is the same.  

4.5  Discussion - conclusion 
Although the P model has the best link up with the underlying processes 

at the molecular level, it is complex in terms of non-linearity and contains 
many variables and parameters. The SP and S models turned out to behave 
very similar, and with the “cost” of a single parameter we could remove a 
switch and still preserve the link with underlying processes. Indeed, the SP 
model allows a better understanding of the internal dynamics in variable 
environment and makes it easier to link the individual level to phenomena at 
the molecular level and the population or the ecosystem levels. The SP and 
MP models turned out to be rather different, especially in varying 
environments. When fitted to the same data, parameters that have the same 
interpretation can result in different values (see Fig. 4.4 and Tab. 4.I). 
Furthermore, models that give similar predictions under one set of 
conditions, can give different predictions under other conditions (Fig. 4.4 
compared to Fig. 4.5). These fact arise a problem in the comparison of 
different models.  

Brandt et al. (2004) modelled the diauxic growth of microorganisms that 
live on two substitutable substrates. Diauxic growth patterns arise from the 
expression if one type of carrier suppresses the expression of the other type. 
Although applied in a very different context, this module is, in retrospection, 
identical to the one that we developed here, but then applied to supply 
systems (substrate controlled), while we had to use demand systems (product 
controlled). Assimilation (the key process in the study of Brandt) is a supply 
process, while maintenance is a demand process. Although the concept is the 
same, the resulting equations look very different. Demand systems are much 
more complex to model, as is further demonstrated by the study of Kuijper et 
al. (2004) on the use of carbohydrate versus protein reserves for maintenance 
purposes in zooplankton, assuming that these reserves are partly 
substitutable. Furthermore, by applying the Brandt et al. (2004) formulation 
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in the flux comparison study, we observe that it doesn’t allow the absolute 
priority of reserve above structure in maintenance (result not shown).  

Not all organisms can use structure for maintenance, and die if shrinking 
is too fast or too far. Muller and Nisbet (2000) implemented death due to 
starvation when somatic maintenance requirements cannot be met from 
reserve. They showed that organisms grow bigger at varying food density, 
rather than constant density with similar average level. We also found that 
the biomass increases with the amplitude of the substrate supply rate, for 
reasons that are very similar to the hyperphagia in animals as reported by 
Gurney et al. (2003). Food fluctuations may lead to death by starvation, the 
likelihood of which increases with the strength and duration of the bleak 
periods. Like Kooijman (1993, p132-134), Muller and Nisbet suggested that 
organisms become bigger with increasing latitude (Bermann’s law) due to an 
increasing seasonal variability in food. The results of these different studies 
are consistent. 

Appendix 4.A. Specification of the P model 
The change in the fractions of SU that are unbound and bound to one or 

two substrates in the P model (see Fig. 4.2(A)) is given by: 
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where jV and jE are the specific binding flux for structure and reserve (t-1), 
respectively. The Appendix A, at the end of the manuscript, describes 
variables and parameters. The flux of mobilized structure jV is taken to be 
constant, because the turnover of structure represents a substantial part of the 
maintenance costs and jE = e (hE – r) with r the specific growth rate 
(Appendix 4.C).  

Here, *j
Π  is the specific flux, which means by unit of structure, of the 

compound * (i.e. S, E, V and P), associated to the process Π (A: assimilation, 
M: maintenance and G: growth). Let  be the absolute flux of 
compound *, associated to the process Π. As enzymatic kinetics is at a lower 
time-space scale than population dynamics, 

* *J jΠ Π= V

*j
Π  is obtained from the steady 

state fractions of SU. The absolute reserve and structure fluxes allocated to 
maintenance are: 
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( )

( )

* *
..

* *
.. .

M M
V V V V EV EV

M M
E E EV E E EV V

J j V j k V

J j V y j V

ρ θ θ

ρ θ ρ θ

⎧ = = − +⎪
⎨

= = − +⎪⎩

 (4.A.2) 

where θij
* is the steady state fraction of SU at the binding state i and j and yEV 

the yield coefficient of reserve on structure (i.e. cost for structure in terms of 
reserve). 

The release of product in association with maintenance amounts to:  

 ( )* *
.PE E E EV EV PV V V

d P y k k V y k V
dt

*
.θ θ= + + θ  (4.A.3) 

and simpler as: M M
P P

d P J j V
dt

= =  with  M M
P PE E PVj y j y j= + M

V  (4.A.4) 

The specific maintenance flux is taken to be constant (output controlled 
system), so we require that M

Pj  is constant ( ) by allowing kE, kEV and 
kV to depend on θij

*. We define unequal dissociation rates: 

M
Pj k= M

V M

E M

EV M

k k
k k
k k

α θ
β θ
γ θ

=⎧
⎪ =⎨
⎪ =⎩

   with   θ = α yPV θ.V
*+ yPE (βθE.

* + γθEV
*) 

Appendix 4.B. Specification of the SP model 

We simplify the P model by imposing kE+ = kE = kEV = kM /θ  and         
θE+ = θE + θEV, where θ = α yPV θ.V

*+ yPE θE+
* (Fig. 4.2(B)). Eq. 4.A.1 then 

reduces to:  

( ).. ..

. .

/ /
/ 0

/

V V E E M M

V V V M EV E

E E E EV E M

j j k k
d j k j
dt

j j k
V

E

θ ρ ρ α θ θ θ
θ ρ α θ ρ
θ ρ ρ θ+ +

⎛ ⎞− +⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜= − −⎜ ⎟⎜ ⎟ ⎜

⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

θ
θ

⎟
⎟

 (4.B.1) 

The specific fluxes of reserve and structure that are allocated to 
maintenance are: 

 
( )

* *
. /M

V V M

M M
E M PV V E

j k

j k y j y

αθ θ⎧ =⎪
⎨

= −⎪⎩ P

 (4.B.2) 
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Note that, since the specific maintenance costs are constant, and the 
turnover of structure comprises a substantial part of these costs, it is natural 
to give at jV, the specific mobilisation rate of structure, a value just enough to 
pay maintenance costs in the worst case. The worst case is without reserve  
(jE = 0); all must be paid from structure. This gives ρVjV ≥ kMyVP. Indeed, if      
ρVjV < kMyVP, it can only pay maintenance costs if there is some reserve left 
over; and if e < eS, it should die because it can no longer pay maintenance 
costs. If we want to minimise payment of maintenance costs from structure, 
the particular case ρVjV = kMyVP corresponds to a structure flux just enough to 
pay maintenance costs. But, when jE = 0, this equality fixes the steady state 
solutions at θ..

* = 1 and θ.V
* = 1 – θ..

* = 0. Thus, the chosen value of ρVjV 
influences the evolution of the steady state fractions of SU. 

The steady state solutions are explicit, but complicated. For ρE = ρEV,   
ρEjE = jE’ and ρVjV = jV’, the steady state solutions simplify considerably and 
the specific structure flux allocated to maintenance is:  

 
( )2

2 /

2 4
M M PV
V

PE

Ak y
j

A y B AC B
=

+ − −
 (4.B.3) 

with: 

( )( )
( )

'

' '

' ' '

1
V M PV

PE E

E E V

A j k y

V MB y C j j k

C j j j

α

α

⎧ =⎪⎪ = + − +⎨
⎪

= − +⎪⎩

 

Appendix 4.C. Implementation of the maintenance 
modules in the DEB model 

We will now implement the SP module in the DEB model of standard 
V1-morphs, which accounts for assimilation and growth: 

 

A
S S

A
E E

d S I j V
dt
d e j h e
dt
d V rV
dt

= −

= −

=

      with       
( )

( ) ( )

 A
S SAm

A A
E ES S

S

j j f S

j y j
f S S S K

=

=

= +

 (4.C.1) 
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Substrate S is, in the example that we use here, the nitrogen compound is 
represented by N (gN.l-1). IS is the input of substrate (gN.l-1.h-1), f(S) is a 
Michaelis-Menten function with the half saturation constant KS (gN.l-1), yES is 
the yield of reserve on substrate and r is the specific growth rate. According 
to the DEB theory, the specific growth rate is:  

 
M

M EVE E
V

EV EV

yh e jr j
e y e y

⎛ ⎞ ⎛−
= −⎜ ⎟ ⎜+ +⎝ ⎠⎝ ⎠

⎞
⎟  (4.C.2) 

The first part of the Eq. 4.C.2 corresponds to the sum of growth and 
maintenance processes from reserve; the second part corresponds to the 
maintenance costs that are covered by structure (shrinking). The maintenance 
costs are no longer constant, due the varying way the costs are covered; 

M M M
P PE E PV V Mj y j y j k= + =     ⇒    M M

E EP PV V EP Mj y y j y k+ =  

Thus, if yEPyPV = yEV, the last equation is equivalent to the standard 
specific growth rate of the DEB theory: 

 E EP M

EV

h e y kr
e y

⎛ −
= ⎜ +⎝ ⎠

⎞
⎟  (4.C.3) 

In this specific growth rate (Eq. 4.C.2), reserve kinetics doesn't change 
during shrinking with the implication that growth continues as long as there 
is some reserve.  

We replace M
Ej  and M

Vj  by the expression of S (Eq. 4.1) or SP   
(Appendix 4.B) models. Note that M

Vj  is a function of jE = (hE – r) e          
(Eq. 4.B.3), and so of r; we indicate this with ( )M

Vj r . This implies that the 
specific growth rate is only given implicitly. This does not give much 
practical problems, however, since the sequence:  

 ( ) ( )
1

M
E M PE PV PE EV V i

i
EV

h e k y y y y j r
r

e y+

− + −
=

+
 (4.C.4) 

rapidly converges, ri → r, in a few steps, starting from r0 = 0. 

By replacing the S module (Eq. 4.1) in the Eq. 4.C.2, as long as              
jE > kMyEP, the specific growth rate amounts to Eq. 4.C.3.  

Payment of maintenance from structure starts when M
E M EP Ej k y j= = ; 

; r = 0 and e = yEP kM / hE = eS is at the threshold value. The growth 0M
Vj =
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rate after this moment switches to M
Vr j= −  with ( )M M

V M PE Ej k y j y= − VP  

and ( )M
E E Ej j h r= = − e  (all the mobilize resource is used for maintenance). 

Thus in the S model, the specific growth rate after the switch is: 

 E EP M

EP VP

h e y k
r

e y y
−

=
+

 (4.C.5) 

Since , the growth rate is continuous around the 

switch, but not differentiable for yPV ≠ yPEyEV. This also applies to de / dt. 

lim lim 0
S Se e e er r↑ ↓= =

In MP model, we have (see Eq. 4.C.1 for the description of ): A
Sj

  (4.C.6) A
VS S VP Mr y j y k= −

Appendix 4.D. Other formulations 
In this appendix, we describe and compare other formulations, through 

the comparison of the specific structure and reserve fluxes allocated to the 
maintenance, as function of the amount of reserve.  

1. SP model with equal dissociation rates (SP-EDR) 

Suppose that the dissociation rates are equal: kE = kV = kEV = kM /θ  with 
kM is the maintenance cost (t-1), θ = yPV θ.V

*+ yPE θE+
* and θE+ = θE. + θEV. 

As the Appendix 4.B, we obtain for the SP-EDR model the following 
specific reserve and structure fluxes allocated to the maintenance: 

( )
* *
. /M

V V M

M M
E M PV V E

j k

j k y j y

θ θ=

= − P

 

From the condition ρV jV = kM yVP, we also represent the specific fluxes as 
function of the reserve availability (Fig. 4.D.1).  

The switch of this model, given absolute priority of reserve above 
structure in maintenance, occurs at a higher reserve mobilisation rate than the 
S model and the SP model.  
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Fig. 4.D.1. Comparison between the 
S (lines) and the SP models with 
equal dissociation rates (curves) 
through a simulation of the specific 
reserve (grey) and structure (black) 
fluxes allocated to maintenance as 
function of the available reserve (jE) 
with kM = 0.04 t-1, yPV = 0.12,        
yPE = 0.1 and ρE = ρEV = 1. 

 

2. Unilateral Binding Inhibition (UBI, Brandt et al., 2004) 

Brandt et al. (2004) have defined the kinetics represented in Fig. 4.D.2 
for the inhibition of one substrate above another. In this model, the reaction 
yVPV → P (structure transformation) is inhibited by the E compound 
(reserve). The SU can bind both E and V but it can bind V only when E is not 
bound. And contrary to the P and SP models, E doesn’t affect the P 
production from the V transformation if V is already bound.  

 
Fig. 4.D.2. Enzymatic kinetics of the UBI model (Brandt et 
al., 2004). Interaction between the transformations E → P 
and V → P, with a preference for the first one. A substrate 
(E) can prevent the use of another one (V) but not vice et 
versa. 

As the Appendix 4.B, we obtain for the UBI model the following specific 
reserve and structure fluxes allocated to the maintenance: 

( )
( )

* *
. /M

V V EV M

M M
E M PV V EP

j k

j k y j y

*α θ θ θ= +

= −
 

The numerical study of the UBI model (Fig. 4.D.3) shows, just like the 
SP model, a smoother switch. This formulation avoids numerical problems 
and underlines the role of α in the absolute priority of reserve above 
structure. However, this formulation implies a continuous use of structure 
whatever the parameter values are.  
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Fig. 4.D.3. Comparison between the S 
(lines) and the UBI (curves) models 
through a simulation of the specific 
reserve (grey) and structure (black) 
fluxes allocated to maintenance as 
function of the available reserve (jE) 
with kM = 0.04 t-1, yPV = 0.12, yPE = 0.1 
and ρE = ρEV = 1. 

 

3. Other simplifications of the P model 3. Other simplifications of the P model 

We can also study two other simplifications of the P model (Fig. 4.D.4). We can also study two other simplifications of the P model (Fig. 4.D.4). 
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Fig. 4.D.4. Scheme of two other simplifications of the P model (at the centre) - 
Interaction between E → P and V → P transformations, with a preference for the first 
one: at the right, the indirect model (I model) without any direct interference and at 
the left the direct model (D model) where a substrate (E) can prevent the use of 
another one (V) but not vice et versa. On the arrows are described the assumptions to 
obtain the new simplified formulations from the P model. 

Indirect (I model) 

The first simplification (right part of the Fig. 4.D.4) is obtained from    
ρEV = 0; It is the simplest formulation commonly used in models, where the 
inhibition is passive and operative through the difference between the binding 
probabilities of the two compounds. It describes an indirect interaction (SU 
availability) between conversions E → P and V → P, but without any direct 
interference contrary the previous formulations. That’s why we call it the 
indirect model (I model). 
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For the I model, the reasoning is presented in Appendix 4.B, we obtain 
the following specific reserve and structure fluxes allocated to maintenance:  

( )
* *
. /M

V V M

M M
E M PV V E

j k

j k y j y

αθ θ=

= − P

 

The numerical study of this first simplification (Fig. 4.D.5) shows 
insensitivity for variations in the value of α and a strong sensitivity for the ρE 
value variations (binding probability for the SU fraction to be bound with a 
reserve molecule). Indeed, the more this parameter value decreases, the farer 
is the I model from the S model. We present here the numerical solution 
obtained for the maximal probability (ρE = 1). The I model curves are very 
far from the S model whatever the parameter values are.  
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Fig. 4.D.5. Comparison between the S 
(lines) and the I (curves) models 
through a simulation of the specific 
reserve (grey) and structure (black) 
fluxes allocated to maintenance as 
function of the available reserve (jE) 
with α = 0.1, kM = 0.04 t-1, yPV = 0.12, 
yPE = 0.1 and ρE = 1. 

 

Direct formulation (D model) 

Compared to the P model, the second simplification neglects the direct 
link of the maintenance production from θEV, defining a link between θEV and 
θE.. (Fig. 4.D.4). It is called the direct model (D model). It defines a new 
parameter kVE, the releasing rate of the structure when a reserve molecule is 
bound on θ.V) different from the dissociation rate for reserve.  

From the reasoning presented in Appendix 4.B, the specific reserve and 
structure fluxes allocated to maintenance for the D model are:  

( )
* *
. /M

V V M

M M
E M PV V E

j k

j k y j y

αθ θ=

= − P
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It leads to the same numerical solutions, compared to the SP model, 
concerning the variations in the α parameter and the new parameter kVE 
doesn’t bring it closer to the S model. Indeed, when this parameter value 
decreases, the preference for using reserves for maintenance becomes less 
absolute. (Fig. 4.D.6). 

 

M
Ej

M
Vj

Ej

M
Ej

M
Vj

Ej

Fig. 4.D.6. Comparison between the S 
(lines) and the D (curves) models through 
a simulation of the specific reserve (grey) 
and structure (black) fluxes allocated to 
maintenance as function of the available 
reserve (jE) with α = 0.1, kM = 0.04 t-1,    
yPV = 0.12, yPE = 0.1, ρE = ρEV = 1 and    
kVE = 0.1. 
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Benthic nitrogen 
mineralization and RedOx 
oscillations: a modelling 
approach 
 

Abstract 

Gilbert et al. (in preparation) observed that the oscillating environment increases 
the total mineralised matter compared to the oxic one. To explain this non-expected 
result, we develop a new mechanistic model (M-model), based on the Dynamic 
Energy Budget theory, which takes into account the bacterial dynamics, and 
improves the description of substrate interactions in biogeochemical models. We 
compare, through a theoretical and a numerical analysis, the usual model based on 
Michaelis-Menten formulations (Ph-model) with the M-model. The fit of the Ph-
model to the oxic and anoxic data allows to obtain parameter values. Simulating 
oxygen oscillations, the Ph-model suggests that the empirical construction is not 
suitable for perturbed environments. Furthermore, it doesn’t support the non-
expected result. The theoretical analysis shows that the phenomenological and the 
mechanistic approaches lead to different results in the case of environmental 
perturbations. Contrary to the Ph-model, in the M-model all the supplied matter will 
be absorbed by the structural biomass which has already been observed 
experimentally. Moreover, the M-model is much more stable than the Ph-model. We 
prove that the quality of the dioxygen supply has its importance on the stability, and 
consequently on the evolution of the compound concentrations. Thus this study 
demonstrates that the non-expected result is possible.  
 

Keywords: perturbations - Michaelis-Menten kinetics - mechanistic 
formulations - Synthesizing Units. 
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5.1  Introduction 
Marine sediments are characterised by the dynamic coexistence of oxic 

and anoxic areas. These RedOx-oscillations (temporal and spatial) come 
partly from the mixing activity of macrobenthic organisms which represents 
one of the major processes in the aquatic ecosystem functioning. Among 
others, this bioturbation activity allows the supply of reduced material at the 
surface of the sediment and of oxidised matter in depth; it leads to the 
creation of anaerobic microniches in aerobic sediment (and inversely).  

5.1.1  The biogeochemical models 

Many biogeochemical models for sediments (Berner, 1980; Boudreau, 
1996; Boudreau, 1997; Soetaert et al., 1996) take the bioturbation processes 
into account by means of a “biodiffusion” term. The associated biodiffusion 
coefficient DB is a measure of the reworking induced by the macrofauna. 
However, some authors have proposed various approaches in order to give a 
better description of the macrobenthic activities by considering more precise 
displacements of particles and solutes (Boudreau, 1997; Choi et al., 2002; 
François-Carcaillet et al., 1997; Meysman et al., 2003). Although, they often 
consider non-local transport and transformation, they do not explicitly 
account for bacterial population dynamics.  

Bacterial dynamics problem 

Bacterial populations are responsible for the degradation processes and 
the bioturbation activity is known to have a quantitative impact on the 
microbial activities. Indeed, the oxygenation modifications, linked to 
bioturbation, affect the bacterial metabolism and lead to a restructuration and 
a recomposition of bacterial communities. However, all the previous early 
diagenetic models consider dynamics of bacterial communities to be in 
steady state. And, the Chapter 2 indicated that a better understanding of the 
dynamics of the organic matter in models requires an appropriate knowledge 
of the dynamics of the bacterial community.  

Phenomenological problem 

Some biogeochemical models describe the interaction between organic 
matter and bacteria but include other processes such as carbon production, 
the transfer of matter to higher trophic levels and the different carbon pools 
(Anderson and Williams, 1998; Anderson and Williams, 1999; Anderson and 
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Ducklow, 2001; Baretta-Bekker et al., 1995; Blackburn et al., 1996; 
Dearman et al., 2003; Lancelot et al., 2002; Spitz et al., 2001). Furthermore, 
in these models, carbon uptake by bacteria is generally computed from 
Monod kinetics, and the interactions between the various substrates are often 
of the Michaelis-Menten type.  

These phenomenological formulations (early diagenetic and 
biogeochemical models) do not necessarily represent the intrinsic 
mechanism. Indeed, empirical formulations are based on experiments with 
fixed environmental conditions. However, in the natural environment, 
substrate is rarely in equilibrium and is subjected to spatial or temporal 
variability of substrate supplies. Moreover, as they don’t describe precisely 
the intrinsic mechanism of the processes and the relations between the 
different compounds, they do not describe appropriately the interactions 
between substrates and the concerned communities, in the case of 
environmental perturbations. 

5.1.2  Objectives  

In the present work, we aimed to understand the impact of macrobenthic 
activity on the nitrogen cycle. We give a better description of the biological 
processes in order to be able to simulate the response of living organisms to 
perturbations. This improvement of biogeochemical models is required to 
provide a better estimate of the nitrogen fluxes in marine sediments. The 
work proposes a trade-off between a more detailed description of biological 
processes, and a rather simple formulation of model at the ecosystem level. 
More precisely, we have focused in this work on improving the description of 
substrate interactions in biogeochemical models, and the relation with the 
bacterial communities. For this, we developed a new mechanistic model, 
based on the Dynamic Energy Budget theory (DEB, Kooijman, 2000), which 
takes into account the bacterial dynamics, and the mechanisms of substrate 
and biogeochemical processes interactions. In this paper, the different 
analyses are based on the experiment described in Gilbert et al. (in 
preparation) in order to understand their following non-expected result: the 
oscillating environment increases the respiration rates, compared to an oxic 
environment. 

5.1.3  Forcing dioxygen as a bioturbation impact 

In this experiment (Gilbert et al., in preparation), bioturbation is 
considered as a forcing factor inducing changes in the dioxygen 
concentration. Three cases are analysed: a constant oxic environment, a 
constant anoxic environment and RedOx oscillations (see Fig. 5.1). 
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Fig. 5.1. Dioxygen concentration variations in percentage during the experiment. 
These oscillations are supposed to be induced by macrobenthic activities. 

The dioxygen oscillations are obtained from the following formulation:  

 ( ) ( )( )2 Atan * cosO t M C Ft P D A⎡ ⎤= + +⎣ ⎦  (5.1) 

where A/D is the amplitude of the oscillation, MA the mean, C controls the 
curved shape, F the frequency and P the oscillations start. 

Compared to the Gilbert et al. (in preparation) data, we neglect the 
transport processes between the overlying water and the porewater 
environments, assuming that all the activities are achieved in the sediment 
compartment. Thus, in this study, we underestimate the process rate and 
concentrations of compound (nitrogen mineralised), focusing on the process 
ratio and their qualitative behaviour in the different environments (oxic, 
anoxic and oscillating).  

5.1.4  Nitrogen cycle 

In this paper, we will focus on the main processes taking place in the 
nitrogen cycle in the marine sediments, which have been measured in the 
experiment (Gilbert et al., in preparation): mineralization of organic nitrogen, 
ammonification, nitrification and denitrification. Indeed, the different 
reactions rates and the amount of nitrate and ammonium have been measured 
in the different dioxygen conditions. And, as the ammonification rate was 
very low in the experiment whatever the oxygenation conditions, we have 
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neglected it. Furthermore, the nitrogen cycle could be simplified by using the 
observation that nitrite is always constant in the experiments (see Fig. 5.2).  

4 3Mineralisation Nitrification DenitrificationorgN NH NO⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→ 2N  

Fig. 5.2. Processes taken into account in the nitrogen cycle model. 

All the respiration processes have regulation rules, depending on the 
environmental conditions.  

5.1.5  Relationships between substrates - process regulations 

The first regulation we define concerns the substrates used for the various 
processes (dioxygen in the oxic mineralization for example). In this case, we 
can define two modes of transformation of two substrates (X1 and X2) into 
one product (p), as functions of the relative role of each substrate in the 
process (Brandt et al., 2003).  

Firstly, some substrates are complementary: the product formation needs 
several substrates simultaneously; such that the lack of one substrate prevents 
the use of the other one (example: dioxygen and organic matter in the oxic 
mineralization process).  

Others are substitutable: the product formation can be from each 
substrate separately (example: dioxygen and nitrate in the organic matter 
degradation through respectively the oxic mineralization and the 
denitrification processes).  

If both substrates interact in the binding process, we can have a 
competition interaction. Indeed, at the level of the enzyme activity, there is 
the preferential use of one terminal electron acceptor (X1) with respect to 
another one (X2). Thus, the use of X2 will depend indirectly on the presence 
of X1. This interaction is described in the model by enzymatic binding 
velocities that are greater for one substrate than for the other one. According 
to the degree of preference, we can observe a continuous weak use of X2, in 
presence of the preferential substrate X1. For example, denitrification and 
oxic mineralization are in competition concerning the organic matter 
degradation. But the oxic mineralization is energetically more favourable. 

As a second process regulation, the transformation of substrate X1 can be 
affected by the presence of substrate X2. The inhibition can be at the enzyme 
synthesis level or the enzyme activity level. Indeed, the enzyme synthesis 
takes place under particular environmental conditions. The inhibition takes 
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place at the transcription or translation level of the gene coding for the 
enzyme synthesis (Madigan et al., 2003, p208) Furthermore, X2 can block a 
particular step of the process: the enzyme becomes inactive either by X2 
fixation or being partly degraded by the presence of X2. This transformation 
will change the enzyme’s shape or its composition and will prevent an 
efficient binding of the initial substrate X1. As an example, dioxygen inhibits 
the denitrification process but not totally. The presence of this factor creates a 
complex impact on the denitrification process. Indeed, the different enzymes 
occurring in this metabolic way haven’t the same sensibility to the dioxygen.  

The differences between the competition and the inhibition processes are 
difficult to define. One of them is that when the inhibiting substrate X2 
disappears, the use of X1 is delayed because of the damage, contrary to the 
competition interaction. In our formulations, we considered the same 
generalized enzyme called Synthesis Unit (SU) in the competition interaction 
and different SUs in the inhibition interaction.  

In the following part, we will compare, through a mathematical and a 
numerical study, the usual model based on Michaelis-Menten formulations 
(Berner, 1980; Soetaert et al., 1996) called the phenomenological model (Ph-
model) with a new mechanistic model (M-model) based on the DEB theory. 
We first describe the different models. Then, in order to get parameter values, 
we fit the Ph-model to the experiment described in Gilbert et al. (in 
preparation). And finally, in order to understand their dynamical differences, 
we apprehend a theoretical and a numerical analysis. 

5.2  The process formulations 

5.2.1 The biogeochemical processes 

The different experimental measurements (Gilbert et al., in preparation) 
are dioxygen, nitrate, nitrite and ammonium and the denitrification, 
nitrification and ammonification rates. Oxic mineralization and nitrification 
are realised in presence of dioxygen while denitrification and anoxic 
mineralization are inhibited by the presence of dioxygen. In this study, we 
will assume that the non-measured organic nitrogen is not saturating, 
focusing only on the respiration regulation by the presence of dioxygen. The 
carbon substrate is not measured and assumed to be not-limiting. There are 
three dioxygen environments: oxic (O2 = 100%), anoxic (O2 = 0%) and 
oscillating (Eq. 5.1) which schematically represents an environment with 
bioturbation activity, forcing factor inducing changes in the dioxygen 
concentration (see above). In the following part, NO3, NH4 and Norg are 
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respectively the nitrate, ammonium and organic nitrogen concentrations. 
Furthermore, let us remind that JP,M represents the absolute flux of the 
process considered P linked to model M. It is linked to the specific process 
flux jP,M (flux by unit of structure V) by: JP,M = jP,M V. As said before, the Ph-
model considers bacterial population dynamics at steady state, thus V is a 
constant. Appendix A presents a description of variables and parameters. 

Oxic mineralization 

Oxic mineralization needs dioxygen and organic nitrogen. The absolute 
oxic mineralization rate of the Ph-model is: 

 2
min ox, min ox, org

min ox, 2
Ph Ph

Ph

OJ R
K O

=
+

N  (5.2) 

where Rminox,Ph is the maximum mineralization rate and Kminox,Ph the half-
saturation constant for dioxygen. In Chapter 2, we proposed for this process 
the enzymatic kinetics presented in Fig. 5.3. 

Fig. 5.3. Scheme of two complementary substrates X and 
Y with X not saturating (Talin et al., 2003). θ. is the free 
SU and XθY is the complex formed with the substrate Y 
fixed and X transformed, P the products of the reaction. 
In the oxic mineralization, X is the organic nitrogen, Y the 
dioxygen and P the whole product of the reaction i.e. 
ammonium, carbon dioxide, water and the mineralised 
organic matter. 

From the general scheme (Fig. 5.3), we obtain for the oxic mineralization 
the following enzymatic kinetics:  

'
2 . 4 minox .

Om m
org OO N N NH Pµ µ µ+ + ⎯⎯→ ⎯⎯→ + +  

with µ. the free SU linked to the oxic mineralization, NµO the complex 
formed with dioxygen and organic nitrogen and Pminox the set of products 
associated to the process (i.e. carbon dioxide, water and the mineralised 
organic matter). mO and m’ are the binding and the dissociation rates. 

From this kinetics, we obtain the following specific reaction rates (see 
Chapter 2 for more reasoning behind this description) for the M-model: 

 2
min ox, min ox,

min ox, 2
M M

M

O
orgj r

K O
=

+
N  (5.3) 
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It is the usual form of the Michaelis-Menten model (Eq. 5.2) with   
rminox,M = m’ and Kminox,M = m’/mO where m’ is the product releasing rate and 
mO the binding rate of dioxygen and organic nitrogen. 

Nitrification 

Nitrification needs ammonium and dioxygen. When the reaction needs 
two complementary substrates (X and Y) that can be saturating, the usual 
formulations often use products of Michaelis-Menten terms (Berner, 1980). 
This is the case of the nitrification process (X: ammonium and Y: dioxygen). 
The Ph-model amounts to the following formula, with a maximum 
nitrification rate (Rnit,Ph), a half-saturation constant for dioxygen (Knit,O,Ph) and 
a half-saturation constant for ammonium (Knit,N,Ph).  

 2
nit, nit,

nit, , 2 nit , , 4
Ph Ph

O Ph N Ph

O NHJ R 4

K O K NH
=

+ +
 (5.4) 

The previous formulation fulfils the following limiting constraints: (i) if 
one of the two substrates tends to zero, the transformation rate tends to zero; 
(ii) if one of the limiting factors tends to infinity, the formulation reads as a 
simple Michaelis-Menten one with respect to the other limiting factor; (iii) if 
the two substrates tend to infinity, the reaction rate is constant and maximal: 
Jnit,Ph = Rnit,Ph. 

The mechanistic formulation proposes a complementarity between NH4 
and O2 in the nitrification process. Furthermore, the SUs can independently 
bind first X or Y; the two compounds do not interfere in the binding process: 
they are parallel (Brandt et al., 2003, Fig. 5.4). 

Fig. 5.4. Scheme of two complementary 
substrates X and Y which can be saturating. 
Their binding interaction is parallel (Brandt et 
al., 2003). θ** is the SU at different binding 
state, P the product of the reaction. In the 
nitrification case, X could be the dioxygen, Y 
the ammonium and P the whole products i.e. 
nitrate and water. 

 

From the general scheme (Fig. 5.4), we obtain for the nitrification the 
following enzymatic kinetics:  
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2 .. . 4

4 .. . 2

'
.. nit 3

O NH

NH O

n n
O O

n n
NH ONH

n
ONH

O NH

NH O

P NO

ν ν ν

ν ν ν
NH

ν ν

+ ⎯⎯→ + ⎯⎯⎯→

+ ⎯⎯⎯→ + ⎯⎯→

⎯⎯→ + +

 

with v.. the fraction of free SU linked to the nitrification, v** the fraction of 
SU’s in different binding states, Pnit the product associated to the process and 
not taken into account (i.e. water), n* the binding rate of compound * and n’ 
the dissociation rate. 

From this kinetics, we obtain the following specific nitrification rate: 

( )
( ) ( ) ( )

'
2 4 2 4

nit, 2 2' ' '
2 4 2 4 2 4 2 4

O NH O NH
M

O NH O NH O NH O NH

n n n O NH n O n NH
j

n n n O NH n n O n n NH n n O NH n O n NH

+
=

+ + + +
 

(5.5) 

where n’ is the production rate associated to the nitrification process, nO the 
binding rate of dioxygen and nNH the binding rate of ammonium. 

We try to find a link between the Ph-model and the M-model (between 
Eqs. 5.4 and 5.5) from the limiting constraints. Indeed, the mechanistic 
formulation fulfils all these constraints, with: 

'
4 n

'
2 n

'
2 4 nit,

If                                

If                                   

If    and         

O M Oit , ,

it , ,N M N

M

NH K n n

O K

O NH r n

→∞ ⇒ =

→∞ ⇒ =

→∞ →∞ ⇒ =
Hn n  

We could not find the exact link between both formulations but we have 
an exact link between the mechanistic formulation and this Michaelis-Menten 
form: 

2 4
nit nit

nit nit , 2 nit, 4 2 4N O

O NHJ R
K K O K NH O NH

=
+ + +

 

with Knit = Knit,N,Ph Knit,O,Ph in the Ph-model (Eq. 5.4). 

So let us define the following link: 

'
nit,Mr n= , 

'

nit , ,O M
O

nK
n

= , 
'

nit , ,N M
NH

nK
n

=  and 

( ) ( )
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2 4
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4 2
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n NH n O
= −
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In the M-model, Knit is no more a constant but a function of dioxygen and 
ammonium concentrations and we have:  

If one of the two substrates tends to 0, Knit,M → 0 

If O2 → ∞ then 
'

4
nit , nit , , 4M O

O

n NHK K
n

= − = − M NH  

If NH4 → ∞ then 
4

'
2

nit, nit , , 2M N
NH

n OK K
n

= − = − M O  

Denitrification 

This reaction needs nitrate and organic nitrogen, and is inhibited by 
dioxygen. But there is also a competition process between oxic 
mineralization and denitrification, as described above. The classical models 
do not distinguish both interactions. Indeed, the Ph-model amounts to the 
formula:  

 3 2
denit, denit,

denit, 3 inhib,denit, 2

1Ph Ph org
Ph Ph

NO O
J R N

K NO K O
⎛ ⎞

= −⎜ ⎟⎜ ⎟+ +⎝ ⎠
 (5.6) 

with Rdenit,Ph the maximum denitrification rate, Kdenit,Ph the half-saturation 
constant for nitrate and Kinhib,denit,Ph the inhibition constant linked to the 
presence of dioxygen.  

In this work, we will only consider the inhibition interaction, but we 
could then compare it to a competition formulation. For the mechanistic 
denitrification inhibition, we proposed in Chapter 2 the kinetics presented in 
Fig. 5.5. 

From the general scheme (Fig. 5.5), we obtain for the denitrification the 
following enzymatic kinetics:  

'
3 . denit .

2 3 . 2

NO

O

d d
org NO

d
NO org

NO N N P

N O N NO O

δ δ δ

δ δ

+ + ⎯⎯→ ⎯⎯→ +

+ ⎯⎯→ + + +
 

with δ. the free SU linked to the denitrification, NδNO the complex formed 
with nitrate and organic nitrogen, Pdenit all products associated to the process 
and not taken into account (i.e. molecular nitrogen, carbon dioxide, water and 
the mineralised organic matter), d* and d’ are respectively the binding rate of 
compound * and the dissociation rate. The second line describes the 
denitrification inhibition by dioxygen. 
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Fig. 5.5. Scheme of two complementary substrates X and Y where the reaction is 
inhibited by Z (Talin et al., 2003). θ. is the free SU and XθY is the complex formed 
with the substrate Y fixed and X transformed, P the products of the reaction. In the 
denitrification, X is the organic nitrogen, Y the nitrate, Z the dioxygen and P the 
whole products i.e. molecular nitrogen, ammonium, carbon dioxide, water and the 
mineralized organic matter.  

From this kinetics, we obtain, for the M-model, the following specific 
reaction rates (see Chapter 2 for the reasoning behind this description).  

( )
3 2

denit , denit ,
denit , 3 inhib,denit,M 3 2

1M M o
M

NO O
j r N

K NO K NO O
⎛ ⎞

= −⎜ ⎟⎜ ⎟+ +⎝ ⎠
rg  (5.7) 

Kinhib,denit is no longer a constant but a linear function of NO3. 

( )
'

inhib,denit, 3 3
NO

M
O O

d dK NO NO
d d

= +  and 

'
denit,

'

denit,

M

M
NO

r d

dK
d

⎧ =
⎪
⎨

=⎪
⎩

 

This result can be explained by the meeting probabilities. Indeed, for a 
given constant dioxygen concentration, the more the nitrate concentration 
increases, the more the enzyme will meet a nitrate molecule, the less the 
inhibition process will take place.  

Anoxic mineralization 

This reaction needs organic nitrogen and an electron acceptor (as Mn, Fe, 
SO4). To simplify, let us assume that the non-specified electron acceptor is 
present in a high and constant concentration, so that we do not take it into 
account. This process is inhibited by dioxygen, like the denitrification 
process. Moreover, its interaction with the nitrate is not well known. Indeed, 
the anoxic mineralization, as it is less favourable than the denitrification 
process (which consumes nitrate) from an energy point of view. It occurs in 
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the layer below the denitrification zone. But some papers (Scholten et al., 
2002) show that the accumulating products of denitrification process inhibit 
some steps of the anoxic mineralization. The usual models do not distinguish 
both interactions. Indeed, there is a maximum mineralization rate (Rminanox) 
and two inhibition constants linked to nitrate (Kinhib,min,N) and dioxygen 
(Kinhib,min,O). The Ph-model amounts to the formula: 

32
minanox, minanox,

inhib,min, , 2 inhib,min, , 3

1 1Ph Ph org
O Ph N Ph

NOO
J R

K O K NO
⎛ ⎞⎛

= − −⎜ ⎟⎜⎜ ⎟⎜+ +⎝ ⎠⎝
N

⎞
⎟⎟
⎠

4 .

 

(5.8) 

We formulate both really different interactions using the M-model. 

1- Inhibition of the anoxic mineralization by nitrate compound - the M-
model 

We propose the mechanistic kinetics for this inhibition interaction, 
presented in Fig. 5.6. 

Fig. 5.6. Scheme of a reaction realised 
from substrate X and inhibited by two 
other substrates (Y and Z) θ. is the free SU 
and Xθ is the complex formed with the 
substrate X bound, P the products of the 
reaction. In the anoxic mineralization, X is 
the organic nitrogen, Y the dioxygen, Z the 
nitrate and P the whole products i.e. 
ammonium, carbon dioxide, water and the 
mineralized organic matter.  

From the general scheme (Fig. 5.6), we obtain, for the anoxic 
mineralization inhibition, the following enzymatic kinetics:  

'
. minanox

2 2 .

3 3 .

O

NO

a a
org

a
org

a
org

N N P NH

N O N O

N NO N NO

α α α

α α

α α

+ ⎯⎯→ ⎯⎯→ + +

+ ⎯⎯→ + +

+ ⎯⎯→ + +

 

with α.. the free SU linked to the anoxic mineralization, Nα the complex 
formed with the organic nitrogen and the corresponding electron acceptor, 
Pminanox all products associated to the process and not taken into account (i.e. 
i.e. carbon dioxide, water and the mineralized organic matter), a* the binding 
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rate of compound * and a’ the releasing rate. The second line describes the 
anoxic mineralization inhibition by dioxygen and the third line by nitrate. 

The solution of the system of two equations at steady state gives the 
following anoxic mineralization rate: 

'

minanox, '
2 3

'
2 3

' ' '
2 2

1 1
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O NO

O NO
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(5.9) 

For the M-model, we obtain the same formulation than the Ph-model 
with Kinhib,min,N that is no longer constant but the following linear function of 
dioxygen concentration: 
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N M

NO

a a a O
K O

a
+ +
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a aK
a
+

=  

There is as a priority in the inhibition by dioxygen above the inhibition 
by nitrate which is quite normal as dioxygen is chemically more reactive than 
nitrate and as there is no denitrification in oxic environment. But, in absence 
of dioxygen, denitrification will perform the anoxic mineralization inhibition, 
by the accumulation of its product. 

Thus in the case of inhibition interactions, the specific disappearance flux 
of nitrate and appearance flux of ammonium linked to denitrification and 
anoxic mineralization processes are: 

  (5.10) 3

4

, denit ,

, denit , minanox,

NO M M
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j j
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2- Competition between denitrification and anoxic mineralization - the 
M-model 

To express this competition, we can define the enzymatic kinetics 
described in the Fig. 5.7. 

Fig. 5.7. Scheme of two reactions in 
competition: the first one is realised from 
substrates X and Y and the second one is 
realised only from substrate Y, both are 
inhibited by a third substrate (Z). θ. is the 
free SU and Yθ* is the complex formed at 
different binding state, P the products of 
the reactions. The first reaction represents 
the denitrification process and the second 
one, the anoxic mineralization. Where X is 
the nitrate, Y is the organic nitrogen, Z the 
dioxygen and P1 and P2 the whole products 
of the reactions.  

From the general scheme (Fig. 5.7), we obtain, for the anoxic 
mineralization and the denitrification competition, the following enzymatic 
kinetics:  

'
3 . denit

2 3 .

'
. minanox

2 2 .

3

NO

O

O

NO

d d
org NO

d
NO org

a a
org

a
org

d
NO

NO N N P

N O N NO O

N N P NH

N O N O

N NO N

.

2

4 .

θ θ θ

θ θ

θ θ θ

θ θ

θ θ

+ + ⎯⎯→ ⎯⎯→ +

+ ⎯⎯→ + + +

+ ⎯⎯→ ⎯⎯→ + +

+ ⎯⎯→ + +

+ ⎯⎯→

 

with θ. the free SU linked to the anoxic mineralization and denitrification, 
NθNO the complex formed by denitrification, Nθ the complex formed by 
anoxic mineralization. The other parameters have the same definition than 
the previous cases (see above).  

The first and the third lines specify the denitrification and the anoxic 
mineralization, respectively. The competition interaction is performed here 
by a common SU for both processes. In this kinetics, the generalised enzyme 
will preferentially realise the denitrification process by a greater binding 
velocity of nitrate. The second and the fourth lines describe the denitrification 
and the anoxic mineralization inhibition by dioxygen, respectively. But, there 
is also an absolute priority of denitrification above anoxic mineralization (the 
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last line) by the binding of nitrate to the complex formed in the anoxic 
mineralization. In order to simplify the equations, we assume that the binding 
rate of nitrate to Nθ (the complex of organic nitrogen and the electron 
acceptor of the anoxic mineralization) is high and equal to the binding rate of 
nitrate to the free enzyme (dNO).  

From the last kinetics, we obtain the following specific disappearance 
velocities of nitrate linked to denitrification: 

3 , denitNO M Mj j ,=  with the same 
parameters as given in Eq. 5.7. And we obtain the following specific 
appearance rates of ammonium linked to denitrification and anoxic 
mineralization:  
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(5.11) 

Thus, there is no change in the specific nitrate flux, by considering 
inhibition or competition interaction. But concerning the specific ammonium 
flux, there is one term more in competition process (Eq. 5.11) compared to 
the inhibition interaction (Eq. 5.10). Since the Ph-model, coming from the 
classical Michaelis-Menten kinetics, does not have this supplementary term, 
it indicates inhibition rather than competition. Furthermore, by the 
comparison of the fits of both formulations to a set of data and of the 
resulting parameter values, we can determine if the interaction between 
nitrate and the anoxic mineralization is an inhibition or a competition process 
in the considered environment. 

In the future, we could also describe the interaction between the oxic 
mineralization, denitrification and anoxic mineralization using only one 
generalised enzyme. This comprehensive system will underline the 
competition between the different electron acceptors to mineralise the 
organic matter. From an energy-gain perspective, the SU will preferentially 
bind dioxygen for the oxic mineralization, then nitrate for the denitrification 
process and then the electron acceptor for the anoxic mineralization. The 
nitrification process is not in competition with the other processes. We have 
to study the coupled processes, using the acquired knowledge, to better 
represent the interactions existing in the ecosystem.  
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5.2.2  The bacterial dynamics 

Contrary to the Ph-model, we take explicitly into account the bacterial 
dynamics in the M-model. Following a mechanistic approach (DEB theory), 
based on enzymatic reactions, Kooijman (2000) proposed a mechanistic 
model for dynamics of the individual bacterial metabolism. Individual 
growth is based on the acquisition and the use of energy. It describes the 
energy and material aspects of how microorganisms assimilate, store 
substrates (food, nutrients, light) in the reserve compartment and how they 
use this for maintenance and growth; the corresponding equations are 
presented further in the section on complete models. 

By this very mechanistic approach, we can determine the underlying cell 
physiology. Moreover, all these sub-processes (assimilation, growth and 
maintenance) of the overall bacterial dynamics are associated with respiration 
processes. 

5.2.3  The complete formulations 

So the M-model and the Ph-model incorporates oxic mineralization (Eqs. 
5.2 and 5.3), nitrification (Eqs. 5.4 and 5.5), denitrification that is inhibited 
by dioxygen (Eqs. 5.6 and 5.7), and anoxic mineralization that is inhibited by 
dioxygen and nitrate (Eqs. 5.8 and 5.9). The M-model takes explicitly 
bacterial dynamics into account. We suppose here that organic nitrogen is at 
the dissolved state. Contrary to the Ph-model, its parameters are expressed 
per unit of structure. The structural biomass V and the reserve density e are 
expressed in units of nitrogen. The M-model delineates maintenance and the 
growth; the maintenance costs are paid from reserve only. IN is the organic 
nitrogen input. 

Ph-model 
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M-model 
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Since the concentration of dioxygen is considered as a known function of 
time, we can simplify the biogeochemical processes, see Appendix 5.A. 

5.3  Results 

5.3.1  Data fit 

As the data from Gilbert et al. (in preparation) does not include bacterial 
dynamics, we fit here the Ph-model. As the amount of data is small for the 
number of parameters, some of the parameters of the Ph-model are fixed at 
the value of Soetaert et al. (1996). The initial value of organic nitrogen is 
unknown and extracted from the data. 

During these experiments, the different dioxygen concentrations are 
maintained at steady state. We first fit in the anoxic condition as some 
processes do not occur. We then fix the found parameters and fit the oxic 
condition to find the inhibition rate and the parameters for the oxic processes. 
The Tab. 5.I gives the parameter values. Finally, after the fitting step, we 
simulate the system perturbed by varying dioxygen concentrations as a 
validation step. Fig. 5.8 shows the oxic and anoxic fits and Fig. 5.9 the 
simulation in an oscillating environment.  
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Tab. 5.I. Fitted and fixed parameter values of the Ph-model. See Appendix A at the 
end of the manuscript for parameters definition. Here, * represents the compared 
parameter value proposed by Soetaert et al. (1996); but not used in this work. The 
estimated parameters are obtained by fitting the Ph-model to a set of data from 
Gilbert et al. (in preparation) and will be used for the stability analysis of the Ph- and 
M-models. As the M-model gets more parameters, we have to do some assumptions 
in order to compare it with the Ph-model. 

Symbol Origin Value Assumptions in the M-model 
Norg(t=0) fitted 113 113 

Denitrification 
Rdenit,Ph fitted 1.2844 rdenit,M 
Kdenit,Ph fixed 30 Kdenit,M 
Kinhib,denit,Ph fitted 0.0072 

* = 10 ( )
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Anoxic mineralization 
Rminanox,Ph fitted 0.0049 rminanox,M
Kinhib,min,O,Ph fitted 0.5  

* = 5 
Kinhib,min,O,M

Kinhib,min,N,Ph fixed 5 
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Oxic mineralization 
Rminox,Ph fitted 0.2753 rminox,M
Kminox,Ph fixed 3 Kminox,M

Nitrification 
Rnit,Ph fitted 5.9429  

* = 20 
rnit,M

Knit,O,Ph fixed 1 Knit,O,M
Knit,N,Ph fitted 10 Knit,N,M
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Fig. 5.8. Fit of the Ph-model (lines) on experimental data from Gilbert et al. (in 
preparation, cross), in different oxygenation conditions: dioxygen saturation (black) 
and anaerobe (grey). See Tab. 5.I for parameter values and Appendix A for unit 
description.  

 

 
Fig. 5.9. Dynamics of the respiration processes (nitrification and denitrification) and 
of the nitrate and ammonium concentrations in oscillating oxygenation conditions. 
The cross are the experimental data from Gilbert et al. (in preparation) and the 
dashed lines the Ph-model simulations. See Tab. 5.I for parameter values and 
Appendix A for unit description.  
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However, the data set presents a contradiction. It shows some 
denitrification while dioxygen is saturating. This unacceptable result can 
result from: (i) the presence of anaerobic microniches, due to a non-
homogeneous environment; (ii) the aerobic incubation time is not sufficient 
to obtain the saturation with dioxygen; (iii) a very weak inhibition of the 
denitrification process in the presence of dioxygen, which was not observed 
in the experimental results that are reported in the literature. We will assume 
that no denitrification occurs under saturating dioxygen conditions, as it is 
consistent with the literature.  

The reactions rates are extracted from the observed concentrations of 
compounds. The reaction rates of Ph-model are well determined but we show 
that there is a bad goodness-of-fit. We can explain this under-estimation of 
measured nitrate by the diffusion process that occurs from the pore water to 
the overlying water which is not taken into account in these local models. But 
this problem can also suggest that the biological dynamics are lacking in the 
model specification. Now the parameter values are determined; we can use 
them to simulate the non-measured rates of anoxic and oxic mineralization 
and the organic nitrogen evolution in strictly oxic and anoxic environments. 
Concerning the RedOx-oscillation simulation, both reaction rates and 
compound concentrations are very far from the experimental observations 
under constant conditions.  

An assessment of the mineralized organic nitrogen (during the whole 
experimental period) has been done, corresponding to: 

34 2org
min

dN dNOdNH dNN
dt dt dt dt

= = + +  

Then a comparison between oxic, anoxic and oscillating cases showed 
that, during the experiment, the complete oxic condition is more efficient for 
the mineralization and equal to the oscillating case at the end of the 
simulation. The oscillating and oxic cases are more efficient than the anoxic 
ones (Fig. 5.10).  
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Fig. 5.10. Mineralization 
assessment for the three 
dioxygen conditions expressed 
in µmol N.l-1. The blue curve 
gives the result for the 
oscillating dioxygen 
concentration. The oxic case 
corresponds to the red curve 
and the green curve illustrates 
the anoxic case. 

 

This result is not supported by the experimental observations of Gilbert 
where the oscillations increased the total mineralization by a factor 4.8. But 
the model (Fig. 5.8) explains the decrease in ammonium in the oxic case, by 
the disappearance of organic nitrogen. Thus, the organic nitrogen becomes 
limiting at 20 days for the oxic case and only at the end of the experiment for 
the oscillating case. As we look at the total mineralised organic nitrogen, at 
the end of the experiment, oxic and oscillating environments allow maximal 
mineralization. 

5.3.2  Theoretical analysis 

We want to explain the unexpected experimental result: oscillating 
environment increases the total mineralised matter, compared to an oxic 
environment. We can see two possibilities. First, we can try to reproduce the 
observed results with numerical simulations using the mechanistic model. 
However, this blind method will not reveal the intrinsic properties of the 
model. Second, we can find the differences between both models 
analytically, focusing on asymptotic conditions. This method consists of 
determining the equilibriums and analysing their stability. We have chosen in 
this second method in our theoretical approach.  

To this end, we consider an organic nitrogen input: a system is rarely 
closed from a biological point of view, even in a batch culture with sediment 
where a continuous supply of matter invades microniches by diffusion. The 
organic nitrogen input is assumed to be constant and the organic nitrogen not 
saturating.  
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Equilibrium determination 

The Ph-model 

From Eq. 5.12, we have at steady state:  

3

minox, minanox, denit,

minox, minanox, denit, nit,

nit, denit,org

Ph Ph Ph

Ph Ph Ph Ph

Ph Ph

N

NO
N

J J J I

J J J J

J y J

+

+

=

⎧ + =
⎪⎪ + =⎨
⎪
⎪⎩

 
3

minox, minanox, denit,

nit,

denit, org

Ph Ph Ph

Ph

Ph

N

N

NO
N N

J J J I

J I

J I y

+

=

⎧ + =
⎪⎪ =⎨
⎪
⎪⎩

 

The second line of the system gives: 
*

* nit , ,4
NIT, 4*

NIT,nit , , 4

N N Ph
Ph N

Ph NN Ph

I KNHR I NH
R IK NH

= ⇔ =
−+

 

where * indicates the concentration at the equilibrium. 

The equilibrium exists if: 

2
NIT, nit,

nit, , 2
N Ph Ph

O Ph

OI R R
K O

< =
+

 

As we have verified the biological meaning of the Ph-model      
(Appendix 5.B), it cannot accept a negative equilibrium value. The negative 
equilibrium is unstable. This result is not only intuitive but can also be 
proved mathematically. Indeed, intuitively, it is obvious that if the supply of 
substrate is too large, it cannot be all consumed and the substrate 
accumulates. So this negative equilibrium is equivalent to an infinite amount 
of substrate.  

Mathematically, we can easily demonstrate that if IN > RNIT,Ph = Vnit,Ph,MAX: 

minox, minanox, denit,

minox, minanox, denit, nit,

4
nit,4

   
Ph Ph Ph

Ph Ph Ph Ph

N

N Ph

J J J

J J J J

I
dNH

I JdNH dt
dt

α
= +

+

+⎧
⎪ 0⇔ = − > >⎨

= + −⎪⎩

 

with α a constant. Thus NH4 is always increasing. 

The third line of the system gives: 

3

3

*
* * denit,3

DENIT, 3* *
denit, 3 DENIT,

org

org

N PhNO
Ph org NN NO

Ph Ph org NN

y
y

I KNO
R N I NO

K NO R N I
= ⇔ =

+ −
 

(5.14) 
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We search Norg
* (first line of the system):  

3

*
* *3

MINOX, MINANOX, *
inhib,min, , 3

1 org

org

org

N

Ph org Ph org NNO
NN Ph

I

y
NOR N R N I

K NO

⎛ ⎞
+ − +⎜ ⎟⎜ ⎟+⎝ ⎠

=  

By replacing the Eq. 5.14 in the last equality, we have the following 
second order polynomial equation: 

( ) ( )2* * 0org orga N b N c+ + =  

with 

( )
( )( )( )

( )( )( )

3

3

3 3

inhib,min, , MINOX, MINANOX, DENIT,

MINOX, denit, inhib,min, , MINOX, MINANOX, DENIT,

2
inhib,min, , denit,

0

1

1

org

org

org org

NO
N Ph Ph Ph PhN

NO
N Ph Ph N Ph Ph Ph PhN

NO NO
N N Ph PhN N

y

y

y y

a K R R R

b I R K K R R R

c I K K

⎧ = + >⎪
⎪⎪ = − + + −⎨
⎪
⎪ = − −⎪⎩

 

From the parameter values found after the fitting step (Tab. 5.I), we have 
c < 0. Thus:  

2 20 4 0ac b ac b b< ⇔ ∆ = − > ⇔ ∆ > ⇔ ∆ >  

The two solutions of the polynomial equations are real and equal to: 

1
0

2org
bN

a
− − ∆

= <  and 
2

0
2org

bN
a

− + ∆
= > . 

As we deal with concentrations, we will only look at the positive 
solution:  

( )( )( )
( )

3

3

inhib,min, , MINOX, MINANOX, DENIT, MINOX, denit,*

inhib,min, , MINOX, MINANOX, DENIT,

1

2
org

org

NO
N N Ph Ph Ph Ph Ph PhN

org NO
N Ph Ph Ph PhN

y

y

I K R R R R K
N

K R R R
=

+ + − − +

+

∆  

with 

( )( )( )
( )( )( )

3

3

2

MINOX, denit, inhib,min, , MINOX, MINANOX, DENIT,2

inhib,min, , DENIT, MINOX, MINANOX, denit, inhib,min, ,

1

4 1

org

org

NO
Ph Ph N Ph Ph Ph PhN

N
NO

N Ph Ph Ph Ph Ph N Ph N

y

y

R K K R R R
I

K R R R K K

⎛ ⎞− + + −⎜ ⎟
∆ = ⎜ ⎟

⎜ ⎟+ + −⎝ ⎠−

 

As b and ∆ are proportional to IN, let Norg
* = σ IN with σ independent of 

IN. 
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By replacing the Norg
* in the formulation of NO3

* (Eq. 5.14), we obtain: 

3

* denit,
3

DENIT, 1
org

Ph
NO
N Phy

K
NO

R σ
=

−
 

So NO3
*doesn’t depend on IN which means that whatever the input of 

organic nitrogen, there is always the same equilibrium value for nitrate. It can 
be explained, from a biochemical point of view, by the ceasing of 
denitrification as soon as there is no more organic nitrogen, leading to an 
accumulation of nitrate as long as there is some ammonium and dioxygen for 
the nitrification. Similarly, if ammonium and organic nitrogen tend to zero, 
nitrate is neither produced nor consumed. 

So the unique equilibrium of this trivial system is:  

3

* * *nit , , denit,
4 3

NIT, DENIT,

, ,
1

org

N N Ph Ph
org N NO

Ph N PhNy

I K K
NH N I NO

R I R
σ

σ
=

⎧ ⎫⎪ ⎪= =⎨ ⎬− −⎪ ⎪⎩ ⎭
 

With the following existence conditions:  

RNIT,Ph > IN (called Ph1) and  (called Ph2). 3
DENIT, 1

org

NO
PhNy R σ >

Fig. 5.11 schematically represents the equilibrium as function of the 
organic nitrogen supply for a constant dioxygen concentration. Indeed, when 
there is some substrate input, in the chemostat case, there is a stable 
equilibrium plan, where the input change indicates a curve that increases 
linearly with IN for the organic nitrogen.  

 

NO3

NH4

Norg

NO3
*

INorg= 0

INorg↑

NO3

NH4

Norg

NO3
*

INorg= 0

INorg↑

 

Fig. 5.11. The representation of 
the equilibrium of the Ph-model 
as function of the change in the 
supply of organic nitrogen, for 
constant dioxygen concentrations. 
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The M-model 

In this case, the bacterial dynamics and the biogeochemical processes are 
considered at the same space-time scale. This model will help to evaluate the 
significance of bacterial dynamics. From Eq. 5.13, we have at steady state:  

3

*
minox, minanox, denit,

nit,

denit, nit,
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*
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 ⇒ 3
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*

*

*

*

2
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M

NO
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j
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⎪
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The second line of the system gives:  
*

4
NIT,

*NIT, , ,1 NIT, , ,2
4*

4 NIT, , ,2

2
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M
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N M
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+

 

Thus ( ) ( )2* *
4 4 0a NH b NH c+ + =  with 
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If NIT, 2
M

M
EN

kr
y

>  thus 2 20 4 0ac b ac b b< ⇔ ∆ = − > ⇔ ∆ > ⇔ ∆ > .  

In this case, the system has only one positive solution: 

( )
* NIT, , ,2 NIT, , ,1

4
NIT, , ,2NIT,

1 4 1
2 2

N M N MM

N MEN M M

K Kk
NH

Ky r k
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If NIT, 2
M

M
EN

kr
y

<  thus ac > 0, supposed that ∆ > 0 to obtain a real 

solution, we have 2 24 0b ac b∆ = − > ⇔ ∆ < ⇔ ∆ < b . But here, a and b 
are negative. So there is no positive solution. As we deal with concentrations, 

the case where NIT, 2
M

M
EN

kr
y

<  offers no equilibrium. 

The third line of the system gives:  

3
denit, 2org

NO M
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=  with 3
denit , denit ,

3 DENIT,
M M o
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NO
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( )
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2 2org
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M MNO M
M orgN NO

ENM EN M org MN
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(5.15) 

We search now for the equilibrium of organic nitrogen (fist line of the 
system):  

minox, minanox, denit, 2M M M
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EN
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k
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+ + =  
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*
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By replacing Eq. 5.15 in the last equality we have the following second 
order polynomial equation:  

( ) ( )2* * 0org orga N b N c+ + =  
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3 3
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In order to compare both models and because the M-model has more 
parameters, we made some assumptions that are presented in the Tab. 5.I. 
From these parameter values c < 0. Thus:  

2 20 4 0ac b ac b b< ⇔ ∆ = − > ⇔ ∆ > ⇔ ∆ >  

So this system offers only one equilibrium: 
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As b and ∆ are proportional to kM, let Norg
* = σ kM with σ independent of kM. 

We can replace the Norg
* in NO3

* (Eq. 5.15) such that:  
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As σ doesn’t depend on kM, NO3
*doesn’t depend on kM. Thus the unique 

equilibrium is:  
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With the following existence conditions:  

2 yEN rNIT,M > kM (called M1) and  (called M2). 3
denit ,2 1

org

NO
EN MNy y r σ >

NH4
*, NO3

* and Norg
* do not depend more on the supply of organic 

nitrogen compared to Ph-model. The reserve density is constant at 
equilibrium and also independent of the substrate supply, but depends on the 
ratio between the maintenance cost and the reserve turnover rate. The 
equilibrium of structural biomass V* is proportional to the substrate supply 
and the maintenance rate, and constant as these parameters are considered 
constant. 
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The stability analysis 

We analyse the stability of this equilibrium. To this end, we first try the 
analytical method, for both models (see Appendix 5.C), through the 
construction of the Jacobian matrix and the testing of the Routh-Hurwitz 
criterion. The Jacobian matrix allows to find the solution of the characteristic 
equation and the criterion method helps to determine how many roots of the 
characteristic equation have positive real parts (located in the right hand side 
of the complex plane), and are therefore unstable. However, it turned out that 
the model is too complex for this approach. 

So we calculate the maximum eigenvalue of the Jacobian numerically in 
different environmental conditions, using the Matlab software. This 
numerical method can be used to analyse the local stability: the more 
negative is the maximal eigenvalue, the more stable is the system. But, a 
maximal eigenvalue of zero means that the system can be reduced, but it 
doesn’t say anything about the stability of the equilibrium. In this case, we 
have verified the stability of the model through simulations under asymptotic 
conditions, with different parameter values. In the following models, a 
maximal eigenvalue of zero means a local stability.  
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The Ph-model 

So we calculate the maximal eigenvalue numerically as function of the 
input of organic nitrogen and the dioxygen concentration. As the organic 
nitrogen is supposed to be non-saturating, we choose a maximal IN value that 
is not too large.  

This equilibrium is always stable (Fig. 5.12.A). The more the input of 
organic nitrogen increases, the less stable is the system. In order to have a 
good visibility of what happens, we put an absolute value (=10) for the 
maximal eigenvalue in the area where non equilibrium exists which means 
that the conditions Ph1 and Ph2 are not fulfilled. Fig. 5.11.B-C shows that 
equilibria exist in a very small area only.  

 

A B C

 

A B C

 
Fig. 5.12. The maximum eigenvalue of Ph-model, as functions of the input organic 
nitrogen and the dioxygen concentration. The projection of the 3D-graph on the 
plane below represents the area where the maximal eigenvalue is negative. The value 
at 10 represents the area where no equilibria exist. (A) without the existence 
conditions of the equilibriums, (B) with the existence conditions of the equilibriums, 
(C) like (B) but with more detail around the origin. The other parameter values come 
from Tab. 5.I. 

We also realized an analytical study of batch cultures where the organic 
nitrogen input is negligible (Appendix 5.D). The result is found to be in 
accordance with that of chemostats and it allows knowing what happens near 
the origin of the axes of the graph of Fig. 5.11. Indeed, we obtain a stable 
equilibrium point which value depends on parameter values and a straight 
line constituting a set of equilibria: if the system starts on this line, there is no 
change, if the system starts near this line but not on it, the system evolves to 
the point. And if the system is stable for an input of organic nitrogen equal to 
zero, we can safely assume that it will be stable for small value for input. 

 



110 Chapter 5 

The M-model 

The Figs. 5.13 and 5.14 show the numerical calculation of the maximal 
eigenvalue in different conditions. The parameter values, used for the 
bacterial dynamics, come from Chapter 4: yEV = 0.829, m = 7.8x10-2 d-1,     
yEN = 17.1637, kE = 4.3704 d-1, yPE = 1.1797 with kM = yEP m = 6.6x10-2 d-1. 
For the chosen parameters, condition M2 for the existence of equilibria is 
always fulfilled.  

We first study the evolution of the maximal eigenvalue with the dioxygen 
concentration and the organic nitrogen supply as in the previous model (Fig. 
5.13). In this case, as kM is very small, condition M1 for the existence of 
equilibria is mostly fulfilled except for the strictly anoxic environment, as                               
rNIT,M = rnit,M O2 / (Knit,O,M + O2). The area, for which no equilibria exist, is 
then at the origin; this is not represented here for better visibility.  

A BA B

 
Fig. 5.13. The maximum eigenvalue of the M-model, as functions of the input 
organic nitrogen and the dioxygen concentration. (A) with the existence conditions of 
the equilibriums, (B) like (A) but with more detail around the origin. The projection 
of the 3D-graph on the plane below represents the area where the maximal 
eigenvalue is negative. The other parameter values come from Tab. 5.I. 

Fig. 5.13.A-B shows that the equilibrium is clearly stable for a negligible 
supply of substrate and low dioxygen concentration (but fulfilling the 
condition M1). Furthermore, we can see a large plane for the maximal 
eigenvalue of zero. Some numerical simulations have demonstrated its 
stability. If the dioxygen concentration increases for the chosen parameter 
values, there is a very soon inhibition (at very small dioxygen concentrations) 
of some biogeochemical processes. But, the more the dioxygen concentration 
increases, the more the denitrification process is inhibited. This phenomenon 
leads to an accumulation of nitrate. As in our model, the inhibition of 
denitrification results from a decrease in meeting frequency when the nitrate 
concentration increases. Thus, when the dioxygen concentration increases, 
the time needed to achieve the stable equilibrium increases. 
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As the maintenance cost (kM) is a very important parameter in this 
system, we have represented here (Fig. 5.14) the maximal eigenvalue, 
dependent on the organic nitrogen input and the maintenance cost and for 
different steady state dioxygen concentrations (0.001, 0.005, 0.01 and 200 
µmol O2.l-1). For strictly anoxic conditions, condition M1 for the existence of 
equilibria is never fulfilled, as explained before. With the increase in the 
dioxygen concentration, kM must quickly become very important for not-
fulfilling the existence conditions M1 (for dioxygen concentration around 
0.005 µmol O2.l-1, kM has to be 1 d-1). 

A B C DA B C D

 
Fig. 5.14. The maximum eigenvalue of the M-model as functions of the input organic 
nitrogen and the maintenance cost, with existence conditions - the values at 100 
represent the area where equilibria do not exist - at: (A) O2=0.001, (B) O2=0.005, 
(C) O2=0.01, (D) O2=200 the enlarged stability with the existence conditions of the 
equilibriums where. The projection of the 3D-graph on the plane below represents 
the area where the maximal eigenvalue is negative. The other parameter values come 
from Tab. 5.I. 

In the same way, the maintenance cost has a small influence on the 
equilibrium stability and has a big impact on the equilibrium existence 
condition M1. The more the maintenance cost increases, the more the 
stability decreases. However, the more the organic nitrogen supply increases, 
the more the system is stable for large value of the maintenance cost. But for 
a small value of kM, the equilibrium stability decreases when the organic 
nitrogen increases. Furthermore, the more the dioxygen concentration 
increases and the more the stability area increases. Thus the dioxygen 
concentration has a stabilizing effect on the system. 

We found numerical problems for small values of the organic nitrogen 
supply. Indeed, for the batch case, this system gives the solution for V* = 0. 
And for V* = 0, e* is not defined. This result is not biologically acceptable 
and for this model, the batch case is not studied. 
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5.4  Discussion 
The fitting step allows: (1) to obtain parameter values of the 

biogeochemical processes, (2) to simulate changes in the concentrations of 
unknown compounds (such as the organic nitrogen). With this method, we 
could also simulate the unknown reaction rates (as the oxic and the anoxic 
mineralization rates, results not shown). Furthermore, it could help us to 
predict the amount of dioxygen that is used. This study shows that the 
reaction rates of Ph-model are well determined by the data, contrary to the 
concentrations of compounds. Indeed, the Ph-model simulates a higher 
amount of nitrate than the shown in the data. We can explain this over-
estimation of the simulated nitrate by the absence of an important process in 
this local model: the diffusion process that occurs from the pore water to the 
overlying water environments. But this problem can also suggest that the 
formulation should include biological dynamics, which is coherent with the 
perturbed environment.  

Given the obtained parameter values, we have simulated oscillating 
environments with the Ph-model and compared it with the corresponding 
data. The model is far from the data and it suggests that the parameter values 
and the empirical construction are not suitable for perturbed environments. 
The parameter values do not apply to different conditions. 

This study of equilibria helped to reveal the behavioural differences 
between both models and to see if the mechanistic model allows several 
equilibriums (a not trivial system). It showed that, in the case of 
environmental perturbations, the phenomenological and the mechanistic 
approaches lead to different results. Indeed, if there is some organic matter 
supply to the sediment, for instance from a phytoplankton bloom, the Ph-
model will allow the concentration of NH4

* and Norg
* to increase, while the 

M-model will not. According to the M-model, all the supplied matter will be 
absorbed by the structural biomass.  

This result has already been observed experimentally. Indeed, the 
seasonal pulses are thought to have a major influence on levels of activity of 
the resident microbial community in the sediment (Turley and Lochte, 1990) 
and at the sediment-water interface (Patching and Eardly, 1997). In order to 
assess the response of a deep-sea microbial population from the N.E. Atlantic 
to simulated fall of detrital aggregates, Turley and Lochte (1990) added 
sterile detritus to deep-sea microbial communities and incubated them under 
high pressure and low temperature. Rapid colonization, growth, and 
decomposition rates indicate that the deep-sea benthic microbial community 
can react quickly to such inputs of organic carbon to the sea bed. In the same 
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way, Fabiano et al. (2001) show that there is a clear response to the flux of 
labile organic matter by the smallest sized biota. Furthermore, microbial 
decomposition and transformation of sedimented detrital aggregates may be 
important in the material flow to the deep-sea and may influence the 
chemistry of local seawater.  

Our conditions for the existence of equilibria showed the M-model are 
much more stable than the Ph-model.  

Moreover, these results show that the dioxygen oscillations can play an 
important role and some parameter values are dependent on the dioxygen 
concentration, considered here as a function of time. The existence of NH4

* in 
the Ph-model needs IN < RNIT,Ph with RNIT,Ph = Rnit,Ph O2 / (Knit,O,Ph + O2). 
Under oscillating dioxygen conditions, we could obtain an accumulation of 
ammonium if time where RNIT,Ph < IN (ex: anoxic conditions) is greater than 
the inverse; so, we can change the asymptotic behaviour, if the dioxygen 
concentration is oscillating, related to the oscillations amplitude and 
frequency, above and below the limit of the existence of the equilibrium. In 
the same way, the equilibrium value for nitrate could also become negative. 
For the M-model, for a maintenance cost equals to 1 d-1 (Fig. 5.14), the 
system is unstable when O2 → 0 and becomes stable when the dioxygen 
concentration increases. But, as the Ph-model and the M-model don’t have 
the same stability behaviour in terms of area and strength, both models can 
give different results for the same environmental conditions.  

These results show that the quality of the dioxygen supply can have its 
importance on the stability, and thus on the trajectories of the concentrations 
of compounds - a weak and constant dioxygen concentration will not give the 
same result than oscillating dioxygen concentration, with the same integrated 
amount of dioxygen. Our first idea was to determine the environmental 
conditions that allow higher mineralization of nitrogen in oscillating 
conditions than in oxic conditions. So this study demonstrates that this result 
is possible.  

The next step would be to analyse the bifurcation diagram, to study the 
potential behaviour of the model. It will allow to find the full set of 
environmental conditions under which the mineralization of nitrogen is 
higher in oscillating conditions than in oxic conditions. Further, this complete 
model could be integrated in an early diagenetic model that accounts for 
transport (diffusion and advection) processes. Moreover, the macrobenthic 
activity implies other impacts on the bacterial populations and organic matter 
fate: ingestion, worm’s respiration, etc. 
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Appendix 5.A. Model description and simplification 
For nitrification of the M-model, we have:  
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We obtain the following simplified nitrification formulation: 
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For denitrification, we have:  
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We obtain the following simplified denitrification formulation: 
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Appendix 5.B: The meaning of biogeochemical 
models  

A negative value of the equilibrium or of the variables has no biological 
meaning. We have to verify that this does not happen for all models:  

if 0 0dXX
dt

= ⇒ ≥  

We show that both models respect this condition. This condition proves 
firstly that a negative equilibrium is unstable and secondly that you cannot 
obtain a negative equilibrium when the initial value is positive. 
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Appendix 5.C: Stability analysis – analytical way 
We present in this appendix the analytical approach. We study the 

stability of the equilibrium. Let us consider a system of three equations. We 
construct the corresponding Jacobian matrix J:  

( )

( )

( )

, ,

, ,

, ,

dx
dt
dy

g
dt
dz

h
dt

f x y z

x y z

x y z

=

=

=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

      
1 2 3

      1 2 3
1 2 3

f f f
x y z A A A
g g gJ B
x y z

C C C
h h h
x y z

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎜ ⎟ ⎛ ⎞
⎜ ⎟∂ ∂ ∂ ⎜ ⎟⇔ = =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟∂ ∂ ∂
⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠

B B  

We can determine the eigenvalues of the Jacobian matrix, with the 
following calculus of the determinant:  
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This root of the polynomial of the third degree is called the characteristic 
equation. If at least one of the eigenvalues is equal to zero, the solution of the 
equation is easy. And with the sign of these eigenvalues, we can determine 
the stability of the equilibrium. If the number of eigenvalues exceeds two, we 
use a Routh-Hurwitz (RH) criterion. This method aims to determine how 
many roots of the characteristic equation (Eq. 5.C.1) have positive parts 
(located on the right hand side in the complex plane), and are therefore 
unstable. For the considered system, we have:  
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The number of poles in the right half plane (unstable roots) equals the 
number of sign changes in the first column of the Routh array. We search for 
the sign of the coefficient in the first row. As an example, for the Ph-model 
we found: 
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Thus a3 > 0 whatever the parameter values are and a2 > 0 for the chosen 
parameter values (Tab. 5.I). But b1 is not evidently positive or negative. 
Thus, for complex model, we cannot easily define the sign of these 
expressions. So this method doesn’t help to determine the stability of the Ph- 
and the M-models. 

Appendix 5.D: Batch cultures 
The particular case of IN = 0 corresponds to the batch case where there is 

some initial substrate at the beginning of the experiment but no continuous 
input.  

For the Ph-model, we find two equilibria, a point and a straight line:  
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In the same way we construct the Jacobian matrix; and we calculate the 
determinant and the trace of this matrix for each equilibrium. 

For the point, we have:  
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The determinant equal to zero indicates that at least one of the 
eigenvalues is equal to zero. By calculating them, we find:  
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So this system is stable and can be reduced to one dimension. 
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For the straight line, we have: ( )0 0
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By calculating the eigenvalues, we find:  
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So this system is also stable and can be reduced in this case to two 
dimensions.  
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Appendix 

 
Appendix A. Table of nomenclature 
State variables and parameters – Table of notation, units, description and initial value 
of state variables and parameters used in the manuscript. The following symbols are 
used for the dimensions: -, without unit; #i, unit of i (number, mass or 
concentration) ; t, time which vary according to the study (Kooijman, 2000).  

Chapter 2: t: d, #: µmol.l-1; Chapter 3: t: h, #: mmol.l-1; Chapter 4: t: h, #: g.l-1, E 
represents the nitrogen reserve (gN.l-1) and V is in gram of structural biomass (gV.l-1); 
Chapter 5: t: d, #: µmol.l-1, E and V are expressed in µmol N.l-1. 

Notation Units Description 
State Variables  

C #C Particular Organic Carbon (POC)  
O2 #O2 Dioxygen 
NO3, Norg, NH4 #N Nitrate, organic nitrogen and ammonium 
X or S #X or #S Substrate 
E #E Reserve of the microbial population 
V #V Structural biomass of the microbial population 
e #E.#V-1 Reserve density (reserve by unit of structure) 

e = E/V 
B #B Bacterial biomass 

B = V + εE 
P #P Products of the reactions 

Functions 
IX #X.t-1 Substrate supply rate 
f(X) - Michaelis-Menten kinetics 

f(X) = X/(X+KX) 
ji
Π

 #i.#V-1.t-1 Specific flux of compound i (X, E, V and P) 
associated to the process Π (A: assimilation, G: 
growth, M: maintenance) 
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Ji
Π #i.t-1 Absolute flux of compound i associated to the 

process Π 
Ji
Π = ji

ΠV 
θij - SU fraction associated to a biogeochemical process, 

at binding state i and j (free, occupied by one or 
several substrate bound) 

θij* - SU fraction at steady state associated to a 
biogeochemical process, where i and j can be free 
or occupied 

eS #E.#V-1 Threshold value of the reserve density setting off 
the switch between the reserve and the structure use 
in the maintenance 

Parameters 
Physical and numerical geometry 
zmax cm Maximum depth of the sedimentary column 
N - Grid number 
∆z cm Space step (for the first 8 cm) 
∆t cm Time step 
Physical fields and constants 
W cm.t-1 Sedimentation velocity 
DO cm2.t-1 Overall diffusion coefficient for dioxygen (0 – 6 

cm) 
DNO cm2.t-1 Overall diffusion coefficient for nitrate (0 – 6 cm) 
DM O cm2.t-1 Molecular diffusion coefficient for dioxygen 
DM NO cm2.t-1 Molecular diffusion coefficient for nitrate 
φ - (%) Porosity 
Biological 
DB and DC cm2.t-1 Overall biodiffusion coefficient for bacteria and 

POC (0 – 6 cm) 
αBac (#C)-1 Transformation rate of POC in bacterial biomass 
γB %.(#C)-1 Proportionality coefficient to POC for environment 

capacity of bacterial  
r t-1 Specific growth rate of bacterial biomass 
hE or kE t-1 Reserve turnover rate 
kM #E.(#V)-1.t-1 Maintenance cost 
g #E.(#V)-1 Growth cost 
m t-1 Ratio between maintenance and growth costs 
yij #i.(#j)-1 Yield coefficient coupling the mass flux i to the 

mass flux j 
e0 #E.#V-1 Initial reserve density 
Biogeochemical 
ki (#V)-1.t-1 Binding rate of compounds i on the SU fraction 

association to a biogeochemical process 
ki = mi for oxic mineralization, ai for anoxic 
mineralization, di for denitrification and ni for 
nitrification 
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k’ t-1 Releasing rate of the SU fraction associated to a 
biogeochemical process  
k’ = m’ for oxic mineralization, a’ for anoxic 
mineralization, d’ for denitrification and n’ for 
nitrification 

ρi - Binding probability of compound i on the free SUs 
fraction 

ρij - Binding probability of compound i on the SU 
fraction with the compound j already bound 

jiΠm t-1 Maximal using rate of compounds i in the process 
Π 

yj
i #i.(#j)-1 Stoichiometric coefficient of the compound i used 

by compound j degraded associated to a 
biogeochemical process 

Rminox, Rminanox, 
Rdenit

t-1 Maximal absolute rate of the oxic and anoxic 
mineralization and the denitrification 

Rnit #N.t-1 Maximal absolute rate of the nitrification 
rminox, rminanox, 
rdenit

(#V)-1.t-1 Maximal specific rate (by unit of structure) of the 
oxic and anoxic mineralization and the 
denitrification 

rnit #N.(#V)-1.t-1 Maximal specific rate of the nitrification 
KX #X Half Saturation Constant (HSC) in a process  
Kminox,* #O2 HSC of the dioxygen for the oxic mineralization in 

the model * 
Knit,O,* #O2 HSC of the dioxygen for the nitrification in the 

model * 
Kdenit,*  #N HSC of the nitrate for the denitrification in the 

model * 
Knit,N,* #N HSC of the organic nitrogen for the nitrification in 

the model * 
Kinhib,denit,*  #O2 Inhibition constant by dioxygen for the 

denitrification in the model * 
Kinhib,min,O,* #O2 Inhibition constant by dioxygen for the anoxic 

mineralization in the model * 
Kinhib,min,N,* #N Inhibition constant by the nitrate in the anoxic 

mineralization in the model * 
α - Proportionality coefficient in maintenance  
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and carbon cycle in marine sediments: An early 
diagenetic model. 
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Abstract 

A new model for early diagenetic processes has been developed through a new 
formulation explicitly accounting for a microbial population dynamics. Following a 
mechanistic approach based on enzymatic reactions, a new model has been proposed 
for oxic mineralization and denitrification. It incorporates dynamics of bacterial 
metabolism. We find a general formulation for inhibition processes for which some 
of other mathematical relations are particular cases.  

Moreover a fast numerical algorithm has been developed. It allows us to perform 
simulations of different diagenetic models in non steady states. We use this algorithm 
to compare our model to a classical one (Soetaert et al, 1996). Dynamical evolutions 
since a perturbation of particulate organic carbon (POC) input are studied for both 
models.  

The results are very similar for stationary cases. But with variable inputs, the 
bacterial biomass dynamics brings about noticeable differences, which are discussed. 
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Abstract 

To fulfil their maintenance costs, most species use mobile pools of metabolites 
(reserve) in favourable conditions, but can also use less mobile pools (structure) 
under food-limiting conditions. While the Marr-Pirt model always pays maintenance 
costs from structure, the presence of reserve inhibits the use of structure for 
maintenance purposes. The standard Dynamic Energy Budgets (DEB) model 
captures this by simply supplementing all costs that could not be paid from reserve 
with structure. This is less realistic at the biochemical level, and involves a sudden 
use of structure that can complicate the analysis of the model properties. We here 
propose a new inhibition formulation for the preferential use of reserve above 
structure in maintenance that avoids sudden changes in the metabolites use. It is 
based on the application of the DEB theory for synthesizing units, which can easily 
become rather complex for demand processes, such as the maintenance process. We 
found, however, a simple explicit expression for the use of reserve and structure for 
maintenance purposes and compared the numerical behaviour with that of the Marr-
Pirt model in oscillating conditions, by using parameter values from a fit of the 
models to data on yeasts in a batch culture. We conclude that our model can better 
handle variable environments. This new inhibition formulation has a wide 
applicability in modelling metabolic processes. 
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Appendix D. Modelling the impact of Tubificid 
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hyporheic sediments: importance of vertical 
distributions. 
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Abstract 

The aim of the study was to present a model to simulate the influence of 
tubificids (Tubifex and Limnodrilus) on O2

 
concentrations in hyporheic sediments. A 

mathematical model was developed to reproduce vertical distribution of O2
 
in 

experimental columns of sediments. Vertical column was simulated as a grid with 
cells of 1-cm depth each. The model took into account the hydrodynamic properties, 
the microbial respiration, and the stimulation effect of tubificids on microbial activity 
in the system. A coupling was made between the microbial stimulation by worms and 
their distribution in columns. The results of the model were compared to 
experimental data sets with the aim to test the importance of worm identity on 
aerobic processes. We hypothesized that two groups of worms (Tubifex and 
Limnodrilus) would present different vertical distributions in sediments and then 
would affect differently oxygen gradients in sediments. The spatial model gave a 
good assessment of the impact of tubificids on O2 concentrations in the sediment. 
According to our hypothesis, the worm impact depended on the fluctuations of 
tubificid distributions that were linked to worm identity. Finally, the model suggests 
that factors affecting worm distribution in sediments have a significant impact on the 
biogeochemical functioning of the system.  
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Summary 

 
Modelling Microbial Populations in Variable Environments 

This thesis expands on a realistic characterisation of the links between 
microbial populations and their environment. Natural environments are 
mostly complex, with a lot of factors that can interplay. For example, the 
influence of food quality in ecosystems is the notion that all organisms need 
multiple elements in their nutrition. Furthermore, these environments are 
forced by perturbations in time and space. As an example, the variability in 
the amount of their resources can influence the fate of the considered 
populations.  

Classical models analysing the microbial dynamics are empirical and 
based on experiments realised in equilibrium situations. They mostly use 
Michaelis-Menten kinetics as a base for the absorption process, and a 
Liebig’s law for multi-substrate transformations. The Liebig’s law allows a 
switch between different metabolic modes, depending on which element 
limits biomass growth. This switch makes the mathematical and the 
numerical analysis of such models awkward. Furthermore, these empirical 
formulations do not achieve the thermodynamics involved in biochemical 
transformations. Consequently, they are only appropriate for really simple 
environments but not for more complex ones such as multi-substrate natural 
systems. 

This thesis provides a mechanistic modelling approach to treat these 
aspects of microbial dynamics in variable environments. This approach is 
based on the Dynamics Energy Budget (DEB) theory which considers some 
evidences such as: 

- the mass conservation law must be fulfilled. This characteristic is 
achieved thanks to the individual scale consideration in the model 
formulation as mass and energy balances are most clear at this level.  
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- the element composition of an organism may differ substantially from the 
element composition of its food. In the mechanistic model, the 
differentiation in mobile (reserve) and non-mobile (structural biomass) 
matter derivates from this observation. 

- the processes occurring at the individual level can be described from 
enzymatic kinetics. The synthesizing units (SUs) can be considered as a 
simple generalisation of the classical concepts of enzyme. This reasoning 
allows to obtain parameters value that can be reused. 

Chapter 1 introduces the context, the problematic and presents our 
development. Then, from one chapter to another one, we improve the 
mechanistic model with different levels of details concerning the microbial 
population and its interaction with its environment.  

Chapter 2 incorporates the dynamics of bacterial metabolism in classical 
models analysing the organic matter degradation and proposes a new model 
based on enzymatic reactions for oxic mineralization and denitrification. We 
find a general formulation for inhibition processes for which some of other 
mathematical relations are particular cases. We compare our model to a 
classical one through simulations. Both models show very similar results for 
stationary cases, but with variable inputs, the model that accounts for 
bacterial biomass dynamics shows noticeable differences, which are 
discussed. 

Chapter 3 compares classical empirical models that analyse the microbial 
dynamics (the models by Monod and Droop) with a DEB based model 
through an application to a set of data. The Monod model shows intrinsic 
failing. The two other models offer a good fit to the data but show strong 
differences in parameter values. This chapter highlights the problematic of 
the complementarity between experimentation and modelling. Indeed, the 
strong variability in parameter values from one condition to another one in 
simplified model can come from some essential processes not taken into 
account; but the model complexity in terms of numbers of parameters and 
variables must match the availability of data. Although too complex for this 
particular data set, the DEB model obtains parameter values that are useful 
for perturbation studies.  

Chapter 4 proposes an improvement of the standard DEB model for 
bacterial communities dynamics by giving a new description of adaptation in 
case of nutrients depletion: the shrinking process. To fulfil their maintenance 
costs, most species use mobile pools of metabolites (reserve) in favourable 
conditions, but can also use less mobile pools (structure) under food-limiting 
conditions. As the presence of reserve inhibits the use of structure, this leads 
to a new inhibition formulation, based on SUs, for maintenance which is 
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controlled by product formation (demand system). The standard DEB model, 
based on an empirical switch, is less realistic at the biochemical level, and 
involves a sudden use of structure that can complicate the analysis of the 
model properties. We compared the numerical behaviour with that of the 
Marr-Pirt model in oscillating conditions, by using parameter values from a 
fit of the models to data on yeasts in a batch culture. We conclude that our 
model can better handle variable environments.  

From previous work, Chapter 5 proposes an improvement of the 
description of substrate interactions in biogeochemical models, focusing on 
the nitrogen cycle, and studies the impact of benthic population on the 
expression of bacterial metabolism. The principal effect of macrobenthic 
activities on microbial communities considered here is changing the 
environmental oxygenation (RedOx oscillations). We applied here the 
formulations developed in Chapters 2 and 4 on a supply system 
corresponding to biogeochemical processes: inhibition of a biogeochemical 
process of the nitrogen cycle by the presence of an inhibitory compound (as 
dioxygen for anaerobic processes). We compare, through a theoretical and a 
numerical analysis, the usual (phenomenological) model based on Michaelis-
Menten formulations with a DEB based model. Simulating oscillations, the 
usual model suggests that the empirical formulation is not suitable for 
perturbed environments. The theoretical analysis shows that the 
phenomenological and the mechanistic approaches lead to different results in 
the case of environmental perturbations. The mechanistic model, more stable 
than the phenomenological one, points out the absorption of the supplied 
matter by the structural biomass. This result has already been observed 
experimentally. The mechanistic model support some unexpected 
experimental results found in the literature. 

The work presented in this dissertation yields a number of general ideas 
(i) on the interactions between microbial populations and their environments 
by considering their functionality; (ii) on the modelling problematic: the 
compromise between complexity and obtained informations, the link between 
data and modelling, the importance of the modelling approach.  

The models developped here can now suggest new experiments: which 
parameters must be measured, what is the measure frequency that allows to 
obtain new knowledge, what is the good time scale in order to obtain data at 
several dynamics levels (ex: biochemical and biological) with a minimum 
cost. Furthermore, the mechanistic formulations can help to understand the 
physiological state of the individual and can have a wide applicability in 
modelling metabolic processes.  

 

 



 

 



 

 

Samenvatting 

 
Modelling Microbial Populations in Variable Environments 

This thesis expands on a realistic characterisation of the links between 
microbial populations and their environment. Natural environments are 
mostly complex, with a lot of factors that can interplay. For example, the 
influence of food quality in ecosystems is the notion that all organisms need 
multiple elements in their nutrition. Furthermore, these environments are 
forced by perturbations in time and space. As an example, the variability in 
the amount of their resources can influence the fate of the considered 
populations.  

Classical models analysing the microbial dynamics are empirical and 
based on experiments realised in equilibrium situations. They mostly use 
Michaelis-Menten kinetics as a base for the absorption process, and a 
Liebig’s law for multi-substrate transformations. The Liebig’s law allows a 
switch between different metabolic modes, depending on which element 
limits biomass growth. This switch makes the mathematical and the 
numerical analysis of such models awkward. Furthermore, these empirical 
formulations do not achieve the thermodynamics involved in biochemical 
transformations. Consequently, they are only appropriate for really simple 
environments but not for more complex ones such as multi-substrate natural 
systems. 

This thesis provides a mechanistic modelling approach to treat these 
aspects of microbial dynamics in variable environments. This approach is 
based on the Dynamics Energy Budget (DEB) theory which considers some 
evidences such as: 

- the mass conservation law must be fulfilled. This characteristic is 
achieved thanks to the individual scale consideration in the model 
formulation as mass and energy balances are most clear at this level.  
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- the element composition of an organism may differ substantially from the 
element composition of its food. In the mechanistic model, the 
differentiation in mobile (reserve) and non-mobile (structural biomass) 
matter derivates from this observation. 

- the processes occurring at the individual level can be described from 
enzymatic kinetics. The synthesizing units (SUs) can be considered as a 
simple generalisation of the classical concepts of enzyme. This reasoning 
allows to obtain parameters value that can be reused. 

Chapter 1 introduces the context, the problematic and presents our 
development. Then, from one chapter to another one, we improve the 
mechanistic model with different levels of details concerning the microbial 
population and its interaction with its environment.  

Chapter 2 incorporates the dynamics of bacterial metabolism in classical 
models analysing the organic matter degradation and proposes a new model 
based on enzymatic reactions for oxic mineralization and denitrification. We 
find a general formulation for inhibition processes for which some of other 
mathematical relations are particular cases. We compare our model to a 
classical one through simulations. Both models show very similar results for 
stationary cases, but with variable inputs, the model that accounts for 
bacterial biomass dynamics shows noticeable differences, which are 
discussed. 

Chapter 3 compares classical empirical models that analyse the microbial 
dynamics (the models by Monod and Droop) with a DEB based model 
through an application to a set of data. The Monod model shows intrinsic 
failing. The two other models offer a good fit to the data but show strong 
differences in parameter values. This chapter highlights the problematic of 
the complementarity between experimentation and modelling. Indeed, the 
strong variability in parameter values from one condition to another one in 
simplified model can come from some essential processes not taken into 
account; but the model complexity in terms of numbers of parameters and 
variables must match the availability of data. Although too complex for this 
particular data set, the DEB model obtains parameter values that are useful 
for perturbation studies.  

Chapter 4 proposes an improvement of the standard DEB model for 
bacterial communities dynamics by giving a new description of adaptation in 
case of nutrients depletion: the shrinking process. To fulfil their maintenance 
costs, most species use mobile pools of metabolites (reserve) in favourable 
conditions, but can also use less mobile pools (structure) under food-limiting 
conditions. As the presence of reserve inhibits the use of structure, this leads 
to a new inhibition formulation, based on SUs, for maintenance which is 
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controlled by product formation (demand system). The standard DEB model, 
based on an empirical switch, is less realistic at the biochemical level, and 
involves a sudden use of structure that can complicate the analysis of the 
model properties. We compared the numerical behaviour with that of the 
Marr-Pirt model in oscillating conditions, by using parameter values from a 
fit of the models to data on yeasts in a batch culture. We conclude that our 
model can better handle variable environments.  

From previous work, Chapter 5 proposes an improvement of the 
description of substrate interactions in biogeochemical models, focusing on 
the nitrogen cycle, and studies the impact of benthic population on the 
expression of bacterial metabolism. The principal effect of macrobenthic 
activities on microbial communities considered here is changing the 
environmental oxygenation (RedOx oscillations). We applied here the 
formulations developed in Chapters 2 and 4 on a supply system 
corresponding to biogeochemical processes: inhibition of a biogeochemical 
process of the nitrogen cycle by the presence of an inhibitory compound (as 
dioxygen for anaerobic processes). We compare, through a theoretical and a 
numerical analysis, the usual (phenomenological) model based on Michaelis-
Menten formulations with a DEB based model. Simulating oscillations, the 
usual model suggests that the empirical formulation is not suitable for 
perturbed environments. The theoretical analysis shows that the 
phenomenological and the mechanistic approaches lead to different results in 
the case of environmental perturbations. The mechanistic model, more stable 
than the phenomenological one, points out the absorption of the supplied 
matter by the structural biomass. This result has already been observed 
experimentally. The mechanistic model support some unexpected 
experimental results found in the literature. 

The work presented in this dissertation yields a number of general ideas 
(i) on the interactions between microbial populations and their environments 
by considering their functionality; (ii) on the modelling problematic: the 
compromise between complexity and obtained informations, the link between 
data and modelling, the importance of the modelling approach.  

The models developped here can now suggest new experiments: which 
parameters must be measured, what is the measure frequency that allows to 
obtain new knowledge, what is the good time scale in order to obtain data at 
several dynamics levels (ex: biochemical and biological) with a minimum 
cost. Furthermore, the mechanistic formulations can help to understand the 
physiological state of the individual and can have a wide applicability in 
modelling metabolic processes.  
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