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We propose new methods for the numerical continuation of point-to-cycle connecting orbits in
three-dimensional autonomous ODE’s using projection boundary conditions. In our approach,
the projection boundary conditions near the cycle are formulated using an eigenfunction of the
associated adjoint variational equation, avoiding costly and numerically unstable computations
of the monodromy matrix. The equations for the eigenfunction are included in the defining
boundary-value problem, allowing a straightforward implementation in auto, in which only the
standard features of the software are employed. Homotopy methods to find connecting orbits
are discussed in general and illustrated with several examples, including the Lorenz equations.
Complete auto demos, which can be easily adapted to any autonomous three-dimensional ODE
system, are freely available.
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1. Introduction

Many interesting phenomena in ODE systems can
only be understood by analyzing global bifurca-
tions. Examples of such are the occurrence and dis-
appearance of chaotic behavior. For example, the
classical Lorenz attractor appears in a sequence of
bifurcations, where homoclinic orbits connecting a

saddle equilibrium to itself and heteroclinic orbits
connecting an equilibrium point with a saddle cycle,
are involved [Afraimovich et al., 1977]. In the eco-
logical context, Boer et al. [1999, 2001] showed that
regions of chaotic behavior in parameter space in
some food chain models are bounded by bifurcations
of point-to-cycle and cycle-to-cycle connections.
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Thus, in order to gain more knowledge about
the global bifurcation structure of a model, informa-
tion is required on the existence of homoclinic and
heteroclinic connections between equilibria and/or
periodic cycles. The first type is a connection that
links an equilibrium or a cycle to itself (asymptoti-
cally bistable, so it necessarily has nontrivial stable
and unstable invariant manifolds). The second type
is a connection that links an equilibrium or a cycle
to another equilibrium or cycle.

The continuation of connecting orbits in ODE
systems has been notoriously difficult. Doedel and
Friedman [1989] and Beyn [1990] developed direct
numerical methods for the computation of orbits
connecting equilibrium points and their associated
parameter values, based on truncated boundary
value problems with projection boundary condi-
tions. Moreover, Doedel et al. [1993] have pro-
posed efficient methods to find starting solutions
by successive continuations (homotopies). These
continuation methods have been implemented in
HomCont, as incorporated in auto [Doedel et al.,
1997; Champneys & Kuznetsov, 1994; Champneys
et al., 1996]. HomCont is only suitable for the con-
tinuation of homoclinic point-to-point and hetero-
clinic point-to-point connections.

More recently, significant progress has been
made in the continuation of homoclinic and het-
eroclinic connections involving cycles. Dieci and
Rebaza [2004] developed a method based on ear-
lier works by Beyn [1994] and Pampel [2001]. Their
method is also based on projection boundary con-
ditions, but uses an ad hoc multiple shooting tech-
nique and requires the numerical determination of
the monodromy matrix associated with the periodic
cycles involved in the connection.

In this paper, we propose new methods for
the numerical continuation of point-to-cycle connec-
tions in three-dimensional autonomous ODE’s using
projection boundary conditions. In our approach,
the projection boundary conditions near each
cycle are formulated using an eigenfunction of
the associated adjoint variational equation, avoid-
ing costly and numerically unstable computation
of the monodromy matrix. Instead, the equations
for the eigenfunction are included in the defining
boundary-value problem, allowing a straightforward
implementation in auto.

This paper is organized as follows. In Sec. 2 we
recall basic properties of the projection boundary

condition method to continue point-to-cycle con-
nections. In Sec. 3 this method is adapted to
efficient numerical implementation in a special —
but important — 3D case. Homotopy methods to
find connecting orbits are discussed in Sec. 4. Sec-
tion 5 demonstrates that the algorithms allow for
a straightforward implementation in auto, using
only the basic features of this software. Three well-
known examples (the three-dimensional Lorenz sys-
tem, the electronic circuit model of Freire et al.
[1993], and the standard three-level food chain
model based on the Rosenzweig–MacArthur [1963]
system) are used in Sec. 6 to illustrate the power of
the new methods.

This is Part I of a sequel of two papers. Part
II will deal with cycle-to-cycle connections in 3D
systems.

2. Truncated BVP’s with Projection
BC’s

Before presenting a BVP for a point-to-cycle con-
nection, we set up some notation.

Consider a general system of ODE’s

du

dt
= f(u, α), (1)

where f : R
n × R

p → R
n is a sufficiently smooth

function of the state variables u ∈ R
n and the con-

trol parameters α ∈ R
p. Denote by ϕt the (local)

flow generated by (1).1

Let O− be either a saddle or a saddle-focus
equilibrium, say ξ, and let O+ be a hyperbolic sad-
dle limit cycle of (1). A solution u(t) of (1) defines
a connecting orbit from O− to O+ if

lim
t→±∞ dist(u(t), O±) = 0 (2)

(see Fig. 1 for illustrations). Since u(t + τ) satis-
fies (1) and (2) for any phase shift τ , an additional
scalar phase condition

ψ[u, α] = 0 (3)

is needed to ensure uniqueness of the connecting
orbit. This condition will be specified later.

For numerical approximation, the asymptotic
conditions (2) are replaced by projection boundary
conditions at the end-points of a large truncation
interval [τ−, τ+]: The points u(τ−) and u(τ+) are
required to belong to the linear subspaces that are
tangent to the unstable and stable invariant mani-
folds of O− and O+, respectively.

1Whenever possible, we will not indicate explicitly the dependence of various objects on system parameters.



August 28, 2008 13:41 02143

Continuation of Connecting Orbits in 3D-ODEs 1891

(a) (b)

Fig. 1. Point-to-cycle connecting orbits in R
3: (a) n−

u = 1; (b) n−
u = 2.

Let n−u be the dimension of the unstable invari-
ant manifold W u− of ξ, i.e. the number of eigenvalues
λ−u of the Jacobian matrix fu = Duf evaluated at
the equilibrium which satisfy

�(λ−) > 0.

Denote by x+(t) a periodic solution (with mini-
mal period T+) corresponding to O+ and introduce
the monodromy matrix

M+ = Dxϕ
T+

(x)
∣∣
x=x+(0)

,

i.e. the linearization matrix of the T+-shift along
orbits of (1) at point x+

0 = x+(0) ∈ O+. Its eigen-
values µ+ are called the Floquet multipliers; exactly
one of them equals 1, due to the assumption of
hyperbolicity. Let m+

s = n+
s +1 be the dimension of

the stable invariant manifold W s
+ of the cycle O+;

here n+
s is the number of its multipliers satisfying

|µ+| < 1.

A necessary condition to have an isolated family of
point-to-cycle connecting orbits of (1) is that (see
[Beyn, 1994])

p = n−m+
s − n−u + 2. (4)

The projection boundary conditions in this case
can be written as

L−(u(τ−) − ξ) = 0, (5a)

L+(u(τ+) − x+(0)) = 0, (5b)

where L− is a (n−n−u )×n matrix whose rows form
a basis in the orthogonal complement of the linear
subspace that is tangent to W u− at ξ. Similarly, L+

is a (n −m+
s ) × n matrix, such that its rows form

a basis in the orthogonal complement to the linear
subspace that is tangent to W s

+ of O+ at x+(0).
It can be proved that, generically, the truncated

BVP composed of (1), a truncation of (3), and (5)
has a unique solution family (û, α̂), provided that
(1) has a connecting solution family satisfying (3)
and (4).

The truncation to the finite interval [τ−, τ+]
implies an error. If u is a generic connecting solu-
tion to (1) at parameter value α, then the following
estimate holds:

‖(u|[τ−,τ+], α) − (û, α̂)‖ ≤ Ce−2min(µ− |τ−|,µ+|τ+|),

where ‖ · ‖ is an appropriate norm in the space
C1([τ−, τ+],Rn)×R

p, u|[τ−,τ+] is the restriction of u
to the truncation interval, and µ± are determined
by the eigenvalues of the Jacobian matrix and the
monodromy matrix. See [Pampel, 2001] and [Dieci
& Rebaza, 2004] for exact formulations, proofs, and
references to earlier contributions.

3. New Defining Systems in R
3

Here we explain how the projection boundary con-
ditions (5) can be implemented efficiently in a spe-
cial — but important — case n = 3. Thereafter, we
specify the defining system used to continue con-
necting orbits in 3D-ODE example systems with
auto. A saddle cycle O+ in such systems always
has m+

s = m+
u = 2.

3.1. The equilibrium-related part

The equilibrium point ξ, an appropriate solution of
f(ξ, α) = 0, cannot be found by time-integration
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(a) (b)

Fig. 2. BVP’s to approximate connecting orbits: (a) n−
u = 1; (b) n−

u = 2.

methods because it is a saddle. There are two dif-
ferent types of saddle equilibria that can be con-
nected to saddle cycles in 3D-ODE’s. These are
distinguished by the dimension n−u of the unsta-
ble invariant manifold W u− of ξ: We have either
n−u = 1 or n−u = 2 (see Fig. 1). In the former
case, the connection is structurally unstable (has
codim 1) and, according to (4), we need two free
system parameters for its continuation (p = 2).
In the latter case, however, the connection is struc-
turally stable and can be continued, generically,
with one system parameter (p = 1). There is
a small difference in the implementation of the
projection boundary condition (5a) in these two
cases.

If n−u = 1 [see Fig. 2(a)], then the following
explicit projection boundary condition replaces (5a):

u(τ−) = ξ + εv, (6)

where ε > 0 is a given small number, and v ∈ R
3 is a

unit vector that is tangent to W u− at ξ. Notice that
this fixes the phase of the connecting solution u, so
that (3) becomes (5a) in this case. The vector v in
(6) is, of course, a normalized eigenvector associated
with the unstable eigenvalue λu > 0 of the Jacobian
matrix fu evaluated at the equilibrium. Hence, we
can use the following algebraic system to continue
ξ, v and λu simultaneously:


f(ξ, α) = 0,

fu(ξ, α)v − λuv = 0,

〈v, v〉 − 1 = 0,

(7)

where 〈x, u〉 = xTu is the standard scalar product
in R

n.

If n−u = 2 [see Fig. 2(b)], then W u− is orthogo-
nal to an eigenvector v of the transposed Jacobian
matrix fT

u corresponding to its eigenvalue λs < 0,
so that (5a) can be written as

〈v, u(τ−) − ξ〉 = 0. (8)

To continue ξ, v, and λs, we use a system similar to
(7), namely:


f(ξ, α) = 0,

fT
u (ξ, α)v − λsv = 0,

〈v, v〉 − 1 = 0.

(9)

As a variant of the phase condition (3) in this case,
we can use the linear condition

〈η, u(τ−) − ξ〉 = 0, (10)

which places the starting point of the truncated
connecting solution in a plane containing the
equilibrium ξ and orthogonal to a fixed vector η
(not collinear with v).

3.2. The cycle and eigenfunctions

The heteroclinic connection is linked on the other
side to a saddle limit cycle O+ (see Fig. 2). Thus, we
also need a BVP to compute it. We use the standard
periodic BVP:{

ẋ+ − f(x+, α) = 0,

x+(0) − x+(T+) = 0,
(11)

which is augmented by an appropriate phase
condition that makes its solution unique. This phase
condition is actually a boundary condition for the
truncated connecting solution, and will be intro-
duced below.
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To set up the projection boundary condition
for the truncated connecting solution u near O+,
we also need a vector, say w(0), that is orthogonal
at x(0) to the stable manifold W s

+ of the saddle
limit cycle O+ (see Fig. 2). It is well-known that
w(0) can be obtained from an eigenfunction w(t)
of the adjoint variational problem associated with
(11), corresponding to its eigenvalue

µ =
1
µ+

u
,

where µ+
u is a multiplier of the monodromy matrix

M+ satisfying

|µ+
u | > 1

(see Appendix). The corresponding BVP is

ẇ + fT

u (x+, α)w = 0,

w(T+) − µw(0) = 0,

〈w(0), w(0)〉 − 1 = 0,

(12)

where x+ is the solution of (11). In our implemen-
tation the above BVP is replaced by an equivalent
BVP 


ẇ + fT

u (x+, α)w + λw = 0,

w(T+) − sw(0) = 0,

〈w(0), w(0)〉 − 1 = 0,

(13)

where s = sign µ = ±1 and

λ = ln |µ|
(see Appendix). In (13), the boundary conditions
become periodic or anti-periodic, depending on the
sign of the multiplier µ, while the logarithm of its
absolute value appears in the variational equation.
This ensures high numerical robustness.

Given w satisfying (13), the projection bound-
ary condition (5b) becomes

〈w(0), u(τ+) − x+(0)〉 = 0. (14)

3.3. The connection

Finally, we need a phase condition to select a unique
periodic solution among those which satisfy (11),
i.e. to fix a base point x+

0 = x+(0) on the cycle O+

(see Fig. 2). Usually, an integral condition is used
to fix the phase of the periodic solution. For the
point-to-cycle connection, however, we need a new
condition, since the end point near the cycle should
vary freely. To this end we require the end point of
the connection to belong to a plane orthogonal to

the vector f+
0 = f(x+(0), α). This gives the follow-

ing BVP for the connecting solution:{
u̇− f(u, α) = 0,

〈f(x+(0), α), u(τ+) − x+(0)〉 = 0.
(15)

3.4. The complete BVP

The complete truncated BVP to be solved numeri-
cally consists of (7), with

u(0) = ξ + εv, (16)

or (9), with

〈v, u(0) − ξ〉 = 0, (17a)

〈η, u(0) − ξ〉 = 0, (17b)

as well as

ẋ+ − T+f(x+, α) = 0, (18a)

x+(0) − x+(1) = 0, (18b)

〈w(0), u(1) − x+(0)〉 = 0, (18c)

ẇ + T+fT
u (x+, α)w + λw = 0, (18d)

w(1) − sw(0) = 0, (18e)

〈w(0), w(0)〉 − 1 = 0, (18f)

u̇− Tf(u, α) = 0, (18g)

〈f(x+(0), α), u(1) − x+(0)〉 = 0. (18h)

Here the time variable is scaled to the unit inter-
val [0, 1], so that both the cycle period T+ and the
connecting time T become parameters.

If the connection time T is fixed at a large
value, this BVP allows to continue simultaneously
the equilibrium ξ, its eigenvalue λu or λs, the cor-
responding eigenvector v, the periodic solution x+

corresponding to the limit cycle O+, its period T+,
the logarithm of the absolute value of the unsta-
ble multiplier of this cycle, the corresponding scaled
eigenfunction w, as well as (a truncation of) the con-
necting orbit u. These objects become functions of
one system parameter (when dimW u− = 2) or two
system parameters (when dimW u− = 1). These free
system parameters are denoted as αi.

If dimW u− = 2 then, generically, limit points
(folds) are encountered along the solution family.
These can be detected, located accurately, and sub-
sequently continued in two system parameters, say,
(α1, α2), using the standard fold-following facilities
of auto.
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4. Starting Strategies

The BVP’s specified above can only be used if good
starting data are available. This can be problem-
atic, since global objects — a saddle cycle and a
connecting orbit — are involved. However, a series
of successive continuations in auto can be used
to generate all necessary starting data, given little
a priori knowledge about the existence and location
of a heteroclinic point-to-cycle connection.

4.1. The equilibrium and the cycle

The equilibrium ξ, its unstable or stable eigen-
value, as well as the corresponding eigenvector or
adjoint eigenvector can be calculated using maple
or matlab. Alternatively, this saddle equilibrium
can often be obtained via continuation of a sta-
ble equilibrium family through a limit point (fold)
bifurcation.

To obtain the limit cycle O+, one can continue
numerically (with auto or content, for example)
a limit cycle born at a Hopf bifurcation to an appro-
priate value of α, from where we start the successive
continuation.

4.2. Eigenfunctions

In the first of such continuations, the periodic
solution corresponding to the limit cycle at the par-
ticular parameter values is used to get an eigen-
function. To explain the idea, let us begin with the
original adjoint eigenfunction w. Consider the peri-
odic BVP (18a)–(18b) for the cycle, to which the
standard integral phase condition is added,∫ 1

0
〈ẋ+

old(τ), x
+(τ)〉 = 0, (19)

as well as a BVP similar to (12), namely:

ẇ + T+fT

u (x+, α)w = 0,

w(1) − µw(0) = 0,

〈w(0), w(0)〉 − h = 0.

(20)

In (19), x+
old is a reference periodic solution, typ-

ically the one in the preceding continuation step.
The parameter h in (20) is a homotopy parameter,
that is set to zero initially. Then (20) has a trivial
solution

w(t) ≡ 0, h = 0,

for any real µ. This family of trivial solutions
parametrized by µ can be continued in auto using a

BVP consisting of (11) (with scaled time variable t),
(19), and (20) with free parameters (µ, h) and fixed
α. A Floquet multiplier of the adjoint system then
corresponds to a branch point at µ1 along this
trivial solution family (see Appendix). auto can
accurately locate such a point and switch to the
nontrivial branch that emanates from it. Continu-
ing this secondary family in (µ, h) until, say, the
value h = 1 is reached, gives a nontrivial eigenfunc-
tion w corresponding to the multiplier µ1. Note that
in this continuation the value of µ remains constant,
µ ≡ µ1, up to numerical accuracy.

The same method is applicable to obtain a non-
trivial scaled adjoint eigenfunction. For this, the
BVP 


ẇ + T+fT

u (x+, α)w + λw = 0,

w(1) − sw(0) = 0,

〈w(0), w(0)〉 − h = 0,

(21)

where s = sign(µ), replaces (20). A branch point
at λ1 then corresponds to the adjoint multiplier
seλ1 . Branch switching then gives the desired
eigendata.

4.3. The connection

Sometimes, an approximation of the connecting
orbit can be obtained by time-integration of (1)
with a starting point satisfying (6) or (8) and
(10). These data (the periodic solution correspond-
ing to the limit cycle, its nontrivial eigenfunction,
and the integrated connecting orbit) must then be
merged, using the same scaled time variable and
mesh points. This only works for non-stiff systems
provided that the connecting orbit and its cor-
responding parameter values are known a priori
with high accuracy, which is not the case for most
models.

A practical remedy in most cases is to apply the
method of successive continuation first introduced
by Doedel et al. [1993] for point-to-point problems.
This method does not guarantee that a connec-
tion will be found but works well if we start suffi-
ciently close to a connection in the parameter space.
Here we generalize this method to point-to-cycle
connections.

We first consider the case dimW u− = 1. To start,
we introduce a BVP composed of (7), (16), and a
modified version of (18), namely:

ẋ+ − T+f(x+, α) = 0, (22a)

x+(0) − x+(1) = 0, (22b)
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Ψ[x+] = 0, (22c)

ẇ + T+fT
u (x+, α)w + λw = 0, (22d)

w(1) − sw(0) = 0, (22e)

〈w(0), w(0)〉 − 1 = 0, (22f)

u̇− Tf(u, α) = 0, (22g)

〈f(x+(0), α), u(1) − x+(0)〉 − h1 = 0, (22h)

where Ψ in (22c) defines any phase condition fixing
the base point x+(0) on the cycle O+; for example

Ψ[x+] = x+
j (0) − aj ,

where aj is the jth-coordinate of the base point at
some given parameter values, and h1 is a homotopy
parameter.

Take an initial solution to this BVP that col-
lects the previously found equilibrium-related da-
ta, the cycle-related data (x+, T+) including x+(0),
the eigenfunction-related data (w, λ), as well as the
value of h1 computed for the initial “connection”

u(τ) = ξ + εveλuTτ , τ ∈ [0, 1], (23)

which is a solution of the scaled linear approxima-
tion of (1) in the tangent line to the unstable man-
ifold W u− of ξ. By continuation in (T, h1) for a fixed
value of α, we try to make h1 = 0, while u(1) is near
the cycle O+, so that T becomes sufficiently large.

After this is accomplished, we introduce
another BVP composed of (7), (16), and

ẋ+ − T+f(x+, α) = 0, (24a)

x+(0) − x+(1) = 0, (24b)

〈w(0), u(1) − x+(0)〉 − h2 = 0, (24c)

ẇ + T+fT
u (x+, α)w + λw = 0, (24d)

w(1) − sw(0) = 0, (24e)

〈w(0), w(0)〉 − 1 = 0, (24f)

u̇− Tf(u, α) = 0, (24g)

〈f(x+(0), α), u(1) − x+(0)〉 = 0, (24h)

where h2 is another homotopy parameter.
Using the solution obtained in the previous

step, we can activate one of the system parameters,
say α1, and aim to find a solution with h2 = 0 by
continuation in (α1, h2) for fixed T . Then we can
improve the connection by continuation in (α1, T ),
restarting from this latest solution, in the direc-
tion of increasing T . Eventually, we fix a sufficiently
large value of T and continue the (approximate)

connecting orbit in two systems parameters, say
(α1, α2), using the original BVP without any homo-
topy parameter as described in Sec. 3.4. All these
steps are illustrated for the Lorenz example in
Sec. 6.1. In practice, intermediate continuations in
ε or other system parameters may be necessary
to obtain a good approximation to the connecting
orbit.

When dimW u− = 2, a minor modification of the
above homotopy method is required. In this case, we
replace (17) by the explicit boundary conditions

u(0) − ξ − ε(c1v(1) + c2v
(2)) = 0, (25a)

c21 + c22 = 1, (25b)

where ε is a small parameter specifying the distance
between u(0) and ξ, v(j) are two linear-independent
vectors tangent to W u− of the saddle ξ, and c1,2 are
two new scalar homotopy parameters. Note that if
v = (v1, v2, v3)T is a solution to (9) with v2 	= 0,
then one can use the normalized vectors

v(1) =



v2

−v1
0


 , v(2) =




0
v3

−v2


 .

Now consider a BVP composed of (9), (25), and
(22). The initial data for this BVP are the same as
in the case dimW u− = 1, except for

c1 = 1, c2 = 0.

The initial “connection” in this case is

u(τ) = ξ + εeτTAv(1), τ ∈ [0, 1], (26)

where A = fu(ξ, α), to be used to compute the ini-
tial value of h1 in (22h).

By continuation in (T, h1) (and, eventually, in
(c1, c2, h1)) for fixed values of all other parameters,
we aim to locate a solution with h1 = 0, with u(1)
near the base point of the cycle O+, so that T
becomes sufficiently large. We then switch to the
BVP composed of (7), (25) and (24), and we aim
to locate a solution with h2 = 0, by continuation
in (c1, c2, h2) for fixed T . When this is achieved,
we have a solution to the original BVP (9), (17)
and (18) introduced in Sec. 3.4 and containing no
homotopy parameters. Using this BVP, we can con-
tinue the approximate connecting orbit in one sys-
tem parameter, say α1, with T fixed.

Examples of such successive continuations will
be given in Sec. 6.3, where we consider the standard
model of a three-level food chain. In that section an
alternative BVP formulation for (25) is also given.
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When one system parameter is varied, limit points
(folds) can be found and then continued in two sys-
tem parameters.

5. Implementation in AUTO

Our algorithms have been implemented in auto,
which solves the boundary value problems using
superconvergent orthogonal collocation with adap-
tive meshes. auto can compute paths of solutions
to boundary value problems with integral con-
straints and nonseparated boundary conditions:

U̇(τ) − F (U(τ), β) = 0, τ ∈ [0, 1], (27a)

b(U(0), U(1), β) = 0, (27b)∫ 1

0
q(U(τ), β)dτ = 0, (27c)

where

U(·), F (·, ·) ∈ R
nd, b(·, ·) ∈ R

nbc , q(·, ·) ∈ R
nic ,

and

β ∈ R
nfp .

Here β represents the nfp free parameters that are
allowed to vary, where

nfp = nbc + nic − nd + 1. (28)

The function q can also depend on U̇ and on the
derivative of U with respect to pseudo-arclength,
as well as on Û , the value of U at the previously
computed point on the solution family.

For our primary BVP problem (7) or (9) with
(16) or (17), respectively, and (18), we have

nd = 9, nic = 0,

and nbc = 19 or 18, respectively, since (7) and (9)
are treated as boundary conditions.

6. Examples

In this section we illustrate the performance of our
algorithm by applying it to three model systems,
namely, the Lorenz equations, an electronic circuit
model, and a biologically relevant system.

6.1. The Lorenz system

One of the best-known dynamical systems that
has a heteroclinic point-to-cycle connection is the

three-dimensional Lorenz system, given by

ẋ1 = σ(x2 − x1),

ẋ2 = rx1 − x2 − x1x3,

ẋ3 = x1x2 − bx3,

(29)

with standard parameter values σ = 10, b = 8/3,
and where r is the usual bifurcation parameter.
With these parameter values, a supercritical pitch-
fork bifurcation from the trivial equilibrium occurs
at r = 1, giving rise to two symmetric nontrivial
equilibria. At r ≈ 13.962 there are two symmetry-
related orbits of infinite period that are homoclinic
to the origin, and from which two families of sad-
dle cycles arise (together with a nontrivial hyper-
bolic invariant set). A subcritical Hopf bifurcation
of nontrivial equilibria takes place at rH ≈ 24.7368,
where these two cycles disappear.

At a critical value rhet there is a heteroclinic
point-to-cycle connection, that generates a chaotic
attractor, see [Afraimovich et al., 1977]. Its domain
of attraction is bounded by the stable invariant
manifolds of the saddle cycles. Beyn [1990] found
rhet ≈ 24.05, and later Dieci and Rebaza [2004]
calculated

rhet = 24.057900322267 . . .

The heteroclinic connection can be continued in
two parameters, for example r and σ with b fixed.
The resulting curve in the r, σ-plane was first shown
in Appendix II, written by L. P. Shil’nikov, to the
Russian translation of the book by Marsden and
McCracken (see [Pampel, 2001; Dieci & Rebaza,
2004]), for more recent related results). As shown
by Bykov and Shilnikov [1992], the canonical Lorenz
attractor appears by crossing only a part of the het-
eroclinic connection curve.

We begin at r = 21.0 and consider a saddle
limit cycle O+ of (29) with the base point

x+(0) = (9.265335, 13.196014, 15.997250)

and period T+ = 0.816222. This cycle can be
obtained easily by continuation in auto and has
two nontrivial multipliers:

µ+
s = 0.0000113431, µ+

u = 1.26094.

To compute the eigenfunction w, we first con-
tinue the trivial solution of the BVP (18a), (18b),
(19), and (21), to detect a branch point at

λ = ln(µ+
u ) = 0.231854,
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Fig. 3. Continuation in T : (a) T = 1.43924; (b) T = 1.54543; (c) T = 2.00352.

from which a nontrivial branch is followed until
the value h = 1 is reached. This gives a
nontrivial eigenfunction w(t), with ‖w(0)‖ = 1,
namely,

w(0) = (0.168148, 0.877764,−0.448616)T .

In these continuations all problem parameters, that
is r, σ and b, are fixed.

The next step is to find an approximation to
the connecting orbit. For this, we consider the BVP
(7), (16) and (22) with

Ψ[x+] = x+
1 (0) − 9.265335

and continue its solution at fixed system parameters
with respect to (T, h1). Figure 3 shows three
consecutive solutions with h1 = 0. The end
point of the last solution (with T = 2.00352) is
located near the base point x+(0) of the cycle
O+. Using this solution as the initial data for
the BVP (7), (16) and (24), we do a continu-
ation in (r, h2) with T fixed until h2 = 0 is
detected. This occurs at r = 24.0720, and ensures
that the end point of the connection is in a plane
orthogonal to w(0), i.e. in the tangent plane to
W s

+ at x+(0).
The primary BVP consisting of (7), (16) and

(18) is used for further continuation runs. First, the
length of the connecting orbit is increased by con-
tinuation in (r, T ) until T = 3.0. The corresponding
parameter value r = 24.0579 gives a good approx-
imation for rhet, since the “tail” of the connect-
ing orbit follows the cycle O+ several times (see
Fig. 4).

Finally, continuation in the two system param-
eters (r, σ) with T fixed, gives the bifurcation curve
corresponding to the point-to-cycle connection in
(29), see Fig. 5.
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Fig. 4. Two profiles of the truncated connecting orbit in
the Lorenz system scaled to the unit time interval: (a) T =
2.00352; (b) T = 3.0.
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Fig. 5. The bifurcation curve of the Lorenz system corre-
sponding to the point-to-cycle connection.

6.2. A circuit model

The next example is one from the Homcont demos
of Champneys et al. [1999], namely, the electronic
circuit model of Freire et al. [1993; see also the auto
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demos tor and cir ]. The equations are

rẋ1 = −(β + ν)x1 + βx2 − a3x

3
1 + b3(x2 − x1)3,

ẋ2 = βx1 − (β + γ)x2 − x3 − b3(x2 − x1)3,

ẋ3 = x2,

(30)

where γ = 0, r = 0.6, a3 = 0.328578, b3 = 0.933578,
and ν and β are bifurcation parameters. With Hom-
cont it was shown previously that a homoclinic
connection to the origin occurs for

νinit = −0.721309, βinit = 0.6

with truncated time interval T = 200. Continua-
tion in two-parameter dimension then leads to a
Shil’nikov–Hopf bifurcation at

ν = −1.026445, β = −2.330391 · 10−5,

where a limit cycle bifurcates from the equilibrium,
effectively turning the homoclinic connection into
a heteroclinic one (see auto demo cir). We can
now compare the results from the continuation in
Homcont with the results from the application of
our BVP system.

The equilibrium in this system is a saddle-focus,
and we therefore have n−s = 2 and n−u = 1. To
generate appropriate starting data we locate a Hopf
bifurcation, with β as free parameter, from where a
cycle is continued up to a selected value of β, say,
β = −0.32. The saddle limit cycle O+ has the base
point

x+(0) = (0.03448278, 0.46460323, 0.4737975)

and period T+ = 6.3646138. The nontrivial multi-
pliers are

µ+
s = 3.986051 · 10−6, µ+

u = 18.85438

The eigenfunction of this cycle is computed as
described in Sec. 4.2, which yields

w(0) = (0.99950,−0.019205, 0.024767)T

and the log multiplier

λ = −13.579343187.

An approximation of the connecting orbit is
then obtained using BVP (7), (16) and (22), with

Ψ[x+] = x+
2 (0) − 0.46460323.

The software content is used to get a good
approximation of the connection period T , after
which shooting in matlab is used to obtain the
orbit itself for the given period.
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Fig. 6. A point-to-cycle connection of the electronic circuit
model, projected onto the x1, x2-plane.

Continuation of this approximate orbit with
respect to (T, h1) yields several orbits with h1 = 0.
For T = 11.59816 the orbit is close enough to the
x2 base coordinate to use the data for the BVP (7),
(16) and (24). Continuation in (ν, h2) is done until
a zero of h2 is reached.

The primary BVP (7), (16) and (18) is used
in the subsequent computations. Continuation in
(ν, T ) gives orbits of any desired period T ; we used
T = 20 with

ν = −1.500498.

At this point continuation can be done in (ν, β).
In Fig. 6 we see a point-to-cycle connection

in a x1,x2-plot at some selected parameter val-
ues. It is apparent that the homotopy method has
resulted in a good approximation of the connect-
ing orbit. Figure 7 shows the composite results of
the two-parameter continuation of the homoclinic
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Fig. 7. Continuation in (ν, β) of the point-to-cycle connec-
tion, as explained in detail in the text.
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connection in Homcont and our continuation of
the heteroclinic connection. Label 5 is the starting
point of the continuation of the homoclinic con-
nection that terminates at the solution labeled 1.
Beyond this solution Homcont gives spurious
results. Note that label 1 coincides with label 9,
where the curve of the heteroclinic connection
turns back onto itself, i.e. the continuation reverses
direction approximately at the point where the
Shil’nikov-Hopf bifurcation occurs. Plots in auto of
the limit cycle data (not shown) reveal that indeed
the cycle shrinks practically to a point, before the
continuation reverses direction.

6.3. A food chain model

The following three-level food chain model from
theoretical biology is based on the Rosenzweig–
MacArthur [1963] prey-predator model. The equa-
tions are given by


ẋ1 = x1(1 − x1) − f1(x1, x2),

ẋ2 = f1(x1, x2) − f2(x2, x3) − d1x2,

ẋ3 = f2(x2, x3) − d2x3,

(31)

with Holling Type-II functional responses

fi(u, v) =
aiuv

1 + biu
, i = 1, 2.

The death rates d1 and d2 are used as bifurca-
tion parameters, with the other parameters set at
a1 = 5, a2 = 0.1, b1 = 3, and b2 = 2.

It is well known that this model displays
chaotic behavior in a given parameter range, see
[Hogeweg & Hesper, 1978; Klebanoff & Hastings,
1994; McCann & Yodzis, 1995; Kuznetsov & Rinal-
di, 1996; Kuznetsov et al., 2001].

Previous work by Boer et al. [1999, 2001] has
also shown that the regions of chaos are inter-
sected by homoclinic and heteroclinic global con-
nections. In particular, a heteroclinic point-to-cycle
orbit connecting a saddle with a two-dimensional
unstable manifold to a saddle cycle with a two-
dimensional stable manifold can exist. It was shown
that the stable manifold of this limit cycle forms
the basin boundary of the interior attractor and
that the boundary has a complicated structure,
especially near the equilibrium, when the hetero-
clinic orbit is present. These and other results were
obtained numerically using multiple shooting. In
this section we reproduce these results for the hete-
roclinic point-to-cycle connection. Using our homo-
topy method we obtain an accurate approximation

of the heteroclinic orbit. A one-parameter bifur-
cation diagram then shows limit points, which
correspond to tangencies of the above-mentioned
two-dimensional manifolds. We then continue the
limit points in two parameters.

A starting point can be found, for example,
at d1 ≈ 0.2080452, d2 = 0.0125, where there is a
fold bifurcation in which two limit cycles appear.
This also corresponds to the birth of the hetero-
clinic point-to-cycle connection.

Before using the homotopy method to obtain
an approximation of the point-to-cycle connection,
we locate a Hopf bifurcation, for instance at d1 ≈
0.51227, d2 = 0.0125. The limit cycle born at this
Hopf bifurcation is continued up to a selected value
of d1, say, d1 = 0.25.

We now have an equilibrium

ξ = (0.74158162, 0.16666666, 11.997732)

and a saddle limit cycle with the base point

x+(0) = (0.839705, 0.125349, 10.55289)

and period T+ = 24.282248. Its nontrivial multipli-
ers are

µ+
s = 0.6440615, µ+

u = 6.107464 · 102.

The eigenfunction w is obtained as described
in the previous sections. Continuation of the triv-
ial solution of the BVP (18a), (18b), (19) and (21)
and the subsequent continuation of the bifurcating
family until h = 1, yields the multiplier

λ = ln(µ+
s ) = −0.439961.

Note that we use the stable multiplier, because of
the projection boundary conditions. The associated
nontrivial eigenfunction w(t) with ‖w(0)‖ = 1 has

w(0) = (0.09306,−0.87791,−4.69689)T .

We now consider a BVP composed of (9), (25a)
and (22). Using content and matlab we obtain
an approximation of the connection with the bound-
ary condition

Ψ[x+] = x+
2 (0) − 0.125349

and period T = 155.905. The starting point is cal-
culated by splitting the normalized adjoint stable
vector (evaluated at d1 = 0.25, d2 = 0.0125)

v = (0.098440, 0.168771, 0.0049532)T

into v(1) and v(2), as described in Sec. 4.3, and mul-
tiplying it by a small ε, say ε = 0.001. In our case



August 28, 2008 13:41 02143

1900 E. J. Doedel et al.

the starting point was

u(0) = (0.742445, 0.166163, 11.997732).

The first homotopy step involves continuation
in (h1, T ). However, this does not lead to zeroes
of h1. To obtain h1 = 0 we expand the previous
set of BVPs with (25b). Subsequent continuation in
(c1, c2, h1) gives a solution with h1 = 0 that indeed
ends near the base point x+(0) of the limit cycle.

For continuation in the second homotopy step,
a switch is made to a BVP composed of (9), (24)
and (25). Continuation in (c1, c2, h2) leads to some
solutions with h2 = 0.

The obtained approximate connecting point-
to-cycle connection now suffices for continuation
in system parameters. Before doing a continuation
in a system parameter the connection is improved
by increasing the connection period. A user-defined
point of T = 300 suffices. Next, the parameter ε is
decreased up to a user-defined point of ε = −1·10−5,
so that the starting point u(0) is slightly away from
the equilibrium ξ. Figure 8 displays a projection
of the point-to-cycle connection onto the (x2, x3)-
plane.

Now the connecting orbit can be continued up
to a limit point in one system parameter. Figure 9
displays three connecting orbits obtained after con-
tinuation with respect to α1 = d1. Continuations in
d1 result in the detection of the points

d1 = 0.280913 and d1 = 0.208045

where the first one is a limit point and the second
one a termination point. This point coincides with
a tangent bifurcation for the limit cycle to which
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Fig. 8. An approximation to the point-to-cycle connection
projected onto the (x2, x3)-plane for the food chain model
with a1 = 5, a2 = 0.1, b1 = 3, b2 = 2, d1 = 0.25 and
d2 = 0.0125.
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Fig. 9. Several point-to-cycle connections in the food chain
model with different values of d1.

the point-to-cycle orbit connects. Continuations in
d2 result in the detection of the points

d2 = 0.0130272 and d2 = 9.51660 · 10−3

which are both limit points. Any of the detected
limit points can now be used as a starting point
for a two-parameter continuation in α = d1 or
d2. In practice, the connection period may have to
be increased or decreased to obtain the full two-
parameter continuation curve. In the demo, the
last limit point (d2 = 9.51660 · 10−3) is the one
selected for the food chain model. The two-parame-
ter continuation curve terminates at both ends in
codim 2 points lying on the above-mentioned tan-
gent bifurcation for the limit cycle. These points
coincide with the log multiplier λ = 0. Observe
that this corresponds to the point d1 = 0.208045,
detected in the one-parameter continuation, where
also λ = 0.

For the continuation in two system parameters,
the BC (25) proves ineffective, since it leads to the
detection of several spurious limit points. This is,
because the orbit spiralling out from the equilibrium
has an elliptical shape. The circle of a small radius,
centered at the equilibrium, intersects the spiral at
several points, one of which is the starting point of
the connecting orbit. During continuation, with a
changing problem parameter, the spiral will change
size and the starting point on the circle may collide
with another such point where the circle and the
spiral intersect. This intersection would correspond
to a fold with respect to the problem parameter. As
a result, to obtain a full continuation curve of the
connecting orbit in two system parameters, some
restarts are required.
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Fig. 10. A two-parameter bifurcation diagram of the food
chain model that shows the region where there exist point-
to-cycle connections. The region is bounded on one side by
the cycle fold, (Tc), and on the other side by the curve Thet,
the locus of limit points of the heteroclinic connections.

In order to avoid these spurious folds, we
returned to the original BC (17) with (17b) in the
form

uj(0) − ξj = 0, (32)

where j is either 1, 2 or 3. By setting j = 2 we are in
line with the work by Boer et al. [2001], who used
a Poincaré plane through the equilibrium ξ where
x2 = ξ2.

Figure 10 shows the curve of limit points Thet

that is computed with the method described above,
using the standard switching and fold-following
facilities of AUTO. This curve can be obtained
in one run, given the connection period is chosen
conveniently. It agrees with the results previously
obtained by Boer et al. [1999] by labourious multi-
ple shooting.

7. Discussion

Our continuation method for point-to-cycle con-
nections, using homotopies in a boundary value
setting is both robust and time-efficient. Detailed
auto demos that carry out the computations
described in Sec. 6 are freely downloadable from
www.bio.vu.nl/thb/research/project/globif.

Although the method was presented for 3D-
systems, it can be extended directly to point-to-
cycle connections in n-dimensional systems, when
the unstable invariant manifold of the equilibrium
ξ is either one-dimensional or has codimension one,

while the stable invariant manifold of the cycle O+

has codimension one.
In the forthcoming Part II of this paper, we

will extend our method to include detection and
continuation of cycle-to-cycle connections.

References

Afraimovich, V. S., Bykov, V. V. & Shilnikov, L. P.
[1977] “The origin and structure of the Lorenz attrac-
tor,” Dokl. Akad. Nauk SSSR 234, 336–339.

Beyn, W.-J. [1990] “The numerical computation of con-
necting orbits in dynamical systems,” IMA J. Numer.
Anal. 10, 379–405.

Beyn, W.-J. [1994] “On well-posed problems for connect-
ing orbits in dynamical systems,” in Chaotic Numer-
ics (Geelong, 1993), Contemp. Math., Vol. 172 (Amer.
Math. Soc., Providence, RI), pp. 131–168.

Boer, M. P., Kooi, B. W. & Kooijman, S. A. L. M. [1999]
“Homoclinic and heteroclinic orbits to a cycle in a tri-
trophic food chain,” J. Math. Biol. 39, 19–38.

Boer, M. P., Kooi, B. W. & Kooijman, S. A. L. M.
[2001] “Multiple attractors and boundary crises in a
tri-trophic food chain,” Math. Biosci. 169, 109–128.

Bykov, V. V. & Shilnikov, A. L. [1992] “On the bound-
aries of the domain of existence of the Lorenz attrac-
tor,” Selecta Mathematica Sovietica 11, 375–382.

Champneys, A. R. & Kuznetsov, Yu. A. [1994] “Numer-
ical detection and continuation of codimension-two
homoclinic bifurcations,” Int. J. Bifurcation and
Chaos 4, 785–822.

Champneys, A. R., Kuznetsov, Yu. A. & Sandstede, B.
[1996] “A numerical toolbox for homoclinic bifurca-
tion analysis,” Int. J. Bifurcation and Chaos 6, 867–
887.

Dieci, L. & Rebaza, J. [2004a] “Erratum: Point-to-
periodic and periodic-to-periodic connections,” BIT
Numer. Math. 44, 617–618.

Dieci, L. & Rebaza, J. [2004b] “Point-to-periodic and
periodic-to-periodic connections,” BIT Numer. Math.
44, 41–62.

Doedel, E. J. & Friedman, M. J. [1989] “Numerical com-
putation of heteroclinic orbits,” J. Comput. Appl.
Math. 26, 155–170.

Doedel, E. J., Friedman, M. J. & Monteiro, A. C. [1994]
“On locating connecting orbits,” Appl. Math. Com-
put. 65, 231–239.

Doedel, E. J., Champneys, A. R., Fairgrieve, T. F.,
Kuznetsov, Yu. A., Sandstede, B. & Wang, X. [1997]
“auto97: Continuation and bifurcation software for
ordinary differential equations,” Technical report,
Concordia University, Montreal, Quebec, Canada.
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Appendix A

Monodromy Matrices

In order to approximate the invariant manifolds of
a limit cycle we use eigenvalues and eigenfunctions
of appropriate variational problems. These eigen-
values in turn are the eigenvalues of the so-called
monodromy matrix.

To define an eigenfunction of the periodic solu-
tion x(t + T ) = x(t), where T is the period of the
cycle, of an autonomous system of smooth ODE’s

u̇ = f(u), f : R
n → R

n, (A.1)

write a solution of this system near the cycle in the
form

u(t) = x(t) + ξ(t),

where ξ(t) is a small deviation from the periodic
solution. After substitution and truncation of the
O(‖ξ‖2)-terms, we obtain the following variational
system:

ξ̇ = A(t)ξ, ξ ∈ R
n, (A.2)

where A(t) = fu(x(t)) is the Jacobian matrix eval-
uated along the periodic solution; A(t+ T ) = A(t).

Now, consider the matrix initial-value problem

Ẏ = A(t)Y, Y (0) = In, (A.3)

where In is the unit n × n matrix. Its solution Y (t)
at t = T is the monodromy matrix of the cycle:

M = Y (T ).

The monodromy matrix is nonsingular. Any solu-
tion ξ(t) to (A.2) satisfies

ξ(T ) = Mξ(0). (A.4)

The eigenvalues of the monodromy matrix M are
called the Floquet multipliers of the cycle. There is
always a multiplier +1. Moreover, the product of all
multipliers is positive:

µ1µ2 · · ·µn = exp
(∫ T

0
divf(x(t))dt

)
.

Together with (A.2), consider the adjoint vari-
ational system

ζ̇ = −AT(t)ζ, ζ ∈ R
n (A.5)

and the corresponding matrix initial-value problem

Ż = −AT(t)Z, Z(0) = In, (A.6)

which is the adjoint system to (A.3). Note, that the
multipliers of the adjoint monodromy matrix

N = Z(T )

are the inverse multipliers of the monodromy
matrix M = Y (T ). The proof of this well-known
fact goes as follows. Compute

d

dt
(ZTY ) =

dZ
T

dt
Y + ZTdY

dt

= (−ATZ)TY + ZTAY

= ZT(−A)Y + ZTAY = 0.

Since Z(0) = Y (0) = In, we get ZT(T )Y (T ) = In,
which implies

N = [M−1]T.

Due to (A.4), a multiplier µ satisfies v(T ) =
µv(0) with v(0) 	= 0 or, equivalently, it is a solu-
tion component of the following BVP on the unit
interval [0, 1]:


v̇ − TA(t)v = 0,

v(1) − µv(0) = 0,

〈v(0), v(0)〉 − 1 = 0.

(A.7)

First assume that µ > 0 and write

µ = eλ, v(t) = eλtw(t).



August 28, 2008 13:41 02143

Continuation of Connecting Orbits in 3D-ODEs 1903

Then w satisfies a periodic BVP, namely:

ẇ − TA(t)w + λw = 0,

w(1) − w(0) = 0,

〈w(0), w(0)〉 − 1 = 0.

(A.8)

Similarly, when µ < 0, we can introduce

µ = −eλ, v(t) = eλtw(t)

and obtain an anti-periodic BVP

ẇ − TA(t)w + λw = 0,

w(1) + w(0) = 0,

〈w(0), w(0)〉 − 1 = 0.

(A.9)

This technique can easily be adapted to the multi-
pliers of the adjoint variational problem (A.5).

Finally, we note that the eigenvalue problem for
a Floquet multiplier

Mv − µv = 0

can be considered as a continuation problem with
n + 1 variables (v, µ) ∈ R

n × R defined by n
equations. This continuation problem has a trivial
solution family (v, µ) = (0, µ). An eigenvalue µ1

corresponds to a branch point, from which a sec-
ondary solution family (v, µ1) with v 	= 0 emanates.
This nontrivial family can be continued using an
extended continuation problem{

Mv − µv = 0,
〈v, v〉 − h = 0,

which consists of n+1 equation with n+2 variables
(v, µ, h). If h = 1 is reached, we get a normalized
eigenvector v corresponding to the eigenvalue µ1,
since along this branch µ ≡ µ1. Generalization
of this procedure to the BVP (A.7) (as well as
to (A.8), (A.9), and their adjoint versions) is
straightforward.




