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Abstract

In Part I of this paper we discussed new methods for the numerical continuation of point-to-

cycle connecting orbits in 3-dimensional autonomous ODE’s using projection boundary condi-

tions. In this second part we extend the method to the numerical continuation of cycle-to-cycle

connecting orbits. In our approach, the projection boundary conditions near the cycles are

formulated using eigenfunctions of the associated adjoint variational equations, avoiding costly

and numerically unstable computations of the monodromy matrices. The equations for the

eigenfunctions are included in the defining boundary-value problem, allowing a straightforward

implementation in auto, in which only the standard features of the software are employed.

Homotopy methods to find the connecting orbits are discussed in general and illustrated with

an example from population dynamics. Complete auto demos, which can be easily adapted to

any autonomous 3-dimensional ODE system, are freely available.

Keywords: boundary value problems, projection boundary conditions, cycle-to-cycle connec-

tions, global bifurcations.

1



1 Introduction

In a diversity of scientific fields bifurcation the-
ory is used for the analysis of systems of ordi-
nary differential equations (ODE’s) under param-
eter variation. Many interesting phenomena in
ODE systems are linked to global bifurcations.
Examples of such are overharvesting in ecologi-
cal models with bistability properties (Bazykin,
1998; Antonovsky et al., 1990; Van Voorn et al.,
2007), and the occurrence and disappearance of
chaotic behaviour in such models. For example,
it has been shown (see Kuznetsov et al., 2001 and
Boer et al., 1999, 2001) that chaotic behaviour
of the classical food chain models is associated
with global bifurcations of point-to-point, point-
to-cycle, and cycle-to-cycle connecting orbits.

In Part I of this paper (Doedel et al., 2007) we
discussed heteroclinic connections between equi-
libria and cycles. Here we look at connections
that link a cycle to itself (a homoclinic cycle-to-
cycle connection, for which the cycle is necessarily
saddle), or to another cycle (a heteroclinic cycle-
to-cycle connection). Orbits homoclinic to the
same hyperbolic cycle are classical objects of the
Dynamical Systems Theory. It is known thanks
to Poincare (1879), Birkhoff (1935), Smale (1963),
Neimark (1967), and L.P. Shilnikov (1967) that a
transversal intersection of the stable and unsta-
ble invariant manifolds of the cycle along such an
orbit implies the existence of infinite number of
saddle cycles nearby. Disappearance of the in-
tersection via collision of two homoclinic orbits
(homoclinic tangency) is an important global bi-
furcation for which the famous Hénon map turns
to be a model Poincaré mapping (Gavrilov and
Shilnikov, 1972; Palis and Takens, 1993, see also
Kuznetsov, 2004).

Numerical methods for homoclinic orbits to
equilibria have been devised by Doedel and Kern-
evez (1986, but see Doedel et al., 1997), who ap-
proximated homoclinic orbits by periodic orbits
of large but fixed period. Beyn (1990) developed
a direct numerical method for the computation
of such connecting orbits and their associated pa-

rameter values, based on integral conditions and
a truncated boundary value problem (BVP) with
projection boundary conditions.

The continuation of homoclinic connections in
auto (Doedel et al., 1997) improved with the de-
velopment of HomCont by Champneys and Kuz-
netsov (1994) and Champneys et al. (1996). How-
ever, it is only suited for the continuation of bifur-
cations of homoclinic point-to-point connections
and some heteroclinic point-to-point connections.
A modification of this software was introduced by
Demmel et al. (2000), that uses the continuation
of invariant subspaces (CIS-algorithm) for the lo-
cation and continuation of homoclinic point-to-
point connections.

Dieci and Rebaza (2004) have also made sig-
nificant progress recently, by developing methods
to continue point-to-cycle and cycle-to-cycle con-
necting orbits based on another work by Beyn
(1994). Their method employs a multiple shoot-
ing technique and requires the numerical solving
for the monodromy matrices associated with the
periodic cycles involved in the connection.

Our previous paper (Doedel et al., 2007) dealt
with a method for the detection and continuation
of point-to-cycle connections. Here this method
is adapted for the continuation of homoclinic and
heteroclinic cycle-to-cycle connections. The me-
thod is set up such that the homoclinic case is
essentially a heteroclinic case where the same pe-
riodic orbit (but not the periodic solution) is dou-
bled. In Section 2 we give a short overview of
a BVP formulation to solve a heteroclinic cycle-
to-cycle problem. In Section 3 it is shown how
boundary conditions are implemented. In Sec-
tion 4 we discuss starting strategies to obtain ap-
proximate connecting orbits using homotopy. In
Section 5 the BVP is made suitable for numerical
implementation.

Results are presented of the continuation of a
homoclinic cycle-to-cycle connection in the stan-
dard three-level food chain model in Section 6.
Boer et al. (1999) previously numerically obtained
the two-parameter continuation curve of this con-
necting orbit using a shooting method, combined
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with the Poincaré map technique. In the previ-
ous part of this paper (Doedel et al., 2007) we
reproduced the results for the structurally stable
heteroclinic point-to-cycle connection of the same
food chain model using the homotopy method. In
this paper we discuss how the homoclinic cycle-to-
cycle connection can be detected, and continued
in parameter space using the homotopy method.
Also, it is set up such that it can be used as well
for a heteroclinic cycle-to-cycle connection.

2 Truncated BVPs with pro-

jection BCs

Before presenting the BVP that describes a cycle-
to-cycle connection, let us first set up some nota-
tion. Consider a general system of ODEs

du

dt
= f(u, α), (1)

where f : R
n × R

p → R
n is sufficiently smooth,

given that state variables u ∈ R
n, and control

parameters α ∈ R
p. Thus, the dimension of the

state space is n and the dimension of the param-
eter space is p. The (local) flow generated by (1)
is denoted by ϕt. Whenever possible, we will not
indicate explicitly the dependence of various ob-
jects on parameters.

We assume that both O− and O+ are saddle
limit cycles of (1). A solution u(t) of (1) for fixed
α defines a connecting orbit from O− to O+ if

lim
t→±∞

dist(u(t), O±) = 0 . (2)

(Figure 1 depicts such a connecting orbit in the
3D-space.) Since u(t + τ) satisfies (1) and (2) for
any phase shift τ , an additional phase condition

ψ[u, α] = 0 , (3)

should be imposed to ensure uniqueness of the
connecting solution. This condition will be spec-
ified later.

For numerical approximations, the asymptotic
conditions (2) are substituted by projection bound-
ary conditions at the end-points of a large trun-
cation interval [τ−, τ+], following Beyn (1994). It

Table 1: List of notation used in the paper.

sym. meaning
x± Periodic solution
v± Eigenfunction
w± Scaled adjoint eigenfunction
u Connection
α Bifurcation parameters
O+ Limit cycle where connection ends
O− Limit cycle where connection starts
W s

+ Stable manifold of the cycle O+

W u
− Unstable manifold of the cycle O−

µ+
u Unstable multiplier of the cycle O+

µ−
s Stable multiplier of the cycle O−

µ−
u Unstable multiplier of the cycle O−

µ+ Adjoint multiplier 1/µ+
u

µ− Adjoint multiplier 1/µ−
s

λ± ln(µ±)
T± Period of the cycle O±

T Connection time

is prescribed that the points u(τ−) and u(τ+) be-
long to the linear subspaces, which are tangent to
the unstable and stable invariant manifolds of O−

and O+, respectively.
Now, denote by x±(t) a periodic solution (with

minimal period T±) corresponding to O± and in-
troduce the monodromy matrix

M± = Dxϕ
T±

(x)
∣

∣

∣

x=x±(0)
,

i.e. the linearization matrix of the T±-shift along
orbits of (1) at point x±

0 = x±(0) ∈ O±. Its eigen-
values are called Floquet multipliers, of which one
(trivial) equals 1. Let m+

s = n+
s + 1 be the di-

mension of the stable invariant manifold W s
+ of

the cycle O+, where n+
s is the number of its mul-

tipliers satisfying

|µ| < 1.

Along the same line, m−
u = n−

u + 1 is the dimen-
sion of the unstable invariant manifold W u

− of the
cycle O−, and n−

u is the number of its multipliers
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Figure 1: Cycle-to-cycle connecting orbits in R
3: (a) heterolinic orbit, O+ 6= O−; (b) homoclinic

orbit, O+ = O−.

satisfying
|µ| > 1.

To have an isolated branch of cycle-to-cycle
connecting orbits of (1) it is necessary that

p = n − m+
s − m−

u + 2 , (4)

(see Beyn, 1994).
The projection boundary conditions in this

case become

L±(u(τ±) − x±(0)) = 0 , (5)

where L− is a (n − m−
u ) × n matrix whose rows

form a basis in the orthogonal complement to the
linear subspace that is tangent to W u

− at x−(0).
Similarly, L+ is a (n−m+

s )×n matrix, such that
its rows form a basis in the orthogonal comple-
ment to the linear subspace that is tangent to
W s

+ at x+(0).
The above construction also applies in the case

when O+ and O− coincide, i.e. we deal with a
homoclinic orbit to a saddle limit cycle O+ = O−.
Note that, in general, the base points x±(0) ∈ O±

remain different (and so do the periodic solutions
x±(t)).

It can be proved that, generically, the trun-
cated BVP composed of (1), a truncation of (3),
and (5), has a unique solution branch (û(t, α̂), α̂),

provided that (1) has a connecting solution branch
satisfying (3) and (4).

The truncation to the finite interval [τ−, τ+]
causes an error. If u is a generic connecting so-
lution to (1) at parameter α, then the following
estimate holds in both cases:

‖(u|[τ−,τ+], α) − (û, α̂)‖ ≤ Ce−2min(µ−|τ−|,µ+|τ+|),
(6)

where ‖ · ‖ is an appropriate norm in the space
C1([τ−, τ+], Rn)×R

p, u|[τ−,τ+] is the restriction of
u to the truncation interval, and µ± are deter-
mined by the eigenvalues of the monodromy ma-
trices. For exact formulations, proofs, and refer-
ences to earlier contributions, see Pampel (2001)
and Dieci and Rebaza (2004, including Erratum).

3 New defining systems in R
3

In this section we show how to implement the
boundary conditions (5). We consider the case
n = 3 where O− and O+ are saddle cycles and
therefore always m−

s = m−
u = 2 and m+

s = m+
u =

2. Substitution in (4) gives the number of free
parameters for the continuation p = 1.

Note that the complete BVP will consist of 15
equations (2 saddle cycles, 2 eigendata for these
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Figure 2: Ingredients of a BVP to approximate a heteroclinic connecting orbit. The homoclinic cycle-
to-cycle connection is also approached as the heteroclinic case, where two saddle cycles coincide.

cycles, and the connecting orbit) and 19 boundary
conditions.

3.1 The cycle and eigenfunctions

To compute the saddle limit cycles O− and O+

involved in the heteroclinic connection (see Fig-
ure 2) we need a BVP. The standard periodic
BVP can be used

{

ẋ± − f(x±, α) = 0 ,
x±(0) − x±(T±) = 0 ,

(7)

A unique solution of this BVP is determined by
using an appropriate phase condition, which is
actually a boundary condition for the truncated
connecting solution, and which will be introduced
below.

To set up the projection boundary condition
for the truncated connecting solution u near O±,
we also need a vector, say w+(0), that is orthog-
onal at x+(0) to the stable manifold W s

+ of the
saddle limit cycle O+, as well another vector, say
w−(0), that is orthogonal at x−(0) to the unsta-
ble manifold W u

− of the saddle limit cycle O− (see
Figure 2). Each vector w±(0) can be obtained
from an eigenfunction w±(t) of the adjoint varia-
tional problem associated with (7), corresponding

to eigenvalue µ±. These eigenvalues satisfy

µ+ =
1

µ+
u

, µ− =
1

µ−
s

,

where µ+
u and µ−

s are the multipliers of the mon-
odromy matrix M± with

|µ+
u | > 1 , |µ−

s | < 1 .

The corresponding BVP is






ẇ± + fT
u (x±, α)w± = 0 ,

w±(T±) − µ±w±(0) = 0 ,
〈w±(0), w±(0)〉 − 1 = 0 ,

(8)

where x± is the solution of (7). In our implemen-
tation the above BVP is replaced by an equivalent
BVP







ẇ± + fT
u (x±, α)w± + λ±w± = 0 ,
w±(T±) − s±w±(0) = 0 ,
〈w±(0), w±(0)〉 − 1 = 0 ,

(9)

where s± = sign µ± and

λ± = ln |µ±| .

(See Appendix of Part I, Doedel et al., 2007).
In (9), the boundary conditions become peri-

odic or anti-periodic, depending on the sign of the
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multiplier µ±, while the logarithm of its absolute
value appears in the variational equation. This
ensures high numerical robustness.

Given w± satisfies (9), the projection bound-
ary conditions (5) become

〈w±(0), u(τ±) − x±(0)〉 = 0. (10)

3.2 The connection

We use the following BVP for the connecting so-
lution:

{

u̇ − f(u, α) = 0 ,
〈f(x±(0), α), u(τ±) − x±(0)〉 = 0 .

(11)

For each cycle, a phase condition is needed to se-
lect a unique periodic solution among those which
satisfy (7), i.e. to fix a base point x±

0 = x±(0) on
the cycle O± (see Figure 2). For this we require
the end-point of the connection to belong to a
plane orthogonal to the vector f(x+(0), α), and
the starting point of the connection to belong to
a plane orthogonal to the vector f(x−(0), α). This
allows the base points x±(0) to move freely and
independently upon each other along the corre-
sponding cycles O±.

3.3 The complete BVP

The complete truncated BVP to be solved numer-
ically consists of

ẋ± − T±f(x±, α) = 0, (12a)

x±(0) − x±(1) = 0 , (12b)

ẇ± + T±fT
u (x±, α)w± + λ±w± = 0 , (12c)

w±(1) − s±w±(0) = 0, (12d)

〈w±(0), w±(0)〉 − 1 = 0 , (12e)

u̇ − Tf(u, α) = 0 , (12f)

〈f(x+(0), α), u(1)− x+(0)〉 = 0 , (12g)

〈f(x−(0), α), u(0)− x−(0)〉 = 0 , (12h)

〈w+(0), u(1)− x+(0)〉 = 0 , (12i)

〈w−(0), u(0)− x−(0)〉 = 0 , (12j)

‖u(0) − x−(0)‖2 − ε2 = 0 , (12k)

where the last equation places the starting point
u(0) of the connection at a small fixed distance
ε > 0 from the base point x−(0). The time vari-
able is scaled to the unit interval [0, 1], so that
both the cycle periods T± and the connection
time T become parameters. Hence, besides a
component of α, there are five more parameters
available for continuation: the connection time T ,
the cycle periods T±, and the multipliers λ±.

4 Starting strategies

The BVP described in the previous section are
only usable when good initial starting data are
available. Usually, such data are not present.
Here we demonstrate how initial data can be gen-
erated through a series of successive continua-
tions in auto, a method referred to as homotopy
method, first introduced by Doedel, Friedman and
Monteiro (1994) for point-to-point problems and
extended to point-to-cycle problems in Part I of
this paper.

4.1 Saddle cycles

The easiest way to obtain the limit saddle cy-
cles O±, first calculate a stable equilibrium using
software like maple, matlab or mathematica.
Then, using auto, continue this equilibrium up
to an Andronov-Hopf bifurcation, where a stable
limit cycle is generated. A continuation of this
cycle can result in the detection of a fold bifurca-
tion for the limit cycle. This will yield a saddle
limit cycle.

4.2 Eigenfunctions

In order to obtain an initial starting point for the
connecting orbit we require knowledge about the
unstable manifold of the saddle limit cycle O−.
Also, we need the linearized adjoint “manifolds”
to understand how the connecting orbit leaves O−

and approaches O+ (or the same cycle in the ho-
moclinic case). For this, we look at the eigendata.
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First consider the periodic BVP for O−,

{

ẋ− − T−f(x−, α) = 0 ,
x−(0) − x−(1) = 0 ,

(13)

to which we add the standard integral phase con-
dition

∫ 1

0

〈ẋ−
old(τ), x−(τ)〉 = 0 , (14)

as well as a BVP similar to (8), namely







v̇ − T−fu(x
−, α)v = 0 ,

v(1) − µv(0) = 0 ,
〈v(0), v(0)〉 − h = 0 .

(15)

In (14), x−
old is a reference periodic solution, e.g.

from the preceding continuation step. The pa-
rameter h in (15) is a homotopy parameter, that
is set to zero initially. Then, (15) has a trivial
solution

v(t) ≡ 0, h = 0,

for any real µ. This family of the trivial solutions
parametrized by µ can be continued in auto us-
ing a BVP consisting of (13), (14), and (15) with
free parameters (µ, h) and fixed α. The unsta-
ble Floquet multiplier of O− then corresponds to
a branch point at µ = µ−

u along this trivial so-
lution family. auto can accurately locate such
a point and switch to the nontrivial branch that
emanates from it. This secondary family is con-
tinued in (µ, h) until the value h = 1 is reached,
which gives a normalized eigenfunction v− cor-
responding to the multiplier µ−

u . Note that in
this continuation the value of µ remains constant,
µ ≡ µ−

u , up to numerical accuracy. For the initial
starting point of the connection we use v−(0).

The same method is applicable to obtain the
nontrivial scaled adjoint eigenfunctions w± of the
saddle cycles. For this, the BVP







ẇ± + T±fT
u (x±, α)w± + λ±w± = 0 ,

w±(1) − s±w±(0) = 0 ,
〈w±(0), w±(0)〉 − h± = 0 ,

(16)

where s± = sign(µ±), replaces (15). A branch
point at λ±

1 then corresponds to the adjoint mul-

tiplier s±eλ±

1 . After branch switching the desired
eigendata can be obtained.

4.3 The connection

Time-integration of (1), in matlab for instance,
can yield an initial connecting orbit, however, this
only applies for non-stiff systems. Nevertheless,
mostly when starting sufficiently close to the ex-
act connecting orbit in parameter space the method
of successive continuation (Doedel, Friedman and
Monteiro, 1994) can be used to obtain an initial
connecting orbit.

Let us introduce a BVP that is a modified
version of (12)

ẋ± − T±f(x±, α) = 0 , (17a)

x±(0) − x±(1) = 0 , (17b)

Φ±[x±] = 0 , (17c)

ẇ± + T±fT
u (x±, α)w± + λ±w± = 0 , (17d)

w±(1) − s±w±(0) = 0 , (17e)

〈w±(0), w±(0)〉 − 1 = 0 , (17f)

u̇ − Tf(u, α) = 0, (17g)

〈f(x+(0), α), u(1)− x+(0)〉 − h11 = 0 , (17h)

〈f(x−(0), α), u(0)− x−(0)〉 − h12 = 0 , (17i)

〈w+(0), u(1)− x+(0)〉 − h21 = 0 , (17j)

〈w−(0), u(0)− x−(0)〉 − h22 = 0 , (17k)

where each Φ± in (17c) defines any phase condi-
tion fixing the base point x±(0) on the cycle O±.
An example of such a phase condition is

Φ+[x] = xj(0) − aj ,

where aj is the jth-coordinate of the base point of
O+ at some given parameter values. Furthermore,
hjk, j, k = 1, 2, in (17h)–(17k) are homotopy pa-
rameters.

For the approximate connecting orbit a small
step ε is made in the direction of the unstable
eigenfunction v− of the cycle O−:

u(τ) = x−(0) + εv−(0)eµ−
u T−τ , τ ∈ [0, 1] , (18)
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which provides an approximation to a solution of
u̇ = T−f(u, α) in the unstable manifold W u

− near
O−. After collection of the cycle-related data,
eigendata and the time-integrated approximated
orbit, a solution to the above BVP can be con-
tinued in (T, h11) and (T, h12) for fixed value of
α in order to make h11 = h12 = 0, while u(1)
is near the cycle O+, so that T becomes suffi-
ciently large. In the next step, we then try to
make h21 = h22 = 0, after which a good approxi-
mate initial connecting orbit is obtained.

This solution is now used to activate one of
the system parameters, say α1, and to continue a
solution to the primary BVP (12). Then, if neces-
sary after having improved the connection first by
a continuation in T , continuation in (α1, T ) can
be done to detect limit points, using the standard
fold-detection facilities of auto. Subsequently a
fold curve can be continued in two parameters,
say (α1, α2), for fixed T using the standard fold-
following facilities in auto.

5 Implementation in AUTO

Our algorithms have been implemented in auto,
which solves the boundary value problems using
superconvergent orthogonal collocation with adap-
tive meshes. auto can compute paths of solu-
tions to boundary value problems with integral
constraints and non-separated boundary condi-
tions:

U̇(τ) − F (U(τ), β) = 0 , τ ∈ [0, 1], (19a)

b(U(0), U(1), β) = 0 , (19b)
∫ 1

0

q(U(τ), β)dτ = 0 , (19c)

where

U(·), F (·, ·) ∈ R
nd, b(·, ·) ∈ R

nbc , q(·, ·) ∈ R
nic ,

and
β ∈ R

nfp,

as nfp free parameters β are allowed to vary, where

nfp = nbc + nic − nd + 1 . (20)

The function q can also depend on F , the deriva-
tive of U with respect to pseudo-arclength, and
on Û , the value of U at the previously computed
point on the solution family.

For our primary BVP problem (12) in three
dimensions we have

nd = 15, nic = 0,

and nbc = 19, so that any 5 free parameters are
allowed to vary.

6 Example: food chain model

In this section we describe the performance of the
BVP-method for the detection and continuation
of a cycle-to-cycle connecting orbit in the stan-
dard food chain model, also used in Part I of this
paper.

6.1 The model

The three-level food chain model from theoreti-
cal biology, based on the Rosenzweig-MacArthur
(1963) prey-predator model, is given by the fol-
lowing equations







ẋ1 = x1(1 − x1) − f1(x1, x2) ,
ẋ2 = f1(x1, x2) − d1x2 − f2(x2, x3) ,
ẋ3 = f2(x2, x3) − d2x3 ,

(21)

with Holling Type-II functional responses

f1(x1, x2) =
a1x1x2

1 + b1x1

and
f2(x2, x3) =

a2x2x3

1 + b2x2
.

This standard model has been studied by several
authors, see e.g. Kuznetsov and Rinaldi (1996)
and Kuznetsov et al. (2001) and references there.

The death rates d1 and d2 are often used as
bifurcation parameters α1 and α2, respectively,
with the other parameters set at a1 = 5, a2 = 0.1,
b1 = 3, and b2 = 2. For these parameter values
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Lp �x3
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x 3

Thom Thom(2�)ThomT

0.30.280.260.240.220.2

131211109
Figure 3: One-parameter bifurcation diagram for
d2 = 0.0125. The equilibrium is indicated as x̄3.
The dashed line Lp is the x3-value of the local
minimum of an unstable (saddle) limit cycle. At
the point Tc this limit cycle coincides with a sta-
ble limit cycle, of which the local minimum of x3

is also shown. The stable limit cycle undergoes
period doublings until chaos (the dense regions)
is reached. The two dense regions are separated
by a region where homoclinic cycle-to-cycle con-
nections to the limit cycle Lp exist. Both chaotic
regions are bounded by a limit point of the ho-
moclinic connection, indicated by Thom. Observe
that near the right chaotic region, between two
limit points exist secondary connecting orbits to
the cycle. One of these limit points coincides with
the limit point of the primary connecting orbit
that forms the boundary of the region of chaos
(hence Thom twice); after Boer et al., 1999).

X312.511.510.59.5 X2 0.30.20.10 X11 0.8 0.6 0.4 0.2
Figure 4: Phase plot of the homoclinic cycle-to-
cycle connection.

the model displays chaotic behaviour in a given
parameter range of d1 and d2 (Hastings and Pow-
ell, 1991; Klebanoff and Hastings, 1994; McCann
and Yodzis, 1995). The region of chaos can be
found starting from a fold bifurcation at for in-
stance d1 ≈ 0.2080452, d2 = 0.0125, where two
limit cycles appear. The stable branch then un-
dergoes a cascade of period-doublings (see Fig-
ure 3) until a region of chaos is reached.

Previous work by Boer et al. (1999, 2001) has
shown that the parameter region where chaos oc-
curs is intersected by homoclinic and heteroclinic
global connections, and that this region is partly
bounded by a homoclinic cycle-to-cycle connec-
tion, as shown in Figure 3. These results were
obtained numerically using multiple shooting.

6.2 Homotopy

Using the technique discussed in this paper we
first find the saddle limit cycle for d1 = 0.25, d2 =
0.0125. Since the cycle O is both O+ and O−, we
use the same initial base point

x±(0) = (0.839783, 0.125284, 10.55288)

and the period T± = 24.28225. The logarithms
of the nontrivial adjoint multipliers are

λ+ = −0.4399607 , λ− = 6.414681 .

The starting point of the initial “connecting” or-
bit is calculated by taking the base point x−(0)
and multiplying the eigenfunction v−(0) by ε =
−0.001

u(0) = x−(0) + εv−(0) , (22)

where

v−(0) = (−1.5855 ·10−2, 2.6935 ·10−2,−0.99951) ,

and the resulting

u(0) = (0.839789, 0.125274, 10.55324) .

The connection time T = 503.168.
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Figure 5: Profiles of the homoclinic cycle-to-cycle connections for d2 = 0.0125. The left panel
compares the two profiles of the connections for d1 = 0.2809078, the right panel compares the four
profiles for d1 = 0.27850, which is between the limit points for the primary and secondary branches.
The connection time T is scaled to one.

To obtain a good initial connection we con-
sider a BVP like (17), with 6 free parameters: µ±,
T±, T , and, in turn, one of the four homotopy pa-
rameters h11, h12, h21, h22. The selected boundary
conditions (17c) are

Φ+[x] = x−
2 (0) − 0.125274 ,

and
Φ−[x] = x+

1 (0) − 0.839789 ,

so, the first condition uses the x2-coordinate of
the initial base point selected on the cycle, while
the second condition uses the x1-coordinate of the
initial base point. Observe, that this selection is
somewhat arbitrary and that one can select other
base point coordinates.

In the continuation we want h11 = h12 =
h21 = h22 = 0. However, there are several solu-
tions, that correspond to connecting orbits with
different numbers of excursions near the limit cy-
cle, both at the starting and the end-part of the
orbit. Observe that the success of the future con-
tinuation in (d1, d2) seems to depend highly on
the number of excursions near the cycle at the
end-point of the connecting orbit. In the food
chain model a decrease in d2 is accompanied by
a decrease in the numbers of excursions near the
cycle at the end-point of the connection, like a

wire around a reel. If this number is too low, a
one-parameter continuation in d1,2 will yield in-
correct limit points. Also, two-parameter contin-
uations in (d1, d2) will most likely terminate at
some point. Hence a starting orbit is selected
with a sufficient number of excursions near the
cycle at the end-point, with T = 454.04705 and
ε2 = 0.069414 (see Figure 4).

6.3 Continuation

The continuation of the connecting orbit can be
done in d1,2 using the primary BVP (12). Equa-
tion (12k) ensures that the base points x±(0) ∈
O± become different (and so do the periodic so-
lutions x±(t)).

First, however, using this BVP, the connec-
tion can be improved by increasing the connec-
tion time, for the same reason as mentioned above
with regard to the number of excursions near the
cycle at the end-point. The increase in T re-
sults in an increase of the number of excursions
near the cycle at the end-point of the connecting
orbit. Then, the continuation in d1, T for fixed
d2 = 0.0125 results in the detection of four limit
points, of which two are identical. Observe that
in this way – in accordance with Figure 3 – not
only the primary (d1 = 0.2809078, twice, and

9



d1 = 0.2305987), but also the secondary (d1 =
0.2776909) branch is detected. Figure 5 shows the
profiles of the connecting orbits for d2 = 0.0125.
Observe that for the region of 0.2776909 < d1 <
0.2809078 there are four different connecting or-
bits with the same connection time T (see right
panel).

Using the standard fold-following facilities for
BVPs in auto, both critical homoclinic orbits
can be continued in two parameters (d1, d2). Along
these orbits the stable and unstable invariant man-
ifold of the cycle are tangent. Starting from d1 =
0.2809078 we continue the primary branch. The
secondary branch is continued from d1 = 0.2776909.
Both curves are depicted in Figure 6.

7 Discussion

Our continuation method for cycle-to-cycle con-
nections, using homotopies in a boundary value
setting, is a modified method proposed in our
previous paper for the continuation of point-to-
cycle connections (Doedel et al., 2007). The re-
sults discussed here seem to be both robust and
time-efficient. Detailed auto demos performing
the computations described in Section 6 are freely
downloadable from
www.bio.vu.nl/thb/research/project/globif.

Provided that the cycle has one simple unsta-
ble multiplier, the proposed method can be ex-
tended directly to homoclinic cycle-to-cycle con-
nections in n-dimensional systems.

8 Acknowledgements

The research of the last author (GvV) is sup-
ported by the Dutch Organization for Scientific
Research (NWO-CLS) grant no. 635,100,013.

10



d1
d 2

0.320.30.280.260.240.220.20.180.16

0.0150.0130.0110.0090.007 d1
d 2

0.320.30.280.260.240.220.20.180.16

0.0150.0130.0110.0090.007
Figure 6: Two-parameter curves of the primary (left) and secondary (right) homoclinic tangencies
in the food chain model. Depicted is also the fold bifurcation curve of a limit cycle (dashed).
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les systèmes dynamiques,” Memoriae Pont.
Acad. Sci. Novi. Lincaei, Ser. 3, 1, 85–216.

M. P. Boer, B. W. Kooi, and S. Kooijman,
[1999], “Homoclinic and heteroclinic orbits in
a tri-trophic food chain.,” Journal of Mathe-
matical Biology, 39, 19–38.

M. P. Boer, B. W. Kooi, and S. Kooij-
man, [2001], “Multiple attractors and bound-

ary crises in a tri-trophic food chain.,” Mathe-
matical Biosciences, 169, 109–128.

A. R. Champneys and Yu. A. Kuznetsov,
[1994], “Numerical detection and continua-
tion of codimension-two homoclinic bifurca-
tions.,” International Journal of Bifurcation
and Chaos, 4, 785–822.

A. R. Champneys, Yu. A. Kuznetsov, and
B. Sandstede, [1996], “A numerical toolbox
for homoclinic bifurcation analysis.,” Interna-
tional Journal of Bifurcation and Chaos., 6(5),
867–887.

J. W. Demmel, L. Diece, and M. J. Fried-
man, [2000], “Computing connecting orbits via
an improved algorithm for continuing invariant
subspaces.,” SIAM J. Sci. Comput., 22(1), 81–
94.

L. Dieci and J. Rebaza, [2004], “Point-
to-periodic and periodic-to-periodic connec-
tions.,” BIT Numerical Mathematics, 44, 41–
62.

L. Dieci and J. Rebaza, [2004], “Erra-
tum: “Point-to-periodic and periodic-to-
periodic connections”,” BIT Numerical Math-
ematics, 44, 617–618.

E. J. Doedel, M. J. Friedman, and A. C. Mon-
teiro, [1994], “On locating connecting orbits,”
Applied Mathematics and Computation, 65,
231–239.

E. J. Doedel, A. R. Champneys, T. F. Fair-
grieve, Yu. A. Kuznetsov, B. Sandstede, and
X. Wang, [1997], “auto97: Continuation and
bifurcation software for ordinary differential
equations.”, Technical report, Concordia Uni-
versity, Montreal, Quebec, Canada.

E. J. Doedel, B. W. Kooi, Yu. A. Kuznetsov,
and G. A. K. Van Voorn, [2008], “Continuation
of connecting orbits in 3D-ODEs: (I) Point-
to-cycle connections,” International Journal of
Bifurcation and Chaos. arXiv:0706.1688v1.

N.K. Gavrilov and L.P. Shilnikov, [1972], “On
three-dimensional systems close to systems

12



with a structurally unstable homoclinic curve:
I,” Math. USSR-Sb., 17, 467–485.

N. K. Gavrilov and L. P. Shilnikov, [1973],
“On three-dimensional systems close to sys-
tems with a structurally unstable homoclinic
curve: II,” Math. USSR-Sb., 19, 139–156.

A. Hastings and T. Powell, [1991], “Chaos in
a three-species food chain.,” Ecology, 72, 896–
903.

A. Klebanoff and A. Hastings, [1994], “Chaos
in three species food chains.,” Journal of Math-
ematical Biology, 32, 427–451.

Yu. A. Kuznetsov and S. Rinaldi, [1996], “Re-
marks on food chain dynamics.,” Mathematical
Biosciences, 134, 1–33.

Yu. A. Kuznetsov, O. De Feo, and S. Rinaldi,
[2001], “Belyakov homoclinic bifurcations in a
tritrophic food chain model.,” SIAM Journal
of Applied Mathematics, 62, 462–487.

Yu. A. Kuznetsov, [2004], Elements of Applied
Bifurcation Theory., volume 112 of Applied
Mathematical Sciences. Springer, 3th edition.

K. McCann and P. Yodzis, [1995], “Bifurcation
structure of a three-species food chain model.,”
Theoretical Population Biology, 48, 93–125.

Ju. I. Neimark, [1967], “Motions close to
doubly-asymptotic motion,” Soviet Math.
Dokl., 8, 228–231.

J. Palis and F. Takens, [1993], Hyperbolic-
ity and Sensitive Chaotic Dynamics at Homo-
clinic Bifurcations: Fractal Dimensions and
Infinitely Many Attractors, volume 35 of Cam-
bridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge.

T. Pampel, [2001], “Numerical approximation
of connecting orbits with asymptotic rate,” Nu-
merische Mathematik, 90, 309–348.
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Birkhoff problem,” Math. USSR-Sb., 3, 353–
371.

S. Smale, [1963], “Diffeomorphisms with many
periodic points”, In S. Carins, ed., Differential
and Combinatorial Topology, 63–80. Princeton
University Press, Princeton, NJ.

G. A. K. Van Voorn, L. Hemerik, M. P. Boer,
and B. W. Kooi, [2007], “Heteroclinic orbits
indicate overexploitation in predator–prey sys-
tems with a strong Allee effect,” Math. Biosci.,
209, 451–469.

13


