Detection and continuation of a homoclinic cycle–to–cycle connection in a food chain model.

G.A.K. van VOORN¹, YU.A. KUZNETSOV², B.W. KOOI¹, and E.J. DOEDEL³

²Department of Theoretical Biology, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands kooi@bio.vu.nl, george.van.voorn@falw.vu.nl

³Department of Mathematics, Utrecht University Budapestlaan 6, 3584 CD Utrecht

kuznet@math.uu.nl

¹Department of Computational Science, Concordia University, 1455 Boulevard de Maisonneuve O., Montreal, Quebec, H3G 1M8, Canada doedel@cs.concordia.ca

January 28, 2008

Abstract

Accompanying manuscript to the demonstration of the detection and continuation of a homoclinic cycle-to-cycle connection in the 3D food chain model by Rosenzweig-MacArthur with the bifurcation software package AUTO, by use of the homotopy method described in the paper. The files are downloadable from http://www.bio.vu.nl/thb/research/project/globif.

1 Disclaimer

The following results have been obtained under Sun Solaris 8, using a FORTRAN compiler f77 for AUTO97, and using a FORTRAN compiler f95 for AUTO07P. The results might differ slightly using a different compiler or a different version of AUTO.

2 Introduction

The scaled Rosenzweig-MacArthur system (1963) is a three-level food chain model from theoretical biology. The equations are given by

$$\begin{cases} \dot{x_1} = x_1(1-x_1) - f_1(x_1, x_2) , \\ \dot{x_2} = f_1(x_1, x_2) - d_1 x_2 - f_2(x_2, x_3) , \\ \dot{x_3} = f_2(x_2, x_3) - d_2 x_3 , \end{cases}$$
(1)

with Holling Type-II functional responses

$$f_1(x_1, x_2) = \frac{a_1 x_1 x_2}{1 + b_1 x_1}$$

and

$$f_2(x_2, x_3) = \frac{a_2 x_2 x_3}{1 + b_2 x_2}$$

This standard model has been studied by several authors, see *e.g.* Kuznetsov and Rinaldi (1996). The death rates d_1 and d_2 are often used as bifurcation parameters, with the other parameters set at $a_1 = 5$, $a_2 = 0.1$, $b_1 = 3$, and $b_2 = 2$. For these parameter values the model displays chaotic behaviour in a given parameter range of d_1 and d_2 [Hastings and Powell, 1991, Klebanoff and Hastings, 1994, McCann and Yodzis, 1995]. Before the onset of chaos, the system displays a series of period-doubling bifurcations. A starting point of this route to chaos can be found, for example, at $d_1 \approx 0.2080452$, $d_2 = 0.0125$, where there is a fold bifurcation in which two limit cycles appear.

Previous work by Boer et al. (1999, 2001) has shown that the parameter region where chaos occurs is intersected by homoclinic and heteroclinic global connections, and that this region is partly bounded by a homoclinic cycle-to-cycle connection. These results were obtained numerically using multiple shooting. In the previous paper (Doedel et al., 2007) we reproduced the results for the structurally stable heteroclinic point-to-cycle connection using the homotopy method. In this set-up we demonstrate how the homoclinic cycle-tocycle connection can be detected, and continued in parameter space using the homotopy method. Also, it is set up such it can be used as well for a heteroclinic cycle-to-cycle connection.

2.1 Cycle data

The directory 01Cycle provides the data for the cycle O in the cycle-to-cycle homoclinic connection. The command *make first* locates a Hopf bifurcation

BR	ΡT	ΤY	LAB	PAR(1)	
1	1	ΕP	1	5.00000E-01	
1	5	HB	2	5.122697E-01	
1	10	ΕP	3	8.413455E-01	

Restarting from label 2, the command make second gives two uzer-defined points for $d_1 = 0.25$, $d_2 = 0.0125$.

BR	ΡT	ΤY	LAB	PAR(1)	PERIOD
2	108	PD	4	4.289115E-01	6.588692E+01
2	320	UΖ	5	2.600001E-01	5.080266E+01
2	332	UΖ	6	2.500004E-01	4.895488E+01
2	364	PD	7	2.166817E-01	4.047737E+01
2	389	LP	8	2.080452E-01	3.437447E+01
2	514	UΖ	9	2.500000E-01	2.428225E+01
2	540	UΖ	10	2.60000E-01	2.340505E+01
2	600	ΕP	11	2.840653E-01	2.173427E+01

The data of the second uzer-defined point is exported.

2.2 Obtaining a starting point

To obtain a good starting point of the cycle-to-cycle connection orbit we need to know the direction of the eigenfunction. The command *make first* in the directory 02EigFunc gives the logarithmic multipliers

BR	ΡT	ΤY	LAB	PAR(11)	PAR(12)	PAR(13)
1	50		2	2.428225E+01	 -6.414969E+00	0.00000E+00
1	51	BP	3	2.428225E+01	 -6.414681E+00	0.00000E+00
1	100		4	2.428225E+01	 -1.514681E+00	0.00000E+00
1	116	BP	5	2.428225E+01	 3.843325E-09	0.00000E+00
1	121	BP	6	2.428225E+01	 4.399610E-01	0.00000E+00
1	150		7	2.428225E+01	 3.339961E+00	0.00000E+00
1	200	ΕP	8	2.428225E+01	 8.339962E+00	0.00000E+00

Restarting at label 6 with make second

BR	PT	ΤY	LAB	PAR(11)	PAR(12)	PAR(13)
2	50		9	2.428225E+01	 4.399610E-01	1.319472E-01
2	100		10	2.428225E+01	 4.399610E-01	5.059062E-01
2	150		11	2.428225E+01	 4.399610E-01	9.415602E-01
2	157	UΖ	12	2.428225E+01	 4.399610E-01	1.000000E+00
2	200	EP	13	2.428225E+01	 4.399610E-01	1.394541E+00

We desire only the values of v(0) of the uzer-defined point. The starting point is now calculated by taking the cycle coordinates at t = 0 ($(u_1, u_2, u_3) = (0.83978298543, 0.12528397115, 10.552876607)$) and making a small step in the direction of the unstable eigenfunction

$$u(0) = x(0) + \varepsilon v(0) , \qquad (2)$$

where i = 1, 2, 3, v(0) the coordinates of the unstable eigenfunction and $\varepsilon = -0.001$. The starting coordinates are then $(u_1, u_2, u_3) = (0.8397887445, 0.1252741872, 10.55323968)$.

3 Two adjoint eigenfunctions

Next we require the eigenfunctions of both cycles. The system is treated as if there are two separate cycles, though it is a homoclinic connection and the two cycles are one and the same. All formula's, boundary and integral conditions are copied, to a total of 12 ODE's, 14 boundary conditions and 2 integral conditions. According to the formula

$$n_{fp} = n_{bc} + n_{ic} + 1 - n_{fv} \tag{3}$$

this leaves 5 free parameters. Observe that there are six possible free parameters, and therefore in each run one of the multipliers is kept constant.

In the directory 03TwoAdjEigFunc the command make compute generates the file compute. The command @compute C6, followed by the entry of an initial floquet multiplier value, for example, -0.9, will generate the starting file s.rm3.

The command *make first* results in three branching points for the "first" cycle

BR	PT	ТΥ	LAB	PAR(11)	PAR(12)	PAR(13)	
1	110	BP	12	2.428225E+01	 -4.399607E-01	0.00000E+00	
1	115	BP	13	2.428225E+01	 -3.255862E-10	0.000000E+00	
1	150		17	2.428225E+01	 3.500000E+00	0.00000E+00	
1	180	BP	20	2.428225E+01	 6.414681E+00	0.000000E+00	
1	200	ΕP	22	2.428225E+01	 8.414682E+00	0.000000E+00	

where PAR(12) is the first Floquet multiplier, and the second floquet multiplier PAR(14) is kept constant. The command *make second* then gives

BR	ΡT	ТΥ	LAB	PAR(11)	PAR(12)	PAR(13)	
2	10		23	2.428225E+01	 -4.399610E-01	4.609158E-07	
2	40		26	2.428225E+01	 -4.399610E-01	2.747229E-01	
2	62	UZ	29	2.428225E+01	 -4.399610E-01	1.000000E+00	
2	70		30	2.428225E+01	 -4.399610E-01	1.363736E+00	
2	100	ΕP	33	2.428225E+01	 -4.399610E-01	3.060171E+00	

The command *make third* is started at the third branching point of the first run, which gives the unstable manifold, instead of the first branching point, which gives the stable manifold

Figure 1: Plot of the approximate connection obtained using MATLAB. Observe the resolution is somewhat low.

BR	PT	ΤY	LAB	PAR(11)		PAR(12)	PAR(14)	
3	110	BP	44	2.428225E+01 .	••	-4.399610E-01	-4.399606E-01	
3	115	BP	45	2.428225E+01 .	••	-4.399610E-01	-3.254966E-10	
3	150		49	2.428225E+01 .	•••	-4.399610E-01	3.500000E+00	
3	180	BP	52	2.428225E+01 .	•••	-4.399610E-01	6.414681E+00	
3	200	ΕP	54	2.428225E+01 .	•••	-4.399610E-01	8.414682E+00	

The command make fourth then

BR	PT	ΤY	LAB	PAR(11)	PAR(12)	PAR(14)	
4	30		57	2.428225E+01	 -4.399610E-01	6.414681E+00	
4	41	UΖ	59	2.428225E+01	 -4.399610E-01	6.414681E+00	
4	60		61	2.428225E+01	 -4.399610E-01	6.414681E+00	
4	100	ΕP	65	2.428225E+01	 -4.399610E-01	6.414681E+00	

The data of the last uzer-point is exported.

3.1 Obtaining a connection

From the directory *02EigFunc* we extract the starting coordinates

 $(u_1, u_2, u_3) = (0.8397887445, 0.1252741872, 10.55323968).$

The program CONTENT is then used to obtain the approximate connection time of the connecting orbit resulting from integration starting at this starting point. We use two base

points (it is a somewhat arbitrary choice which x_i -coordinate is used, but one should use two different ones for the two conditions). For the starting point we use a base point

$$\Phi[x^-] = x_1^- - 0.839783 \; ,$$

which is the x_1 -coordinate, while for the end-point use a base-point

$$\Phi[x^+] = x_2^+ - 0.125284$$

where the selected value is the starting x_2 -coordinate of the limit cycle. A uzer-function has to be defined in CONTENT under *Select/Userfunctions*. Let the integration run until a suitable point is detected (most likely more detections will occur, but not all are relevant). The given time interval T = 463.398 is the initial period used in the following MATLAB integration.

The integration in MATLAB is done using two files, named rm.m and process.m, available in the directory 03TwoAdjEigFunc. The first file contains the equations and parameter settings and the second file contains the starting data and integration routine. Observe that TC is the connection time obtained using CONTENT, while the used starting point is chosen such there is an approximate connection, shown in Figure 1.

3.2 Homotopy method

To improve the approximate connecting orbit the homotopy method is used in the directory 04Homotopy (see Doedel, Friedman and Monteiro, 1994). The complete truncated BVP to be solved numerically consists of

$$\dot{x}^{\pm} - T^{\pm} f(x^{\pm}, \alpha) = 0$$
, (4a)

$$x^{\pm}(0) - x^{\pm}(1) = 0$$
, (4b)

$$\Phi[x^{\pm}] = 0 , \qquad (4c)$$

$$\dot{w}^{+} + T^{+} f_{u}^{\mathrm{T}}(x^{+}, \alpha) w^{+} + \lambda^{+} w^{+} = 0 , \qquad (4\mathrm{d})$$

$$\dot{w}^{-} + T^{-} f_{s}^{\mathrm{T}}(x^{-}, \alpha) w^{-} + \lambda^{-} w^{-} = 0 , \qquad (4e)$$

$$w^{\pm}(1) - s^{\pm}w^{\pm}(0) = 0 , \qquad (4f)$$

$$\langle w^{\pm}(0), w^{\pm}(0) \rangle - 1 = 0$$
, (4g)

$$\dot{u} - Tf(u,\alpha) = 0, \tag{4h}$$

$$\langle f(x^+(0), \alpha), u(1) - x^+(0) \rangle - h_{11} = 0$$
, (4i)

$$\langle f(x^{-}(0), \alpha), u(0) - x^{-}(0) \rangle - h_{12} = 0$$
, (4j)

$$\langle w^+(0), u(1) - x^+(0) \rangle - h_{21} = 0$$
, (4k)

$$\langle w^{-}(0), u(0) - x^{-}(0) \rangle - h_{22} = 0$$
, (41)

where Φ in (4c) again defines any phase condition fixing the base points $x^{\pm}(0)$ on the cycles O^{\pm} , and h_{1k} , k = 1, 2, are homotopy parameters. We have 20 boundary conditions and 15 variables, thus there are six free continuation parameters: μ^{\pm} , T^{\pm} , T (the time variable is

scaled to the unit interval [0, 1], so that both the cycle periods T^{\pm} and the connecting time T become parameters), and, in turn, one of the four homotopy parameters $h_{11}, h_{12}, h_{21}, h_{22}$.

The continuation in AUTO07P can be done in four steps, where in each step one homotopy parameter is continued up to a zero. Several zeroes are detected for each homotopy parameters, where each zero correspond to a full rotation around the limit cycle. The command *make first* gives uzer-defined points for a continuation in (h_{11}, T)

BR	PT	ТΥ	LAB	PAR(21)	PAR(7)	
1	40		3	-1.04335E-02	 4.99335E+02	
1	80		5	-1.10248E-02	 4.99544E+02	
1	120		7	-1.20982E-02	 5.06367E+02	
1	160		9	-8.85341E-03	 5.18642E+02	
1	188	UΖ	11	-1.01205E-09	 5.27176E+02	
1	200		12	1.16970E-02	 5.29915E+02	
1	240		14	1.56837E-02	 5.29375E+02	
1	280		16	1.46523E-02	 5.19410E+02	
1	312	UΖ	18	-1.23567E-13	 5.08763E+02	
1	320		19	-4.54740E-03	 5.04691E+02	
1	360		21	-1.06767E-02	 4.99359E+02	
1	400		23	-1.17754E-02	 5.01232E+02	
1	440		25	-1.11512E-02	 5.13199E+02	
1	480		27	-2.74047E-03	 5.25539E+02	
1	486	UZ	28	-2.95096E-14	 5.27176E+02	
1	500	EP	29	1.20778E-02	 5.29910E+02	

The command *make second*, restarting from label 8, results in uzer-defined points for a continuation in (h_{21}, T)

BR	PT	ТΥ	LAB	PAR(23)	PAR(7)	
1	50		30	-1.05875E-02	 5.24244E+02	
1	52	UZ	31	1.22893E-11	 5.23802E+02	
1	100		32	5.29868E-02	 5.05709E+02	
1	144	UZ	33	-5.53957E-10	 5.06528E+02	
1	150		34	-5.56218E-02	 5.07706E+02	
1	200		35	-3.09866E-01	 5.19771E+02	
1	222	UZ	36	-1.01145E-09	 5.25793E+02	
1	242	UZ	37	1.11454E-09	 5.30801E+02	
1	250		38	-8.92395E-02	 5.33284E+02	
1	298	UZ	39	5.22099E-08	 5.48106E+02	
1	300	ΕP	40	4.22408E-02	 5.49037E+02	

Now, the homotopy is applied to the other side of the connecting orbit. The command make third, restarted at label 31, gives uzer-defined points for a continuation in (h_{12}, T)

PT	ΤY	LAB	PAR(22)		PAR(7)	
11	UΖ	42	1.76914E-10		5.06519E+02	
40		45	1.73281E-03		5.04644E+02	
80		49	1.68136E-03		5.02148E+02	
105	UZ	52	-1.82353E-09		5.02620E+02	
120		54	-4.88450E-03		5.04955E+02	
160		58	-1.68828E-02		5.13316E+02	
200		62	-2.35839E-02		5.22056E+02	
240		66	-2.54848E-02		5.30796E+02	
300	EP	72	-2.64421E-02		5.43906E+02	
	PT 11 40 80 105 120 160 200 240 300	PT TY 11 UZ 40 80 105 UZ 120 160 200 240 300 EP	PT TY LAB 11 UZ 42 40 45 80 49 105 UZ 52 120 54 160 58 200 62 240 66 300 EP 72	PT TY LAB PAR(22) 11 UZ 42 1.76914E-10 40 45 1.73281E-03 80 49 1.68136E-03 105 UZ 52 -1.82353E-09 120 54 -4.88450E-03 160 58 -1.68828E-02 200 62 -2.35839E-02 240 66 -2.54848E-02 300 EP 72 -2.64421E-02	PT TY LAB PAR(22) 11 UZ 42 1.76914E-10 40 45 1.73281E-03 80 49 1.68136E-03 105 UZ 52 -1.82353E-09 120 54 -4.88450E-03 160 58 -1.68828E-02 200 62 -2.35839E-02 240 66 -2.54848E-02 300 EP 72 -2.64421E-02	PT TY LAB PAR(22) PAR(7) 11 UZ 42 1.76914E-10 5.06519E+02 40 45 1.73281E-03 5.04644E+02 80 49 1.68136E-03 5.02148E+02 105 UZ 52 -1.82353E-09 5.02620E+02 120 54 -4.88450E-03 5.04955E+02 160 58 -1.68828E-02 5.13316E+02 200 62 -2.35839E-02 5.2056E+02 240 66 -2.54848E-02 5.30796E+02 300 EP 72 -2.64421E-02 5.43906E+02

Finally the command make fourth, restarted at label 42, yields several uzer-defined points for a continuation in (h_{22}, T)

BR	PT	ΤY	LAB	PAR(24)	PAR(7)	
1	30		75	-2.03664E-02	 5.04151E+02	
1	40	UΖ	76	1.70343E-10	 5.02620E+02	
1	60		78	1.78718E-01	 4.97136E+02	
1	90		81	2.74721E-01	 4.88907E+02	
1	115	UΖ	84	-2.30068E-11	 4.82231E+02	
1	120		85	-2.55786E-02	 4.80312E+02	
1	128	UZ	86	-6.18816E-13	 4.78335E+02	
1	150		89	3.11351E-01	 4.66268E+02	
1	166	UZ	91	7.33349E-12	 4.57942E+02	
1	178	UZ	93	-3.62980E-13	 4.54049E+02	
1	180		94	1.85870E-02	 4.53051E+02	
1	210		97	1.86843E-01	 4.38077E+02	
1	219	UZ	98	-1.04706E-11	 4.33647E+02	
1	231	UZ	101	-4.65764E-13	 4.29761E+02	
1	240		102	1.39114E-01	 4.25269E+02	
1	270		105	3.43323E-02	 4.10297E+02	
1	272	UZ	106	-5.37645E-12	 4.09345E+02	
1	284	UZ	108	-6.39627E-13	 4.05470E+02	
1	300	EP	110	2.64699E-01	 3.97485E+02	

As can be seen, the connection time of the connecting orbit decreases, since the number of excursions near the cycle decreases. One of the connecting orbits where $h_{22} = 0$ is used in the continuation in α , and depicted in Figure 2, left panel. Observe that there are two types of orbits, examples of which are both depicted in Figure 2, right panel. One type, where the homotopy parameter is zero after first being positive, seems to be "in phase". The other type, where the homotopy parameter is zero after first being negative, is "out of phase". This latter type displays a "bump" at the starting section of the connection. Dispite this feature, this type produces the correct two-dimensional continuation curve of the limit point of the connecting orbit, as is demonstrated in the next subsection.

Figure 2: Left panel: Three-dimensional phase space plot of a cycle-to-cycle connecting orbit obtained with the homotopy method. Right panel: profiles (x_3 coordinate) of two connecting orbits obtained with the homotopy method, one "phased" (solid), and one "out of phase" (dashed). Observe the "bump" at the starting part of the latter orbit.

3.3 Continuation

The last directory 05Cont demonstrates the detection and continuation of two branches of the fold bifurcation of the homoclinic cycle-to-cycle connection. There is a continuation of the connecting orbit in (α, T) up to a limit point, where α is one of the bifurcation parameters d_1 and d_2 . Compared to the *fortran*-file in the directory 03Homotopy we now have the slightly modified BVP

$$\dot{x}^{\pm} - T^{\pm} f(x^{\pm}, \alpha) = 0$$
, (5a)

$$x^{\pm}(0) - x^{\pm}(1) = 0 , \qquad (5b)$$

$$\dot{w}^{+} + T^{+} f_{u}^{\mathrm{T}}(x^{+}, \alpha) w^{+} + \lambda^{+} w^{+} = 0 , \qquad (5c)$$

$$\dot{w}^{-} + T^{-} f_{s}^{\mathrm{T}}(x^{-}, \alpha) w^{-} + \lambda^{-} w^{-} = 0 , \qquad (5d)$$

$$w^{\pm}(1) - s^{\pm}w^{\pm}(0) = 0 , \qquad (5e)$$

$$\langle w^{\pm}(0), w^{\pm}(0) \rangle - 1 = 0$$
, (5f)

$$\dot{u} - Tf(u,\alpha) = 0, \tag{5g}$$

$$\langle f(x^+(0), \alpha), u(1) - x^+(0) \rangle = 0$$
, (5h)

$$\langle f(x^{-}(0), \alpha), u(0) - x^{-}(0) \rangle = 0$$
, (5i)

$$\langle w^+(0), u(1) - x^+(0) \rangle = 0$$
, (5j)

$$\langle w^{-}(0), u(0) - x^{-}(0) \rangle = 0$$
, (5k)

$$|u(0) - x^{-}(0)||^{2} - \varepsilon^{2} = 0 , \qquad (51)$$

with one free parameter less. The parameter ε used in the calculation of the starting point of the approximate connection is fixed in the below continuations. We can now do a continuation in α_1 and subsequently in (α_1, α_2) for fixed T after the detection of a limit point, using the standard fold-detection facilities of AUTO.

In the first run make first we improve our approximate connecting orbit, obtained from label 108 of the fourth run in the homotopy directory, by increasing the connection period T

BR	PT	ΤY	LAB	PAR(7)	
1	30		4	4.08132E+02	
1	60		7	4.17069E+02	
1	90		10	4.25010E+02	
1	120		13	4.30414E+02	
1	150		16	4.36979E+02	
1	180		19	4.51841E+02	
1	210		22	4.55936E+02	
1	240		25	4.68747E+02	
1	270		28	4.78542E+02	
1	300	ΕP	31	4.83855E+02	

Now we start the continuation in d_2 with fixed period make second from label 20 and limit points are found

BR	PT	ΤY	LAB	PAR(1)	PAR(3)
1	165	UΖ	32	2.78500E-01	2.20782E+01
1	185	LP	33	2.80908E-01	2.19267E+01
1	241	UΖ	34	2.78500E-01	2.20782E+01
1	262	LP	36	2.77691E-01	2.21300E+01
1	273	UΖ	37	2.78500E-01	2.20782E+01
1	283	LP	38	2.80913E-01	2.19265E+01
1	294	UΖ	39	2.78500E-01	2.20782E+01
1	512	LP	40	2.30598E-01	2.65515E+01
1	1000	ΕP	49	2.70309E-01	2.26269E+01

Restarting at the limit points in will yield two homoclinic cycle-to-cycle bifurcation curves in (d_1, d_2) . First, however, the 2D continuation must be prepared from label 40 by make third

 BR
 PT
 TY
 LAB
 PAR(1)
 PAR(2)

 2
 5
 EP
 44
 2.30598E-01
 1.25000E-02
 ...

We can now start with the continuation in 2D. With *make fourth* the primary homoclinic branch is detected

BR	ΡT	ΤY	LAB	PAR(1)	PAR(2)	
2	100		51	2.51318E-01	 1.07436E-02	
2	200		52	2.59487E-01	 1.03773E-02	
2	300		53	2.68031E-01	 1.02636E-02	

Figure 3: Two-parameter curves of the primary (left) and secondary (right) homoclinic cycle-to-cycle connections of the food chain model.

2	400		54	2.77963E-01	 1.03168E-02	
2	500		55	2.84465E-01	 1.04346E-02	
2	592	MX	56	2.87786E-01	 1.05339E-02	

With make fifth we restart at label 33 for the preparation of the 2D continuation of the secondary branch

BR	ΡT	ΤY	LAB	PAR(1)	PAR(2)	
2	5	EP	50	2.80908E-01	 1.25000E-02	

With make sixth we obtain part of the secondary branch

BR	ΡT	ΤY	LAB	PAR(1)	PAR(2)	
2	100		51	2.62585E-01	 1.28404E-02	
2	116	LP	52	2.61790E-01	 1.28531E-02	
2	200		53	2.92202E-01	 1.17084E-02	
2	232	LP	54	2.94383E-01	 1.12019E-02	
2	300		55	2.92705E-01	 1.08177E-02	
2	400		56	2.88873E-01	 1.05765E-02	
2	427	MX	57	2.88193E-01	 1.05491E-02	

The remainders of the two branches are found by make seventh

BR	ΡT	ΤY	LAB	PAR(1)	PAR(2)	
2	38	LP	51	2.29368E-01	 1.27579E-02	
2	100		52	2.32914E-01	 1.29992E-02	
2	200		53	2.57779E-01	 1.29115E-02	
2	300		54	2.99234E-01	 1.18721E-02	
2	319	LP	55	3.01847E-01	 1.15004E-02	
2	400		56	2.90814E-01	 1.06520E-02	
2	493	MX	57	2.87940E-01	 1.05396E-02	

Figure 4: Profile plots of the four connecting homoclinic orbits that exist at $d_1 = 0.2785, d_2 = 0.0125.$

and make eighth

BR	PT	ΤY	LAB	PAR(1)	PAR(2)	
2	65	LP	51	3.01846E-01	 1.15003E-02	
2	100		52	3.00208E-01	 1.11876E-02	
2	200		53	2.95315E-01	 1.08583E-02	
2	215	LP	54	2.94700E-01	 1.08270E-02	
2	300		55	2.90388E-01	 1.06346E-02	
2	400		56	2.88242E-01	 1.05509E-02	
2	445	LP	57	2.87983E-01	 1.05412E-02	
2	454	MX	58	2.88048E-01	 1.05436E-02	

The two-dimensional continuation curve of the primary homoclinic cycle-to-cycle connection is depicted in Figure 3, left panel. The two-dimensional continuation curve of the secondary branch is depicted in the right panel of the same Figure. The two branches partly overlap each other. That they are indeed two different branches follows from the profiles of the four different connecting orbits that exist at the same value of $d_1 = 0.2785$, $d_2 = 0.0125$, see Figure 4, right panel, while there are two distinct connecting orbits at the same limit point ($d_1 = 0.2809078$, $d_2 = 0.0125$, left panel).

4 Acknowledgements

The research of the first author (GvV) is supported by the Dutch Organization for Scientific Research (NWO-CLS) grant no. 635,100,013.

5 References

References

- Boer, M. P., Kooi, B. W., and Kooijman, S. (1999). Homoclinic and heteroclinic orbits in a tri-trophic food chain. *Journal of Mathematical Biology*, 39:19–38.
- Boer, M. P., Kooi, B. W., and Kooijman, S. (2001). Multiple attractors and boundary crises in a tri-trophic food chain. *Mathematical Biosciences*, 169:109–128.
- Doedel, E. J., Friedman, M. J., and Monteiro, A. C. (1994). On locating connecting orbits. Applied Mathematics and Computation, 65:231–239.
- Doedel, E. J., Kooi, B. W., Kuznetsov, Y. A., and Van Voorn, G. A. K. (2008). Continuation of connecting orbits in 3d-odes: (I) Point-to-cycle connections. *International Journal of Bifurcation and Chaos.* arXiv:0706.1688v1.
- Hastings, A. and Powell, T. (1991). Chaos in a three-species food chain. *Ecology*, 72:896–903.
- Klebanoff, A. and Hastings, A. (1994). Chaos in three species food chains. Journal of Mathematical Biology, 32:427–451.
- Kuznetsov, Yu. A. and Rinaldi, S. (1996). Remarks on food chain dynamics. Mathematical Biosciences, 134:1–33.
- McCann, K. and Yodzis, P. (1995). Bifurcation structure of a three-species food chain model. *Theoretical Population Biology*, 48:93–125.
- Rosenzweig, M. L. and MacArthur, R. H. (1963). Graphical representation and stability conditions of predator-prey interactions. *Am. Nat.*, 97:209–223.