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Abstract

Accompanying manuscript to the demonstration of the detection and contin-
uation of a homoclinic cycle-to-cycle connection in the 3D food chain model by
Rosenzweig—MacArthur with the bifurcation software package AUTO, by use of
the homotopy method described in the paper. The files are downloadable from
http://www.bio.vu.nl/thb/research/project/globif.



1 Disclaimer

The following results have been obtained under Sun Solaris 8, using a FORTRAN compiler
f77 for AUTO97, and using a FORTRAN compiler f95 for AUTOO7TP. The results might
differ slighthy using a different compiler or a different version of AUTO.

2 Introduction

The scaled Rosenzweig-MacArthur system (1963) is a three-level food chain model from
theoretical biology. The equations are given by

151 = IL‘l(l — I1> — fl(l'l,l‘g) s
T = filz1,22) — dize — folza, w3) (1)
T3 = fa(we,13) — daws,

with Holling Type-II functional responses
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This standard model has been studied by several authors, see e.¢g. Kuznetsov and Ri-
naldi (1996). The death rates d; and dy are often used as bifurcation parameters, with the
other parameters set at a1 = 5, as = 0.1, by = 3, and by = 2. For these parameter values
the model displays chaotic behaviour in a given parameter range of d; and d, [Hastings and
Powell, 1991, Klebanoff and Hastings, 1994, McCann and Yodzis, 1995]. Before the onset
of chaos, the system displays a series of period-doubling bifurcations. A starting point of
this route to chaos can be found, for example, at d; &~ 0.2080452, dy = 0.0125, where there
is a fold bifurcation in which two limit cycles appear.

Previous work by Boer et al. (1999, 2001) has shown that the parameter region where
chaos occurs is intersected by homoclinic and heteroclinic global connections, and that this
region is partly bounded by a homoclinic cycle-to-cycle connection. These results were
obtained numerically using multiple shooting. In the previous paper (Doedel et al., 2007)
we reproduced the results for the structurally stable heteroclinic point-to-cycle connection
using the homotopy method. In this set-up we demonstrate how the homoclinic cycle-to-
cycle connection can be detected, and continued in parameter space using the homotopy
method. Also, it is set up such it can be used as well for a heteroclinic cycle-to-cycle
connection.

2.1 Cycle data

The directory 01Cycle provides the data for the cycle O in the cycle-to-cycle homoclinic
connection. The command make first locates a Hopf bifurcation
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Restarting from label 2, the command make second gives two uzer-defined points for d; =
0.25, dy = 0.0125.
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The data of the second uzer-defined point is exported.

2.2 Obtaining a starting point

To obtain a good starting point of the cycle-to-cycle connection orbit we need to know the
direction of the eigenfunction. The command make first in the directory 02EigFunc gives
the logarithmic multipliers

BR PT TY LAB PAR(11) PAR(12) PAR(13)
1 50 2 2.428225E+01 ... -6.414969E+00 0.000000E+00
1 51 BP 3 2.428225E+01 ... -6.414681E+00 0.000000E+00
1 100 4 2.428225E+01 ... -1.514681E+00 0.000000E+00
1 116 BP 5 2.428225E+01 ... 3.843325E-09 0.000000E+00
1 121 BP 6 2.42822bE+01 ... 4.399610E-01 0.000000E+00
1 150 7 2.428225E+01 ... 3.339961E+00 0.000000E+00
1 200 EP 8 2.428225E+01 ... 8.339962E+00 0.000000E+00
Restarting at label 6 with make second
BR PT TY LAB  PAR(11) PAR(12) PAR(13)
2 50 9 2.42822bE+01 ... 4.399610E-01 1.319472E-01
2 100 10 2.428225E+01 ... 4.399610E-01 5.059062E-01
2 150 11 2.428225E+01 ... 4.399610E-01 9.415602E-01
2 157 UzZ 12 2.428225E+01 ... 4.399610E-01 1.000000E+00
2 200 EP 13 2.428225E+01 ... 4.399610E-01 1.394541E+00



We desire only the values of v(0) of the uzer-defined point. The starting point is now calcu-
lated by taking the cycle coordinates at t = 0 ((u1, u2, u3) = (0.83978298543,0.12528397115, 10.552876607))
and making a small step in the direction of the unstable eigenfunction

u(0) = z(0) 4+ <v(0) , (2)

where ¢ = 1,2, 3, v(0) the coordinates of the unstable eigenfunction and ¢ = —0.001. The
starting coordinates are then (uq, us,us) = (0.8397887445,0.1252741872, 10.55323968).

3 Two adjoint eigenfunctions

Next we require the eigenfunctions of both cycles. The system is treated as if there are two
separate cycles, though it is a homoclinic connection and the two cycles are one and the
same. All formula’s, boundary and integral conditions are copied, to a total of 12 ODE’Ss,
14 boundary conditions and 2 integral conditions. According to the formula

Nfp = Npe + Nie + 1 — gy (3)

this leaves 5 free parameters. Observe that there are six possible free parameters, and
therefore in each run one of the multipliers is kept constant.

In the directory 03TwoAdjEigFunc the command make compute generates the file com-
pute. The command @compute C6, followed by the entry of an initial loquet multiplier
value, for example, —0.9, will generate the starting file s.rms3.

The command make first results in three branching points for the “first” cycle

BR PT TY LAB PAR(11) PAR(12) PAR(13)
1 110 BP 12 2.428225E+01 ... -4.399607E-01 0.000000E+00 ...
1 115 BP 13 2.428225E+01 ... -3.255862E-10 0.000000E+00 ...
1 150 17 2.428225E+01 ... 3.500000E+00 0.000000E+00 ...
1 180 BP 20 2.428225E+01 ... 6.414681E+00 0.000000E+00 ...
1 200 EP 22 2.428225E+01 ... 8.414682E+00 0.000000E+00 ...

where PAR(12) is the first Floquet multiplier, and the second floquet multiplier PAR(14)

is kept constant. The command make second then gives

BR PT TY LAB PAR(11) PAR(12) PAR(13)
2 10 23 2.428225E+01 ... -4.399610E-01 4.609158E-07 ...
2 40 26 2.428225E+01 ... -4.399610E-01 2.747229E-01 ...
2 62 UZ 29 2.428225E+01 ... -4.399610E-01 1.000000E+00 ...
2 70 30 2.428225E+01 ... -4.399610E-01 1.363736E+00 ...
2 100 EP 33 2.428225E+01 ... -4.399610E-01 3.060171E+00 ...

The command make third is started at the third branching point of the first run, which
gives the unstable manifold, instead of the first branching point, which gives the stable
manifold
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Figure 1: Plot of the approximate connection obtained using MATLAB. Observe the reso-
lution is somewhat low.

BR PT TY LAB PAR(11) PAR(12) PAR(14)
3 110 BP 44 2.428225bE+01 ... -4.399610E-01 -4.399606E-01 ...
3 115 BP 45 2.428225E+01 ... -4.399610E-01 -3.254966E-10 ...
3 150 49 2.428225E+01 ... -4.399610E-01 3.500000E+00 ...
3 180 BP b2 2.428225E+01 ... -4.399610E-01 6.414681E+00 ...
3 200 EP 54 2.428225E+01 ... -4.399610E-01 8.414682E+00 ...
The command make fourth then
BR PT TY LAB PAR(11) PAR(12) PAR(14)
4 30 57 2.428225E+01 ... -4.399610E-01 6.414681E+00 ...
4 41 UZ 59 2.428225E+01 ... -4.399610E-01 6.414681E+00 ...
4 60 61 2.428225E+01 ... -4.399610E-01 6.414681E+00 ...
4 100 EP 65 2.42822bE+01 ... -4.399610E-01 6.414681E+00 ...

The data of the last uzer-point is exported.

3.1 Obtaining a connection

From the directory 02FEigFunc we extract the starting coordinates

The program CONTENT is then used to obtain the approximate connection time of the
connecting orbit resulting from integration starting at this starting point. We use two base

(w1, ug,uz) = (0.8397887445,0.1252741872,10.55323968) .



points (it is a somewhat arbitrary choice which z;-coordinate is used, but one should use
two different ones for the two conditions). For the starting point we use a base point

Oz~ =x; —0.839783 ,
which is the x;-coordinate, while for the end-point use a base-point
Olzt] = x5 — 0.125284 |

where the selected value is the starting xs-coordinate of the limit cycle. A uzer-function
has to be defined in CONTENT under Select/Userfunctions. Let the integration run until a
suitable point is detected (most likely more detections will occur, but not all are relevant).
The given time interval T" = 463.398 is the initial period used in the following MATLAB
integration.

The integration in MATLAB is done using two files, named rm.m and process.m, available
in the directory 03TwoAdjEigFunc. The first file contains the equations and parameter
settings and the second file contains the starting data and integration routine. Observe
that T'C' is the connection time obtained using CONTENT, while the used starting point is
chosen such there is an approximate connection, shown in Figure 1.

3.2 Homotopy method

To improve the approximate connecting orbit the homotopy method is used in the directory
04Homotopy (see Doedel, Friedman and Monteiro, 1994). The complete truncated BVP
to be solved numerically consists of

it —T*f(2*,a) =0, (4a)

5(0) —2%(1) =0, (4b)

PlzF] =0, (4c)

Wt + TN et )wt + MTwt =0, (4d)
W+ T fHr, 0)w + X w =0, (4e)
w(1) — sTw*(0) =0, (4f)
(w*(0),w*(0)) =1 =0, (4g)

u—Tf(u,a) =0, (4h)

(f(@7(0), @), u(l) = 27(0)) = h11 =0, (4)
{(f(27(0), @), u(0) —27(0)) = h1z =0, (4)
(w™(0),u(1) = 27(0)) = hor =0, (4k)
w™(0),u(0) —x7(0)) —hyge =0, (41)

where ® in (4c¢) again defines any phase condition fixing the base points 2%(0) on the cycles
O*, and hy, k = 1,2, are homotopy parameters. We have 20 boundary conditions and 15
variables, thus there are six free continuation parameters: p*, 7=, T (the time variable is
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scaled to the unit interval [0, 1], so that both the cycle periods T¢ and the connecting time
T become parameters), and, in turn, one of the four homotopy parameters hiy, hia, hat, hoo.

The continuation in AUTOO7pP can be done in four steps, where in each step one
homotopy parameter is continued up to a zero. Several zeroes are detected for each ho-
motopy parameters, where each zero correspond to a full rotation around the limit cycle.
The command make first gives uzer-defined points for a continuation in (hq1,7T)

BR PT TY LAB PAR(21) PAR(7)
1 40 3 -1.04335E-02 ... 4.99335E+02 ...
1 80 5 -1.10248E-02 ... 4.99544E+02 ...
1 120 7 -1.20982E-02 ... 5.06367E+02 ...
1 160 9 -8.85341E-03 ... 5.18642E+02 ...
1 188 UZ 11 -1.01205E-09 ... 5.27176E+02 ...
1 200 12 1.16970E-02 ... 5.29915E+02 ...
1 240 14  1.56837E-02 ... 5.29375E+02 ...
1 280 16 1.46523E-02 ... 5.19410E+02 ...
1 312 UZ 18 -1.23567E-13 ... 5.08763E+02 ...
1 320 19 -4.54740E-03 ... 5.04691E+02 ...
1 360 21 -1.06767E-02 ... 4.99359E+02 ...
1 400 23 -1.17754E-02 ... 5.01232E+02 ...
1 440 25 -1.11512E-02 ... 5.13199E+02 ...
1 480 27 -2.74047E-03 ... 5.25539E+02 ...
1 486 UZ 28 -2.95096E-14 ... 5.27176E+02 ...
1 500 EP 29 1.20778E-02 ... 5.29910E+02 ...

The command make second, restarting from label 8, results in uzer-defined points for
a continuation in (hgy, T')

BR PT TY LAB PAR(23) PAR(7)
1 50 30 -1.05875E-02 ... 5.24244E+02 ...
1 52 UZ 31 1.22893E-11 ... 5.23802E+02 ...
1 100 32 5.29868E-02 ... 5.05709E+02 ...
1 144 UZ 33 -5.53957E-10 ... 5.06528E+02 ...
1 150 34 -5.56218E-02 ... 5.07706E+02 ...
1 200 35 -3.09866E-01 ... 5.19771E+02 ...
1 222 UZ 36 -1.01145E-09 ... 5.25793E+02 ...
1 242 UZ 37 1.11454E-09 ... 5.30801E+02 ...
1 250 38 -8.92395E-02 ... 5.33284E+02 ...
1 298 UZ 39 5.22099E-08 ... 5.48106E+02 ...
1 300 EP 40 4.22408E-02 ... 5.49037E+02 ...

Now, the homotopy is applied to the other side of the connecting orbit. The command
make third, restarted at label 31, gives uzer-defined points for a continuation in (h9,T)



BR PT TY LAB PAR(22) PAR(7)

1 11 UZ 42 1.76914E-10 ... 5.06519E+02 ...
1 40 45 1.73281E-03 ... 5.04644E+02 ...
1 80 49 1.68136E-03 ... 5.02148E+02 ...
1 105 Uz 52 -1.82353E-09 ... 5.02620E+02 ...
1 120 54 -4.88450E-03 ... 5.04955E+02 ...
1 160 58 -1.68828E-02 ... 5.13316E+02 ...
1 200 62 -2.35839E-02 ... 5.22056E+02 ...
1 240 66 -2.54848E-02 ... 5.30796E+02 ...
1 300 EP 72 -2.64421E-02 ... 5.43906E+02 ...
Finally the command make fourth, restarted at label 42, yields several uzer-defined

points for a continuation in (hgg, T')

BR PT TY LAB PAR(24) PAR(7)

1 30 75 -2.03664E-02 ... 5.04151E+02 ...
1 40 UZ 76 1.70343E-10 ... 5.02620E+02 ...
1 60 78  1.78718E-01 ... 4.97136E+02 ...
1 90 81  2.74721E-01 ... 4.88907E+02 ...
1 115 UZ 84 -2.30068E-11 ... 4.82231E+02 ...
1 120 85 -2.55786E-02 ... 4.80312E+02 ...
1 128 UZ 86 -6.18816E-13 ... 4.78335E+02 ...
1 150 89 3.11351E-01 ... 4.66268E+02 ...
1 166 UZ 91  7.33349E-12 ... 4.57942E+02 ...
1 178 UZ 93 -3.62980E-13 ... 4.54049E+02 ...
1 180 94  1.85870E-02 ... 4.53051E+02 ...
1 210 97  1.86843E-01 ... 4.38077E+02 ...
1 219 UZ 98 -1.04706E-11 ... 4.33647E+02 ...
1 231 UZ 101 -4.65764E-13 ... 4.29761E+02 ...
1 240 102 1.39114E-01 ... 4.25269E+02 ...
1 270 105  3.43323E-02 ... 4.10297E+02 ...
1 272 UZ 106 -5.37645E-12 ... 4.09345E+02 ...
1 284 UZ 108 -6.39627E-13 ... 4.05470E+02 ...
1 300 EP 110 2.64699E-01 ... 3.97485E+02 ...

As can be seen, the connection time of the connecting orbit decreases, since the number
of excursions near the cycle decreases. One of the connecting orbits where hoy = 0 is used
in the continuation in «, and depicted in Figure 2, left panel. Observe that there are two
types of orbits, examples of which are both depicted in Figure 2, right panel. One type,
where the homotopy parameter is zero after first being positive, seems to be “in phase”.
The other type, where the homotopy parameter is zero after first being negative, is “out
of phase”. This latter type displays a “bump” at the starting section of the connection.
Dispite this feature, this type produces the correct two-dimensional continuation curve of
the limit point of the connecting orbit, as is demonstrated in the next subsection.
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Figure 2: Left panel: Three-dimensional phase space plot of a cycle-to-cycle connecting
orbit obtained with the homotopy method. Right panel: profiles (23 coordinate) of two

connecting orbits obtained with

the homotopy method, one “phased” (solid), and one “out

of phase” (dashed). Observe the “bump” at the starting part of the latter orbit.

3.3 Continuation

The last directory 05Cont demonstrates the detection and continuation of two branches of
the fold bifurcation of the homoclinic cycle-to-cycle connection. There is a continuation
of the connecting orbit in («,7") up to a limit point, where « is one of the bifurcation
parameters d; and dy. Compared to the fortran-file in the directory 03Homotopy we now

have the slightly modified BVP

it —TEf(2*,a) =0, (ba)

5(0) —2%(1) =0, (5b)

W+ TN a)wt + A Twt =0, (5e)
W™+ T fH e 0w + XN w =0, (5d)
w(1) — sTw*(0) =0, (5e)
(w*(0),w*(0)) =1 =0, (5¢)
u—=Tf(u,a) =0, (5g)

(f(7(0), ), u(1) = 27(0)) =0, (5h)
{(f(z7(0), @), u(0) —27(0)) = 0, (51)
(w™(0),u(1) —27(0)) =0, (5))
(w=(0),u(0) —2=(0)) =0, (5k)

[u(0) =2~ (0)||* —* =0, (51)

with one free parameter less.

The parameter ¢ used in the calculation of the starting

point of the approximate connection is fixed in the below continuations. We can now do
a continuation in oy and subsequently in («y, as) for fixed T" after the detection of a limit
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point, using the standard fold-detection facilities of AUTO.
In the first run make first we improve our approximate connecting orbit, obtained from
label 108 of the fourth run in the homotopy directory, by increasing the connection period

T

BR PT TY LAB PAR(7)
1 30 4  4.08132E+02 ...
1 60 7  4.17069E+02 ...
1 90 10  4.25010E+02 ...
1 120 13 4.30414E+02 ...
1 150 16  4.36979E+02 ...
1 180 19  4.51841E+02 ...
1 210 22  4.55936E+02 ...
1 240 25  4.6874TE+02 ...
1 270 28  4.78542E+02 ...
1 300 EP 31 4.83855E+02 ...

Now we start the continuation in ds
limit points are found

BR PT TY LAB PAR(1) PAR(3)
1 165 UZ 32 2.78500E-01 ... 2.20782E+01 ...
1 185 LP 33 2.80908E-01 ... 2.19267E+01 ...
1 241 UZ 34 2.78500E-01 ... 2.20782E+01 ...
1 262 LP 36 2.77691E-01 ... 2.21300E+01 ...
1 273 UZ 37 2.78500E-01 ... 2.20782E+01 ...
1 283 LP 38 2.80913E-01 ... 2.19265E+01 ...
1 294 UZ 39 2.78500E-01 ... 2.20782E+01 ...
1 512 LP 40 2.30598E-01 ... 2.65515E+01 ...
1 1000 EP 49 2.70309E-01 ... 2.26269E+01 ...

with fi

xed period make second from label 20 and

Restarting at the limit points in will yield two homoclinic cycle-to-cycle bifurcation
curves in (dy, ds). First, however, the 2D continuation must be prepared from label 40 by
make third

BR PT TY
2 5 EP

LAB
44

PAR(1)
2.30598E-01 ...

PAR(2)
1.25000E-02 ...

We can now start with the continuation in 2D. With make fourth the primary homo-
clinic branch is detected

BR PT TY LAB PAR(1) PAR(2)
2 100 51 2.51318E-01 ... 1.07436E-02 ...
2 200 52  2.59487E-01 ... 1.03773E-02 ...
2 300 53  2.68031E-01 ... 1.02636E-02 ...
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Figure 3: Two-parameter curves of the primary (left) and secondary (right) homoclinic
cycle-to-cycle connections of the food chain model.
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With make fifth we restart at label 33 for the preparation of the 2D continuation of
the secondary branch
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With make sixth we obtain part of the secondary branch
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The remainders of the two branches are found by make
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.06520E-02 ...
.05396E-02 ...

seventh

0.32
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Figure 4: Profile plots of the four connecting homoclinic orbits that exist at d; =
0.2785,dy = 0.0125.

and make eighth
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The two-dimensional continuation curve of the primary homoclinic cycle-to-cycle con-
nection is depicted in Figure 3, left panel. The two-dimensional continuation curve of the
secondary branch is depicted in the right panel of the same Figure. The two branches partly
overlap each other. That they are indeed two different branches follows from the profiles of
the four different connecting orbits that exist at the same value of d; = 0.2785, dy = 0.0125,
see Figure 4, right panel, while there are two distinct connecting orbits at the same limit
point (dy = 0.2809078, dy = 0.0125, left panel).
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