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Abstract

Accompanying manuscript to the demonstration of the detection and continu-
ation of a heteroclinic point-to-cycle connection in the 3D food chain model by
Rosenzweig—-MacArthur with the bifurcation software package AUTO, by use of
the homotopy method described in the paper. The files are downloadable from
http://www.bio.vu.nl/thb/research/project/globif.



1 Disclaimer

The following results have been obtained under Sun Solaris 8, using a FORTRAN compiler
f77 for AUTO97, and using a FORTRAN compiler f95 for AUTOO7TP. The results might
differ slighthy using a different compiler or a different version of AUTO.

2 Food chain model

A standard three-level food chain model from the field of theoretical biology is the scaled
Rosenzweig-MacArthur system (1963)

T = l’(l—l’)—fl(l‘,y),
y = fl(x,y)—dly—fg(x,y) ) (1)
z = fz(.T,y)—dQZ,

with Holling Type-II functional responses
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The model has already been analyzed extensively by many authors, see for instance
Kuznetsov and Rinaldi (1996). The default parameter values are

aq :5,(12:0.1,1)1:3,()2:2,

with d; and dy as bifurcation parameters. Boer et al. (2001) showed that at least two
structurally stable heteroclinic point-to-cycle connections can be found in this system,
that exist in a region of two-parameter space. This region is bounded at one side by a
tangent bifurcation where the two heteroclinic connections merge. At the other side it is
bounded by a tangent bifurcation of the limit cycle involved in the heteroclinic connection.
Figure 1 displays a two-parameter bifurcation diagram of the food chain model in which
these two tangent bifurcations are depicted.

In this AUTO demo we show that we can approximate a heteroclinic point-to-cycle
connection by using the homotopy method described in the paper.

2.1 Local bifurcation analysis

The directory 01CYycle contains the material to obtain the relevant cycle for the point-to-
cycle connection. The starting point and starting parameter values are

dy = 0.5,dy = 0.0125, 21 = 0.741582, x5 = 0.166667, x5 = 8.664399.

Note we use the data of the point with period T' = 24.28225.
The command make first gives a uzer-defined equilibrium at d; = 0.25 for a backward
one-dimensional continuation in d;
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Figure 1: Two-parameter bifurcation diagram of the food chain model that indicates the
region where there exist point-to-cycle connections. The region is bounded on one side by
the tangent for the cycle (7,) and on the other side by the curve Tj.

BR PT TY LAB PAR(1)

1 1 EP 1 5.00000E-01 ...
1 9 Uz 2  2.50000E-01 ...
1 10 EP 3 1.00420E-01 ...

This point, £ = (0.74158162,0.166667, 11.997732), will be required in the continuation of
the connecting orbit. A forward one-dimensional continuation in d; with make second gives
a Hopf bifurcation

BR PT TY LAB PAR(1)

1 EP 1 5.000000E-01 ...
5 HB 2 b5.122697E-01 ...
10 EP 3 8.413455E-01 ...

=

from which we restart make third

BR PT TY LAB PAR(1) PERIOD

2 108 PD 4 4.289115E-01 ... 6.588692E+01
2 331 UZ 5 2.500004E-01 ... 4.895489E+01
2 363 PD 6 2.166817E-01 ... 4.047737E+01
2 388 LP 7 2.080452E-01 ... 3.437447E+01
2 513 UZ 8 2.500000E-01 ... 2.428225E+01
2 1000 EP 9 4.310418E-01 ... 1.659429E+01

The data of the second uzer-defined point is exported.

2.2 Adjoint eigenfunction

In the directory 02AdjEigFunc the logarithmic adjoint eigenfunction is calculated. For this,
first the file compute® must be created by typing make compute. Then, after the command
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Figure 2: Approximation of a heteroclinic point-to-cycle connection in the Rosenzweig—
MacArthur model, after time-integration in MATLAB.

@compute C6 the uzer is asked to enter a Floquet multiplier, for instance 1.1. With this
command the start-up file is expanded with a starting Floquet eigenvalue and zeroes for
the eigenfunction.

The output is generated by typing make first, that results in two branching points

BR PT TY LAB PAR(11) PAR(12) PAR(13)
1 121 BP 2 2.428225E+01 ... -5.143422E-06 0.000000E+00
1 165 BP 3 2.428225E+01 ... -4.399591E-01 0.000000E+00
1 200 EP 4 2.428225E+01 ... -7.899592E-01 0.000000E+00

where PAR(12) is the log multiplier. The first BP obviously is zero, so we restart at the
second BP label 3 with make second, which results in

BR PT TY LAB PAR(11) PAR(12) PAR(13)
2 452 UZ 5 2.428225E+01 ... -4.399611E-01 1.000000E+00
2 500 EP 6 2.428225E+01 ... -4.399611E-01 1.212898E+00

The uzer-point given PAR(13) = 1, which gives the eigenfunction for the attracting mul-
tiplier. The file out.dat is created from the uzer-point data in the g-file.

2.3 Calculating the connection

To obtain a sufficient initial approximate connecting orbit we first need a starting point.
The starting point is calculated by splitting the adjoint stable vector (evaluated at d; =
0.25,dy = 0.0125)

v = (9.844010 - 107%,0.168771, 4.953227 - 10~%)"

3
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Figure 3: A heteroclinic point-to-cycle connection in the Rosenzweig-MacArthur model,
obtained with the homotopy method.

into v and v¥, as described in the paper.After normalization, and multiplying by a small
e, say 0.001, the starting point is

x1 = 0.7424451445, v = 0.1661629904, x5 = 11.99773243.

A base point is determined using CONTENT, and using integration in MATLAB with
the cycle period T = 155.905 results in the file s.rm&. This file is included in the directory.
The connection now looks like in Figure 2.

2.4 First homotopy step

The directory 03HomotopyH1 contains the first homotopy step, as explained in the paper.
In the first homotopy step a BVP combination of Eqn. (3,4a,5) is solved (see Appendix).
With make first it is attempted to find a point where the first homotopy parameter equals
zero by increasing the period

BR PT TY LAB PAR(16) PAR(13)
1 10 2 2.059015E-02 ... 1.564619E+02 ...
1 20 3 5.486775E-02 ... 1.624831E+02 ...
1 25 UZ 4 9.999968E-03 ... 1.674593E+02 ...
1 30 5 7.888757E-03 ... 1.724544E+02 ...
1 31 UZ 6 1.000000E-02 ... 1.733970E+02 ...
1 40 7 4.301262E-02 ... 1.823879E+02 ...
1 50 EP 8 1.281478E-02 ... 1.923758E+02 ...



but such a point is not found yet. Instead, the data at label 5 is used as a starting point
for the next homotopy step.

2.5 Second homotopy step

A different BVP, a combination of Eqn. (3,4,6), is used in the second homotopy step to
obtain h; = 0 (see the Appendix and the paper) in the directory 04/HomotopyH2. A
continuation is done in (cl, ¢2, h1) with make first

BR PT TY LAB PAR(16) PAR(14) PAR(15)

1 10 2  T7.02548E-03 ... 9.62015E-01 2.72998E-01 ...
1 17 UZ 3 -8.67130E-06 ... 7.54119E-01 6.56738E-01 ...
1 20 4 -2.74817E-02 ... 3.71497E-01 9.28434E-01 ...
1 30 EP 5 -1.41536E-02 ... -8.62066E-01 -5.06796E-01 ...

with a solution at label 3. This data is exported.

2.6 Third homotopy step

In the directory 05HomotopyHS3 a continuation is done in (cl, ¢2, h2) with make first

BR PT TY LAB PAR(16) PAR(14) PAR(15)
1 10 2 1.41735E-01 ... 7.40483E-01 6.72075E-01 ...
1 20 3 6.92385E-02 ... 6.94232E-01 7.19751E-01 ...
1 30 4  3.34368E-03 ... 6.26538E-01 7.79391E-01 ...
1 31 Uz 5 -1.28187E-07 ... 6.21060E-01 7.83763E-01 ...
1 40 EP 6 -2.56575E-02 ... 5.5b6436E-01 8.31559E-01 ...

where a uzer-defined point is found where hy = 0.
Continuation in one or more system parameters starting from a file extracted from this
uzer-point is subject to the detection of spurious limit points. We therefore replace the BC

(v,u(())—§> =0,
(n,u(0) =& —Kk=0,

with a new BC (see paper and next subsection) which requires a fourth homotopy step.

2.7 Fourth homotopy step
A final homotopy step is required to find x = 0 for the newly introduced BC
(U/2(0) - 52) — R,

that describes an intersection plane through the equilibrium ¢ for x = 0. In the directory
06HomotopyH/ the command make first finds such a point where the distance of the
connection to the xs-coordinate of the equilibrium is zero



BR PT TY LAB PAR(32) PAR(11)
1 5 2 -2.777T7T1E-04 ... 2.42822E+01 ...
1 10 3 -2.45286E-04 ... 2.42822E+01 ...
1 15 4 -2.02452E-04 ... 2.42822E+01 ...
1 20 5 -1.52859E-04 ... 2.42822E+01 ...
1 25 6 -1.19046E-04 ... 2.42822E+01 ...
1 30 7 -8.71254E-05 ... 2.42822E+01 ...
1 35 8 -4.76595E-05 ... 2.42822E+01 ...
1 40 9 -1.29396E-05 ... 2.42822E+01 ...
1 43 UZ 10 1.43015E-13 ... 2.42822E+01 ...
1 45 11 1.03321E-05 ... 2.42822E+01 ...
1 50 EP 12  2.64997E-05 ... 2.42822E+01 ...

gives a uzer-defined point for kK = 0. We now have a good approximation of the point-to-
cycle connecting orbit. This connection is depicted in Figure 3.

2.8 Continuation

The continuation of the point-to-cycle connection has only been successfully tested under
AUTOO7P. It requires a new BVP, described in the paper. The demo in the directory
07Cont shows the following results.

First, the point-to-cycle connection time is increased with make first

BR PT TY LAB PAR(1) PAR(11)
1 50 2  1.92056E+02 ... 2.42822E+01 ...
1 100 3  2.13635E+02 ... 2.42822E+01 ...
1 150 4  2.32940E+02 ... 2.42822E+01 ...
1 200 5  2.46175E+02 ... 2.42822E+01 ...
1 250 6 2.65649E+02 ... 2.42822E+01 ...
1 300 7  2.83120E+02 ... 2.42822E+01 ...
1 350 8 2.95857E+02 ... 2.42822E+01 ...
1 360 UZ 9  3.00000E+02 ... 2.42822E+01 ...
1 400 EP 10 3.13677E+02 ... 2.42822E+01 ...

Restarting from label 9, make second is

BR PT TY LAB PAR(6) PAR(11)
1 50 11 1.22622E-02 ... 2.45827E+01 ...
1 100 12 1.21864E-02 ... 2.46715E+01 ...
1 150 13 1.21391E-02 ... 2.47250E+01 ...
1 200 14  1.20405E-02 ... 2.48316E+01 ...
1 250 15  1.15019E-02 ... 2.52655E+01 ...
1 300 16  1.12050E-02 ... 2.53651E+01 ...
1 350 17  1.11439E-02 ... 2.53702E+01 ...

a continuation in ds
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gives a limit point. Restarting from the limit point at label 24 the two-dimensional con-

400
450
500
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650
674 LP
700 EP

O © © O~ = = =

.10751E-02 ...
.08643E-02 ...
.03963E-02 ...
.00644E-02 ...
.72560E-03 ...
.51892E-03 ...
.51660E-03 ...
.52107E-03 ...

NDNNDNDNDDNDNDDN

.53691E+01 ...
.b3162E+01 ...
.48860E+01 ...
.42560E+01 ...
.32308E+01 ...
.23003E+01 ...
.22876E+01 ...
.23120E+01 ...

tinuation in (dy, dy) is prepared with make third

BR

NN NDNDN

The backward two-dimensional continuation with make fourth

o
=]

NN NDNDNDNDNDNDDNDNDNDN

terminates around the uzer-defined PAR(22) = 0, where PAR(22) is the log multiplier.

PT TY LAB

1

g WwN

EP

26
27
28
29
30

PT TY LAB
50 31
100 32
150 33
200 34
250 35
300 36
350 37
400 38
444 LP 39
491 LP 54
493 MX 55

NN NDNDNDNDNDNDDNDNDN

2
2
2
2
2

P

.46219E-01 ...
.41461E-01 ...
.37038E-01 ...
.31438E-01 ...
.25278E-01 ...
.21512E-01 ...
.17917E-01 ...
.15645E-01 ...
.14204E-01 ...
.13946E-01 ...
.13946E-01 ...

PAR(5)

.50000E-01 ...
.50000E-01 ...
.50000E-01 ...
.50000E-01 ...
.50000E-01 ...

AR(5)

The forward continuation make fifth

BR

NN NDNDNDDNDN

PT TY LAB
50 31
100 32
150 33
200 34
250 35
300 36
350 37

NN NDNDNDDNDDN

.54580E-01 ...
.60893E-01 ...
.67489E-01 ...
.72004E-01 ...
.7T6245E-01 ...
.83083E-01 ...
.89295E-01 ...

PAR(5)

O 00 0 00 0 00 ©W W O ©W ©

9
9
9
1
1
1
1

9
9
9
9
9

P

.43663E-03 ...
.33920E-03 ...
.25155E-03 ...
.14418E-03 ...
.03028E-03 ...
.96266E-03 ...
.89939E-03 ...
.85831E-03 ...
.83532E-03 ...
.83091E-03 ...
.83091E-03 ...

P

.61683E-03 ...
.76193E-03 ...
.92390E-03 ...
.00423E-02 ...
.01606E-02 ...
.03702E-02 ...
.06912E-02 ...

PAR(6)

.51660E-03 ...
.51660E-03 ...
.51660E-03 ...
.51660E-03 ...
.51660E-03 ...

AR(6)

AR(6)

P

AR(22)

.34269E-02 ...
.78648E-02 ...
.29294E-02 ...
.69658E-02 ...
.07316E-02 ...
.07247E-03 ...
.67655E-03 ...
.48527E-03 ...
.63079E-04 ...
.21572E-05 ...
.48503E-05 ...

PAR(22)

.39433E-02 ...
.26539E-02 ...
.26690E-02 ...
.02137E-02 ...
.7T9540E-02 ...
.22711E-02 ...
.08339E-01 ...



2 400 38 2.95750E-01 ... 1.08812E-02 ... -1.31354E-01 ...
2 450 39 2.98916E-01 ... 1.10780E-02 ... -1.48554E-01 ...
2 500 40 3.01725E-01 ... 1.14168E-02 ... -1.82088E-01 ...
2 509 LP 41 3.01847E-01 ... 1.15004E-02 ... -1.91297E-01 ...
2 550 42 2.96838E-01 ... 1.20090E-02 ... -2.58055E-01 ...
2 600 43 2.79891E-01 ... 1.2562256E-02 ... -3.50221E-01 ...
2 650 44 2.05997E-01 ... 1.35650E-02 ... -5.53043E-01 ...
2 700 45 1.77309E-01 ... 1.39176E-02 ... -3.30981E-01 ...
2 723 MX 46 1.71221E-01 ... 1.40351E-02 ... -3.06717E-05 ...

Observe that the LP is a turning point of the two-dimensional continuation curve, and not
a real bifurcation point. The resulting curve is depicted in Figure 4.
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Figure 4: Two-parameter bifurcation diagram of the food chain model as detected. The
end-points of the connection continuation curve are indicated by the log multiplier equal to
zero, which corresponds to the points where the curve terminates at the tangent bifurcation
for the limit cycle.
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5 Boundary value problem sets

The following BVP sets from the paper are added here for easy reference.
BVP for the equilibrium and related BC’s

f(§&a) = 0,
f&E av— v = 0, (3)
(v,o)—1 = 0.

When dimW* = 2, as in the food chain model, a slight modification of the used
homotopy method is necessary. We here have the explicit boundary conditions

u(0) — € — e(c;vW 4 cv@) =0, (4a)
a4c=1, (4b)

The BVP for the first homotopy step

it =TT f(z%,a) =0, (5a)

27 (0) — 2t (1) =0, (5b)

U[z"] =0, (5¢)

w4+ T (2, a)w + Aw = 0, (5d)

w(1l) — sw(0) =0, (5e)

(w(0),w(0)) —1 =0, (5f)

i~ Tf(u,0) =0, (5¢)

(f(2™(0), @), u(1) — 27(0)) — hy = 0, (5h)
The BVP for the second homotopy step

it =T f(z%, a) =0, (6a)

7 (0) — 2t (1) =0, (6b)

(w(0), u(1) = (0)) — by = 0, (60)

w4+ T (2, a)w + dw =0, (6d)

w(l) — sw(0) =0, (6e)

(w(0),w(0)) —1 =0, (6f)

u—"Tf(u,a) =0, (6g)

(f(27(0), @), u(1) — 27(0)) =0, (6h)



