CONTINUATION OF CONNECTING ORBITS IN 3D-ODES: (I) POINT-TO-CYCLE CONNECTIONS

G.A.K. van VOORN¹

¹Department of Theoretical Biology, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, the Netherlands george.van.voorn@falw.vu.nl

25th April 2008

Abstract

This AUTO demo shows the use of a set of boundary conditions for the localization and continuation of the transcritical bifurcation of a limit cycle in a four-dimensional Marr-Pirt model.

 $Keywords\colon$ boundary value problems, limit cycle bifurcation, projection boundary conditions

Parameter	Value	Parameter	Value
D	- h ⁻¹	X_r	$-mg dm^{-3}$
C_1	0.4	K_1	8. $mg \ dm^{-3}$
C_2	0.6	K_2	9. $mg \ dm^{-3}$
C_3	0.6	K_3	10. $mg \ dm^{-3}$
A_1	$1.25 \ h^{-1}$	M_1	$0.025 \ h^{-1}$
A_2	$0.333 \ h^{-1}$	M_2	$0.01 \ h^{-1}$
A_3	$0.25 \ h^{-1}$	M_3	$0.0075 \ h^{-1}$

Table 1: Parameters and variables of the Marr-Pirt model; h = hour time, mg = milligram biomass, dm = volume.

1 Marr-Pirt Model

The model we analyze here, uzing AUTO07P (see Doedel et al., 1997), is a four-dimensional food chain model known as the Marr-Pirt model. The equations are given as

$$\frac{dX_0}{dt} = (X_r - X_0) - \frac{A_1 X_0 X_1}{K_1 + X_0} , \qquad (1a)$$

$$\frac{dX_1}{dt} = \frac{C_1 A_1 X_0 X_1}{K_1 + X_0} - M_1 X_1 - DX_1 - \frac{A_2 X_1 X_2}{K_2 + X_1} , \qquad (1b)$$

$$\frac{dX_2}{dt} = \frac{C_2 A_2 X_1 X_2}{K_2 + X_1} - M_2 X_2 - DX_2 - \frac{A_3 X_2 X_3}{K_3 + X_2}, \qquad (1c)$$

$$\frac{dX_3}{dt} = \frac{C_3 A_3 X_2 X_3}{K_3 + X_2} - M_3 X_3 - DX_3 , \qquad (1d)$$

where X_i , i = 0, 1, 2, 3, are the variables. The parameters are described in Table 1.

The local bifurcation diagram is described in detail by Boer et al. (1998). We give a short overview here, where we focus on the parameter region $50 \le X_r \le 250, 0.05 \le D \le 0.1$.

All local bifurcations that can be found with AUTO by default are displayed in Figure 1. The invasion criterion for X_3 is given by the transcritical bifurcation TC_e . The Hopf bifurcation H_0 indicated limit cycles of the positive equilibrium where $X_3 = 0$. The Hopf bifurcation H^+ indicates the presence of a stable equilibrium with an unstable limit cycle, which functions as a seperatrix. These bifurcations all originate at the organizing center, point M.

There are several other local bifurcations not associated with the orginizing center M. There is a tangent bifurcation of two unstable equilibria T_e , that terminates at the curve TC_e at point K. The Hopf bifurcation H^- is born from an equilibrium where all four variables are positive, and gives rise to a stable limit cycle. This limit cycle collides with the limit cycle from the Hopf bifurcation H^+ in a tangent bifurcation, T_c .

Figure 1: Local bifurcation diagram of the four-dimensional Marr-Pirt model found using AUTO07P.

Missing here is a bifurcation curve that connects the organizing center M with the tangent T_c . This curve, a transcritical bifurcation for the limit cycle, cannot be found with standard detection facilities in AUTO07P.

2 Transcritical bifurcation of a cycle

We introduce a set of boundary conditions for a limit cycle

$$\begin{cases} \dot{x}^{\pm} - f(x^{\pm}, \alpha) = 0, \\ x^{\pm}(0) - x^{\pm}(T^{\pm}) = 0, \end{cases}$$
(2a)

which has no unique solution yet. For that, we also introduce an integral condition. This system is capable of continuation of a limit cycle, *and* detection of the transcritical bifurcation of a limit cycle.

In the demo subdirectory 01Cycle an appropriate starting file is generated, using default AUTO facilities. The command *make* gives the output

ΡT	ΤY	LAB	PAR(2)
1	ΕP	1	1.00000E+02
475	HB	2	1.45704E+02
500	ΕP	3	1.48149E+02
	PT 1 475 500	PT TY 1 EP 475 HB 500 EP	PT TY LAB 1 EP 1 475 HB 2 500 EP 3

which gives a Hopf bifurcation, and

BR	PT	ΤY	LAB	PAR(2)	PERIOD
2	349	UZ	4	1.75000E+02	 1.11079E+02
2	500	EP	5	1.89207E+02	 1.09414E+02

where the cycle is continued up to a uzerpoint.

The output is transported to the next subdirectory 02ContTCc, as the file s. C5, where the BVP is used for detection and continuation of the transcritical bifurcation of the limit cycle. The command make gives the output

BR	PT	ТΥ	LAB	PAR(2)	PAR(11)	
1	50		2	2.13368E+02	 1.01030E+02	
1	100		3	2.29916E+02	 8.02091E+01	
1	150		4	2.29729E+02	 7.79030E+01	
1	200		5	2.43249E+02	 8.69430E+01	
1	246	BP	6	2.63503E+02	 9.93303E+01	
1	250	ΕP	7	2.65509E+02	 1.00512E+02	

which detects a BP, where the maximum of $X_3 = 0$. Restarting at label 6 starts up the continuation in two parameter dimensions

BR	PT	ΤY	LAB	PAR(1)		PAR(11)	PAR(2)	
2	1		8	5.50000E-02		9.93303E+01	2.63503E+02	
2	2		9	5.50000E-02		9.93303E+01	2.63503E+02	
2	3		10	5.50000E-02		9.93303E+01	2.63503E+02	
2	4		11	5.50000E-02	• • •	9.93303E+01	2.63503E+02	
2	5	ΕP	12	5.50000E-02	• • •	9.93303E+01	2.63503E+02	
and								
BR	PT	ТΥ	LAB	PAR(1)		PAR(11)	PAR(2)	
2	10	BP	14	5.49294E-02		9.96339E+01	2.64373E+02	
2	20	BP	17	5.44050E-02		1.01917E+02	2.70907E+02	
2	30	BP	20	5.38728E-02		1.04285E+02	2.77673E+02	
2	40	BP	23	5.33514E-02		1.06658E+02	2.84437E+02	
2	50	ΕP	26	5.28895E-02		1.08805E+02	2.90544E+02	

Obviously this last run can be extended. The resulting curve TC_c is depicted in Figure 2.

3 Acknowledgements

The research of the first author (GvV) is supported by the Dutch Organization for Scientific Research (NWO-CLS) grant no. 635,100,013.

References

- Boer, M. P., Kooi, B. W., and Kooijman, S. A. L. M. (1998). Food chain dynamics in the chemostat. *Math. Biosci.*, 150:43–62.
- Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., and Wang, X. (1997). Auto 97: Continuation and bifurcation software for ordinary differential equations. Technical report, Concordia University, Montreal, Canada.

Figure 2: Local bifurcation diagram of the four-dimensional Marr-Pirt model, including the transcritical bifurcation for a limit cycle TC_c , that originates in the organizing center M.