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Abstract

Characteristic for the bow are the slender elastic arms or limbs. The bow is braced
by putting a string shorter than the bow between the tips of the limbs. Additional
deformation energy is stored in the elastic limbs by drawing the bow into the fully
drawn position. Part of this amount of energy is transformed into kinetic energy of
a light arrow.

In the 1930’s the design of the bow became a subject of scientific research. Ex-
periments were performed in which design parameters were changed more or less
systematically. However, the mathematical models were rather simple. Because fast
computers are now available the presented model in this paper can be much more
advanced. The resulting set of partial differential equations with known initial values
and moving boundaries is solved numerically using a finite-difference method.

In this paper the design parameters associated with the developed model are
charted accurately. Bows used in the past and nowadays on shooting meetings such
as the Olympic Games are compared. It turns out that the application of better
materials which can store more deformation energy per unit of mass and that this
material is used to a larger extent, contribute most to the improvement of the bow.
The parameters which fix the mechanical performance of the bow appear to be less
important as is often claimed.

1Computational Mechanics 8: 291-304 (1991)



1 Introduction

In the 1930’s bows and arrows became the object of study by scientists and engineers,
Hickman [3] and Klopsteg [4]. Their work influenced strongly the design and construction
of the bow and arrow. Experiments were performed to determine the influence of different
parameters. They also made mathematical models. As part of modelling simplifying
assumptions had to be made in order to obtain a solution in closed form or to approximate
the solution of the governing equations numerically in an acceptable amount of computing
time. Because of these simplifications only bows with specific features could be described.

In Kooi and Sparenberg [9] we dealt with the statics of the so called working-recurve
bows. In this paper we consider the dynamics of this type of bow. These developed
mathematical models are much more advanced, so that more detailed information was
obtained giving a better understanding of the action of rather general types of bow.

In Section 2 of this paper all design parameters are charted accurately and quality
coefficients are identified. The governing set of partial differential equations with known
initial values and moving boundaries are derived in Section 3. The equations of equilibrium
are derived through the use of variational principles. The resulting equations constitute
a free-boundary value problem for a set of ordinary differential equations. In Kooi and
Sparenberg [9] a shooting method was derived to solve this set of equations numerically.
The equations of motions form a moving-boundary value problem for a set of partial
differential equations. The subject of Section 4 is a description of the developed numerical
method. A finite-difference technique with complete discretization (both the space and
time variables are written in difference form) is applied. The resulting moving-boundary
problem is solved using a front-tracking method with a fixed grid.

In Section 5 the performance of different types of bow are compared. Roughly speaking
the design parameters can be divided into two groups. One determines the mechanical per-
formance of the bow. Within certain limits, these parameters appear to be less important
as is often claimed. The other group of parameters concerns the strength of the materials
and the way these materials are used in the construction of the bow. It turns out that the
application of better materials and that more of this material is used to a larger extent,
contribute most to the improvement of the bow.

2 Formulation of the problem

In essence the bow proper consists of two elastic limbs, often separated by a rigid middle
part called grip. The bow is braced by fastening a string between both ends of the limbs.
The distance between the grip on the belly side and the string in that situation is called
the brace height or fistmele. After an arrow is set on the string the archer pulls the bow
from braced situation in full draw. Then, after aiming, the arrow is loosed or released. The
force in the string accelerates the arrow and transfers part of the stored potential energy
in the elastic parts of the bow, as kinetic energy into the arrow. Meanwhile the bow is
held in its place and the archer feels a recoil force in the bow hand. The velocity of the
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Figure 1: Three situations of the working-recurve bow: (a) unbraced, (b) braced, (c) partly

drawn.

arrow when leaving the string fixed by the moment the acceleration of the arrow is zero,
is called the muzzle velocity or initial velocity.

We are concerned with bows of which the limbs move in a flat plane, and which are
symmetric with respect to the line of aim. The arrow will pass through the midpoint of
the bow as in the case of a ”center-shot bow”. The bow is placed in a Cartesian coordinate
system (x, y), the line of symmetry coinciding with the x-axis and the origin O coinciding
with the midpoint of the bow. We assume the limbs to be inextensible and that the Euler-
Bernoulli beam theory holds. The total length of the bow is denoted by 2L. In our theory
it will be represented by an elastic line of zero thickness, along which we have a length
coordinate s measured from O, hence for the upperhalf we have 0 ≤ s ≤ L. This elastic line
is endowed with bending stiffness W (s) and mass per unit of length V (s). In Figure 1(a)
the unbraced situation (without string) is shown. With a working-recurve bow the limbs
are curved in the ’opposite’ direction in the unstrung situation. The geometry of the bow
is described by the local angle θ0(s) between the elastic line and the y-axis, the subscript
0 indicates the unstrung situation. L0 is the half length and 2mg the mass of the grip.

In Figure 1(b) the working recurve bow is braced by applying a string. Because of the
shape of the unstrung bow the string lies along the bow near the tips with coordinates
(xt, yt). There may be concentrated masses mt with moment of inertia J t at each of the
tips, representing for instance horns used to fasten the string. The length of the unloaded
string is denoted by 2l0, its mass by 2ms. We assume that the material of the string obeys
Hooke’s law, the strain stiffness is denoted by U s. Note that whether the length of the
string or the brace height denoted by |OH| fixes the shape if the bow in braced situation.

Of a working-recurve bow the parts near the tips are elastic and bend during the final
part of the draw. When drawing such a bow the length of contact between string and limb
decreases gradually until the point where the string leaves the limb, denoted by s = sw,
coincides with the tip s = L and remains there during the final part of the draw. We assume
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that there is no friction between bow and string for sw ≤ s ≤ L. Most modern bows are
working-recurve bows. In Figure 1(c) the bow is pulled by the force F (b) into a partly
drawn position where the middle of the string has the x-coordinate b. To each bow belongs
a value b = |OD| for which it is called fully drawn indicated by a subscript 1. The force
F (|OD|) is called the weight of the bow and the distance |OD| is its draw. By releasing
the drawn string at time t = 0 and holding the bow at its place, the arrow, represented by
a point mass 2ma is propelled. During the acceleration at some moment t = tb the string
touches the belly side of the limb of a working-recurve bow again. The arrow leaves the
string when the acceleration of the midpoint of the string becomes negative. This moment
is denoted by tl and the muzzle velocity of the arrow is denoted by cl.

A shorthand notation for a bow and arrow combination is introduced with

B(L, L0,W (s), V (s), θ0(s), ma, mt, J t, me, Je, mg, U s, ms, |OH|

or l0; |OD|, F (|OD|), mb) , (1)

where mb is the mass of one limb excluding the mass of the grip. In an input-output
philosophy all parameters are input variables which determine the mechanical action of
the bow and arrow combination. In this notation B stands for the set of output variables
in which one is interested. We will give examples later on when we introduce quality
qoefficients. Note that the last two mentioned parameters are added to the list artificially.
This implies that both functions W (s) and V (s) are constrained. We consider the values
of these functions for s = L0 to be already fixed by both constraints. The first constraint
concerning the weight, is an implicit relationship between a number of parameters of which
W (s) is one of them, and the weight F (|OD|) of the bow. The second constraint is just

mb =

∫ L

L0

V (s)ds . (2)

and for a given mass of the bow the value V (L0) is derived with easy. This shows that both
functions are considered to be the product of a function W (s)/W (L0) and V (s)/V (L0) of
the length coordinate s into IR and a parameter W (L0) and V (L0) with dimensions. These
resulting functions together with the function θ0(s) make the bow a distributed parameter
structure.

The quantities |OD|, F (|OD|), mb are taken as elements of a dimensional base in a
dimensional analysis. The use of the dimensional analysis technique gives, when K equals
the force in the string

L = L |OD| , K = K F (|OD|) , ma = ma mb , (3)

and for the functions of the length coordinate s

W (s) = W (s)|OD|2 · F (|OD|) , V (s) = V (s)
mb

|OD|
. (4)
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Observe that these functions of s are also transformed to functions of the dimensionless
length coordinate s. Also the angle θ(s) between the elastic line and the y-axis will be
transformed to θ(s), where we should have used a new symbol. With respect to dimensional
analysis this yields no added difficulties. Finally we have

|OD| = |OD| cm , F (|OD|) = F (|OD|) kgf , mb = mb kg . (5)

So, quantities with dimension are labelled by means of a bar − and quantities without
the underscore are the associated dimensionless quantities. The unit of time is already
fixed by the choice of the other 3 units: cm, kgf and kg. For the time tl, the moment the
arrow leaves the string, we have for instance

tl = tl(L, · · · , |OH| or l0) ·

√

mb · |OD|

F (|OD|)
= tl ·

√

mb · |OD|

F (|OD|)
·

√

kg · cm

kgf
. (6)

This means that the unit of time equals 0.03193 sec.
We introduce a number of quality coefficients which can be used to judge the perfor-

mance of a bow and arrow combination. The static quality coefficient q is given by

q =
A

|OD| · F (|OD|)
, (7)

so equal to the dimensionless energy stored in the elastic parts of the bow, the working
parts of the limb and the string, by deforming the bow from the braced position into the
fully drawn position. This quantity is given by

A =

∫ b=|OD|

b=|OH|

F (b)db . (8)

One of the dynamic quality coefficients is the efficiency η defined by

η =
ma · c

2
l

A
, (9)

where cl is the muzzle velocity. The efficiency is by definition dimensionless. The second
dynamic quality coefficient is the dimensionless version of the muzzle velocity denoted by
ν,

ν =

√

q · η

ma

. (10)

So, it is just a combination of the other two coefficients and the mass of the arrow. Observe
that by definition these quality coefficients are dimensionless. This means that the sensitivi-
ties of these coefficients with respect to the elements of the dimensional base |OD|, F (|OD|)
and mb can be obtained directly, without solving the governing equations of motion which
constitute the mathematical model again. The advantage of this technique is that with
the comparison of different bows, taking the quantities |OD|, F (|OD|) and mb equal to 1,
yields interpretable results for the quality coefficients.
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3 Mathematical modelling

3.1 Equations of equilibrium

In Kooi and Sparenberg [9] we wrote down the governing equations in the various static
situations. The unknown variables were θ(s), x(s) and y(s) as shown in Figure 1. In
this section we derive the equations of equilibrium again. However, we now start from
the unknown functions x(s), y(s), the bending moment M(s) and the normal force T (s).
Further we shall apply variational principles to obtain the balance equations.

We assume that the part of the limb in contact with the string sw ≤ s ≤ L, possesses
the undeformed shape. This is because the string lies along the neutral line of the limb,
so that no bending moment or shear force can be originated from the force in the string.
Then the total potential energy in one limb and half string, equals

1

2
A(b) =

∫ sw

L0

1

2
W (s) ·

(

(x′y′′ − y′x′′) + θ′
0

)2
ds+

1

2
Us ·

(l − l0)
2

l0
, (11)

where x′ denotes dx
ds

, etc.

L− sw +
(

b− x(sw)
2 + y(sw)

2
)1/2

= l . (12)

Further we have the constraint

x′2 + y′2 = 1 , L0 ≤ s ≤ L , (13)

and for s = L0 the geometric boundary conditions

x = x0 , y = y0 , y′
0(L0) · x

′(L0) = x′
0(L0) · y

′(L0) . (14)

We define the following two functions

G(s) =
1

2
W (s) · (x′y′′ − y′x′′ + θ′

0)
2 − λ(s)

(

(x′2 + y′2 − 1)
)

, (15)

and

H(sw) =
1

2
Us ·

L− sw +
(

b− x(sw)
2 + y(sw)

2
)1/2

− l0

l0
, (16)

where λ(s) is an unknown Lagrangian multiplier to meet the constraint (13). Further we
define

Λ =

∫ sw

L0

G(s, x′, y′, x′′, y′′)ds+H(s, x, y)|s=sw . (17)

The principle of the stationary potential energy states that the state of equilibrium is
characterized by

δΛ = 0 , (18)

5



for all admittable configurations, thus obeying (14). By calculus of variation, see for
instance Gelfand and Fomin [2], we obtain the equations of balance

(Tx′)′ + (M ′y′)′ = 0 , L0 ≤ s ≤ sw , (19)

and

(Ty′)′ − (M ′x′)′ = 0 , L0 ≤ s ≤ sw . (20)

In these equations M(s) is the bending moment according to Euler-Bernoulli,

M(s) = W (s) · (x′y′′ − y′x′′ + θ′
0) , L0 ≤ s ≤ sw , (21)

and T (s) is the normal force, connected to the Lagrangian multiplier λ(s) by

λ(sw) = −
1

2
T (s) +

M(s)

W (s)
·
(

M(s)−W (s)θ′
0(s)

)

, L0 ≤ s ≤ sw , (22)

Further we have 5 free-boundary conditions at s = sw,

Gx′ −
d

ds
Gx′′ +Hx = 0 , (23)

Gx′′ = 0 , (24)

Gy′ −
d

ds
Gy′′ +Hy = 0 , (25)

Gy′′ = 0 , (26)

Hs +G− (Gx′ −
d

ds
Gx′′)x

′ − (Gy′ −
d

ds
Gy′′)y

′ −Gx′′x
′′ −Gy′′y

′′ = 0 , (27)

where Gx′ denotes
∂G
∂x′

, etc. The conditions (24) and (26) read

−y′M = x′M = 0 , s = sw , (28)

and because of (13), this implies

M(sw) = 0 , (29)

Using (29) and (21) the conditions (23) and (25) read

−Tx′ − y′M ′ +K sinα = 0 , s = sw , (30)
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Ty′ − x′M ′ +K cosα = 0 , s = sw , (31)

respectively, where K is the force in the string

K = Us ·
L− sw +

(

b− x(sw)
2 + y(sw)

2
)1/2

− l0

l0
, (32)

and α the angle between the string and the y-axis, reckoned positive in the direction
indicated in Figure 1(c), thus

sinα =
b− x(sw)

(

b− x(sw))2 + (y(sw))2
)1/2

, (33)

and

cosα =
y(sw)

(

b− x(sw))2 + (y(sw))2
)1/2

. (34)

Equation (27) becomes after some formula manipulation

K + T (sw) = 0 . (35)

Substitution of (35) into (30) and (31) gives

−(x′ + sinα)T − y′M ′ = 0 , s = sw , (36)

(y′ − cosα)T − x′M ′ = 0 , s = sw . (37)

Using (35) again and the fact that T 6= 0, we obtain

M ′(sw) = 0 , (38)

x′(sw)y(sw) = −
(

b− x(sw))y
′(sw

)

. (39)

The resulting boundary conditions at s = sw are (29), (35), (38) and (39) together with
condition (32). In the next section we use these relations to derive the equations of motion.

For each b the drawing force denoted by F (b) is given by

F (b) = 2K(b) sinα(b) . (40)

In Kooi and Sparenberg [9] we solved for |OH| ≤ b ≤ |OD| the free-boundary value problem
using a shooting method. The solution for each value of b is expressed in the functions
θ(s), x(s), y(s) and K or F , but the calculation of M(s) and T (s) is straightforward, just
as to the shear force Q(s), given by

Q(s) = −M ′(s) , L0 ≤ s ≤ L . (41)

The results for b = |OD| are used as an initial guess in the procedure for the solution of
the static finite-difference scheme given in Section 4.
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3.2 Equations of motion

In this section the governing equations of motion for the symmetric working-recurve bow
are given. A simple lumped parameter model for the string is used. The mass of the string
is accounted for by placing one third of the mass of the string 2ms at the end of string
where it fits in the nock of the limb and one sixth (because of symmetry) at the other
end, where the arrow contacts the string at nocking point. Further, it is assumed that the
elastic string slides along the inextensible limb without friction.

Generally the string clears the limb on the fully drawn bow. Then, for t = 0 when the
arrow is released, we have sw = L. For 0 ≤ t ≤ tb the equations of motion are those given
in Kooi [5]. The equations read

V ẍ = (Tx′)′ + (M ′y′)′ , L0 ≤ s ≤ L , t ≥ 0 , (42)

and

V ÿ = (Ty′)′ − (M ′y′)′ , L0 ≤ s ≤ L , t ≥ 0 , (43)

where x′ denotes ∂x
∂s
, and ẍ denotes ∂2x

∂t2
, etc. For the whole limb we have

x′2 + y′2 = 1 , L0 ≤ s ≤ L , t ≥ 0 , (44)

and

M(s) = W (s) · (x′y′′ − y′x′′ + θ′
0) , L0 ≤ s ≤ L , t ≥ 0 . (45)

The geometric boundary conditions for s = L0 and t ≥ 0 read

x(L0, t) = x0(L0) , y(L0, t) = y0(L0) , y′
0(L0) · x

′(L0, t) = x′
0(L0) · y

′(L0, t) , (46)

and for s = L and t ≥ 0, with Jt = 0

M(L, t) = 0 . (47)

For s = L and t ≤ tb the equation for the length of the string is

l(t) =
(

(b− x(L, t))2 + (y(L, t))2
)1/2

, (48)

and the equations of motion for the concentrated mass mt at the tip

(
2

3
ms +mt)ẍ(L, t) = −x

′T − y′M ′ +K(t) ·
b(t)− x(L, t)

l(t)
, s = L , (49)

−(
2

3
ms +mt)ÿ(L, t) = y′T − x′M ′ +K(t) ·

y(L, t)

l(t)
, s = L , (50)
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a) b)

Figure 2: Forces and moments acting upon an element (a) of the limb and (b) of the string.

in the x- and y-direction, respectively. The string force K for t ≥ 0 is given by

K(t) = Us ·
l(t)− l0

l0
, (51)

and the equation of motion for the arrow, which completes the governing set of equations,
is for 0 ≤ t ≤ tb

ḃ = c , (ma +
1

3
ms)ċ = −K(t) ·

b(t)− x(L, t)

l(t)
, (52)

where K(t) is given by (51) and l(t) by (48). For tl ≤ t we have ma = 0, because the arrow
left the string.

The time tb is fixed by the condition

x′(L, t)y(L, t) +
(

b− x(L, t)
)

y′(L, t) = 0 . (53)

We now derive the equation of motion for t ≥ tb. In Figure 2(a) the resultant forces
and moments acting upon a differential element of the limb in contact with the string are
shown. The momentum balance in the x- and y-direction yield

V ẍ = −qby
′ + (Tx′)′ + (M ′y′)′ , sw ≤ s ≤ L , t ≥ tb , (54)

and

V ÿ = qbx
′ + (Ty′)′ − (M ′y′)′ , sw ≤ s ≤ L , t ≥ tb , (55)

where qb is the force of the string acting upon the limb, per unit of length along the limb.
The equations of motion for the part in contact with the limb, see Figure 2(b), read

0 = −qpy
′ + (Kx′)′ , 0 ≤ r ≤ rw , t ≥ tb , (56)
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and

0 = qpx
′ + (Ky′)′ , 0 ≤ r ≤ rw , t ≥ tb , (57)

where qp is the force of the limb acting upon the string, per unit of length long the limb
and r is the length coordinate along the elastic string measured form the loop. This
coordinate equals rw at the place where the string leaves the limb. Because of the lumped
parameter model for the string the left-hand side of these equations are zero: the equations
are quasi-static. We have

qp(r) = −qb(s) , r = L− s , sw ≤ s ≤ L , 0 ≤ r ≤ rw , t ≥ tb , (58)

Equations (54), (56) and (55), (57), using (58) can be combined into two equations of
motion for sw ≤ s ≤ L, t ≥ tb,

V ẍ = (Sx′)′ + (M ′y′)′ , L0 ≤ s ≤ L , t ≥ tb , (59)

and

V ÿ = (Sy′)′ − (M ′y′)′ , L0 ≤ s ≤ L , t ≥ tb , (60)

with S(s, t) = K(t) + T (s, t) as a new unknown function of s and t. The equations which
describe the motion of the free part of the limb are just (42) and (43). Also the boundary
conditions (46), (47) and (51) remain valid for t ≥ tb. The three conditions for s = L
become

l(t) = L− sw +
(

b− x(sw, t))
2 + (y(sw, t))

2
)1/2

, (61)

(
2

3
ms +mt)ẍ(L, t) = −x

′S − y′M ′ , s = L , (62)

−(
2

3
ms +mt)ÿ(L, t) = y′S − x′M ′ , s = L . (63)

The conditions at the moving boundary s = sw and tb ≤ t, are (see also equations (29),
(38), (35) and (39),

lim
s↑sw

x = lim
s↓sw

x , lim
s↑sw

x′ = lim
s↓sw

x′ , (64)

lim
s↑sw

y = lim
s↓sw

y , lim
s↑sw

y′ = lim
s↓sw

y′ , (65)

lim
s↑sw

M = lim
s↓sw

M , lim
s↑sw

M ′ = lim
s↓sw

M ′ , (66)
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lim
s↑sw

T = lim
s↓sw

S −K , (67)

x′(sw, t)y(sw, t) +
(

b(t)− x(sw, t)
)

y′(sw, t) = 0 . (68)

The equation of motion for the arrow for tb ≤ t becomes

ḃ = c , (ma +
1

3
ms)ċ = −K(t) ·

b(t)− x(sw, t)

l(t)− (L− sw)
. (69)

In summary, for 0 ≤ t ≤ tb we have just one set of partial differential equations
defined on s ∈ [L0, L] with unknown functions x, y,M, T . For tb ≤ t there are two sets
of partial differential equations, defined on s ∈ [L0, sw] with unknown functions x, y,M, T
and s ∈ [sw, L] with unknown functions x, y,M and S, where sw is the place of the moving
boundary. In the latter case we have, in addition to the boundary conditions at s = L0

and s = L, conditions at s = sw, whereby sw is unknown and has to be determined in the
course of the calculation.

In addition to the displacements x(s, t) and y(s, t) we introduce the velocities in x- and
y-direction denoted by u(s, t) and v(s, t), respectively. Then the initial conditions at t = 0
read

x(s, 0) = x1(s) , y(s, 0) = y1(s) , u(s, 0) = 0 , v(s, 0) = 0 , (70)

and

b(0) = |OD| , c(0) = 0 , (71)

where x1(s) and y1(s) fix the shape of the bow in fully drawn situation and which are
solutions of the static equations given in Section 3.1.

In the next section we discuss a finite-difference method for the solution of this moving-
boundary value problem.

4 Finite-difference equations

In this section the finite-difference equations for the numerical solution of the moving-
boundary value problem stated in the preceding section are given. There are three different
finite-difference approaches:

(a) The method of lines. Only the time variable is discretized. At successive time levels
an ordinary differential equation has to be solved.

(b) The semi-finite-difference method. Only the space variable is discretized. In this way
the partial differential equations are reduce to a set of coupled ordinary differential
equations which can be integrated in time using, for instance, a Runge-Kutta method.
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(c) The complete difference method. Both space and time variables are written in a
differential form.

In this paper we propose a complete finite-difference method of the Crank-Nicolson type
with front-tracking for the moving boundary, see also Crank [1].

We consider a uniform mesh along the limb

s = j∆s , j = 0(1)ns , ns∆s = L− L0 , (72)

and

t = k∆t , k = 0(1)nt , (73)

nt being an integer large enough to cover the time interval of interest. The displacements x
and y, the velocities u and v and the bending moment M are unknown in these gridpoints,
while the normal force in the limb T is defined at each time level only at points just
in between the gridpoints. In order to satisfy the boundary conditions, fictitious external
mesh points are introduced (L0−∆s, k∆t) and (L+∆s, k∆t) with k = 0(1)nt. Furthermore
two difference operators are defined

δfj,k = fj+1/2,k − fj−1/2,k , ∆fj,k = δfj+1/2,k − δfj−1/2,k . (74)

If we use a weighted average of forward and backward approximation, equations (42), (44)
and (45) become

Vj
uj,k+1 − uj,k

∆t
= µ

(δ(Tδx)j,k+1

∆s2
+

δ(δMδy)j,k+1

∆s3

)

+

(1− µ)
(δ(Tδx)j,k

∆s2
+

δ(δMδy)j,k
∆s3

)

, j = 0(1)ns , (75)

xj,k+1 − xj,k

∆t
= µuj,k+1 + (1− µ)uj,k , j = 0(1)ns , (76)

(∆xj−1/2,k+1

∆s

)2
+
(∆yj−1/2,k+1

∆s

)2
= 1 , j = 0(1)ns + 1 , (77)

and

Mj,k+1 = Wj

(∆xj,k+1δ
2yj,k+1 −∆yj,k+1δ

2xj,k+1

2∆s3
+ θ′

0(j∆s)
)

, j = 0(1)ns , (78)

where 0 ≤ m ≤ 1. For m = 0 the method is explicit and for m = 1 implicit. In the
Crank-Nicolson method m equals 1/2. The geometric boundary conditions for s = L0

become

x0,k+1 = x0(L0) , y0,k+1 = y0(L0) , y
′
0(L0)

∆x0,k+1

2∆s
= x′

0(L0)
∆y0,k+1

2∆s
, (79)
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and for s = L equations (47) yields

Mns,k+1 = 0 , (80)

The equations of motion in the x-direction for the concentrated mass mt at the tip (49)
becomes

(
2

3
ms +mt)

uns,k+1 − uns,k

∆t
= µ

(

−
1

2
(Tns+1/2,k+1 + Tns−1/2,k+1)

∆xns,k+1/2

2∆s
−

∆Mns,k+1∆yns,k+1

4∆s2
+K·,k+1

bk+1 − xns,k+1

l·,k+1

)

+

(1− µ)

(

−
1

2
(Tns+1/2,k + Tns−1/2,k)

∆xns,k

2∆s
−

∆Mns,k∆yns,k

4∆s2
+K·,k

bk − xns,k

l
·, k] , (81)

The equations for the y-direction originating from (43) and (50) are obtained in an analo-
gous way. The discretized equation for the length of the string (48) becomes

bk+1 = xns,k+1 +
(

l2·,k+1 − y2
ns,k+1

)1/2
. (82)

The string force K equation (51) is given by

K·,k+1 = Us ·
l·,k+1 − l0

l0
, (83)

and the equation of motion for the arrow (52), which completes the governing set of dif-
ference equations become

bk+1 − bk

∆t
= µck+1 + (1− µ)ck , (84)

(ma +
1

3
ms)

ck+1 − ck

∆t
= µ

(

−K·,k+1

bk+1 − xns,k+1

l·,k+1

)

+ (1− µ)
(

−K·,k
bk − xns,k

l·,k

)

. (85)

At t = 0, b(0) = |OD|, the solution obtained with the shooting method as described in
Kooi and Sparenberg [9] is adapted using this finite-difference scheme (with all inertia
term equal zero). The dynamic version of these finite-difference equations are used until
(k + 1)∆t > tb, where the time tb is fixed by the condition

yns,k+1

∆xns,k+1

2∆s
+ (bk+1 − xns,k+1)

∆yns,k+1

2∆s
= 0 . (86)

In order to determine tb we iterate with ∆t, the mesh-size of the grid in the t-direction,
until (86) is satisfied. Because the system is first order with respect to t this is easy to
implement. Precautions have to be taken that the ∆t becomes not too small.

13



From that time on we have a real moving-boundary value problem with sw ≤ s ≤ L, t ≥
tb. Two additional unknowns the s-coordinate sw and the jump in the normal force at the
moving boundary are introduced. We assume that i∆s ≤ sw ≤ (i + 1)∆s, where i is an
integer such that 0 < i ≤ ns − 1. For tb ≤ t there are two sets of difference equations,
defined on s ∈ [L0, sw], 0 ≤ j ≤ i and s ∈ [sw, L], i + 1 ≤ j ≤ ns, where the variable T
in the equations for 0 ≤ j ≤ i is replaced by S for i + 1 ≤ j ≤ ns. In the equations of
motion (42), (43) and (59), (60) the second order partial derivative of the functions x, y and
M with respect to the spatial coordinate s are the highest ones. With the discretization
process these functions, as well as their first order partial derivatives, are assumed to be
continuous. This means that the conditions (64), (65) and (66) are automatically satisfied
if we use the values in the gridpoints i and i+ 1 at both sides of the boundary as if there
would be no boundary at all. In point i+ 1/2 we have two unknowns for the normal force
Ti+1/2,k+1 and Si+1/2,k+1.

Equations (81) and (82) become for tb ≤ t

(
2

3
ms +mt)

uns,k+1 − uns,k

∆t
=

µ

(

−
1

2
(Sns+1/2,k+1 + Sns−1/2,k+1)

∆xns,k+1/2

2∆s
−

∆Mns,k+1∆yns,k+1

4∆s2

)

+

(1− µ)

(

−
1

2
(Sns+1/2,k + Sns−1/2,k)

∆xns,k

2∆s
−

∆Mns,k∆yns,k

4∆s2

)

, (87)

l·,k = L− swk+1
+
(

(b·,k+1 − xsw ,k+1)
2 + y2

sw,k+1

)1/2
, (88)

The equation of motion of the arrow for tb ≤ t, (84) and (85) become

bk+1 − bk

∆t
= µck+1 + (1− µ)ck , (89)

(ma +
1

3
ms)

ck+1 − ck

∆t
= µ

(

−K·,k+1(bk+1 − xsw ,k+1)/l·,k+1 − (L− swk+1
)
)

+

(1− µ)
(

−K·,k(bk − xsw ,k)/l·,k − (L− swk
)
)

. (90)

The condition (68) at the moving boundary s = sw and for tb ≤ t, is discretized using

xsw ,k+1 =
(swk+1

− i∆s)xi+1,k+1 − (swk+1
− (i+ 1)∆s)xi,k+1

∆s
, (91)

and

x′
sw ,k+1 =

[

(swk+1
− i∆s)xi+2,k+1 − (swk+1

− (i + 1)∆s)xi+1,k+1 −
(

(swk+1
− i∆s)xi,k+1 − (swk+1

− (i+ 1)∆s)xi−1,k+1

)]

/(2∆s2) , (92)

with similar formulae for ysw,k+1 and y′
sw,k+1. These formulae are obtained using the Taylor

expansion centred on the moving boundary.
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The use of this set of equations for the moving boundary ensures that the equations
are, except for the jump in the normal force, continuous with respect to the variable sw

with the transition of one interval into an adjacent one. This holds also with respect to
the transition over point of time tb, when the boundary conditions (49) and (50) at s = L
change ”smoothly” into (62) and (63), respectively, because of (68).

Finally, we pay attention to the implementation of the proposed method in a computer
code. At each time level k+1 the set of nonlinear equations is solved using a modified
Newton method, in which the set of linear equations in each iteration step is solved using
a Gaussian elimination technique with partial pivoting. It is of profound advantage with
respect to computer time and memory storage, that the so called Jacobian matrix possesses
a band-structure. After careful inspecting the equations one notices the possibility to
renumber the unknowns so that the matrix keeps its band-structure also for t ≥ tb. For
t ≤ tb the starting values at time level k+1 for the Newtonian method are obtained using
an extrapolation of the solution of the preceding time level k. For tb ≤ t an initial guess
for i is obtained after this extrapolation using the discretizations of equation (68). If after
the iteration swk+1

is not in the interval [i∆s, (i + 1)∆s] then the iteration is repeated with
the corrected i. This in order to minimize the discretization error.

In the next sections the results obtained with the proposed finite-difference scheme are
presented. In order to get a stable solution the parameter m was set equal to 1 for t ≥ tb,
so for the working recurve bow the fully implicit technique was used.

5 Results and conclusions

The classification of the bow we use, is based on the geometrical shape and the elastic
properties of the limbs. The bows of which the upper half is depicted in Figure 3 are called
non-recurve bows. These bows have contact with the string only at their tips. In the case
of the static-recurve bow, see Figure 4, the outermost parts of the recurved limbs (the ears)
are stiff.

In Kooi and Sparenberg [9] we dealt with the statics of the three types of bow. In
Kooi [5] we considered the dynamics of the non-recurve bow and in Kooi [6] the dynamics
of the static-recurve bow. In this paper we fill this gap of the research into the mechanics
of bows and consider the dynamics of the working-recurve bow.

In our mathematical model the action of a bow and arrow combination is fixed by one
point in a high dimensional parameter space. Representations of different types of bow
used in the past and in our time form clusters in this parameter space. In this section
we consider different types of bow: two non-recurve bows, the flat straight-end bow and
the Angular bow, two Asian types of static-recurve bow and two working-recurve bows,
one with an extreme recurve and a modern working-recurve bow. The precise definition of
these bows is given in Kooi [8].

We start with a straight-end bow described by Klopsteg in Hickman [3]. This bow is
referred to as the KL-bow. The shape of the KL-bow for various draw-lengths is shown
in Figure 3(a). The AN-bow represents the Angular bow found in Egypt and Assyria.
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a) b)

Figure 3: Static deformation shapes (a) of the KL-bow and (b) of the AN-bow.

The shape of the unstrung bow, shown in Figure 3(b), implies that in the braced situation
the limb and the string form the characteristic triangular shape. We consider two static-
recurve bows, one from China, India and Persia, to be called the PE-bow, and one from
Turkey, to be called the TU bow. The shapes of these bows for some draw-lengths are
shown in Figure 4. One of a working-recurve bows we consider possesses an excessive
recurve to be called the ER-bow. It resembles a bow described and shot by Hickman, see
also Hickman [3].

All the quality coefficients for these types of bow are shown in Table 1. The results
indicate that the muzzle velocity is about the same for all types. The efficiency of strongly
recurved bows is rather bad. So, within certain limits, these dimensionless parameters
appear to be less important than is often claimed.

In Table 1 the values of the quality coefficients for a modern working-recurve bow are
also given. Also these coefficients differ not much from the other values. In Kooi [7] it is
shown that the materials used for modern working-recurve bows can store more deformation
energy per unit of mass than the materials used in the past. Hence, this contributes most
to the improvement of the bow.

The shape of the bow for a number of draw-lengths is shown in Figure 5. Figure 6 gives
the shape of the limb and the string, 6(a) before (0 ≤ t ≤ tl) and 6(b) after (tl ≤ t) arrow
exit. Observe the large vibrations of the string after the arrow leaves the string, which
imply that the brace height has to be large. In Figure 7 the Static Force Draw (sfd) curve
F (b) and the Dynamic Force Draw (dfd) curve E(b) for the modern working-recurve bow
are compared.
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a) b)

Figure 4: Static deformation shapes (a) of the PE-bow and (b) of the TU-bow.

a) b)

Figure 5: Static deformation shapes (a) of the ER-bow and (b) of the modern working-recurve

bow WR-bow.
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Table 1: Dimensionless quality coefficients for a number of bows.

Bow q η ν ma ms W (L0) V (L0)

KL-bow .407 .765 2.01 .0769 .0209 1.4090 1.575
AN-bow .395 .716 1.92 .0769 .0209 0.2385 2.300
PE-bow .432 .668 1.94 .0769 .0209 0.2304 1.867
TU-bow .491 .619 1.99 .0769 .0209 0.1259 1.867
ER-bow .810 .417 2.08 .0769 .0209 0.3015 2.120

WR-bow .434 .729 2.23 .0629 .0222 2.5800 1.950

The acceleration force E is defined by

E = −2maċ , t ≥ 0 . (93)

These results show that the modern working-recurve bow is a good compromise between the
non-recurve bow and the static-recurve bow. The recurve yields a good static quality coef-
ficient and the light tips of the limbs give a reasonable efficiency. This calculated efficiency
of the modern working-recurve bow correlates well with values given in the literature.
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Figure 7: Static Force Draw curve and Dynamic
Force Draw curve for the WR-bow.
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