Bow—arrow interaction in archery

B.W. Kooi

Abstract

A mathematical model of the flight of the arrow during its discharge from a bow has been
proposed by Pekalski (1990). His description of the model was incomplete; in this paper
we will give a full description of the model. Furthermore we propose some improvements
which make his model more consistent with reality. One achievement is the modeling
of contact of the arrow and grip; the pressure button is modeled as a unilateral elastic
support. The acceleration force acting upon the arrow during the launch is predicted by
an advanced mathematical model of bow dynamics. There is a satisfactory conformity of
the simulation data with the experimental data. The new model predicts that the arrow
leaves the pressure button before it leaves the string, as reported in the literature. The
ability to model arrow dynamics gives understanding and can be used to improve the
adjustment of the bow—arrow system for optimal performance.
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Introduction

Pekalski (1990) introduced methods and research techniques in archery. He discussed the
following subjects:

e A mathematical model for an arrow’s movement during the interaction with a bow.
The governing equation is a linear fourth order parabolic partial differential equation
with boundary and initial conditions.

e A mechanical model of an archer—bow—arrow system; this is a mechanical shooting
machine which gives reproducibility.

e Pekalski filmed (1000-2500 Hz high-speed 16-mm cine film) the arrow release by a
female member of the Polish National team and an arrow released from the shooting
machine. Fig. 1 shows the arrow’s transverse motions taken from the film made with
the camera viewing the archer from above.
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Figure 1: Curves of arrow’s deflection on the basis of experimental data, line ( --- ) and on
the basis of Pekalski’s mathematical model ( — ), y + (x1 — x) b/x, every 2 ms after release,

after (Pekalski, 1990). The shape of the arrow is shown in a coordinate system fixed to the bow;
the arrow in fully draw situation is on the horizontal axis and the place of the grip of the bow
is in the point (I—14,0). The solid line between points (0,b) and (I—1I4,0) indicates the median
plane of the bow.

We comment on the mathematical model for an arrow’s movement during the interac-
tion with a bow described by Pekalski (1987;1990). Pekalski made simplifying assumptions
in order to be able to solve the governing equations (a linear partial differential equation)
using a Fourier’s method with Krilov’s function base. To give insight into these assumptions
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we discuss his theory in its entirety. In fact his analysis was the incentive for reconsidering
the problem. We present a more accurate model. In this article we focus on biomechanical
aspects and the use of the knowledge gained in the sport of archery, while the mathemat-
ical aspect are presented elsewhere, Kooi and Sparenberg (1997). The system obtained
is nonlinear; it has to be solved numerically. A finite difference technique has been used
to solve the nonlinear partial differential equations with initial and (moving) boundary
conditions. The model predictions are compared with data from literature.

All modern bows have an arrow rest on which the arrow is supported vertically and
the arrow is horizontally unilaterally supported by a pressure button (shock absorber)
with a built-in spring (Bolnick et al., 1993, page 41). Gallozzi et al. (1987) and Leonardi
et al. (1987) showed experimentally that the arrow is in contact with the grip for some
period shorter than the duration of the contact between the arrow and the string. Hence,
after some moment the arrow is free from the grip while it is still being accelerated by the
string until it separates from the string. This phenomenon is also clearly seen in the recent
videos (Sanchez, 1989) with Olympic gold medalist Jay Barrs filmed and (Rabska and van
Otteren, 1991). This experimental observation is also predicted by the new model.

The simulation results give understanding of the arrow dynamics. When detailed ex-
perimental data are extracted from video analysis the model can be used to improve the
adjustment of the bow—arrow system for optimal performance.

The bow and arrow

In essence the bow proper consists of two elastic limbs, often separated by a rigid middle
part, the grip. The bow is braced by fastening a rather stiff string between both ends
of the limbs (Fig. 2). In this figure also the anatomy of the arrow is shown. The arrow



Figure 3: The arrow is set on the string, after (Baier et al.,
1976, page 36). The nock is provided with a groove in which
the string slightly sticks when the arrow is set on the string.
The arrow is supported vertically by the arrow rest fixed to

the bow grip and horizontally unilaterally by a pressure but-
ton with a built-in spring which is not shown in the figure.

Figure 4: With the Mediterranean release the first three fin-
gers draw the string, while the engaged arrow rests between

the first and the second fingers. The string is located over
the second interphalangeal joints. In full draw the second
joint of the index finger of the drawing hand touches under
the center of the chin, after (Baier et al., 1976, page 37).

consist of a shaft, arrow head at the front-end, fletching and nock at the rear-end. The
nock is provided with a groove in which the string slightly sticks when the arrow is set on
the string (nock) (Fig. 3). Then the archer extends the bowarm (extend) and pulls the
bow from braced situation into full draw (draw). We assume the so called Mediterranean
release. The first three fingers draw the string, while the engaged arrow rests between the
first and the second fingers (Fig. 4). The string is located over the second interphalangeal
joints. In full draw the index finger of the drawing hand touches under the center of the
chin (anchor). This completes the static action in which potential energy is stored in the
elastic parts of the bow.

After aiming (hold, aim), the arrow is loosed by extending the pull fingers (release).
The force in the string accelerates the arrow and transfers part of the available energy as
kinetic energy to the arrow. Meanwhile the bow is held in its place and the archer feels a
recoil force in the bow hand (afterhold). After the arrow has left the string the bow returns
to the braced position because of damping. Klopsteg (1992) deals with the physics of bows
and arrows and Kooi (1991) proposed a mathematical model of the bow. The reader is
referred to (Axford, 1995) for a detailed description of the interrelationship between the
anatomy of the human body and the anatomy of the bow and arrow.
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Figure 5: Solid line shows the shape of the arrow, the dashed line is the shape at ¢ = 0, which
is out of the median plane of the bow. The displacement out of the median plane is y = y1 + yo.

The following sequence of shooting motions are distinguished in (Baier et al., 1976;
Bolnick et al., 1993): stand, nock, extend, draw, anchor, hold, aim, release and afterhold.
In (Leroyer et al., 1993) three phases are mentioned: stance (stand), arming (nock, extend,
draw, anchor) and the sighting (hold, aim). They analyzed the displacement pull-hand
measurement during this final push-pull phase of the shoot. Pekalski (1990) divided the
ballistics of the arrow in two phases, phase 1 “internal ballistics”: the interaction between
the arrow and the archer-bow system until the arrow leaves the string, and phase 2 “external
ballistics”: which lasts from the end of phase 1 until the arrow hits the target. This paper
deals with phase 1 extended to the moment the arrow passes the grip to be able to study
the so-called ‘Archer’s Paradox’, (Klopsteg, 1992; Baier et al., 1976); the arrow “oscillates
its way” past the bow without a slap of the rear-end against the grip of the bow.

With respect to the dynamics of the arrow the following dimensions of the arrow are
important. We use the notation introduced by Pekalski (1990). The total mass of the
arrow, ms, is the sum of the mass of the arrow shaft, my, arrow head, mg, fletching, m,,
and nock, m,,. The length of the arrow is denoted by [. It is measured from the rear-end,
the nock, to the fore-end, the head (Fig. 5). The position of the arrow with respect to the
bow is determined by the distance, [;, between the arrow head and the grip of the bow
in full draw. The distance between the arrow nock and the grip is denoted by [,,. In the
braced position this distance is denoted by ly. The dimensions of a modern bow—arrow
equipment are given in Table 1.

Pekalski’s model

Pekalski modeled the movements of the arrow during the launch of the arrow. While being
accelerated, the arrow vibrates in the horizontal plane.



Forward movement

The draw-force Fj, is assumed to be proportional to the draw-length /,, minus the brace
height [

The acceleration force is assumed to be

That is, the bow is modeled as a simple linear spring with stiffness k,, and efficiency 7,.
The movement of the arrow towards the target during the release from the bow, follows
from this force when the arrow is approximated by a particle with mass mg. Consequently
the acceleration of the arrow equals E,, /m.

Transverse movement in the horizontal plane

The transverse movement of the arrow in the horizontal plane (vertical movements are
neglected) is composed of two components

y(z1,t1) = yi(zr, t1) + vol(z1, t1) (3)

where 1 is the length coordinate along the arrow measured from the rear-end, y;(z1, ;) is
a vibrational movement and yo(z1,¢1) is a rotational motion of the arrow around the nock
(Fig. 5). The second independent variable ¢; denotes time. So, the arrow is placed in a
Cartesian coordinate system (z1,y), the origin coinciding moving along the median plane
of the bow.

The vibrating movement satisfies the well-known beam equation
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Ejz—j%(xl,tl) —l—Ap%(xl,tl) —0. (4)
The so-called Euler-Bernoulli equation is assumed. Then the curvature 9%y, /0z? is pro-
portional to the bending moment, the proportionality constant being the flexural rigidity
(bending stiffness), denoted by E.J, where E is Young’s modulus of the material and J is
the second area moment of inertia of the cross-section with respect to the neutral axis of the
arrow. The shear force equals —EJ 3%y, /0z}. Then eqn (4) follows from the equations of
motion of a typical element of the beam, where p is the density and A the cross-sectional
area (Timoshenko et al., 1974). For a modern tubular arrow shaft the area A and the
second moment of inertia J are given by

A=m(d®—(d—29)*)/4 and J =n(d"— (d—29)*)/64. (5)

where d and ¢ are the external diameter and the shaft wall thickness, respectively.



The boundary conditions at the nock, x1 = 0, are

Py
0,t1) =0, EJ—=(0,t1) +n,k 0,t1) =0, 6
ax%( 1) ax;%( 1) + nykys (0, t1) (6)
where £, is the static transverse elasticity of the bow and 7, is the associated efficiency.
The first equation means that the bending moment is zero at the nock. The second states
that the shear force equals the force in the spring which represents the transversal elasticity
of the bow.
The boundary conditions at the arrowhead, xz; = [, are
Py
8—1:%(l’t1) =0, yu(l,t1)=0. (7)
The first equation means that the moment at the arrow head is zero and the second
equation means that the transversal displacement is zero. That is, the arrowhead is placed
in a hinge-like joint.
The initial conditions for y;(z1,;) at t; = 0 are

b
]
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The nock is a distance b out of the median plane of the bow, for a right-handed archer
to the right. The deflection b of the nock is a parameter which depends on the archer’s
technique.

The second movement ys(x1,t1), is the rotation of the arrow such that y2(0,¢;) = 0. Let
ts denote the instant the arrow becomes free from the grip, then ys(z1,%1) is determined
during 0 < ¢; < ¢ by the requirement that the arrow remains in contact with the grip
where the 27 coordinate is denoted by z.(¢1). Thus

y1(z1,0) = =(x1 = 1) (x1,0) =0 (8)

y(r1,t1) = iy, th) — yi(wy(t1), t1) (9)

€
4 (t1)
where y(z,(t1),t1) = 0 since the arrow is in contact with the grip. The function x.(¢;)
follows from the forward movement of the arrow

iy(t) = — Ep(t1)/ms,  2,(0) =0, z,(0)=1-1,, (10)

The acceleration of the point of contact on the grip equals the acceleration of the arrow.

In Pekalski’s theory ¢; is determined by the moment at which the transverse velocity
of the arrowhead V,(t1) = 0y/0t1(l,t1) is maximum. For t; > t; Pekalski assumes that
the velocity Vjmaz, remains unaltered. Then, the following total movement y(z1,t;) occurs
after the arrow looses contact with the grip
x
(0 tg) + (t1 = 1) Vynas) - (1)

Pekalski solved the linear partial differential equation for the variable y;(x1,t1), eqn (4),
with the boundary conditions (6) and (7), together with the initial condition (8), by means
of the Krilov function technique. Substitution of this solution in eqn (9) for 0 < ¢; < ¢y,
and eqn (11) for ¢; > ¢, yields the shape of the arrow.

y(z1,t1) = yi(zr, tr) +

7
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Figure 6: Solid line shows the shape of the arrow when it clears the finger tab. The dashed line
shows the shape at ¢t = 0, which is in the median plane of the bow.

Kooi/Sparenberg model

In this section the model proposed in Kooi and Sparenberg (1997) is described. The
deviations from Pekalski’s model are emphasized and the motivations for the improvements
are given.

Forward movement

The simple linear model for the bow Pekalski used, is replaced by the model described in
Kooi (1991). Fig. 7 gives the calculated Static Force Draw curve (SFD), denoted by F', of
a modern competition bow. It is the force needed to draw an arrow to a specified draw
length. This curve is approximated by that of the linear spring, F},, which is proportional to
the actual draw length and so that the areas below both curves (representing the available
energy to be transferred to the arrow) are equal. Pekalski assumed the Dynamic Force
Draw curve (DFD) (the nonlinear acceleration force, E, acting upon the arrow) to be the
efficiency 7, times the values of the SFD curve or E, = n,F,. In Fig. 7 we show also
the calculated DFD curve, for a modern bow. The mathematical model and the applied
numerical technique are described elsewhere (Kooi, 1991).

Transverse movement in the horizontal plane
In this new model the displacement y(x,%;) of the arrow is again measured from the

median plane of the bow, see Fig. 6. The longitudinal force, H(x1,t;) (positive for tensile
forces), due to the acceleration force is taken into account

4 2
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~0. (12)



The longitudinal force is given by
pC(l — x1) +my 7

H(.lel,tl) = — m

(1) - (13)

One of the main differences between Pekalski’s model and the model proposed now
is the way the release is modeled. With the Mediterranean release the first three fingers
draw the string, located over the second interphalangeal joints. In the presented model,
starting in the median plane, the string slips of the finger tips making the nock of the
arrow off-center to the median plane of the bow, see also (Axford, 1995; Baier et al.,
1976, page 75). In mathematical terms this means that the path of the nock y;(0,%1) is
prescribed for the period the finger tips contact the nock. We have taken for the length of
the contact line 0.0035 m in the longitudinal z;-direction and 0.00229 m in the transverse
y1-direction. These values were obtained by trial and error in order to get good correlation
with experimental data. These parameters depend on the archer’s technique. Fig. 6 shows
that the arrow is initially in the median plane, so the initial conditions are

oy,
O = O -
U1 (351, ) ) ot

(.lel, 0) =0 s (14)
that is the transverse velocity is zero.

It follows from equs (8) and (6) that directly after release the nock in Pekalski’s model
has a velocity toward the median plane by the transverse elasticity of the bow because in
his model the nock of the arrow starts off-center (b < 0). The same happens with the nock
in this model when the string slips of the finger tips. Hence, just after release there is a
resemblance of the motions of the nock of the arrow in both models. In this model the
artificial initial position of the arrow off-center, b, equivalent to a bow’s torsion around the
vertical axis, is not needed.

After the arrow has left the finger tips the boundary conditions at the place where the
nock of the arrow z; = 0 resemble those in Pekalski’s model eqns (6)

2
%xy%l (O,tl) =0 s Eja—le,)(o, tl) — H%(O’tl) + ﬁykys yl(O, tl) =0 s (15)
where the mass of the nock m,, is neglected. After the arrow has left the string, the instant
denoted by t;, the last term in the second equations disappears, that is the transverse force
becomes zero.

Another difference is the modeling of the contact between the arrow and the grip. As
in Pekalski (1990) the protrusion of the arrow’s rest, denoted by y,, is zero. In this model
the contact force is taken into account explicitly, making the third order spatial derivative
of the deflections discontinuous at the place of contact, x1 = z,(t1), which is a function of
time due to the forward motion of the arrow eqn. (10) where E, (1) is replaced by E(t),
see Fig. 7.

The contact force between arrow and grip, R(t;), is proportional to the discontinuity
of the third order partial derivative

agyl

3 3

. 3 U . U1
R(t)) = 1 —Z ) — 1 iy 16
(t1) Illirfyl%tl) 07 (z1,11) w1T:1£%t1)—8x:f (21,11) (16)
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Figure 7: Calculated Static Force Draw curve, F' and Dynamic Force Draw curve, E for a modern

working-recurve bow. The SFD curve Fj, and the DFD curve, E, of the associated linear-spring
bow used by Pekalski (1990).

This force acting in the transverse y;-direction is also equal to the force in the spring of
the pressure button

R(t)) = {_kgyl(l"y(tl),h) if yl(x%tl) >0

17
0 if y1($7,t1) >0 , 12 tf . ( )

where k, is the spring constant of the pressure button. The moment the arrow has contact
with the grip for the last time is denoted as 5.
The boundary conditions at the tip of the arrow, z; = [, read
0? 0? 0 0?
aT‘?(l,tl) =0, EJaT?’ij(z,tl) - Ha—i(z,tl) - mgaTy;
The mass of the arrow head m, is taken into account as a point mass.

This completes description of the mathematical model. In contrast with Pekalski’s
model, Fourier’s method can not be used to analyze this system of nonlinear (due to the
contact problem) partial differential equations with boundary and initial conditions. In
Kooi and Sparenberg (1997) a finite difference technique (Mitchell and Griffiths, 1980) was
proposed to solve the equations numerically; the presented results were calculated with
that method.

(I,t1) =0. (18)

Results

In Fig. 1 we give the shapes calculated by Pe¢kalski for the standard arrow shot with the
standard bow for every 2 milliseconds (ms) after release. The parameter setting for the

10



Table 1: Values for the parameters of the Easton 1714X7 (Aluminum 7178) arrow after
Pekalski (1987). The bow is a Hoyt pro medalist T/D, 66 inch, 34 1bs. For the standard
arrow-bow combination 7, = n, = 0.75.

parameter description unit value
arrow

l length m 6.7107¢
d external diameter m 6.751073
g wall thickness m 3.5610~*
pA mass per unit length kgm 2.01072
EJ flexural rigidity N m? 2.088 102
M mass of arrow kg 1.851072
my, mass of shaft kg 1.351072
Mg mass of head kg 4.01073
my mass of fletching kg 1.01073
My, mass of nock kg 4.0107*
bow

s bow stiffness Nm~' 3.4210?
kys transverse stiffness Nm=t 2.710?

lo initial drawing length m 2.25107!
. drawing length m 6.45107!
F.(1,,) drawing force N 1.4310?
arrow & bow

kg spring constant of pressure button Nm™' 6.2210?
lg distance between head and grip m 2.51072

standard arrow and bow are given in Table 1. The solid line between the points (0, ) and
(I—1,4,0) indicates the median plane of the bow. Pekalski used a nonlinear least-square
regression technique to estimate the following parameter values: n, = 0.76, 7, = 0.71 and
b= —0.018 m.

Fig. 8 gives the shapes y;(x1,t;) calculated with the new model for the standard arrow
shot with the standard bow for every 2 milliseconds (ms) after release until the nock passes
the grip. Fig. 9 gives the shapes of the arrow predicted by our model but now with the
acceleration force E of a modern bow instead of the linear one F,,. The modern bow was
also used in the experiments described by Tuijn and Kooi (1992); the measured efficiency
was only a few percent below the value predicted by the model. For both models of the
bow, in Fig. 10 the contact force between the arrow and the grip, denoted by R(t;), are
shown. The model predicts that shortly after release the arrow leaves the button again
for a very short period, that is the recoil force is zero in that period. The contact ends
at ty < t;, so before the arrow leaves the string. The displacement of the arrow nock for

11
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Figure 8: Curves of arrow’s deflection on the basis of experimental data, dashed line ( --- )
after Pekalski (1990), and on the basis of mathematical model, solid line ( — ) every 2 ms

after release. Bow is modeled as a linear spring where drawing force F,, is proportional to actual
drawing length (Fig. 7). The shape of the arrow is shown in a coordinate system fixed to the
bow; the arrow in fully draw situation, in the median plane of the bow, is on the horizontal axis
and the place of the grip of the bow is point (I—[4,0).

both models of the bow is shown in Fig. 11. Let ¢, denote the instant that the arrow nock
passes the grip. It is important that the nock clears the grip at this moment. After the
arrow leaves the string ¢; = ¢; it passes the median plane of the bow (y; = 0) but before
t1 = tg. This is related to the ‘Archer’s Paradox’, (Klopsteg, 1992). The arrow does not
slap with its rear end against the grip but snakes around it and this makes the process
central to the shot for this movement improves the accuracy of the shot. Pekalski did not
consider this important feature of the arrow’s kinematics.

Discussion and conclusions

Model validity

Due to the inertia for the bow limbs the SFD and the DFD curves differ significantly (Fig. 7).
In this paper we showed that it is better not to simplify the modeling of the dynamic action
of a bow—arrow combination by the use of a simple linear spring model for the bow as is
done by Pekalski (1987;1990) for the calculation of the acceleration force.

Comparison of the calculated shapes in Figs 1 and 8 shows that in the new model the
bending of the arrow is larger. This is obviously caused by the initially rather large normal
force associated with the acceleration force, which is neglected by Pekalski (1987;1990).

Our results are in agreement with the experimental results of Gallozzi et al. (1987) and

12
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Figure 9: Curves of arrow’s deflection on basis of experimental data, dashed line ( --- ) after
(Pekalski, 1990), and on basis of new mathematical model for the arrow, solid line ( — ) every

2 ms after release and for model results until arrow nock passes grip. Acceleration force F is
predicted force shown in Fig. 7.

Leonardi et al. (1987) with respect to the period of contact between the arrow and the
grip. The contact ends before the arrow leaves the string (Fig. 10).

In Pekalski (1990) the verification of the mathematical model was performed by com-
paring two descriptions of the arrow’s movement

e Film data of the real archer bow—arrow system.

e A description resulting from the computer simulation.

Comparison of the data from Figs 1 and 9 suggest that the simulation results obtained
with the new model fit the experimental data from a high-speed film better on the bounds
of the observed intervals of time (f = 0 and ¢ = ¢;) as well as space variables. This
supports Pekalski’s statement that the influence of the rest’s edge elasticity should be
taken into consideration partly; also other improvements of the model were responsible for
the satisfying fit which verifies the mathematical model.

Model use in sport of archery

For the standard arrow, d = 17/64 inch, Pekalski’s model predicts that the displacement
of the nock of the arrow out of the median plane is zero for a relatively long time interval
preceding arrow exit at ¢; = ¢;, Pekalski (1990, Fig. 8B). His calculations for soft d =
15/64 inch and stiff d = 21/64 inch arrows suggest that there was no such period for these
two arrows. On the basis of these results Pekalski formulated the following definition of a
well selected bow—arrow system:

13
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Figure 10: Contact force R(t1) as a function of time ¢;. Solid line ( — ) is obtained when
acceleration force E is predicted force shown in Fig. 7. Arrow is free from grip for a small time
period before contact force becomes rather large and leaves grip definitely at time ¢, indicated
by the symbol ‘A’ on the ¢i-axis. At t; the arrow leaves the string and at ¢, the arrow nock

passes the grip. Dashed line ( --- ) is obtained when bow is modeled as a linear spring where

drawing force F, is proportional to actual drawing length.
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Figure 11: Path of arrow nock for the standard arrow Easton X7 1714 (d = 17/64 inch and
g = 14/1000 inch). The acceleration force E is shown in Fig. 7. At ¢4, indicated by the symbol
‘A’ on the ti-axis, the arrow nock passes the grip.
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A well selected bow—arrow sub-system is any system for which the dimension-
less parameters of the mathematical model of the arrow’s movement during
its contact with the bow, have the same values as for the ‘standard’ system.
This means that all well-selected bow—arrow sub-systems should have, after
proper rescaling of the axes of the coordinate system and time (z/l,y/b,t/0),
movement that is identical to the standard arrow.

Thus, his definition tries to formulate in words that the jump in the transverse force acting
upon the nock at arrow exit is small for a well chosen arrow. Our results shown in Fig. 11,
indicate that the arrow leaves the string approximately at the instant the nock passes the
median plane again. Hence, the definition of Pekalski of a well selected bow—arrow system
may still be useful.

Archers select the arrow depending on the bow weight and draw length according to
recommendations (spine charts) of the manufacturer of the arrow. During the tuning
procedure, see (Baier et al., 1976), adjustments to the bow and arrow are made that
produce the best possible performance of the arrow—bow—archer combination. Several
factors influence the performance, such as the arrow dimensions, types of release, types of
‘grip of the bow’ and bow parameters, such as the brace height, draw length, and so on.
The model proposed by Kooi (1991) for the bow and in this paper for the arrow flight, make
it possible to do tuning by simulation on the computer. In these models all parameters
have a clear mechanistic interpretation. Therefore arrow clearance can be predicted.

There is, however, a reverse of the medal; more elaborate experiments have to be
performed for each individual archer in order to measure how he/she releases the arrow
over the finger tips and how he/she moves his/her bowhand during the release phase. One
way to proceed is to define a 'standard release’ based on experimental data obtained from
the analysis of a high speed film of a top archer-competitor. Sensitivity analysis for this
standard case would yield the most important parameters.

Nowadays the video camera is already used as a tool for analyzing errors and teaching
proper techniques (Bolnick et al., 1993, page 112) and (Sanchez, 1989; Rabska and van
Otteren, 1991). For coaching an individual archer-competitor, images from high speed
video-recording or photography (for instance 7000 frames per second) taken from above
the archer have to be digitized. Experiments similar to those performed in (Keast and
Elliott, 1990; Leroyer et al., 1993; Stuart and Atha, 1990) should be performed whereby
the archery performance is correlated with movements of the extending fingers during
release and of the bowhand during the period the arrow is launched from the bow; the
most critical period of the shot. In (Rabska and van Otteren, 1991) a specification for
slow-motion video production is given. The extracted data form the input for a computer
program based on the work presented in this study. the program runs on a low-costs
personal computer. Results from runs with slightly different parameter settings may give
insight into the cause of errors and how to improve the technique.
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