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Abstract

In ancient bows the grip of the bow was in the way of the arrow. The arrow needed to
get round the bow while being accelerated, this phenomenon is called the ‘Archer’s
Paradox’. Using high-speed cameras it was observed experimentally in the forties
that the arrow vibrates in a horizontal plane perpendicular to the vertical median
plane of the bow. These movements are started and controlled by the movements of
the two points of contact with the bow, the middle of the string in contact with the
rear end of the arrow and the grip where the arrow slides along the bow. The latter
contact imposes a moving boundary condition. The numerically obtained results
are satisfactorily in agreement with experimental data. The model can be used to
estimate the drawing force of ancient bows of which only the contemporary arrows
are available and also for the design of new archery equipment.

Keywords: Archery, arrow motion, Archer’s Paradox, finite difference technique, moving
boundary value problem, pde’s.

1 Introduction

One of the most fascinating phenomena in archery is called the ‘Archer’s Paradox’. We
start with a simplified exposition of this seeming contradiction. The origin of the paradox
is the vibration of the arrow in a horizontal plane after it has been released, while the bow
is kept vertical. The vibration is caused by the bending of the arrow during and after its
release. In principle there are the following two different causes for this bending of the
arrow.

The first is related to the way in which the arrow is released, here we are considering
the Mediterranean release. When the bow is fully drawn, it is kept in this position by three
fingers of the archer hooked on the string, the forefinger above and two fingers below the
nock (grooved rear end) of the arrow. Launching the arrow, the string slips off the three
finger tips and in this way the nock of the arrow is moved swiftly sideways. Hence by its
inertia the arrow will bend.

The second cause of the bending of the arrow is related to the width of the rigid middle
part of the bow, called the grip or handle. When we consider a classical bow in fully drawn
position, the arrow will form a small angle with the median plane of the bow. After release
this angle increases swiftly because the distance between nock and grip decreases swiftly.
Then again by inertia the arrow will bend.

The bending resulting from the two mentioned causes is increased by the large longi-
tudinal force exerted by the string on the nock. This force has a buckling effect on the
arrow.
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Figure 1: Illustration of archer’s paradox (after

Klopsteg [3, page 182 ]). Schematic representa-

tion of shapes of arrow during its passage of the

bow, based on evidence from speed-flash. pho-

tography.

The results of the two causes of the bending of the arrow can intensify each other or
reduce each other. It is not difficult to see that they reduce each other, for the classical
bow, when the arrow rests on the knuckle of the forefinger of the bow hand i.e. the hand
that grips the bow. Perhaps this is the reason that this way of shooting was and still is in
use with classical bows.

When the arrow leaves the string it is still curved and starts to vibrate freely in a
horizontal plane with a frequency which depends on its mass distribution and on its flexural
rigidity distribution. Now the inertial and the elastic properties of the arrow have to be
such that, while passing the grip of the bow, the arrow does not slap with its rear end
against the grip but snakes around it, otherwise the accuracy of the shooting would be
decreased. The phenomenon of the arrow snaking around the grip of the bow is called
the Archer’s Paradox. In Figure 1 the paradox is illustrated, taken from Klopsteg [3, page
182].

An application of the above mentioned phenomenon can be made as follows. We assume
that in former times when the bow was an important weapon, the arrow was matched,
possibly by trial and error, to a bow so that after release it could pass the grip without
impediment. In that case there is a relation between the properties of the bow such as its
draw length, its draw weight (force in fully drawn position) and the inertial and elastic
properties of the arrow. This relation makes it possible to estimate the draw weight of a
bow when arrows are available which have been shot from the bow.
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b)

Figure 2: (a) Modern right-handed bow with cut-out.

(b) Enlarged cross-section of grip with arrow rest and

pressure point. The outer screw adjusts the whole

pressure button mechanism in and out the median

plane and the inner screw adjusts the initial compres-

sion of the spring.

Calculations suggested that the heavy 60 gram war arrows as used at Agincourt in 1415
during the Hundred Years War, could have been shot from bows with a draw weight of over
450 N. This, however, seemed an unreasonably large value: nowadays only a few archers
can master bows of such a great weight. Based on present-day experience a figure closer to
350 N was thought more likely. The high value of over 450 N was, however, confirmed by
the study of 139 longbows and over 3000 arrows recovered from the Mary Rose, Hardy [2]
and Paterson [9]. The Mary Rose was a warship of Henry VIII, which sank in 1545 and
was recovered in 1982. In [2] it is stated that: “young, fit men in constant practice chosen
for well-paid military service from a nation to whom the shooting of longbows had been
second nature”, could use the heavy Mary Rose bows.

Hickman invented the so-called centre-shot bow. A cut-out of the grip of the bow
allows the arrow to move in the median plane of the bow in which the elastic limbs move
(Figure 2.a). When the bow string is drawn by the right hand (right-handed bow), the
cut-out is at the left side of the bow as seen by the archer and inversely for the left-handed
bow where the string is drawn by the left hand. The arrow is vertically supported by an
arrow rest, a slender elastic projection on the side of the bow in the cut-out. The point
of contact with the grip, where the lateral motion of the arrow is one-sidedly constrained,
is called the pressure point. Nowadays a pressure button is often used for this constraint.
This is a small spring-loaded rod with a piece of slippery plastic on the end (Figure 2.b).
The amount of protrusion of the pressure point out of the median plane of the bow, as
well as the compression of the spring of the pressure button, can be separately adjusted
by means of two screws.

Already in the forties Hickman [3] took high-speed pictures of the vibrating arrow and
showed that the bending properties of the arrow are important. Also Pȩkalski [10, 11]
showed by means of a high-speed film the shape of the vibrating motion of the arrow and
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gave a theoretical treatment of the snaking phenomenon.
To study the paradox, we have developed a mathematical model for the lateral move-

ments of the arrow. For this reason we have needed the longitudinal force acting on the
arrow which follows from our previous work of which we give a short survey. We dealt with
the dynamics of the bow and arrow using a simple representation of the arrow, namely a
point-mass placed at the middle of the string [5]. The elastic limbs of the bow were rep-
resented by elastic lines with a non-uniform mass distribution and a non-uniform flexural
rigidity distribution, undergoing large deflections. For the quasi-static deformation of the
bow from the braced situation (straight string) to the fully drawn situation, the equations
for this geometrically non-linear model were solved numerically by using a mathematical
“shooting” method [7] a large number of times. This yields the Static Force Draw curve
(sfd curve) which shows the force exerted by the archer when deforming the bow to full
draw.

A finite difference technique was used for the solution of the dynamic equations of the
bow and arrow (point-mass) after release [4,6]. This yields the Dynamic Force Draw (dfd)
curve which gives the acceleration force exerted by the string on the arrow as a function
of traveled distance. Both curves differ significantly from each other, which is caused by
the inertia of the bow limbs as is explained in Section 2.

The mechanics of the “arrow”, which is the subject of this paper, is treated partly
uncoupled from the mechanics of the “bow and arrow”. For the mechanics of the arrow
we use, for the acceleration force exerted by the string on the nock of the arrow, the dfd

curve mentioned in the previous paragraph. The arrow is now considered as a vibrating
beam with two point-masses, namely the nock at the rear end and the arrowhead at the
front end. The arrow slides without friction over the arrow rest by which it is supported
vertically and along the pressure point by which it is unilaterally constrained horizontally.
The swift transverse movement of the nock during release, caused by the slipping of the
string from the finger tips, will be assumed to be known.

The transverse vibratory movement of the arrow is described by two systems of par-
tial differential equations (pde’s) when the arrow has contact with the pressure point.
Each system is valid on one of the two adjacent spatial intervals covering the arrow. The
connection point of these intervals is at the pressure point. At this point the transverse dis-
placement of the two intervals and some of their spatial derivatives have to satisfy suitable
relations, as will be discussed in Section 2. The position of the pressure point varies with
respect to the arrow, which renders the problem a moving boundary problem. Because in
our formulation the longitudinal acceleration of the arrow is known in advance, the place
of the moving boundary is known with respect to the arrow. When the arrow has lost
contact with the pressure point only one system of pde’s is needed, valid along the whole
length of the arrow. Further there are in both cases two boundary conditions, one at the
rear end being the equation of motion of the nock and an other one at the front end being
the equation of motion of the arrowhead. Initial conditions complete the formulation of
the problem.

Pȩkalski’s mathematical model [10, 11] and his analysis was the incentive for reconsid-
ering the problem. The model presented here is more accurate than Pȩkalski’s model, due
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to less stringent assumptions. For instance the acceleration of the arrow and consequently
the longitudinal buckling force caused by the acceleration is rather large and may not be
neglected. Also the release is modeled more realistically and this gives a better start for
the bending of the arrow.

In Section 3 a finite-difference scheme is developed to solve the set of pde’s numerically.
In Section 4 we compare our results with the theoretical results obtained by Pȩkalski and
with the bending shapes of the arrow as obtained by his high-speed film. It appears that
during the important last part of the period of time before the nock of the arrow passes
the grip of the bow, our calculated shapes of the arrow are closer to reality than those of
Pȩkalski.

2 Formulation of the problem

We start with a short, more systematic, description of the bow where possibly some rep-
etitions occur of subjects mentioned in the introduction. The reader is for instance re-
ferred to [5, 6] for an elaborate discussion. The braced bow (straight string) is placed in a
right-handed Cartesian coordinate system (x, y, z) being an inertial frame of reference, see
Figure 3. The x-axis coincides with the line of symmetry of the bow and the origin O is
the intersection of this line with the line that connects the points where the rigid middle
part of the bow meets the elastic limbs. The z-axis is perpendicular to the vertical me-
dian plane of the bow. When the bow is drawn quasi-statically from the braced situation
to full draw, the x-coordinate of the middle of the string coincides with the nock of the
arrow and is denoted by b. In Figure 3 the unbraced, the braced (b = |OH|) and the fully
drawn (b = |OD|) shapes of a modern working-recurve bow are schematically shown. The
distance |OH| is called the brace height and the distance |OD| the draw. The static force
exerted by the archer in the positive x-direction, is denoted by F (b) which follows directly
from the already mentioned sfd curve. In the fully drawn situation, the force F (|OD|) is
called the weight of the bow. The projection of the pressure point on the x-axis is indicated
by G, this is also the point where the archer holds the bow and which can be considered
as the pivot point of bow rotations which can occur after release. The components of the
distance between the origin and the pressure point in the x- and z-direction are denoted
by |OG| and hg, respectively. For ancient bows |OG| = 0 and hg is the half width of the
grip. In Table 1 a survey of various parameters of a bow and arrow is given.

In Figure 4 we show, for a modern working-recurve bow as discussed in [6], the calcu-
lated sfd (F (b)) and the dfd (E(b)) curves, where E(b) is the acceleration force acting
upon the arrow as function of b. The mass of the rather stiff string is lumped into three
mass points each equal to one-third of the mass of the string. These points are at the two
tips of the limbs and in the middle of the string where it adds to the mass of the nock
of the arrow. The addition of the lumped part of the mass to the nock is only used with
respect to the calculation of the dfd curve and not later on with respect to transverse
motions. At release (t = 0+) the acceleration force E(|OD|), is smaller than the static
draw-force, F (|OD|). This remains true during some period of time. This is caused by the
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Figure 3: Static deformation of the modern working-recurve bow: the unbraced bow (2), braced

bow and fully drawn bow ( ) and some intermediate situations ( ). At t = 0 the

arrow and the moving coordinate system (ξ, ζ), in which the transverse movement of the arrow

is described, are shown.

mass of the elastic limbs and the inertia of the added parts of the string, which have to
be accelerated also. After this period of time, E(b) is larger than F (b) because then the
inertia of the limbs, which then are decelerated, adds to the force on the arrow. Arrow
exit at t = tl, when the arrow leaves the string, is defined by the instant the acceleration
force E(b) becomes zero.

The arrow is inextensible and its longitudinal motion is determined by the acceleration
force E(t) = E(b(t)). That is, only transverse deflections, will be considered, which are
small with respect to the length of the arrow. The arrow is placed in a moving Cartesian
coordinate system (ξ, ζ), the ξ-axis coinciding with x-axis but pointing in the opposite
direction and the ζ-axis parallel to the z-axis. The origin of the (ξ, ζ) system has the same
x-coordinate as the nock of the arrow (Figures 3 and 5).

The arrowshaft of length la is assumed to be an inextensible Euler-Bernoulli beam
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Figure 4: Calculated Static Force Draw curve, F (b) ( ), and Dynamic Force Draw curve,

E(b) ( ), of a modern working-recurve bow (Greenhorn Comet TD 350, 68 inch, 30 lbs).
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Figure 5: Coordinate system (ξ, ζ) in which transverse motion of arrow is described. Displace-

ment and rotation of bow are gG(t) and αGy(t). Transverse displacement of nock, ζ(0, t), is sum

of displacement caused by the movement of the bow, gG(t) + hg − (b(t) + |OG|)αGy(t), and elon-

gation of spring which represents transverse elasticity of bow, see (8). ( 2 ) is position of

pivot point G and ( e ) is position of pressure point, at t = 0. ( ) and ( u ) represent

positions for t > 0. During release nock slides along hypotenuse of hatched right-angled triangle.
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Figure 6: Scheme of model of arrow. Each element, i = 1, · · · , n, has length ∆ξ. Between

grid-points we have mass per unit of length ρC and flexural rigidity EI. Two fictitious points

outside arrow are introduced, grid-points i = −1 and i = n+ 1. Pressure point at ξ = ξγ . Grid

point to the left of pressure point is denoted by g. Two extra unknown bending moments M−

and M+ at points g and g + 1, respectively.

hinged at the point of contact with the string by the nock. It is supported by the arrow
rest and in the horizontal plane unilaterally guided by the pressure button with built-in
spring with initial compression. At each end of the shaft there is a mass-point, the nock
with mass man and the arrowhead with mass mat. The cross-sectional quantities are the
bending moment M(ξ, t), a lateral force V (ξ, t) in the ζ-direction and a longitudinal force
H(ξ, t) in the ξ-direction. The positive directions of M , V and H are shown in Figure 6.

In the coordinate system (ξ, ζ) the following set of pde’s describe the motion of the
shaft of the arrow

ρC
∂2ζ

∂t2
(ξ, t) =

∂V

∂ξ
, (1)

V (ξ, t) = −
∂M

∂ξ
+H(ξ, t)

∂ζ

∂ξ
, (2)

M(ξ, t) = EI
∂2ζ

∂ξ2
, (3)

where ζ(ξ, t) is the transverse deflection of the arrow which is a function of time t and
distance ξ from the rear end. The circular cylindrical arrow is endowed with mass per unit
of length ρC, where ρ is the specific mass of the shaft material, and with flexural rigidity
EI, where E is Young’s modulus of the shaft material. The area C of the material cross-
section and its second moment of inertia I with respect to the centre-line of its cross-section
are given by

C = π
(

d2 − (d− 2g)2
)

/4 and I = π
(

d4 − (d− 2g)4
)

/64 . (4)

8



where d and g are the external diameter and the shaft wall thickness of the arrow, respec-
tively, which are chosen to be independent of ξ. This holds for modern tubular arrowshafts.
Formerly, solid wooden arrowshafts were used; in that case we have g = 1/2d. The total
mass of the arrow is denoted by 2ma = man + ρCla +mat, where the factor 2 is inserted
to account for symmetry of the bow. The longitudinal force H(ξ, t), 0 < ξ < la, along
the arrow is coupled to the acceleration of the arrow in the x-direction. For ξ ↓ 0 it is
the acceleration force, E(t) = −2mab̈, exerted by the string on the arrow minus the force,
−manb̈, needed to accelerate the nock. We assume that E(t) is equal to the value found for
the bow with the arrow treated as a point mass in the middle of the string, see Figure 4.
For ξ ∈ (0, la) the following expression holds

H(ξ, t) = b̈(t) (ρC(la − ξ) +mat) . (5)

After arrow exit we have no acceleration force and because the arrow is inextensible
H(ξ, t) = 0 for t > tl.

We now give some considerations in connection with possible movements of the bow
out of the (x, y)-plane during and after release. The movements are assumed to be small
so that their influence is linear. The displacement of the grip in the z-direction is denoted
by gG(t) and the angle of rotation around a line parallel to the y-axis and through the
pivot point G on the x-axis, is denoted by αGy(t). Modern bows are often equipped with
several stabilizers to reduce lateral movements as well as rotations of the bow. When shot
by an individual archer from hand, experimental values of gG(t), measured as described
in [1, 8], can be used to simulate the motion of the grip. Then the bow is hold loosely by
the archer so that it can rotate freely around the vertical axis through the pivot point G
and equations of motion for the bow as a whole have to be formulated to determine αGy(t)
in the course of the calculation of the motion of the arrow. When mechanical shooting
machines are used, the grip is assumed to be at a fixed point in the coordinate system
(x, y, z). In that case we have gG(t) = 0 and also αGy(t) = 0. All results presented in this
paper hold for an arrow shot from a shooting machine and we take hg = 0.

First we deal with the simple case in which the arrow is free from the pressure point,
and we describe the boundary conditions for the set of pde’s, (1), (2) and (3) at ξ = 0 and
ξ = la. One boundary condition for ξ = 0 is

M(0, t) = 0 , (6)

the bending moment being zero because the arrownock is assumed to be a point-mass and
it rotates freely around the string. The other one follows for 0 ≤ t ≤ tr from the movement
of the middle of the string during the time of release when the string slides over the finger
tips, it is assumed to be

ζ(0, t) = hr

|OD| − b(t)

|OD| − b(tr)
, (7)

where tr is the instant the string leaves the finger tips, |OD|− b(tr) the contact length and
hr the maximum displacement. The last two quantities depend on the archers technique
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and are assumed to be known. Thereafter (t > tr) the motion of the rear end (ξ = 0)
satisfies the equation of motion for the nock. In order to represent the transverse stiffness
of the middle of the string, we introduce a spring of strength kz = ηzkzs, where kzs is the
measured static transverse elasticity of the bow and ηz is the associated efficiency. This
spring tries to pull the nock back into the median plane of the bow. Then for tr < t < tl
the equation of motion reads (see also Figure 5)

−man

∂2ζ

∂t2
(0, t)−

∂M

∂ξ
(0, t) +H(0, t)

∂ζ

∂ξ
(0, t)

= kz

(

ζ(0, t)−
(

gG(t) + hg − (b(t) + |OG|)αGy(t)
)

)

, (8)

where we assume that αGy(t) is small. When the arrownock is free from the string, after
arrow exit (t > tl), we have kz = 0. Observe that at arrow exit, the lateral force V (0, t)
can be discontinuous as a function of time at t = tl. In that case the string jerks out of
the nock.

The equations of motion for the mass of the arrowhead constitute the boundary condi-
tions at ξ = la,

M(la, t) = 0 , (9)

because the moment of inertia of the arrowhead is assumed to be zero, and

−mat

∂2ζ

∂t2
(la, t) +

∂M

∂ξ
(la, t)−H(la, t)

∂ζ

∂ξ
(la, t) = 0 . (10)

Next we deal with the case that the arrow slides along the bow and presses against
the pressure point. The boundary conditions at ξ = 0 and ξ = la remain the same as in
the previous case. But now we have two sets of pde’s at the two adjacent intervals of the
arrow connected at the position ξγ(t) of the pressure point. This point of contact between
the arrow and the pressure point moves in the (ξ, ζ)-coordinate system in the negative
ξ-direction due to the forward motion of the arrow.

The longitudinal force H(ξ, t) as well as the bending moment M(ξ, t) are continuous
with respect to ξ at ξγ(t). However, the lateral force V (ξ, t) shows a discontinuity at the
pressure point. The jump in this force equals the contact force, denoted by R(t) ≥ 0,
exerted by the bow on the arrow, positive in the ζ-direction. It is given by

R(t) = lim
ξ↑ξγ(t)

V (ξ, t)− lim
ξ↓ξγ(t)

V (ξ, t) = − lim
ξ↑ξγ(t)

∂M

∂ξ
(ξ, t) + lim

ξ↓ξγ(t)

∂M

∂ξ
(ξ, t) , (11)

where we used continuity of the force H(ξ, t) and of the first derivative of ζ(ξ, t), both with
respect to ξ at ξ = ξγ(t). When a pressure button is used this force satisfies

R(t) =























0 , ζ(ξγ(t), t) > gG(t) + hg,
≤ Rgmin

, ζ(ξγ(t), t) = gG(t) + hg,
Rgmin

+ kg(gG(t) + hg − ζ(ξγ(t), t)) , ζ(ξγ(t), t) ≤ gG(t) + hg,
, ζ(ξγ(t), t) > gG(t) + hg − ε,

≥ Rgmax
, , ζ(ξγ(t), t) = gG(t) + hg − ε,
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where we introduced kg, Rgmin
, ε and Rgmax

which characterize the pressure button. First,
kg is the spring constant of the spring of the pressure button. Second, Rgmin

is caused by
the initial compression of the spring, hence for R ≤ Rgmin

the pressure point does not move
towards the grip. Third, ε is the maximum length over which the pressure point can move
towards the grip. Fourth, Rgmax

is the smallest number for which, when R ≥ Rgmax
, the

pressure point has approached the grip by ε.
The initial conditions, which complete the formulation of the problem, are

ζ(ξ, 0) =
hg

|GD|
ξ and

∂ζ

∂t
(ξ, 0) = 0 , (12)

hence at t = 0, the arrow is straight, but does not have to lie along the line of symmetry
of the bow. small

Observe that the set of pde’s (1), (2) and (3) is linear, however, the contact-condition
(2) is non-linear. In a strict sense the non-homogeneous boundary conditions (7) and (8)
also make the problem non-linear with respect to a superposition of solutions for different
initial conditions (12).

Generally in problems with moving boundaries, the position of the boundary is unknown
and has to be determined. In our case, as we mentioned in the introduction, the position
of the boundary between the two parts of the arrow is known in advance, its distance to
the end of the arrow equals ξγ(t) = b(t) + |OG|.

We calculate also the total acceleration force acting on the arrow in the ζ-direction.
This quantity is calculated twice. First, Ftot(t) as the integral over the mass distribution
times the local acceleration in the ζ-direction,

Ftot(t) =

∫ la

0

ρ
∂2ζ

∂t2
(ξ, t)dξ +man

∂2ζ

∂t2
(0, t) +mat

∂2ζ

∂t2
(la, t) . (13)

Second, F+
tot(t) as the sum of the contact force R(t) and the force kzζ(0, t) representing the

transverse stiffness of the bow.

F+
tot(t) = R(t)− kzζ(0, t) . (14)

For t ≥ tr we have Ftot = F+
tot. For the short time interval 0 ≤ t ≤ tr we have F+

tot 6= Ftot.
In that case the transverse force L(t) exerted by the archers fingers and associated with
the prescribed displacement of the nock, is the difference between the two expressions (13)
and (14), L(t) = Ftot − F+

tot.

3 Finite difference equations

In the finite-difference method, discretizations are taken for both the spatial and temporal
coordinates. The region to be examined is covered by a rectilinear grid with sides parallel
to the ξ- and t-axes, with ∆ξ and ∆t being the grid spacing in the ξ- and t-directions,
respectively. The grid points (ξ, t) are given by ξ = i∆ξ and t = j∆t, where i and j are
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Table 1: Parameters and state variables; t=time, l=length, f=force, m=mass.

Parameters Dimension Interpretation
t t time
ξ l length coordinate along arrow
ζ(ξ, t) l transverse deflection of arrow
M(ξ, t) f l bending moment in cross-section of arrow
H(ξ, t) f l longitudinal force in arrowshaft
la l length of arrow
man m mass of nock
mat m mass of arrowhead
d l external diameter of arrowshaft
g l wall thickness of arrowshaft
C l2 area of cross-section of arrowshaft
I l4 moment of inertia of cross-section of arrowshaft
E f l−2 Young’s modulus
ρ ml−3 mass density
2ma m mass of arrow
kxs f l−1 static longitudinal elasticity of bow
ηx – efficiency of bow
kzs f l−1 static transverse elasticity of bow
ηz – efficiency of bow associated with transverse elasticity
hr l maximum deflection of nock during release
hg l protrusion of pressure point out of the median plane of bow
gG(t) l transverse displacement of grip
αGy(t) – angle of rotation of bow
kg f l−1 spring constant of pressure button
R(t) f contact force at pressure point
tr t instant string leaves finger tips
tf t instant arrow becomes free from pressure point
tl t instant arrow leaves string
tg t instant nock passes pressure point
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integers and i = j = 0 is the origin. In each grid point there are two state variables, namely
the displacement ζ and the bending moment M . The domain of i is −1 ≤ i ≤ n+1 where
n∆ξ = la and j = 0(1)m where m is large enough to cover the time interval of interest. We
use the following notation for the deflection ζ j

i = ζ(i∆ξ, j∆t) and for the bending moment
M j

i = M(i∆ξ, j∆t). By substitution of V from (2) into (1) we eliminate V . Then with (3)
we have two equations for the two unknowns ζ and M , namely

ρC
∂2ζ

∂t2
(ξ, t) = −

∂2M

∂ξ2
+

∂H(ξ, t)

∂ξ

∂ζ

∂ξ
+H(ξ, t)

∂2ζ

∂ξ2
, (15)

M(ξ, t) = EI
∂2ζ

∂ξ2
. (16)

We keep M as one of the unknowns because then the boundary conditions can be imple-
mented easier. The fictitious points outside the range of the arrow are introduced to get a
higher order approximation of these boundary conditions at the nock and arrowhead.

The implicit finite-difference formulas for (15) and (16) are, see also [5], with 0 ≤ i ≤ n

ρC
ζj+1
i − 2ζji + ζj−1

i

(∆t)2
=

µ

(

−
M j+1

i+1 − 2M j+1
i +M j+1

i−1

(∆ξ)2
+

∂H(i∆ξ, (j + 1)∆t)

∂ξ

(ζj+1
i+1 − ζj+1

i−1 )

2∆ξ
+

M j+1
i

EI

)

+

(1− µ)

(

−
M j−1

i+1 − 2M j−1
i +M j−1

i−1

(∆ξ)2
+

∂H(i∆ξ, (j − 1)∆t)

∂ξ

(ζj−1
i+1 − ζj−1

i−1 )

2∆ξ
+

M j−1
i

EI

)

,

(17)

M j+1
i = EI

ζj+1
i+1 − 2ζj+1

i + ζj+1
i−1

(∆ξ)2
(18)

where µ is a coefficient; when µ = 1 the scheme is the first order backward Euler scheme
and when µ = 0.5 it is the second order Crank-Nicolson scheme. The boundary conditions
(6), (7) and (8) for ξ = 0 and (9) and (10) for ξ = la, are discretized using similar schemes.

The initial conditions (12) become

ζ0
i =

hg

|GD|
i∆ξ and ζ1

i − ζ−1
i = 0 . (19)

The latter equation is used to eliminate ζ−1
i from (17) for j = 0 with µ = 1.

We now discuss the discretization of the contact condition (2) at the pressure point,
where, as we mentioned before, the third order spatial derivative of the deflections ζ will
show a discontinuity. We deal with (15) together with (16) on each of the adjacent intervals
(0, ξγ) and (ξγ, la). The solutions of (15) and (16) are coupled by (2) while, ζ, ∂ζ

∂ξ
and

∂2ζ

∂ξ2 (hence also M) are continuous at ξ = ξγ. We define g as the integer so that ξγ ∈

[g∆ξ, (g + 1)∆ξ]. As for the boundary conditions at ξ = 0 and ξ = la we introduce
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fictitious points outside the ranges [0, ξγ] and [ξγ, la] so that we have two extra grid points
for g, and g + 1. However, continuity of the transverse displacements together with the
first and second order partial derivatives implies that the two transverse displacements in
the associated real and fictitious point are equal. Hence, we do not have to introduce these
fictitious points explicitly with respect to the displacement, but we used the three continuity
conditions implicitly. The displacement at point ξγ is obtained using interpolation with a
cubic spline in the interval [ξg, ξg+1] = [g∆ξ, (g + 1)∆ξ].

In order to be able to approximate (11) more appropriately, we kept the two fictitious
points for the bending moment; one in point g∆ξ, this bending moment is denoted by M+,
and the other in point (g + 1)∆ξ, with bending moment M−, see Figure 6. As a result, in
(17) for i = g the bending moment Mg+1 has to be replaced by M− and for i = g + 1, Mg

by M+. Equation (11) for R(t) is decretized by

R((j + 1)∆t) =
−M j+1

− +M j+1
g +M j+1

g+1 −M j+1
+

∆ξ
(20)

and (2) by

R((j + 1)∆t) =























0 , ζj+1
g ≥ gG((j + 1)∆t) + hg ,

≤ Rgmin
, ζj+1

g = gG((j + 1)∆t) + hg ,
Rgmin

+ kg{gG((j + 1)∆t) + hg − ζj+1
g } , ζj+1

g ≤ gG((j + 1)∆t) + hg ,
, ζj+1

g > gG((j + 1)∆t) + hg − ε ,
≥ Rgmax

, ζj+1
g = gG((j + 1)∆t) + hg − ε .

To avoid numerical problems associated with the collision and rebound when the arrow
makes contact with the pressure point, we introduce a large spring constant k∗

g (possibly
the elasticity of the plastic end piece of the small rod of the pressure button) for the two
inflexible positions of the unilateral support.

At each time step we have to solve a set of linear equations. Initially we assume that in
the considered time step, j∆t ≤ t ≤ (j+1)∆t, the arrow does not switch its state of contact
with the pressure point. If there was contact and the resulting contact force is negative,
R((j + 1)∆t) < 0, or the arrow was free from the pressure point and the deflection of the
arrow at the position of the pressure point is smaller than the displacement of the pressure
point itself, ζ(ξγ(t), t) < gG(t) + hg, see (2), then the calculations are repeated with the
arrow free from the pressure point, or in contact with the pressure point, respectively.

A combination of the backward Euler and the Crank-Nicolson technique is used. For
the first time step (j = 0), when the point of contact moves in the time step into the
adjacent interval (g((j + 1)∆t) 6= g(j∆t)) and, in addition, when in the considered time
step the state of contact between arrow and pressure point changes, we used the robust
backward Euler scheme, µ = 1. Otherwise we used the more accurate Crank-Nicolson
scheme, µ = 0.5.

This finite-difference scheme is used to get the results presented in the next sections. To
evaluate the performance of the finite-difference scheme we studied first a vibrating beam
hinged at both ends. Because this allows closed form solutions we are able to compare this
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Figure 7: Deformation of arrow: experimental data ( ) and calculated by Pȩkalski (

), every 2 ms after release, [11]. Only parts of the arrow for ξ ∈ [0, ξγ(t)] are shown.

solution with the numerical solution and we got insight into effective values for ∆ξ and
∆t. All results presented were obtained with n = 32 and ∆t = 0.01 ms.

4 Results and discussion

Pȩkalski defines the concept ‘standard bow and arrow’. This is the equipment used by one
of the best Polish archery competitors. Table 2 gives under the headings “both models”
and “Pȩkalski’s model” a survey of all parameters of this standard bow and arrow, taken
from [10].

In Figure 7 we give the shapes calculated by Pȩkalski of the standard arrow shot with
the standard bow for every 2 milliseconds (ms) after release. Note that here, as in Figure 8,
the transverse motion ζ is given as a function of x and t instead as a function of ξ and
t Also the experimental shapes are shown. Pȩkalski estimated three parameters, (two of
these are ηx = 0.76 and ηz = 0.71), used in his theory, by a least square fit of the calculated
results with the experimental data.

In our model we used the parameters provided by Pȩkalski in [10], except those given
in Table 2 under the heading “this model”, which we discuss shortly in the following.

We used the dfd curve shown in Figure 4 which belongs to the Greenhorn Comet TD
350, 68 inch, 30 lbs. This bow differs slightly from the Hoyt Pro Medalist T/D, 66 inch,
34 lbs bow, used by Pȩkalski.

The flexural rigidity of the arrow EI = 2.088Nm2 used by Pȩkalski (Table 2) is smaller
than the value supplied by the manufacturer of the arrow. We used the value supplied by
the manufacturer namely EI = 0.0037 10−8×7.1 1010 = 2.6 Nm2. Also the masses of both

15



•

OH

• •D G•

12 ms

10 ms

8 ms6 ms

4 ms

2 ms

0 ms

← x+ |OG| [m]

ζ
[m

]

00.2250.645

0.015

0.01

0.005

0

Figure 8: Deformation of arrow: experimental data ( ) after Pȩkalski [11], on basis of model

derived in this paper ( ), every 2 ms after release, until arrow nock passes pressure point at

t = tg. Only parts of the arrow for ξ ∈ [0, ξγ(t)] are shown.

Table 2: Values for the parameters of the Easton 1714X7 (Aluminum 7178) arrow after [10].
The bow is a Hoyt Pro Medalist T/D, 66 inch, 34 lbs. For the standard arrow-bow
combination Pȩkalski estimated: ηx = 0.76, ηz = 0.71.

parameter unit 1714X7 parameter unit 1714X7
both models
d m 0.00675 g m 0.000356
C m2 0.0723 10−4 ρ kg m−3 2.82 103

la m 0.67 2ma kg 0.0188
man kg 0.0014 mat kg 0.004
|OD| m 0.584 |OH| m 0.164
|GD| m 0.645 |GH| m 0.225
ηx – 0.76 kzs N/m 270
Pȩkalski’s model
kxs N/m 342 ηz – 0.71
F (|OD|) N 143 EI Nm2 2.088
this model
|OD| − b(tr) m 0.0035 hr m 0.00229
F (|OD|) N 119 EI Nm2 2.6
hg m 0 ηz – 0.68
kg N/m 622 k∗g N/m 18000
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arrows differ slightly. In [6] the mass of the Easton 1616X75 is 0.0183 kg while the mass
of the 1714X7 arrow Pȩkalski used is 0.0188 kg. Therefore some small scaling adjustments
to E(t) being the dfd curve shown in Figure 4, had to be made. The weight of our bow
is not taken equal to the weight of the bow modeled as a linear spring by Pȩkalski, but is

chosen so that the amount of available energy in the drawn bow
∫ |OD|

|OH|
F (b)db is the same

as that in the linear spring model with spring stiffness kxs, 1/2kxs(|OD| − |OH|)2, while
the efficiency is taken equal to the value estimated by Pȩkalski; ηx = 0.76.

For the pressure button we used the following measured quantities of an OK button,
kg = 622 N/m, Rgmin

= 3.3 N, Rgmax
= 7.65 N, hence ε = 0.007 m. The elasticity of

the plastic end piece of the button is taken equal to k∗g = 18000 N/m. In Equation (7)
we have taken |OD| − b(tr) = 0.0035 m. The parameter hr = 0.00229 m, the efficiency
ηz = 0.68 and are tuned so that a good fit is obtained with the experimental data presented
in [10, 11]. We used in all cases hg = 0 (centre-shot bow).

In Figure 8 the shape of the arrow obtained by means of our model, are compared
with experimental shapes obtained by Pȩkalski. The arrow undergoes a series of bends
before its nock passes the grip. The first bend is with both the arrowhead and especially
the nock moving to the left (from the point of view of the right-handed archer) while the
middle of the arrow moves to the right. After that the arrow oscillates and its frequency
is retarded by the normal force in the shaft of the arrow. As the string approaches brace
height, t ≈ 0.015 s, the nock is to the right of the median plane. This is caused by the
transverse elasticity of the bow which tries to pull the nock back into the median plane.
At this time the arrowshaft is bending exactly opposite to the first mentioned bend. As
the bow string moves beyond the brace height, the arrow flexes a third time, in a manner
similar to the first bend. This is favorable, since it helps the fletching to clear the bow.
The whole sequence allows the arrow to snake around the pressure point, see Figure 8 in
which also the calculated shapes for t =14, 16 and 18 ms are partly shown.

In Figure 9 the contact force R(t) as a function of time t is shown. Shortly after release
at t = tr there is contact between the arrow and the pressure point but the contact force
is small and the arrow looses contact quickly. Thereafter the arrow touches once more the
pressure point and there is a longer period in which there is contact with the pressure point
whereby R(t) is much larger. After t = tf the arrow is definitively free from the pressure
point, but the arrow is still accelerated by the string.

Figure 10 gives the total force in the ζ-direction acting on the arrow. The difference
between the two curves Ftot and F+

tot for t ≥ tr, which must be zero, is small; this is a check
on the implementation of the equations in the computer code. For t ≤ tr this difference
is the transverse force applied by the finger tips upon the string during release. Observe
that this force is rather large for the first time step j = 1, t = ∆ξ. This is due to the
discontinuity of the velocity ∂ζ

∂t
(0, 0) of the nock in the ζ-direction at t = 0, analytically

this force has to be a delta function of Dirac. If the enforced displacement function given
by (7) were quadratic instead of linear, this discontinuity would disappear. Fortunately,
calculations showed that the motion after release is not very sensitive with respect to the
precise shape of this function, but depends on the increase of momentum in the ζ-direction
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Figure 9: Contact force R(t). ( ) obtained by means of acceleration force E(b) of Figure 4.

Arrow leaves pressure point definitely at t = tf . Arrow leaves string at t = tl and nock passes

pressure point at t = tg.

during release.
When the acceleration force becomes zero at t = tl the arrow leaves the string. Observe

that the discontinuity of the transverse force on the nock in t = tl is rather small and
this suggests a rather smooth separation of string and arrownock. For t ≥ tl the arrow
continues to oscillate as a free-free beam with (rather small) point masses mat and man at
the fore end and at the rear end, respectively. For t = tg the nock of the arrow passes the
grip of the bow after which the still vibrating arrow is on its way to the target.

In Figure 11 is shown the sum of the transverse kinetic energy of the arrow and the
potential energies of the arrow, of the spring which represents the transverse elasticity of
the bow and of the spring in the pressure button, as a function of time.

For 0 ≤ t ≤ tr transverse energy is gained from the bow by means of the way of release.
For t ≥ tr the transverse energy can be fed by the force H(ξ, t) and therefore by E(b).
We observe that the maximum amount of transverse energy in the arrow (0.05 Nm) is
small with respect to the available amount of energy in the fully drawn bow (30.2 Nm)
and this justifies the use of the decoupling of the transverse motion of the arrow from its
longitudinal motion. After t ≥ tl we have H(ξ, t) = 0 and the transverse energy is almost
constant.

We performed a sensitivity analysis with respect to the external diameter of the ar-
rowshaft, d. For the standard arrow we have d = 17/64 inch. Two other diameters
are considered, namely a more flexible arrow with d = 15/64 inch and a stiffer arrow
d = 21/64 inch, where the shaft wall thickness g = 14/1000 inch for each of the three
arrows. Observe that the mass of the arrow changes simultaneously, for instance the more
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Figure 11: Transverse kinetic energy plus potential bending energy of arrow plus energy in spring

which represents transverse elasticity of bow plus energy in spring of pressure button.
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Figure 12: Paths of nock of three different arrows until nock passes pressure point. ( )

standard arrow 1714X7, ( ) stiffer (and heavier) arrow 2114X7 and ( ) more flexible

(and lighter) arrow 1514X7. Latter arrow slaps against pressure point.

flexible arrow is also lighter. In Figure 12 the paths of the nocks of the three arrows are
compared, until they pass the pressure point. The more flexible arrow slaps against the
pressure point. This is undesirable. The stiffer arrow clears the grip more pronounced but
this results in a rather large jump in the transverse force at the nock of the arrow when it
leaves the string. The reason is that this force is proportional to the deflection of the nock
at that moment.

Pȩkalski’s model predicts for the standard arrow, d = 17/64 inch, that the displacement
of the nock of the arrow out of the median plane is zero for a relatively long time interval
preceding arrow exit at t = tl. His calculations for soft d = 15/64 inch and stiff d =
21/64 inch arrows suggest that there was not such a period for these two arrows. On
the basis of these results Pȩkalski formulated the following definition of a well selected
bow-arrow combination:

A well selected bow-arrow sub-system is any system for which the dimensionless
parameters of the mathematical model of the arrow’s movement during its
contact with the bow, have the same values as for the ‘standard’ system.

Pȩkalski introduced dimensionless variables and parameters using la,
√

l−4
a EI/ρC and

l3a/EI for length, time and length per force, respectively. Thus, his definition tries to
formulate in words that the jump in the transverse force acting upon the nock at arrow
exit is small for a well chosen arrow. Our results, however, show that even for the standard
arrow no long time period preceding arrow exit exists where the displacement of the nock
is small. In our model the arrow leaves the string at the instant the nock passes the median
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plane again, see Figure 12. Hence, the definition of Pȩkalski of a well selected bow-arrow
combination may still be useful, although it cannot be based on the stay of the nock of the
arrow for a long period of time in the neighborhood of the median plane of the bow.

5 Conclusions

Due to the inertia of the bow limbs the sfd and the dfd curves differ significantly. Figure 4
gives the calculated sfd and the dfd curves for a modern working-recurve bow.

In literature two phenomena are mentioned in explaining the ‘Archers Paradox’: first,
the vibration of the arrow as a vibrating beam; second, the distributed buckling force due
to the acceleration force acting upon the rear end of the arrow, which is enlarged by the
arrowhead. The results obtained in this paper show that the transverse forces associated
with the release, as well as the transverse flexibility of the bow and the contact force
exerted by the pressure point are important. The oscillatory motion is started by the
enforced displacement of the nock during release.

The numerical results obtained, fit the experimental data from a high-speed film well,
at least as well as those of Pȩkalski’s model. Observe that the shapes of the arrow for t = 10
and t = 12 ms predicted by our model, see Figure 8, are better than those predicted with
Pȩkalski’s model, shown in Figure 7. It is seen that also a better description is obtained
for the important time period between the detachment of the nock from the string until
it passes the pressure point. Our model makes use of experimental evidence, such as
the motion of the string as it comes off the drawing fingers, and is more consistent and
detailed than Pȩkalski’s model. This makes it possible to investigate in the future more
subtle effects, such as the influence of different arrow dimensions, stabilizers, brace heights,
and types of release and of the influence of the grip of individual competition archers on
the bow.
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