

"DEBtox", a brief history and extension to mixtures and plants"

Tjalling Jager Dept. Theoretical Biology

Contents

- Brief history of toxicants in DEB
 - the "DEBtox" family tree
- Case study with toxicants in DEB3
 - nonylphenol in Capitella teleta
- How to extend DEBtox to mixtures
 - overview of progress made in NoMiracle framework
- How to extend DEBtox to plants
 - what makes plants different from animals?

Background

The DEBtox concept

The DEBtox concept

Internal concentration are often not measured ...

- Organisms obey mass and energy conservation
 - find the simplest set of rules ...
 - over the entire life cycle ...
 - for all organisms (related species follow related rules)
 - most appropriate DEB model depends on species and question

Generalised life cycle

Standard DEB model for animal

Targets link to DEB parameters

Assumption

toxicant affects target site linked to one (or more) DEB parameter(s)

Assumptions

- there is a threshold for effects (the NEC)
- above the NEC, parameter changes linearly with internal concentration ...

The 80's ...

- Kooijman (1981)
 - toxicokinetics determines survival pattern
- Kooijman & Metz (1984)
 - toxicants affect energy budgets and thereby population response

The early 90's ...

Parallel to OECD trajectory

 review test guidelines with respect to statistical analysis

Birth in 1996 ...

- Windows software/booklet
 - Kooijman & Bedaux, 1996
- Series of papers
 - Bedaux & Kooijman (1994)
 - Kooijman & Bedaux (1996)
 - Kooijman *et al* (1996)

S.A.L.M. Kovijman and J.J.M. Bedaux.

And 10 years later ...

- > ISO/OECD (2006)
 - DEBtox next to methods for NOEC and EC50
- ECB workshop (2007)
 - presenting DEBtox to EU regulators

Simplified DEB animal

The 2000's ...

- Péry et al (2002, 2003)
 modifications for midges
- > Ducrot et al (2004, 2007)
 - midges and snails
- > Lopes et al (2005)
 - link to matrix models
- > Billoir et al (2007, 2008)
 - Bayes, new derivation
- > Muller *et al* (2010)
 - alternative formulation

In our group ...

- Jager *et al* (2004), Alda Álvarez *et al* (2005, 2006)
 - multiple endpoints and ageing
 - population (Euler-Lotka)
- > Baas et al (2007, 2009)
 - mixtures: lethal effects

Embryo division ...

- Klok & De Roos (1996), Klok *et al* (1997, 2007)
 - earthworm matrix model, Bayesian approach

Applying 'DEB3' ...

Kooijman (2010)

Increase in ...

- flexibility
- complexity
- computation time
- data needs
- new questions

A "DEB3" DEBtox case study

Tjalling Jager Dept. Theoretical Biology

Toxicant case study

- Marine polychaete Capitella (Hansen et al, 1999)
 - exposed to nonylphenol in sediment
 - body volume and egg production followed
 - no effect on mortality observed

Jager and Selck (acc. J. Sea Res.)

Control growth

- Volumetric body length in control
 - here, assume no contribution reserve to volume ...

Control growth

Assumption

- effective food density depends on body size

Control growth

Assumption

- initial starvation (swimming and metamorphosis)

Control reproduction

Compare to mean reproduction rate DEB
 – ignore reproduction buffer …

NP effects

Compare the control to the first dose

"Hormesis"

- Requires a mechanistic explanation …
 - conservation of mass and energy must hold!

Potential assumptions

- NP is a micro-nutrient
- decreased investment elsewhere (e.g., immune system)
- NP relieves a secondary stress (e.g., parasites or fungi)
- NP increases the food availability/quality

NP effects

Assumption

- NP increases food density/quality

Assumption

- NP affects costs for making structure
- somatic = maturity maintenance coefficient

Standard DEB animal

NP effects

Assumption

- NP also affects costs for maturation and reproduction

Standard DEB animal

Strategy for data analysis

DEBtox extensions: mixtures of toxicants

Tjalling Jager Dept. Theoretical Biology

The challenge

- some 100,000 man-made chemicals …
- large range of natural toxicants and other stressors ...
- for animals alone, >1 million species described …
- complex exposure situations …
- effects depend on exposure time, endpoint, ...

The challenge

- some 100,000 man-made chemicals ...
- large range of natural toxicants and other stressors ...
- for animals alone, >1 million species described …
- complex exposure situations ...
- effects depend on exposure time, endpoint, ...

Descriptive approaches like CA and IA are of little use!

Mixtures in DEB

Mixtures in DEB

Mixtures in DEB

Simple mixture rules

toxicity parameters linked (compare CA)

Simple mixture rules

Simple mixture rules

toxicity parameters independent (compare IA)

Visual representation

- For binary mixture, model represents surface over time ...
 - example Cu and Cd in Folsomia candida

Baas et al (2007)

Cadmium (mg/kg)

PAHs in Daphnia

- Based on standard 21-day OECD test
 - 10 animals per treatment
 - length, reproduction and survival every 2 days
 - no body residues (TK inferred from effects)

Jager et al (2010)

Iso-effect lines

for body length <50% effect

Mixture conclusions

- > Multiple TK modules link to *one* DEB model
 - either through the same or different target
- We have 'proof of concept'
 - but lack of suitable data ...
 - more data need to be analysed
- For more complex mixtures, other interactions are inevitable
 - which require mechanistic assumptions

DEBtox extensions: what makes plants different?

Tjalling Jager Dept. Theoretical Biology

About reserve and structure

> Abstractions, in DEB theory:

- reserves buffer metabolism from environment
- structure and reserve have constant composition
- composition can be different between both
- their can be multiple reserves and structures ...

Animals that feed on animals

Food has similar composition as body

Animals that feed on plants

food has different (but constant) composition as body

Animals that feed on anything

Food has different (varying) composition as body

Plants that use light

energy and building blocks separately

Roots and shoots ...

How many reserves?

Depends on organism and on question

- > Nutrients may need a reserve compartment
 - if they are (can be) limiting
 - if they vary in time
- DEBtox for algal growth in standard test ...
 - constant light, excess nutrients
 - thus: no reserves needed
 - (Kooijman et al, 1996)

Looking for simplicity

For things like algae and Lemna ...

- Maturation and reproduction may be ignored
 - not so clear how these concepts work in plants
- No large distinction between individual and population
 - population can be modelled as one individual
 - with surface area proportional to volume

Wrapping up

What is **DEBtox**?

- a specific piece of software (not available anymore)
- principle: toxicants affect parameters of any DEB-based model

Analysis of mixtures

- follows naturally from the DEB perspective
- more work needed to see how far this idea can get us

Extension to plants

- differ from animals; resources not from one flux
- DEB theory includes plants, so DEBtox approaches can be developed

Advertisement

More information: http://www.bio.vu.nl/thb

And: http://www.bio.vu.nl/thb/users/tjalling

Also, check out: http://cream-itn.eu/