Predictions & Data for this entry

Model: std climate: MA, MB migrate: Mo
COMPLETE = 2.9 ecozone: MC food: biCi, piHa
MRE = 0.160 habitat: 0bTd, biMcp, biMr gender: Dg
SMSE = 0.167 embryo: Tt reprod: O

Zero-variate data
ah47.69 47.81 (0.00246)dage at hatchStubMitc
ab 54 51.05 (0.0547)dage at birth BalaRoss1974, Chri1990, StubMitc, Hend1958, PereBoot2011, SalmHama2009
ap1.059e+04 8316 (0.2144)dtime since birth at puberty BalaChal2004, BellPars2005, ChalLimp2004, FrazEhrh1985, FrazLadn1986, GoshAven2010, VanHHarg2014, ZuriHerr2012
am2.92e+04 2.92e+04 (1.595e-05)dlife spanNatGeo
Lh4.55 4.55 (3.054e-05)cmSCL at hatchStubMitc
Lp 91 97.98 (0.07673)cmCCL at pubertyCSIRO
Li115 101.4 (0.1186)cmultimate CCLPrin2017
Li_ref143 126.7 (0.114)cmultimate CCLMoreBapt1995
Wwh27.02 26.03 (0.03671)gwet weight at hatchStubMitc
Wwp9.7e+04 1.087e+05 (0.1209)gwet weight at pubertyCSIRO
Wwi1.3e+05 1.203e+05 (0.07428)gultimate wet weightCSIRO
E02.26e+05 2.223e+05 (0.01626)Jinitial energy content of the egg VenkKann2005, Wine2016, RuslBoot2016
Ri0.3 0.282 (0.05985)#/dmaximum reprod rate BjorCarr1989, BrodGlen2003, EkanKapu2016, Guin2009, Limp1993, Limp2009, LimpMill2003, LimpNich1988, TroeChal2007
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
Tah see Fig. 1 (0.04653)temperaturetime at hatchStubMitc
tWwe_Y_T27B see Fig. 2 (0.2527)timeyolk massStubMitc
tWwe_T27B see Fig. 3 (0.05583)timeembryo weightStubMitc
tJOe_T27B see Fig. 4 (0.1701)timeoxygen consumptionStubMitc
tJCe_T27B see Fig. 5 (0.2293)timecarbon dioxide productionStubMitc
tWwe_Y_T27F see Fig. 2 (0.378)timeyolk massStubMitc
tWwe_T27F see Fig. 3 (0.07609)timeembryo weightStubMitc
tJOe_T27F see Fig. 4 (0.3087)timeoxygen consumptionStubMitc
tJCe_T27F see Fig. 5 (0.2769)timecarbon dioxide productionStubMitc
tWwe_Y_T27H see Fig. 2 (0.4424)timeyolk massStubMitc
tWwe_T27H see Fig. 3 (0.1019)timeembryo weightStubMitc
tJOe_T27H see Fig. 4 (0.2402)timeoxygen consumptionStubMitc
tJCe_T27H see Fig. 5 (0.2236)timecarbon dioxide productionStubMitc
tWwe_Y_T27X see Fig. 2 (0.1355)timeyolk massStubMitc
tWwe_T27X see Fig. 3 (0.1288)timeembryo weightStubMitc
tJOe_T27X see Fig. 4 (0.165)timeoxygen consumptionStubMitc
tJCe_T27X see Fig. 5 (0.2351)timecarbon dioxide productionStubMitc
tWwe_Y_T31B see Fig. 2 (0.2889)timeyolk massStubMitc
tWwe_T31B see Fig. 3 (0.08558)timeembryo weightStubMitc
tJOe_T31B see Fig. 4 (0.1365)timeoxygen consumptionStubMitc
tJCe_T31B see Fig. 5 (0.1293)timecarbon dioxide productionStubMitc
tWwe_Y_T31F see Fig. 2 (0.4336)timeyolk massStubMitc
tWwe_T31F see Fig. 3 (0.1153)timeembryo weightStubMitc
tJOe_T31F see Fig. 4 (0.2843)timeoxygen consumptionStubMitc
tJCe_T31F see Fig. 5 (0.2018)timecarbon dioxide productionStubMitc
tWwe_Y_T31H see Fig. 2 (0.4069)timeyolk massStubMitc
tWwe_T31H see Fig. 3 (0.07634)timeembryo weightStubMitc
tJOe_T31H see Fig. 4 (0.1278)timeoxygen consumptionStubMitc
tJCe_T31H see Fig. 5 (0.1257)timecarbon dioxide productionStubMitc
tWwe_Y_T31X see Fig. 2 (0.2454)timeyolk massStubMitc
tWwe_T31X see Fig. 3 (0.08604)timeembryo weightStubMitc
tJOe_T31X see Fig. 4 (0.2483)timeoxygen consumptionStubMitc
tJCe_T31X see Fig. 5 (0.112)timecarbon dioxide productionStubMitc
LWw see Fig. 6 (0.06097)CCLweightCSIRO
L0Lt see Fig. 7 (0.1581)CCL at first captureCCL at second captureCSIRO
Pseudo-data at Tref
DataGeneralised animalChelonia mydasUnitDescription
v 0.02 0.1194cm/denergy conductance
kap 0.8 0.7931-allocation fraction to soma
kap_R 0.95 0.95-reproduction efficiency
p_M 18 11.05J/^3vol-spec som maint
k_J 0.002 0.00031151/dmaturity maint rate coefficient
kap_G 0.8 0.8031-growth efficiency
k 0.3 0.2203-maintenance ratio


  • Mod_1: In view of low somatic maintenance, pseudodata k_J = 0.002 1/d is replaced by pseudodata k = 0.3
  • Mod_2: data from the Ningaloo population are calculated for f=0.8 based on the ratio of the size attained by the Ningaloo population and the size of the largest published green turtle record
  • Mod_2: we assume that the density of yolk is different than that of the density of reserve and structure. So the yolk density d_Y is introduced as an extra parameter.


  • [NatGeo] Accessed : 2017-06-27.
  • [Wiki] Accessed : 2015-04-30.
  • [BalaChal2004] G. H. Balazs and M. Chaloupka. Spatial and temporal variability in the somatic growth of green sea turtles Chelonia mydas resident in the Hawaiian Archipelago. Marine Biology, 145(5):1043--1059, 2004.
  • [BalaRoss1974] G. H. Balazs and E. Ross. Observations on the preemergence behaviour of the green turtle. Copeia, 1974(4):986--988, 1974.
  • [BellPars2005] C. D. L Bell, J. Parsons, T. J. Austin, A. C. Broderick, G. Ebanks-Petrie, and B. J. Godley. Some of them came home: the Cayman turtle farm headstarting project for the green turtle Chelonia mydas. Oryx, 39(2):137--148, 2005.
  • [BjorCarr1989] K. A. Bjorndal and A. Carr. Variation in clutch size and egg size in the green turtle nesting population at Torteguero, Costa Rica. Herpetologica, 45(2):181--189, 1989.
  • [BrodGlen2003] A. C Broderick, F. Glen, B. J. Godley, and G. C. Hays. Variation in reproductive output of marine turtles. Journal of Experimental Marine Biology and Ecology, 288(1):95--109, 2003.
  • [ChalLimp2004] M. Chaloupka, C. Limpus, and J. Miller. Green turtle somatic growth dynamics in a spatially disjunct Great Barrier Reef metapopulation. Coral Reefs, 23:325--335, 2004.
  • [Chri1990] E. Christens. Nest emergence lag in loggerhead sea turtles. Journal of Herpetology, 24(4):400--402, 1990.
  • [CSIRO] CSIRO. unpublished data.
  • [EkanKapu2016] E. M. L Ekanayake, T. Kapurusinghe, M. M. Saman, D. S. Rathankumara, P. Samaraweera, and R. S. Rajakaruna. Reproductive output and morphometrics of green turtle, Chelonia mydas nesting at the Kosgoda rookery in Sri Lanka. Ceylon Journal of Science, 45(3):103--116, 2016.
  • [FrazEhrh1985] N. B Frazer and L. M. Ehrhart. Preliminary growth models for green, Chelonia mydas, and loggerhead, Caretta caretta, turtles in the wild. Copeia, 1985:73--79, 1985.
  • [FrazLadn1986] N. B Frazer and R. C. Ladner. A growth curve for green sea turtles, Chelonia mydas, in the US Virgin Islands, 1913-14. Copeia, 1986(3):789--802, 1986.
  • [GoshAven2010] L. R. Goshe, L. Avens, F. S. Scharf, and A. L Southwood. Estimation of age at maturitaion and growth of Atlantic green turtles Chelonia mydas using skeletochronology. Marine Biology, 157(8):1725--1740, 2010.
  • [Guin2009] M. L. Guinea. Long term marine turtle monitoring at scott reef. Technical report, 2009. Unpublished report to Sinclair Knight Merz.
  • [Hend1958] J. R. Hendrickson. The green sea turtle, Chelonia mydas (Linn) in Malaya and Sarawak. Journal of Zoology, 130(4):455--535, 1958.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.
  • [Limp1993] C. J. Limpus. The green turtle,Chelonia mydas, in Queensland: breeding males in the southern Great Barrier Reef. Wildlife Research, 20(4):513--523, 1993.
  • [Limp2009] C. J. Limpus and L. Fien. A Biological Review of Australian Marine Turtles. Environmental Protection Agency, 2009.
  • [LimpMill2003] C. J. Limpus, D. J. Limpus, K.E. Arthur, and J. C. Parmenter. Monitoring green turtle population dynamics in shoalwater bay: 2000-2004. Technical Report 83, Queensland Environmenal Protection Agency, 2005.
  • [LimpNich1988] C. J. Limpus and N. Nicholls. The southern oscillation regulates the annual numbers of green turtles (Chelonia mydas) breeding around northern Australia. Wildlife Research, 15(2):157--161, 1988.
  • [MoreBapt1995] L. Moreira, C. Baptistotte, J. Scalfone, J.C. Thomé, and A. P. L. S De Almeida. Occurrence of Chelonia mydas on the Island of Trindade, Brazil. Marine Turtle Newsletter, 70(2), 1995.
  • [PereBoot2011] C. M Pereia, D. T. Booth, and C. J. Limpus. Locomotor activity during the frenzy swim: analysig early swimming behaviour in hatchling sea turtles. Journal of Experimental Biology, 214(23):3972--3976, 2011.
  • [Prin2017] R. I. T. Prince. personal communication, 2017.
  • [RuslBoot2016] M. U. Rusli, D. T. Booth, and J. Joseph. Synchronous activity lowers the energetic cost of nest escapt for sea turtle hatchlings. Journal of Experimental Biology, 219(10):1505--1513, 2016.
  • [VanHHarg2014] Van Houtan K. S., S. K. Hargrove, and G. H. Balazs. Modelling sea turtle maturity age from partial life history records. Pacific Science, 68(4):465--477, 2014.
  • [SalmHama2009] M. Salmon, M. Hamann, J. Wyneken, and C. Schauble. Early swimming activity by hatchling flatback sea turtles Natator depressus: a test of the "predation risk" hypothesis. Endangered Species Research, 9:41--47, 2009.
  • [StubMitc] J. L. Stubbs and N. J. Mitchell. The influence of temperature on respiration, growth, and sex determination of green turtle Chelonia mydas embryos from Ningaloo, Western Australia. in prep.
  • [TroeChal2007] S. Troeng and M. Chaloupka. Variation in adult annual survival probability and remigration intervals of sea turtles. Marine Biology, 151(5):1721--1730, 2007.
  • [VenkKann2005] S. Venkatesan, P. Kannan, M. Rajagopalan, and E. Vivekanandan. Embryonic energetics in the egg of the green turtle Chelonia mydas. Journal of the Marine Biological Association of India, 47(2):193--197, 2005.
  • [Wine2016] C. Wine. Sea turtle energetics. Hohonu, 14:82--88, 2016.
  • [ZuriHerr2012] J. C. Zurita, R. Herrera, A. Arenas, A. C. Negrete, L. Gomez, B. Prezas, and C. R. Sasso. Age at first nesting of green turtles in the Mexican Caribbean. In Proceedings of the thirty-first annual symposium on sea turtle biology and conservation, page 75, Miami, Florida, 2012. National Oceanic and Atmospheric Administration Fisheries Service, Southeast Fisheries Science Centre.

Bibtex file with references for this entry

Jessica Stubbs, 2017/06/30 (last modified by Jessica Stubbs, Starrlight Augustine 2017/12/01)

accepted: 2017/12/04

refer to this entry as: AmP Chelonia mydas version 2017/12/04