Predictions & Data for this entry

Model: std climate: ME migrate:
COMPLETE = 2.8 ecozone: MS food: biP
MRE = 0.225 habitat: 0iMpe gender: D
SMSE = 0.245 embryo: Mbf reprod: O

Zero-variate data
ah 6 6.285 (0.0475)dage at hatchJiaVirt2014
ab 31 27 (0.1289)dage at birthJageRava2015
tj 32 25.12 (0.2148)dtime since birth at metamJageRava2015
tp365 218.6 (0.401)dtime since hatch at pubertyguess
am2190 2100 (0.04124)dlife spanWiki
Lj1.1 0.6864 (0.376)cmtotal length at metamJageRava2015
Lp3.5 3.898 (0.1136)cmtotal length at pubertyJageRava2015
Li6.1 6.648 (0.08991)cmultimate total lengthJageRava2015
Ww0 65 94.71 (0.4572)muginitial wet weightJiaVirt2014
Wwb0.125 0.08593 (0.3126)mgwet weight at birthJageRava2015
Wwj2.7 3.415 (0.2648)mgwet weight at metamJageRava2015
Wwp0.59 0.6253 (0.05978)gwet weight at puberty JageRava2015, Farb1994
Wwi3.654 3.103 (0.1508)gultimate dry weight JageRava2015, Farb1994
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
tL_f see Fig. 1 (0.04077)timebody length Iked1985, JageRava2015
tL_m see Fig. 1 (0.04324)timebody length Iked1985, JageRava2015
tW see Fig. 2 (0.2283)agelarval wet weight Iked1984, HuntBrin1991, JageRava2015
LjX see Fig. 3 (0.4614)body lengthspecific ingestion rate JageRava2015
LjC see Fig. 4 (0.3088)body lengthspecific CO_2 production rate JageRava2015
LN see Fig. 5 (0.5262)body lengthclutch size JageRava2015
Pseudo-data at Tref
DataGeneralised animalEuphausia superbaUnitDescription
v 0.02 0.06037cm/denergy conductance
kap 0.8 0.8946-allocation fraction to soma
kap_R 0.95 0.95-reproduction efficiency
p_M 18 452.6J/^3vol-spec som maint
k_J 0.002 0.0021/dmaturity maint rate coefficient
kap_G 0.8 0.8083-growth efficiency


  • This entry is discussed in JageRava2015; notice, however that this ref fits a model without reserve, with the consequence that some symbols have a different meaning. (ref: JageRava2015)
  • Feeding starts at stage Calyptopsis I (ref: JageRava2015)
  • Length (mm) - wet weight (mg) relationship: Ww = 0.00503 * L^3.283 (ref: Farb1994)


  • The expected clutch size ia based on spawing twice per yr
  • Metamorphosis is assumed to affect morphology, not metabolism
  • Males are assumed to have the same parameters as females


  • [Wiki]
  • [Farb1994] J. Farber-Lorda. Length-weight relationships and coefficient of condition of Euphausia superba and Thysanoessa macrura (Crustacea: Euphausiacea) in southwest Indian Ocean during summer. Mar. Biol., 118:645--650, 1994.
  • [HuntBrin1991] M. Huntley and E. Brinton. Mesoscale variation in growth and early development of Euphausia superba Dana in the western Bransfield Strait region. Deep-Sea Res., 38:1213--1240, 1991.
  • [Iked1984] T Ikeda. Development of the larvae of the Antarctic krill (Euphausia superba Dana) observed in the laboratory. J Exp Mar Biol Ecol, 75:107--117, 1984.
  • [Iked1985] T Ikeda. Life history of antarctic krill Euphausia superba: a new look from an 663 experimental approach. Bull Mar Sci, 37:599--608, 1985.
  • [JageRava2015] T. Jager and E. Ravanan. Parameterising a generic model for the Dynamic Energy Budget of Antarctic krill, Euphausia superba. Mar. Ecol. Prog. Ser., 519:115--128, 2015.
  • [JiaVirt2014] Z. Jia, P. Virtue, and K. M. Swadling. A photographic documentation of the development of Antarctic krill (Euphausia superba) from egg to early juvenile. Polar Biol, 37:165--179, 2014.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.

Bibtex file with references for this entry

Bas Kooijman, 2016/02/10 (last modified by Bas Kooijman 2016/10/15)

accepted: 2016/10/15

refer to this entry as: AmP Euphausia superba version 2016/10/15