Predictions & Data for this entry

Model: abj climate: MC migrate: Mo
COMPLETE = 3.4 ecozone: MAN food: bjPz, jiCi, jiCvf
MRE = 0.334 habitat: 0jMp, jiMc gender: D
SMSE = 0.421 embryo: Mp reprod: O

Zero-variate data
ah10.67 8.264 (0.2253)dage at hatchBuslSerg2010
ab14.42 17.13 (0.1883)dage at birthFinnHend1995
aj52.67 55.92 (0.06169)dage at metamOtteNyha1999
ap2639 2757 (0.04496)dage at pubertyThorWitt2010
am9125 9679 (0.06074)dlife spanfishbase
Lh0.42 0.2254 (0.4634)cmtotal length at hatchOtteNyha1999
Lj1.376 0.8629 (0.3729)cmtotal length at metamOtteNyha1999
Lp 78 42.07 (0.4606)cmtotal length at pubertyThorWitt2010
Li200 256.7 (0.2835)cmultimate total lengthKjesKlun1991
Wwh4e-05 0.0002338 (4.844)gwet weight at hatchPaulKses2009
Wwj0.00126 0.002107 (0.6724)gwet weight at metamOtteNyha1999
Wwi9.6e+04 5.547e+04 (0.4222)gultimate wet weightfishbase
Ri1.178e+05 1.328e+05 (0.1275)#/dmaximum reprod rateKjesKlun1991
GSI0.199 0.1868 (0.06118)-gonado-somatic index FinnFyhn1995
E02.1 1.141 (0.4568)Jinitial egg energyFinnFyhn1995
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
tL_OtteNyha1999_4 see Fig. 1 (0.07575)time since hatchtotal lengthOtteNyha1999
tL_OtteNyha1999_6 see Fig. 1 (0.2202)time since hatchtotal lengthOtteNyha1999
tL_OtteNyha1999_8 see Fig. 1 (0.2214)time since hatchtotal lengthOtteNyha1999
tL_OtteNyha1999_10 see Fig. 1 (0.1089)time since hatchtotal lengthOtteNyha1999
tL_OtteNyha1999_12 see Fig. 1 (0.0912)time since hatchtotal lengthOtteNyha1999
tL_OtteNyha1999_14 see Fig. 1 (0.3047)time since hatchtotal lengthOtteNyha1999
tW_OtteNyha1999_4 see Fig. 2 (0.6866)time since hatchdry weightOtteNyha1999
tW_OtteNyha1999_6 see Fig. 2 (0.3875)time since hatchdry weightOtteNyha1999
tW_OtteNyha1999_8 see Fig. 2 (0.6707)time since hatchdry weightOtteNyha1999
tW_OtteNyha1999_10 see Fig. 2 (0.3947)time since hatchdry weightOtteNyha1999
tW_OtteNyha1999_12 see Fig. 2 (0.3342)time since hatchdry weightOtteNyha1999
tW_OtteNyha1999_14 see Fig. 2 (0.3461)time since hatchdry weightOtteNyha1999
tW_BjorStei2007 see Fig. 3 (0.05944)time since hatchwet weightBjorStei2007
LW see Fig. 4 (0.1348)total lengthwet weightKjesWitt1998
tW_McCoGeub2006 see Fig. 5 (0.1044)time since hatchwet weightMcCoGeub2006
LN see Fig. 6 (0.1987)total lengthfecundityKjesWitt1998
tL_McCoGeub2006 see Fig. 7 (0.2193)time since hatchtotal lengthMcCoGeub2006
tWd_McCoGeub2006 see Fig. 8 (0.2767)time since hatchdry weightMcCoGeub2006
tpf_McCoGeub2006 see Fig. 9 (0.79)time since hatchheat (fed)McCoGeub2006
tp0_McCoGeub2006 see Fig. 10 (0.6702)time since hatchheat (unfed)McCoGeub2006
tJO2 see Fig. 11 (0.5533)ageO2 fluxFinnFyhn1995
tJNH3 see Fig. 12 (0.5595)ageNH3 fluxFinnFyhn1995
tVY see Fig. 13 (0.06562)ageyolk volumeFinnFyhn1995
tWw_FinnFyhn1995 see Fig. 14 (0.8329)agewet weightFinnFyhn1995
tWd_FinnFyhn1995 see Fig. 15 (0.5099)agedry weightFinnFyhn1995
tWa_FinnFyhn1995 see Fig. 16 (0.05204)ageash-free dry weightFinnFyhn1995
tL_FinnFyhn1995 see Fig. 17 (0.6403)agestandard lengthFinnFyhn1995
tE see Fig. 18 (0.3831)agecaloric contentFinnHend1995
Tab see Fig. 19 (0.5845)temperatureage at hatchBuslSerg2010
Pseudo-data at Tref
DataGeneralised animalGadus morhuaUnitDescription
v 0.02 0.08429cm/denergy conductance
kap 0.8 0.7198-allocation fraction to soma
kap_R 0.95 0.95-reproduction efficiency
p_M 18 21.57J/^3vol-spec som maint
k_J 0.002 0.0021/dmaturity maint rate coefficient
kap_G 0.8 0.7224-growth efficiency


  • At 7C hatching occurred at 256 hpf = 10.7 dafter which individuals remained motionless at the water’s surface undergoing negative phototaxis only after the first day posthatch.First-feeding stage was reached at the end of the third day posthatch, subsequent to development of a functional jaw and hindgut (ref: HallSmit2004)


  • Weight for Wwh is set on 0 because of inconsistency with other (embryo) data
  • Parameter s_R is introduced to account for the fraction of absorbed eggs, assuming that fecundity (Ri and LN data) is based on counts in gonads
  • The overall fit is not high, probably because the various data sets relate to different populations with different parameters; the embryo data suggests that the egg is larger than presently predicted and some scaled functional responses seem surprisingly high.


  • [Wiki]
  • [fishbase]
  • [BjorStei2007] B. Björnsson, A. Steinarsson, and T. Arnason. Growth model for Atlantic cod (Gadus morhua): Effects of temperature and body weight on growth rate. Aquaculture, 271:216--226, 2007.
  • [BuslSerg2010] A. V. Buslov, N. P. Sergeeva, and O. I. Il’in. Embryonic development of the Pacific cod Gadus macrocephalus (Gadidae). Russian Journal of Marine Biology, 36(7):526--538, 2010.
  • [FinnFyhn1995] R. N. Finn, H. J. Fyhn, and M. S. Evjen. Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). i. Respiration and nitrogen metabolism. Marine Biology, 124:355--369, 1995.
  • [FinnHend1995] R. N. Finn, J.R. Henderson, and H. J. Fyhn. Physiological energetics of developing embryos and yolk-sac larvae of Atlantic cod (Gadus morhua). i1. Lipid metabolism and enthalpy balance. Marine biology, 124:371--379, 1995.
  • [FreiCard2010] V. Freitas, J. F. M. F. Cardosa, K. Lika, M. A. Peck, J. Campos, S. A. L. M. Kooijman, and H. W. van der Veer. Temperature tolerance and energetics: a Dynamic Energy Budget-based comparison of North Atlantic marine species. Phil. Trans. R. Soc. B, 365:3553--3565, 2010.
  • [HallSmit2004] T. E. Hall, P. Smith, and I. A. Johnston. Stages of embryonic development in the Atlantic cod Gadus morhua. J. MORPHOLOGY, 259:255--270, 2004.
  • [KjesKlun1991] O. S. Kjesbu, J. Klungsoyr, H. Kryvi, P. R. Witthames, and M. Greer Walker. Fecundity, atresia, and egg size of captive Atlantic cod (Gadus morhua) in relation to proximate body composition. Can.J.Fish. Aquat. Sci., 48:2333--2343, 1991.
  • [KjesWitt1998] O. S. Kjesbu, P. R. Witthames, P. Solemdal, and M. Greer Walker. Temporal variations in the fecundity of Arcto-Norwegian cod (Gadus morhua) in response to natural changes in food and temperature. Journal of Sea Research, 40:303--321, 1998.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.
  • [MartBegg2002] G. Marteinsdottir and G. A. Begg. Essential relationships incorporating the infuence of age, size and condition on variables requered for estimation of reproductive potential in Atlantic cod. Mar. Ecol. Prog. Ser., 235:235--256, 2002.
  • [McCoGeub2006] A. McCollum, J. Geubtner, and I. Hunt von Herbing. Metabolic costs of feeding in Atlantic cod (Gadus morhua) larvae using microcalorimetry. ICES Journal of Marine Science, 63:335--339, 2006.
  • [OtteNyha1999] E. Otterlei, G. Nyhammer, A. Folkvord, and S. O. Stefansson. Temperature and size dependent growth of larval and early juvenile Atlantic cod (Gadus morhua): a comparative study of norwegian coastal cod and northeast arctic cod. Can. J. Fish. Aquat. Sci., 56:2099--2111, 1999.
  • [PaulKses2009] H. Paulsen, O. S. Kjesbu, V. Buehler, R. A. J. Case, C. Clemmesen, G. Carvalho, L. Hauser, W.F. Hutchinson, E. Moksness, H. Otterå, A. Thorsen, and T. Svaasand. Effects of egg size, parental origin and feeding conditions on growth of larval and juvenile cod Gadus morhua. Journal of Fish Biology, 75:516--537, 2009.
  • [ThorWitt2010] A. Thorsen, P. R. Witthames, G. Marteinsdøttir, R. D. M. Nash, and O. S. Kjesbu. Fecundity and growth of Atlantic cod (Gadus morhua L.) along a latitudinal gradient. Fisheries Research, 104:45--55, 2010.

Bibtex file with references for this entry

Tessa van der Hammen, et al., 2012/03/16 (last modified by Gonçalo M. Marques, et al. 2016/04/04)

accepted: 2016/04/04

refer to this entry as: AmP Gadus morhua version 2016/04/04