Predictions & Data for this entry

Model: abj climate: Cfa, Cfb, Dfa, Dfb, Dfc migrate: phylum:
COMPLETE = 5.0 ecozone: TH food: biHa, biHl class:
MRE = 0.315 habitat: 0iFl, 0iFp, 0iFm gender: Hh order:
SMSE = 0.339 embryo: Fs reprod: O family:

Zero-variate data
DataObservedPredicted(RE)UnitDescriptionReference
ab_2013.5 16.1 (0.1927)dage at birthZimm2013
ab_18 20 19.42 (0.02894)dage at birthZimm2013
Lb0.147 0.1555 (0.05787)cmshell length at birthZimm2013
Lj1.2 0.8314 (0.3071)cmshell length at metamZimm2013
Lp2.3 1.702 (0.2598)cmshell length at pubertyZimm2013
Li4.024 4.639 (0.1529)cmultimate shell lengthZimm2013
Wd00.00015 5.183e-05 (0.6545)gegg dry weightZimm2013
Wdb0.000114 3.408e-05 (0.701)gdry weight at birthZimm2013
Wdi0.699 0.9051 (0.2948)gultimate dry weightZimm2013
Ri_FLE 25 18.07 (0.2772)#/dmaximum reprod rateZimm2013
JO_270.000512 3.293e-07 (0.9994)L/hO2 consumptionZimm2013
JO_13.5e-08 7.374e-11 (0.9979)L/hO2 consumptionZimm2013
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
tL_A see Fig. 1 (0.06862)time since birthshell lengthZimm2013
tL_B see Fig. 1 (0.0383)time since birthshell lengthZimm2013
tL_C see Fig. 1 (0.04916)time since birthshell lengthZimm2013
tL_D see Fig. 1 (0.02142)time since birthshell lengthZimm2013
tWd_A see Fig. 2 (0.3417)time since birthtotal dry weightZimm2013
tWd_B see Fig. 2 (0.08193)time since birthtotal dry weightZimm2013
tWd_C see Fig. 2 (0.224)time since birthtotal dry weightZimm2013
tWd_D see Fig. 2 (0.1435)time since birthtotal dry weightZimm2013
tWw_A see Fig. 3 (0.6279)time since birthtotal wet weightZimm2013
tWw_B see Fig. 3 (0.2318)time since birthtotal wet weightZimm2013
tWw_C see Fig. 3 (0.3867)time since birthtotal wet weightZimm2013
tWw_D see Fig. 3 (0.2228)time since birthtotal wet weightZimm2013
tN_A see Fig. 4 (0.3437)time since birthcumulative # eggsZimm2013
tN_B see Fig. 4 (0.4589)time since birthcumulative # eggsZimm2013
tN_C see Fig. 4 (0.0873)time since birthcumulative # eggsZimm2013
tN_D see Fig. 4 (1.838)time since birthcumulative # eggsZimm2013
tWw_e see Fig. 5 (0.2126)ageembryo wet weightHors1958
tJO_e see Fig. 6 (0.7691)ageembryo O2 consumptionHors1958
tL_100 see Fig. 7 (0.1027)time since birthshell lengthZimm2013
tN_100 see Fig. 8 (0.2432)time since birthcumulative # eggsZimm2013
tL_50 see Fig. 7 (0.17)time since birthshell lengthZimm2013
tN_50 see Fig. 8 (0.04867)time since birthcumulative # eggsZimm2013
tL_25 see Fig. 7 (0.1793)time since birthshell lengthZimm2013
tN_25 see Fig. 8 (0.2811)time since birthcumulative # eggsZimm2013
tL_FLE see Fig. 9 (0.1147)time since birthshell lengthZimm2013
tL_BohlJoos1982 see Fig. 10 (0.02901)timeshell lengthBohlJoos1982
tS see Fig. 11 (0.0335)time since birthsurviving fractionSlobJans1988
Pseudo-data at Tref
DataGeneralised animalLymnaea stagnalisUnitDescription
v 0.02 0.01394cm/denergy conductance
kap 0.8 0.6876-allocation fraction to soma
kap_R 0.95 0.475-reproduction efficiency
p_M 18 58.57J/d.cm^3vol-spec som maint
k_J 0.002 0.0021/dmaturity maint rate coefficient
kap_G 0.8 0.8046-growth efficiency

Facts

  • Simultaneous hermaprodite (ref: Wiki)
  • This entry is discussed in Zimm2013, ZimmDucr2014, Zonn1992 (ref: Zimm2013, ZimmDucr2014, Zonn1992)

Bibliography

  • [Wiki] http://en.wikipedia.org/wiki/Lymnaea_stagnalis.
  • [BohlJoos1982] S. Bohlken and J. Joosse. The effect of photoperiod on female reproductive activity and growth of the fresh water pulmonate snail Lymnaea stagnalis kept laboratory conditions. J. Invertebr. Reprod., 4:213--222, 1982.
  • [Hors1958] H. J. Horstmann. Sauerstoffverbrauch und Trockengewicht der Embryonen von Lymnaea stagnalis L. Z. Vgl. Physiol., 41:390--404, 1958.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.
  • [SlobJans1988] W. Slob and C. Janse. A quantitative method to evaluate the quality of interrupted animal cultures in aging studies. Mech. Ageing Dev., 42:275--290, 1988.
  • [Zimm2013] E. Zimmer. The pond snail under stress: interactive effects of food limitation, toxicants and copulation explained by Dynamic Energy Budget theory. PhD thesis, VU University Amsterdam, 2013.
  • [ZimmDucr2014] E. Zimmer, V. Ducrot, T. Jager, J. Koene, L. Lagadic, and S. A. L. M. Kooijman. Metabolic acceleration in the pond snail Lymnaea stagnalis? J. Sea Res., 94:84--91, 2014.
  • [Zonn1992] C. Zonneveld. Animal energy budgets: a dynamic approach. PhD thesis, VU University Amsterdam, 2013.

Bibtex file with references for this entry


Elke Zimmer, 2013/06/25 (last modified by Bas Kooijman 2016/01/01)

accepted: 2016/01/10

refer to this entry as: AmP Lymnaea stagnalis version 2016/01/10 bio.vu.nl/thb/deb/deblab/add_my_pet/