Predictions & Data for this entry

Model: asj climate: MC migrate:
COMPLETE = 3.3 ecozone: MPE, MPSE, MAN food: biPp
MRE = 0.417 habitat: 0jMp, jiMb gender: D
SMSE = 0.487 embryo: Mp reprod: O

Zero-variate data
ab5.5 1.223 (0.7777)dage at birthRicoPouv2009
tj14.5 3.035 (0.7907)dtime since birth at metamRicoBern2010
tp26.6 9.566 (0.6404)dtime since birth at pubertyMark2011
am1.095e+04 1.474e+04 (0.3462)dlife spanWiki
Lb0.01 0.00345 (0.655)cmshell length at birthRicoPouv2009
Lj0.034 0.07436 (1.187)cmshell length at metamRicoBern2010
Lp0.588 0.3265 (0.4448)cmshell length at pubertyMark2011
Li 45 23.16 (0.4853)cmultimate shell lengthVeerCard2006
Wdb5e-08 1.599e-08 (0.6803)gdry weight at birthRicoBern2010
Wdj2e-06 1.854e-06 (0.07304)gdry weight at metamRicoBern2010
Wwp0.0029 0.001743 (0.3989)gwet weight at pubertyMark2011
Wwi1431 622.4 (0.5649)gultimate wet weightPouvBour2006
Ri2.7e+06 2.385e+06 (0.1167)#/dmaximum reprod ratePouvBour2006
GSI0.64 0.3946 (0.3834)-gonado somatic indexDuteBeni2009
KV6e+08 3.148e+08 (0.4753)m^3/dm^3half saturation coefficientRicoBern2010
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
tL2 see Fig. 1 (0.342)timeshell lengthEmme2012
tWw2 see Fig. 2 (0.9998)timewet weightEmme2012
tWd2 see Fig. 3 (0.3349)timedry weightEmme2012
tL3 see Fig. 1 (0.3304)timeshell lengthEmme2012
tWw3 see Fig. 2 (0.9998)timewet weightEmme2012
tWd3 see Fig. 3 (0.5742)timedry weightEmme2012
tL4 see Fig. 1 (0.3277)timeshell lengthEmme2012
tWw4 see Fig. 2 (0.9998)timewet weightEmme2012
tWd4 see Fig. 3 (0.3162)timedry weightEmme2012
tL5 see Fig. 1 (0.3442)timeshell lengthEmme2012
tWw5 see Fig. 2 (0.9998)timewet weightEmme2012
tWd5 see Fig. 3 (0.3344)timedry weightEmme2012
tL6 see Fig. 1 (0.35)timeshell lengthEmme2012
tWw6 see Fig. 2 (0.9998)timewet weightEmme2012
tWd6 see Fig. 3 (0.3259)timedry weightEmme2012
tL7 see Fig. 1 (0.3383)timeshell lengthEmme2012
tWw7 see Fig. 2 (0.9998)timewet weightEmme2012
tWd7 see Fig. 3 (0.6537)timedry weightEmme2012
tJX2 see Fig. 4 (0.2782)timefood consumption per oysterEmme2012
tJX3 see Fig. 4 (0.4946)timefood consumption per oysterEmme2012
tJX4 see Fig. 4 (0.5137)timefood consumption per oysterEmme2012
tJX5 see Fig. 4 (0.247)timefood consumption per oysterEmme2012
tJX6 see Fig. 4 (0.3271)timefood consumption per oysterEmme2012
tJX7 see Fig. 4 (0.5367)timefood consumption per oysterEmme2012
tF2 see Fig. 5 (0.249)timeclearance rateEmme2012
tF3 see Fig. 5 (0.4709)timeclearance rateEmme2012
tF4 see Fig. 5 (0.4255)timeclearance rateEmme2012
tF5 see Fig. 5 (0.2642)timeclearance rateEmme2012
tF6 see Fig. 5 (0.2474)timeclearance rateEmme2012
tF7 see Fig. 5 (0.505)timeclearance rateEmme2012
tL_T17 see Fig. 6 (0.3723)agelengthRicoPouv2009
tL_T22 see Fig. 6 (0.3783)agelengthRicoPouv2009
tL_T25 see Fig. 6 (0.3686)agelengthRicoPouv2009
tL_T27 see Fig. 6 (0.3579)agelengthRicoPouv2009
tL_T32 see Fig. 6 (0.6067)agelengthRicoPouv2009
tL_f010 see Fig. 7 (0.05845)agelengthRicoBern2010
tL_f017 see Fig. 7 (0.3533)agelengthRicoBern2010
tL_f360 see Fig. 7 (0.08763)agelengthRicoBern2010
tL_f710 see Fig. 7 (0.2691)agelengthRicoBern2010
tL_f730 see Fig. 7 (0.2409)agelengthRicoBern2010
tL_f900 see Fig. 7 (0.3058)agelengthRicoBern2010
tL_f920 see Fig. 7 (0.3675)agelengthRicoBern2010
tL_f960 see Fig. 7 (0.4363)agelengthRicoBern2010
tL_T18_Mark2011 see Fig. 8 (0.2187)agelengthMark2011
tL_T22_Mark2011 see Fig. 8 (0.08167)agelengthMark2011
tL_T25_Mark2011 see Fig. 8 (0.115)agelengthMark2011
tL_T28_Mark2011 see Fig. 8 (0.1159)agelengthMark2011
tWw_T18_Mark2011 see Fig. 9 (0.1407)agewet weightMark2011
tWw_T22_Mark2011 see Fig. 9 (0.3606)agewet weightMark2011
tWw_T25_Mark2011 see Fig. 9 (0.1543)agewet weightMark2011
tWw_T28_Mark2011 see Fig. 9 (0.06215)agewet weightMark2011
tWw_FabiHuve2005 see Fig. 10 (0.2005)timewet weightFabiHuve2005
tL_FabiHuve2005 see Fig. 11 (0.06892)timeshell lengthFabiHuve2005
tWwR_FabiHuve2005 see Fig. 12 (0.2862)timegonad wet weightFabiHuve2005
tL_CollBoud1999 see Fig. 6 (0.3487)agelengthCollBoud1999
LWd_GoulWolo2004 see Fig. 7 (0.3462)lengthdry weightGoulWolo2004
LJO_GoulWolo2004 see Fig. 8 (0.2026)lengthO_2 consumptionGoulWolo2004
Pseudo-data at Tref
DataGeneralised animalMagallana gigasUnitDescription
v 0.02 0.005363cm/denergy conductance
kap 0.8 0.2644-allocation fraction to soma
kap_R 0.95 0.95-reproduction efficiency
p_M 18 17.34J/^3vol-spec som maint
k_J 0.002 0.0021/dmaturity maint rate coefficient
kap_G 0.8 0.7931-growth efficiency


  • This entry is discussed in Emme2012 (ref: Emme2012)


  • Lj is given zero weight because it is out of range


  • [Wiki]
  • [CollBoud1999] B. Collet, P. Boudry, A. Thebault, S. Heurtebise, B. Morand, and A. Gérard. Relationship between pre-and post-metamorphic growth in the Pacific oyster Crassostrea gigas (Thunberg). Aquaculture, 175:215--226, 1999.
  • [DuteBeni2009] M. Dutertre, P. Beninger, L. Barille, M. Papin, P. Rosa, A. Barille, and J. Haure. Temperature and seston quantity and quality effects on field reproduction of farmed oysters, Crassostrea gigas, in Bourgneuf Bay, France. Aquatic Living Resources, 22:319--329, 2009.
  • [Emme2012] A. Emmery. Influence of the trophic environment and metabolism on the dynamics of stable isotopes in the Pacific oyster (Crassostrea gigas): modeling and experimental approaches. PhD thesis, VU University Amsterdam, Rennes University, 2012.
  • [FabiHuve2005] C. Fabiou, A. Huvet, P. Le Souchu, M. Le Pennec, and S. Puvreua. Temperature and photoperiod drive Crassostrea gigas reproductive internal clock. Aquaculture, 250:458--470, 2005.
  • [GoulWolo2004] P. Goulletquer, M. Wolowicz, A. Latala, C. Brown, and S. Cragg. Application of a micro-respirometric volumetric method to respiratory measurements of larvae of the Pacific oyster Crassostrea gigas. Aquatic Living Resources, 17(2):195--200, 2004.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.
  • [Mark2011] Nicola Mark, 2011. pers. comm.
  • [PouvBour2006] S. Pouvreau, Y. Bourlès, S. Lefebvre, A. Gangnery, and M. Alunno-Bruscia. Application of a Dynamic Energy Budget model to the Pacific oyster, Crassostrea gigas, reared under various environmental conditions. J. Sea Res., 56:156--167, 2006.
  • [RicoBern2010] B. Rico-Villa, I. Bernard, R. Robert, and S. Pouvreau. A Dynamic Energy Budget (DEB) growth model for pacific oyster larvae, Crassostrea gigas. Aquaculture, 305:84--94, 2010.
  • [RicoPouv2009] B. Rico-Villa, S. Pouvreau, and R. Robert. Influence of food density and temperature on ingestion, growth and settlement of Pacific oyster larvae, Crassostrea gigas. Aquaculture, 287:395--401, 2009.
  • [VeerCard2006] H. Van der Veer, J. Cardoso, and J. Van der Meer. The estimation of DEB parameters for various northeast atlantic bivalve species. J. Sea Res., 56:107--124, 2006.

Bibtex file with references for this entry

Antoine Emmery, Bas Kooijman, 2011/07/20

accepted: 2015/12/22

refer to this entry as: AmP Magallana gigas version 2015/12/22