Predictions & Data for this entry

Model: abj climate: MA migrate:
COMPLETE = 2.3 ecozone: MPSW, MI food: biPz, jiAa
MRE = 0.242 habitat: 0iMp, biMb gender: D
SMSE = 0.187 embryo: Mp reprod: Aa

Zero-variate data
ab 6 4.683 (0.2196)dage at birth of the medusae (release of ephyrae)Sugi1965
aj 15 19.22 (0.2813)dage at metam of the medusae (release of ephyrae)guess
ap 40 33.18 (0.1705)dage at puberty of the medusaeSugi1963
am360 368.9 (0.02484)dlife span of the medusaeguess
Lb0.2 0.1519 (0.2405)cmbell diameter at birthSugi1963
Lj 1 1.683 (0.6829)cmbell diameter at metamguess
Lp5.5 5.315 (0.03373)cmbell diameter at pubertySugi1963
Li 20 29.95 (0.4976)cmultimate bell diameterHamn1982
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
tL see Fig. 1 (0.1979)timebell diameterSugi1963
LW see Fig. 2 (0.1219)bell diameterwet weightMusc1986
LJO see Fig. 3 (0.1941)bell diameterMedusa respirationMcCl1994
Pseudo-data at Tref
DataGeneralised animalMastigias papuaUnitDescription
v 0.02 0.008836cm/denergy conductance
kap 0.8 0.9-allocation fraction to soma
kap_R 0.95 0.95-reproduction efficiency
p_M 18 31.25J/^3vol-spec som maint
k_J 0.002 0.0021/dmaturity maint rate coefficient
kap_G 0.8 0.7966-growth efficiency


  • Two reproduction modes: asexual when polyp and sexual when medusae (ref: Sugi1964)
  • Asexual reproduction produce either new polyp (budding) or ephyrae (strobilation) (ref: Sugi1964)
  • This species lives in symbiosis with zooxanthellae (ref: Sugi1964)
  • Zooxanthellae are taken at the polyp stage and are transmitted via asexual reproduction but not via sexual reproduction (ref: Sugi1964)
  • Zooxanthellae seem necessary for the strobilation (ref: Sugi1964)


  • I had to make a few of guesses to fill gaps. I based those assumptions on general results for other Scyphozoans
  • This entry is about mudusae only; no mass info availeble for the polyp stage


  • [Wiki]
  • [Arai1997] M.N. Arai. A Functional Biology of Scyphozoa. Chapman & Hall, 2-6 Boundary Row, London SE1 8HN, 1997.
  • [Hamn1982] W.M. Hamner, R.W. Gilmer, and P.P. Hamner. The physical, chemical, and biological characteristics of a stratified, saline, sulfide lake in Palau. Limnology and Oceanography, 27(5):896--909, 1982.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.
  • [McCl1994] L.R. McCloskey, L. Muscatine, and F.P. Wilkerson. Daily photosynthesis, respiration, and carbon budgets in a tropical marine jellyfish (Mastigias sp.). Marine Biology, 119:13--22, 1994.
  • [Musc1986] L. Muscatine, F.P. Wilkerson, and L.R. McCloskey. Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp.). Marine Ecology Progress Series, 32:279--290, 1986.
  • [Sugi1963] Y. Sugiura. On the life-history of rhizostome medusae i. Mastigias papua L. Agassiz. Annotation Zoologicae Japonenses, 36(4):194--202, 1963.
  • [Sugi1964] Y. Sugiura. On the life-history of rhizostome medusae ii. Indispensability of zooxanthellae for strobilation in Mastigias papua. Embryologia, 8(3):223--233, 1964.
  • [Sugi1965] Y. Sugiura. On the life-history of rhizostome medusae. iii. On the effects of temperature on the strobilation of Mastigias papua. The Biological Bulletin, 128(3):493--496, 1965.

Bibtex file with references for this entry

Nicolas Djeghri, 2017/05/23 (last modified by Bas Kooijman 2018/01/06)

accepted: 2018/01/06

refer to this entry as: AmP Mastigias papua version 2018/01/06