Predictions & Data for this entry

Model: stx climate: A, B, C, D migrate:
COMPLETE = 4.5 ecozone: TH, TP, TA, TN food: bxM, xiO
MRE = 0.079 habitat: 0iTa, 0iTs, 0iTg gender: Dg
SMSE = 0.078 embryo: Tv reprod: O

Zero-variate data
tg 20 17.64 (0.118)dgestation timeAnAge
tx 22 21.93 (0.002971)dtime since birth at weaningAnAge
tp 26 25.42 (0.02231)dtime since birth at pubertyBrusSchi2015
Li10.2 10.2 (0.0001822)cmultimate body lengthIJssSche1977
Wwb 1 1.025 (0.02486)gwet weight at birthBerrBron1992
Wwp 10 10.17 (0.01707)gwet weight at pubertyLaur1946
Wwi 50 46.46 (0.07073)gultimate wet weightWeinWalf1986
Ri0.09589 0.09481 (0.01128)#/dmaximum reprod rateAnAge
xi_WE20.09 22.78 (0.1337)kJ/gwhole-body energy density (no reprod buffer), in dry weightStud1979
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
tW100 see Fig. 1 (0.09248)timewet weightWeinWalf1986
tW75 see Fig. 1 (0.07709)timewet weightWeinWalf1986
tW44 see Fig. 1 (0.09313)timewet weightWeinWalf1986
tS100 see Fig. 2 (0.105)timesurviving fractionWeinWalf1986
tS75 see Fig. 2 (0.05572)timesurviving fractionWeinWalf1986
tS44 see Fig. 2 (0.101)timesurviving fractionWeinWalf1986
tW_e see Fig. 3 (0.09863)agewet weightMacDAlle1927
tW1 see Fig. 4 (2.827)time since birthwet weight (male)IshiHata2005
tW2 see Fig. 5 (0.06717)time since birthwet weight (male)HallFerg2002
tWm see Fig. 6 (0.1255)time since birthwet weightGate1925
tWf see Fig. 6 (0.1228)time since birthwet weightGate1925
tW3 see Fig. 7 (0.1724)time since birthwet weightBakeLiu1993
WJO see Fig. 8 (0.1388)wet weightO_2 consumptionSelmLums2001
Pseudo-data at Tref
DataGeneralised animalMus musculusUnitDescription
v 0.02 0.03158cm/denergy conductance
kap 0.8 0.961-allocation fraction to soma
kap_R 0.95 0.95-reproduction efficiency
p_M 18 954.7J/^3vol-spec som maint
k_J 0.002 0.0021/dmaturity maint rate coefficient
kap_G 0.8 0.7993-growth efficiency


  • This entry is discussed in LeeuKelp2002 (ref: LeeuKelp2002)
  • Time from conception to start of development (T_0) is taken to be 7.2 d (ref: MacDAlle1927)
  • Male and female mice differ in development over the course of their lives. (ref: MacDAlle1927)
  • Female mice can resorbe their fetuses, maybe even a third of them (ref: Laur1946)
  • Equal weight at birth for males and females, some light differences in growth between males and females become apparent after birth. (ref: Gate1925)


  • version 20151106: V0 morphic feeding (ie contant feeding irrespective of size) is assumed for growth and survival data from WeinWalf1986
  • version 20180502: isomorphic feeding used for WeinWalf1986
  • version 20180502: t_0 is fixed and not estimated
  • version 20180502: addition of datasets: Ww-JO SelmLums2001, t-Ww by BakeLiu1991, Gate1925, IshiHata2005, HallFerg2002
  • version 20180502: the growth curve by IshiHata2005 weight zero, because of the strange morphology with respect to the other curves
  • version 20180502: the fit could be improved in some of the growth cuves by assuming higher f during the milking stage.
  • version 20180502: MacDAlle1927 state that males and females differ, but we did not find data to support this. Hence this entry assumes same parameters for males and females.


  • [Wiki]
  • [AnAge]
  • [BakeLiu1993] J. Baker, J.-P. Liu, E. J. Robertson, and A. Efstratiadis. Role of insulin-like growth factors in embryonic and postnatal growth. Cell, 75:73--82, 1993.
  • [BerrBron1992] R. J. Berry and F. H. Bronson. Life history and bioeconomy of the house mouse. Biological Reviews, 67(4):519--550, 1992.
  • [BrusSchi2015] V. Brust, P. M. Schindler, and L. Lewejohann. Lifetime development of behavioural phenotype in the house mouse (Mus musculus). Frontiers in Zoology, 12(Suppl 1):S17, 2015.
  • [Gate1925] W. H. Gates. Litter size, birth weight, and early growth rate of mice (Mus musculus). The Anatomical Record, 29(3):183--193, 1925.
  • [HallFerg2002] B. P. Halloran, V. L. Ferguson, S. J. Simske, A. Burghardt, L. L. Venton, and S. Majumdar. Changes in bone structure and mass with advancing age in the male c57bl/6j mouse. Journal of Bone and Mineral Research, 17(6):1044--1050, 2002.
  • [IJssSche1977] M. A. Ijselling and A. Scheygrond. Wat is dat voor een dier? W.J. Thieme, Zutphen, 1977.
  • [IshiHata2005] A. Ishikawa, S. Hatada, Y. Nagamine, and T. Namikawa. Further mapping of quantitative trait loci for postnatal growth in an intersubspecific backcross of wild Mus musculus castaneus and c57bl/6j mice. Genet. Res., Camb., 85:127--137, 2005.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.
  • [Laur1946] E. M. O. Laurie. The reproduction of the house-mouse (Mus musculus) living in different environments. Proceedings of the Royal Society of London B: Biological Science, 133:248--281, 1946.
  • [LeeuKelp2002] I. M. M. van Leeuwen, F. D. L. Kelpin, and S. A. L. M. Kooijman. A mathematical model that accounts for the effects of caloric restriction on body weight and longevity. Biogerontology, 3:373--381, 2002.
  • [MacDAlle1927] E. C. MacDowell, E. Allen, and C. G. Macdowell. The prenatal growth of the mouse. J. Gen. Physiol., 11:57--70, 1927.
  • [Stud1979] E. H. Studier. Bioenergetics of growth, pregnancy and lactation in the laboratory mouse, Mus musculus. Comparative Biochemistry and Physiology Part A: Physiology, 64(4):473 -- 481, 1979.
  • [SelmLums2001] E. H. Studier. Resting metabolic rate and morphology in mice (Mus musculus) selected for high and low food intake. Journal of Experimental Biology, 204(4):777--784, 2001.
  • [WeinWalf1986] R. Weindruch, R. L. Walford, S. Fligiel, and D. Guthrie. The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake. J. Nutr., 116:641--654, 1986.

Bibtex file with references for this entry

Bas Kooijman, 2010/09/21 (last modified by Starrlight Augustine 2018/05/02)

accepted: 2018/05/02

refer to this entry as: AmP Mus musculus version 2018/05/02