Predictions & Data for this entry

Model: abj climate: Aw, Cfa migrate: Mda, Ma
COMPLETE = 2.9 ecozone: TPi, THp food: biCi
MRE = 0.097 habitat: 0jFm, jiMm gender: D
SMSE = 0.111 embryo: Fs, Fh reprod: O

Zero-variate data
ab 11 11.78 (0.07059)dage at birthFabe2013
tj 28 25.25 (0.09825)dtime since hatch at metamorphosisFabe2013
ap 60 57.73 (0.03785)dtime since hatch at pubertyFabe2013
am2008 2008 (0.000123)dlife spanEgamEtoh1969
Lb0.45 0.3961 (0.1197)cmtotal length at birthIwam2004
Lj1.3 1.212 (0.06792)cmtotal length at metamorphosisIwam2004
Lp2.53 2.533 (0.001323)cmtotal length at pubertyKangYoko2002
Li 4 4.21 (0.0525)cmultimate total lengthFabe2013
Wd00.00024 0.0002059 (0.1421)gegg dry weightStan1972
Wwb0.00065 0.0006432 (0.01047)gwet weight at birthMartHint1995
Wdb0.00013 0.0001286 (0.01047)gdry weight at birthMartHint1995
Wwp0.178 0.1682 (0.05484)gwet weight at pubertyKangYoko2002
Wwi0.8 0.7721 (0.03485)gultimate wet weight AnklJohn2004, GhonEgam1982
Ri 30 32.08 (0.06945)#/dmaximum reprod rateAnklJohn2004
Uni-variate data
DatasetFigure(RE)Independent variableDependent variableReference
tL see Fig. 1 (0.06461)time since hatchtotal lengthSpenHuss2006
tW see Fig. 2 (0.2684)time since hatchwet weightSpenHuss2006
tL2 see Fig. 3 (0.1908)time since starttotal lengthGonzCarb2016
tW2 see Fig. 4 (0.3755)time since startwet weightGonzCarb2016
tW_f see Fig. 5 (0.08697)time since startwet weightTehHint1998
tW_m see Fig. 5 (0.102)time since startwet weightTehHint1998
tN1 see Fig. 6 (0.08365)time since startcumulative eggsHaseKand2016
tN0 see Fig. 6 (0.2703)time since startcumulative eggsHaseKand2016
tW1 see Fig. 7 (0.08454)time since startwet weightHaseKand2016
tW0 see Fig. 7 (0.0795)time since startwet weightHaseKand2016
tS see Fig. 8 (0.0502)time since hatchsurviving larvae Stan1972
Pseudo-data at Tref
DataGeneralised animalOryzias latipesUnitDescription
v 0.02 0.01056cm/denergy conductance
kap 0.8 0.4705-allocation fraction to soma
kap_R 0.95 0.95-reproduction efficiency
p_M 18 364J/^3vol-spec som maint
k_J 0.002 0.0021/dmaturity maint rate coefficient
kap_G 0.8 0.8033-growth efficiency


  • Contrary to the version 2017/09/22: Males and females have same parameters
  • Starvation data is included in early lifes stages: modelled using eqn in AuguLitv2011.The difference is that, once a shrinking threshold del_X is surpassed,the hazard from shrinking is taken proportional to the difference between the amount of structure left and the amount of structure before shrinking started.
  • Starvation data for adults is included: spawning is continuous.Buffer is emptied at each spawning event.Spawning ceases when energy mobilised from reserve no longer covers somatic maintenance andEnergy from repro buffer is first used to cover som main. (AuguGagn2012).If no energy is left in the repro buffer then energy from structure.The initial struture and initial amount in the repro buffer are free parameters.
  • The interpretation of some data was revised with respect to version 2017/09/22.TehHint1998: age of fish at start of experiment (time 0) is 25 days post hatch. This information is now implemented in the predict file. GoncCarb2016: average age of fish at start of experiment (time 0) is 5.5 days post hatch. This information is now implemented in the predict file. Wwi: there was an error in 2017/09/22. the male and female Wwi were inversed. In this version we used the Wwi for females from a more recent study and no longer include different parameters for males as there is not enough data.Shape coefficients: contrary to 2017/09/22 there is only one shape coefficient which applies for total length as all length data are total length.There are no longer different shape coefficients for different life-stages.The egg dry weight is included.


  • [Wiki]
  • [AnklJohn2004] G. T. Ankley and R. D. Johnson. Small fish models for identifying and assessing the effects of endocrine-disrupting chemicals. ILAR Journal, 45(4):469--483, 2004.
  • [AuguGagn2012] S. Augustine, B. Gagnaire, C. Adam-Guillermin, and S. A. L. M. Kooijman. Effects of uranium on the metabolism of zebrafish, {Danio} rerio. Aquatic Toxicology, 118-119:9--26, 2012.
  • [AuguLitv2011] S. Augustine, M. K. Litvak, and S. A. L. M. Kooijman. Stochastic feeding in fish larvae and their metabolic handling of starvation. Journal of Sea Research, 66:411--418, 2011.
  • [EgamEtoh1969] N. Egami and H. Etoh. Life span data for the small fish, (Oryzias latipes). Exp. Geront., 4:127--129, 1969.
  • [Fabe2013] D. Faber. Der Japanische Reiskaerpfling Oryzias latipes als Testorganismus im Fish-Sexual-Development- und Fish-Full-Life-Cycle-Test - Effekte endokrin aktiver Substanzen unter variablen Expositionsszenarien. PhD thesis, Univ. of Aachen, 2013.
  • [GhonEgam1982] M. M. H. Ghoneum and N. Egami. Age related changes in morphology of the thymus of the fish, Oryzias latipes. Experimental Gerontology, 17:33--40, 1982.
  • [GonzCarb2016] M. Gonzales-Doncel, G. Carbonell, J. E. Garcia-Maurino, S. Sastre, E. M. Beltran, and C. F. Torija. Effects of dietary 2,2', 4,4'-tetrabromodiphenyl ether (bde-47) exposure in growing medaka fish(Oryzias latipes). Aquatic Toxicology, 178:141--152, 2016.
  • [HaseKand2016] M. Hasebe, S. Kanda, and Y. Oka. Female-specific glucose sensitivity of gnrh1 neurons leads to sexually dimorphic inhibition of reproduction in medaka. Endocrinology, 157(11):4318 -- 4329, 2016.
  • [Iwam2004] T. Iwamatsu and N. Egami. Stages of normal development in the medaka Oryzias latipes. Mechanisms of Development, 121:605--618, 2004.
  • [KangYoko2002] I. J. Kang, H. Yokota, Y. Oshima, Y. Tsuruda, T. Oe, N. Imada, H. Tadokoro, and T. Honjo. Effects of bisphenol a on the reproduction of Japanese medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 21:2394--2400, 2002.
  • [Kooy2010] S.A.L.M. Kooijman. Dynamic Energy Budget theory for metabolic organisation. Cambridge Univ. Press, Cambridge, 2010.
  • [MartHint1995] G. D. Marty, D. E. Hinton, and J. J. Jr. Cech. Notes: Oxygen consumption by larval Japanese medaka with inflated or uninflated swim bladders. Transactions of the American Fisheries Society, 124:623--627, 1995.
  • [SpenHuss2006] H. B. Spencer, W. R. Hussein, and P. B. Tchounwou. Growth inhibition in Japanese medaka(Oryzias latipes) fish exposed to tetrachloroethylene. Journal of Environmental Biology, 27:1--5, 2006.
  • [Stan1972] R. D. Stanley. The effect of egg size on size and viability of newly hatched medaka (Oryzias latipes) and surf smelt (Hypomesus pretiosus pretiosus). PhD thesis, Univ. of British Columbia, 1972.
  • [TehHint1998] S. J. Teh and D. E. Hinton. Gender-specific growth and hepatic neoplasia in medaka (Oryzias latipes). Aquatic Toxicology, 41:141--159, 1998.

Bibtex file with references for this entry

Kim Ladermann, Andre Gergs, 2017/09/22 (last modified by Kim Ladermann, et al. 2018/02/19)

accepted: 2018/04/13

refer to this entry as: AmP Oryzias latipes version 2018/04/13