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Preface to the second edition

The substantial progress made in many developments of the Dynamic Energy Budget (deb)
theory and its applications has prompted a new edition of the book ‘Dynamic Energy
Budgets in Biological systems – Theory and Applications in Ecotoxicology ’. I must admit
that, while extending the theory, I did not exclude the risk that the theory would tumble
over, like an overloaded Christmas tree. However, the opposite has happened; the theory
has gained in logical structure, broadened its physico-chemical basis, and become in many
respects simpler conceptually. I consider this to be the most reliable indication that the
theory really has a strong and healthy backbone.

The most fundamental progress is in the development of a framework that accommo-
dates both energy and mass fluxes. This provides a theoretical basis for the method of
indirect calorimetry and elaboration of the coupling between energy and mass fluxes, in-
cluding respiration rates. Simultaneous limitation of growth by nutrients is modelled by
the construct ‘Synthesizing Unit’, which is a ‘natural’ generalization of single substrate
enzyme kinetics, after re-formulation in terms of substrate fluxes rather than substrate
concentrations. Extending the theory from one reserves and structural mass to several
provides the proper conceptual basis to deal with autotrophs (algae, plants). These had to
be omitted in the first edition. Hence, the title has be changed slightly, because now the
theory covers all forms of life.

The deb theory has been deepened as well as extended. The assumption of first-order
dynamics for reserve density has been replaced by more fundamental ones about body
composition. Although this change has no quantitative consequences, the conceptual gain
is considerable for a theory that emphasizes mechanisms and consistency.

The material on mass fluxes has been reorganized and collected in a new chapter on
the implications of energy fluxes for fluxes of essential nutrients. Extensions include an
analysis of the respiration ratio and the heat increment of feeding, fermentation processes,
a model for drinking and its relationship with nutrient uptake by plants, and a reanalysis of
heating costs in endotherms. The material on aging has been moved to this new chapter,
since aging is treated as a consequence of the flux of free radicals that originates from
respiration. Less emphasis has been put on the concept of ‘yield’ compared to the first
edition, because I now think that this ratio of two mass fluxes overly complicates the
arguments for application in transient situations, where reserves play an important role. I
removed a section on this concept. Another new chapter has been written to extend the
single substrate, reserve and structural mass to several substrates, reserves and structural
masses, which is necessary to deal with the metabolic versatility found in algae and plants.
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These extensions have the property that the dynamics of several reserves can be coupled
and uncoupled in a smooth way; a single reserve is a special case. This is of significance
in an evolutionary context.

The material on ecotoxicity is rewritten and extended in a chapter on fluxes of non-
essential nutrients and their (toxic) effects. Extensions include sublethal effects on growth
and reproduction, with an analysis of the various direct and indirect pathways. I removed
material that I now consider to be less important to the deb theory, such as the correlation
between concentrations of compounds in the environment and tissues, and the discussion
of the logit model for effects of compounds. The methodology for estimating no-effect
concentrations has already been widely applied in the analysis of routine toxicity tests.
These developments are not included here to increase to focus on the deb theory. They
can be found in [519]. The concept ‘fugacity’ is used to derive how toxico-kinetics and
effects depend on physico-chemical properties of chemical compounds.

The chapter on ‘living together’ is extended, with a discussion on trophic interac-
tions between organisms, new results on the behaviour of food chains, and the ‘Canonical
Community’ is introduced, which is meant to capture the essential features of ecosystem
physiology. I removed some material that contained technical developments with little
conceptual gain.

Many new biological examples are included in this second edition, and a short last
chapter has been appended to discuss methodological aspects and comparisons with other
approaches. Although the core of the deb theory has not changed, its biological setting
has matured considerably and still provides a rich source of inspiration, at least for me.

The inclusion of multivariate mass fluxes comes with a considerable extension of the
symbol table. Consistency arguments forced me to install more stringent rules for notation:
one dimension set per symbol. Changes in notation with respect to the first edition were
unavoidable. I can only offer my apologies for the inconvenience to readers of the first
edition, but hope that the more stringent rules help them to follow the text more easily.

Although I tried hard to avoid errors, experience tells me that they are unavoidable;
the web site http://www.bio.vu.nl/thb/deb lists the detected errors, and again I offer
my apologies for any inconvenience.
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In 1978 Thea Adema asked me to develop a statistical methodology for screening toxicants
for their effects on daphnid reproduction. I observed that large daphnids tend to have
bigger litters than small ones and this led me to realize that reproduction cannot be
modelled without including variables such as growth, feeding, food quality and so on.
Since then I have found myself working on the theory of Dynamic Energy Budgets (deb),
which has rapidly covered more ground. Twenty years ago, I would not have seen any
connection between topics such as feeding of daphnids, embryo development of birds and
the behaviour of recycling fermenters. Now, I recognize the intimate relationship between
these and many other phenomena and the fundamental role of surface/volume ratios and
reserves.

deb theory is central to eco-energetics, which is the study of the mechanisms involved
in the acquisition and use of energy by individuals; this includes the many consequences
of the mechanisms of physiological organization, and population and ecosystem dynamics.
The related field of bioenergetics focuses on molecular aspects and metabolic pathways
in a thermodynamic setting. Although the first and second laws of thermodynamics are
frequently used in eco-energetics, thermodynamics is not used to derive rate equations,
as is usual, for example, in non-equilibrium thermodynamics. One of the reasons is that
the behaviour of individuals cannot be traced back to a restricted number of biochemical
reactions. This difference in approach blocks possible cross-fertilizations between levels of
organization. This barrier is particularly difficult to break down because eco-energetics
usually deals with individuals in a static sense; an individual of a given size allocates
energy to different purposes in measured percentages. This tradition hampers links with
physiological processes. deb theory, in contrast, treats individuals as non-linear, dynamic
systems. This process-oriented approach has firm physiological roots and at the same time
it provides a sound basis for population dynamics theories, as will be demonstrated in this
book. The hope is that deb theory will contribute to the cross-fertilization of the different
specializations in energetics.

I like my job very much as it offers good opportunities to enjoy the diversity of life
during hikes in my spare time. Many of my fellow biologists stress the interesting differences
between species to such an extent that the properties they have in common remain largely
hidden. I believe that this obscures the way in which a particular species deviates from
the common pattern, and the causes of deviations, and urges me to stress phenomena that
species seem to have in common. I fully understand the problem of being overwhelmed
by the diversity of life, but I think that reactions of ecstasy, apathy or complaint hardly
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Dynamic Energy Budget theory aims to quantify the energetics of individuals as it changes during
life history. The key processes are feeding, digestion, storage, maintenance, growth, development,
reproduction and aging. The theory amounts to a set of simple rules, summarized in Table
3.3 on page {121}, and a wealth of consequences for physiological organization and population
dynamics. Although some of the far reaching consequences turn out to be rather complex, the
theory is simple, with only one parameter per key process. Intra- and inter-specific body size
scaling relationships form the core of the theory and include dividing organisms, such as microbes,
by conceiving them as juveniles.

contribute to insight. This book explores to what extent a theory that is not species-specific
can be used to understand observations and experimental results, and it culminates in a
derivation of body size scaling relationships for life history traits without using empirical
arguments.

deb theory is quantitative, so it involves mathematics; I feel no need to apologize for
this, although I realize that this may be an obstacle to many biologists. My hope is that
an emphasis on concepts, rather than mathematical technicalities, avoidance of jargon as
much as possible and a glossary will reduce communication problems. Only in some parts
of the chapter on population dynamics may the mathematics used be called ‘advanced’,
the remainder being elementary. The text is meant for scientists and mathematicians with
a broad interest in fundamental and applied quantitative problems in biology.

The aim is summarized in the diagram on this page. The primary aim is not to describe
energy uptake phenomena and energy use in as much detail as feasible, but to evaluate
consequences of simple mechanisms that are not species-specific. The choice of material in-
cluded in the book was made by judging its relevance to a set of mechanisms that appeared
to be tightly interlocked. This book, therefore, does not review all that is relevant to ener-
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getics. It does, however, include some topics that are not usually encountered in texts on
energetics, because deb theory appears to imply predictions for the topics. Discrepancies
between predictions and the actual behaviour of particular species will, hopefully, stimu-
late a guided search for explanations of these discrepancies. I have learned to appreciate
this while developing the deb theory. It opened my eyes to the inevitable preconceptions
involved in the design of experiments and in the interpretation of results.

The emphasis is on mechanisms. This implies a radical rejection of the standard ap-
plication of allometric equations, which I consider to be a blind alley that hampers un-
derstanding. Although it has never been my objective to glue existing ideas and models
together into one consistent framework, many aspects and special cases of the deb theory
turned out to be identical or very similar to classic models:

author year page model

Lavoisier 1780 {155} multiple regression of heat against mineral fluxes

Arrhenius 1889 {53} temperature dependence of physiological rates

Huxley 1891 {177} allometric growth of body parts

Henri 1902 {43} Michaelis–Menten kinetics

Blackman 1905 {236} bilinear functional response

Pütter 1920 {95} von Bertalanffy growth of individuals

Pearl 1927 {320} logistic population growth

Fisher & Tippitt 1928 {141} Weibull aging

Kleiber 1932 {273} respiration scales with body weight3/4

Mayneord 1932 {252} cube root growth of tumours

Emerson 1950 {252} cube root growth of bacterial colonies

Huggett & Widdas 1951 {104} foetal growth

Weibull 1951 {255} survival probability for aging

Best 1955 {235} diffusion limitation of uptake

Smith 1957 {135} embryonic respiration

Leudeking & Piret 1959 {148} microbial product formation

Holling 1959 {73} hyperbolic functional response

Marr & Pirt 1962 {317} maintenance in yields of biomass

Droop 1973 {317} reserve (cell quota) dynamics

Rahn & Ar 1974 {288} water loss in bird eggs

Hungate 1975 {241} digestion

Beer & Anderson 1997 {103} development of salmonid embryos

The deb theory not only shows how and why these models are related, it also specifies the
conditions under which these models might be realistic, and it extends the scope from the
thermodynamics of subcellular processes to population dynamics.

Potential practical applications are to be found in the control and optimization of
biological production processes. In my department, for example, we use deb theory in
research on reducing sludge production in sewage treatment plants, optimising microbial
product formation, the role of biota in global change, the analysis of effects of toxicants,
the quantification of biodegradation of xenobiotics, and the modelling of tumour induction.
Other potential applications are to be found in medicine, and many other fields.
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Book organization

The first two chapters are introductory.

Chapter 1 gives the historical setting and some philosophical, methodological and tech-
nical background. Many discussions with colleagues about the way particular observations
fit or do not fit into a theory rapidly evolved into ones about the philosophical principles
of biological theories in general. These discussions frequently related to the problem of the
extent to which biological theories that are not species-specific are possible. This chap-
ter, and indeed the whole book, introduces the idea that the value of a theory is in its
usefulness and therefore a theory must be coupled to a purpose. I have written a section
on the position I take in these matters and insert throughout the book many remarks on
aspects of modelling and testability to point to fundamental problems in practical work.
Chapter 1 sets out the context within which deb theory, developed in subsequent chapters,
has meaning.

Chapter 2 introduces some basic concepts that are pertinent to the level of organization
of the individual and to the development of deb theory. It paves the way for testing theory
against experimental data, which will occur during the development of the deb theory. The
concept ‘system’ is introduced and the state variables body size and energy reserves are
identified as of primary importance. The relationships between different measures of body
size and energy are discussed; these are rather subtle due to the recognition of storage
materials. The concept ‘Synthesizing Unit’ is introduced and its link with classic enzyme
kinetics is discussed. The concept ‘generalized compound’ is used to relax the principle of
‘homeostasis’ in order to accommodate ‘storage’. Effects of temperature on physiological
rates are presented and the notion of metabolic modes and life stages are discussed.

The next three chapters develop the deb theory.

Chapter 3 describes processes of energy uptake and energy use by individuals in all
life stages. The set of rules that are extracted from these descriptions constitute the
deb theory. It gives a complete specification of the transformation of food into biomass
and will later be used to analyse consequences and implications. The discussion includes
the processes of feeding, digestion, storage, maintenance, development and reproduction.
Chapter 3 provides the meat of the deb theory in its basic form.

Chapter 4 describes the processes of the uptake and use of essential compounds, i.e.
the building blocks of life. The kinetics directly follow from the processes of energy uptake
and use, via the concept of homeostasis. This chapter therefore primarily evaluates the
implications of the previous chapter. Special attention is given to the process of aging
because most other energetics theories select age as a primary state variable, where the
focus is on the coupling between aging and energetics.

Chapter 5 extends the theory to include several substrates, reserves and structural
masses to increase the metabolic versatility that is found in organisms that acquire nutrients
and light independently, and have to negotiate the problem of simultaneous limitation
caused by stoichiometric coupling. The various ways in which substrate can take part in
metabolic transformations are discussed. The processes of photosynthesis and calcification
are discussed; the implications for plant development are evaluated.

Chapter 6 considers the uptake and effects of non-essential compounds, such as toxi-
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cants. Their kinetics do not follow from energy considerations. However, changes in the
lipids content, dilution by growth and metabolic transformation all point to many links
between uptake kinetics and energetics. The effects of toxicants on energetics interfere
with their kinetics.

The next three chapters illustrate applications of the deb theory to organismic and
suborganismic levels, to comparison between species and to the population level.

Chapter 7 analyses examples of the application of deb theory and extensions to lower
levels of biological organization, showing how it can be used to improve biological insight.
It repeats more or less the setup of Chapter 3, but discusses details that are essential for
testing the theory against empirical data, and for interpreting data that have taxon-specific
elements. A molecular mechanism is proposed for the reserve kinetics as implied by the
deb assumptions.

Chapter 8 compares the energetics of different species and studies some evolutionary
implications. The deb theory has many implications for the covariation of parameter
values among species. The chapter shows how, for a wide variety of biological variables,
body size scaling relationships can be derived from first principles rather than established
empirically. This approach to body size scaling relationships is fundamentally different
from that of existing studies. The chapter also compares different life history strategies
and analyses some optimization problems.

Chapter 9 considers interactions between individuals and develops population conse-
quences. It starts with some well known standard population dynamic theories and in-
troduces the deb machinery step by step. The population, after its introduction as a
collection of individuals, is considered as a new entity in terms of systems analysis, with its
own relationships between input, output and state. These new relationships are expressed
in terms of those for individuals. The coupling between mass and energy fluxes at the pop-
ulation level is studied and the behaviour of food chains and of ‘Canonical Communities’
is discussed briefly.

Chapter 10 places the approach taken by the deb theory in existing eco-energetic
research, and highlights some differences in concepts. The general modelling strategies, as
presented in Chapter 1 and applied in the book, are evaluated briefly.

The logical structure of the chapters is indicated
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in the diagram (right). A first quick glance through
the section on notation and symbols, page {409}, saves
time and annoyance. A glossary at 403 explains tech-
nical terms
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Chapter 1

Energetics and models

This introductory chapter presents some general background to theoretical work in ener-
getics. I start with an observation that feeds the hope that it is possible to have a theory
that is not species-specific, something that is by no means obvious in view of the diversity
of life! A brief historical setting follows giving the roots of some general concepts that are
basic to Dynamic Energy Budget (deb) theory. I will try to explain why the application
of allometry restricts the usefulness of almost all existing theories on energetics. This ex-
planation is embedded in considerations concerning philosophy and modelling strategy to
give the context of the deb theory.

1.1 Energy and mass fluxes

1.1.1 Hope for generality

Growth curves are relatively easy to produce, which may explain why the literature is full of
them. Yet they remain fascinating. When environmental conditions, including temperature
and food availability, are constant and the diet is adequate, organisms ranging from yeasts
to vertebrates follow, with astonishing accuracy, the same growth pattern as that illustrated
in Figure 1.1. This is amazing because different species have totally different systems for
regulating growth. Some species, such as daphnids, start to invest, at a certain moment
during growth, a considerable amount of energy in reproduction. Even this does not seem
to affect their growth curve. So one wonders how the results can be so similar time and
again. Is it all a coincidence, resulting from a variety of different causes, or do species have
something in common despite their differences? Are these curves really similar, or is the
resemblance a superficial one?

Some workers do not believe that the growth of animals, plants and other organisms can
be captured in a single framework. Many concepts, such as the decomposition of mass into
a storage and structural component and uptake across surface areas, are standard elements
of plant production modelling [670], and equally apply to animals and micro-organisms.
Thornley [920] presented arguments against a single framework. One of them is that
growth is confined to specialised tissues (meristems) in plants, but this is not dissimilar
to growth of the tips of fungal hyphae, or of bacterial cells for instance. Another is that
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Figure 1.1: These growth curves all have the shape L(t) = L∞ − (L∞ − L0) exp{−ṙBt}, while
the organisms differ considerably in their growth regulating systems. How is this possible? Data
sources are indicated by entry numbers in the bibliography.)
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growth is frequently indeterminate in plants, and determinate in animals. However, the
wide applicability of von Bertalanffy’s growth curve for animals shows that the latter is
not generally true, while determinate growth can also be understood in the context of a
single general framework, see {295}.

My attempts to understand similarities in growth curves led me on a breathtaking hike
into many corners of biological territory. They became an entertaining puzzle: is it possible
to construct a set of simple rules, based on mechanisms for the uptake and use of material
by individuals, that is consistent with what has been measured? The early writers made a
most useful start: growth results from processes of build-up and break-down. Break-down
has something to do with making energy and elementary compounds available, so how
are they replenished? What processes determine digestion and feeding? What determines
food availability? Build-up results in size increase, and so affects feeding, but offspring are
produced as well. This obviously affects food availability. Where does maintenance fit in?
Why should there be any maintenance at all? What is the role of age? These are just some
of the questions that should be addressed to satisfactorily explain of a growth curve.

The comparison of different systems that share common principles can be a most pow-
erful tool in biology. I give two examples, which are discussed later {95,103}.

Individuals of some species, such as humans, lose their ability to grow. Cartilage tissue
is replaced by bone, which makes further growth impossible. Is this why growth stops?
This question cannot be answered by studying these species, because they stop growing and
also change cartilage to bone. The answer should be ‘no’, I think, because it is possible to
formulate a model for growth that applies to these species as well as to those that continue
to grow, such as fish. Growth in mammals would cease even if they did not lose their ability
to grow, and cartilage is replaced, possibly to obtain a mechanically better structure.

Another example is the egg shell of birds, which limits the diffusion of oxygen and,
therefore, the development of the embryo, according to some authors [746]. A frequently
used argument is the strong negative correlation between diffusion rates across the egg shell
and diffusion resistance, when different egg sizes are compared, ranging from hummingbirds
to ostriches; the product of diffusion rate and resistance does not vary a lot. Again I think
that the shell does not limit the development of the embryo, because it is possible to
formulate a model for embryo development that applies to birds as well as to animals
without rigid egg shells. The physical properties of the egg shell are well adapted to the
needs of the embryo, which causes the observed correlation.

The crux of the argument is that the same model applies to different systems and that
the systems can be compared on the basis of their parameters.

1.1.2 Historical setting

Many of these questions are far from new. R. Boyle, R. Hooke and J. Mayow in the
seventeenth-century were among the first to relate respiration to combustion, according to
McNab [614]. The first measurements of the rate of animal heat production were made
by A. Crawford in 1779, and A. L. Lavoisier and P. S. de Laplace in 1780 aimed to relate
it to oxygen consumption and carbon dioxide production [614]. Interest in how metabolic
rate, measured as oxygen consumption rate, depends on body size goes back at least as
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far as the work of Sarrus and Rameaux [806] in 1839. They were the first to find rates
proportional to surface area for warm-blooded animals [79]. Later this became known
as the Rubner’s surface law [793]. Pütter [740] used it in a model of the growth of
individuals in 1920. He saw growth as the difference between build-up and break-down.
The processes of build-up, which later became known as anabolic processes, were linked
directly to the metabolic rate, which was assumed to follow the surface law. The processes
of break-down, now known as catabolic processes, were assumed to proceed at a constant
rate per unit of volume. Volume was thought to be proportional to weight. The growth
rate then results from a weighted difference between surface area and volume. The casual
way A. R. Wallace mentioned this idea in a note to E. B. Poulton (appendix 3 in [281])
suggests that its roots go back to before 1865. The resulting growth curve is presented in
Figure 1.1. The fact that Pütter applied the model to fish, whereas the surface law was
based on work with warm-blooded animals, generated a lot of criticism.

More data were generated with improved methods of measurement; invertebrates were
also covered. Kleiber [490] found in 1932 that metabolic rates are proportional to weight
to the power 0.75 and this became known as Kleiber’s law. Extensive studies undertaken
by Brody [119] confirmed this proportionality. Von Bertalanffy [79] saw anabolic and
catabolic rates as special cases of the allometric relationship, i.e. a relationship of the type
y = αxβ, where y is a variable dependent on another variable x, usually body weight.
He viewed this as a simplified approximation that could be applied to almost all types of
metabolic rates, including the anabolic and the catabolic, but the constant β varies some-
what with the tissue, physiological conditions and experimental procedure. The growth
curve proved to be rather insensitive to changes in β for catabolism, so, like Pütter, von
Bertalanffy took the value one and classified species on the basis of the value for β of
anabolism. The surface law is just one of the possibilities.

Although von Bertalanffy [78] was the genius behind the ideas of general systems
theory, he never included the feeding process in his ideas about growth. I do not know why,
because mass balance equations are now always bracketed together with systems. I think
that the use of allometric equations, which is a step away from mechanistic explanations
towards meaningless empirical regressions, obstructs new ideas in metabolic control. I will
explain this in later sections. The idea of allometry goes back to Snell [865] in 1891
and, following the work of Huxley [438], it became widely known. Both Huxley and von
Bertalanffy were well aware of the problems connected with allometric equations, and used
them as first approximations. Now, a century later, it is hard to find a study that involves
body size and does not use them.

Zeuthen [1026] was the first to point to the necessity of distinguishing between size
differences within a species and between species. The differences in body size within a
species, as measured in one individual at different points during development, are treated
here as an integral part of the processes of growth and development. Those between species
are discussed in a separate chapter on parameter values {267}, in which I show that body
size scaling relationships can be deduced without any empirical arguments.
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1.1.3 Energetics

The problem that everything depends on everything else is a hard one in biology, as
anything left out may prove to be essential in the end. If one includes as much as possible
one loses an intellectual grasp of the problem. The art is to leave out as much as possible
whilst maintaining the essence. I focus the discussion on an abstract quantity, called
energy, rather than a selection of the many thousands of possible compounds usually found
in organisms. No selection can be inclusive, so what is the role of compounds that are left
out? Jeong et al. [450] made a heroic attempt to model the compound-based physiology of
Bacillus and introduced more than 200 parameters. However, many compounds have yet
to be identified and the quantities and dynamics of most compounds are largely unknown.
Moreover, the main components of organisms such as yeasts and vertebrates are different.
So investigating compounds does not seem a promising route to understand the similarity
in growth curves.

A better route would be to use the concept of energy, meaning something like ‘the ability
to do work’, which primarily consists of driving chemical reactions against the direction of
their thermodynamic decay. The term was first proposed by Thomas T. Young in 1807,
according to Blaxter [92]. Energy is stored in a collection of (organic) compounds, so a full
explanation requires the inclusion of mass fluxes, as I will explain on {35}. It is important
to realize here that there is a close link between energy and mass flows.

Proteins in food are first decomposed into amino acids, and amino acids are poly-
merized to proteins again. A similar process applies to carbohydrates and lipids, which
together with proteins constitute the main materials of life. The decomposition of many
types of source materials into a limited number of types of central metabolites before poly-
merization into biomass is known as the ‘funnel’ concept. The rich diversity of catabolic
machinery, especially among the prokaryotes, and the poor diversity of anabolic machinery
was recognized by Kluyver and Donker in 1926 [493].

The role of energy in cellular metabolism, in particular the generation and use of atp,
is the main focus of bioenergetics [645]. This compound is called the energy currency of
the cell. Together with nadph and nadh, which provide reducing power, it drives the
anabolic processes. Compounds involved in the decomposition processes are important for
the cell in two ways: through the production of atp from adp and p, which is produced
in anabolic processes, and through the production of elementary compounds that are sub-
strates for anabolic processes [416]. The final stages of the catabolic processing of lipids,
carbohydrates and proteins all make use of the same cellular machinery: the Krebs cycle.
To some extent, these substrates can substitute each other for fuelling purposes. The cell
chooses between the different substrates on the basis of their availability and its need for
particular substrates in anabolic processes.

After this introduction, it perhaps comes as a surprise that atp is not the main focus
in eco-energetics. This is because atp itself does not play a leading role in energy fluxes.
It has a role similar to that of money in your purse, while your bank account determines
your financial status. A typical bacterial cell has about 5 × 106 atp molecules, which
is just enough for 2 seconds of biosynthetic work [550]. The mean lifetime of an atp
molecule is about 0.3 seconds [370]. The cell has to make sure that the adenylate energy
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charge (1
2

adp + atp) (amp + adp + atp)−1 remains fairly constant (usually around 0.9,
but this matter is not settled yet). It does so by coupling endergonic (energy requiring)
and exergonic (energy releasing) reactions. If the energy charge is reduced, the energy yield
of the reaction atp→adp + p declines rapidly. The situation where the energy charge as
well as the concentration of amp + adp + atp remain constant relates to the concept of
homeostasis, {30}. Cells keep their purses well filled, which makes the dynamics of the
purse contents less interesting. atp is part of the machinery used to harvest or mobilize
energy.

A varying energy yield per mole of atp does not necessarily complicate metabolic
dynamics. It primarily affects the rate at which atp is produced in energy-yielding trans-
formations or consumed in energy-requiring transformations, and therefore also the rate
at which atp and adp commute between the sites where these transformations occur.
The analogy with money can be extended one step further: the big bank-money is in a
stable currency, while the exchange rate of the small purse-money may vary. The focus
on atp/ adp versus polymers is primarily a question of relevant time scales. Cell division
cycles and stages in the development of individuals last too long for a focus on atp.

The chemiosmotic theory was developed to explain the molecular mechanism of atp
generation. It has boosted biochemical research in cellular energetics, and it is now a
central issue in all texts on molecular biology [663], although competing theories do exist
[561]. The focus of bioenergetics on the processes of atp synthesis and use, matches the
classic division of metabolism into catabolic and anabolic processes very well [987]. This
division, however, is less straightforward in the context of the deb theory, where reserves
play an essential role, and processes of synthesis and decomposition occur repeatedly in
metabolism. Other differences exist as well. Cell size influences cellular processes through
the ratio between membrane surface area to cell volume. This gives the deb theory a
natural focus on cell and life cycles. The link between activity coupled to a surface area
(membrane) and mass of metabolic substrate and product coupled to volume is a corner-
stone in the deb theory for the uptake and use of energy.

1.1.4 Population energetics

If a population consists of individuals who take up and use energy in a particular way, how
will it behave in a given environment? If populations are tied up in food chains or webs,
how will these structures change dynamically? What new phenomena play a role at the
population as opposed to the individual level?

Except for work in the tradition of mathematical demography on which modern age-
structured population dynamic theory is based [157], most publications on population
dynamics, up to some years ago, have dealt with unstructured populations, i.e. populations
that can be characterized by the number of individuals only. So all individuals are treated
as identical, and are merely counted. This also applies to microbiology publications, which
basically deal with microbial populations and not with individual cells. This has always
struck me as most unrealistic, because individuals have to develop before they can produce
offspring. The impact of a neonate on food supplies is very different from that of an adult.
In the chapter on population dynamics, {328}, I show that neonates producing neonates
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themselves can dominate the dynamics of unstructured populations. This absurdity makes
one wonder to what extent unstructured population models have something useful to say
about real populations. Many modern views in ecology, e.g. concerning the relationship
between stability and diversity, are based on models of unstructured populations.

I will use arguments from energetics to structure populations, i.e. to distinguish between
different individuals. This, however, complicates population dynamics considerably, and
the first question to be addressed is: does this increase in complexity balance the gain in
realism? I know only one route to an answer: try it and see!

1.2 The art of modelling

1.2.1 Strategies

Before I start to develop a theory for energetics, I think it is important to explain my
ideas about theories and models in general. It is certainly possible that you may disagree
with part of what follows, and it is helpful to know exactly where the disagreement lies.
The source of a disagreement is frequently at a point other than where it first becomes
apparent. The final chapter, see {359}, evaluates the deb theory in the light of the points
of view presented in this section. I started this chapter by pointing to growth curves as an
example, because they feed the hope that it is possible to build a quantitative theory that
is not species-specific. My primary interest, however, is not limited to growth curves, it is
far more encompassing. How do phenomena operating at different levels of organization
relate to each other and how can these relationships be used to cross-fertilize different
biological specializations?

Let me state first that I do not believe in the existence of objective science. The
types of questions we pose and the types of observations we make bear witness to our
preconceptions. There is no way to get rid of them. There is nothing wrong with this, but
we should be aware of it. When we look around us we actually see mirrors of our ideas.
We can try to change ourselves on the basis of what we see, but we cannot do without the
projections we impose on reality. Observations and statements span the full range from
facts via interpretation to abstract ideas. The more abstract the idea, the more important
the mirror effect. Let me give an example of something that is not very abstract. I spend
a long day looking for a particular plant species. At the end of the day luck strikes, and
I find a specimen. Then I return home, using the same path, and shame, oh shame, this
species turns out to be quite abundant. To make matters worse, I am quite experienced in
this type of activity. So, if someone maintains that they would not miss the plants, I am
inclined to think that they are simply not able to criticize their own methodology.

I do not believe in the existence of one truth, one reality. If such a ‘truth’ did exist,
it would have so many partially overlapping aspects, that it would be impossible to grasp
them all simultaneously and recognize that there is just one truth. A consequence of this
point of view is that I do not accept a classification of theories into ‘true’ and ‘false’ ones.
In connection with this, I regard the traditional concepts of verification and falsification
as applied to theories as meaningless. Theories are always idealizations, so, when we
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look hard, it must be possible to detect differences between theory-based predictions and
observations. Therefore, I have taught myself to live happily with the knowledge that, if
there were only one reality and if theories can only be classified into ‘true’ or ‘false’ ones, all
of them would be classified as ‘false’. As it is not possible to have the concept ‘a bit true’,
believers in one reality do not seem very practical to me. Perhaps you judge this as cynical,
but I do not see myself as a cynic. Discussions suggest that colleagues with a quantitative
interest are more likely to share this point of view than those with a qualitative interest.

Instead of designating theories as ‘true’ or ‘false’, I classify them on the basis of their
usefulness. This classification is sensitive to the specification of a purpose and to a ‘state
of the art’. Theories can be most useful to detect relationships between variables, but can
lose their usefulness when the state of the art develops. Theories can be useful for one
purpose, but totally useless for another. When theories produce predictions that deviate
strongly from observations, they are likely to be classified as useless, so I do not think
that this pragmatism poses a threat to science in the eyes of the apostles of K. R. Popper.
Although it is satisfying to have no difference between prediction and observation, small
differences do not necessarily make a theory useless. It all depends on the amount of
difference and on the purpose one has in mind. A ‘realistic’ description then just means
that observations and descriptions do not differ much. There will always be the possibility
that a well fitting description rests on arguments that prove not to be realistic in the end.
Perhaps you think that this is trivial, but I do not. Take for instance goodness of fit tests
in statistics, where the null hypothesis is held to be true, and how they are applied, e.g. in
ecological journals. The outcome of the test itself is not instructive, for the reasons given.
It would be instructive, however, to have a measure of the difference between prediction and
observation that allows one to judge the usefulness of the theory. Such measures should,
therefore, depend on the theory and the purposes one has; it would be a coincidence to
find them in a general text on statistics.

The sequence, ‘idea, hypothesis, theory, law’ is commonly thought to reflect an increas-
ing degree of reliability. I grant that some ideas have been tested more extensively than
others and may be, therefore, more valuable for further developments. Since I deny the
existence of a totally reliable proposition, because I do not accept the concept of truth, I
only use this sequence to reflect an increasing degree of usefulness. It is, however, hard
and probably impossible to quantify this on an absolute scale, so I treat the terms in this
sequence more or less as synonyms. Each idea should be judged separately on its merits.

Mathematics as a language is most useful for formulating quantitative relationships.
Therefore, quantitative theories usually take the form of mathematical models. This does
not imply that all models are theories. It all depends on the ideas behind the model.
Ideally a model results, mathematically, from a list of assumptions. So, I am inclined to
identify sets of assumptions with theories. The formulation of empirical models does not
start with mechanistically inspired assumptions, and directly aims at models that describe
data sets. Although useful for certain applications, such models have little to do with
theories.

When model predictions agree with observations in a test, this supports the assump-
tions, i.e. it gives no reason to change them and it gives reason to use them for the time
being. As explained on {14}, the amount of support such a test gives is highly sensitive
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to the model structure. If possible, the assumptions should be tested one by one. From
a strict point of view, it would then no longer be necessary to test the model. Practice,
however, teaches us to be less strict.

People with a distaste for models frequently state that ‘a model is not more than you
put into it’. This is absolutely right, but instead of being a weakness, it is the single most
important aspect of the use of models. As this book illustrates, assumptions, summarized
in Table 3.3 on {121} have far reaching consequences that cannot be revealed without the
use of mathematics. Put into other words: any mathematical statement is either wrong or
follows from assumptions. Few people throw mathematics away for this reason.

The process of evolution selects for maximum numbers of offspring relative to individ-
uals with competing genes, and indirectly for optimal efficiency. Although this general
principle seems solid to me, the more detailed definition of fitness and optimality is very
sensitive to the specification of the (changing) environment. There are too many exam-
ples of organisms defeating optimization. For this and other reasons I do not promote
modelling that uses optimality criteria to derive a model structure for biological processes,
despite the fact that such models are increasingly popular, cf. [780,878]. The types of
models that seem most promising to me could be classified as functionally inspired causal
models, where ‘causal’ refers to mechanisms (cf. {363}). Optimality considerations then
only involve parameter values, not model structure. Optimality of fitness can hardly be
judged in constant environments, because the produced offspring become an element of
the environment; a full understanding of trait changes requires a holistic approach that
incorporates the indirect side effects.

The problem that everything depends on everything else in biology has strong impli-
cations for models that represent theories. When y depends on x, it is usually not hard
to formulate a set of assumptions, that imply a model that describes the relationship with
acceptable accuracy. This also holds for a relationship between y and z. When more and
more relationships are involved, the cumulative list of assumptions tends to grow and it
becomes increasingly difficult to keep them consistent, cf. {360}. This holds especially
when the same variables occur in different relationships. It is sometimes far from easy
to test the consistency of a set of assumptions. For example, when a sink of material
and/or energy in the maintenance process is assumed for individuals, it appears no longer
possible to assume a constant conversion of prey biomass into predator biomass at the
population level. It takes a few steps to see why; this is explained in the section on mass
transformation, {337}.

A major trap in model building is the complexity caused by the number of variables.
This trap became apparent with the advent of computers, which removed the technical
and practical limitations for the inclusion of variables. Each relationship, each parameter
in a relationship comes with an uncertainty, frequently an enormous one in biology. With
considerable labour, it is usually possible to trim computer output to an acceptable fit with
a given set of observations. This, however, gives minimal support for the realism of the
whole, which turns simulation results into a most unreliable tool for making predictions in
other situations. A model of the energetics of individuals can easily become too complex
for use in population dynamics. If it is too simple, many phenomena at the individual level
will not fit in. Then, it becomes difficult to combine realism at the individual level with
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Figure 1.2: The deb theory specifies a model
for the individual, which is used to model pop-
ulations in terms of individuals and ecosystems
in terms of populations. We simplify while in-
creasing the level of integration, and incorpo-
rate new processes that typically operate at that
level of organization. The model for the indi-
vidual serves as a constraint for modelling sub-
organismal processes that specify details of the
(physiological) behaviour of the individual, such
as regulation processes. This approach implies
a link between scales in space and time, which
excludes rapid processes at large spatial scales
and slow processes at small spatial scales.

coherence between levels of organization. The need for compromise, which is not typical
of energetics, makes modelling an art that is idiosyncratic to the modeller.

The only solution to the trap of complexity is to use nested modules. Sets of closely
interacting objects are isolated from their environment and combined into a new object, a
module, with simplified rules for input-output relationships. This strategy is basic to all
science. A chemist does not wait for the particle physicist to finish their job, though the
behaviour of the elementary particles determines the properties of atoms and molecules
taken as units by the chemist. The same applies to the ecologist who does not wait for
the physiologist. The existence of different specializations testifies to the relative success
of the modular approach, which still amazes me. The recently proposed hierarchy theory
in ecology [18,677] does basically the same within that specialization.

The problems that come with defining modules are obvious, especially when they are
rather abstract. The first problem is that it is always possible to group objects in different
ways to form new objects which then makes them incomparable. The problem would be
easy if we could agree about the exact nature of the basic objects, but life is not that
simple. The second problem with modules lies in the simplification of the input-output
relationships. An approximation that works well in one circumstance can be inadequate
in another. When different approximations are used for different circumstances, and this
is done for several modules in a system, the behaviour of the system can easily become
erratic and no longer contribute insight into the behaviour of the real thing. The principle
of reduction in science relates to the attempt to explain phenomena in terms of the smallest
feasible objects. I subscribe to a weaker principle: that of coherence. This aims to relate
the behaviour of modules to that of their components while preserving consistency.

Another implication of a modular setup is that scales in space and time are linked
[679], see Figure 1.2. It seems very hard, if not impossible, to model processes on a large
spatial and a small time scale, and vice versa. The primary reason is again avoiding a large
number of parameters by using modules. Using impressive computing power, it is feasible
to model water transport in the earth’s oceans, which seems to defeat the coupling of
scales. The modelling of this physical transport, however, involves only a limited number
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of parameters (and processes), given the shape of the oceans’ basins, explicit external wind
forcing and information on planetary rotation.

If we accept community ecology as a feasible science, I see two research strategies for
riding this horse. The first one is to accept that species differ considerably in the way
they take up and use resources. This would mean modelling the energetics of each species,
stripping the model of most of its details in various ways, and then trying to determine
the common features in population dynamics that these simplified models and the full
model produce. I do not share the hope that different traits of individuals will indeed
result in similar population dynamics. The second strategy, which is followed here, is to
try to capture the diversity of the different species energetics into one model with different
parameter values and build theories for these parameter values. The simplification step
before the assemblage of populations into a community remains necessary.

1.2.2 Systems

The deb theory is built on dynamic systems. The idea behind the concept of a system is
simple in principle, but in practice some general modelling problems might arise that are
best discussed here. A system is based on the idea of state variables, which are supposed to
specify completely the state of the system at a given moment. Completeness is essential.
The next step is to specify how the state variables change with time as a function of
a number of inputs and each other. The specification usually takes the form of a set
of differential equations, which have parameters, i.e. constants that are assumed to have
some fixed value in the simplest case. Usually this specification also includes a number of
outputs.

Parameters are typically constant, but sometimes the values change with time. This can
be described by a function of time, which again has parameters that are now considered
to be constant. For instance, parameters that have the interpretation of physiological
rates depend on temperature; therefore, they remain constant as long as the temperature
does not change. If the temperature does change, then the parameters do as well. Heat,
however, is generated as a side product of metabolism. In ectotherms, i.e. animals that
do not heat their body to a constant high temperature, heat production is low, because
of their usually low body temperature. The body temperature usually follows that of the
environment, and can thus be treated as a function of time. The situation is more complex
in developing birds, which make the transition to the endothermic state some days after
hatching. The hatchling’s temperature is high, because of brooding; therefore, metabolism
and heat production are also high. In addition, the young bird starts to invest extra energy
in heating. Here, the state variables of the system interfere with the environment, but not
via input; this means that the body temperature must be considered as an additional state
variable.

Choosing the state variables is the most crucial step in defining a system. It is usually
a lot easier to compare and test alternative formulations for the change of state variables,
than different choices of state variables. Models with different sets of state variables are
hardly comparable, both conceptually and in tests against data. Statistics basically deals
with parameter values, and is of little use when comparing the goodness of fit of models
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that differ in structure.
The variables that are easy to measure or those that will be used to test the model are

not always those that should be state variables. An example is metabolic rate, which is
measured as the respiration rate, i.e. oxygen consumption rate or carbon dioxide production
rate. Metabolic rate is not chosen as a primary variable or parameter in the deb theory;
it only has the role of a derived variable, which is nonetheless important. This point will
doubtlessly generate controversy. The metabolic rate has different components, each of
which follows simple rules. The sum of these components is then likely to behave in a less
simple way in non-linear models. The same holds for, for example, dry weights, which I
will decompose into structural biomass and reserve materials. A direct consequence of such
divisions is that experimental results that only include composite variables are difficult to
interpret. For mechanistic models, it is essential to use variables that are the most natural
players in the game. The relationship between these variables and those to be measured
is the next problem to be solved, once the model is formulated.

Thermodynamics makes a most useful distinction between intensive variables – which
are independent of size, such as temperature, concentration, density, pressure, viscosity,
molar volume, and molar heat capacity – and extensive variables, which depend on size,
such as mass, heat capacity and volume. Extensive variables can sometimes be added
in a meaningful way if they have the same dimension, but intensive variables cannot.
Concentrations, for example, can only be added when they relate to the same volume.
Then they can be treated as masses, i.e. extensive variables. When the volume changes,
we face the basic problem that while concentrations are the most natural choice for dealing
with mechanisms, we need masses, i.e. absolute values, to make use of conservation laws.
This is one of the reasons why one needs a bit of training to apply the chain rule for
differentiation.

1.2.3 Physical dimensions

A few remarks on physical dimensions are needed here, because a test for dimensions is
such a useful tool in the process of modelling. Remarkably, only a few texts deal with them
adequately.

Models that violate rules for dealing with dimensions are meaningless. This does not
imply that models that treat dimension well are necessarily useful models. The elemen-
tary rules are simple: addition and subtraction are only meaningful if the dimensions of
the arguments are the same, but the addition or subtraction of variables with the same
dimensions is not always meaningful; meaning depends on interpretation. Multiplication
and division of variables correspond with multiplication and division of dimensions. Sim-
plifying the dimension, however, should be done carefully. A dimension that occurs in both
the numerator and the denominator in a ratio does not cancel automatically. A handy rule
of thumb is that such dimensions only cancel if the sum of the variables to which they
belong can play a meaningful role in the theory. The interpretation of the variable and its
role in the theory always remain attached to dimensions. So the dimension of the biomass
density in the environment expressed on the basis of volume is cubed length (of biomass)
per cubed length (of environment); it is not dimensionless. This argument is sometimes
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quite subtle. The dimension of the total number of females a male butterfly meets during
its lifetime is number (of females) per number (of males), as long as males and females are
treated as different categories. If it is meaningful for the theory to express the number of
males as a fraction of the total number of animals, the ratio becomes dimensionless.

The connection between a model and its interpretation gets lost if it contains transcen-
dental functions of variables that are not dimensionless. Transcendental functions, such
as logarithm, exponent and sinus, frequently occur in models. pH is an example, where
a logarithm is taken of a variable with dimension number per cubed length (ln{#l−3}).
When it is used to specify environmental conditions, no problems arise; it just functions as
a label. However, if it plays a quantitative role, we must ensure that the dimensions cancel
correctly. For example, take the difference between two pH values in the same liquid. This
difference is dimensionless: pH1 − pH2 = ln{#l−3} − ln{#l−3} = ln{#l−3#−1l3} = ln{·}.
In linear multivariate models in ecology, the pH sometimes appears together with other
environmental variables, such as temperature, in a weighted sum. Here dimension rules
are violated and the connection between the model and its interpretation is lost.

Another example is the Arrhenius relationship, cf. {53} where the logarithm of a rate is
linear in the inverse of the absolute temperature: ln k̇(T ) = α−βT−1, where k̇ is a rate, T
the absolute temperature and α and β are regression coefficients. At first sight, this model
seems to violate the dimension rule for transcendental functions. However, it can also be
presented as k̇(T ) = k̇∞ exp{−TAT−1}, where TA is a parameter with dimension temper-
ature and k̇∞ is the rate at very high temperatures. In this presentation, no dimension
problem arises. So, it is not always easy to decide whether a model suffers from dimension
problems.

A further example is the allometric function ln y(x) = ln α + β ln x, or y(x) = α xβ,
where y is some variable, x has the interpretation of body weight, the parameter β is
known as the scaling exponent, and α as the scaling coefficient. At first sight, this model
also seems to violate the dimension rule for transcendental functions. Huxley introduced
it as a solution of the differential equation dy

dx
= β y

x
. This equation does not suffer from

dimensional problems, nor does its solution y(x) = y(x1)( x
x1

)β. However, this function has
three rather than two parameters. It can be reduced to two parameters for dimensionless
variables only. The crucial point is that, in most body size scaling relationships, a natural
reference value x1 does not exist for weights. The choice is arbitrary. The two-parameter
allometric function violates the dimension rule for transcendental functions and should,
therefore, not be used in models that represent theories. Models that violate dimension
rules are bound to be purely empirical. Although this has been stated by many authors, the
use of allometric functions is so widespread in energetics that it almost seems obligatory.

Many authors who use allometric functions are well aware of this problem. In discus-
sions, they argue that they just give a description that does not pretend to be explanatory.
However, they frequently use it in models that claim to be explanatory at another point.
For me, this is walking in marshy country which is why I have been explicit in my point
of view on theories, where there is no useful role for allometric functions. I accept that
they offer a description that is sparse in parameters and frequently accurate. I also un-
derstand the satisfaction that a log-log plot can give by optically reducing the frequently
huge scatter. I think, however, that they are an obstacle to understanding what is going
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on. I will show that energetics does not need allometric functions and that they are at the
root of many problems. One problem is that as soon as two groups of species are found
to differ in the scaling exponent β, they can no longer be compared on the basis of their
parameter values, because the dimensions of the parameter α differ. (The dimensions of α
have a statistical uncertainty as well.) This seems most paradoxical to me, because many
authors use allometric functions specifically for the purpose of comparing species, on the
basis of parameter values. If one or more parameters cannot be compared for different
species, because they have different dimensions, a most useful type of argument is lost.
This is why allometric functions spoil the argument.

I shall frequently use dimensionless variables, rather than the original ones which bear
dimensions. Although this procedure is standard when analysing the properties of models,
my experience is that many biologists are annoyed by it. I will, therefore, explain briefly
the rationale behind this usage.

The first reason for working with dimensionless variables is to simplify the model and
get rid of as many parameters as possible. This makes the structure of the model more
visible, and, of course, is essential for understanding the range of possible behaviours of
the model when the parameter values change. The actual values of parameters are usually
known with a high degree of uncertainty and they can vary a lot.

The second reason is to find out the parameter combinations that can actually be
estimated on the basis of a given set of observations. In the model y(x) = y(x1)( x

x1
)β

, the parameters x1, y(x1) and β cannot be estimated at the same time from a set of
observations {xi, yi}, no matter how extensive the set is. When all parameter values are
wanted, we need different, rather than more, observations. In many cases, knowledge
about the values of all parameters is not necessary for the use of the model. One intriguing
aspect is that it is not only impossible, but it is also not necessary to know the value of
any parameter that has a dimension that cannot be written as product and/or ratio of the
dimensions of the variables of the model; when the purpose is to test an energy-based model
against observations that do not contain energies, for instance, all estimatable parameters
are composed of ratios or products of parameters that contain energy in their dimension,
such that the energy dimension drops out. This holds for all models that treat physical
dimensions well, irrespective of how realistic they are. Some remarks on the ability to test
a model must be made in this context.

The third reason for working with dimensionless variables is that numerical methods for
integration and parameter estimation usually involve appropriate choices of step lengths,
norm values and the like. When the step length is not dimensionless, it depends on the
units of measurement in which the parameter are expressed, which is most inconvenient.

1.2.4 Statistics and support

The amount of support that a successful test of a model gives depends on the model struc-
ture and has an odd relationship with the ability to estimate parameters: the better one
can estimate parameters, the less support a successful test of a model gives. This is a rather
technical but vital point in work with models. I will try to make this clear with a simple
model that relates y to x, and which has a few parameters, to be estimated on the basis of
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a given set of observations {xi, yi}. We make a graph of the model for a given interval of
the argument x, and get a set of curves if we choose the different values of the parameters
between realistic boundaries. Two extremes could occur, with all possibilities in between:

• The curves have widely different shapes, together filling the whole
x, y-rectangular plot. Here, one particular curve will probably
match the plotted observations, determining the parameters in an
accurate way, but a close match gives little support for the model; if
the observations were totally different, another curve, with different
parameter values, would have a close match.

y

x

• The curves all have similar shapes and are close together in the x, y-
rectangular plot. If there is a close match with the observations,
this gives substantial support for the model, but the parameter
values are not well determined by the observations. Curves with
widely different parameter values fit equally well.

y

x

Two alternative models for biodegradation, with the same number of parameters, illus-
trate both situations in Figure 1.3. Of course, the choice of the model’s structure is not
free; it is dictated by the assumptions. I mention this problem to show that testability
is a property of the theory and that nice statistical properties can combine with nasty
theoretical ones and vice versa. It is essential to make this distinction.

The properties of parameter estimators also depend on the way the parameters are
introduced. In the regression of y on x, the estimators for parameters a and b in the
relationship y = x2(a + bx) are strongly negatively correlated when in the observations
{xi, yi}ni=1, all xi > 0; the mathematically totally equivalent relationship y = x2(c +
b(x − ∑

i x
3
i /
∑

i x
2
i )) suffers much less from this problem. Replacement of the original

parameters by appropriately chosen compound parameters can also reduce correlations
between parameter estimates.

An increase in the number of parameters usually allows models to assume any shape in
a graph. This is closely connected with the structural property of models just mentioned.
So a successful test against a set of observations gives little support for such a model, unless
the set includes many variables as well. A fair comparison of models should be based on
the number of parameters per variable described, not on the absolute number.

Observations show scatter, which reveals itself if one variable is plotted against another.
It is such an intrinsic property of biological observations that deterministic models should
be considered as incomplete. Only complete models, i.e. those that describe observations
which show scatter, can be tested. The standard way completing deterministic models is
to add ‘measurement error’. The definition of a measurement error is that, if the mea-
surements are repeated frequently enough, the error will disappear in the mean of these
observations. Such models are called regression models: y

i
(xi) = f(xi|pars) + ǫi. They are

characterized by a deterministic part, here symbolized by the function f , plus a stochastic
part, ǫ. The latter term is usually assumed to follow a normal probability density, with
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Dynamics
d

dt
X = −α̇Xn

Solution

X(t) =
(

X1−n
0 − (1− n)α̇t

)(1−n)−1

Special cases

X(t)
n=0
= X0 − α̇t for t < X0/α̇

X(t)
n=1
= X0 exp{−α̇t}

Scaled solution

x(τ) = (1− (1− n)τ)(1−n)−1

with x ≡ X
X0

; τ ≡ tα̇Xn−1
0

Dynamics

d

dt
X = −ḃ

X

XK + X

Solution

0 = X(t)−X0 + XK ln{X(t)/X0}+ ḃt

Special cases

X(t)
XK≪X0= X0 − ḃt for t < X0/ḃ

X(t)
XK≫X0= X0 exp{−ḃt/XK}

Scaled solution

0 = x(τ)− 1 + xK lnx(τ) + (xK + 1)τ

with x ≡ X
X0

; τ ≡ tḃ
XK+X0

;xK ≡ XK
X0

Figure 1.3: The n-th order model for biodegradation of a compound X during time t is much
more flexible in its morphology as a function of parameter values than the Monod model, while
both models have three parameters (start concentration X0, a rate parameter, α̇ or ḃ and a shape
parameter: the order n or the saturation constant XK). Both models give identical X(t) curves
if n = 0 and XK → 0 and if n = 1 and XK → ∞. While all possible shapes of curves can
be scaled between these two boundaries for the Monod model, many other shapes are possible
for the n-th order model. This means that observations better determine the parameter values
of the n-th order model, but that a good fit gives less support, compared to the Monod model.
Moreover, the n-th order model suffers from dimension problems if n is not an integer, and has
a more complex link with mechanisms, if any.
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mean 0 and a fixed variance, which is one of the parameters of the model.

The interpretation of scatter as measurement error originates from physics. It is usually
not realistic in biology, where many variables can be measured accurately in comparison
with the amount of scatter. The observations just happen to differ from model expec-
tations. When the scatter is large, the model is useless, despite its goodness of fit as
a stochastic model. A realistic way of dealing with scatter is far from easy and usually
gives rise to highly complicated models [63]. Modellers are frequently forced to compro-
mise between realism and mathematical oversimplicity. This further degrades the strict
application of goodness of fit tests for models with unrealistic stochastic components.

For lack of better ready-to-use alternatives, the tests against observations in this book
will be based mainly on the regression method. This is most unsatisfactory, but such is
life. I will, however, discuss two alternatives: individuals with stochastic inputs, {221},
and individuals that have different parameter values, {267,335} [63]. The motivation is
that behavioural components of the feeding process are notoriously erratic, thus contribut-
ing significantly to the scatter, and individuals tend to deviate from each other in their
input/output behaviour. Observations from a single individual usually have less scatter
than those from different ones. The mathematics behind these alternatives is quite tedious,
so I rely mainly on computer simulation studies.

I give estimates in this book for standard deviations for many parameter values that are
obtained from experimental results, to roughly indicate accuracy. I follow this standard
procedure with some hesitation on two grounds. The first reason to doubt the usefulness
is that the value of the standard deviation is rather sensitive to the stochastic part of the
model, which might not be very realistic, as discussed. The second reason is that such
standard deviations do not account for correlations between parameters. A small standard
deviation for a parameter, therefore, does not necessarily mean that such a parameter is
known accurately, an error that is easy to make.

1.3 Summary

Similarity of growth among widely different organisms suggests the existence of common
organizing principles that involve many aspects of energetics. Most of the basic questions
have deep roots in the history of science. The aim of the deb theory is to identify the main
rules for the uptake and use of substrates (nutrients, light, food) that all organism have
in common, and to develop a simple quantitative framework for metabolism, as it changes
during the life cycle of an organism, based on elementary physico-chemical principles.

A fresh approach to the problem of revealing the common principles requires a care-
fully formulated philosophical position, and modelling principles that are more strict than
usual. They are briefly presented. I emphasize the principle that theory-based modelling
should start with the formulation of assumptions, from which mathematical descriptions
are derived. The essence of modelling is that the set of assumptions is all that is used and
no hidden preconceptions should slip in when deriving the mathematical description. Lack
of support should be used to re-formulate assumptions.

I briefly introduce dimension analysis; statistical remarks are made in relation to em-
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pirical support of models and estimation of parameter values. I explain why the standard
method of allometry is of little use in the understanding of common organizing principles.



Chapter 2

Basic concepts

The purpose of this chapter is to introduce some general concepts to prepare for the devel-
opment of the deb theory in the next chapter. I present many tests against experimental
data. These tests require careful interpretation of data, making use of the material pre-
sented in this chapter.

2.1 Individuals: the basic level of organization

From a systems analysis point of view, individuals are special because at this organizational
level it is relatively easy to make mass balances. This is important, because the conservation
law for mass and energy is one of the few hard laws available in biology. At the cellular and
at the population level it is much more difficult to measure and model mass and energy
flows. It is argued on {300} that life started as an individual in evolutionary history rather
than as a particular compound, such as rna. The individual is seen as an entity separated
from the environment by physical barriers. Discussion should, therefore, start at the level
of the individual.

2.1.1 Input/ output relationships

Any systems model relates inputs to a system with outputs of that system as a function of
its state. Although many formulations suggest that the output is the result of the state of
the system and its input, this cause-and-effect relationship is, in fact, a matter of subjective
interpretation. The input might as well result from the state and the output; input, state
and output change simultaneously, without an objective causality.

The deb model for uptake and use of energy in terms of input/output relationships
is neutral with respect to the interpretation in terms of ‘supply’ and ‘demand’. In the
‘supply’ interpretation, the lead is in the feeding process, which offers an energy input to
the individual. The available energy flows to different destinations, more or less as water
flows through a river delta. In the ‘demand’ interpretation, the lead is in some process
that uses energy, such as maintenance and/ or growth, which requires some energy intake.
Food-searching behaviour is then subjected to regulation processes in the sense that an
animal eats what it needs. I think that in practice species span the whole range from
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‘supply’ to ‘demand’ systems. A sea-anemone, for example, is a ‘supply’ type of animal. It
is extremely flexible in terms of growth and shrinkage, which depend on feeding conditions.
It can survive a broad range of food densities. Japanese bonsai cultures cannot illustrate
better that plants are typical supply systems as well. Birds are examples of ‘demand’
systems and they can only survive at relatively high food densities. The range of possible
growth curves is thus much more restricted.

Even in the ‘supply’ case, growth may be regulated carefully by hormonal control sys-
tems. Growth should not proceed faster than the rate at which the energy and elementary
compounds necessary to build the new structures can be mobilized. Models that describe
growth as a result of hormonal regulation should deal with the problem of what determines
the hormone levels. This requires studying organization at the individual level. The con-
ceptual role of hormones is linked to the similarity of growth patterns despite the diversity
of regulating systems. In the deb theory, messengers such as hormones are part of the
physiological machinery that an organism uses to regulate its growth. Their functional
aspects can only be understood by looking at other variables and compounds.

Balance equations are extremely useful for specifying the constraints on the simulta-
neous behaviour of input, state and output of systems. Only precise book-keeping can
avoid sources and sinks be overlooked. The possibility of formulating balance equations is
a most useful aspect of the abstract quantity ‘energy’, cf. {35}. The conservation law for
energy was originally formulated by von Mayer [600] in 1842, although its precursors go
back as far as G. W. F. Leibnitz in 1693 [147]. This law is known today as the first law
of thermodynamics. The law of conservation of mass was first described in a paper by A.
L. Lavoisier in 1789.

2.1.2 State variables

Many models for growth have age as a state variable. Age itself has excellent properties
as a measuring-tape, because it has a relatively well-defined starting point (here taken
to be the start of embryogenesis and not birth, i.e. the transition from the embryonic
state to the juvenile one). It can also be measured accurately. Some well-studied species
only thrive on an abundant food supply, which results in well-defined and repeatable size-
age curves. This has motivated a description of growth in terms of age, where food is
considered as an environmental variable, like temperature, rather than a description in
terms of input/ output relationships and energy allocation rules.

One frequently applied model was proposed by Gompertz [335] :

W (t) = W∞ (W0/W∞)exp{−ṙGt}

where W (t) is the weight, usually the wet weight, of an individual at time t and ṙG the
Gompertz growth rate. The individual grows from weight W0 asymptotically to weight
W∞. This is essentially an age-based model, which becomes visible from a comparison
of alternative ways of expressing it as a differential equation: d

dt
ln W = −ṙG ln W

W∞
or

d2

dt2
ln W = −ṙG

d
dt

ln W . The first equation states that the weight-specific growth rate
decreases proportionally to the logarithm of weight as a fraction of ultimate weight. (Note
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Figure 2.1: These talking gouramis, Trichopsis vittatus, come from the same brood and therefore
are the same age. They also grew up in the same aquarium. The size difference resulted from
competition for a limited amount of food chunks, which amplified tiny initial size differences.
This illustrates that age cannot serve as a satisfactory basis for the description of growth.

that the notation d
dt

ln W suggests a dimension problem, because it looks as if the argument
of a transcendental function is not dimensionless. Its mathematically equivalent notation,
W−1 d

dt
W , shows that no dimension problem exists here.) It is hard to put a mechanism

behind this relationship. The second equation states that the change in weight-specific
growth rate decreases proportionally with the growth rate, which can be linked to a simple
aging mechanism where the ability to grow fades according to a first-order process. In the
situation of abundant food, this model usually gives an acceptable fit. The problems with
this model and similar ones become apparent when growth has been measured at different
food availabilities.

Figure 2.1 shows two fish from the same brood, which have lived in the same five-litre
aquarium. Their huge size difference shows that age-based growth models are bound to
fail. The mechanism behind the size difference in this case is the way of feeding, which
involved a limited number of relatively big food chunks for the whole brood. Initially, the
size differences were very small, but the largest animal always took priority over its smaller
siblings, which amplified the size differences. Similar results apply to prokaryotes, which
have a poor control over age-at-division at constant substrate density, but a high control
over size-at-division [500].

Apart from empirical reasons for rejecting age as a state variable for the description of
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growth, it cannot play the role of an explanatory variable from a physical point of view.
Something that proceeds with age, such as damage caused by free radicals, cf. {140}, can
play that role. One will need an auxiliary model to show in detail how such a variable
depends on age. One of the problems with the Gompertz model and related ones is that
growth is not caused by a difference between an uptake and a usage term. Instead, it
is formulated as an intrinsic property of the organism. The environment can only affect
growth through the parameter values.

When feeding is conceived as input of energy, size must be one of the state variables. A
large individual eats much more than a small one, so it is hard to imagine a realistic model
for growth that does not have size as one of the state variables; however, many quantities
can be taken to measure size. Examples are volume, wet weight, dry weight, ash-free dry
weight, amount of carbon or energy etc. Originally I thought that, to some extent, they
were more or less interchangeable, depending on the species. Now, I am convinced that
volume is the only natural choice to measure size in the context of the present theory, where
surface areas play such an important role. A volume (organism) living in another volume
(environment) is bound to communicate with it over a surface area. The deb theory
makes use of the interpretation of the size/surface-area ratio in terms of length. Masses
are of considerable interest for implementing mass balances, and weights are practical for
comparing theoretical predictions with data. The relationships between size measures are
discussed on {31}.

Size alone is not enough to describe the process of substrate use and the implied uptake.
For several reasons, energy reserves should be considered as well, even in the most simple
models.

The first reason is the existence of maintenance, i.e. a continuous drain of energy
necessary to keep the body going. Feeding on particles, even if these particles are molecules,
implies that there are periods when no particles arrive. The capacity of a digestive system
cannot realistically be made big enough to smooth out the discrete arrival process, in
order to ‘pay’ the steady costs of maintenance. Other costs are paid as well in the absence
of any food input. Spectacular examples of prolonged action without food intake are the
European, North American and New Zealand eels, Anguilla, which stop feeding at a certain
moment. Their alimentary canal even degenerates, before the 3000-km-long journey to
their breeding grounds where they spawn. The male emperor penguin Aptenodytes forsteri
breeds its egg in Antarctic midwinter for two months and feeds the newly hatched chick
with milky secretions from the stomach without access to food. The male loses some 40%
of its body weight before assistance from the female arrives.

The second reason for including energy reserves is that individuals react slowly to
changes in their feeding conditions. Again, this cannot be described realistically with the
digestive system as a buffer, because its relaxation time is too short.

The third reason is that well-fed individuals happen to have a different (chemical)
body composition than those in poor feeding conditions. The type of difference depends
on the species, as is discussed later. Originally I thought that, as long as food density was
constant, one could do without storage. This is why the first version of the deb model
[524] did without a state variable representing energy storage. However, when growth at
different food densities is compared and storage levels depend on food density, one should
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Figure 2.2: The sample survivor function
(see Glossary) of shape coefficients for Eu-
ropean birds (left) and Neotropical mam-
mals (right). The lengths include the tail
for the birds, but not for mammals. Data
are from Bergmann and Helb [71] and
Emmons and Feer [255]. The fitted sur-
vivor functions are those of the normal dis-
tribution. shape coefficient, δM
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include storage even under these simple conditions.
Size and stored energy should play a role in even the simplest model for the uptake

and use of energy. Several other state variables, such as the contents of the digestive
system, energy density of the blood, etc., are necessary to describe the finer details of some
physiological processes, but they need not play a significant role at the population level.
For the purposes of population dynamics analysis and the contribution of aging therein, it
makes sense to introduce age as an auxiliary third state variable. It is also necessary to
distinguish between life-stages to catch qualitative differences in energetics, cf. {59}.

2.2 Body shape: surface area/ volume relationships

The shape of organisms cannot be described accurately. For an understanding of energetics,
only two aspects of size and shape are relevant, as is explained later: surface areas for
acquisition processes and volumes for maintenance processes. Shape defines how these
measures relate to each other. Measurements of lengths are usually easy to obtain in a
non-destructive way. This also holds for weights of animals. So, the practical problem has
to be solved of how these measurements relate to surface areas and volume. Contrary to
volumes and weights, lengths depend on shape, and details about its measurement must
be provided.

As a first crude approximation, wet weights, Ww, i.e. the weight of a living organism
without adhering water, can be converted to physical volumes, Vw, by division through a
fixed specific density dV w, which is close to 1 g cm−3. So Ww = dV wVw, where dV w is taken
here to be a (fixed) parameter.

If an organism does not change its shape during development, an appropriately chosen
length measure, L, can be used to obtain its volume. The length is multiplied by a fixed
dimensionless shape coefficient δM and the result is raised to the third power: Vw =
(δML)3. The shape coefficient, defined as volume1/3 length−1, is specific for the particular
way the length measure has been chosen. Thus the inclusion or exclusion of a tail in the
length of an organism results in different shape coefficients. A simple way to obtain an
approximate value for the shape coefficient belonging to length measure L is on the basis
of the relationship δM = ( Ww

dV w
)1/3L−1.
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Table 2.1: The means and coefficients of variation of shape coefficients of European birds and
mammals and Neotropical mammals.

Taxon Source Number Mean cv Mean cv
tail included tail excluded

European birds [131,255] 418 0.186 0.14
European mammals [116] 128 0.233 0.27 0.335 0.28
Neotrop. mammals [71] 246 0.211 0.41 0.328 0.18

The following considerations may help in getting acquainted with the shape coefficient.
For a sphere of diameter L and volume L3π/6, the shape coefficient is 0.806 with respect
to the diameter. For a cube with edge L, the shape coefficient takes the value 1, with
respect to this edge. The shape coefficient for a cylinder with length L and diameter Lφ is
(π

4
)1/3(L/Lφ)−2/3 with respect to the length.

The shapes of organisms can be compared in a crude way on the basis of shape co-
efficients. Figure 2.2 shows the distributions of shape coefficients among European birds
and Neotropical mammals; they fit the normal distribution closely. Summarizing statis-
tics are given in Table 2.1, which includes European mammals as well. Some interesting
conclusions can be drawn from the comparison of shape coefficients. They have an amaz-
ingly small coefficient of variation (cv), especially in birds (including sphere-like wrens and
stick-like flamingos), which probably relates to constraints for flight. Mammals have some-
what larger shape coefficients than birds. They tend to be more spherical, which possibly
relates to differences in mechanics. The larger coefficient of variation indicates that the
constraints are perhaps less stringent than for birds. The spherical shape is more efficient
for energetics because cooling is proportional to surface area and a sphere has the smallest
surface area/volume ratio, namely 6/Lφ. When the tail is included in the length, Euro-
pean mammals have somewhat larger shape coefficients than Neotropical mammals, but
the difference does not arise when the tail is excluded. Neotropical mammals tend to have
longer tails, which is probably because most of them are tree dwellers. The temperature
difference between Europe and the Neotropics does not result in mammals in Europe being
more spherical to reduce cooling.

These considerations should not obscure the practical purpose of shape coefficients,
which is to convert shape-specific length measures to volumetric lengths, i.e. cubic roots
of volumes. In contrast to lengths, volumetric lengths do not depend on shape. Each
parameter that has length in its dimensions is sensitive to the way that those lengths are
measured (including or excluding extremities, etc.). As long as the comparison is made
between bodies of the same shape, there is no need for concern, but as soon as different
shapes are compared, it is essential to convert length to volumetric length, the rationale
being that a comparison based on unit volumes of organisms is made on the basis of cells.
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2.2.1 Isomorphism

Isomorphism is an important property that applies to the majority of species on Earth.
It refers to conservation of shape as an individual grows in size. The shape can be any
shape and the comparison is only between the shapes that a single individual takes during
its development. If organisms have a permanent exoskeleton, however, there are stringent
constraints on their shape [516].

Two bodies of a different size are isomorphic if it is possible to transform one body
into the other by a simple geometric scaling in three dimensional space: scaling involves
only multiplication, translation and rotation. This implies, as Archimedes already knew,
that if two bodies have the same shape and if a particular length takes value L1 and L2 in
the different bodies, the ratio of their surface areas is (L1/L2)2 and that of their volumes
(L1/L2)3, irrespective of their actual shape. It is, therefore, possible to make assertions
about the surface area and the volume of the body relative to some standard, on the basis
of lengths only. One only needs to measure the surface area or volume if absolute values
are required. This property is used extensively in this book.

Most species are approximately isomorphic. It is
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not difficult to imagine the physiological significance
of this. Process-regulating substances in the body
tend to have a short lifetime to cope with changes, so
such substances have to be produced continuously.
If some organ secretes at a rate proportional to its
volume (i.e. number of cells), isomorphism will re-
sult in a constant concentration of the substance in
the body. The way the substance exercises its influ-
ence does not have to change with changing body
volume in order to obtain the same effect in iso-
morphs. Organisms and cells monitor their size,
but the way they do this is considered to be an
open problem [963, p 123]; the following argument
shows that organisms and cells do not need to accu-
mulate compounds with increasing size to monitor
their size.

Surface-area-volume relationships play an essen-
tial role in the communication between the extensive
variable body size and intensive variables such as concentrations of compounds and rates
of reaction between compounds. Secreting organs ‘know’ their volume relative to body
volume by the build up of the concentration of their products in the body. Each cell in
the body ‘knows’ its volume by the ratio between its volume and the surface area of its
membranes. This is because most enzymes only function if bound to a membrane, with
their substrates and products in the cell volume as illustrated. The functional aspect is
that the production of enzymes is a relatively slow process, a handicap if a particular
transformation needs to be accelerated rapidly. Most enzymes can be conceived of as fluffy
structures, with performance depending on the shape of the molecule’s outer surface and
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the electrical charge distribution over it. If bound to a membrane, the outer shape of the
enzyme changes into the shape required for the catalysis of the reaction specific to the
enzyme. Membranes thus play a central role in cellular physiology [316,374,985]. The
change in surface area/volume ratios at a micro-scale has important kinetic implications
as is shown in the discussion on structural homeostasis {246}.

Many pathways require a series of transformations and so involve a number of enzymes.
The binding sites of these enzymes on the membrane are close to each other, so that the
product of one reaction does not disperse in the cytosol before being processed further.
The product is just handed over to the neighbouring enzyme in a process called piping.
Interplay between surface areas and volumes is basic to life, not only at the level of the
individual, but also at the molecular level.

2.2.2 Changing shapes

Huxley [438] described how certain parts of the body can change in size relative to the
whole body, see {177}. He used allometric functions to describe this change and high-
lighted the problem that if some parts change in an allometric way, other parts cannot.
From an energetics point of view, the change in relative size of some extremities is not very
important. The total volume is of interest because of maintenance processes, and certain
surface areas for acquisition processes. The fact that wing development, for instance, is
delayed in birds is of little relevance to whole body growth. The basic problem is in the
relationship between the size measure for the scaling of uptake rates and the volume that
has to be maintained.

Some species such as echinoderms and some insects change shape over different life-
stages. Plants are extreme in this, and environmental factors contribute substantially to
changes in shape. Some of these changes do not cause problems because food intake is
sometimes restricted to one stage only. If the shape changes considerably during devel-
opment, and if volume has been chosen as the basis for size comparisons, the processes
related to surface area should be corrected for these changes in shape. A convenient way
to do this is to use the dimensionless shape correction function M(V ), which stands for
the actual surface area relative to the isomorphic one for a body with volume V , where
a particular shape has been chosen as the reference. The derivation of this function will
be illustrated for what I call V0-, and V1-morphs: idealized morphs that change in shape
during growth in a particular way. Many organisms approach these idealized changes quite
accurately, others can be conceived as static or dynamic mixtures of two or more of these
idealized growing morphs, as will be shown.

V0-morphs

The surface area of a V0-morph is proportional to volume0, so
it remains constant. Only the surface area matters that is in-
volved in the uptake process. A biofilm on a plane, diatoms and

dinoflagellates are examples, see Figure 2.3. The outer dimensions do not increase during
the synthesis of cytoplasm. The vacuoles shrink during growth of the cell, and should be
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excluded from the structural volume that requires maintenance costs. The surface area
of a V0-morph is Ad, say. An isomorph has surface area Ad(V/Vd)2/3. The value Vd is a
reference that is required to compare both types of morphs; at this volume they have the
same surface area. The shape correction function for a V0-morph is

M(V ) = (V/Vd)−2/3 (2.1)

In the section on diffusion limitation on {235}, I discuss situations where the outer bound-
ary of the stagnant water mantle around a small organism restricts uptake. If the mantle
is thick enough, the uptake will resemble that of a V0-morph, whatever the actual changes
in shape of the organism.

V1-morphs

The surface area of a V1-morph is proportional to volume1. It (usually) grows in one
dimension only, and it is possible to the orient the body such that the direction of growth
is along the x-axis, while no growth occurs along the y- and z-axes. The different body sizes
can be obtained by multiplying the x-axis by some scalar l. An example of a V1-morph is
the filamentous hyphe of a fungus with variable length, and thus variable volume V , but a
fixed diameter, see Figure 2.3. Its surface area equals A(V ) = AdV/Vd, where Ad denotes
the surface area at V = Vd. The surface area of an isomorph equals A(V ) = Ad(V/Vd)2/3.
So the shape correction function for V1-morphs becomes

M(V ) =
AdV/Vd

Ad(V/Vd)2/3
= (V/Vd)1/3 (2.2)

It is not essential that the cross section through a filament is cir-
cular; it can be any shape, as long as it does not change during
growth.

A V1-morph can also grow in two dimensions, however, as is
illustrated by sheets, i.e. flat bodies with a constant, but small,
height. The archaebacterium Methanoplanus , and Walsby’s bac-
terium [478,965] fit this description. Several colonies, such as the sulphur bacterium
Thiopedia, the blue-green bacterium Merismopedia and the green alga Pediastrum, also
fall into this category; see Figure 2.3. How sheets grow in two dimensions does not matter:
they may change wildly in shape during growth. Height must be small to neglect the
contribution of the sides to the total surface area. The surface area of the sheet relates to
its volume as A(V ) = 2V L−1

h , where Lh denotes the height of the sheet and the factor 2
accounts for the upper and lower surface areas of the sheet. Division by the isomorphic
surface area A(Vd)(V/Vd)2/3 gives M(V ) = (V/Vd)1/3, as for filaments, i.e. V1-morphs.

Static mixtures

Cooper [174] argues that at constant substrate density Escherichia grows in length only,
while the diameter/length ratio at division remains constant for different substrate densi-
ties. This mode of growth and division is typical for most rod-shaped bacteria, and most
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V0-morph. The dinoflagellate Ceratium has a
rigid cell wall, which does not grow during the
cell cycle, nor does the adjacent outer membrane
that takes up nutrients. Cytoplasm growth is at
the expense of internal vacuoles.

V1-morph. A mycelium of a fungus, such as Mu-

cor, can be conceived as a branching filament,
with a constant diameter. If the mycelium be-
comes dense, uptake is usually no longer propor-
tional to the total filament length or number of
growing tips of branches.

V1-morph. The blue-green bacterial colony
Merismopedia is only one cell layer thick. Al-
though this sheet grows in two dimensions, it is
a V1-morph. The arrangement of the cells re-
quires an almost perfect synchronization of the
cell cycles.

Figure 2.3: A sample of organisms that change in shape during growth in very particular ways.
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bacteria are rod-shaped. Shape and volume at division, at a given substrate density, are
selected as a reference. The cell then has, say, length Ld, diameter δLd, surface area Ad

and volume Vd. The fraction δ is known as the aspect ratio of a cylinder. The index d
will be used to indicate length, surface area and volume at division at a given substrate
density. The shape of the rod shaped bacterium is idealized by a cylinder with hemispheres
at both ends and, in contrast to a filament, the caps are now included. Length at division

is Ld =
(

4Vd

(1−δ/3)δ2π

)1/3
, making length L = δ

3

(

4Vd

(1−δ/3)δ2π

)1/3
+ 4V

πδ2

(

(1−δ/3)δ2π
4Vd

)2/3
. Surface

area becomes A = L2
d

π
3
δ2 + 4V

δLd
. The surface area of an isomorphically growing rod equals

Ad(V/Vd)2/3. The shape correction function is the ratio of these surface areas. If volume,
rather than length, is used as an argument, the shape correction function becomes

M(V ) =
δ

3

(

V

Vd

)−2/3

+

(

1− δ

3

)

(

V

Vd

)1/3

(2.3)

When δ = 0.6, the shape just after division is a sphere as in
cocci, so this is the upper boundary for the aspect ratio δ. This
value is obtained by equating the volume of a cylinder to that of
two spheres of the same diameter. When δ → 0, the shape tends to that of a V1-morph.

The shape correction function for rods can now be conceived as
a weighted sum of those for a V0- and a V1-morph, with a simple
geometric interpretation of the weight coefficients. A cylinder that
grows in length only, with flat caps and an aspect ratio δ at V = Vd, has the shape correction
function

M(V ) =
δ

δ + 2

(

V

Vd

)−2/3

+
2

δ + 2

(

V

Vd

)1/3

(2.4)

which is again a weighted sum of correction functions for V0- and V1-morphs. For the
aspect ratio δ → ∞, the shape can become arbitrary close to that of a V0-morph. The
exact geometry of the caps is thus less important for surface area/volume relationships.
Rods and cylinders are examples of static mixtures of V0- and V1-morphs, i.e. the weight
coefficients do not depend on volume. Crusts are examples of dynamic mixtures of V0-
and V1-morphs, and are discussed on {250}.
Summary

The table at the right summarises the shape correction func-
tions for isomorphs of different dimensions. The power of the
scaled volumes has an odd relationship with the dimension
of isomorphy. Mixtures of V0- and V1-morphs can resemble
isomorphs, depending the weight coefficients and the range of
values for the scaled volume.

morph M(V )

V0 (V/Vd)
−2/3

V1 (V/Vd)
1/3

iso (V/Vd)
0
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2.3 Body size and composition

2.3.1 Homeostasis

The compounds that cells use to drive metabolism require enzymes for their chemical
transformation. Compounds that react spontaneously are excluded. In this way cells
achieve full control over all transformations, because they synthesize enzymes, consisting
of protein, themselves. No reaction runs without the assistance of enzymes. The properties
of enzymes depend on their micro-environment. So homeostasis, i.e. a constant chemical
composition, is essential for full control. Changes in the environment in terms of resource
availability, both spatial and temporal, require the formation of reserve pools to ensure
a continuous supply of essential compounds for metabolism. This implies a deviation
from homeostasis. The cell’s solution to this problem is to make use of polymers that are
not soluble. In this way these reserves do not change the osmotic value, and neither do
they affect the capacity of monomers to do chemical work (cf. {35}). In many cases cells
encapsulate the polymers in membranes, to reduce interference even further, at the same
time increasing access, as many cellular activities are membrane bound (cf. {246}).

Storage and structural compounds have a limited life span in an organism, but the
turnover mechanisms differ. Storage materials are continuously used and replenished,
while structural materials, and in particular proteins, are continuously degraded and re-
constructed. Most proteins (enzymes) have a fragile, tertiary structure, which results in
very short mean functional lifetimes. Energy costs of protein turnover are included in
maintenance costs. The deb model assumes no maintenance for energy reserves. This
is most obvious for freshly laid bird eggs, which are composed almost entirely of reserve
materials and use practically no oxygen, as is discussed on {98,135}.

Reserve materials can be distinguished from materials of the structural mass by a
change in relative abundance if resource levels change. This defining property breaks down
in case of extreme starvation, when structural materials are degraded as well when reserves
are exhausted. An example of this is the break down of muscle tissue, which must be
considered as structural material, in mammals such as ourselves. The distinction between
reserves and structural materials is meant to accommodate the fact that some materials
are more mobile than others. deb theory builds on a two-way classification. It assumes
that structural mass and reserve do not change in composition; I call this assumption the
strong homeostasis assumption; it forms the basis of the quantification of size.

The word ‘reserve’ to describe material perhaps suggests that this material is set aside
by metabolism for later use, being metabolically inert until that moment. This meaning
is not implied here; reserve materials can be used directly upon creation, and can have an
active role in metabolism, cf. {244}. A better phrasing would possibly be ‘material that
is available for metabolic use’, or ‘reversible mass’. Rules for the actual rate of use form a
cornerstone in the deb theory.

Since the amount of reserves can change relative to the amount of structural materials,
the chemical composition of the whole body can change. That is, it can change in a
particular way. This is a consequence of choosing energy as a state variable rather than
the complete catalogue of all compounds.
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Later, {82}, I assume that homeostasis applies to the whole organism (including struc-
tural mass and reserves) from birth to death if food density does not change and reserves
are at equilibrium. This is called the weak homeostasis assumption. Weak homeostasis is
basically different from strong homeostasis. Strong homeostasis has nothing to do with re-
serve dynamics, while weak homeostasis partly specifies the reserve dynamics. The reserve
dynamics will be underpinned mechanistically on the basis of the structural homeosta-
sis assumption, see {246}. Structural homeostasis also provides an explanation for weak
homeostasis. Contrary to strong homeostasis, weak homeostasis only applies at steady
state. The composition of a whole organism changes during transient states, unless the
reserves and structure have the same composition, which will generally not be true.

The two-way classification of compounds into permanent (structural mass) and tran-
sient (reserves) groups is too simplistic for an understanding of autotrophs, which obtain
nutrients independently from the environment and are faced with the problem of how to
couple them stoichiometrically to synthesize structural mass of a constant composition. In
Chapter 5 on multivariate deb models, I delineate several reserves and structural masses
(roots and shoots) to accommodate autotrophs.

2.3.2 Weights

In the discussion on shape coefficients, {23}, the crude relationship Ww = dV wVw was
used to relate wet weight to structural volume. This mapping in fact assumes that the
compositions of structural mass and reserves are identical. Much literature is based on this
relationship or on the similar one for dry weights: Wd = dV dVw.

The contribution made by reserves, relative to that made by structure, to size measures
depends on their nature. For example, energy allocated to reproduction, but temporarily
stored in a buffer, will contribute to dry weight, but much less to wet weight [315]. While
wet weight is usually easier to measure and can be obtained in a non-destructive way,
dry weight has a closer link to chemical composition and mass balance implementations.
I show on {125} how to separate structural body mass from reserves and determine the
relative abundances of the main elements for both categories on the basis of dry weight.

The relationships between physical volume Vw, wet weight Ww and dry weight Wd with
structural body volume V , non-allocated energy reserves E, and energy reserves allocated
to reproduction ER are

Vw = V + (E + ER)
wE

dEµE

(2.5)

Ww = dV V + (E + ER)wE/µE (2.6)

Wd = dV dV + (E + ER)wEd/µE (2.7)

where d∗ are densities, which convert volumes to weights, µE the chemical potential of
reserves (energy per C-mole), and w∗ are molecular weights (weight per C-mole, see {34}).

The contribution of reserves to weight has long been recognized, and is used to indicate
the nutritional condition of fish and birds [711]. A series of coefficients has been proposed,
e.g. (weight in g)×(length in cm)−1, known as the condition factor, Hile’s formula or the
ponderal index [9,306,410,436].
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Figure 2.4: The ash-free dry weight and the length of the cheatognat Sagitta hispida. Data from
Reeve [756,757]. The curve through the lengths is L(t) = L∞ − (L∞ − L0) exp{−ṙBt}.

Although the relationship between weight and reserves plus structural volume is more
accurate than a mere proportionality, it is by no means ‘exact’ and depends on species-
specific details. The gut contents of earthworms, shell of molluscs, exoskeleton of crus-
taceans do not require maintenance and for this reason they should be excluded from
biovolume and weight for energetic purposes. The contribution of inorganic salts to the
dry weight of small marine invertebrates is frequently substantial. Because weights com-
bine structural and reserve mass, they should not be used to set up a theory of substrate
uptake and use, and their role is restricted to link model predictions to data. The problem
can be illustrated by the observation that the weight-specific maintenance costs of fungi
and trees are extremely low. This does not point, however, to exceptional metabolic quali-
ties, but to the fact that their weights include products (cell wall material, wood), that do
not require maintenance. The production rates are quantified by the deb theory, {147},
which allows weights to be decomposed into the contributions from structure, reserves and
products.

Figure 2.4 illustrates an interpretation problem in the measurement of the ash-free dry
weight of cheatognats. Length measurements follow the expected growth pattern closely
when food is abundant, while the description of weight requires an ad hoc reasoning,
possibly involving gut contents. Although quickly said, this is an important argument in
the use of measurements within a theoretical context: if an explanation that is not species-
specific competes one that is, the first explanation should be preferred if the arguments are
otherwise equally convincing. Since energy reserves contribute to weight and are sensitive
to feeding conditions, weights are usually much more scattered, in comparison to length
measurements. This is illustrated in Figure 2.5.

The determination of the size of an embryo is complicated by the extensive system of
membranes that the embryo develops in order to mobilize stored energy and materials and
the decrease in water content during development [993]. In some species, the embryo can
be separated from ‘external’ yolk. As long as external yolk is abundant, the energy reserves
of the embryo without that yolk, if present at all, will, on the basis of deb theory, turn out
to be a fixed fraction of wet and dry weight, so that the embryo volume is proportional
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Figure 2.5: The weight to the power 1/3 and the head length of the long-nosed bandicoot
Perameles nasuta. Data from Lyne [573]. The curves are again L(t) = L∞−(L∞−L0) exp{−ṙBt}.

to weight. Uncertainty about the proportionality factor will hamper the comparison of
parameter values between the embryonic stage and the post-embryonic one.

Weights play no role in the deb theory itself, but they are important for relating
theoretical predictions to measurements.

2.3.3 Masses

Microbiologists frequently express the relative abundances n∗W of the elements hydrogen,
oxygen and nitrogen in dry biomass relative to that of carbon, and conceive the combined
compound so expressed as a kind of abstract ‘molecule’ that can be counted and written
as CHnHW

OnOW
NnNW

. For each C-atom in dry biomass, there are typically nHW ≃ 1.8 H-
atoms, nOW ≃ 0.5 O-atoms and nNW ≃ 0.2 N-atoms for a randomly chosen micro-organism
[779]. This gives a mean degree of reduction of 4.2 and a ‘molecular weight’ of wW = 24.6
g mol−1. The latter can be used to convert dry weights into what are called ‘C-moles’. The
relative abundances of elements in biomass-derived sediments largely remain unaltered on
a geological time scale, apart from the excretion of water. The Redfield ratio C:N:P =
105:15:1 is popular [755] in geology and oceanography, or for silica bearing organisms such
as diatoms, radiolarians, silico-flagellates and (some) sponges C:Si:N:P = 105:40:15:1. This
literature usually excludes hydrogen and oxygen, because their abundances in biomass-
derived sediments change considerably during geological time. Other bulk elements in
organisms are S, Cl, Na, Mg, K and Ca, while some 14 other trace elements play an
essential role, as reviewed by Fraústo da Silva and Williams [296]. The ash that remains
when dry biomass is burnt away is rich in these elements. Ash weight typically amounts
to some 5% of dry weight only, and the elements C, H, O and N comprise more than 95%
of the total dry weight. I focus on these four elements only, but the inclusion of more
elements is straightforward. As stated before, some taxa require special attention on this
point.

I denote structural mass in terms of C-moles by MV , reserve mass by ME, and the
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ratio of reserve to structural mass by mE = ME/MV . Table 3.4 on {122} gives useful
conversions between volumes, masses and energies.

As is standard in the microbiological literature, the concept of the C-mole is extended
to (simple) substrates, the difference from an ordinary mole being that it always has at
most 1 C-atom.

2.3.4 Biomass composition

Reserves and structural mass are thought of as generalized compounds: rich mixtures
of compounds that do not change in chemical composition. The concept rests fully on
the strong homeostasis assumption. If a ‘molecule’ of structural biomass is denoted by
CHnHV

OnOV
NnNV

and a ‘molecule’ of energy reserves by CHnHE
OnOE

NnNE
, then their rel-

ative abundances in biomass consisting of structural mass MV , reserves ME and reserves
allocated to reproduction MER

are given by

n∗W =
n∗V MV + n∗E(ME + MER

)

MV + ME + MER

=
n∗V + n∗E(mE + mER

)

1 + mE + mER

(2.8)

where ∗ stands for H, O or N and mE = ME/MV and mER
= MER

/MV are molar reserve
densities. Similarly we have MV = [MV ]V and ME = µ−1

E E, where [MV ] denotes the
conversion coefficient from structural volume to C-mole. The molar weights of structural
biovolume and energy reserves are given by

wV ≃ 12 + nHV + 16nOV + 14nNV gram mol−1

wE ≃ 12 + nHE + 16nOE + 14nNE gram mol−1

since the contribution of the other elements to weight is negligibly small. The problem of
uncovering the relative abundances n∗V and n∗E from measurements of n∗W , is discussed
on {125}.

The delineation of more than one type of reserve (or structural mass) comes with
additional contributions to mass and weight. For n reserves, a single structural mass, and
no reserves allocated to reproduction, (total) biomass can be decomposed into the masses
(in C-moles)

{ME1 ,ME2 , · · · ,MEn ,MV }
which together define the state of the organism. The strong homeostasis assumption states
that these masses do not change in chemical composition and, therefore, they can be treated
as generalized compounds.

The wet weight of the n-reserves organism amounts to Ww = wV MV +
∑

i wEi
MEi

,
where the w’s stand for the C-molar weights. The dry weight of this organism can be
expressed similarly as Wd = wV dMV +

∑

i wEidMEi
, where the w∗d’s represent the C-molar

weights, after removal of water. This can be done in this way because the assumption that
neither reserves nor structural biomass can change in composition means that their water
fractions are constant.

The aqueous fraction of an organism is important in relation to the kinetics of toxicants.
Water is treated just like any other compound in the decomposition of biomass. The
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aqueous weight is the difference between wet weight and dry weight, so WH = Ww −Wd.
It can be written as WH = [WH ]V , for

[WH ] = dV −dV d+(wE−wEd)([E]+[ER])/µE = dV −dV d+(wE−wEd)(e+eR)[MEm] (2.9)

where [MEm] = [Em]/µE is the maximum molar reserve density of juveniles and adults.
The volume occupied by water is VH = WH/dH ≃ (dV − dV d)V/dH , where dH stands for
the specific density of water, which is close to 1 g cm−3. The aqueous fraction of body
volume VH/Vw typically takes values between 0.7 and 0.9.

The weight of any particular chemical compound Y in the n-reserves organism can
be expressed as WY = wY (nY V MV +

∑

i nY Ei
MEi

), where wY is the molar weight of the
compound Y and the n’s denote the molar amounts of the compound per C-mole of reserve
or structural biomass. This again is a consequence of the strong homeostasis assumption.
The n’s are zero if the compound does not happen to occur in that biomass components.
The density of the compound in biomass can be expressed as WY /Wd on the basis of
weights, or as WY (wY MV + wY

∑

i MEi
)−1 on the basis of moles per mole of carbon.

The chemical composition of biomass becomes increasingly flexible with the number of
delineated reserves, and depends on the nutritional conditions of the environment. In terms
of relative frequencies of chemical elements, all restrictions in the composition of (total)
biomass disappear if the number of reserves exceeds the number of chemical elements minus
one.

2.3.5 Energy

Energy fluxes through living systems are difficult to measure and even more difficult to
interpret. Let me briefly mention some of the problems.

Although it is possible to measure the thermodynamic energy content of food through
complete combustion, this only shows that the organism cannot gain more energy from
food, since combustion in the body is not complete. Food has a dual role in providing the
capacity to do work as well as elementary compounds for anabolism. Another problem is
that of digestive efficiency. The difference between the energy contents of food and faeces
is just an upper boundary for the uptake by the animal, because there are energy losses
in the digestion process. Part of this difference is never used by the organism, but by the
gut flora instead. Another part is lost through enhanced respiration coupled to digestion,
especially of proteins, called the ‘heat increment of feeding’, which is discussed on {138}.

Growth involves energy investment, which is partially preserved in the new biomass. In
addition to the energy content of the newly formed biomass, energy is invested to give it
its structure. Part of this energy is lost during growth and can be measured as dissipating
heat. This heat can be thought of as an overhead of the growth process. The energy that is
fixed in the new biomass is present partly as energy bearing compounds. Cells are highly
structured objects and the information contained in their structure is not measured by
bomb calorimetry.

The thermodynamics of irreversible or non-equilibrium processes offers a framework for
pinpointing the problem; see for instance [356,533]. While bomb calorimetry measures the
change in enthalpy, Gibbs free energy is the more useful concept for quantifing the energy
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performance of individuals. Enthalpy and Gibbs free energy are coupled by the concept of
entropy: the enthalpy of a system equals its Gibbs free energy plus the entropy times the
absolute temperature. This basic relationship was formulated by J. W. Gibbs in 1878.

To quantify entropy directly, you need to specificy the biochemical machinery com-
pletely, which is exactly what I try to avoid; one not only needs to know all chemical
compounds and their amounts, but also their spatial orientation. Dörr [226], for instance,
gives an entropy reduction of 0.05 eV ≃ 5 kJ mol−1 associated with the spatial fixation
of one single amino acid group of a chain molecule at 25 ◦C. A quick glance at the way
chemists measure entropies shows us that this cannot apply to living organisms.

Yet the concept of homeostasis offers a solution to the problem of defining and mea-
suring free energies and entropies. This solution is based on the assumption that the free
energy per C-mole of structural biomass and of reserves is constant, i.e. it does not depend
on the (absolute) amounts. Most chemists probably find this assumption offensive, since
free energies depend on the concentration of a compound in spatially homogeneous systems.
The reason for the dependence is that the molecules interfere, which affects their ability to
do work in the thermodynamic sense. Yet, I think that the assumption is more than just
a conceptual trick to solve problems; it is the way living cells solve the problem of a com-
pound’s capacity to do (chemical) work depending on the concentration. If this capacity
changes substantially as a function of the changing cell composition, the cell would have an
immensely complex problem to solve when regulating its metabolic processes. It is not just
a coincidence that cells use large amounts of polymers (i.e. proteins, carbohydrates and
lipids) to store bulk compounds, and small amounts of monomers to run their metabolism.
Cells keep the concentration of monomers low and relatively constant, and prevent any
interference that makes the monomers’ capacity to do work depend on their abundance.
They also solve their osmotic problems this way. Their osmotic pressure equals that of
seawater, which is frequently seen as a relic of the evolutionary process: life started in the
sea.

I assume that the Gibbs relationship still applies in the complex setting of living or-
ganisms. If the free energy per C-mole does not change, then neither will the entropy per
C-mole, because the enthalpy per C-mole is constant. The Gibbs relationship can be used
to obtain the entropy and the free energy of complex organic compounds, such as food,
faeces, structural biomass and reserves, as is worked out on {155}. The mean specific
Gibbs free energy (i.e. chemical potential) of biomass is −67 kJ C-mol−1 (pH= 7, 105 Pa
at 25 ◦C, thermodynamic reference) or +474.6 kJ C-mol−1 (pH= 7, combustion reference)
[390]. Since biomass composition is not constant, such crude statistics are of limited value
and a more subtle approach is necessary to quantify dissipating heat. For many practical
purposes the entropy can safely be set to zero, which implies that enthalpies can be sub-
stituted for free energies. This in consistent with the ideas of Ling [561], but not with
those of Battley [54], who suggested that the entropy of bacterial biomass exceeds that of
its substrate (succinic acid).
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2.3.6 Storage materials

Storage material can be classified into several categories; see Table 2.2. These categories do
not point to separate dynamics. Carbohydrates can be transformed into fats, for instance,
see Figure 2.14. Most compounds have a dual function as a reserve pool for both energy
and elementary compounds for anabolic processes. For example, protein stores supply
energy, amino acids and nitrogen. Ribosomal rna (rrna) catalyses protein synthesis. In
rapidly growing cells such as those of bacteria in rich media, rrna makes up to 80% of
the dry weight, while the relative abundance in slowly growing cells is much less. For
this reason, it should be included in the storage material. I show how this point of view
leads to realistic descriptions of peptide elongation rates, {244}, and growth-rate-related
changes in the relative abundance of nitrogen, {125}. There is no requirement for storage
compounds to be inert.

Waxes can be transformed into fats (triglycerides) and play a role in buoyancy, e.g. of
zooplankton in the sea [68]. By increasing their fat/wax ratio, zooplankters can ascend
to the surface layers, which offer different food types (phytoplankton), temperatures and
currents. Since surface layers frequently flow in directions other than deeper ones, they
can travel the Earth by just changing their fat/wax ratio and stepping from one current
to another. Wax ester biosynthesis may provide a mechanism for rapidly elaborating lipid
stores from amino acid precursors [805].

Unsaturated lipids, which have one or more double bonds in the hydrocarbon chain, are
particularly abundant in cold water species, compared with saturated lipids. This possibly
represents a homeo-viscous adaptation [833].

The amount of storage materials depends on the feeding conditions in the (recent)
past, cf. {82}. Storage density, i.e. the amount of storage material per unit volume of
structural biomass, tends to be proportional to the volumetric length for different species,
if conditions of food (substrate) abundance are compared, as explained on {270} and tested
empirically on {277}. This means that the maximum storage density of bacteria is small.
However, under conditions of nitrogen limitation for instance, bacteria can become loaded
with energy storage materials such as polyphosphate or polyhydroxybutyrate, depending on
the species, see {172}. This property is used in biological plastic production and phosphate
removal from sewage water. Intracellular lipids can accumulate up to some 70% of the cell
dry weight in oleaginous yeasts, such as Apiotrichum [750,1024]. This property is used
in the industrial production of lipids. The excess storage is due to simultaneous nutrient
limitation that is associated with what is called ‘luxurious’ uptake.

Storage deposits

Lipids, in vertebrates, are stored in cell lysosomes in specialized adipose tissue, which
occurs in rather well-defined surface areas of the body. The cells themselves are part of the
structural biomass, but the contents of the vacuole are part of the reserves. In molluscs
specialized glycogen storage cells are found in the mantle [395]. The areas for storage
deposits are usually found scattered over the body and therefore appear to be an integral
part of the structural body mass, unless super-abundant; see Figure 2.6. The occurrence of
massive deposits is usually in preparation for a poor feeding season. The rodent Glis glis is
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Table 2.2: Some frequently used storage materials in heterotrophs.

phosphates

pyrophosphate bacteria
polyphosphate bacteria (Azotobacter, Acinetobacter)

polysaccharides

β-1,3-glucans
leucosin Chrysomonadida, Prymnesiida

chrysolaminarin Chrysomonadida

paramylon Euglenida

α-1,4-glucans
starch Cryptomonadida, Dinoflagellida, Volvocida, plants
glycogen blue green bacteria, protozoa, yeasts, molluscs
amylopectin Eucoccidiida, Trichotomatida, Entodiniomorphida

trehalose fungi, yeasts

lipoids

poly β hydroxybutyrate bacteria
triglyceride oleaginous yeasts, most heterotrophs
wax marine animals

proteins most heterotrophs
ovalbumin egg-white protein
casein milk protein (mammals)
ferritin iron storage in spleen (mammals)
cyanophycine bluegreen bacteria
phycocyanin bluegreen bacteria

ribosomal rna all organisms
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Figure 2.6: Some storage deposits are really eye-catching.

called the ‘edible doormouse’, because of its excessive lipid deposits just prior to dormancy,
{231}. Stewed in honey and wine, doormice were a gourmet meal for the ancient Romans.
Tasmania’s yellow wattlebird Anthochaera paradoxa accumulates lipid deposits during the
rich season to the extent that it has problems with flight; it then becomes exceedingly wary
for a good reason [345].

In most invertebrate groups, storage deposits do not occur in specialized tissues, but
only in the cells themselves in a quantity that relates to requirements. So reproductive
organs tend to be rich in storage products. The mesoglea of sea-anemones, for instance, has
mobile cells that are rich in glycogen and lipid, called ‘glycocytes’, which migrate to sites
of demand during gametogenesis and directly transfer the stored materials to developing
oocytes [833]. Glycogen that is stored for a long time typically occurs in rosettes, and for
short time in particles [414,833]. A guild of honey ants specializes in the storage function
for the colony, not unlike adipose tissue in vertebrates, see Figure 2.7.

The recently discovered anaerobic sulfur bacterium Thiomargarita namibiensis [822]
accumulates nitrate to up 0.8 M in a vacuole of up to 750 µm in diameter; it can survive
over 2 years without nitrate or sulfur at 5 ◦C. The bacterium Acinetobacter calcoaceticus
accumulates polyphosphates to spectacular levels under carbon-limiting aerobic conditions,
and releases phosphates under energy-limiting anaerobic conditions, which is used techni-
cally in sewage water treatment, see {174}.

Since autotrophs acquire energy and the various nutrients independently from each
other, they usually store possibly limiting substrates independently in specialized or-
ganelles: the vacuoles [551]. Carbohydrate (starch) and water storage are most bulky
in plants that live in seasonal environments, see Figure 2.8.
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Figure 2.7: Colony members of honey ants, Myrmecocystus,
show function differentiation. The energy storage function
is taken by a guild that can be considered as the adipose
tissue of the ant colony.

Figure 2.8: Plants can store large amounts of carhohy-
drates and/or water.

2.4 Concentrations, amounts and fluxes

When two substrates are supplementary, i.e. they are both required in fixed stoichiomet-
ric proportions, the absence of one substrate prevents the uptake of the other; think, for
instance, of ammonia and carbon dioxide as substrates and amino acids as reserves. Empir-
ical evidence frequently indicates that the uptake of the most abundant substrate (relative
to the needs) is set by the least abundant substrate: the popular minimum rule of von
Liebig [557]. The rule originally related biomass yields to nutrient levels, but was later
applied to uptake processes [35]. However, this application becomes complex if reserves
are included; the environment may not contain the substrate, but growth is not restricted
because of the presence of reserves. If the role of limiting and non-limiting substrate does
not switch at the same time for all individuals in the population in a variable environ-
ment, it is almost impossible to evaluate population behaviour on the basis of individual
behaviour. Moreover, sharp switches are not realistic at the molecular level, because of the
intrinsic stochasticity of the substrate arrival process.

Classic enzyme kinetics specifies fluxes of product in terms of substrate concentrations.
This catenates two different processes, arrival process of substrate molecules to the binding
site(s) of the enzyme molecules and the transformation of bounded substrate into product,
which can better be dealt with separately. In homogeneous environments, arrival rates of
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substrate molecules to the enzyme molecules are proportional to the concentration, on the
basis of diffusive transport. The rejected substrate molecules return to the environment,
which makes it difficult, if not impossible, to determine their existence. When growth is
modelled as a function of mobilized reserve fluxes (see {168}), the situation is different,
because this process represents arrival and replaces diffusive transport. Transformations
are hard to link to concentrations in those situations.

The concept ‘concentration’ is rather problematic in spatially highly structured environ-
ments, such as in growing cells, where many transformations are mediated by membrane-
bound enzymes. Use of concentrations should be restricted to well-mixed local environ-
ments, such as the idealized environment outside organisms. As illustrated in a model
of reserve kinetics, {246}, ratios of amounts, called densities, can play a role in transfor-
mations. Densities resemble concentrations, but the compounds are not necessarily well
mixed at a molecular level.

Thinking in terms of fluxes, rather than concentrations, allows us to treat light in
a similar way to compounds, with stoichiometric coupling coefficients in photochemical
reactions. This idea may be less wild than might first appear; cells extract a fixed amount
of energy from the photons that are able to excite the pigment system, the remaining energy
dissipates as heat. The light flux can be quantified in Einstein (or mole) per second, i.e.
in 6.023 1023 quanta per second [358].

Another argument for avoiding the use of concentrations as much as possible is that
concentrations should be thought of as states of the system. The inclusion of concentrations
of intermediary metabolites in a metabolic pathway increases the number of state variables
of the system. A reduction of this number, to simplify the model, is only possible when the
amounts are small enough. This problem is avoided by using fluxes, where intermediaries
do not accumulate.

The following subsections introduce the concept ‘Synthesizing Unit’ [518], which is
used to deal with transformations involving supplementary compounds {164}. However, I
start with a short introduction on classic enzyme kinetics, to reveal the link with concepts
that are used in that field.

2.4.1 Enzyme kinetics

Let us consider a very simple irreversible chemical transformation, where an enzyme re-
quires one copy of each of two substrates, present in concentrations XA and XB, to produce
a product, present in concentration XC . Apart from the free enzyme, present in concentra-
tion Xab, we have three substrate-enzyme complexes with concentrations XAb, XaB, and
XAB. Classic enzyme kinetics states that substrate-enzyme association follows the law of
mass action, so the rate is proportional to the product of the concentrations, and dissocia-
tion is a first-order process, so the rate is proportional to the concentration of the complex.
Given the dissociation rate parameters k̇A, k̇B and k̇C , and the association parameters ḃA

and ḃB, the change in concentration of substrates, enzyme species and product is given by

d

dt
XA = k̇A(XAb + XAB)− ḃAXA(Xab + XaB)

d

dt
XB = k̇B(XaB + XAB)− ḃBXB(Xab + XAb)
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d

dt
XC = k̇CXAB

d

dt
Xab = k̇CXAB + k̇AXAb + k̇BXaB − (ḃAXA + ḃBXB)Xab

d

dt
XAb = k̇BXAB + ḃAXAXab − (k̇A + ḃBXB)XAb

d

dt
XaB = k̇AXAB + ḃBXBXab − (k̇B + ḃAXA)XaB

d

dt
XAB = ḃAXAXaB + ḃBXBXAb − (k̇A + k̇B + k̇C)XAB

Steady state is reached when the substrate–enzyme complexes do not change in concen-
tration, so d

dt
X∗∗ = 0. The relative abundance of enzyme-substrate complexes is now given

by
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with xA = XAḃA/k̇A, xB = XB ḃB/k̇B, kA = k̇A/k̇B, kC = k̇C/k̇B, and θ∗ = X∗/X+ with
X+ = Xab + XAb + XaB + XAB. The appearance rate of product is for J̇Cm = k̇CX+ given
by

d

dt
XC = J̇C = J̇CmθAB

Two limiting cases are of special interest: the Synthesizing Unit (SU), where the substrate–
enzyme dissociation rates are small, and the Rejection Unit (RU), where these rates are
high, but the association rates are high as well. (Another way to obtain the same RU is
when the product–enzyme dissociation rate k̇C is small, and the total amount of enzyme
X+ is high, but this hardly applies to organisms.) These limiting cases give the following
results:

SU: k̇A, k̇B → 0 RU: k̇A, k̇B, ḃA, ḃB →∞ and k̇A

ḃA
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ḃB
constant
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Despite of its popularity [55,270,271,673], the RU has a number of problems that make
it less attractive than the SU. The first, but perhaps not the most important, problem is
a mild form of inconsistency at the molecular level. The law of mass action is used for
association between substrate and enzyme. It requires completely homogeneous mixing,
which is hard to combine with infinitely large dissociation and association rates; as soon
as a substrate molecule is rejected by an enzyme molecule, it becomes attracted again
if the mixing rate is not infinitely large, which is obviously not realistic. Moreover, it
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is hard to see in terms of molecular geometry and electrical charge distributions how a
high association rate can combine with a high dissociation rate. The SU is much more
natural in this respect, because the binding sites on the enzyme molecule mirror-match the
substrates in shape and electrical charge, which makes it likely that the substrate-enzyme
dissociation rate is small compared to the product–enzyme dissociation rate, because of the
shape and charge changes during the substrates-product transition. Product molecules do
not mirror-match the substrate-bindings sites in shape and electrical charge, and products,
not substrates, are rejected by the enzyme.

For very large concentrations xB, both SU and RU simplify to what is known as
Michaelis–Menten kinetics (MM-kinetics): J̇C = J̇Cm(1 + x−1

A )−1, but the convergence
for SU is much faster than for RU. In fact, the RU converges really slowly to MM-kinetics,
which means that substrate concentrations must exceed the saturation constant by at least
an order of magnitude to become (almost) non-limiting. A substrate is defined to be non-
limiting if a change in substrate concentration does not affect the production rate. Given
the fact that models for uptake and use of nutrients are likely to include only a small sub-
set of the required nutrients and compounds, the implication that compounds that are not
included must be really abundant is not acceptable. Last, but not least, the multiplicative
model for nutrient uptake, as implied by the RU, is found to be inconsistent with empirical
data [235]. MM-kinetics, and its various generalizations, plays a central role in models
for enzyme kinetics and substrate (food, nutrient) acquisition by organisms; it was first
described by Henri in 1902 [398].

Given identical production rates if only one substrate is limiting (this is when the other
substrate is abundant), the production rate of the RU is always smaller than that of the
SU, J̇C, SU > J̇C, RU, while their ratio tends to infinity for small substrate concentrations
(xA, xB → 0).

2.4.2 Synthesizing Units

Because a Synthesizing Unit does not dissociate from substrates, it can be considered
as a server, i.e. a unit handling particles. A large but fixed number of identical servers
handle particles simultaneously, without interfering with each other, except by competing
for the same particles (clients). The term ‘server’ stems from an extensive theory of applied
probability calculus, known as queueing theory, which deals with this type of problem, e.g.
[803,851]. The extension of the previous derivation of the dynamics of the SU to include
an arbitrary number of copies of an arbitrary number of substrates becomes complex, but
this is still feasible if the derivation uses the servers’ point of view.

In its simplest form, the Synthesizing Unit
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(SU) is an enzyme or a complex of enzymes
that binds a substrate molecule to deliver (syn-
thesize) a product molecule or a set of product
molecules. For simplicity’s sake, I assume that
the substrate molecules arrive according to a Poisson process, that the binding occurs with
a fixed probability ρ if the SU is in its binding stage, and that the production stage lasts
an exponentially distributed time interval. The production stage corresponds with a kind
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of ‘handling’ time. During the production process, no substrate molecules are accepted by
the SU, so the binding probability ρ for each arriving substrate molecule follows a renewal
process [178], alternating between the values ρ and 0, when the SU is binding and pro-
ducing, respectively. I call this SU a one substrate-one copy SU, which will be generalized
to a multi substrate-multi copy SU.

Let the binding and production periods, tb and tp, be exponentially distributed random

variables, with means J̇−1
Xb and J̇−1

Xm, respectively. The substrate molecules arrive at rate
J̇Xa = J̇Xb/ρ, where ρ denotes the binding probability per arriving substrate molecule.
The cycle period of the SU, tc = tb + tp, catenates one binding period and the subsequent

production period. The inverse of its expected value, J̇X = 1/Etc, equals the mean pro-
duction rate, which I will call the intensity of the production process; it is defined as the
ratio of the cumulative number of events in a period to the length of the period, for a large
period.

When substrate molecules are sent to a one substrate-one copy SU, according to a Pois-
son process with intensity J̇Xa, it returns a Poisson process of rejected substrate molecules,
with an intensity that alternates between values (1−ρ)J̇Xa and J̇Xa, and a renewal process
of product molecules, with intensity J̇X = (J̇−1

Xm + J̇−1
Xb)−1. The mean intensity of the

rejected substrate molecules amounts to J̇Xa − J̇X . Note that for very high intensities of
the arrival process, the production process approximates the value J̇Xm.

The events of substrate rejection and production are mutually dependent, but I will not
work out the structure in detail, because the practical interest is not in the performance
of a single SU, but a large set of independently operating SUs. The central limit theo-
rem for the addition of independent stochastic point processes implies that the rejected
substrate molecules and the product molecules of a sufficiently large set of s independent
SUs converge to independent Poisson processes with constant intensities J̇Xa − J̇X and
J̇X = ((sJ̇Xm)−1 + J̇−1

Xb)−1, respectively. An increase in the amount of SUs has the effect
of decreasing the production period; the reduction of the intensity of arriving substrate
molecules per SU cancels against the increase of the binding probability. Other implemen-
tations of the step to group performance are conceivable, but these require details of the
SUs’ spatial organization.

Multi substrate-multi copy SU

Suppose that the SU can be in a binding or in
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a production stage, and that it needs n copies
of a single substrate X to produce a prod-
uct molecule Y , while the moment at which
the production stage of the SU is entered, tb,

equals the moment of the n-th binding, tn, so tb = tn. Such a SU can be called a one
substrate-multi copy SU, or n-SU. The binding period follows the Erlangian distribution

φtb
(t) = J̇X(J̇X t)n−1

(n−1)!
exp{−J̇Xt} , which has a mean value of Etb = nJ̇−1

X . It results from

adding n independently exponentially distributed random variables with parameter J̇X .
For a mean production period J̇−1

Y m, the appearance of Y molecules from a single SU is a
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renewal process with intensity J̇Y = (J̇−1
Y m + nJ̇−1

X )−1. A large set of s SUs will produce a
Poisson stream of Y molecules with intensity J̇Y = ((sJ̇Y m)−1 + nJ̇−1

X )−1, and a Poisson
stream of rejected substrate molecules of intensity J̇X − yX,Y J̇Y , where yY,X stands for the
number of molecules of Y produced per processed molecule X.

The model does not specify the details of the production process. The SU might have n
different binding sites, or just a single one in combination with a fast process of precursor
production while the precursor molecules remain in the local environment of the SU that
is under its control.

Now we are ready for the more interesting multi substrate-multi copy SU, which requires
n different substrate types for the production of a single molecule, or set of molecules, Y :
the n1, n2, · · · , nn-SU. The kinetics of the production process is based on the idea that the
SU can only enter the production stage if all required substrate molecules are bound.

I will discuss two different extensions to multi substrates: sequential and parallel bind-
ing. Sequential binding hardly seems realistic, but it will help to understand parallel
binding.

Sequential processing

When the SU binds the different types of substrate sequentially, in a random order, the
expected waiting time to the binding of ni molecules of type i is niJ̇

−1
i . The order of the

types is not relevant, but when the SU is binding type i it continues to do so until all
required molecules for the production of one product molecule are bound. This directly
leads to the expected binding period

Etb =
n
∑

i=1

ni

J̇i

(2.10)

and the mean production rate J̇X = (J̇−1
Xm +

∑

i niJ̇
−1
i )−1.

The interest in this mechanism is mainly in its mathematical simplicity, and its inter-
esting properties (M. P. Boer, pers. comm.) The parallel binding period is equal to the
sequential binding period minus the gain in time (compare (2.10) and (2.14)). Suppose
that the substrate fluxes are proportional to the substrate concentrations Xi, as a result
of some convection or diffusion process. The production rate can then be rewritten as
J̇X = J̇Xm(1 +

∑

i XKi/Xi)
−1 = J̇Xmfn, where XKi denotes the saturation constant, which

quantifies the affinity of the SU for substrate i, including the transport rate from the (local)
environment to the SU, and the factor fn is the scaled functional response for n types of
possibly limiting substrates, which takes values between 0 and 1. (The term ‘functional
response’ originates from ecology, and stands for the feeding rate of a predator as function
of the density of prey.) The recurrent relationship fn = Xnfn−1

Xn+XKnfn−1
applies, for f0 = 1 and

n = 1, 2, · · ·, which leads to fn =
∏

i Xi(
∏

i Xi +
∑

i XKi
∏

j 6=i Xj)
−1.

Parallel processing

Suppose that the binding of one type of substrate does not interfere with that of another.
The SU will not bind substrate i molecules, either if it already bound ni molecules of that
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Figure 2.9: These pictures illustrate the produc-
tion by a strongly binding relatively slow (upper)
and a very fast (lower) 1,1-SU. The arrival events of
substrate molecules A and B, and the production
events of product molecules C are indicated with
filled and open dots on three time-axes. Filled dots
stand for acceptance, open ones for rejection. The
grey areas indicate periods during which the SU is
blocked for a substrate. Note that the fast SU still
has substantial blocked periods.

substrate, but still has to bind other types of substrate, or if the SU is in the production
stage, see Figure 2.9. Let tbi denote the moment of the binding of the ni-th molecule
of substrate type i (so the binding is complete for that substrate), and tb = maxi{tbi}
the moment when all required substrate molecules are bound, and the production stage
is entered. The distribution function of the binding period tb equals the product of the
distribution functions of tbi, which are incomplete gamma functions

Φtb
(t) =

n
∏

i=1

Φtbi
(t) =

n
∏

i=1

∫ t

0
φtbi

(t1) dt1 =
n
∏

i=1

P (ni, tJ̇i) (2.11)

where P (n, t) = 1
Γ(n)

∫ t
0 exp{−t1}tn−1

1 dt1 = 1 − exp{−t}∑n−1
j=0

tj

j!
is the incomplete gamma

function. The expected value of the binding period is

Etb =
∫ ∞

0

(

1− Φtb
(t)
)

dt =
∫ ∞

0

(

1−
n
∏

i=1

P (ni, tJ̇i)

)

dt (2.12)

and the expected value of the cycle period is Etc = J̇−1
Xm + Etb. The mean production rate,

therefore, occurs at intensity J̇X = (J̇−1
Xm + Etb)−1 for a single SU, and J̇X = ((sJ̇Xm)−1 +

Etb)−1 for a set of s SUs. The intensity of the rejected substrate molecules of type i amounts
to J̇i/ρi − niJ̇X , where arriving substrate molecules of type i are bound with probability
ρi if the SU is in the binding stage.

For two possibly limiting nutrients, so n = 2, (2.12) reduces to

Etb =
n1

J̇1

+
n2

J̇2

−
n1−1
∑

i=0

n2−1
∑

j=0

(i + j)!

i! j!

J̇ i
1J̇

j
2

(J̇1 + J̇2)i+j+1
(2.13)

and for three possibly limiting nutrients

Etb =
3
∑

i=1

ni

J̇i

−
3
∑

i2>i1=1

ni1
−1

∑

i=0

ni2
−1

∑

j=0

(i + j)!

i! j!

J̇ i
i1
J̇ j

i2

(J̇i1 + J̇i2)
i+j+1

+

+
3
∑

i3>i2>i1=1

ni1
−1

∑

i=0

ni2
−1

∑

j=0

ni3
−1

∑

k=0

(i + j + k)!

i! j! k!

J̇ i
i1
J̇ j

i2 J̇
k
i3

(J̇i1 + J̇i2 + J̇i3)
i+j+k+1

(2.14)
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→ J̇1/J̇Xm

↑
J̇2/J̇Xm

→ J̇1/J̇Xm

↑
J̇2/J̇Xm

Figure 2.10: The 0.1(0.1)0.7 contours of
the scaled production flux J̇X/J̇Xm as func-
tion of the scaled substrate supply fluxes
J̇ ′

1 = J̇1/J̇Xm and J̇ ′
2 = J̇2/J̇Xm for a 1,1-SU.

The production flux for a 1,1-SU simplifies to

J̇X =
(

J̇−1
Xm + J̇−1

1 + J̇−1
2 − (J̇1 + J̇2)

−1
)−1

.

Figure 2.11: The 0.1(0.1)0.9 contours (right

to left) of the flux control coefficients ∂ ln J̇X

∂ ln J̇ ′
1

of the substrate flux J̇ ′
1 on the production

flux J̇X for a 1,1-SU. The flux control coef-
ficients for substrate J̇2 can be obtained by
interchanging the labels on the axes. The
stippled line marks J̇1 = J̇2.

from which it is obvious how this expression generalizes for a larger number of possibly
limiting substrates. There is no need to evaluate the integral in (2.12), when it comes to
practical computations. Note that the first summation in the last (i.e. third) summation
term in (2.14) only contains one element. The first summation in the middle summation
term contains three elements.

Figure 2.10 illustrates that the 1,1-SU behaves very like a minimum operator for small
substrate supply fluxes. This can be quantified using the Metabolic Control Analysis

[393], which shows that the flux control coefficients ∂ ln J̇X

∂ ln J̇i
rapidly decrease for increasing

substrate concentrations, see Figure 2.11. The elasticity coefficients, which quantify the

effect of a change in the SU concentration on the production flux, are ∂ ln J̇X

∂ ln s
= J̇X

sJ̇Xm
. When

a 1,1-SU binds sequentially, the production rate is J̇X =
(

J̇−1
Xm + J̇−1

1 + J̇−1
2

)−1
, which is

obviously lower than that obtained using parallel binding. An important implication of
SUs behaving like a minimum operator is that abundant substrates do not matter, and
only possibly limiting substrates need to be followed explicitly.

The supply fluxes of substrates to the SU can result from convection or diffusion pro-
cesses, which makes it likely that they are proportional to the concentration Xi of substrate
in the local environment of the SU and the number of SUs. The 1-SU then behaves quan-
titatively according to the familiar MM-kinetics [398,629]. Most texts on this kinetics
[825,826] assume a reversible binding to the enzyme, however. For the 1-SU such an ex-
tension hardly complicates the model. The 1,1-SU requires 9 binding and dissociation
rates to quantify the production process [36,625], but reversible binding becomes really
complex for the multi substrate–multi copy enzymes. It requires the kinetics of all possible
combinations of partially filled enzyme–substrate complexes to be specified [776], which
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Figure 2.12: The Carrier-Synthesizing Unit
complex binds substrate X in the environ-
ment reversibly and delivers product Z to
the cellular metabolism. The inherent re-
jected fluxes of substrate X and intermediary
metabolite Y are indicated, and quantified in
the text.

is not only cumbersome, but also involves a huge amount of parameters. The Carrier-
Synthesizing Unit complex allows reversible binding with relative ease, see below.

2.4.3 Production of generalized compounds

As might be expected, an increase in substrate concentration almost cancels against an
increase in stoichiometric requirements, so J̇X is rather insensitive to multiplication of both
J̇i and ni by an arbitrary factor. This allows the use of SUs to quantify the production of
generalized compounds. The product flux of a {ni}n1 -SU approximates that of a 1, 1, · · · , 1-
SU, when we replace J̇i by J̇i/ni, resulting in

J̇X =





J̇−1
Xm +

n
∑

i1=1

(

J̇i1

ni1

)−1

−
n
∑

i2>i1=1





2
∑

j=1

J̇ij

nij





−1

+
n
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nij





−1
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−1
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(2.15)

As is obvious from the derivation, the constraints niJ̇X < J̇i apply for all i = 1, 2, · · ·n.
Many applications of SUs not only involve generalized compounds, but also generalized

enzymes that catalyze the transformation. They can be thought of as a set of enzymes
that pass metabolites to each other, without accumulating pools of intermediary metabo-
lites. The implication is that the transformation is halted instantaneously when one of
the required substrate molecules is not (yet) available, and the SU ceases binding other
substrates, until the generalized product molecule is delivered.

2.4.4 Handshaking protocols

Suppose that a substrate X is taken up from the environment by a Carrier (C), which
passes its product Y to a Synthesizing Unit (SU), which delivers its product Z to the rest
of the metabolism of the cell, see Figure 2.12. One molecule of substrate converts into yY,X

molecules of product Y or yZ,X molecules of product Z. I will evaluate the dynamics of the
Carrier-Synthesizing Unit (CSU) complex, under various assumptions about the exchange
of compounds between the two components, given c Carriers and s SUs per unit of biomass.
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Three processes should be delineated: feeding F , rejection R, and production P . Ap-
pearing fluxes are taken positive (R and P ), disappearing ones negative (F ). Fluxes are
denoted by two indices: one represents the compound, the other the process. The feeding
flux is the flux of substrate molecules that arrives in the catching area of the c Carriers or
s SUs.

The mass balances for the Carriers, the SUs, and the CSU complex are

0 = jX,F + jX,R + yX,Y jY,P

0 = jY,F + jY,R + yY,ZjZ,P

0 = jX,F + jX,R + yX,Y jY,R + yX,ZjZ,P

for yX,Z = yX,Y yY,Z and jY,P = −jY,F . The problem now is to write all these fluxes
as functions of the feeding flux jX,F given a specification of the interaction between the
Carriers and the SUs.

The behaviour of the CSU complex depends on the handshaking protocol between the
Carrier and the SU. Two extremes are evaluated. In the ‘closed’ protocol, the Carrier only
passes its product to the SU if the SU is in the unbounded state. In the ‘open’ protocol,
the Carrier releases its product irrespective of the state of the SU. The derivation of the
behaviour of the CSU complex under both handshaking protocols starts with the changes
in the binding fractions, θc and θs, among the c Carriers and the s SUs, followed by a
pseudo-steady-state assumption.

Closed protocol

The changes in the binding fractions amount to

d

dt
θc = (k̇X + k̇Y θs)(1− θc) + ρXjX,F θc/c (2.16)

d

dt
θs = k̇Z(1− θs)− ρY k̇Y θs(1− θc)yY,Xc/s (2.17)

where ρX denotes the binding probability of substrate X to the Carrier, ρY the bind-
ing probability of assimilated substrate Y (i.e. Carrier product) to the SU, and k̇∗ the
dissociation rates.

The fluxes can now be quantified as

jX,R = k̇X(1− θc)c− jX,F (1− ρXθc)

jY,P = yY,X k̇Y θs(1− θc)c

jY,R = (1− ρY )yY,X k̇Y (1− θc)θsc

jZ,P = yZ,Y k̇Z(1− θs)s

Suppose now that the binding fractions are in steady state, i.e. d
dt

θ∗ = 0. The binding
fractions and all fluxes can then be written as functions of the feeding flux jX,F . The result
is

θc =
2c2k̇X k̇′

Y + 2csk̇Y k̇Z − k̈1 − k̈

−2ck̇′
Y j′X,F

; θs =
k̈1 + k̈

2csk̇Y k̇Z

k̇′
Y = ρY k̇Y yY,X ; j′X,F = ρXjX,F − ck̇X

k̈ =
√

k̈2
1 − 4cs2k̇Y k̇2

Zj′X,F ; k̈1 = ρXjX,F (sk̇Z + ck̇′
Y ) + cs(k̇Y − k̇X)k̇Z
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Figure 2.13: The production of product, Z,
and of precursor plus product, Y +Z, from sub-
strate X of a CSU complex, as functions of the
substrate arrival flux, using the closed (drawn
curves) or the open (dotted curves) handshak-
ing protocol. The open protocol leads to hy-
perbolic production curves. The parameters are
k̇X = 0 s−1, k̇Y = 0.4 s−1, k̇Z = 0.7 s−1, ρX = 1,
ρY = 0.8, yX,Y = 1, yX,Z = 1, c = s = 1.

For ρY = 1, no products Y are produced and all assimilated X is transformed into Z. For
ρY = 0, all assimilated X is transformed into Y . The binding probability ρY can be tuned
by inhibitors, allowing the CSU complex to branch flux X into fluxes Y and Z.

Open protocol

The changes in the binding fractions amount to

d

dt
θc = (k̇X + k̇Y )(1− θc) + ρXjX,F θc/c (2.18)

d

dt
θs = k̇Z(1− θs)− ρY k̇Y θs(1− θc)yY,Xc/s (2.19)

where the ρ∗ denote the binding probabilities and k̇∗ the dissociation rates. The only
difference with the closed protocol is the absence of θs in the change of θc.

Assuming a steady state for the binding fractions, the fluxes can be quantified as

jX,R = k̇X(1− θc)c− jX,F (1− ρXθc)

jY,P = yY,X k̇Y (1− θc)c

jY,R = (1− ρY θs)yY,X k̇Y (1− θc)c

jZ,P = yZ,Y k̇Z(1− θs)s

Assuming a steady state again, the binding fractions can be solved through d
dt

θ∗ = 0, giving
all fluxes as functions of the feeding flux jX,F .

The solutions amount to

θc =
c(k̇X + k̇Y )

c(k̇X + k̇Y )− ρXjX,F

; θs =
(c(k̇X + k̇Y )− ρXjX,F )sk̇Z

(c(k̇X + k̇Y )− ρXjX,F )sk̇Z − ρXjX,F cρY k̇Y yY,X

The production of Y relative to Z can be modified by the binding probability ρY , as in
the closed protocol, but even when ρY = 1 the CSU complex still produces Y .

Comparison

Figure 2.13 compares the performances of the CSU complex using a closed and an open
handshaking protocol between the Carrier and the SU. The closed protocol allows a slightly
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Figure 2.14: A simplified map of metabolism.
The second line gives the main polymers that are
used as reserves, below that are the monomers
that play an active role in metabolism. The bot-
tom line gives the main end products and ex-
ternal sources. Oxygen is used as an electron
acceptor by the respiratory chain, but some-
times other electron acceptors are used. Most
pathways are reversible, although different sets
of enzymes are usually involved. Most animals
can synthesize lipids from polysaccharides, but
not vice versa. Heterotrophs use food to supply
the reserve polymers, autotrophs use light and
minerals to synthesize sugar and animo acids (in
grey), mixotrophs do both. tca = tricarboxylic-
acid.

greater production rate of product Z, but less of precursor plus product, Y + Z. This
is because the Carrier waits to dissociate from its substrate until the SU is ready for
acceptance, so no precursor is ‘spoiled’, but the carrier is busy for longer time intervals.

The SU can be thought of as a resistance that leads to deviation of the hyperbolic
production curve as a function of substrate density, making it somewhat steeper. The closed
protocol is optimal for regulation of flux Y versus flux Z, while the open protocol maximizes
substrate uptake, with inherent production of Y , and a slightly reduced production of Z.
The closed protocol requires compact spatial organization to allow information exchange
between the Carriers and the SUs with respect to the binding state of the SUs, which is
not required for the open protocol.

2.5 Metabolic modes

Animals feed on complex foods (mixtures of polysaccharides, lipids and proteins), from
which they extract energy, electrons, as well as all necessary ‘building’ blocks: carbon,
nitrogen, vitamins, etc. As is the case in many other organisms, some of the amino acids,
purines and pyrimidines in food are taken up and used as building blocks directly, while
other amino acids are synthesized de novo if not available in food. They thus obtain energy
from oxidation–reduction reactions, and carbon from organic compounds. This classifies
them as chemo-organotrophs (chemo- is opposite to photo-; organo- is opposite to litho-;
the latter dichotomy is synonymous with hetero- versus auto-). They frequently use oxygen
as an electron acceptor. As a consequence, they excrete carbon dioxide and nitrogen waste,
such as ammonia or urea, see Figure 2.14.

Most plants, in contrast, use light energy, and take carbon dioxide as a carbon source.
This classifies them as photolithotrophs. Energy that comes from light is usually stored in
polysaccharides and/or lipids, which also serve as carbon reserves. Plants use water, rather
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Figure 2.15: The next time you look at your car
or bike, you will remember that corrosion is an exam-
ple of chemolithotrophy. Most corrosion is microbe-
mediated and the main culprit is the iron bacterium
Gallionella; it uses 220 g of iron-II and produces 430
g of rust to make just 1 g of cells from carbon dioxide,
water and ammonia [585]. It excretes long strands of
rust at one side of the cell.

than organic compounds, as an electron donor, and, with carbon dioxide as the electron
acceptor, oxygen is produced in the light. Most plants can synthesize all compounds
they need from very simple minerals (nitrate, phosphate, etc), but some plants also use
complex organic compounds (for instance the parasitic plants that lack chlorophyll, or
the hemi-parasites that still have chlorophyll), so they combine chemo-organotrophic with
photolithotrophic properties.

Bacteria, as a group, use a wide range of metabolic modes, some resembling those
of animals or plants. The purple non-sulfur bacteria Rhodospirallacea use light as their
energy source, but different kinds of organic compounds as the electron donor and acceptor.
This classifies them as photo-organotrophs. Most photo-assimilable organic compounds
can also be respired, but benzoate, for instance, can be used in the light, but cannot be
respired [876]. Sulfur bacteria use light as an energy source, carbon dioxide as a carbon
source, and H2S, elemental sulfur or H2 as an electron donor. Like plants, they classify as
photolithotrophs. Most bacteria are chemotrophs, however, which use oxidation–reduction
or fermentation reactions to fuel energy-demanding reactions. Figure 2.15 gives an example
of chemolithotrophy.

Individuals of many phototrophic prokaryotes and protoctists can also activate the
chemotrophic mode, depending on the environmental conditions, which somewhat degrades
the usefulness of the classification. They are called mixotrophs. Figure 2.14 illustrates
that organisms can differ in their assimilation strategies, but otherwise have substantial
similarities in the organization of metabolism.

Some organisms, like ourselves, rapidly die when oxygen is not available. Intertidal an-
imals (crustaceans, molluscs), animals in sediments, parasitic animals, yeasts and goldfish
can survive its absence for some time, by switching from respiration to fermentation (cf.
{148}), see [132] for a review. (At some stage, all need some oxygen to synthesize steroids
or collagen [277]). Some bacteria do not need oxygen, but can survive in its presence,
but others rapidly die when exposed to oxygen. This is because oxygen is rather reactive
and can form free radicals in the cell, which are extremely reactive. Organisms can only
survive in the presence of oxygen (aerobic conditions) if they ‘catch’ these free radicals
efficiently with specialized enzymes, called superoxide dismutases (some prokaryotes use
high concentrations of Mn2+ or other means), to convert the radicals to the highly toxic
hydrogen peroxide, and subsequently back to oxygen, using the enzyme catalase. The han-
dling of oxygen remains rather tricky, however, and is at the basis of the process of aging,
cf. {139}.
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From a dynamic point of view, it is important to realize that the availability of the
various nutrients and light can fluctuate wildly, while autotrophs must couple them to
synthesize structural biomass with a constant chemical composition. This requires the
installation of auxiliary reserves, one for each nutrient (mineral) that has to be taken up,
with rules for the use of these reserves and their replenishment. This is less necessary
for chemo-organotrophs such as animals; an imbalance between the composition of food
and their needs to synthesize structural biomass can be modelled realistically, as a first
approximation, by a conversion of food into reserves that is not very efficient. This is why
cows extract so little energy from grass: grass is poor in proteins. The required energy–
protein balance shifts even more to the protein side if a lot of proteins are taken away
from the cow in milk. It is well known that the amount of grass required to feed cows can
be substantially reduced by protein supplements. The predator–prey conversion is very
efficient, because the body compositions match almost exactly. The match is perfect for
animals that feed on closely related species, and explains why they evolved in many taxa:
mammal-eating mammals, starfish-eating starfish, comb jelly-eating comb jellies, etc.

Animals can buffer varying availabilities of food with a single reserve, because all re-
quired nutrients covary, while plants also need auxiliary reserves, because mineral nutrients
and light vary independently. Since growth of structural biomass can change, the machin-
ery to synthesize biomass would face very busy and very quiet periods if they were a fixed
part of the structural biomass. (The part must be fixed on the basis of the homeostasis
assumption.) If the synthesis machinery is part of the reserves, however, the fluctuations
in activity would be much less, and the amount of required machinery could be ‘chosen’
much more economically, see {244}. This is because growth tends to increase with the re-
serves, as we will see. Auxiliary reserves for a particular nutrient, in contrast, can increase
considerably if growth is limited by other nutrients or energy, see {172}. This is how large
(auxiliary) reserves can accompany low growth rates. The homeostasis assumption also
applies to each auxiliary reserve. Homeostasis for the organism as a whole decreases with
an increasing number of reserves, and the composition of the body increases in flexibility.

2.6 Temperature

All physiological rates depend on the body temperature. For a species-specific range of
temperatures, the description proposed by S. Arrhenius in 1889, see, e.g. [327], usually
fits well

k̇(T ) = k̇1 exp
{

TA

T1

− TA

T

}

(2.20)

with T the absolute temperature (in Kelvin), T1 a chosen reference temperature, the pa-
rameter TA the Arrhenius temperature, k̇ a (physiological) reaction rate and k̇1 its value
at temperature T1. So, when ln k̇ is plotted against T−1, a straight line results with slope
−TA, as Figure 2.16 illustrates.

Arrhenius based this formulation on the van’t Hoff equation for the temperature co-
efficient of the equilibrium constant and amounts to k̇(T ) = k̇∞ exp{−Ea

RT
}, where k̇∞ is

known as the frequency factor, R is the gas constant 8.31441 J K−1 mol−1, and Ea is called
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Figure 2.16: The Arrhenius plot for the
development rate for eggs of the waterflea
Chydorus sphaericus, i.e. the inverse time
between egg laying and hatching. Data
from Meyers [628]. 104T−1, K−1
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the activation energy. Justification rests on the collision frequency which obeys the law of
mass action, i.e. it is proportional to the product of the concentrations of the reactants.
The Boltzmann factor exp{−Ea

RT
} stands for the fraction of molecules that manage to obtain

the critical energy Ea to react.
Glasstone et al. [327] studied the thermodynamic basis of the Arrhenius relationship in

more detail. They came to the conclusion that this relationship is approximate for bimolec-
ular reactions in the gas phase. Their absolute rate theory for chemical reactions proposes
a more accurate description where the reaction rate is proportional to the absolute tem-
perature times the Boltzmann factor. This description, however, is still an approximation
[327,412].

The step from a single reaction between two types of particles in the gas phase to
physiological rates where many compounds are involved and gas kinetics do not apply
is, of course, enormous. If, however, each reaction depended in a different way on tem-
perature, cells would have a hard time coordinating the different processes at fluctuating
temperatures. The Arrhenius relationship seems to describe the effect of temperature on
physiological rates with acceptable accuracy in the range of relevant temperatures. Due to
the somewhat nebulous application of thermodynamics to describe how physiological rates
depend on temperature, I prefer to work with the Arrhenius temperature, rather than the
activation energy. I even refrain from the improvement offered by Glasstone’s theory, be-
cause the small correction does not balance the increase in complexity of the interpretation
of the parameters for biological applications.

Figure 2.17 shows that the Arrhenius temperatures for different rates in a single species
are practically the same, which again points to the regulation problem an individual would
experience if they were different. Obviously, animals cannot respire more without eating
more.

In chemistry, the activation energy is known to differ widely between different reac-
tions. Processes such as the incorporation of [14C]leucine into protein by membrane-bound
rat-liver ribosomes have an activation energy of 180 kJ mol−1 in the range 8–20 ◦C and
67 kJ mol−1 in the range 22–37 ◦C. The difference is due to a phase transition of the mem-
brane lipids, [930] after [14]. Many biochemical reactions seem to have an activation
energy in this range [874]. This supports the idea that the value of activation energy is a
constraint for functional enzymes in cells.
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Figure 2.17: The Arrhenius
plot for reproduction, inges-
tion, von Bertalanffy growth
and Weibull aging of Daphnia

magna; from [522]. The Ar-
rhenius temperature is 6400
K. ⋄ males, 2 females. Food:
the algae Scenedesmus sub-

spicatus (open symbols) or
Chlorella pyrenoidosa (filled
symbols). The ingestion and
reproduction rates refer to 4
mm individuals. 104T−1, K−1
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Table 2.3 gives Arrhenius temperatures for several species. The mean Arrhenius tem-
perature, TA, is somewhere between 10 000 and 12 500 K, which is consistent for the embryo
development of 35 species [1030] and the von Bertalanffy growth of 250 species [515]. The
value is in the upper range of values usually applied. This is because many experiments do
not allow for an adaptation period. The problem is that allo-enzymes are produced with
somewhat different temperature–activity relationships when temperature changes. This
takes time, depending on species and body size. Without an adaptation period, the per-
formance of enzymes adapted to one temperature is measured at another temperature,
which affect the apparent Arrhenius temperature.

At low temperatures, the actual rate of interest is usually lower than expected on the
basis of (2.20). If the organism survives, it usually remains in a kind of resting phase, until
the temperature rises again. For many seawater species, this lower boundary is between
0 and 10 ◦C, but for terrestrial species it can be much higher; caterpillars of the large-
blue butterfly Maculinea rebeli, for instance, cease to grow below 14 ◦C [253]. The lower
boundary of the temperature tolerance range frequently sets boundaries for geographical
distribution. Reef-building corals only occur in waters where the temperature never drops
below 18 ◦C. Plants can experience chilling injury if the temperature drops below a species-
specific threshold.

At temperatures that are too high, the organism usually dies. At 27 ◦C, Daphnia magna
grows very fast, but at 29 ◦C it dies almost instantaneously. The tolerance range is sharply
defined at the upper boundary. A few degrees rise of the seawater temperature, due to the
intense 1998 El Niño event, caused death and the subsequent bleaching of vast areas of coral
reef. It will take them decades to recover. Nisbet [666] gives upper temperature limits
for 46 species of protozoa, ranging from 33 to 58 ◦C. Thermophilic bacteria and organisms
living in deep ocean thermal vents thrive at temperatures of 100 ◦C or more. The width
of the tolerance range depends on the species; many endotherms have an extremely small
one around 38 ◦C.

Sharpe et al. [821,830] proposed a quantitative formulation for the reduction of rates
at low and high temperatures, based on the idea that the rate is controlled by an enzyme
that has an inactive configuration at low and high temperatures. The reaction to these
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Table 2.3: Arrhenius temperatures as calculated from literature data on the growth of ectother-
mic organisms. The values for the mouse cells are obtained from Pirt [717]. The other values
were obtained using linear regressions.

species range TA type of source
(◦C) (K) data

Escherichia coli 23–37 6 590 population growth [639]
Escherichia coli 26–37 5 031 population growth [443]
Escherichia coli 12–26 14 388 population growth [443]
Psychrophilic pseudomonad 12–30 6 339 population growth [443]
Psychrophilic pseudomonad 2–12 11 973 population growth [443]
Klebsiella aerogenes 20–40 7 159 population growth [929]
Aspergillus nidulans 20–37 7 043 population growth [931]
9 species of algae 13.5–39 6 842 population growth [333]
mouse tissue cells 31–38 13 834 population growth [969]
Nais variabilis 14–29 9 380 population growth [460]
Pleurobrachia pileus 5–20 10 000 Bertalanffy growth [347]
Mya arenaria 7–15 13 000 Bertalanffy growth [24]
Daphnia magna 10–26.5 6 400 Bertalanffy growth [515]
Ceriodaphnia reticulata 20–26.5 6 400 Bertalanffy growth [515]
Calliopius laeviusculus 6.5–15 11 400 Bertalanffy growth [192]
Perna canaliculus 7–17 5 530 lin. growth [409]
Mytilus edulis 6.5–18 8 460 lin. growth larvae [873]
Cardium edule & C. glaucum 10–30 8 400 lin. growth larvae [483]
Scophthalmus maximum 8–15 15 000 lin. growth larvae [453]
25 species of fish 6–29 11 190 embryonic period [609]
Brachionus calyciflorus 15–25 7 800 embryonic period [357]
Chydorus sphaericus 10–30 6 600 embryonic period [628]
Canthocampus staphylinus 3–12 10 000 embryonic period [807]
Moraria mrazeki 7–16.2 13 000 embryonic period [807]
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Figure 2.18: The Arrhenius plot for the popu-
lation growth rate of Escherichia coli B/r on
rich complex medium. Data from Herendeen
et al. [401]. The Arrhenius temperature for
the growth rate, and for both deactivation rates
are TA = 4 370 (sd 1640) K, TAL = 20 110
(sd 7 940) K, and TAH = 69 490 (sd 8260) K.
The dotted line shows the Arrhenius relation-
ship with the same value for TA and the popula-
tion growth rate (1.94 (sd 0.11) h−1 at T1 = 310
K), but without accounting for the deactiva-
tion, between the upper and lower boundaries
of the tolerance range, TL = 293 (sd 3.4) K and
TH = 318 (sd 0.4) K.
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two inactive configurations is taken to be reversible with rates depending on temperature
in the same way as the reaction that is catalysed by the enzyme, however the Arrhenius
temperatures might differ. This means that the reaction rate has to be multiplied by the
enzyme fraction that is in its active state, which is assumed to be at its equilibrium value.
This fraction is

s(T )/s(T1) with s(T ) =
(

1 + exp
{

TAL

T
− TAL

TL

}

+ exp
{

TAH

TH

− TAH

T

})−1

(2.21)

where TL and TH relate to the lower and upper boundaries of the tolerance range and
TAL and TAH are the Arrhenius temperatures for the rate of decrease at both boundaries.
All are taken to be positive and all have dimension temperature. We usually find TAH ≫
TAL ≫ TA. Figure 2.18 illustrates the quantitative effect of applying the correction factor.

The existence of a tolerance range for temperatures is of major evolutionary impor-
tance; many extinctions are thought to be related to changes in temperature. This is the
conclusion of an extensive study by Prothero, Berggren and others [737] on the change in
fauna during the middle-late Eocene (40–41 Ma ago). This can most easily be understood
if the ambient temperature makes excursions outside the tolerance range of a species. If
a leading species in a food chain is the primary victim, many species that depend on it
will follow. The wide variety of indirect effects of changes in temperature complicate a
detailed analysis of climate-related changes in faunas. Grant and Porter [341] discuss in
more detail the geographical limitations for lizards set by temperature, if feeding during
daytime is only possible when the temperature is in the tolerance range, which leads to
constraints on ectotherm energy budgets.

As a first approximation it is realistic to assume that all physiological rates are affected
by temperature in the same way, so that a change in temperature amounts to a simple
transformation of time. Accelerations, such as the aging acceleration that is introduced on
{141}, must thus be corrected for temperature differences by applying the squared factor,
so k̈(T ) = k̈(T1) exp{−2TA(T−1

1 − T−1)}. I argue, {95}, that ultimate size results from a
ratio of two rates, so it should not depend on the temperature, as all rates are affected
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Table 2.4: The von Bertalanffy growth rate for the waterfleas Ceriodaphnia reticulata and Daph-

nia magna, reared at different temperatures in the laboratory both having abundant food. The
length at birth is 0.3 and 0.8 mm respectively.

Ceriodaphnia reticulata Daphnia magna

temp growth sd ultimate sd growth sd ultimate s.d
rate length rate length

◦C a−1 a−1 mm mm a−1 a−1 mm mm

10 15.3 1.4 4.16 0.16
15 20.4 4.0 1.14 0.11 25.9 1.3 4.27 0.06
20 49.3 3.3 1.04 0.09 38.7 2.2 4.44 0.09
24 57.3 2.6 1.06 0.01 44.5 1.8 4.51 0.06
26.5 74.1 4.4 0.95 0.02 53.3 2.2 4.29 0.06

in the same way. Table 2.4 confirms this for two species of daphnids cultured under well
standardized conditions and abundant food [515]. It is also consistent with the observation
by Beverton, see appendix to [158], that the walleye Stizostedion vitreum matures at 2
years at the southern end of its range in Texas and at 7 or 8 years in northern Canada,
while the size at maturation of this fish is the same throughout its range.

Although ultimate sizes are not rates, they are frequently found to decrease with in-
creasing temperature. The reason may well be that the feeding rate increases with temper-
ature, so, at higher temperatures, food supplies are likely to become limited, which reduces
ultimate size. I discuss this phenomenon in more detail in relation to the Bergmann rule,
{232}. For a study of the effects of temperature on size, it is essential to test for the
equality of food density. This requires special precautions.

Not all rates vary with temperature in the same way. The interception of photons
by chlorophyll is less effected by temperature than oxygen or carbon dioxide binding by
Rubisco, which implies an enhanced electron leak at low temperatures. The solubility of
oxygen in water decreases less with temperature than that of carbon dioxide, which means
that the compensation point, i.e. the ratio of the carbon dioxide to the oxygen partial
pressures for which photorespiration balances photosynthesis, increases with temperature
[542]. This leads to an optimum relationship of photosynthesis with temperature, but the
location of the optimum is highly adaptable, and can change during the season in a single
individual.

Apart from effects on rate parameters, temperature can affect egg size [261] and sex.
High temperatures produce males in lizards and crocodiles, and females in turtles [203,834],
within a range of a few degrees.

A common way to correct for temperature differences in physiology is on the basis of
Q10 values, known as van’t Hoff coefficients. The Q10 is the factor that should be applied



2.7. Life-stages 59

to rates for every 10 ◦C increase in temperature: k̇(T ) = k̇(T1)Q
(T−T1)/10
10 . The relationship

with the Arrhenius temperature is thus Q10 = exp{10TA

TT1
}. Because the range of relevant

temperatures is only from about 0 to 40 ◦C, the two ways to correct for temperature
differences are indistinguishable for practical purposes. If the reference temperature is
20 ◦C, or T1 = 293 K, Q10 varies from 3.49 to 2.98 over the full temperature range for
TA = 10 000 K.

2.7 Life-stages

Three life-stages can be distinguished in the study of mass and energy fluxes: embryo,
juvenile and adult. The triggers for transition from one stage to another and details of the
different stages are discussed later, {111}. This section introduces the stages.

Embryo

The first stage is the embryonic one, which is defined as a state early in the development
of the individual, when no food is ingested. The embryo relies on stored energy supplies.
Freshly laid eggs consist, almost entirely, of stored energy, and for all practical purposes
the initial volume of the embryo can realistically be assumed to be negligibly small. At
this stage it hardly respires, i.e. it uses no oxygen and does not produce carbon dioxide.
(The shells of bird eggs initially produce a little carbon dioxide [99,376].) In many species,
this is a resting stage. This especially holds for plants, where seeds are equivalent to eggs;
seeds can be dormant for many years and the number of dormant seeds greatly exceeds
the number of non-dormant individuals [371]. Many seeds (particularly berries) require
to be treated by the digestive juices of a particular animal species for germination. No
seedlings of the tambulacoque tree Calvaria major were found after the extinction of the
dodo Raphus cucullatus at around 1690 on Mauritius. With the help of turkeys, the tree
still survives artificially. Although the egg exchanges gas and water with the environment,
it is otherwise a rather closed system.

Foetal development represents an exception, where the mother provides the embryo
with reserve material, such as in the placentals and some species of velvet worm Peripatus.
Complicated intermediates between reproduction by eggs and foetuses exist in fish [1017,
1018], reptiles and amphibians [88,715,886]. The evolutionary transition from egg to
foetal development occurred several times independently. From the viewpoint of energetics,
foetuses are embryos because they do not take food. The digestive system is not functional
and the embryo does not have a direct impact on food supplies in an ecological sense.
The crucial difference from an energetics point of view is the supply of energy to the
embryo. In lecithotrophic species, nutrients are provided by the yolk of the ovum, whereas
in matrotrophic species nutrients are provided by the mother as the foetus grows, not just
in vitellogenesis. The fact that eggs are kept in the body (viviparity) or deposited in the
environment (oviparity) is of no importance from an energetic perspective. (The difference
is important in a wider evolutionary setting, of course.) As in eggs, a number of species of
mammal have a developmental delay just after fertilization, called diapause [837].
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Juvenile

The second stage in life history is the juvenile one, in which food is taken but resources are
not yet allocated to the reproductive process. In some species, the developing juvenile takes
a sequence of types of food or sizes of food particles. Most herbivores, for instance, initially
require protein-rich diets that provide nitrogen for growth, cf. {76}. Some species, such as
Oikopleura, seem to skip the juvenile stage. It does not feed as a larva, a condition known
as lecithotrophy, and it starts allocating energy to reproduction at the moment it starts
feeding. A larva is a morphologically defined stage, rather than an energy defined one. If
the larva feeds, it is treated as a juvenile; if not, it is considered to be an embryo. So, the
tadpole of the gastric-brooding frog Rheobatrachus , which develops into a frog within the
stomach of the parent, should for energy purposes be classified as an embryo, because it
does not feed. The switch from feeding to non-feeding as a larva seems to be made easily,
from an evolutionary perspective. Sea urchins have developed a complex pattern of species
that do or do not feed as a larva, even within the same genus, which comes with dramatic
differences in larval morphology [1019,1020,1021]. Sperm of the sea urchin Heliocidaris
tuberculata, which has feeding larvae, can fertilize eggs of H. erythrogramma, which has
non-feeding larvae; the zygote develops into feeding hybrid larvae that resemble starfish
larvae, similar to that of the distant ancestor of sea urchins and starfishes, some 450 Ma
ago [742].

Parthenogenetic aphids have a spectacular mode of repro-
duction: embryos producing new embryos [481] cf. {328}.
Since aphids are ovoviviparous, females carry daughters and
grand-daughters at the same time. There is no juvenile
stage, and the embryonic stage overlaps with the adult one.
Aphids illustrate that the events of turning on feeding and
reproduction matter, rather than the stages.

The word ‘mammal’ refers to the fact that the young usually receive milk from the
mother during the first stage after birth, called the baby stage. Pigeons, flamingos and
penguins also do this. The length of the baby stage varies considerably. If adequate
food is available, the guinea-pig Cavia can do without milk [837]. At weaning the young
experience a dramatic change in diet, and after weaning the growth rate frequently drops
substantially. Few biochemical transformations are required from milk to building blocks
for new tissue. The baby, therefore, represents a transition stage between embryo and
juvenile. The baby stage relates to the diet in the first instance, cf. {76}, and not directly to
a stage in energetic development, such as embryo and juvenile. This can best be illustrated
by the stoat Mustela erminea. Although blind for some 35–45 days, the female offspring
reaches sexual maturity when only 42–56 days of age, before they are weaned. Copulation
occurs whilst they are still in the nest [482,837].

Asexually propagating unicellular organisms take food from their environment, though
they do not reproduce in a way comparable to the production of eggs or young by most
multicellular organisms. For this reason, I treat them as juveniles in this energy-based
classification of stages. Although I realize that this does not fit into standard biological
nomenclature, it is a logical consequence of the present delineations. I do not know of
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better terms to indicate energy-defined stages, which highlights the death of literature
dealing with the individual-based energetics of both micro- and multicellular organisms.
This book shows that both groups share enough features to try to place them in a single
theoretical framework. Some multicellular organisms, such as some annelids, triclads and
sea cucumbers (e.g. Holothuria parvula [257]), also propagate by division. Some of them
sport sexual reproduction as well, causing the distinction between both groups to become
less sharp and the present approach perhaps more amenable. Some authors think that
ciliates stem from multicellular organism that have lost their cellular boundaries. This
feature is standard in fungi, acellular slime moulds and in the green alga Caulerpa. Some
bacteria have multicellular tendencies [829]. All in all, no sharp separation exists between
unicellular and multicellular organisms.

The eukaryotic cell cycle is usually partitioned into the interphase and mitotic phases;
the latter is here taken to be infinitesimally short. The interphase is further decomposed
into the first gap-phase, the synthesis phase (of dna) and the second gap-phase. Most cell
components are made continuously through the interphase, so that this distinction is less
relevant for energetics. The second gap-phase is usually negligibly short in prokaryotes.
Since the synthesis phase is initiated upon exceeding a certain cell size, size at division
depends on growth conditions and affects the population growth rate. These phenomena
are discussed in some detail on {118}, {243}.

In many species, the switch from the juvenile to the adult stage is hardly noticeable,
but in the paradoxical frog, for instance, the switch comes with a dramatic change in
morphology and a substantial reduction in size from 20 to 2 cm; the energy parameters differ
between the stages. Holo-metabolic insects are unique in having a pupal stage between the
juvenile and adult ones. It closely resembles the embryonic stage from an energetics point
of view, cf. {253}. Pupae do not take food, and start synthesizing (adult) tissue from tiny
imaginal disks. A comparable situation occurs in echinoderms, bryozoans, sipunculans
and echiurans, where the adult stage develops from a few undifferentiated cells of the
morphologically totally different larva. In some cases, the larval tissues are resorbed, and
so converted to storage materials; in other cases the new stage develops independently.
When Luidia sarsi steps off its bipinnaria larva as a tiny starfish, the relatively large
larva may continue to swim actively for another 3 months, [905] in [1003]. Some jelly
fishes (Scyphomedusae) alternate between an asexual stage, i.e. small sessile polyps, and
a sexual stage, i.e. large free swimming medusae. Many parasitic trematods push this
alternation of generations to the extreme. Mosses, ferns and relatives alternate between
a gametophyte and a sporophyte stage; the former is almost completely suppressed in
flowering plants. From an energetics perspective, the sequence embryo, juvenile is followed
by a new sequence, embryo, juvenile, adult, with different values for energy parameters for
the two sequences. The coupling between parameter values is discussed on {267}.

Adult

The third stage is the adult one, in which energy is allocated to the reproduction process.
The switch from the juvenile to the adult stage, puberty, is here taken to be infinitesimally
short. The actual length differs from species to species and behavioural changes are also
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Figure 2.19: Sexual dimorphy can be extreme. The male of the southern sea elephant Mirounga

leonina is ten times as heavy as the female, while the parasitic males of the angler fish Haplophryne

mollis are just pustules on the female’s belly.

involved. The energy flow to reproduction is continuous and usually quite slow, while
reproduction itself is almost instantaneous. This can be modelled by the introduction of a
buffer, which is emptied or partly emptied upon reproduction. The energy flow in females
is usually larger than that in males, and differs considerably from species to species.

Some Florideophyceae (red algae) and Ascomyceta (fungi) have three sexes; most an-
imals and plants have two, male and female, but even within a set of related taxa, an
amazing variety of implementations can occur. Some species of mollusc and annelid, and
most plants, are hermaphroditic, being male and female at the same time; some species
of fish and shrimp are male during one part of their life and female during another part;
plants such as the bog-myrtle Myrica gale can change sex yearly; some have very similar
sexes while other species show substantial differences between males and females; see Fig-
ure 2.19. The male can be bigger than the female, as in many mammals, especially sea
elephants, or the reverse can occur, as in spiders and birds of prey. Males of some fish,
rotifers and some echiurans are very tiny, compared to the female, and parasitize in or on
the female or do not feed at all. The latter group combines the embryo stage with the
adult one, not unlike aphids. As is explained in Chapter 8 on the comparison of species
on {267}, differences in ultimate size reflect differences in values for energy parameters.
Parameter values, however, are tied to each other, because it is not possible to grow rapidly
without eating a lot (in the long run). Differences in energy budgets between sexes are
here treated in the same way as differences between species.

Reproduction, in terms of the production of offspring, does not always have a simple
relationship with gamete production. All oocytes are already present at birth for future
ovulations in birds and mammals, where they are arrested at Prophase I of meiosis [636]
(which occurs at the transition from the second gap-phase to the mitotic phase). In some
species of tapeworm, wasp and at least eighteen species of mammal (e.g. armadillo) there
is a mode, called polyembryony, in which a sexually produced embryo splits into several
genetically identical offspring. The opposite also occurs in several species of mammal
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(e.g. pronghorn, elephant shrews, bats, viscacha), where the mother reduces a considerable
number of ova to usually two, early in the development, but also later on, by killing embryos
[87]. Cannibalism among juveniles inside the mother has been described for Salamandra,
some sharks and the sea star Patiriella, {76}. Parent coots are known to drown some
hatchlings of large litters, possibly to increase the likelihood of the healthy survival of the
remaining ones.

In some species a senile stage exists, where reproduction diminishes or even ceases.
This relates to the process of aging and is discussed on {139}. An argument is presented
for why this stage cannot be considered as a natural next stage within the context of deb
theory.

The summary of the nomenclature used here reads:

embryo juvenile adult

fertilization birth puberty deathweaning

baby infant

2.8 Summary

This chapter dealt with some basic concepts that are required to set up the deb theory
systematically, without too many asides.

The individual is introduced as the basic level of organization, in terms of system
theoretical concepts, involving state variables, inputs and outputs. Individuals span the
range from supply to demand systems.

Surface area to volume relationships are discussed, and how they can change during
ontogeny. This is necessary because uptake is coupled to surface area, and maintenance to
volume. The notion of the shape correction function is introduced to transform isomorphs
into organisms that change in shape during growth. I argued that changes in surface area
to volume relationships inform molecules about the size of the structure.

The notion of Synthesizing Units is developed from classic enzyme kinetics. It structures
interactions between uptake of several reserves, on the basis of a conservation argument
for time; the use of the concept ‘concentration’ should be restricted to well-mixed environ-
ments, and the combination of densities and fluxes should be used to understand metabolic
transformations.

The various metabolic modes and life-stages of organisms are briefly introduced, and
the effects of temperature on physiological rates quantified.
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Chapter 3

Energy acquisition and use

This chapter discusses the mechanistic basis of different processes which together constitute
the Dynamic Energy Budget (deb) model. Further chapters evaluate consequences at
the individual level. Tests against experimental data are presented during the discussion
to examine the realism of the model formulations, and also to develop a feeling for the
numerical behaviour of the model elements. The next chapter presents additional tests
that involve combinations of processes. The sequential nature of human language does
not do justice to the many interrelationships of the processes. These interrelationships are
what makes the deb model more than just a collection of independent submodels. I have
chosen here to follow the fate of food, ending up with production processes. This order
fits ‘supply’ systems, but for ‘demand’ systems another order may be more natural. The
relationships between the different processes is schematically summarized in Figure 3.1.

The details and logic of the energy flows will be discussed in this chapter; a brief
introduction will be given in this introductory section.

Food is ingested by an animal, transformed into faeces and egested. Energy derived
from food is taken up via the blood, which has a low capacity for energy but a high trans-
portation rate. Blood exchanges energy with the storage, and delivers energy to somatic
and reproductive tissues. A fixed part, κ, of the catabolic flux, i.e. the energy delivered by
the blood, is used for (somatic) maintenance plus growth, the rest for development and/or
reproduction. The decision rule for this fork is called the κ-rule. Maintenance has priority
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Figure 3.1: Energy fluxes through a heterotroph. The rounded boxes indicate sources or sinks.
All fluxes contribute a bit to heating, but this is not indicated in order to simplify the scheme.
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over growth, so growth ceases if all energy available for maintenance plus growth is used
for maintenance. Energy used for development in embryos and juveniles is similarly parti-
tioned into maintenance of a certain degree of maturation and an increase in the degree of
maturity. The energy spent on increasing the degree of maturity in juveniles is allocated
to reproduction in adults.

Substrate is taken up and processed by unicellulars (including prokaryotes) in a way
that is conceptually comparable to how food is taken up and processed by animals, al-
though defecation and utilization share partly the same machinery to mobilize energy.
The coupling between mass and energy fluxes, particularly relevant to micro-organisms,
is discussed on {125}. Autotrophs (including plants) are discussed in the multivariate
extension of the deb model, {159}.

3.1 Feeding

Feeding is part of the behavioural repertoire and, therefore, notoriously erratic compared
with other processes involved in energetics. The three main factors that determine feed-
ing rates are body size, food availability and temperature. If different types of food are
available, many factors determine preferences, e.g. relative abundances, size and searching
patterns, which relate to experience and nutritional aspects. For some species it is sensible
to express food availability per surface area of environment, for others food per volume
makes more sense, and intermediates also exist. The body size of the organism and spatial
heterogeneity of the environment hold the keys to the classification. Food availability for
krill, which feed on algae, is best expressed in terms of biomass or biovolume per volume of
water, because this links up with processes that determine filtering rates. The spatial scale
at which algal densities differ is large with respect to the body size of the krill. Baleen
whales, which feed on krill, are intermediate between surface and volume feeders because
some dive below the top layer, where most algae and krill are located, and sweep the entire
column to the surface; so it does not matter where the krill is in the column. Cows and
lions are typically surface feeders and food availability is most appropriately expressed in
terms of biomass per surface area.

These considerations refer to the relevance of the dimensions of the environment for
feeding, be it surface or volume. The next section discusses the relevance of the size of the
organism for feeding. The significance of food density returns in the section on functional
response.

3.1.1 Feeding methods

Organisms use many methods to obtain their meal; some sit and wait for the food to
pass by, others search actively. Figure 3.2 illustrates a small sample of methods, roughly
classified with respect to active movements by prey and predator. The food items can be
very small with respect to the body size of the individual and rather evenly distributed
over the environment, or the food can occur in a few big chunks. This section briefly
mentions some feeding strategies and explains why feeding rates tend to be proportional
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to the surface area when a small individual is compared to a large one of the same species.
(Comparisons between species are made in Chapter 8, {267}.) The examples illustrate a
simple physical principle: mass transport from one environment to another, namely to the
organism, must be across a surface.

Bacteria, floating freely in water, are transported even by the smallest current, which
implies that the current relative to the cell wall is effectively nil. Thus bacteria must obtain
substrates through diffusion, {235}, or attach to hard surfaces (films) or each other (flocs,
{251}) to profit from convection, which can be a much faster process. Some species develop
more flagellae at low substrate densities, which probably reduces diffusion limitation (L.
Dijkhuizen, pers. comm.). Uptake rate is directly proportional to surface area, if the
carriers that bind substrate and transport it into the cell have a constant frequency per
unit surface area of the cell membrane [7,142]. Arthrobacter changes from a rod shape
into a small coccus at low substrate densities to improve its surface area/volume ratio.
Caulobacters do the same by enhancing the development of stalks under those conditions
[720].

Some fungi, slime moulds and bacteria glide over or through the substrate, releasing
enzymes and collecting elementary compounds via diffusion. Upon arrival at the cell
surface, the compounds are taken up actively. The bakers’ yeast Saccharomyces cerevisiae
typically lives as a free floating, budding unicellular, but under nitrogen starvation it
can switch to a filamentous multicellular phase, which can penetrate solids [421]. Many
protozoans engulf particles (a process known as phagocytosis) with their outer membrane
(again a surface), encapsulate them into a feeding vacuole and digest them via fusion with
bodies that contain enzymes (lysosomes). Such organisms are usually also able to take up
dissolved organic material, which is much easier to quantify. In giant cells, such as the
Antarctic foraminiferan Notodendrodes , the uptake rate can be measured directly and is
found to be proportional to surface area [205]. Ciliates use a specialized part of their
surface for feeding, which is called the ‘cytostome’; isomorphic growth here makes feeding
rate proportional to surface area again.

Marine polychaetes, sea-anemones, sea lilies and other species that feed on blind prey
are rather apathetic. Sea lilies simply orient their arms perpendicular to an existing current
(if mild) at an exposed edge of a reef and take small zooplankters by grasping them one by
one with many tiny feet. The arms form a rather closed fan in mild currents, so the active
area is proportional to the surface area of the animal. Sea-gooseberries stick plankters to
the side branches of their two tentacles using cells that are among the most complex in
the animal kingdom. Since the length of the side branches as well as the tentacles are
proportional to the length of the animal, the encounter probability is proportional to a
surface area.

Filter feeders, such as daphnids, copepods and larvaceans, generate water currents of a
strength that is proportional to their surface area [122], because the flapping frequency of
their limbs or tails is about the same for small and large individuals [726], and the current

Figure 3.2: A small sample of feeding methods classified with respect to the moving activities of
prey and predator.
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prey and predator inactive

prey inactive
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prey and predator active
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Figure 3.3: Filtration rate as a function of
shell length, L, of the blue mussel Mytilus

edulis at constant food density (40×106 cells
l−1 Dunaliella marina) at 12 ◦C. Data from
Winter [1006]. The least-squares-fitted curve
is {Ḟ}L2, with {Ḟ} = 0.041 (sd 6.75× 10−4)
l h−1 cm−2.

Figure 3.4: Lettuce intake as a function of
shell length, L, in the pond snail Lymnaea

stagnalis at 20 ◦C [1028]. The weighted
least-squares-fitted curve is {J̇X}L2, with
{J̇X} = 2.81 (sd 0.093) cm2 d−1 cm−2.

is proportional to the surface area of these extremities. (Allometric regressions of currents
gives a proportionality with length to the power 1.74 [114], or 1.77 [249] in daphnids.
In view of the scatter, they agree well with a proportionality with squared length.) The
ingestion rate is proportional the current, so to squared length. Allometric regressions of
ingestion rates resulted in a proportionality with length to the power 2.2 [610], 1 [727],
2.4–3 [207], and 2.4 [686] in daphnids. This wide range of values illustrates the limited
degree of replicatability of these types of measurements. This is partly due to the inherent
variability of the feeding process, and partly to the technical complications of measurement.
Feeding rate depends on food density, as is discussed on {73}, while most measurement
methods make use of changes in food densities so that the feeding rate changes during
measurement. Figure 3.11 illustrates results obtained with an advanced technique that
circumvents this problem [264].

The details of the filtering process differ from group to group. Larvaceans are filterers
in the strict sense: they remove the big particles first with a coarse filter and collect the
small ones with a fine mesh. The collected particles are transported to the mouth in a
mucous stream generated by a special organ, the endostyle. Copepods take their minute
food particles out of the water, one by one with grasping movements [941]. Daphnids
exploit centrifugal force and collect them in a groove. Ciliates, bryozoans, brachiopods,
bivalves and ascidians generate currents, not by flapping extremities but by beating cilia
on part of their surface area. The ciliated part is a fixed portion of the total surface area
[292], and this again results in a filtering rate proportional to squared length; see Figure
3.3.

Some surface feeding animals, such as crab spiders, trapdoor spiders, praying mantis,
scorpion fish and frogs, lie in ambush; their prey will be snatched upon arrival within
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reach, i.e. within a distance that is proportional to the length of a leg, jaw or tongue. The
catching probability is proportional to the surface area of the predatory isomorphs. When
aiming at a prey with rather keen eye sight, they must hide or apply camouflage.

Many animals search actively for their meal, be it plant or animal, dead or alive.
The standard cruising rate of surface feeders tends to be proportional to their length,
because the energy investment in movement as part of the maintenance costs tends to be
proportional to volume, while the energy costs of transport are proportional to surface
area; see {73}. Proportionality of cruising rate to length also occurs if limb movement
frequency is more or less constant [736]. The width of the path searched for food by
cows or snails is proportional to length if head movements perpendicular to the walking
direction scale isomorphically. So feeding rate is again proportional to surface area, which
is illustrated in Figure 3.4 for the pond snail.

The duration of a dive for the sperm whale Physeter macrocephalus , which primarily
feeds on squid, is proportional to its length, as is well known to the whalers [970]. This can
be understood, since the respiration rate of this endotherm is approximately proportional
to surface area, as I argue on {135}, and the amount of reserve oxygen is proportional to
volume on the basis of a homeostasis argument. It is not really obvious how this translates
into the feeding rate, if at all; large individuals tend to feed on large prey, which occur less
frequently than small prey. Moreover, time investment in hunting can depend on size as
well. If the daily swimming distance during hunting were independent of size, the searched
water volume would be about proportional to surface area for a volume feeder such as the
sperm whale. If the total volume of squid per volume of water is about constant, this
would imply that feeding rate is about proportional to surface area.

The amount of food parent birds feed per nestling relates to the requirements of the
nestling, which is proportional to surface area; Figure 3.5 illustrates this for chickadees.
This is only possible if the nestlings can make their needs clear to the parents, by crying
louder.

Catching devices, such as spider or pteropod webs and larvacean filter houses [17],
have effective surface areas that are proportional to the surface area of the owner.

All these different feeding processes relate to surface areas in comparisons between
different body sizes within a species at a constant low food density. At high food densities,
the encounter probabilities are no longer rate limiting, this becomes the domain of digestion
and other food processing activities involving other surface areas, for example the mouth
opening and the gut wall. The gradual switch in the leading processes becomes apparent
in the functional response, i.e. the ingestion rate as function of food density, {73}.

3.1.2 Feeding and movement costs

As feeding methods are rather species-specific, costs of feeding will also be species-specific if
they contribute substantially to the energy budget. I argue here that costs of feeding and
movements that are part of the routine repertoire are usually insignificant with respect
to the total energy budget. For this reason this subsection does not do justice to the
voluminous amount of work that has been done on the energetics of movements [696],
a field that is of considerable interest in other contexts. Alexander [13] gives a most
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Figure 3.5: The von Bertalanffy growth curve applies to the black-capped chickadee, Parus

atricapillus (left figure, data from Kluyver [494,862]. Brood size was a modest 5.) The amount
of food fed per male (•) or female (◦) nestling in the closely related mountain chickadee, P.

gambeli, is proportional to weight2/3 (right figure), as might be expected for individuals that
grow in a von Bertalanffy way. Data from Grundel [351,862]. The last five data points were
not included in the fit; the parents stop feeding, and the young still have to learn gathering food
while rapidly losing weight.

readable and entertaining introduction to the subject of energetics and biomechanics of
animal movement. Differences in respiration between active and non-active individuals
give a measure for the energy costs of activity. The resting metabolic rate is a measure
that excludes active movement. The standard or basal metabolic rate includes a low level
of movement only. The field metabolic rate is the daily energy expenditure for free ranging
individuals. Karasov [465] found that the field metabolic rate is about twice the standard
metabolic rate for several species of mammal, and that the costs of locomotion ranges
2–15% of the field metabolic rate. Mammals are among the more active species. The
respiration rate associated with filtering in animals such as larvaceans and ascidians was
found to be less than 2% of the total oxygen consumption [286]. Energy investment in
feeding is generally small, which does not encourage the introduction of many parameters to
describe this investment. Feeding costs can be accommodated in two ways within the deb
theory without the introduction of new parameters, and this subsection aims to explore to
what extent this accommodation is realistic.

The first way to accommodate feeding costs is when they are proportional to feeding
rate. They then show up as a reduction of the energy gain per unit of food. One can,
however, argue that feeding costs per unit of food should increase with decreasing food
density, because of the increased effort of extracting it from the environment. This type
of cost can only be accommodated without complicating the model structure if these costs
cancel against increased digestion efficiency, caused by the increased gut residence time,
cf. {239}.

The second way to accommodate feeding costs without complicating the model struc-
ture applies if the feeding costs are independent of the feeding rate and proportional to
body volume. They then show up as part of the maintenance costs, cf. {89}. This argu-
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ment can be used to understand how feeding rates for some species tend to be proportional
to surface area if transportation costs are also proportional to surface area, so that the
cruising rate is proportional to length, {71}. In this case feeding costs can be combined
with costs of other types of movement that are part of the routine repertoire. A fixed (but
generally small) fraction of the maintenance costs then relates to movement.

Schmidt-Nielsen [815] calculated 0.65 ml O2 cm−2 km−1 to be the surface-area-specific
transportation costs for swimming salmon, on the basis of Brett’s work [115]. (He found
that transportation costs are proportional to weight to the power 0.746, but respiration
was not linear with speed. No check was made for anaerobic metabolism of the salmon.
Schmidt-Nielsen obtained, for a variety of fish, a power of 0.7, but 0.67 also fits well.)
Fedak and Seeherman [273] found that the surface-area-specific transportation cost for
walking birds, mammals and lizards is about 5.39 ml O2 cm−2 km−1 ≃ 118 J cm−2 km−1.
(They actually report that the transportation costs are proportional to weight to the power
0.72 as the best fitting allometric relationship, but the scatter is such that 0.67 fits as well.)
This is consistent with data from Taylor et al. [906] and implies that the costs of swimming
are some 12% of the costs of running. Their data also indicate that the costs of flying are
between those of swimming and running and amount to some 1.87 ml O2 cm−2 km−1.

The energy costs of swimming are frequently taken to be proportional to squared speed
on sound mechanical grounds [535], which questions the usefulness of the above-mentioned
costs and comparisons because the costs of transportation become dependent on speed. If
the inter-species relationship that speeds scale with the square root of volumetric length, see
{275}, also applies to intra-species comparisons, the transportation costs are proportional
to volume if the travelling time is independent of size.

The energy required for walking and running is found to be proportional to velocity
for a wide diversity of terrestrial animals including mammals, birds, lizards, amphibians,
crustaceans and insects [311]. This means that the energy costs of walking or running a
certain distance are independent of speed and just proportional to distance. If the costs of
covering a certain distance are dependent on speed, and temperature affects speeds, these
costs would work out in a really complex way at the population and community levels.

The conclusion is that, for the purposes of studying how energy budgets change during
the life span, transportation costs either show up as a reduction of energy gain from food,
or as a fixed fraction of the somatic maintenance costs when these costs are proportional
to structural mass.

3.1.3 Functional response

The feeding or ingestion rate, J̇X , of an organism as a function of food, nutrient or substrate
density, X, expressed as C-moles per surface area or volume, is described well by the
hyperbolic functional response

J̇X = fJ̇Xm with f ≡ (1 + XK/X)−1 (3.1)

where XK is known as the saturation coefficient or Michaelis–Menten constant, i.e. the
density at which food intake is half the maximum value, and J̇Xm the maximum ingestion
rate. This functional response, proposed by Holling [424] as type II, is illustrated in Figure
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Figure 3.6: The ingestion rate, J̇X of
an individual (female) rotifer Brachionus

rubens, feeding on the green alga Chlorella

at 20 ◦C, as a function of food density, X.
Data from Pilarska [714]. The curve is the
hyperbola (3.1), with maximum feeding
rate J̇Xm = 15.97 (sd 0.81) 103 cells d−1

and saturation coefficient XK = 1.47 (sd
0.26) 105 cellsml−1. The stippled curve
allows for an additive error in the mea-
surement of the algal density of 0.35 105

cellsml−1.
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3.6. It applies to the uptake of organic particles by ciliates (phagocytosis), the filtering of
algae by daphnids, the catching of flies by mantis, the uptake of substrates by bacteria,
the nutrient uptake by algae and plants, and the transformation of substrates by enzymes.
Although these processes differ considerably in detail, some common abstract principle
gives rise to the hyperbolic functional response: the busy period, which is characteristic of
the Synthesizing Unit, cf. {43}. To reveal the connection, I rephrase the basic derivation in
terms that make sense in the context of a simple model for feeding, or substrate processing,
that will be generalized subsequently in various directions, cf. {160}.

Let Ḟ denote the filtering rate or the speed of an animal relative to prey particles, a
rate that is taken to depend on mean particle density only, and not on particle density
at a particular moment. The arrival of food particles, present in density X, equals ḞX.
The mean time between the end of a handling period and the next arrival (the binding
period) is tb = (ḞX)−1, and the mean handling period is tp = J̇−1

Xm. The time required
to find and eat one particle is thus given by tc = tb + tp and the mean ingestion rate is
J̇X = (J̇−1

Xm + (ḞX)−1)−1 = J̇XmX(J̇Xm/Ḟ + X)−1, which is hyperbolic in the density X.
The saturation coefficient is inverse to the product of the handling time and the filtering
(or searching) rate, i.e. XK = (tpḞ )−1 = J̇Xm/Ḟ .

This derivation can be generalized in different ways without changing the model. Each
arriving particle can have an attribute that stands for its probability of becoming caught.
The i-th particle has some fixed probability ρi of being caught upon encountering an animal
if the animal is not busy handling particles, and a probability of 0 if it is. The mass of
each particle does not need to be the same. The flux J̇X should be interpreted as the mean
mass flux (in C-moles per time), where the mass of each particle represents a random
trial from some frequency distribution. It is not essential for the handling time to be the
same for all particles; handling time can be conceived of as a second attribute attached to
each particle, but it must be independent of food density. The condition of zero catching
probability when the animal is busy can be relaxed. Metz and van Batenburg [620,621]
and Heijmans [387] tied catching probability to satiation (thought to be related to gut
content in the mantis). An essential condition for hyperbolic functional responses is that
catching probability equals zero if satiation (gut content) is maximal.

Deviations from the hyperbolic functional response can be expected if the mass per
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particle is large, while the intensity of the arrival process is small, especially if the mass
scatters among the particles. An important source of deviations from the hyperbolic func-
tional response is discussed on {235}.

A most interesting property of the hyperbolic functional response is that it is the only
one with a finite number of parameters that maps onto itself. For instance, an exponential
function of an exponential function is not again an exponential function. A polynomial (of
degree higher than one) of a polynomial is also a polynomial, but it is of an increasingly
higher degree if the mapping is repeated over and over again. The hyperbolic function
of a hyperbolic function is also a hyperbolic function. (Note that the linear response
function is a special case of the hyperbolic one.) In a metabolic pathway each product
serves as a substrate for the next step. Neither the cell nor the modeller needs to know the
exact number of intermediate steps to relate the production rate to the original substrate
density, if and only if the functional responses of the subsequent intermediate steps are of
the hyperbolic type. If, during evolution, an extra step is inserted in a metabolic pathway
the performance of the whole chain does not change in functional form. This is a crucial
point because each pathway has to be integrated with other pathways to ensure the proper
functioning of the individual as a whole. If an insert in a metabolic pathway simultaneously
required a qualitative change in regulation at a higher level, the probability of its occurrence
during the evolutionary process would be remote. This suggests that complex regulation
systems in metabolic pathways fix and optimize the kinetics that originate from the simpler
kinetics on which Synthesizing Units are based.

A most useful property of the hyperbolic functional response is that it has only two
parameters that serve as simple scaling factors on the food density and ingestion rate axis.
So if food density is expressed in terms of the saturation coefficient, and ingestion rate
in terms of maximum ingestion rate, the functional response no longer has dimensions or
parameters.

Filter feeders, such as rotifers, daphnids and mussels, reduce filtering rate with increas-
ing food density [291,726,773,774], rather than maintain a constant rate, which would
imply the rejection of some food particles. They reduce the rate by such an amount that
no rejection occurs because of the handling (processing) of particles. If all incoming water
is swept clear, the filtering rate is found from Ḟ (X) = J̇X/X, which reaches a maximum
if no food is around (temporarily), so that Ḟm = {J̇Xm}V 2/3/XK , and approaches zero for
high food densities. The braces stand for ‘surface-area-specific’, so {J̇Xm} ≡ J̇XmV −2/3

stands for the maximum surface-area-specific ingestion rate, which is considered as a pa-
rameter that depends on the composition of the diet. An alternative interpretation of
the saturation coefficient in this case would be XK = J̇Xm/Ḟm = {J̇Xm}/{Ḟm}, which is
independent of the size of the animal, as long as only intra-specific comparisons are made.
It combines the maximum capacity for food searching behaviour, only relevant at low food
densities, with the maximum capacity for food processing, which is only relevant at high
food densities.

The mean ingestion rate for an isomorph of volume V at food density X thus amounts
to

J̇X = {J̇Xm}fV 2/3 with f ≡ (1 + XK/X)−1 (3.2)
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When starved animals are fed, they often ingest at a higher rate for a short time [971],
but this is neglected. Starved daphnids, for instance, are able to fill their guts within 7.5
minutes [314].

The ingestion rate, or substrate uptake rate for V0- and V1-morphs are found from
(3.2) by multiplication of {J̇Xm} with the shape correction function (2.1) or (2.2), which
leads to

V0-morph: J̇X = {J̇Xm}V 2/3
d f

V1-morph: J̇X = [J̇Xm]fV
(3.3)

for [J̇Xm] ≡ {J̇Xm}V −1/3
d and Vd is a fixed reference volume.

Feeding on more substrates

Several extensions are possible from one to more types of food (or substrate), see {160}.
The way in which these substrates are treated can be classified independently as parallel
or sequential, and substitutable or supplementary processing. Supplementary processing
means that several substrates are required (at the same time, in fixed relative amounts) to
synthesize reserves; the implication is that processing is halted when one of the required
substrates is absent. Sequential processing means that one substrate competes with other
substrates for access to the same processing unit; the implication is that the uptake rate
of that substrate can be reduced by an increase in the abundance of other substrates.

3.1.4 Diet

Details of growth and reproduction patterns can only be understood in relation to selection
of food items and choice of diet. The reverse relationship holds as well, especially for
‘demand’ systems. I will, therefore, mention some aspects briefly.

Many species change their diet during development in relation to their shifting needs
with an emphasis on protein synthesis during the juvenile period and on maintenance
during the adult one. Many juvenile holo-metabolic insects live on different types of food
compared with adults. Wasps, for instance, are often carnivorous when juvenile, while
they feed on nectar as adults; butterflies feed on leaves when juvenile, and also nectar as
adults. Stickelback fish change from being carnivorous to being herbivorous at some stage
during development [212]. Plant-eating ducks live on insects during the first period after
hatching. The male emperor penguin Aptenodytes and mouth-brooding frog Rhinoderma
darwinii provide their young initially with secretions from the stomach. Mammals live on
milk during the baby stage, cf. {60}.

The first hatching tadpoles of the alpine salamander Salamandra atra live on their sib-
lings inside the mother, where they are also supported by blood from her reproductive
organs, and the one to four winners leave the mother when fully developed. The same
type of prenatal cannibalism seems to occur in the coelacanth Latimeria [918], and several
sharks (sand tiger sharks Odontaspidae, mackerel sharks Lamnidae, thresher sharks Alopi-
idae [749]), and the sea star Patiriella [143]. Some species of poison dart frog Dendrobatus
feed their offspring with unfertilized eggs in the water-filled leaf axils of bromeliads, high
up in the trees [239,240].
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Shifts in food selection that relate to shifts in nutritional requirements can be modelled
using at least two reserves, e.g. carbohydrates plus lipids and proteins, which differ in
their contributions to maintenance costs, and in the requirements for growth. Changes in
behavioural aspects, such as food selection, can then be based on efficiency arguments.

Some species select for different food items in different seasons for reasons other than
changes in the relative abundance of the different food sources. This is because of the
tight coupling between feeding and digestion. The bearded tit Panurus biarmicus is a
spectacular example; it lives on the seed of bulrush, Typha, and reed, Phragmites, from
September to March and on insects in summer [870,974]. This change in diet comes with
an adaptation of the stomach which is much more muscular in winter when it contains
stones to grind the seeds. Once converted to summer conditions, the bearded tit is unable
to survive on seeds. The example is remarkable because the bearded tit stays in the same
habitat all year round. Many temperate birds change habitats over the seasons. Divers, for
instance, inhabit fresh water tundra lakes during the breeding season and the open ocean
during winter. Such species also change prey, of course, but the change is usually not as
drastic as the one from insects to seeds.

When offered different food items, individuals can select for type and size. Shelbourne
[831] reports that the mean length of Oikopleura eaten by plaice larvae increases with the
size of the larvae. Copepods appear to select the larger algal cells [897]. Daphnids do
not collect very small particles, < 0.9 µm cross-section [336], or large ones, > 27 and
> 71 µm; the latter values were measured for daphnids of length 1 and 3 mm respectively
[140]. Kersting and Holterman [477] found no size-selectivity between 15 and 105 µm3

(and probably 165 µm3) for daphnids. Selection is rarely found in daphnids [771], or in
mussels [291,996].

The relationship between feeding rates and diet composition gives a clue as to what
actually sets the upper limit to the ingestion rate. An indication that the maximum
ingestion rate is determined by the digestion rate comes from the observation that the
maximum ingestion rate of copepods feeding on diatoms expressed as the amount of carbon
is independent of the size of the diatom cells, provided that the chemical composition of the
cells is similar [300]. The maximum ingestion rate is inversely related to protein, nitrogen
and carbon contents fed to the copepod Acartia tonsa [431]. The observation that the
maximum ingestion rate is independent of cell size on the basis of ingested volume [314]
points to the capacity of gut volume being the limiting factor.

These examples should make clear that the quantitative details of the feeding process
cannot be understood without some understanding of the fate of the food. This involves
the digestion process in the first place, but a whole sequence of other processes follow.
Regulation of (maximum) ingestion depends by definition on the need in ‘demand’ systems,
which is especially easy to observe in species that lose the ability to grow, such as birds
and mammals. Temporarily elevated food intake can be observed in birds preparing for
migration or reproduction, in mammals preparing for hibernation or in pregnant mammals
[940]. For simplicity’s sake, these phenomena will not be modelled explicitly.

Prokaryotes show a diversity and adaptability of metabolic pathways that is huge in
comparison to that of eukaryotes. Many bacteria, for example, are able to synthesize all the
amino acids they require, but will only do so if these are not available from the environment.
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Figure 3.7: The great grey shrike Lanius excubitor hoards throughout the year, possibly to guard
against bad luck when hunting. Many other shrikes do this as well.

The fungus Aspergillus niger only feeds on cellulose if no compounds are available that are
easier to decompose. The relationship between food quality and physiological performance
is discussed again in the treatment of food intake reconstructions {223}, dissipating heat
{153} and adaptation {263}.

3.1.5 Food deposits and claims

Any general description of the feeding process must be approximate in nature. In this
subsection I want to highlight briefly some important types of feeding behaviour that
are likely to cause deviations from the hyperbolic functional response: stocking food and
claiming resources via a territory. The importance of these types of behaviour is at the
population level, where the effect is strongly stabilizing for two reasons. The first is that
the predator lives on deposits if prey is rare, which lifts the pressure on the prey population
under those conditions. The second one is that high prey densities in the good season do
not directly result in an increase in predator density. This also reduces the predation
pressure during the meagre seasons. Although the quantitative details are not worked out
here because of species specificity, I want to highlight this behaviour as an introduction to
other smoothing phenomena that are covered.

Many food deposits relate to survival during winter, frequently in combination with
dormancy, cf. {231}. The hamster is famous for the huge piles of maize it stocks in
autumn. In the German, Dutch and Scandinavian languages, the word ‘hamster’ is the
stem of a verb meaning to stock food in preparation for adverse conditions. The English
language has selected the squirrel for this purpose. This type of behaviour is much more
widespread, for example in jays and shrikes, see Figure 3.7.
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Figure 3.8: The 2 m paddlefish Polyodon spathula feeds on tiny plankters, while the 18 cm black
swallower Chiasmodon niger can swallow fish bigger than itself. They illustrate extremes in buffer
capacities of the stomach.

Many species defend territories just prior to and during the reproductive season. Birds
do it most loudly. The size of the territories depends on bird as well as food density. One
of the obvious functions of this behaviour is to claim a sufficient amount of food to fulfil
the peak demand when the young grow up. The behaviour of stocking and reclaiming food
typically fits ‘demand’ systems and is less likely to be found in ‘supply’ systems.

3.2 Digestion

Details of the digestion process are discussed on {239} because they do not bear directly
on the specification of the deb model. Logic of arguments requires, however, that some
aspects of the digestion process are discussed here.

3.2.1 Smoothing and satiation

The capacity of the stomach/gut volume depends strongly on the type of food a species
specializes on. Fish feeding on plankters, i.e. many small constantly available particles,
have a low stomach capacity, while fish such as the swallower, which feed on rare big chunks
of food (see Figure 3.8), have high stomach capacities. It may wait for weeks before a new
chunk of food arrives. The stomach/gut volume, which is still ‘environment’ rather than
animal, is used to smooth out fluctuations in nutritional input to the organism. Organisms
attempt to run their metabolic processes under controlled and constant conditions. Food in
the digestive tract and reserves inside the organism together make it possible for regulation
mechanisms to ensure homeostasis. Growth, reproductive effort and the like do not depend
directly on food availability but on the internal state of the organism. This even holds, to
some extent, for those following the ‘supply’ strategy, where energy reserves are the key
variable. These reserves rapidly follow the feeding conditions.
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If the food in the stomach, Ms, follows a simple first-order process, the change of
stomach contents is

d

dt
Ms = {J̇Xm}V 2/3

(

f − Ms

[Msm]V

)

(3.4)

where [Msm]V is the maximum food capacity of the stomach. The derivation is as follows.
A first-order process here means that the change in stomach contents can be written as
d
dt

Ms = J̇X − t−1
s Ms, where the proportionality constant t−1

s is independent of the input,
given in (3.2). Since food density is the only variable in the input, t−1

s must be independent
of food density X, and thus of scaled functional response f . If food density is high, stomach
content converges to its maximum capacity J̇Xmts = {J̇Xm}V 2/3ts. The assumption of
isomorphism implies that the maximum storage capacity of the stomach is proportional to
the volume of the individual. This means that we can write it as [Msm]V , where [Msm] is
some constant, independent of food density and body volume. This allows one to express
t−1
s in terms of [Msm], which results in (3.4).

The mean residence time in the stomach is thus ts = V 1/3[Msm]/{J̇Xm}, and so it is
proportional to length and independent of the ingestion rate. First-order dynamics implies
complete mixing of food particles in the stomach, which is unlikely if fermentation occurs.
This is because the residence time of each particle is then exponentially distributed, so a
fraction 1−exp{−1} = 0.63 of the particles spends less time in the stomach than the mean
residence time, and a fraction 1− exp{−1

2
} = 0.39 less than half the mean residence time.

This means incomplete, as well as over complete, and thus wasteful fermentation.
The extreme opposite of complete mixing is plug flow, where the variation in residence

times between the particles is nil in the ideal case. Pure plug flow is not an option for a
stomach, because this excludes smoothing. These conflicting demands probably separated
the tasks of smoothing for the stomach and digestion for the gut to some extent. Most
vertebrates do little more than create an acid environment in the stomach to promote
protein fermentation, while actual uptake is via the gut. For a mass of food in the stomach
of Ms, and in the gut of Mg, plug flow of food in the gut can be described by

d

dt
Mg(t) = t−1

s (Ms(t)−Ms(t− tg)) (3.5)

where tg denotes the gut residence time and ts the mean stomach residence time. This
equation follows directly from the principle of plug flow. The first term, t−1

s Ms(t), stands
for the influx from the stomach and follows from (3.4). The second one stands for the
outflux, which equals the influx with a delay of tg. Substitution of (3.4) and (3.2) gives
d
dt

Mg(t) = J̇X(t)− J̇X(t− tg) + d
dt

Ms(t− tg)− d
dt

Ms(t). Since 0 ≤Ms ≤ [Msm]V , d
dt

Ms → 0

if [Msm]→ 0. So the dynamics of food in the gut reduces to d
dt

Mg(t) = J̇X(t)− J̇X(t− tg)
for animals without a stomach.

Some species feed in meals, rather than continuously, even if food is constantly available.
They only feed when ‘hungry’ [228]. Stomach filling can be used to link feeding with
satiation. From (3.4) it follows that the amount of food in the stomach tends to M∗

s =
f [Msm]V , if feeding is continuous and food density is constant. Suppose that feeding starts
at a rate given by (3.2) as soon as food in the stomach is less than δs0M

∗
s , for some value

of the dimensionless factor δs0 between 0 and 1, and feeding ceases as soon as food in the
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stomach exceeds δs1M
∗
s , for some value of δs1 > δs0. The mean ingestion rate is still of the

type (3.2), where {J̇Xm} now has the interpretation of the mean maximum surface-area-
specific ingestion rate, not the one during feeding. A consequence of this on/off switching
of the feeding behaviour is that the periods of feeding and fasting are proportional to a
length measure. This matter is taken up again on {221}.

3.2.2 Gut residence time

The volume of the digestive tract is proportional to the whole body volume in strict
isomorphs. The fraction is ≃ 11% for ruminant and non-ruminant mammals [206] and
≃ 2.5% for daphnids if the whole space in the carapace is included [264]. If the animal
keeps its gut filled to maximum capacity, [Mgm]V say, and if the volume reduction due to
digestion is not substantial, this gives a simple relationship between gut residence time of
food particles tg, ingestion rates J̇X , and body volume V

tg = [Mgm]V/J̇X =
V 1/3[Mgm]

f{J̇Xm}
(3.6)

This has indeed been found for daphnids [264], see Figure 3.9, and mussels [367]. Copepods
[160] and carnivorous fish [451] seem to empty their gut at low food densities, which gives
an upper boundary for the gut residence time. The gut residence time has a lower boundary
of V 1/3[Mgm]/{J̇Xm}, which is reached when the throughput is at maximum rate.

Since ingestion rate, (3.2), is proportional to squared length, the gut residence time
is proportional to length for isomorphs. For V1-morphs, which have a fixed diameter,
ingestion rate is proportional to cubed length, (3.3), so gut residence time is independent
of body volume.

Daphnids are translucent, which offers the possibility of studying the progress of diges-
tion as a function of body length, see Figure 3.10.

3.3 Assimilation

The term ‘assimilated’ energy here denotes the free energy fixed into reserves; it equals the
intake minus free energy in faeces and in all losses in relation to digestion. The energy in
urine is included in assimilation energy, because urine does not directly derive from food
and is excreted by the organism, cf. {127} and {145}. (Faeces is not excreted, because it
has never been inside the organism.)

The assimilation efficiency of food is here taken to be independent of the feeding rate.
This makes the assimilation rate proportional to the ingestion rate, which seems to be
realistic, cf. Figure 7.15. I later discuss the consistency of this simple assumption with
more detailed models for enzymatic digestion, {239}. The conversion efficiency of food into
assimilated energy is written as {ṗAm}/{J̇Xm}, where {ṗAm} is a diet-specific parameter
standing for the maximum surface-area-specific assimilation rate. This notation may seem
clumsy, but the advantage is that the assimilated energy that comes in at food density X
is now given by {ṗAm}fV 2/3, where f = X/(XK +X) and V the body volume. It does not
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Figure 3.9: Gut volume is proportional to
cubed length (right) and gut residence time is
proportional to length (lower left), while the
latter depends hyperbolically on food density
(lower right), as illustrated for daphnids. The
first two figures relate to D. magna feeding on
the green alga Scenedesmus at 20 ◦C. Data from
Evers and Kooijman [264]. The third one re-
lates to a 2-mm D. pulex feeding on the di-
atom Nitzschia actinastroides at 15 ◦C. Data
from Geller [314]. length, mm
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involve the parameter {J̇Xm} in the notation, which turns out to be useful in the discussion
of processes of energy allocation in the next few sections.

The conversion from substrate to energy in bacteria is substantially more efficient under
aerobic (oxygen rich) conditions than under anaerobic ones, while metabolic costs are not
affected by oxygen availability [525]. This means that the parameter {ṗAm}, and not
{J̇Xm}, is directly relevant to the internal machinery, cf. {153}.

3.4 Reserve dynamics

Energy crossing the gut wall enters the blood or body fluid. Blood has a low capacity
for energy (or nutrients), but a high transportation rate; it is pumped through the body
many times an hour. It does not matter, therefore, where in the gut uptake takes place.
Residence time of energy in the digestive tract is usually short compared to that in the
energy reserves, which means that, for most practical purposes, the effect of digestion can
simply be summarized as a conversion of ingested food, J̇X = {J̇Xm}fV 2/3 (in C-mole per
time), into (assimilated) energy, ṗA = {ṗAm}fV 2/3 (in energy per time). The changes of
energy in blood, Ebl, and in reserves, E, are coupled by d

dt
Ebl = ṗA − d

dt
E − ṗC , where ṗC

denotes the energy consumed by the bodily tissues and is called the catabolic power. The
change in energy reserves can be positive or negative. Since the energy capacity of blood is
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Figure 3.10: The photograph of Daph-

nia magna on the right shows the sharp
transition between the chlorophyll of
the green algae and the brown-black di-
gestion products, which is typical for
high ingestion rates. The relative posi-
tion of this transition point depends on
the ingestion rate, but not on the body
length. Even in this respect daphnids
are isomorphic. At low ingestion rates,
the gut looks brown from mouth to
anus. The paired digestive caecum is
clearly visible just behind the mouth.

small, the change of energy in blood cannot have a significant impact on the whole body.
It therefore seems safe to assume that d

dt
Ebl ≃ 0, which means that the dynamics of the

reserves can be written as d
dt

E = ṗA − ṗC , as a very good approximation.

The dynamics of the reserves follows from three requirements: the reserve dynamics
should be partitionable, the reserve density at steady state should not depend on struc-
tural body mass, and the use of reserves should not directly relate to food availability or
allocation details. Since the reserve dynamics is a key element in the deb theory, I pay
due attention to the argumentation, motivation and implications for these requirements in
this section.

The dynamics for the reserve density has to be set up first, in general form. It can
be written as the difference between the volume-specific assimilation rate, [ṗA], and some
function of the state variables: the reserve density [E] = E/V and the structural volume
V . The freedom of choice for this function is greatly restricted by the requirement that [E]
at steady state does not depend on size, while [ṗA] ∝ V −1/3. It implies that the dynamics
can be written as

d

dt
[E] = [ṗA]− V −1/3H([E]|θ) + ([E]∗ − [E])G([E], V )

where H([E]|θ) is some function of [E] and a set of parameters θ, that does not depend on
V , and G([E], V ) some function of [E] and V . The value [E]∗ represents the steady-state
reserve density, which can be found from d

dt
[E] = 0. Since [E]∗ depends on food density

via the assimilation power [ṗA], the requirement that the rate of use of reserves should not
depend on food density implies that G([E], V ) = 0.

The requirement that the reserve density at steady state does not depend on V is
motivated by the homeostasis assumption, now applied to the biomass as a whole (reserves
and structural biomass). This is the weak homeostasis assumption.

The mass balance for the reserve density can be written as

d

dt
[E] = [ṗA]− [ṗC ]− [E]

d

dt
ln V (3.7)
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The volume-specific assimilation rate is given by [ṗA] = ṗA/V = f{ṗAm}V −1/3, and [ṗC ]
is the volume-specific catabolic flux, which is some function of the state variables [E]
and V . The third term stands for the dilution by growth, which directly follows from
the chain rule for differentiation of E/V . Because maintenance (work) and growth are
among the destinations of catabolic energy, one can write κ([E], V )ṗC = ṗM + [EG] d

dt
V ,

or d
dt

V = (κ([E], V )ṗC − ṗM)/[EG], where ṗM , which is some function of V , denotes the
maintenance costs and [EG] is the volume-specific costs of structure. The latter is a constant
in keeping with the homeostasis assumption for structural mass. The fraction κ([E], V )
is, at this stage in the reasoning, some function of the state variables. Substitution of the
expression for growth into (3.7) results in

d

dt
[E] = [ṗA]− [ṗC ](1 + κ[E]/[EG]) + [E][ṗM ]/[EG] (3.8)

Since the reserve density dynamics must be of the form d
dt

[E] = [ṗA]− V −1/3H([E]|θ),
as shown above, the volume-specific catabolic flux can now be written as

[ṗC ] =
V −1/3H([E]|θ) + [E][ṗM ](V )/[EG]

1 + κ([E], V |θ)[E]/[EG]
(3.9)

The third requirement, that of partitionability of
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reserve kinetics, is now used. By this I mean that the
partitioning of reserves should not affect its dynamics,
i.e. the sum of the dynamics of the partitioned reserves
should be identical to that of the lumped one in terms
of growth, maintenance, development and reproduc-
tion. The requirement originates from the fact that
the reserves are generalized compounds, i.e. mixtures
of various kinds of proteins, lipids, etc. Each of these
compounds follows its own kinetics, which are func-

tions of the amounts of that compound and of structural mass. The assumption that the
system has only two state variables, reserves and structural mass, implies that all reserve
components have identical kinetics. The strong homeostasis assumption ensures that the
amount of any particular compound of the reserves is a fixed fraction, say κA, of the total
amount of reserves. This compound must account for a fraction κA of the maintenance
costs and growth investment, see figure, or we would end up with a more-reserve model,
rather than a single-reserve model; this is a basic limitation of single-reserve models. Most
physiologists would be inclined to let various fractions of the reserves, such as lipids and
proteins, contribute differently to the maintenance and structure costs. The homeostasis
assumption for reserves implies that this difference in treatment of fractions is only possible
in models with more than one reserve, which is discussed later {168}.

The partitionability requirement represents basically a consistency argument that is in-
herent to the concept of generalized compound. Any whole organism model that specifies
the kinetics of a set of chemical compounds but does not obey the partitionability require-
ment suffers from a serious problem: if, some day, we improve our experimental techniques
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and separate a particular compound into two new chemical species, both playing a role in
storage dynamics, this would affect the model structure. Properties of specific chemicals
can only be taken into account in a physiological model if it deals with all relevant chem-
icals, which seems hopelessly complex to me. (Ecosystem models should not deal with
individual species for the same reason.)

The partitionability requirement translates quantitatively into

κA[ṗC ]([E], V |[ṗM ], [EG],θ) = [ṗC ](κA[E], V |κA[ṗM ], κA[EG],θ)

for an arbitrary factor κA in the interval (0, 1). This factor not only applies to [E], but
also to two parameters, the specific maintenance [ṗM ] and structure costs [EG], because
the different fractions of the reserves contribute to these costs. The factor does not apply
to V and the parameters θ. We can check in (3.9) that [ṗC ] is partitionable if

• the function H is a first-degree homogeneous function, which means that κAH([E]|θ) =
H(κA[E]|θ). It follows that this function can be written as H([E]) = v̇[E], for some
constant v̇.

• the function κ is a zero-th degree homogeneous function in E, which means that
κ(κA[E], V ) = κ([E], V ). In other words: κ may depend on V , but not on [E].
Later, I argue that κ(V ) is a rather rudimentary function of V , namely a constant,
see {87}.

Substitution of the function H in the reserve density dynamics gives d
dt

[E] = [ṗA] −
v̇[E]V −1/3, and the reserve density at steady state is [E]∗ = V 1/3[ṗA]/v̇ = f{ṗAm}/v̇.
The maximum reserve density at steady state occurs at f = 1, which gives the relationship
[Em] = {ṗAm}/v̇ , or v̇ = {ṗAm}/[Em]. As v̇ shows up time and again, I have given it a
name, energy conductance, a result of one of many discussions with R. M. Nisbet. Its di-
mension is length per time and it stands for the ratio of the maximum surface-area-specific
assimilation rate to the maximum volume-specific reserve energy density. The inverse,
v̇−1, has the interpretation of a resistance. Conductances are often used in applied physics.
Therefore, it is remarkable that the biological use of conductance measures seems to be
restricted to plant physiology [455,670] and neurobiology [537]. This is probably due
to the wide application of allometric functions in animal physiology, which are hard to
combine with physics.

The conclusion is that the partitionability and homeostasis requirements lead to a
simple first-order dynamics for the reserve density

d

dt
[E] =

{ṗAm}
V 1/3

(

f − [E]

[Em]

)

or (3.10)

d

dt
e =

v̇

V 1/3
(f − e) (3.11)

where the scaled reserve density e = [E]/[Em] is a dimensionless quantity, which will be
used frequently.
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The storage dynamics (3.10) results in the catabolic rate

ṗC = ṗA − V
d

dt
[E]− [E]

d

dt
V = [E](v̇V 2/3 − d

dt
V ) (3.12)

An important property of the catabolic rate is that it does not depend directly on the
assimilation rate and, therefore, not on food density. It only depends on the volume of the
organism and energy reserve.

The storage residence time in (3.10) is thus V 1/3/v̇, which must be large with respect
to that of the stomach, V 1/3[Msm]/{J̇Xm} and the gut, V 1/3[Mgm]/{J̇Xm}, to justify ne-
glecting the smoothing effect of the digestive tract.

If the energy reserve capacity, [Em], is extremely small, the dynamics of the reserves
degenerates to [E] = f [Em], while both [E] and [Em] tend to 0. The utilization rate then
becomes ṗC = {ṗAm}fV 2/3. This case has been studied by Metz and Diekmann [623], but
some consistency problems arise in variable environments, cf. {360}.

The storage dynamics for V0- and V1-morphs can be found from that of isomorphs by
multiplying {ṗAm} with the shape correction function M(V ) (2.1) and (2.2), {27}. The
scaled reserve density kinetics then becomes

V0:
d

dt
e = (f − e)v̇V

2/3
d /V (3.13)

V1:
d

dt
e = (f − e)v̇/V

1/3
d = (f − e)k̇E (3.14)

The reserve turnover rate k̇E = [ṗAm]/[Em], for [ṗAm] = {ṗAm}V −1/3
d , is introduced for

V1-morphs to simplify the notation, because it will appear frequently; it has dimension
‘per time’.

An essential difference between stomach and reserves dynamics is that the first is in
absolute quantities, because it relates to bulk transport, while the latter is in densities
because of the homeostasis requirement. (One cannot simply divide by body volume in (3.4)
to turn to densities because body volume depends on time. One should, therefore, correct
for growth to observe the mass conservation law.) Note that the requirement of homeostasis
for energy density is not consistent with the interpretation of reserve dynamics in terms of
a simple mechanism where reserve ‘molecules’ react with the catabolic machinery at a rate
given by the law of mass action. (This mechanism is attractive because the density of the
catabolic machinery is constant, due to the concept of homeostasis.) The resulting model,
known as first-order kinetics (for amounts, not for densities!), is very popular in chemistry.
The organism has to adjust the reaction rate between reserves and the catabolic machinery
during growth to preserve homeostasis. These adjustments are small, as long as dilution of
energy density by growth is small with respect to the use of energy, i.e. if d

dt
ln V ≪ v̇V −1/3.

In practice, this condition is usually fulfilled in animals, but not necessarily in unicellulars.
A more realistic mechanism, based on the structural homeostasis concept (see {246}), helps
us to understand why first-order dynamics for reserve densities also applies to unicellulars.

Under conditions of prolonged starvation, organisms can deviate from the standard
reserve kinetics, as is discussed on {227}.
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3.5 The κ-rule for allocation

Some animals, such as birds, first reproduce long after having obtained their final size.
Others, such as daphnids, continue to grow after the onset of reproduction. Daphnia
magna starts to reproduce at a length of 2.5 mm, while its ultimate size is 5–6 mm, if well-
fed. This means an increase of well over a factor eight in volume during the reproductive
period. Figure 3.11 illustrates a basic problem for the energy allocation rules that such
animals pose. It becomes visible as soon as one realizes that a considerable amount of
energy is invested in reproductive output. The volume of young produced exceeds one-
quarter of that of the mother each day, or 80% of the catabolic rate [764]. The problem
is that growth is not retarded in animals crossing the 2.5 mm barrier; they do not feed
much more and simply follow the surface area rule with a fixed proportionality constant
at constant food densities; they do not change sharply in respiration, so it seems unlikely
that they digest their food much more efficiently. So where does the energy allocated to
reproduction come from?

A solution to this problem can be found in development. Juvenile animals have to
mature and become more complex. They have to develop new organs and install regulation
systems. The increase in size (somatic growth) of the adult does not include an increase
in complexity. The energy spent on development in juveniles is spent on reproduction in
adults. This switch does not affect growth and suggests the ‘κ-rule’: a fixed proportion κ
of energy utilized from the reserves is spent on growth plus maintenance, the remaining
portion 1 − κ on development plus reproduction. The partitionability of reserve kinetics
has led to the conclusion that κ cannot depend on the reserve density (see {85}). The
argument that allocation is an intensive process, not an extensive one, suggests that κ is
independent of V as well.

The mechanistic background and rationale of the κ-rule is as follows. At separated
sites along the path the blood follows, somatic cells and ovary cells pick up energy. The
only information the cells have is the energy content of the blood and body size, cf. {25}.
They do not have information about each other’s activities in a direct way. This also
holds for the mechanism by which energy is added to or taken from energy reserves. The
organism only has information on the energy density of the blood, and on size, but not on
which cells have removed energy from the blood. This is why the parameter κ does not
show up in the dynamics of energy density. The activity of all carriers that remove energy
from the body fluid and transport it across the cell membrane depends, in the same way,
on the energy density of the fluid. Somatic cells and ovary cells both may use the same
carriers, but the concentration in their membranes may differ so that 1−κ may differ from
the ratio of ovary to body weight. This concentration of active carriers is controlled, by
hormones for example, and depends on age, size and environment. Once in a somatic cell,
energy is first used for maintenance, the rest is used for growth. This makes maintenance
and growth compete directly, while development and reproduction compete with growth
plus maintenance at a higher level. The κ-rule makes growth and development parallel
processes that interfere only indirectly, as is discussed by Bernardo [73], for instance.

If conditions are poor, the system can block allocation to reproduction, while mainte-
nance and growth continue to compete in the same way, see {227}. I explain on {177}
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Figure 3.11: Respiration (upper left), and ingestion (upper right) as a function of body length,
and reproduction (lower left) and body length (lower right) as function of age in the waterflea
Daphnia magna at 20 ◦C. Original data and from [264,520]; the deb model specifies the curves.
The reproduction curve shows that D. magna starts to reproduce at the age of 7 d, i.e. when
its length exceeds 2.5 mm. However, respiration, and ingestion do not increase steeply at this
size, nor does growth decrease. Where did the substantial reproductive energy come from? The
answer leads to the κ-rule. The open symbols in the graph for respiration relate to individuals
with eggs in their brood pouch.
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Figure 3.12: The leaves of most plant species grow
during a relatively short time period, and are shed
yearly, after the plant has recovered useful compounds.
The leaves of some species, however, such as Wel-

witschia mirabilis, grow and weather continuously.
The life span of this remarkable gymnosperm can ex-
ceed 2000 years. Leaves have a very limited functional
life span, but plants have found different ways to deal
with that problem.

that Huxley’s allometric model for relative growth closely links up with the κ-rule.
It is important to realize that although the fraction of utilized energy spent on mainte-

nance plus growth remains constant, the absolute size of the flow tends to increase during
development at constant food densities, as does the energy flow to maintenance plus growth.

The κ-rule solves quite a few problems from which other allocation rules suffer. Al-
though it is generally true that reproduction is maximal when growth ceases, a simple
allocation shift from growth to reproduction leaves similarity of growth between different
sexes unexplained, since the reproductive effort of males is usually much less than that
of females. The κ-rule implies that size control is the same for males and females and
for organisms such as yeasts and ciliates, which do not spend energy on reproduction but
do grow in a way that is comparable to species that reproduce; see Figure 1.1. Strong
support for the κ-rule comes from situations where the value for κ is changed to a new
fixed value. Such a simple change affects reproduction as well as growth and so food intake
in a very special way. Parasites such as the trematod Schistosoma in snails harvest all
energy to reproduction and increase κ to maximize the energy flow they can consume, cf.
{295}. Parasite-induced gigantism, coupled to a reduction of the reproductive output, is
also known from trematod-infested chaetognats [652], for instance. The daily light cycle
also affects the value for κ in snails, and the allocation behaviour during prolonged star-
vation; see {227}. The effect of some toxic compounds can be understood as an effect on
κ, as is discussed on {209}.

3.6 Maintenance

The notion of maintenance costs for advanced taxa is probably as old as mankind. Duclaux
[238] was the first to recognize, in 1898, that maintenance costs should be separated from
production costs to understand the energetics of micro-organisms. The next reference to
maintenance costs for micro-organisms stems from Sherris et al. [832] in 1957, in relation
to mobility. In the early 1960s maintenance costs for micro-organisms received considerable
attention [400,476,592,608,690,716].

Maintenance stands for a collection of processes necessary to ‘stay alive’. More precisely,
maintenance energy is defined as the (mean) energy requirement of an organism, exclud-
ing investments in the production processes of growth of structural mass, reproduction
and development. However, all these processes have overhead costs, with which excreted
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products can be associated, cf. {147}. The quantification of new structural mass or mass
of offspring does not necessarily quantify the investments in these processes. Maintenance
costs are species-specific and depend on the size of the organism and on body temperature.

As is customary, I use the term ‘metabolism’ or ‘respiration’ to cover non-maintenance
processes as well. The realization that respiration includes growth leads, I think, to the
solution of a long-standing problem: the acceptance that maintenance energy is propor-
tional to biovolume, while metabolism or respiration is about proportional to volume to
the power 0.75. I discuss this further in the section on respiration, {135}.

Maintenance costs are here taken to be independent of the growth rate. Tempest and
Neijssel [911] argued that the concentration gradients of potassium and glutamic acid can
involve a substantial energy requirement in prokaryotes. However, the concentrations of
these compounds vary markedly with growth rate so that this energy drain is not taken to
be part of maintenance here, but as part of the overhead costs of the growth process. The
high costs of potassium gradients is at odds with Ling’s association-induction hypothesis
[561], which states that virtually all potassium in living cells exists in an absorbed state.
The mechanism is via a liquid crystal type of structure for the cytoplasm [127].

As explained in the discussion of the κ-rule, {87}, development is excluded from main-
tenance, as it relates (partly) to a type of production process. The maintenance part of
development is referred to as maturity maintenance, and is discussed in the section on de-
velopment, {111}. To distinguish maturation maintenance from other maintenance costs,
the latter will be called costs for somatic maintenance, if necessary.

As stated on {37}, no maintenance costs are paid over reserves. The empirical justifica-
tion can most easily be illustrated by the absence of respiration in freshly laid eggs, which
consist almost entirely of reserves; see Figure 3.15. The logical justification is that reserves
have an intrinsic turnover; the costs are covered by overheads in assimilation and utiliza-
tion. Although the difference between turnover costs for reserves and structural biomass
is subtle, eggs show that the turnover costs for reserves are not equivalent to maintenance
for reserves, since they do not respire when freshly laid.

Maintenance costs can generally be decomposed in contributions that are proportional
to structural body volume, and to surface area.

3.6.1 Volume-related maintenance costs

Maintenance processes include the maintenance of concentration gradients across mem-
branes, the turnover of structural body proteins, a certain (mean) level of muscle tension
and movement, and the (continuous) production of hairs, feathers, scales, leaves (of trees),
see Figure 3.12.

The idea that maintenance costs are proportional to biovolume is simple and rests on
homeostasis: a metazoan of twice the volume of a conspecific has twice as many cells,
which each use a fixed amount of energy for maintenance. A unicellular of twice the
original volume has twice as many proteins to turn over. Protein turnover seems to be
low in prokaryotes [499]. Another major contribution to maintenance costs relates to the
maintenance of concentration gradients across membranes. Eukaryotic cells are filled with
membranes, and this ties the energy costs for concentration gradients to volume. (The
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argument for membrane-bound food uptake works out differently in isomorphs, because
feeding involves only the outer membrane directly.) Working with mammals, Porter and
Brand [728] argued that proton leak in mitochondria represents 25% of the basal respiration
in isolated hepatocytes and may contribute significantly to the standard metabolic rate of
the whole animal. Prokaryotes usually have an outer membrane only. Concentration
gradients across the outer membrane involve maintenance costs that relate to surface areas
of cells. Since prokaryotes approximately behave as V1-morphs, this hardly matters from
a quantitative perspective.

The energy costs of movement are also taken to be proportional to volume if averaged
over a sufficiently long period. Costs of muscle tension in isomorphs are likely to be
proportional to volume, because they involve a certain energy investment per unit volume
of muscle. In the section on feeding, I discuss briefly the energy involved in movement,
{73}, which has a standard level that includes feeding. This can safely be assumed to
be a small fraction of the total maintenance costs. Sustained powered movement such
as in migration requires special treatment. Such activities involve temporarily enhanced
metabolism and feeding. The occasional burst of powered movement hardly contributes
to the general level of maintenance energy requirements. Sustained voluntary powered
movement seems to be restricted to humans and even this seems of little help in getting
rid of weight!

There are many examples of species-specific maintenance costs. Daphnids produce
moults every other day at 20 ◦C. The synthesis of new moults occurs in the intermoult
period and is a continuous and slow process. The moults tend to be thicker in the larger
sizes. The exact costs are difficult to pin down, because some of the weight refers to
inorganic compounds, which might be free of energy cost. Larvaceans produce new feeding
houses every 2 hours at 23 ◦C [274], and this contributes substantially to organic matter
fluxes in oceans [15,16,198]. These costs are taken to be proportional to volume. The
inclusion of costs of moults and houses in maintenance costs is motivated by the observation
that these rates do not depend on feeding rate [274,513], but only on temperature.

The maintenance costs, ṗM , are thus taken to be proportional to volume

ṗM = [ṗM ]V (3.15)

The volume-specific costs of maintenance, [ṗM ], can be allocated to a variety of processes
that together are responsible for these costs.

3.6.2 Surface-area-related maintenance costs

Some specialized maintenance costs relate to surface areas of individuals.

Osmosis

Aquatic insects are chemically fairly well isolated from the environment. Euryhaline fishes,
however, have to invest energy in osmoregulation when in waters that are not iso-osmotic.
The cichlid Oreochromis niloticus is iso-osmotic at 11.6 ◦/◦◦ and 29% of the respiration



92 3. Energy acquisition and use

rate at 30 ◦/◦◦ can be linked to osmoregulation [1016]. Similar results have been obtained
for the brook trout Salvelinus fontinalis [303].

Homeothermy

Heat is a side product of all uses of energy, cf. {153}. In ectotherms, this heat simply
dissipates without increasing the body temperature above that of the environment to any
noticeable amount as long as the temperature is sufficiently low. If the environmental
temperature is high, as in incubated bird eggs just prior to hatching, metabolic rates are
high as well, releasing a lot more energy in the form of heat, which increases the body
temperature even further, cf. {258}. This is called positive feedback in cybernetics. The
rate of heat dissipation obviously depends on the degree of insulation and is directly related
to surface area.

A small number of species, known as endotherms, use energy to maintain their body
temperature at a predetermined high level, 27 ◦C in sloths, 34 ◦C in monothremes, 37 ◦C in
most mammals, 39 ◦C in non-passerine birds, 41 ◦C in passerine birds. Mammals and birds
change from ectothermy to endothermy during the first few days of their juvenile stage.
Some species temporarily return to the ectothermic state or partly so at night (humming-
birds, insectivores) or during hibernation (poorwills [559], rodents, bats) or dry seasons
(tenrecs, cf. {231}). Not all parts of the body are kept at the target temperature, especially
not the extremities. The naked mole rat Heterocephalus glaber (see Figure 3.13) has a body
temperature that is almost equal to that of the environment [569] and actually behaves
as an ectotherm. Huddling in the nest plays an important role in the thermoregulation of
this colonial species [1010]. The body temperature of the Grant’s golden mole Eremitalpa
granti normally matches that of the sand in which it lives, but it is able to maintain the
diurnal cycle if the temperature of the sand is kept constant [570].

Many ectotherms can approach the state of homeothermy under favourable conditions
by walking from shady to sunny places, and back, in an appropriate way. In an extensive
study of 82 species of desert lizards from three continents, Pianka [709] found that body
temperature Tb relates to ambient air temperature Te as

Tb = 311.8 + (1− β)(Te − 311.8)

where β stands for the species-specific thermoregulatory capacity, spanning the full range
from perfect regulation, β = 1, for active diurnal heliothermic species, to no regulation, β =
0, for nocturnal thigmothermic species. The target temperature of 311.8 K or 38.8 ◦C varies
somewhat between the different sub-groups and is remarkably close to that of mammals.
Many species of plants enhance the interception of radiation by turning their flowers to
the moving sun. The parabolic shape of flowers helps to focus radiation on the developing
ovum. Sunflowers, Helianthus annuus , follow the sun with their leaves and developing
inflorescence, but when the flowers open they are oriented towards the east [543]. This
probably relates to thermoregulation.

Several species can raise their temperature over 10 ◦C above that of the environment
(bumble bees and moths [392], tuna fish, mackerel shark, leatherback turtles). Some
species of Arum, which live in dark forests, heat their flowers metabolically. These examples
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Figure 3.13: The naked mole rat Hetero-

cephalus glaber (30 gram) is one of the few
mammals that are essentially ectother-
mic. They live underground in colonies
of some 60 individuals. The single breed-
ing female suppresses reproductive devel-
opment of all ‘frequent working’ females
and of most ‘infrequent working’ females,
a social system that reminds us of termites
[571].

do make it clear that energy investment in heating is species-specific and that the regulation
of body temperature is a different problem.

The ‘advantages’ of homeothermy are that enzymes can be used that have a narrow
tolerance range for temperatures and that activity can be maintained at a high level in-
dependent of environmental temperature. At low temperatures ectotherms are easy prey
for endotherms. Development and reproduction are enhanced, which opens niches in areas
with short growing seasons that are closed to ectotherms. The costs depend on the envi-
ronmental temperature, insulation and body size. If temperature is high and/or insulation
is excellent and/or body size is large, there may be hardly any additional costs of heating;
the range of temperatures to which this applies is called the thermo-neutral zone.

The costs of heating, ṗT , due to losses by convection or conduction can be written as

ṗT = {ṗT}V 2/3 (3.16)

Heat loss is not only proportional to surface area but, according to I. Newton, also to
the temperature difference between body and environment. This is incorporated in the
concept of thermal conductance {ṗT}/(Te − Tb), where Te and Tb denote the temperature
of the environment and the body. It is about 5.43 J cm−2 h−1 ◦C−1 in birds and 7.4–9.86
J cm−2 h−1 ◦C−1 in mammals, as calculated from [402]. The unit cm−2 refers to volumetric
squared length, not to real surface area which involves shape. The values represent crude
means in still air. The thermal conductance is roughly proportional to the square root of
wind speed.

This is a simplified presentation. Birds and mammals moult at least twice a year, to
replace their hair and feathers which suffer from wear, and change the thick winter coat for
the thin summer one. Cat owners can easily observe that when their pet is sitting in the
warm sun, it will pull its hair into tufts, especially behind the ears, to facilitate heat loss.
Many species have control over blood flow through extremities to regulate temperature.
People living in temperate regions are familiar with the change in the shape of birds in
winter to almost perfect spheres. This increases insulation and generates heat from the
associated tension of the feather muscles. These phenomena point to the variability of
thermal conductance.

There are also other sources of heat exchange, through ingoing and outgoing radiation
and cooling through evaporation. Radiation can be modulated by changes in colour, which
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chameleons and tree frogs apply to regulate body temperature [569]. Evaporation obvi-
ously depends on humidity and temperature. For animals that do not sweat, evaporation
is tied to respiration and occurs via the lungs. Most non-sweaters pant when hot and
lose heat by enhanced evaporation from the mouth cavity. A detailed discussion of heat
balances would involve a considerable number of coefficients [640,871], and would obscure
the main line of reasoning. I discuss heating in connection with the water balance on
{153}. It is important to realize that all these processes are proportional to surface area,
and so affect the heating rate {ṗT} and in particular its relationship with the temperature
difference between body and environment.

3.7 Growth

The growth rate follows from the assumptions that have already been introduced. The
κ-rule states that a fixed fraction of catabolic power is spent on somatic maintenance and
growth, so

κṗC = [EG]
d

dt
V + ṗM + ṗT (3.17)

where [EG] denotes the volume-specific costs of structure, which are taken as fixed in view
of homeostasis of the structural biomass. These costs thus include all types of overheads,
not just the costs of synthesis. There are no costs of heating for ectotherms, so ṗT = 0.
Substitution of (3.12), (3.15) and (3.16) gives

d

dt
V = v̇

V 2/3[E]/[Em]− V 2/3(Vh/Vm)1/3 − V/V 1/3
m

[E]/[Em] + g
(3.18)

Note that growth does not depend on food density directly. It only depends on reserve
density and body volume. The energy parameters combine in the compound parameters
Vh, Vm, g and v̇. The compound parameters appear frequently, so they are best introduced
here. To aid memory, I gave them names.

The maintenance rate constant k̇M ≡ [ṗM ]/[EG] was introduced by Marr et al. [592]
and publicized by Pirt [716], and stands for the ratio of costs of maintenance to biovolume
synthesis. It has dimension time−1. It remains hidden here in the maximum volume Vm,
but it frequently plays an independent role.

The investment ratio g ≡ [EG]/κ[Em] stands for the costs of new biovolume relative to
the maximum potentially available energy for growth plus maintenance. It is dimensionless.

The maximum volume Vm ≡ ( v̇
gk̇M

)3 = (κ{ṗAm}/[ṗM ])3 applies to ectotherms. En-

dotherms cannot reach this volume because they lose energy through heating. The com-
parison of species is based on this relationship between maximum volume and energy
budget parameters and is the core of the relationship between body size and physiological
variables together with the invariance property of the deb model, to be discussed later,
{267}.

The heating volume Vh ≡ ({ṗT}/[ṗM ])3 stands for the reduction in volume endotherms
experience due to the energy costs of heating. It can be treated as a simple parameter
as long as the environmental temperature remains constant. Sometimes, it will prove to
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be convenient to work with the scaled heating length lh ≡ (Vh/Vm)1/3 as a compound
parameter. If the temperature changes slowly relative to the growth rate, the heating
volume is just a function of time. If environmental temperature changes rapidly, body
temperature can be taken to be constant again while the effect contributes to the stochastic
nature of the growth process, cf. {221}. Note that (3.18) shows that the existence of
a heating volume is not an extra assumption, but a consequence of the volume-bound
maintenance costs and the surface-area-bound input and heating costs.

If food density X and, therefore, the scaled functional response f are constant, and if
the initial energy density equals [E] = f [Em], energy density will not change. Volumetric
length as a function of time since hatching where V (0) ≡ Vb can then be solved from (3.18)

d

dt
V 1/3 =

v̇

3(f + g)

(

f − (Vh/Vm)1/3 − (V/Vm)1/3
)

(3.19)

V 1/3(t) = V 1/3
∞ − (V 1/3

∞ − V
1/3
b ) exp{−tṙB} or (3.20)

t(V ) =
1

ṙB

ln
V 1/3
∞ − V

1/3
b

V
1/3
∞ − V 1/3

(3.21)

I will follow tradition and call this curve the von Bertalanffy growth curve despite its earlier
origin and von Bertalanffy’s contribution of introducing allometry, which I reject; see {13}.
The von Bertalanffy growth rate equals

ṙB ≡ (3/k̇M + 3fV 1/3
m /v̇)−1 (3.22)

and the ultimate volumetric length

V 1/3
∞ ≡ fV 1/3

m − V
1/3
h (3.23)

Time t in (3.20) is measured from hatching or birth. (Note that time and age are not the
same.) The von Bertalanffy growth curve results for isomorphs at constant food density and
temperature and has been fitted successfully to the data of some 270 species from many
different phyla; see Table 8.2 and [515]. The gain in insight since A. Pütter’s original
formulation in 1920 [740] is in the interpretation of the parameters in terms of underlying
processes. It appears that heating costs do not affect the von Bertalanffy growth rate ṙB.
Being a rate, high temperature does elevate it, of course. Food density affects both the
von Bertalanffy growth rate and the ultimate volume. The inverse of the von Bertalanffy
growth rate is a linear function of the ultimate volumetric length; see Figure 3.14. This is
in line with Pütter’s original formulation, which took this rate to be inversely proportional
to ultimate length, as has been proposed again by Gallucci and Quinn [309].

The requirement that food density is constant for a von Bertalanffy curve can be relaxed
if food is abundant, because of the hyperbolic functional response. As long as food density
is higher than four times the saturation coefficient, food intake is higher than 80% of
the maximum possible food intake, which makes it hardly distinguishable from maximum
food intake. Since most birds and mammals have a number of behavioural traits aimed at
guaranteed adequate food availability, they appear to have a fixed volume–age relationship.
This explains the popularity of age-based models for growth in ‘demand’ systems. Later, on
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Figure 3.14: The left figure shows the length-at-age data of the waterflea Daphnia magna for
various densities of the green alga Chlorella at 20 ◦C with von Bertalanffy growth curves. Data
from [513]. The inverses of the estimated von Bertalanffy growth rates, ṙ−1

B , are plotted against
estimated ultimate lengths (right). The expected relationship is ṙ−1

B = 3/k̇M + 3δML∞/v̇. The
least-squares-fitted line gives estimates for the energy conductance v̇/δM = 2.29 mm d−1 and for
the maintenance rate constant k̇M = 4.78 d−1, both of which seem to be too high in comparison
with other species. Frequent moulting may contribute to the maintenance costs and so to the
high estimate of the maintenance rate coefficient k̇M .

{258}, I discuss deviations from the von Bertalanffy growth curve that can be understood
in the context of the present theory.

In contrast, at low food densities, fluctuations in food density soon induce deviations
from the von Bertalanffy curve. This phenomenon is discussed further in the section on
genetics and parameter variation, {267}. Growth ceases, i.e. d

dt
V = 0, if the reserve density

equals a threshold value, [E] = ({ṗT}+ [ṗM ]V 1/3)/κv̇.
Although food availability does not influence growth directly, it does so indirectly via

reserve energy. Moreover, the maximum surface-area-specific assimilation rate {ṗAm}, and
so energy conductance v̇, relate to the food–energy conversion. Many herbivores, such as
chickens, eat animal products in the early juvenile period to gain nitrogen, which they need
to synthesize proteins. They experience a shift in diet during development. Mammals feed
milk to their offspring, this needs little conversion and induces growth rates that cannot
be reached with their later diet. Their growth curves, therefore, kink sharply at weaning.

Animals that have non-permanent exoskeletons (arthropods, insects) have to moult to
grow. The rapid increase in size during the brief period between two moults relates to the
uptake of water or air, not to synthesis of new structural biomass, which is a slow process
occurring during the intermoult period. This minor deviation from the deb model relates
more to size measures than to model structure.

3.7.1 Embryonic growth

The deb model takes the bold view that the only essential difference between embryos and
juveniles is that the former do not feed [514]. I will discuss eggs first, which do not take
up energy from the environment. (See [141] for an excellent introduction to eggs, with
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beautiful photographs.) Subsequently, I deal with foetuses, which obtain energy reserves
from the mother during development.

The idea is that the dynamics for growth, (3.18) and reserve density, (3.10) also apply
to embryos in eggs in the absence of food intake. The scaled functional response is thus
taken to be f = 0. The dynamics for the reserve density then reduces to

d

dt
[E] = −v̇[E]V −1/3 (3.24)

The initial volume is practically nil, so V (0) = 0. This makes the energy density infinitely
large, so [E](0) =∞. The (absolute) initial energy is a certain amount, [E](0)V (0) = E0,
which, however, is not considered to be a free parameter. Its value is determined from the
condition of the energy reserves at hatching. Hatching occurs at age ab, say, and initial
energy density [Eb], so [E](ab) = [Eb]. The just-born juvenile still needs some energy
reserves to cope with its metabolic needs. If all utilized energy is used for maintenance
at hatching, a lower boundary for reserve energy density follows from [ṗM ]Vb = v̇[Eb]V

2/3
b ,

giving [Eb] = [ṗM ]V
1/3
b /v̇.

If food density is constant, the energy density will change from the one at hatching,
called [Eb], to f [Em] in juveniles. If energy density at hatching equals f [Em], the growth
curve follows a von Bertalanffy curve. For initial energy densities less than f [Em], growth
will be retarded compared to the von Bertalanffy growth curve; the opposite holds true for
initial densities larger than f [Em]. The deviation from the von Bertalanffy growth curve
will not last long, because the relaxation time for energy density is proportional to length,
which is small at hatching. It is tempting to take the initial energy density as equal to
that of the mother at egg laying, because this results in von Bertalanffy growth at constant
food density even just after hatching, and it does not require additional parameters.

Experimental evidence for the initial condition of the reserves at egg laying is incon-
sistent for daphnids. The triglycerides component of energy density is visible as a yellow
colour and as droplets. I have observed that well-fed, yellow mothers of Daphnia magna
give birth to yellow offspring, and poorly fed, glassy mothers give birth to glassy offspring.
This is consistent with observations of Tessier et al. [914]. Later observations of Tessier
as well as Enserink [259], however, indicate an inverse relationship between food density
and energy reserves at hatching. An increase of energy investment per offspring can also
result in larger offspring rather than an increased reserve density at hatching. Large-bodied
offspring at low food availability has been described for the terrestrial isopod Armadillium
vulgare [118]. Because of the relationship with energy costs of egg production, and so
with reproduction rate, this response to resource depletion has implications for population
dynamics. It can be viewed as a mechanism that aims to ensure adequate food supply
for the existing individuals. The assumption that energy density at hatching equals that
of the mother at egg formation is made here for reasons of simplicity and theoretical ele-
gance. No theoretical barriers exist for other formulations within the context of the deb
theory. Such formulations are likely to involve species-specific empirical or optimization
arguments, however, which I have tried to avoid as much as possible.

Embryo development provides an excellent opportunity to test the model for the dy-
namics of energy reserves, because of the huge change of energy density, which avoids the
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pathological conditions that starving individuals face. As embryos do not feed, data on
their development do not suffer from a major source of scatter.

Figure 3.15 shows that data on embryo weight, yolk and respiration are in close agree-
ment with model expectations. As is discussed later, {135}, respiration is taken to be
proportional to the catabolic rate. The two or three curves per species have been fitted
simultaneously by Zonneveld [1030], and the total number of parameters is five exclud-
ing, or seven including, respiration. This is less than three parameters per curve and
thus approaches a straight line for simplicity when measured this way. I have not found
comparable data for plant seeds, but I expect a very similar pattern of development.

The examples are representative of the data collected in Table 3.1, which gives pa-
rameter estimates of some 40 species of snails, fish, amphibians, reptiles and birds. The
model tends to underestimate embryo weight and respiration rate in the early phases of
development. This is partly because of deviations in isomorphism, the contributions of
extra-embryonic membranes (both in weight and in the mobilization of energy reserves),
and the loss of water content during development. The parameter estimates for the altricial
birds such as the parrot Agapornis should be treated with some reservation, because ne-
glected acceleration caused by the temperature increase during development substantially
affects the estimates, as discussed on {258}.

The values for the energy conductance v̇, as given in Table 3.1, are in accordance with
the average value for post-embryonic development, as given on {277}, which indicates that
no major changes in energy parameters occur at birth. The maintenance rate constant
k̇M for reptiles and birds is about 0.08 d−1 at 30 ◦C, implying that the energy required to
maintain tissue for 12 days at 30 ◦C is about equal to the energy necessary to synthesize the
tissue from the reserves. The maintenance rate constant for fresh water species seems to
be much higher, ranging from 0.3 to 2.3 d−1. Data from Smith [861] on the rainbow trout
Oncorhynchus mykiss result in 1.8 d−1 and Figure 3.14 gives over 10 d−1 for the waterflea
Daphnia magna at 30 ◦C. The costs of osmosis might contribute to these high maintenance
costs, as has been suggested on {91}. Although information on parameter values is still
sparse, it indicates that no (drastic) changes in these values occur at the transition from
the embryonic to the juvenile state.

Table 3.1 shows that about half of the reserves are used during embryonic development.
The deviating values for altricial birds are artefacts, caused by the abovementioned accel-
eration of development by increasing temperatures. Congdon et al. [169] observed that
the turtles Chrysemus picta and Emydoidea blandingi have 0.38 of the initial reserves at
birth. Respiration measurements on sea birds by Pettit et al. [704] indicate values that
are somewhat above the ones reported in the table. The extremely small value for the soft
shelled turtle, see also Figure 3.15, relates to the fact that these turtles wait for the right
conditions to hatch, after which they have to run the gauntlet as a cohort at night from
the beach to the water, where a variety of predators wait for them.

The general pattern of embryo development in eggs is characterized by unrestricted
fast development during the first part of the incubation period (once it has started the
process) due to unlimited energy supply, at a rate that would be impossible to reach if
the animal had to refill reserves by feeding. This period is followed by a retardation of
development due to the increasing depletion of energy reserves. Apart from the reserves of
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Figure 3.15: Yolk-free embryo weight (⋄), yolk weight (×), and respiration rate (+) during
embryo development, and fits on the basis of the deb model. Data sources are indicated.
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Figure 3.15 continued
New Guinea soft-shelled turtle Carettochelys insculpta [975]
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Laysan albatross Diomedea immutabilis [702]
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Table 3.1: Survey of re-analysed egg data, and parameter values standardized to a temperature
of 30 ◦C, taken from [1030]. *1* P. J. Whitehead, pers. comm., 1989 ; *2* M. B. Thompson,
pers. comm., 1989; ‘galac.’, stands for galactogen content.

species temp. type of data v̇30 k̇M 30 Eb/E0 reference
◦ C mm d−1 d−1

Lymnaea stagnalis 23 ED, galac, O 0.80 2.3 0.55 [428]

Salmo trutta 10 ED, YD 3.0 0.31 0.37 [344]

Rana pipiens 20 EW, O 2.5 0.87 [34]

Crocodylus johnstoni 30 EW, YW 1.9 0.060 0.31 [588]
29, 31 O [992]

Crocodylus porosus 30 EW, YW 2.7 0.024 0.19 [976]
30 O *1*

Alligator mississippiensis 30 EW, YW 2.7 0.34 [204]
30 O [919]

Chelydra serpentina 29 ED, YD 1.9 0.35 [681]
29 O [319]

Carettochelys insculpta 30 EW, YW, O 1.9 0.040 0.08 [975]
Emydura macquarii 30 EW, O 1.6 0.14 0.35 [919]
Caretta caretta 28–30 EW, O 3.0 0.65 [4,3]
Chelonia mydas 28–30 EW, O 3.0 0.57 [4,3]
Amphibolurus barbatus 29 ED, YD 0.92 0.061 0.47 [682]
Coluber constrictor 29 ED, YD 1.4 0.69 [683]
Sphenodon punctatus 20 HW, O 0.85 0.062 0.25 *2*

Gallus domesticus 39 EW, O, C 3.2 0.039 0.34 [783]
Gallus domesticus 38 EW, C 3.4 0.52 [99]
Leipoa ocellata 34 EE, YE, O 1.7 0.031 0.55 [954]
Pelicanus occidentalis 36.5 EW, O 3.2 0.10 0.77 [50]
Anous stolidus 35 EW, O 2.0 0.11 0.59 [703]
Anous tenuirostris 35 EW, O 1.8 0.20 0.59 [703]
Diomedea immutabilis 35 EW, O 2.5 0.069 0.57 [702]
Diomedea nigripes 35 EW, O 2.5 0.049 0.58 [702]
Puffinus pacificus 38 EW, O 0.92 0.084 0.61 [5]
Pterodroma hypoleuca 34 EW, O 1.9 0.20 [702]
Larus argentatus 38 EW, C 2.7 0.15 0.56 [233]
Gygis alba 35 EW, O 1.4 0.53 [701]
Anas platyrhynchos 37.5 EW 2.5 0.10 0.67 [735]

37.5 O [466]
Anser anser 37.5 EW 4.1 0.039 0.23 [782]

37.5 O [952]
Coturnix coturnix 37.5 EW, O 1.7 0.49 [952]
Agapornis personata 36 EW, O 0.8 0.79 [134]
Agapornis roseicollis 36 EW, O 0.84 0.81 [134]
Troglodytes aëdon 38 EW, O 1.4 0.82 [473]
Columba livia 38 EW 2.7 0.80 [467]

37.5 O [952]

EW: Embryo Wet weight YW: Yolk Wet weight ED: Embryo Dry weight
EE: Embryo Energy content YE: Yolk Energy content YD: Yolk Dry weight
O: Oxygen consumption rate C: Carbon dioxide prod. rate HW: Hatchling Wet weight
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Figure 3.16: The embryonic development of altricial (wren, pelican) and precocial (chicken,
goose) birds. Data from the sources indicated; fits are on the basis of the deb model (parameters
in Table 3.1). The underestimation of the initial development possibly relates to embryonic
membranes. Pelican’s high respiration rate just prior to hatching is attributed to internal pipping,
which is not modelled. The drawings show hatchlings and adults.
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Figure 3.17: Egg dimorphism occurs as
standard in crested penguins (genus Eu-

dyptes). The small egg is laid first, but it
hatches later than the big one, which is 1.5
times as heavy. The deb theory explains
why the large egg requires a shorter incu-
bation period. The illustration shows the
Snares crested penguin E. atratus.

the juvenile, the model works out very similar that of Beer and Anderson [64] for salmonid
embryos. In view of the goodness of fit of the model in species that do not possess shells,
retardation is unlikely to be due to limitation of gas diffusion across the shell, as has
been frequently suggested for birds [746]. Such a limitation also fails to explain why
respiration declines in some species after its peak value, here beautifully illustrated with
the turtle data. The altricial and precocial modes of development have been classified as
being basically different; the precocials show a plateau in respiration rates towards the
end of the incubation period, whereas the altricials do not. Figure 3.16 shows that this
difference can be traced back to the simple fact that altricial birds hatch relatively early.

Large eggs, so large initial energy supplies, result in short incubation times if eggs of
one species are compared. Crested penguins, Eudyptes , are known for egg dimorphism
[967]; see Figure 3.17. They first lay a small egg and, some days later a 1.5 times bigger
one. As predicted by the deb model, the bigger one hatches first, if fertile, in which case
the parents cease incubating the smaller egg, because they are only able to raise one chick.
They continue to incubate the small egg only if the big one fails to hatch. This is probably
an adaptation to the high frequency of unfertilized eggs or other causes of loss of eggs
(aggression [967]), which occurs in this species.

Incubation periods only decrease for increasing egg size if the structural biomass of the
hatchling is constant. The incubation period is found to increase with egg size in some
beetle species, lizards and marine invertebrates [162,261,847]. In these cases, however, the
structural biomass at hatching also increases with egg size. This is again consistent with
the deb theory, although the theory does not explain the variation in egg sizes.
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Figure 3.18: Foetal weight development in mammals. Parameters are given in Table 3.2.

Foetal development

Foetal development differs from that in eggs in that energy reserves are supplied continu-
ously via the placenta. The feeding and digestion processes are not involved. Otherwise,
foetal development is taken to be identical to egg development, with initial reserves that
can be taken to be infinitely large, for practical purposes. At birth, the neonate receives
an amount of reserves from the mother, such that the reserve density of the neonate equals
that of the mother. So the approximation [E] = ∞ for the foetus can be made for the
whole gestation period and the dynamics of the reserve density (3.24) not longer applies,
because the foetus lives on the reserves of the mother. In other words: unlike eggs, the
development of foetuses is not restricted by energy reserves. Initially the egg and foetus
develop in the same way, but the foetus keeps developing at a rate not restricted by the
amount of reserves till the end of the gestation time, while the development of the egg
becomes retarded, due to depletion of the reserves. The approximation [E] = ∞ reduces
the growth equation (3.18) to

d

dt
V = v̇V 2/3 so (3.25)

V (t) = (v̇t/3)3 (3.26)

This growth curve was proposed by Huggett and Widdas [434] in 1951. Payne and Wheeler
[694] explained it by assuming that the growth rate is determined by the rate at which
nutrients are supplied to the foetus across a surface that remains in proportion to the
total surface area of the foetus itself. This is consistent with the deb model, which gives
the energy interpretation of the single parameter. The graph of foetal weight against age
resembles an exponential growth curve, but in fact it is less steep; the model has the
property that subsequent weight doubling times increase by a factor 21/3 = 1.26, while
there is no increase in the case of exponential growth.

The fit is again excellent; see Figure 3.18. It is representative for the data collected in
Table 3.2 taken from [1030]. A time lag for the start of foetal growth has to be incorporated,
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and this delay may be related to the development of the placenta, which possibly depends
on body volume as well. The long delay for the grey seal Halichoerus probably relates
to timing with the seasons to ensure adequate food supply for the developing juvenile.
Variations in weight at birth are primarily due to variations in gestation period, not in foetal
growth rate. For comparative purposes, energy conductance v̇ is converted to 30 ◦C, on the
assumption that the Arrhenius temperature, TA, is 10 200 K and the body temperature is
37 ◦C for all mammals in the table. This is a rather crude conversion because the cat, for
instance, has a body temperature of 38.6 ◦C. Weights were converted to volumes using a
specific density of [Ww] = 1 g cm−3.

One might expect that precocial development is rapid, resulting in advanced develop-
ment at birth and, therefore, comes with a high value for the energy conductance. The
values collected in Table 3.2, however, do not seem to have an obvious relationship with
altricial–precocial rankings. The precocial guinea-pig and alpaca as well as the altricial hu-
man have relatively low values for the energy conductance. The altricial–precocial ranking
seems to relate only to the relative volume at birth Vb/Vm.

Egg costs

The embryo thus develops from state (a, [E], V ) = (0,∞, 0) to state (ab, [Eb], Vb). The
costs of structure and maintenance together with κ determine the energy costs of an egg,
E0. These costs and the incubation time thus follow from specifications at hatching. This
back reasoning is necessary because the initial volume is taken to be infinitesimally small,
which makes the initial reserve density infinitely large.

The derivation of the costs of an egg is a bit technical, I am afraid, because of the
non-linearity of the dynamics. The costs must be evaluated in the model formulation in
order to go from an energy flux allocated to reproduction to a reproductive rate in terms
of a number of offspring per time. You will not miss a lot if you skip the rest of this section
if you are ready to accept the result that egg costs do not involve any new parameters.
Costs of breeding by the parent are not included in this derivation.

The first step in deriving the costs of an egg is to get rid of a number of parameters by
turning to the dimensionless variables scaled energy density e = [E]/[Em], scaled volumetric
length l = (V/Vm)1/3 and scaled time τ = tk̇M . Substitution into (3.24) and (3.18) reduces
the coupled differential equations to

d

dτ
e = −g

e

l
and

d

dτ
l =

g

3

e− l

e + g
(3.27)

The ratio of these equations gives the Bernoulli equation

dl

de
= − l

3e

e− l

e + g
or

dx

de
=

ex− 1

3e(e + g)
(3.28)

where x ≡ l−1 is only introduced because the resulting equation in x is of a solvable linear
first order with variable coefficients. Its solution is

x(e) = v(e)

(

∫ e

eb

−de1

3(e1 + g)e1v(e1)
+ x(eb)

)

(3.29)
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Table 3.2: The estimated energy conductance, v̇, and its value corrected for a temperature of
30 ◦C, and the time lag for the start of development, tl, for mammalian embryos.

species v̇ (cv) v̇30 tl (cv) reference
(race) cm d−1 mm d−1 d

Homo sapiens 0.84
males 0.180 (0.3) 26.8 (2.0) [979]
females 0.179 (0.4) 26.5 (2.9)

Oryctolagus cuniculus 0.560 (0.9) 2.6 10.7 (1.5) [552]
small litters 0.602 (1.5) 11.5 (2.4) [46]
large litters 0.571 (1.5) 11.5 (2.4) [46]

0.504 (5.6) 10.4 (10) [48]
Lepus americanus 0.573 (3.1) 2.7 13.1 (4.2) [101]
Cavia porcellus 0.269 (3.3) 1.1 15.7 (8.3) [231]

0.239 (2.3) [439]
Cricetus auratus 0.570 (2.1) 2.6 9.29 (1.3) [739]
Mus musculus 0.333 (0.1) 1.5 8.45 (0.1) [578]
Rattus norvegicus 2.5

wistar 0.487 (0.5) 11.4 (0.3) [279]
albino 0.531 (0.8) 12.2 (0.5) [890]

0.525 (0.2) 11.8 (0.2) [434]
albino 0.568 (3.3) 12.7 (2.1) [22]
albino 0.542 (3.1) 12.4 (2.0) [285]

Clethrionomys glareolus 0.374 (9.3) 1.8 8.29 (11) [177]
Aepyceros melampus 0.316 (1.2) 1.4 39.4 (3.8) [265]
Odocoileus virginianus 0.296 (6.7) 1.3 34.9 (28) [775]

0.274 (1.6) 25.1 (8.5) [944]
Dama dama 0.345 (6.4) 1.7 9.94 (46) [30]
Cervus canadensis 0.336 (3.1) 1.5 24.9 (19) [643]
Lama pacus 0.120 (7.6) 0.56 7.47 (83) [280]
Ovis aries 1.9

welsh 0.482 (5.6) 43.9 (12) [434]
merino 0.341 (8.6) 14.9 (71) [584]

0.346 (4.6) 15.2 (32)
0.433 (4.4) 33.3 (13) [166]

karakul 0.436 (3.7) 31.0 (13) [245]
0.403 (2.6) 27.5 (8.2) [459]

hampshire × 0.382 (1.5) 20.4 (7.9) [1007]
Capra hircus 0.339 (6.5) 1.7 24.3 (29) [252]

0.365 (4.5) 31.3 (14) [47]
Bos taurus 0.475 (2.6) 2.3 59.5 (7.5) [1008]
Equus caballus 0.370 (11) 1.8 37.0 (81) [627]
Sus scrofa 0.266 (0.6) 4.73 (12) [968]

Yorkshire 0.283 (0.9) 5.49 (16) [937]
Large white 0.383 (1.3) 23.6 (4.2) [723]
Essex 0.321 (4.8) 14.1 (30)

Felix catus 0.371 (1.2) 1.8 18.8 (2.3) [176]
Pipistrellus pipistrellus 0.97

1978 0.237 (1.9) 9.95 (2.9) [741]
1979 0.181 (3.5) 13.7 (4.7)

Halichoerus grypus 0.375 (10) 1.8 145 (9.2) [405]
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with v(e) = exp

{

∫ e

eb

de1

3(g + e1)

}

=

(

g + e

g + eb

)1/3

Substitution of l = x−1 gives

1

l
=

(

g + e

g + eb

)1/3




1

lb
− (g + eb)

1/3

3g4/3

∫ e
e+g

eb
eb+g

s−1(1− s)1/3 ds



 (3.30)

Assume that the condition at hatching is fixed at eb and lb and let l → 0 and e → ∞
such that [Em]Vmel3 = E0, say, which represents the energy reserves in a freshly laid egg.
Solving E0 gives, for e0 ≡ E0/Em with Em ≡ [Em]Vm

e0 =





1

lb(g + eb)1/3
−

B g
eb+g

(4
3
, 0)

3g4/3





−3

(3.31)

where Bx(a, b) ≡ ∫ x
0 ya−1(1− y)b−1 dy is the incomplete beta function. Its two-term Taylor

expansion in [EG] around the point [EG] = 0 gives

e0 ≃
26e4

b

(4eb/lb − 1)3
+

4eb/lb − 16/7

(4eb/lb − 1)4
g26e3

b (3.32)

Incubation time

The incubation time can be found by separating variables in (3.27) and substituting in
(3.30). After some transformation, the result is

ab =
3

k̇M

∫ xb

0

dx

(1− x)x2/3(α−Bxb
(4

3
, 0) + Bx(4

3
, 0))

(3.33)

where xb ≡ g
eb+g

and α ≡ 3gx
1/3
b /lb. Its two-term Taylor expansion in [EG] around the

point [EG] = 0 gives after tedious calculation

ab ≃
3
√

2

k̇M

u3
(

eb

g
+

1

4
− 9

28
u4
)

(

1

2
ln

u2 + u
√

2 + 1

u2 − u
√

2 + 1
+ arctan

u
√

2

1− u2

)

+
9

7k̇M

(u4 + ln{1 + u4})

(3.34)

where u stands for (4eb/lb − 1)−1/4. I owe you an apology for writing out such a dreadful
expression; the essence, however, is that no new parameters show up and that (3.34) can
readily be implemented in computer code.

Foetal costs and gestation time

The energy costs of producing a neonate are found by adding the costs of development,
growth and maintenance plus energy reserves at birth, i.e. [Eb]Vb. Expressed as a fraction
of the maximum energy capacity of an adult, these costs are

e0 =
(∫ ab

0
ṗC(t) dt + [Eb]Vb

)

E−1
m
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Substitution of the κ-rule, κṗC = [EG] d
dt

V + [ṗM ]V and the growth curve (3.26) results in

e0 = l3b (g + eb + lb3/4) (3.35)

This expression does not include the costs of the placenta. These costs can easily be taken
into account if they happen to be proportional to that of the rest of the foetuses; see {114}.

Gestation time (excluding any time lag) is

ab = 3lb/gk̇M = 3V
1/3
b /v̇ (3.36)

3.7.2 Growth for non-isomorphs

The above derivation assumes isomorphism, but it can easily be extended to include chang-
ing shapes. The surface areas of organisms that change shape have to be corrected for this
change by multiplying parameters accounting for surface area, {J̇Xm} and {ṗAm} and thus
v̇ and V 1/3

m , by the shape correction function M(V ). These organisms are ectothermic, so
{ṗT} = 0. For V0- and V1-morphs, the shape correction functions (2.1) and (2.2) transform
the growth rate (3.18) into

V0-morph:
d

dt
V =

v̇

e + g

(

eV
2/3
d − V V −1/3

m

)

(3.37)

V1-morph:
d

dt
V =

k̇E

e + g

(

e− (Vd/Vm)1/3
)

V (3.38)

where Vd is the volume at division, and Vm is defined by V 1/3
m = v̇

gk̇M
. If substrate density X

and, therefore, the scaled functional response f are constant long enough, energy density
tends to [E] = f [Em] and the volume of V1-morphs as a function of time since division
becomes for V (0) = Vd/2

V (t) =
1

2
Vd exp{tṙ} or (3.39)

t(V ) = ṙ−1 ln{2V/Vd} (3.40)

with specific growth rate ṙ ≡ k̇E
f−(Vd/Vm)1/3

f+g
. The time taken to grow from Vd/2 to Vd is

thus t(Vd) = ṙ−1 ln 2.
Exponential growth can be expected if the surface area at which nutrients are taken

up is proportional to volume. For V1-morphs, this happens when the total surface area is
involved, or a fixed fraction of it. If uptake only takes place at tips, the number of tips
should increase with total filament length to ensure exponential growth. This has been
found for the fungi Fusarium [932], and Penicillium [660,718], which do not divide; see
Figure 3.19. The ascomycetous fungus Neurospora does not branch this way [254]; it has
a mycelium that grows like a crust, see {250}.

Exponential growth of individuals should not be confused with that of populations. As
is discussed in the section on population dynamics {312}, all populations grow exponen-
tially at resource densities that are constant for long enough, whatever the growth pattern
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Figure 3.19: deb-based growth curves for cells of V1-morphs and rods. The larger the aspect
ratio, δ, the more the growth curve turns from the exponential to the satiation type, reflecting
the different surface area/volume relationships.

of individuals. This is simply because the progeny repeats the growth/reproduction be-
haviour of the parents. Only for V1-morphs it is unnecessary to distinguish between the
individual and the population level. This is a characteristic property of exponential growth
of individuals and is discussed on {317}.

Figure 3.20 shows that the growth curves of V0-morphs are more convex than the von
Bertalanffy one for isomorphs. Note that the change in length is a first-order process for
isomorphs, while the change in volume is a first-order process for V0-morphs.

The same derivation for growth can be made for rods on the basis of the shape correction
function (2.3)

d

dt
V =

δVd

3V∞

k̇Ee

e + g
(V∞ − V ) (3.41)

where V∞ ≡ Vd
δ
3
(e−1( Vd

Vm
)1/3 − 1 + δ

3
)−1 and, as before, V 1/3

m ≡ v̇
gk̇M

. If substrate density X

and, therefore, the scaled functional response f are constant long enough, scaled energy
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Figure 3.20: Expected growth curves for V0-
morphs compared with those for isomorphs
at constant substrate densities. Parameters:
scaled length at birth lb = 0.1, scaled functional
response f = 0.7 and 0.9 and scaled length at
division ld = lb2
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density tends to e = f and volume as a function of time since division becomes

V (t) = V∞ − (V∞ − Vd/2) exp{−tṙr} (3.42)

where ṙr ≡ Vdfk̇Eδ/3
V∞(f+g)

. The interpretation of V∞ depends on its value.

• If V∞ =∞, i.e. if f(1− δ/3) = (Vd/Vm)1/3, the volume of rods grows linearly at rate
k̇Ef
f+g

Vd
δ
3
. This is frequently found empirically [40].

• If 0 < V∞ <∞, V∞ is the ultimate volume if the cell ceases to divide but continues to
grow. For these values, V (t) is a convex function and is of the same type as V (t)1/3

for isomorphs, (3.20). Note that volume, and thus cubed length, grows skewly S-
shaped for isomorphs. When V∞ is positive, the cell will only be able to divide when
V∞ > Vd, thus when f > (Vd/Vm)1/3.

• If δ = 0, V∞ = 0 and the rod behaves as a V1-morph, which grows exponentially.

• For V∞ < 0, V (t) is a concave function, tending to an exponential one. The cell no
longer has an ultimate size if it ceases to divide. V∞ is then no longer interpreted as
ultimate size, but this does not invalidate the equations.

The shape of the growth curve, convex, linear or concave, thus depends on substrate density
and the aspect ratio. Figure 3.19 illustrates the perfect fit of growth curves (3.42) with only
three parameters: volume at ‘birth’, Vd/2, ultimate volume, V∞, and growth rate, ṙr. The
figure beautifully reveals the effect of the aspect ratio; the larger the aspect ratio, the more
important the effect of the caps, so a change from V1-morphic behaviour to a V0-morphic
behaviour. A sudden irreversible change in morphology from spherical to filamentous cells
has been observed in the yeast Kluyveromyces marxianus [348], while no other changes
could be detected. The associated increase of 30% in the maximum specific growth rate
could be related to the observed increase in specific surface area.

The time required to grow from Vd/2 to V at constant substrate density is found from
(3.42)

t(V ) =
(f + g)V∞

fk̇EVdδ/3
ln

V∞ − Vd/2

V∞ − V
(3.43)
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Figure 3.21: The carapace length of the
daphnid Daphnia magna at 20 ◦C for 5
different food levels at the moment of egg
deposition in the brood pouch. Data from
Baltus [44]. The data points for short ju-
venile periods correspond with high food
density and growth rate. They are diffi-
cult to interpret because length increase
is only possible at moulting in daphnids. age, d
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3.8 Development

Now that growth has been specified, the catabolic rate for isomorphs can be evaluated
from (3.12) and (3.18). It amounts to

ṗC =
g[E]

g + [E]/[Em]
(v̇V 2/3 + k̇MV

1/3
h V 2/3 + k̇MV ) (3.44)

Energy allocation to development is (1 − κ)ṗC . Comparison of growth and reproduction
at different food levels highlights a problem: the volume at the first appearance of eggs
in the brood pouch of daphnids seems to be independent of food density. It appears to
be almost fixed; see Figure 3.21. Let this volume be called Vp, where subscript p refers
to puberty (transition juvenile/adult). The same holds for the volume at hatching, Vb,
say, where subscript b refers to birth (transition embryo/juvenile). The problem is that
the total energy investment in development depends on food density. Indeed, if feeding
conditions are so poor that the ultimate volume is less than Vp, the cumulated energy
investment in development becomes infinitely large if the organism survives long enough.
This seems to be highly unrealistic.

Thieme [915] proposed a solution to this problem: split the energy allocated to devel-
opment into two fluxes, the increase of the state of maturity ṗR and the maintenance of
a certain degree of maturity ṗJ . The total energy investment in the increase of the state
of maturity does not depend on food density for ectotherms for a special choice of the
maturity maintenance costs. This can be seen most easily from (3.17), when both sides
are multiplied by (1− κ)/κ to obtain the investment in development

(1− κ)ṗC =
1− κ

κ
ṗM +

1− κ

κ
[EG]

d

dt
V (3.45)

for juvenile ectotherms (V < Vp and ṗT = 0). If the first term of the right-hand side
corresponds to maturity maintenance costs, the second one for the increase of the state
of maturity depends only on size, not on food density. Since the individual does not
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become more complex after attaining size Vp, the energy flow to maintain a certain degree
of maturity must then be

ṗJ = min{V, Vp}[ṗM ]
1− κ

κ
(3.46)

It can be thought to relate to the maintenance of regulating mechanisms and concentration
gradients, such as those found in Hydra, that maintain head/foot differentiation [325]. The
increase in the state of maturity is not thought to affect the elemental composition of the
structural biomass. If new compounds are generated in this process, their contribution to
structural biomass composition is thought to be negligibly small.

It took me quite a while to accept the existence of maturity maintenance as inevitable.
Although the concept sounds a little esoteric, there are two hard observations that support
its existence. The first one concerns an experiment where food density is held constant
at two levels, just below and above the food density that gives an ultimate size V∞ = Vp.
For ectotherms, such as daphnids, (3.23) implies that this food density is found from
f = (Vp/Vm)1/3 ≡ lp, so X = XK lp/(1− lp). If maturity maintenance did not exist, animals
kept at the lower food density would never reproduce, while those at a slightly higher food
density would invest in reproduction at a rate 1−κ

κ
[ṗM ]Vp, which amounts to 4[ṗM ]Vp for

κ = 0.2, which is realistic for daphnids. This substantial difference in reproductive output
as a result of a tiny difference in feeding rates has never been observed.

The second observation that points to the existence of maturity maintenance concerns
pond snails, where the day/night cycle affects the fraction of utilized energy spent on
maintenance plus growth [1028] such that κ at equal day/equal night, κmd, is larger
than that at long day/short night, κld. Apart from the apparent effects on growth and
reproduction rates, volume at the transition to adulthood is also affected. If the cumulated
energy investment in the increase of maturity does not depend on the value for κ and if the
maturity maintenance costs are 1−κ

κ
ṗM , the expected effect is

Vp,ld

Vp,md
= κld(1−κmd)

κmd(1−κld)
, which is

consistent with the observations on the coupling of growth and reproduction investments
to size at puberty [1028].

Some species, such as birds, only reproduce well after the growth period. The giant
petrel wanders seven years over Antarctic waters before it starts to breed for the first time.
From a mathematical point of view, growth is asymptotic, so it is possible to choose Vp to
be so close to V∞ that the desired result is described adequately. This must be rejected,
however, because it seems most unrealistic to have a model where decision rules depend on
such small differences in volume in a world that is full of scatter [201]. The introduction
of costs of maintaining a certain degree of maturity solves this problem, because the model
is then energy-structured as well as size-structured. A transition from embryo to juvenile
and from juvenile to adult occurs if the cumulative investment to increase the state of
maturity exceeds specified amounts. After growth has ceased, this cumulative investment
increases linearly, so it has no asymptote. The rate of increase of cumulated investment
can be substantial, even if body size hardly increases, so this rule causes no problems for
species that separate growth and reproduction in time.

The juvenile/adult transition only occurs at a fixed structural volume for the specific
maturity maintenance costs (3.46), for which I have no arguments. The observed volume
at transition in daphnids and pond snails does not vary much at all. It is possible, however,
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to introduce a free parameter for the maturity maintenance costs, and use volume at first
maturation to estimate its value, which then proves to be close to (3.46), because this
value produces a volume that is independent of food density. If this free parameter has
a different value, variations in volume at first maturation will result when food density
varies, see {295}. This has been observed for some species [73]. Its introduction has the
serious drawback that evaluating the length of incubation and juvenile periods becomes
cumbersome, which causes problems especially at the population level. The fixed size
transition should then be replaced by a fixed cumulative energy transition.

Little is known about the molecular machinery that is involved in the transition from
the juvenile to the adult stage. Recent evidence points to a trigger role of the hormone
leptin in mice, which is excreted by the adipose tissue [159]. This finding supports the
direct link between the transition and energetics.

Growth and development are parallel processes in the deb model, which links up beau-
tifully with the concepts of acceleration and retardation of developmental phenomena such
as sexual maturity [338]. These concepts are used to describe relative rates of development
in species that are similar in other respects.

In embryos and juveniles, the energy spent on somatic maintenance and the mainte-
nance of a certain degree of maturation can be combined, because both can be taken to
be proportional to volume. The difference between the two only shows up in adults that
still increase in size. Somatic maintenance remains proportional to size, while maturation
maintenance stays constant at constant temperature. The same holds for the energy spent
on growth and the increase of the degree of maturity. In embryos and juveniles, they can be
combined, because both are taken to be proportional to the volume increase. This means
that for non-adults the κ-rule is not quantitatively relevant, and the model simplifies to
the one for micro-organisms with respect to the use of energy.

Whether or not unicellulars and particularly prokaryotes invest in cell differentiation
during the cell cycle is still open to debate. Dworkin [244] reviewed development in
prokaryotes and points to the striking similarities between myxobacteria and cellular slime
moulds and between Actinomyceta and some fungi. A most useful aspect of the κ-rule is
that this matter does not need to be resolved, because this investment only shows up in
the parameter values and not in the model structure.

During extreme forms of starvation, many organisms shrink {230}. They can only
recover enough energy from the degradation of structural mass to pay the somatic main-
tenance costs if they can reduce the maturity maintenance costs under those conditions.
Maintenance costs can, therefore, be partitioned into reducible (maturity) and irreducible
(somatic) costs.

3.9 Propagation

Organisms can achieve an increase in numbers in many ways. Sea anemones can split off
foot tissue that can grow into a new individual. This is not unlike the strategy of budding
yeasts. Colonial species usually have several ways of propagating. Fungi have intricate
sexual reproduction patterns involving more than two sexes. Under harsh conditions some



114 3. Energy acquisition and use

animals can switch from parthenogenic to sexual reproduction, others develop spores or
other resting phases. It would not be difficult to fill a book with descriptions of all the
possibilities. I will confine the discussion to the two most common modes of propagation:
via egg and foetus or vegetatively, via division.

3.9.1 Reproduction

Energy allocation to reproduction equals the allocation to development plus reproduction
minus the costs of maintaining the state of maturity

(1− κ)ṗC − ṗJ (3.47)

This is a continuous energy investment. The costs of egg (or foetus) development are
fully determined, as is discussed in the section on embryonic growth, {96}. The costs of
producing an egg can be written as E0/κR, where the dimensionless factor κR between
0 and 1 represents the fraction of reproduction energy that is fixed in eggs; the fraction
1− κR dissipates and represents the overhead involved in the conversion from the reserve
energy of the mother to the initial energy available to the embryo. Since these types of
energy reserves are chemically related, the overhead is likely to be small in most cases so
that κR is close to 1. This might seem an odd way to introduce this overhead, but κR

can also be interpreted as an egg survival probability, which can be further modulated by
predation and toxic compounds, as discussed in later chapters. This is practical because
egg survival is frequently governed by different processes than survival of later stages.
Substitution of catabolic rate (3.44), and the maintenance costs (3.46) into (3.47) leads to
a mean reproduction rate for ectotherms of

Ṙ =
κR

e0Vm

(1− κ)

(

ge

g + e
(v̇V 2/3 + k̇MV )− gk̇MVp

)

(3.48)

where the relative energy costs of embryo development e0 are given in (3.31). Under no-
growth conditions, i.e. when e ≤ l, individuals can no longer follow the κ-rule, because the
allocation to maintenance would no longer be sufficient. Maintenance has priority over all
other expenses. Individuals that still follow the storage dynamics (3.12) under no-growth
conditions must reproduce at mean rate (ṗC − ṗM − ṗJ)κR/E0, so

Ṙ =
κR

e0Vm

gk̇M

(

eV 1/3
m V 2/3 − κV − (1− κ)Vp

)

+
(3.49)

At the border of the no-growth condition, i.e. when e = l, both expressions for the repro-
duction rate are equal, so there is no discontinuity for changing energy reserves.

At constant food density where e = f , the reproduction rate is, according to (3.48),
proportional to

Ṙ ∝ V 2/3 +
k̇M

v̇
V − g + f

f

k̇M

v̇
Vp (3.50)

where the third term is just a constant. Comparison of reproduction rates for different
body sizes thus involves three compound parameters, i.e. the proportionality constant, the
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parameter k̇M/v̇ and the third term, if all individuals experience the same food density for
a long enough time. Figure 3.22 illustrates that this relationship is realistic, but that the
notorious scatter for reproduction data is so large that access to the parameter k̇M/v̇ is
poor. The fits are based on guestimates for the maintenance rate coefficient, k̇M = 0.011
d−1, and the energy conductance, v̇ = 0.433 mm d−1 at 20 ◦C. Note that if the independent
variable is a length measure rather than structural body volume, the shape coefficient
δM = V 1/3L−1 has to be introduced since the guestimate for the energy conductance is
expressed in volumetric length. For some length measure L, we have

Ṙ ∝ L2 +
k̇M

v̇
δML3 − g + f

f

k̇M

v̇
δML3

p (3.51)

The practical significance of this remark is in the comparison between species, which is
discussed later, {267}. The main reason for the substantial scatter in reproduction data is
that they are usually collected from the field, where food densities are not constant, and
where spatial heterogeneities, social interactions, etc., are common.

The reproduction rate of spirorbid polychaetes has been found to be roughly propor-
tional to body weight [403]. On the assumption by Strathmann and Strathmann [896]
that reproduction rate is proportional to ovary size and that ovary size is proportional to
body size (an argument that rests on isomorphy), the reproduction rate is also expected to
be proportional to body weight. They observed that reproduction rate tends to scale with
body weight to the power somewhat less than one for several other marine invertebrate
species, and used their observation to identify a constraint on body size for brooding inside
the body cavity. The deb theory gives no direct support for this constraint; an allometric
regression of reproduction rate against body weight would result in a scaling parameter
between 2/3 and 1, probably close to 1, depending on parameter values.

The maximum (mean) reproduction rate for ectotherms of maximum volume Vm =
(v̇/gk̇M)3 amounts to

Ṙm =
κR

e0

(1− κ)gk̇M(1− Vp/Vm) (3.52)

All these expressions refer only to mean reproduction rates. Individuals are discrete
units, which implies the existence of a buffer, where the energy allocated to reproduction
is stored and converted to eggs at the moment of reproduction. The translation of repro-
duction rate into number of eggs in Figure 3.22 assumes that this accumulation is over a
period of one year. The energy content of the buffer is denoted by ER.

Some species reproduce when enough energy for a single egg has been accumulated,
others wait longer and produce a large clutch. There is considerable variation in the way
the reproduction buffer is handled. If the reproduction buffer is used completely, the
size of the clutch equals the ratio of the buffer content to the energy costs of one young,
κRER/E0, where E0 is given in (3.31). This resets the buffer. So after reproduction ER = 0
and further accumulation continues from there. That is to say, the bit of energy that was
not sufficient to build the last egg can become lost or still remains in the buffer; fractional
eggs do not exist. In the chapter on population dynamics, {329,333}, I show that this
uninteresting detail substantially affects dynamics at low population growth rates, which
occur most frequently in nature. If food is abundant, the population will evolve rapidly
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rock goby Gobius paganellus [634]
0.120(L2 + 0.0026L3 − 16.8)

green frog Rana esculenta [354]
0.124(L2 + 0.0128L3 − 32.5)

length, cm

10
3

o
o
cy

te
s

length, cm

10
3

eg
gs

Figure 3.22: The clutch size, as a measure for the reproduction rate, as a function of body length
L for two randomly selected species. The data sources and deb-based curves are indicated. The
parameter that is multiplied by L3 in both fits has been guestimated on the basis of common
values for the maintenance rate coefficient and the energy conductance, with a shape coefficient
of δM = 0.1 for the goby and of δM = 0.5 for the frog. Both other parameter values represent
least-squares estimates.

to a situation in which food per individual is sparse and reproduction low if harvesting
processes do not prevent this.

The strategies for handling this buffer are species-specific and are affected by environ-
mental variables. The spectacular synchronization of reproduction in corals [836], the
pelagic palolo worms Eunice viridis , South East Asian dipterocarps and bamboo forests
probably reduce losses, because potential predators have little to eat between the events.
Most species are able to synchronize the moment of reproduction with seasonal cycles such
that food availability just matches the demand of the offspring. Clutch size in birds typ-
ically relates to food supply during a two-month period prior to egg laying and tends to
decrease if breeding is postponed in the season [617]. The laying date is determined by a
rapid increase in food supply. Since feeding conditions tend to improve during the season,
internal factors must contribute to the regulation of clutch size. These conclusions result
from an extensive study of the energetics of the kestrel Falco tinnunculus by Serge Daan
and co-workers [218,595,616]. I see reproductive behaviour like this for species that cease
growth at an early moment in their life span, as variations on the general pattern that the
deb theory is aiming to grasp. Aspects of reproduction energetics for species that cease
growth are worked out on {253} and {295}.

Under conditions of prolonged starvation, organisms can deviate from the standard
reproduction allocation, as is discussed on {227}.

Cumulative reproduction

Oikopleura sports a heroic way of reproduction which leads to instant death. During
its week-long life at 20 ◦C and abundant food, it accumulates energy for reproduction
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Figure 3.23: The larvacean
Oikopleura grows isomorphi-
cally; during its short life it
accumulates reproductive ma-
terial at the posterior end of
the trunk. The energy in-
terpretation of data on total
trunk lengths should take ac-
count of this. Larvaceans of
the genus Oikopleura are an
important component of the
zooplankton of all seas and
oceans and have an impact as
algal grazers comparable with
that of copepods.

which is deposited at the posterior end of the trunk; see Figure 3.23. This allows an
easy test of the allocation rule against experimental data. Except for this accumulation of
material for reproduction, the animal remains isomorphic. The total length of the trunk,
Lt, including the gonads, can be partitioned into the true trunk length, L, and the length
of the gonads, LR. Since the reproduction material is deposited on a surface area of the
trunk, the length of the gonads is about proportional to the accumulated investment of
energy in reproduction divided by the squared true trunk length. Fenaux and Gorsky
[275] measured both the true and the total trunk length under laboratory conditions. This
allows us to test the consequences of the deb theory for reproduction.

Let eR(t1, t2) denote the cumulative investment of energy in reproduction between t1

and t2, as a fraction of the maximum energy reserves [Em]Vm. From Table 3.5 we know
that this investment amounts for adults to

eR(t1, t2) = κR(1− κ)gk̇M

∫ t2

t1

(

g + l(t)

g + e(t)
e(t)l2(t)− l3p

)

dt (3.53)

Oikopleura has a non-feeding larval stage and starts investing in reproduction as soon as it
starts feeding, so Lb = Lp. From an energetic point of view, it thus lacks a juvenile stage,
and the larva should be classified as an embryo. The total trunk length then amounts to
Lt(t) = L(t) + VReR(0, t)/L2(t). The volume VR is a constant that converts the scaled
cumulative reproductive energy per squared trunk length into the contribution to the total
length. At abundant food, the true trunk length follows the von Bertalanffy growth curve

L(t) = Lm− (Lm−Lb) exp{− tgk̇M

3(1+g)
} and e(t) = 1, where Lm denotes the maximum length,

i.e. Lm = V 1/3
m /δM. If the data set {ti, L(ti), Lt(ti)}ni=1 is available, the five parameters Lb,

Lm, k̇M , g and VRκR can be estimated in principle. Dry weight relates to trunk length and
reproductive energy as Wd(t) = [WLd]L3(t) + WRdeR(0, t), where the two coefficients give
the contribution of cubed trunk length and cumulative scaled reproductive energy to dry
weight. If dry weight data are available as well, there are seven parameters to be estimated
from three curves.
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Figure 3.24: The total trunk length, Lt (2 and upper curve, left), the true trunk length, L (3
and lower curve, left) and the dry weight (right) for Oikopleura longicauda at 20 ◦C. Data from
Fenaux and Gorsky [275]. The deb-based curves account for the contribution of the cumulated
energy, allocated to reproduction, to total trunk length and to dry weight. The parameter
estimates are Lm = 822 (sd 37) µm, lb = lp = 0.157 (sd 0.006), k̇M = 1.64 (sd 0.14) d−1, g = 0.4,
VRκR = 0.0379 (sd 0.0083) mm3, excluding the last Lt data point. Given these parameters, the
weight data give WLd = 0.0543 (sd 0.0131) g cm−3, WRd = 15.2 (sd 4.20) µg, the last data point
is excluded.

Figure 3.24 gives an example. The data appear to contain too little information to
determine both k̇M and g, so either k̇M or g has to be fixed. The more or less arbitrary

choice g = 0.4 is made here. The estimates are tied by the relationship that k̇Mg
1+g

is almost

constant. The high value for the maintenance rate coefficient k̇M probably relates to the
investment of energy in the frequent synthesis of new filtering houses.

3.9.2 Division

If propagation is by division, the situation is comparable to the juvenile stage of species
that propagate via eggs. A cell divides as soon as the energy invested in the increase
of the state of maturity exceeds a threshold value. If the specific maturity maintenance
costs equals 1−κ

κ
[ṗM ], division also occurs at a fixed structural volume, say Vd. Donachie

[224] pointed out that in fast growing bacteria the initiation of dna duplication occurs
at a certain volume Vp, but it requires a fixed and non-negligible amount of time tD for
completion. This makes the volume at division, Vd, dependent on the growth rate, so
indirectly on substrate density, because growth proceeds during this period.

The mechanism (in eukaryotic somatic cells) of division at a certain size is via the
accumulation of two mitotic inducers, cdc25 and cdc13, which are produced coupled to
cell growth. (The name for the genes ‘cdc’ stands for cell division cycle.) If these inducers
exceed a threshold level, protein kinase p34cdc2 is activated and mitosis starts [642,649].
During mitosis, the protein kinase is deactivated and the concentration of inducers resets
to zero. This mechanism indicates that for shorter interdivision periods, the cell starts a
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Figure 3.25: A schematic growth curve of a cell, where
the fat part is used in steady state. This is the situation
for i = 2, the number of forks switching between 1 and 3.
If Vd/Vp = 2i, equation (3.54) reduces to tD = it(2iVp) =
it(Vd), with t(2i−1Vp) = 0, which means that the time re-
quired to duplicate dna is exactly i times the division inter-
val. So, during each cell cycle, a fraction i−1 of the genome
is duplicated, which implies that 2i−1 dna duplication forks
must be visible during the cell cycle. At the moment that
the number of forks jumps from 2i − 1 to 2i+1 − 1, the cell
divides and the number of forks resets to 2i − 1. This is
obviously a somewhat simplified account, as cell division is
not really instantaneous. If Vd/Vp 6= 2i, the age of the cell
at the appearance of the new set of duplication forks some-
where during the cell cycle is t(2i−1Vp), which thus has to be
subtracted from it(Vd) to arrive at the genome duplication
time.

time
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Figure 3.26: The waternet Hydrodictyon reticulatum

forms a cylindrical sac-like net; the largest recorded
size is 114 cm long and 4–6 cm broad [151]. Several
thousand spores in each cell grow into small cylin-
drical cells, which make contact, stick together and
form a minute net. The mother cells disintegrate syn-
chronously, each giving birth to a new net. This green
alga recently arrived in New Zealand, where it causes
water quality problems in eutrophic fresh waters.

new dna duplication cycle when its volume exceeds 2Vp, 4Vp, 8Vp etc. The interdivision
time for Escherichia coli can be as short as 20 minutes under optimal conditions, while it
takes an hour to duplicate the dna. The implementation of this trigger is not simple in a
dynamic environment. At constant substrate densities, the scaled cell length at division,
ld ≡ (Vd/Vm)1/3, and the division interval, t(ld) ≡ td, can be obtained directly. When i is
an integer such that 2i−1 < Vd/Vp ≤ 2i, Vd can be solved from

tD = it(Vd)− t(2i−1Vp) (3.54)

Figure 3.25 illustrates the derivation.
The volume at division Vd can be found numerically when (3.21), (3.40) or (3.43) is

substituted for t(V ) in (3.54), for isomorphs, V1-morphs or rods, respectively. If the ratio
of the maturity and somatic maintenance costs does not equal 1−κ

κ
, the size at division

must be obtained from equating the cumulative investment in maturation to a threshold
level, the size at division generally increases with substrate density, even apart from delays
due to dna duplication.

Many organisms that propagate vegetatively produce spores, and the mother cell dies
upon release. The number usually varies between species and growth conditions, and
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frequently is a power of 2. In the green alga Scenedesmus it is usually 4 or 8, but in the
water net, it can be several thousand, see Figure 3.26.

3.10 Summary of the basic deb model

The assumptions on which the basic deb model is based are listed in Table 3.3. They are
arranged into two categories: general and specific. The general ones are required for the
mass–energy relationships to be discussed in the next chapter; the specific ones serve to
specify the basic powers.

The deb model is built on two state variables:

• structural biomass, quantified as volume V (maximum volume Vm), mass MV (max-
imum mass MV m) or scaled length l ≡ (V/Vm)1/3 (maximum scaled length 1);

• reserves, quantified as energy density [E] (maximum energy density [Em]), mass
ME (maximum mass MEm), relative mass mE ≡ ME/MV , or scaled energy density
e ≡ [E]/[Em].

There is not a single most useful notation for energetics. Volumes are handy in relation to
surface areas, which are needed for the process of food/substrate uptake in the deb model,
while moles are handy for mass fluxes. Table 3.4 gives the conversions between volume-
based and mole-based quantities, some of which are introduced in the next chapter. The
specific fluxes j∗ relate to the fluxes J̇∗ by j∗ = J̇∗/MV .

Table 3.4 can be used to deduce from (3.10) and (3.18) that the change in reserve
density mE and in structural mass MV in terms of (specific) molar masses amount to

d

dt
mE = jEAm(f −mE/mEm) (3.55)

d

dt
MV = MV

jEAm(mE/mEm − lh)− jEM/κ

mE + yEV /κ
(3.56)

where yEV denotes the moles of reserves required to synthesize a mole of structural mass.
Equation (3.55) shows that the parameter mEm can be interpreted as the maximum value
of the molar reserve density mE. The scaled heating length lh is zero for ectotherms.
Changes in shape during growth affect the relationship between the maximum specific
assimilation rate and the structural mass; the parameters jEAm = yEXjXAm and jXAm

must be multiplied by the shape correction function M, see {29}. For isomorphs we have

jXAm = {J̇XAm}M−1/3
V [MV ]−2/3.

The energy fluxes, called powers, are given in Table 3.5 as functions of the scaled
energy density e and scaled length l for a 3S–isomorph, i.e. a isomorph with three life
stages, and in Table 3.6 for a 1S–V1–morph. These tables also assign symbols to the
various powers. Notice that all powers are cubic polynomials in the (scaled) length, while
the weight coefficients depend on (scaled) reserve density. Powers are indicated by symbol
ṗ, molar fluxes of masses by J̇ .
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Table 3.3: The assumptions that lead to the basic deb model as formulated for multicellulars
and modified for unicellulars.

General

1 Structural body mass and reserves are the state variables of the individual; they have a
constant composition (strong homeostasis).

2 Food is converted into faeces, and assimilates derived from food are added to reserves. These
fuel all other metabolic processes, which can be classified into three categories: synthesis
of structural body mass, synthesis of gametes, and processes that are not associated with
synthesis of biomass. Products that leave the organism may be formed in direct association
with these three categories of processes, and with the assimilation process.

3 If the individual propagates via reproduction (rather than via division), it starts in the
embryonic stage that initially has a negligibly small structural body mass (but a substantial
amount of reserves).

Specific

3a The reserve density of the hatchling equals that of the mother at egg formation. Foetuses
develop in the same way as embryos in eggs, but at a rate unrestricted by energy reserves.

4 The transition from embryo to juvenile initiates feeding, that from juvenile to adult initiates
reproduction, which is coupled to the cessation of maturation. The transitions occur when
the cumulated energy invested in maturation exceeds certain threshold values. Unicellulars
divide when the cumulated energy invested in maturation exceeds a threshold value.

5 Somatic and maturity maintenance are proportional to structural body volume, but ma-
turity maintenance does not increase after a given cumulated investment in maturation.
Heating costs for endotherms are proportional to surface area.

6 The feeding rate is proportional to the surface area of the organism and the food handling
time and the digestion efficiency are independent of food density.

7 The reserves must be partitionable, such that the dynamics is not affected; the use of
reserves does not depend on food density; the reserve density at steady state does not
depend on structural body mass (weak homeostasis).

8 A fixed fraction of energy, utilized from the reserves, is spent on somatic maintenance plus
growth, the rest on maturity maintenance plus maturation or reproduction (the κ-rule).

9 Under starvation conditions, individuals always give priority to somatic maintenance and
follow one of two possible strategies: they do not change the reserve dynamics (so continue
to invest in development or reproduction), or cease energy investment in development and
reproduction (thus changing reserves dynamics).
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Table 3.4: Conversions between volumes, molar masses and energies in the deb model. Volumes
are indicated by V , masses in C-moles by M , energies by E, molar fluxes with J̇ , energy fluxes
(powers) with ṗ. Dots refer to time−1, brackets [ ] refer to volume−1, while the braces { } refer to
surface area−1. The energy-mass coupler µ∗1∗2 couples energy flux ∗1 to mass flux ∗2 (dimension
energy per mass). The chemical potential µ∗ also has dimension energy per mass, but cannot
be interpreted as ratio of fluxes. The mass-mass coupler y∗1∗2 can be written as the ratio of two
energy-mass couplers or of two mass fluxes. The first index of mass fluxes, J̇∗1∗2 , refers to the
compound, ∗1, the second one, ∗2, to the energy flux with which the mass flux is associated. The
dimensions are indicated by l (length), m (mass), e (energy), t (time)
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(
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Table 3.5: The powers as specified by the deb model
for 3S-isomorph of scaled length l and scaled reserve
density e at scaled functional response f ≡ X

XK+X ,
where X denotes the food density and XK the satu-
ration constant. Their relationships are given in the
diagram, where the rounded boxes indicate sources
or sinks. The powers ṗX = J̇XµX and ṗP = J̇P µP

for ingestion and defecation occur in the environment,
not in the individual. The deb model assumes that
J̇X ∝ J̇P ∝ ṗA. The table gives scaled powers, where
µE denotes the chemical potential of the reserves. Pa-
rameters: g investment ratio, k̇M maintenance rate co-
efficient, κ partitioning parameter for catabolic power,
lh scaled ‘heating length’. Ectotherms do not heat, i.e.
lh = 0.
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Implied dynamics for e > l > lb:
d
dte = f−e

l k̇Mg and d
dt l = e−l−lh

1+e/g
k̇M
3

embryo juvenile adult
power

µEMEmk̇Mg
0 < l ≤ lb lb < l ≤ lp lp < l < 1

assimilation, ṗA 0 fl2 fl2

catabolic, ṗC el2 g+l
g+e

el2 g+l+lh
g+e

el2 g+l+lh
g+e

somatic maintenance, ṗM κl3 κl3 κl3

maturity maintenance, ṗJ (1− κ)l3 (1− κ)l3 (1− κ)l3p
endothermic heating, ṗT 0 κl2lh κl2lh
somatic growth, ṗG κl2 e−l

1+e/g
κl2 e−l−lh

1+e/g
κl2 e−l−lh

1+e/g

maturity growth, ṗR (1− κ)l2 e−l
1+e/g

(1− κ)l2 e−l+lhe/g
1+e/g

0

reproduction, ṗR 0 0 (1− κ)(l2 e−l+lhe/g
1+e/g

+ l3 − l3p)

Table 3.6: The powers as specified by
the deb model for an ectothermic 1S–V1–
morph of scaled length l and scaled reserve
density e at scaled functional response
f . An individual of structural volume
V ≡ MV /[MV ] takes up substrate at rate
[J̇Xm]fV . The implied dynamics for e and

l: d
dte = f−e

ld
k̇Mg and d

dt l = l e/ld−1
e/g+1

k̇M
3 ; di-

vision occurs when l = ld.

power
µEMEmk̇Mg

juvenile

assimilation, ṗA fl3/ld
catabolic, ṗC el3 1+g/ld

g+e

somatic maintenance, ṗM κl3

maturity maintenance, ṗJ (1− κ)l3

somatic growth, ṗG κl3 e/ld−1
1+e/g

maturity growth, ṗR (1− κ)l3 e/ld−1
1+e/g
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The catabolic power equals the sum of the non-assimilative powers

ṗC = ṗM + ṗJ + ṗT + ṗG + ṗR (3.57)

A three-stage individual invests either in maturity growth, or in reproduction. This is why
these powers have the same index, the stage determines the destination.

The dissipating power, excluding assimilation and somatic growth overheads, amounts
to

ṗD = ṗM + ṗJ + ṗT + (1− κR)ṗR (3.58)

where κR = 0 for the embryo and juvenile stages. Reproduction power ṗR has a special
status because reserves of the adult female are converted into reserves of the embryo which
have the same composition. The efficiency of this conversion is denoted by κR, which
means that (1− κR)ṗR is dissipating and κRṗR returns to the compound class reserve, but
now of the embryo.



Chapter 4

Uptake and use of essential
compounds

The previous chapter focused on energy, but energy and mass are two aspects of the same
thing. Mass takes the form of many compounds, each having their own set of characteristic
properties, which makes the analysis of mass more complex than that of energy.

This chapter derives the fluxes of essential compounds. The derivation holds for a broad
class of models for which the general assumptions of Table 3.3, {121}, apply [517,523].
This is why I made two categories of assumptions; the specific assumptions turn out not
to be essential for these derivations. They may be replaced by others, resulting in other
specifications of the three basic powers (assimilation, dissipation and growth), while the
derivation of how fluxes of essential compounds relate to the basic powers still applies. In
other words, rules for mass fluxes do not allow supplementary assumptions on mass fluxes,
such as respiration or nitrogenous waste, without creating inconsistencies. I show why
fluxes of essential compounds are weighted sums of these three basic powers. Non-essential
compounds differ from essential ones because their use is not regulated; they are excreted
into the environment, sometimes in modified form, as analysed later, see {187}.

Just like mass fluxes, dissipating heat is a weighted sum of the three basic powers.
Therefore, it can also be written as a weighted sum of three mineral fluxes: carbon dioxide,
oxygen and nitrogenous waste. This relationship is the basis of the method of indirect
calorimetry. After half a century of wide application, this empirical method is finally
underpinned theoretically.

The aging process is discussed as a consequence of respiration, with its intimate links
with energetics. Fermentation processes and the production of compounds such as alcohol
are considered. A simple model for drinking by terrestrial organisms follows from the water
balance.

4.1 Chemical compounds and transformations

The approach is to represent and follow chemical elements, because elements rather than
compounds obey conservation laws. In particular, I follow the four most abundant elements
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in living systems, C, H, O and N. These four elements happen to be the four lightest of
the periodic table that can make covalently bounded compounds [156]. However, this list
can be extended readily because each new element comes with a corresponding balance
equation. Two sets of chemical compounds partake in three (sets of) transformations:
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dissipation D + + − + −

The organic compounds V and E constitute the individual, the other organic compounds
and the minerals define the chemical environment of the individual. The signs indicate
appearance (+) or disappearance (−); a blank indicates that the compound does not
partake in that transformation.

The chemical indices of the minerals and the organic compounds are collected in two
matrices nM and nO, respectively. A typical element of such a matrix, n∗1∗2 , denotes the
chemical index of compound ∗2 with respect to element ∗1. The chemical indices of the
organic compounds for carbon equal 1 by definition. The strong homeostasis assumption
(# 1 of Table 3.3) amounts to the condition that the chemical indices do not change.

The molecular weights of the mineral and the organic compounds are

wT
M = ( 12 1 16 14 )nM and wT

O = ( 12 1 16 14 )nO (4.1)

The following subsections briefly discuss some features of the different compounds to
supplement earlier introductions.

Mineral compounds

Oxygen and carbon dioxide

Most organisms use oxygen as an electron acceptor in the respiration chain, the final stage
in the oxidation of pyruvate, see Figure 2.14. If oxygen is not available, a substantial
amount of energy cannot be extracted from pyruvate, and metabolic products have to
be excreted. Photosynthetic bacteria, algae and plants not only use oxygen, but also
produce oxygen, see {164}. This production exceeds the consumption if light intensity is
high enough. Most organisms consume and excrete carbon dioxide, consumption exceeds
excretion in photosynthetic organisms in the light, and in bacteria that use methane as
substrate.
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Table 4.1: Various nitrogenous wastes that animals use [1009].
nitrogenous waste formula solubility

(mM) in
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s

m
am

m
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s

ammonia NH3 52.4 ◦ ◦
amm. bicarbonate NH4HCO3 1.5 ◦
urea CO(NH2)2 39.8 ◦
allantoin C4H6O3N4 0.015 ◦
allantoic acid C4H8O4N4 slight ◦
uric acid C5H4O3N4 0.0015 ◦
sodium urate C5H2O3N4Na2 0.016 ◦ ◦
potassium urate C5H2O3N4K2 slight ◦ ◦
guanine C4H5ON5 0.0013 ◦ ◦
xanthine C5H4O2N4 0.068 ◦ ◦
hypoxanthine C5H4ON4 0.021 ◦ ◦
arginine C6H14O2N4 3.4 ◦ ◦

Water

Water is formed metabolically from other compounds. This rate of water production is
studied first; the direct exchange of water with the environment via drinking and evapo-
ration, and its use for transport, are discussed on {151}.

Nitrogenous waste

From an energy perspective, the cheapest form of nitrogenous waste is ammonia. Since
ammonia is rather toxic at high concentrations, terrestrial animals usually make use of more
expensive, less toxic nitrogenous wastes. Terrestrial isopods are an exception; Dutchmen
call them ‘pissebed’, a name referring to the smell of ammonia that microbes produce
from urine in a bed. Terrestrial eggs have to accumulate the nitrogenous waste during
development; they usually make use of even more expensive, less soluble nitrogenous wastes
that crystallize outside the body, within the egg shell. Table 4.1 lists the different chemical
forms of nitrogenous waste. The nitrogenous waste (urine) includes its water in its chemical
‘composition’, for simplicity’s sake.

Nitrogenous waste mainly originates from protein turnover, which is linked to somatic
maintenance.

A second origin of nitrogenous waste can be assimilation, when metazoans feed on
protein-rich food, and nitrogen is excreted in the transformation of food to reserves. The
(energy/carbon) substrate for micro-organisms can be poor in nitrogen, such that nitrogen
must be taken up from the environment, rather than excreted. Though the term nitroge-
nous waste not longer applies, this does not matter for the analysis; the sign of the flux
defines uptake or excretion. Bacteria that live on glucose as an energy source will have
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negative nitrogenous waste. In this chapter, nitrogen that is taken up independently of the
energy source is assumed not to be limiting. The next chapter deals with more complex
situations, where several resources can be limiting.

Organic compounds

Structural biomass, reserves

Body mass is composed of structural biomass and reserves. The chemical nature of the
reserves is discussed on {37}. Observed changes in the elemental composition of the body
mass, as a function of growth rate, or starvation time, can be used to obtain the elemental
composition of reserves and structure, as is discussed on {134}.

Food

Food for micro-organisms is usually called ‘substrate’, which can be very simple chemical
compounds, such as glucose. Most animals feed on plants and other animals, i.e. complex
substrates. For simplicity’s sake, I assume that the composition of food is constant, but
this is not essential; the composition of faeces is taken to be constant as a consequence.
This condition will be relaxed on {161}.

Product (faeces)

Faeces is the remains of food after it has passed through the gut. Animals add several prod-
ucts to these remains, such as bile and enzymes that are excreted in the gut, and excreted
micro-flora formed in the gut. Mammals in particular also add substantial quantities of
methane; hoatzins, an Amazonian relative of the cuckoo, smell like cows, because of the
similar gut flora and digestion. I include these products in faeces, since these excretions
are tightly coupled to the feeding process.

The faeces of micro-organisms is usually called ‘metabolic products’. For instance, mi-
crobes degrade cellulose to lipids outside the cell in anaerobic environments; lipids play the
role of faeces here. Sometimes, substrate molecules are taken up entirely, and completely
metabolized to carbon dioxide and water; in this case no faeces is produced. In other cases
products are formed that generally do not originate from substrate directly, but indirectly
with a more complex link to the metabolic machinery of the organism. The role of such
products is then similar to that of nitrogenous wastes in animals. I cope with these sit-
uations by including such products in the overheads of the three basic energy fluxes, the
assimilation flux, the dissipating flux and the somatic growth flux. The number of different
products can be extended in a straightforward manner, see {147}. It is not only bacteria
and fungi that produce compounds that are excreted into the environment – many animals
do this as well (e.g. mucus, moults); wood can be conceived as a product of plants that
remains associated with the plant.

If oxygen is poorly available, a variety of products are formed and released in the
environment:
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product chemical formula rel. freq. µ

ethanol CH3CH3O CH3O0.5 657
lactate CH3CH2OCHO2 CH2O 442
succinate CHO2CH2CH2CHO2 CH1.5O 376
propionate CH3CH2CHO2 CH2O0.66 493
acetate CH3CHO2 CH2O 442

where the last column gives the Gibbs energy of formation in kJ/ C-mole at pH = 7 in the
combustion frame of reference [389]. The kind of product depends on the species and the
environmental conditions. The quantitative aspects are discussed on {148}.

4.2 Powers

The general assumptions that are listed in Table 3.3 {121} imply that the relationships
between powers and mass fluxes involve three groups of basic powers

ṗ ≡
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ṗD

ṗG





 =











assimilation power (coupled to food intake)
dissipating powers (no net synthesis of biomass)
growth power (somatic growth)

Most of the dissipating power leaves the thermodynamic system of individual plus relevant
compounds as heat, while a portion leaves the system in the form of nitrogenous waste
or products. Part of the growth and assimilation power will also end up as dissipating
heat, because of the overhead costs; growth and assimilation do not occur with 100%
efficiency (see on {153}). The variety of metabolic processes can contribute to dissipating
power, such as maintenance of maturity and of somatic tissue (including activity), heating,
maturity growth and reproduction. It is sufficient to know that the dissipating power is a
known function of the two state variables of the individual.

Reproduction power ṗR has a special status because reserves of the adult female are
converted into reserves of the embryo which have the same composition on the basis of
assumption 1 in Table 3.3. The efficiency of this conversion is denoted by κR, which means
that (1 − κR)ṗR dissipates and κRṗR returns to the compound class ‘reserve’, but now of
the embryo. The amount of reserve that is allocated to reproduction during a very small
time increment is also very small, and not enough to make one embryo. This property,
which is shared by all time-continuous models, implies the existence of a buffer of reserves
whose destination is reproduction. Reproduction itself, i.e. the conversion of the reserves
in this buffer to embryos, is treated as an event. The overhead costs of the reproduction
event are taken into account in the allocation to reproduction.

In the considerations below, the reserves and the reserves in the reproduction buffer are
added together. This makes biological sense, because the buffer is still in the individual.
The reason for the addition is that the assumptions in Table 3.3 imply that the sum of
both fluxes is a weighted sum of the three basic powers, as we will see, but this does
not necessarily hold for each of them. (It does not hold for the deb model, for instance.)
Mineral fluxes depend on the sum only. Simplicity as well as generality are maximized, this
way, because organisms that propagate by division do not allocate reserves to reproduction.



130 4. Uptake and use of essential compounds

Here, division is treated as an event. Details about the division only play a role at
the population level, because we follow individuals up to this event. Here, I assume that
division produces two identical new individuals, but this restriction can be relaxed in
several respects, without affecting the main argument.

4.3 Mass balance

Let J̇∗ denote the rate of change of the compound ∗. The conservation of mass amounts to
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(4.2)

This can be summarized in matrix form as 0 = nMJ̇M + nOJ̇O or 0 = nJ̇ , for n =

(nM
...nO) and J̇ = (J̇T

M

...J̇T
O)T . Thus the fluxes for the ‘mineral’ compounds J̇M can be

written as a weighted sum of the fluxes of the organic compounds J̇O

J̇M = −n−1
MnOJ̇O (4.3)

with

n−1
M =













1 0 0 − nCN

nNN

0 2−1 0 − nHN

2nNN

−1 −4−1 2−1 n
4nNN

0 0 0 n−1
NN













; n ≡ 4nCN + nHN − 2nON (4.4)

I will now explain why the ‘organic’ fluxes J̇O relate to the basic powers ṗ as
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 , or J̇O = ηOṗ (4.5)

where µE is the chemical potential of the reserves, and η∗1∗2 the mass flux of compound
∗1 per unit of power ∗2, i.e. the coupling between mass and energy fluxes. The latter
coefficients serve as model parameters, and are collected in matrix η.

The fluxes J̇X = −ηXAṗA and J̇P follow from assumptions 2 and 3 in Table 3.3. Assimi-
lation energy is quantified by its fixation in reserves, so reserves are formed at a rate ṗA/µE,
where µE stands for the chemical potential of the reserves, and yXE = µE/µAX stands for
the C-moles of food ingested per C-mole of reserves formed, where µAX = η−1

XA. The rate
at which work can be done by ingested food is µX J̇X ; the flux ṗA is fixed in reserves, the
flux ṗAµP ηPA is fixed in product, the rest dissipates as heat and mineral fluxes that are
associated with this conversion. The coefficient yPX = µAXηPA stands for the C-mole of
product that is derived directly from food per C-mole of food ingested (products can also
be formed indirectly from assimilated energy).
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If the individual happens to be a metazoan and the product is interpreted as faeces,
then ηPD = ηPG = 0. Faeces production is coupled to food intake only. Alcohol production
by yeasts that live on glucose is an example of product formation where ηPD 6= ηPG 6= 0.
At this point there is no need for molecular details about the process of digestion being
intra- or extra-cellular. This knowledge only affects details in the interpretation of the
coefficients in η.

The flux J̇V = ṗGηV G indicates that µGV = η−1
V G is the invested energy per C-mole of

structural biomass, which directly follows from assumption 1 in Table 3.3. Note that µV is
the energy that is actually fixed in a C-mole of structural biomass, so µGV − µV dissipates
(as heat or via products that are coupled to growth) per C-mole.

The flux of reserves is given by J̇E = µ−1
E (ṗA − ṗC): reserve energy is generated by

assimilation and used by catabolism, i.e. the sum of all other metabolic powers (assumption
2 in Table 3.3). The flux of embryonic reserves (i.e. reproduction), J̇ER

= µ−1
E κRṗR, appears

as a return flux to the reserve because embryonic reserves have the same composition as
adult reserves because of the strong homeostasis assumption. Since ṗC = ṗD + ṗG + κRṗR,
see (3.57) and (3.58), we have J̇E + J̇ER

= µ−1
E (ṗA − ṗD − ṗG), which is the relationship

given in (4.5).
Substitution of (4.5) into (4.3) shows that the mass balance equation can be re-formulated

as 0 = nMηM + nOηO, which provides the matrix of energy–mineral coupling coefficients
ηM = −n−1

MnOηO and the mineral fluxes J̇M = ηMṗ.
The matrix n−1

M of coefficients (4.4) has an odd interpretation in terms of reduction
degrees if the nitrogenous waste is ammonia. The third row, i.e. the one that relates to
oxygen, represents the ratio of the reduction degree of the elements C, H, O, N to that
of O2, which is −4. That is to say, N atoms account for −3 of these reduction degrees,
whatever their real values in the rich mixture of components that are present. The third
row of the matrix n−1

MnO thus represents the ratio of the reduction degrees of X, V , E
and P to that of O. Sandler and Orbey [804] discuss the concept of generalized degree of
reduction.

Figure 4.1 illustrates J̇O and J̇M of the deb model as a function of the structural
biomass (i.e. scaled length, see next section), when food is abundant. The embryonic
reserve flux is negative, because embryos do not eat. The growth just prior to birth is
reduced, because the reserves become depleted. The switch from juvenile to adult, so
from development to reproduction, implies a discontinuity in the mineral fluxes, but this
discontinuity is negligibly small.

4.3.1 Partitioning of mass fluxes

The mineral and organic fluxes can be decomposed into contributions from assimilation,
dissipation power and growth. Let J̇∗ = J̇∗A + J̇∗D + J̇∗G for ∗ ∈ {M,O}, and let us collect
these fluxes in two matrices, then

J̇O∗ = ηO diag(ṗ) and J̇M∗ = ηM diag(ṗ) (4.6)

where diag(ṗ) represents a diagonal matrix with the elements of ṗ on the diagonal, so
that diag(ṗ)1 = ṗ, and J̇M∗1 = J̇M, J̇O∗1 = J̇O. These results are used in later sections.
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Figure 4.1: The organic fluxes J̇O (top) and the mineral fluxes J̇M (bottom) for the deb model
as functions of the scaled length l at abundant food (e = 1 for l > lb; 0 < l < 1). The various
fluxes are multiplied by the indicated scaling factors for graphical purposes, while a common
scaling factor involves model parameters. The parameters: scaled length at birth lb = 0.16,
scaled length at puberty lp = 0.5 (both indicated on the abscissa), scaled heating length lh = 0
(ectotherm), energy investment ratio g = 1, partition coefficient κ = 0.8, reproduction efficiency
κR = 0.8. The coefficient matrices are

ηO =











−1.5 0 0
0 0 0.5
1 −1 −1

0.5 0 0











, nM =











1 0 0 0
0 2 0 3
2 1 2 0
0 0 0 1











, nO =











1 1 1 1
1.8 1.8 1.8 1.8
0.5 0.5 0.5 0.5
0.2 0.2 0.2 0.2
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4.3.2 State versus flux

The general assumptions of Table 3.3 {121} imply that there is a direct relationship between
masses and fluxes, which also holds for other specific assumptions, as long as they are
consistent with the general ones, of course.

The mass of reserves and the structural biomass relate to the fluxes as ME(a) = ME0 +
∫ a

0 J̇E(t) dt and MV (a) = MV 0 +
∫ a

0 J̇V (t) dt. (The deb model assumes that the initial value
of the structural biomass is negligibly small, i.e. MV 0 = 0.) The mass of reserves of an
embryo in C-moles at age 0, ME0, can be introduced as a parameter, but the deb model
obtains the value from the constraint that the reserve density of the embryo at birth equals
that of the mother, i.e. e(ab) = f .

The change in structural biomass MV and reserve mass ME relate to the powers as
d
dt

MV = J̇V = ṗGηV G and d
dt

ME = J̇E = ṗA−ṗC

µE
. If the model for these powers implies the

existence of a maximum for the structural biomass, MV m, and for the reserve mass, MEm,
it is extremely convenient to replace the state of the individual, MV and ME, by the scaled
length l ≡ (MV /MV m)1/3 and the scaled energy reserve density e ≡ MEMV m

MV MEm
. The change

of the scaled state then becomes

d

dt
l =

ṗGηV G

3M
2/3
V M

1/3
V m

=
ṗG

3l2κgEm

(4.7)

d

dt
e =

MV m

MV MEm

(

ṗA − ṗC

µE

− ME

MV

ṗGηV G

)

=
1

Eml3

(

ṗA − ṗC − ṗG
e

κg

)

(4.8)

The reproduction rate, in terms of the number of offspring per time, is given by Ṙ =
J̇ER

/ME0. Therefore, the three basic powers, supplemented by the reproductive power,
fully specify the individual as a dynamic system. The purpose of the specific assumptions
of the deb model is, therefore, to specify these three powers.

4.3.3 Mass investment in neonates

Several simple expressions can be obtained for changes over the whole incubation period
that are useful for practical work. The initial weight (age a = 0) and the weight at birth
(i.e. hatching, age a = ab), excluding membranes and nitrogenous waste, are

(

Ww(0) Ww(ab)
)

= Vm

(

wE wV

)

(

[MEm]e0 [MEm]ebl
3
b

0 [MV ]l3b

)

(4.9)

where wE and wV denote the molecular weights of reserves and structural biomass. The
scaled reserve densities e0 and eb are defined as e∗ ≡ E∗([Em]Vm)−1, where E∗ denotes the
initial amount of reserves or the amount at hatching.

The relative weight at hatching is Ww(ab)/Ww(0) = (eb + wV /wE)l3b/e0.

The total production of ‘minerals’ during incubation, MM(ab), amounts to

MM(ab) ≡
∫ ab

0
J̇M(a) da = −n−1

MnO

(

0 −[MV ]Vb µ−1
E (E0 − Eb) 0

)T
(4.10)
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h Figure 4.2: Relative abundances (upper left),

molar yield of biomass dry weight (upper right),
and specific O2 consumption rate and CO2 pro-
duction rate (lower) for Klebsiella aerogenes

growing on glycerol at 35 ◦C. Data from [262,
263]; fits modified from Hanegraaf [365]. Pa-
rameter estimates, given a maximum dilution
rate of 1.05 h−1 and g = 1.

k̇E 2.11 h−1 k̇M 0.021 h−1

yV E 1.135 yXE 1.490

nHE 1.66 nOE 0.422 nNE 0.312
nHV 1.64 nOV 0.379 nNV 0.198

4.3.4 Composition of reserves and structural mass

Figure 4.2 illustrates that the change in composition of biomass for increasing growth rates
can be used to obtain the composition of the reserves and of the structural mass. This
method can be applied not only to elements but also to any chemical compound that can
be measured in organisms. The relative abundance of the elements suggests that ribosomal
rna is an important component of the reserves in the prokaryote example, in view of the
high population growth rate. This is discussed further on {244}. Indirect evidence can
be used to obtain the amounts, without separating structure and reserve physically, see
Figure 9.7.

The relative contributions of the three basic powers to the mass conversions depend on
the substrate density, and therefore on throughput rate of a chemostat, as is illustrated in
Figure 4.2 for the conversion process of glycerol into the bacterium Klebsiella aerogenes at
steady state. The data on the elemental composition, and on the yield of dry weight and
the specific O2 and CO2 fluxes, lead to the following relationship between mineral fluxes
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and the three basic powers for J̇M+ = J̇M∗1 = J̇M and ṗ+ = diag(ṗ)1 = ṗ

J̇M+ =











0.14 1.00 −0.49
1.15 0.36 −0.42
−0.35 −0.97 0.63
−0.31 0.31 0.02











ṗ+/µE (4.11)

4.4 Respiration

Respiration, i.e. the use of oxygen or the production of carbon dioxide, is usually taken to
represent the total metabolic rate in an organism. The latter is a rather vague concept,
however. The conceptual relationship between respiration and use of energy has changed
with time. Von Bertalanffy identified it with anabolic processes, while the Scope For
Growth concept, {366}, relates it to catabolic processes. The respiration rate can now be
defined concisely as the oxygen flux J̇O = ηOAṗA + ηODṗD + ηOGṗG, or the carbon dioxide
flux J̇C = ηCAṗA + ηCDṗD + ηCGṗG.

If product formation, such as faeces, is only linked to assimilation, the carbon dioxide
production rate that is not associated with assimilation, J̇C for ṗA = 0, follows from (4.3),
(4.4) and (4.5)

J̇CD + J̇CG =
(

1− nNE
nCN

nNN

)

µ−1
E (ṗD + ṗG)−

(

1− nNE
nCN

nNN

)

ηV GṗG (4.12)

where the second term represents the carbon from the reserve flux that is allocated to
growth and actually fixed into new tissue. The relationship simplifies if the nitrogenous
waste contains no carbon (nCN = 0). For embryos and juveniles we have ṗG + ṗD =
ṗC , but adults fix carbon in embryonic reserves. This change at puberty results in a
stepwise decrease in carbon dioxide production as illustrated in Figure 4.1. Table 3.5 gives
the required powers: for adults we have the growth power ṗG = Vm[ṗM ]l2 e−l−lh

1+e/g
and the

dissipating power

ṗD = Vm[ṗM ]

(

l3 + (κ−1 − 1)l3p + l2lh + (1− κR)(κ−1 − 1)

(

l2
e− l + lh/g

1 + e/g
+ l3 − l3p

))

Initially, eggs hardly use oxygen, but oxygen consumption rapidly increases during de-
velopment; see Figure 4.4. In juveniles and adults, oxygen consumption is usually measured
in individuals that have been starved for some time, to avoid interpretation problems re-
lated to digestion. (For micro-organisms this is not possible without a substantial decrease
of reserves.) The expression for the dissipating power is consistent with the observation
that respiration rate increases with reserve density [488], while reserves themselves do not
use oxygen. Moreover, it explains the reduction of respiration during starvation; see {227}.

The following subsection shows that respiration is a weighted sum of volume and sur-
face area in steady-state conditions for the reserves. This is, for all practical purposes,
numerically indistinguishable from the well known Kleiber’s rule, which takes respiration
to be proportional to weight to the power 0.75 or length to the power 2.25; see Figure 4.3.
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Figure 4.3: The respiration rate of Daph-

nia pulex with few eggs at 20 ◦C as a func-
tion of length. Data from Richman [764].
The deb model based curve 0.0336L2 +
0.01845L3 as well as the standard allomet-
ric curve 0.0516L2.437 are plotted on top
of each other, but they are so similar that
this is hardly visible. If you look hard,
you will notice that the line width varies
a little.
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Figure 4.4: The water stick insect Ranatra lin-

earis deposits its eggs in floating decaying plant
material, where oxygen availability is usually
poor. The eggs are easily spotted by the special
respiratory organs that peek out of the plant.
Just prior to hatching, eggs typically need a lot
of oxygen, cf. Figure 3.15.

There are three major improvements in comparison to Kleiber’s rule. This model does not
suffer from dimensional problems, it provides an explanation rather than a description and
it accommodates species that deviate from Kleiber’s rule; endotherms respire in proportion
to surface area (approximately), which has given rise to Rubner’s surface law.

As already mentioned, this result solves the long standing problem of why the volume-
specific respiration of ectotherms decreases with increasing size when organisms of the same
species are compared. This problem has been identified as one of the central problems of
biology [1009]. Many theories have been proposed, see e.g. [758] for a discussion, but
all use arguments that are too specific to be really satisfactory: heating (but many species
are ectothermic), muscle power (but movement costs are relatively unimportant), gravity
(but aquatic species escape gravity), branching transport systems (but open circulatory
systems are frequent). Peters [700] even argued that we should stop looking for a general
explanation. The deb theory, however, does offer a general explanation: the overhead of
growth. A comparison of different species is covered in a later chapter, {267}, where it is
shown that interspecies comparisons work out a bit differently.

The maintenance rate coefficient k̇M can be estimated easily if growth data together
with respiration data are collected at a constant food density. The respiration rate of
embryonic and juvenile ectotherms is proportional to energy allocation to growth plus
maintenance, so according to (3.17) the respiration rate is proportional to d

dt
V + k̇MV .

The observation that respiration is proportional to a weighted sum of volume and change
in volume goes back to the 1957 Smith study [861] of salmon eggs. At constant food
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density, the change in volume is of the von Bertalanffy type, which makes respiration
proportional to 3ṙB(V 1/3

∞ V 2/3 − V ) + k̇MV . This gives five parameters to be estimated
from two data sets on respiration and growth: Vb, V∞, ṙB, a proportionality constant for
respiration and the maintenance rate coefficient, k̇M . This gives 2.5 parameters per data
set, which is acceptable if the scatter is not too large.

4.4.1 Respiration Quotient

The Respiration Quotient (RQ) is of practical interest because it yields information on
the relative contributions of protein, carbohydrates and lipids. The RQ for a particular
compound X with chemical indices nX can be obtained by decomposing the compound into
minerals with chemical indices nM. The composition of the nitrogenous waste (N), which
can also contain C and O, affects the RQ if the compound contains N. The stoichiometric
coefficients are yMX = ( yCX yHX yOX yNX )T = n−1

MnX , and RQ= yCX/yOX .
The RQ value can be used to make inferences about the composition of reserves. Struc-

tural biomass and mainly reserves consist of three groups of polymers:

compound symbol formula RQ kJ/ g kJ/ C-mol

polysaccharides Ps CH2O 1.00 17.2 516
lipids Li CH1.92O0.12 0.67 38.9 616
proteins Pr CH1.61O0.33N0.28 0.84 17.6 401

The RQ value for protein relates to urea as nitrogenous waste. The formula for lipid refers
to tripalmitin. Octanol (C8H18O, or CH2.25O0.125) is frequently used as a chemical model
for a typical animal fat, see {191}. Proteins are by far the most diverse polymers; the
composition (and function) of protein differs over the taxa, the RQ varying between 0.8
and 0.9.

The chemical indices of the structural biomass and the reserves relate to that of the
three groups of polymers as

n∗1∗2 = n∗1PsYPs,∗2 + n∗1Li
YLi,∗2 + n∗1PrYPr,∗2 ∗1 ∈ {C,H,O,N} , ∗2 ∈ {V,E} (4.13)

where Y∗3∗2 is the molar yield of ∗3 ∈ {Ps, Li, Pr}, on ∗2, and 1 = YPs,∗2 + YLi,∗2 + YPr,∗2 .
Given the composition of the three polymers, the composition of structural biomass and
that of reserves have two degrees of freedom each. The constraint that the RQ is indepen-
dent of the state of the individual eliminates all degrees of freedom and the value of the
RQ can be directly translated into the composition of reserves and structure in terms of
the three groups of polymer.

For living organisms, the situation is a bit more complex, because the ratio between
the produced carbon dioxide and the consumed oxygen is not necessarily constant. The
gas fluxes that are associated with the assimilation process, and so with feeding, are usu-
ally excluded from the measurements of the RQ, by starving the individual prior to the
measurement. An explicit expression for the RQ can be obtained from the relationships
J̇M = ηMṗ and ηM = −n−1

MnOηO. As is usually done, we set the first row of nO equal
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to 1T , set ηPD = ηPG = 0, and obtain

RQ = − J̇CD + J̇CG

J̇OD + J̇OG

= −
(n−1

M)CnO

(

0 ṗGηV G − ṗD+ṗG

µE
0
)T

(n−1
M)OnO

(

0 ṗGηV G − ṗD+ṗG

µE
0
)T (4.14)

=
1− nNV

nCN

nNN
− (1− nNE

nCN

nNN
) µGV

µE

(

1 + ṗD

ṗG

)

1 + nHV

4
− nOV

2
− n

4
nNV

nNN
− (1 + nHE

4
− nOE

2
− n

4
nNE

nNN
) µGV

µE

(

1 + ṗD

ṗG

) (4.15)

where (n−1
M)∗ denotes the row of n−1

M that corresponds to compound ∗. The contribution
of energetics to the RQ is thus via the ratio of growth to dissipation power. The RQ is in
practice usually taken to be a constant for a particular species. Within the deb model, the
RQ is independent of the state of the animal (size l and reserve density e) if the following
condition on the composition of E, V and N holds

1 + nHE

4
− nOE

2
− n

4
nNE

nNN

1 + nHV

4
− nOV

2
− n

4
nNV

nNN

=
1− nNE

nCN

nNN

1− nNV
nCN

nNN

(4.16)

in which case

RQ =
1− nNE

nCN

nNN

1 + nHE

4
− nOE

2
− n

4
nNE

nNN

=
1− nNV

nCN

nNN

1 + nHV

4
− nOV

2
− n

4
nNV

nNN

(4.17)

The respiration rate (the oxygen consumption rate as well as the carbon dioxide produc-
tion rate) is then proportional to the catabolic power if the contribution via assimilation
is excluded. Condition (4.16) simplifies considerably if the Urination Quotient (UQ) is
constant as well, see (4.29). The elemental composition of the reserves has to be equal to
that of the structural biomass, if the Watering Quotient (WQ) is also independent of the
state of the animal, see {146}.

4.4.2 Heat increment of feeding

The heat increment of feeding, also known as ‘specific dynamic action’, and many other
terms, is defined (strangely enough) as the oxygen consumption that is associated with the
feeding process. Apart from a small part that relates to the processing of proteins, the
heat increment of feeding is little understood [1009]. It can be obtained, however, from
the conservation law for mass. The oxygen consumption per C-mole of food is independent
of the states of the animal (reserves e and size l) as

J̇OA

J̇X

= (n−1
M)O∗nO
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(4.18)

where (n−1
M)O∗ denotes the row of n−1

M that relates to O, which is the third row. The
expression shows how assimilation-associated oxygen consumption depends on the compo-
sition of food, faeces, reserves and nitrogenous waste, and the digestion efficiency through
the parameters µAX , µAP and µE.
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4.4.3 Aging as a consequence of respiration

Since age is not a state variable, the steady shift in properties due to the poorly understood
process of aging is only of secondary relevance to the deb theory. In a number of situations,
however, one should consider life span, which has well recognized roots in energetics. The
frequently observed correlation between life span and the inverse volume-specific metabolic
rate for different species (see, e.g. [815]) has guided a lot of research. The impressive work
of Finch [281] gives well over 3000 references. Animals tend to live longer at low food
levels than at high ones. The experimental evidence, however, is rather conflicting on this
point. For example, Ingle et al. [442] found such a negative relationship, while McCauley
et al. [605] found a positive one for daphnids. This is doubtlessly due to the fundamental
problem that death can occur for many reasons, such as food-related poisoning, that are
not directly related to aging.

Some species such as salmon, octopus, Oikopleura die after (first) reproduction, cf.
{262}. They are said to be semelparous species, while species that reproduce more than
once are called iteroparous. The sessile colonial sea squirt Botryllus schlosseri follows both
genetically determined strategies within one population [350]. The semelparous colonies
numerically dominate the population through midsummer, while the iteroparous ones do
so in late summer. Death after first reproduction, like many other causes of death, does
not relate to aging.

On approaching the end of the life span, the organism usually becomes very vulnerable,
which complicates the interpretation of the life span of a particular individual in terms of
aging. Experiments usually last a long time, which makes it hard to keep food densities at
a fixed level and to prevent disturbances. This explains why theories on aging are still in
a primordial state.

In a first näıve attempt to model the process of aging, it might seem attractive to
conceive the senile state, followed by death as the next step in the sequence embryo,
juvenile, adult, and then tie it to energy investment in development just as has been done
for the transitions to the juvenile and adult stages. This is not an option for the deb
model, since at sufficiently low food densities the adult state is never entered, even if the
animal survives for nutritional reasons. This means that it would live for ever, as far as
aging is concerned. Although species exist with very long life spans (excluding external
causes of death [281]), this does not seem acceptable.

In view of the substantial scatter in age at death among individuals, an obvious strategy
to model aging is on the basis of hazard rates. The hazard rate relates to the survival
probability according to the differential equation d

dt
Pr{a† > t} = −Pr{a† > t}ḣ(t) or

ḣ(t) = − d
dt

ln Pr{a† > t}. The survivor probability is thus

Pr{a† > t} = exp
{

−
∫ t

0
ḣ(t1) dt1

}

(4.19)

The mean life span equals Ea† =
∫∞

0 Pr{a† > t} dt =
∫∞

0 exp{− ∫ t
0 ḣ(t1) dt1} dt. This hazard

rate thus ties aging to energetics, which explains for instance why dormancy prolongs life
span, cf. {231}.

Attempts to relate hazard rates directly to the accumulation of hazardous compounds
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formed as a spin off of respiration, such as oxidized lipids, have failed to produce realistic
age-specific mortality curves: the hazard rate increases too rapidly for a given mean life
span. See [486,675] for reviews on the role of secondary products from metabolism in aging.
The same holds for the hazard tied to damage to membranes, if this damage accumulates
at a rate proportional to volume-specific respiration. Telomers, repetitive dna-code at the
end of chromosomes, were recently found be copied incompletely in animals, which gives
a reduction in their size after each cell division, and eventually leads to loss of the ability
to divide. The process is controlled by telomerase; sperm has enough of this enzyme to
continue division. It seems likely that telomer reduction is important in the process of
differentiation and the control of organ size. Accurate descriptions of survival data where
aging can be assumed to be the major cause of death seem to call for an extra integration
step, however, which points to activities of changed dna.

It has been suggested that free radicals, or related reactive oxygen species formed as a
spin off of respiration, cause irreparable damage to the dna in organisms and have a direct
relationship with aging [363,368,369,877,923]. The specific activity of antioxidants corre-
lates with life span within the mammals [28,281,995]. The structure of the antioxidant
enzyme manganese superoxide dismutase has recently been solved [798]. Although too
unspecific to be of much help to molecular research, for energetics purposes the free radical
hypothesis specifies just enough to relate the age-specific survival probability, and so life
span, to energetics. The idea is that the hazard rate is proportional to damage density,
which accumulates at a rate proportional to the concentration of changed dna, while dna
changes at a rate proportional to the catabolic rate. The catabolic rate is proportional to
the respiration rate that is not associated with assimilation, and the proportionality con-
stant is affected by the activity of the superoxide dismutases and the dna repair efficiency.
Oxygen use that is associated with assimilation is not taken into account, because it is
used more locally, in specialized tissues.

Although it is not yet possible to draw firm conclusions on this point, this mechanism
does provide the extra integration step that is required for an accurate description of data.
It is further assumed that the cells with changed dna do not grow and divide, while the
density of affected cells is reduced owing to the propagation of the unchanged cells. This
assumption is supported by the recent identification of gene chk1 [966], whose products
are involved in the detection of dna damage; damaged dna prevents entry into mitosis
by controlling the activity of the protein that is produced by cdc2 , cf. {118}. Because of
the uncertainty in the coupling with molecular processes, I prefer to talk about damage
and damage-inducing compounds, rather than wrong proteins (or their products) and dna.
Kowald and Kirkwood [529,528] followed a very similar line of reasoning, and incorporated
much more detail. The present very simple model has only one parameter for the aging
process. Its strength is in revealing the role of energetics in the survival probability; energy
budgets parameters will show up in the survival process, which can also be obtained from
data that do not relate to survival.

The amount of damage-inducing compounds (changed dna), MQ, accumulates from
value 0 in an embryo of age 0. The non-assimilatory respiration rate is about proportional
to the catabolic rate, so d

dt
MQ = ηQC ṗC , where the mass–energy coupler ηQC is the con-

tribution of the volume-specific catabolic rate to the compounds per unit of energy. The
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coefficient incorporates the activity of the antioxidants and the dna repair potential. The
second term stands for the dilution through growth, where cells with changed dna become
mixed with cells with unchanged dna.

Substitution of (3.17), gives for ectotherms

d

dt
MQ =

ηQC

κ

(

[EG]
d

dt
V + ṗM

)

(4.20)

The amount of damage-inducing compounds as a function of time for ectotherms thus
equals

MQ(t) =
ηQC

κ

(

[EG](V (t)− V (0)) + [ṗM ]
∫ t

0
V (t1) dt1

)

(4.21)

As explained in the section on embryonic growth, {96}, the initial volume, V (0), is in-
finitesimally small. The accumulated damage during the embryonic stage is also negligibly
small. The high generation rate of damage-inducing compounds is balanced by the high
dilution rate through growth. The fact that the embryonic period is usually a very small
fraction of the total life span ensures that one does not lose much information by starting
from the moment of hatching.

Damage (wrong protein) accumulates at a rate proportional to the amount of damage-
inducing compounds, so the damage density is proportional to V (t)−1

∫ t
0 MQ(t1) dt1. The

hazard rate, ḣ(t), is finally taken to be proportional to the damage density, which leads to

ḣ(t) =
ḧa

V (t)

∫ t

0

(

V (t1)− V (0) + k̇M

∫ t1

0
V (t2) dt2

)

dt1 (4.22)

The proportionality constant ḧa, here called aging acceleration, absorbs both proportion-
ality constants leading to this formulation of the age-dependent hazard rate and is pro-
portional to ηQC [EG]/κ. This most useful property means that only a single parameter is
necessary to describe the aging process.

Figure 4.5 shows that the fit with experimental data for male and female daphnids is
quite acceptable, in view of the fact that the combined hazard curves have only one free
parameter ḧa (so half a parameter per curve). The differences in survival probability of
male and female daphnids can be traced back to difference in ultimate size (i.e. in the
surface-area-specific maximum assimilation rate {Ȧm}).

It is instructive to compare this model with that of Weibull where

Pr{a† > t} ≡ exp
{

−
∫ t

0
ḣ(t1) dt1

}

= exp{−(ḣW t)β}

The model was first proposed by Fisher and Tippitt [283] in 1928 as a limiting distribution
of extreme values, and Weibull [978] has used it to model the failure of a mechanical
device composed of several parts of varying strength, according to Elandt-Johnson and
Johnson [251]. The (cumulative) hazard increases allometrically with time. Like many
other allometrically based models for physiological quantities, it is attractively simple, but
fails to explain, for instance, why the sexes of Daphnia have different shape coefficients
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Figure 4.5: The growth curves of female (3) and male daphnid (2)Daphnia magna at 18 ◦C and
the observed hazard rates. Data from MacArthur and Baillie [574]. The growth curves are of
the von Bertalanffy type with common length at birth. The hazard rates are fitted on the basis
of the damage genesis discussed in the text, with a common aging acceleration of 2.587 × 10−5

d−2. The difference in the hazard rates is due to the difference in ultimate lengths.

β [522]. As long as both parameters of the Weibull model can be chosen freely, i.e.
if only one data set is considered, it will be hard to distinguish it from the deb-based
model. See Figure 4.6. The maintenance rate coefficient in the fit is here considered as a
free parameter, so both curves then have two free parameters. This is done because the
available estimate for the maintenance rate coefficient on the basis of egg development as
reported in Table 3.1 is rather far out of range. The resulting estimate of k̇M = 0.073 d−1

at 20 ◦C is much more realistic, which in itself lends strong support to my interpretation. It
can be shown that the Weibull model with shape parameter 3 results if the growth period
is short relative to the mean life span, {257}.

The Gompertz model for survival Pr{a† > t} = exp{β(1−exp{ḣGt})} is also frequently
used as a model for aging; see e.g. [1011]. It can be mechanistically underpinned by a
constant and independent failure rate for a fixed number of hypothetical critical elements.
Death strikes if all critical elements cease functioning. The curvature of the survival prob-
ability then relates to the number of critical elements, which Witten [1011] found to be
somewhere between 5 and 15. Their nature still remains unknown. A property of this
model is that the hazard rate does not approach zero for neonates (or embryos), which
does not seem to be consistent with the data [854]. Finch [281] favours the empirical
description of aging rates given by the Gompertz model because its property of a constant
mortality rate doubling time, ḣ−1

G ln 2, provides a simple basis for comparison of taxa.

The present formulation allows for a separation of the aging- and energy-based param-
eters. The estimation of the ‘pure’ aging parameter in different situations and for different
species will hopefully reveal patterns that can guide the search for more detailed molecular
mechanisms; however, many factors may be involved, cf. {216}. It has been suggested in
the literature that the neural system may be involved in setting the aging rate. The fact
that brain weight in mammals correlates very well with respiration rate [422] makes it
difficult to identify factors that determine life span in more detail. The mechanism may
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Figure 4.6: The survival probability and the growth curve of the pond snail Lymnaea stagnalis

at 20 ◦C. Data from Slob and Janse [854] and Bohlken and Joosse [98,1028]. The fitted growth
curve is the von Bertalanffy one, giving an ultimate length of 35 mm and a von Bertalanffy
growth rate of ṙB = 0.015 d−1. The survival curve was used to estimate both the maintenance
rate constant, k̇M = 0.073 d−1, and the aging acceleration ḧa = 2.563× 10−6 d−2. The Weibull
curve with shape parameter 3.1 is plotted over the deb model to show that both curves are hard
to distinguish in practice.

be again via the neutralization of free radicals.

An indication of this pathway can be found in the age-specific survival probability for
humans, see Figure 4.7, which can be described well by a Weibull distribution with shape
parameter 6.8. Compared with the data on ectotherms, we have here an extremely low
hazard rate for the young ages, which increases rapidly after the age of 50 years. This
pattern suggests that the system involved in the neutralization of free radicals is itself
subjected to aging, while for ectotherms it is not necessary to build in this complication.
A constant neutralization probability, combined with low mortality during growth, leads
to survival curves that are close to the Weibull curve with shape parameter 3, see {255}.
Aging as a result of free radicals is partially supported by the observation that the life spans
of both ectotherms and endotherms correlate well with the specific activity of antioxidants
[281]. It should be noted that if we compare an endotherm with a body temperature of 40 ◦C
with that of an otherwise similar ectotherm at 20 ◦C, we should expect a 10 times shorter
life span, on the basis of an Arrhenius temperature of 10 000 K. Endotherms, therefore,
have a problem to solve, which possibly involves additional mechanisms to remove free
radicals.

One of the many questions that remain to be answered is how aging proceeds in animals
that propagate by division rather than by eggs. Unlike eggs, they have to face the problem
of initial damage. It might be that such animals have (relatively few) undifferentiated
cells that can divide and replace the damaged (differentiated) ones. A consequence of this
point of view is that the option to propagate by division is only open to organisms whose
differentiation of specialized cells is not pushed to the extreme. If aging affects all cells
at the same rate, it becomes hard to explain the existence of dividing organisms. This
is perhaps the best support for the damage interpretation of the aging process. Theories
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Figure 4.7: The survival curve for humans:
white males in the USA in the period 1969–
1971. Data from Elandt-Johnson and John-
son [251]. The fitted empirical survival curve is
q exp{−ḣt−(ḣW t)β}, with q = 0.988, ḣ = 0.0013
a−1, ḣW = 0.01275 a−1 and β = 6.8. The pa-
rameter q relates to neonate survival and ḣ to
death by accident. The extreme goodness of fit
suggests that the data might not be data, but
model predictions. age, a
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that relate aging, for instance, to the accumulation of compounds as an intrinsic property
of cellular metabolism should address this problem. The same applies to unicellulars. If
accumulated damage carries over to the daughter cells, it becomes hard to explain the
existence of this life style. The assumption of the existence of cells with and without
damage seems unavoidable. Organisms that live in anaerobic environments cannot escape
aging, because other radicals will occur that have the same effect as oxygen. Note that if
one follows the fate of each of the daughter cells, this theory predicts a limited number of
divisions until death occurs, so that this event itself gives no support for aging theories built
on cellular programming. Only the variation in this number can to some extent be used
to choose between both approaches. The present theory can be worked out quantitatively
for unicellulars as follows.

Since unicellulars cannot dilute changed dna with unchanged dna and cannot com-
pensate for its effect, the hazard rate for unicellulars must equal ḣ(t) = ηQC ṗC/V , where
ηQC couples the generation of damage-inducing compounds to catabolic power. (Note that
the range of the cell volume is (Vd/2, Vd), so that the volume-specific respiration rate is
restricted, while for embryos, where V is assumed to be infinitesimally small initially, it
does not have a boundary. Dilution by growth solves this problem for embryos.) The
hazard rate for V1-morphs is found from Table 3.6 {123} to be

ḣ(e) = ḣae
1 + g

e + g
(4.23)

where ḣa represents the maximum aging rate. At constant substrate densities, the scaled
energy reserve density, e, equals the scaled functional response, f , so the hazard rate is
constant and independent of the age of the filament. For the hazard rate of unicellular
isomorphs we obtain from (3.44)

ḣ(e, l) = ḣae
1 + g

e + g

1 + g/l

1 + g/ld
(4.24)

In contrast to V1-morphs, isomorphs experience a reduction of the hazard rate during the
cell cycle.

If dna is changed, the cell will cease functioning. This gives a lower boundary for
the (population) growth rate because the population will become extinct if the division
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interval becomes too long. To prevent extinction (in the long run) the survival probability
to the next division should be at least 0.5, so the lower boundary for substrate density
can be found from Pr{a† > td} = exp{− ∫ td

0 ḣ(t) dt} = 0.5. The lower boundary for the
substrate density for rods must be found numerically. It is tempting to relate this aging
mechanism, which becomes apparent at low substrate densities only, to the occurrence of
stringent responses in bacteria, as described by, for example, Cashel and Rudd [153]. This
is discussed further when populations are considered, {319}.

It is intriguing to realize that the present mechanism for aging implies that organisms
use free radicals to change their dna. Although most changes are lethal or adverse, some
can be beneficial to the organism. Using a selection process, the species can exploit free
radicals for adaptation to changing environments. By increasing the specific activity of
antioxidants, a species can prolong the life span of individuals in non-hostile environments,
but it reduces its adaptation potential as a species if the environment changes. This trait
defines an optimal specific activity for antioxidants that depends on the life history of the
organism and the environment. Large body size, which goes with a long juvenile period,
as is discussed on {287}, requires efficient antioxidants to ensure survival to the adult
state. It implies that large bodied species have little adaptation potential, which is further
reduced by the long generation time; this makes them vulnerable from an evolutionary
perspective. It is possibly one aspect of the extinction of the dinosaurs, although not
all of them were large and they may have been endothermic. Endotherms appear to
combine a high survival probability of the juvenile period with a high aging rate, thus
having substantial adaptation potential during the reproductive phase; they reach this by
reducing the efficiency of antioxidants during puberty.

The present formulation assumes that growth ceases as soon as dna is changed. The
background is that many genes are involved in the synthesis of one or more compounds that
are essential to structural biomass and so to growth. A few genes are involved in suppressing
unregulated growth of cells in multicellular organisms. If such genes are affected, tumours
can develop. This theory can, therefore, also be used to work out the age-dependent
occurrence rate of tumours as well as the growth rate of tumours, cf. {177}.

The energy parameters can be tied to the accumulated damage to account for the well-
known phenomenon that older individuals eat less and reproduce less than younger ones
with the same body volume. Senescence can be modelled this way. It is a special case of a
more general principle, that non-essential compounds can affect parameter values, {202}.

4.5 Nitrogen balance

Standard ‘static’ energy budget studies treat energy in urine similar to energy in faeces, by
subtracting both from energy contained in food to arrive as metabolizable energy that is
available to the animal, cf. {365}. Since the gut contents still belong to the ‘outside world’,
this is reasonable for energy in faeces, but not for energy in urine. The deb model leads to
a different point of view, where dissipating power and anabolic power also contribute to the
nitrogenous waste. The energy (and nitrogen) in urine originates from all powers, where
the contributions to urine appear as overhead costs. Without reserves, the two points
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of view can be translated into each other, but with reserves the two become essentially
different.

If nNE < [MV ]

µ−1
E

nNV

[EG]
, the flux of nitrogenous waste that relates to anabolic power, J̇NG,

is negative, meaning that nitrogen is built in rather than wasted in the transformation of
reserves to structural biomass. The flux of nitrogenous waste that relates to dissipating
power amounts to J̇ND = ṗD

µE

nNE

nNN
, which can be a substantial part of the total flux of

nitrogenous waste.

4.5.1 Urination Quotient

Analogous to the Respiration Quotient, we can define the Urination Quotient (UQ) as

UQ = − J̇ND + J̇NG

J̇OD + J̇OG

= −
(n−1

M)NnO

(

0 ṗGηV G − ṗD+ṗG

µE
0
)T

(n−1
M)OnO

(

0 ṗGηV G − ṗD+ṗG

µE
0
)T (4.25)

=

nNV

nNN
− nNE

nNN

µGV

µE

(

1 + ṗD

˙pG

)

1 + nHV

4
− nOV

2
− n

4
nNV

nNN
− (1 + nHE

4
− nOE

2
− n

4
nNE

nNN
) µGV

µE

(

1 + ṗD

˙pG

) (4.26)

The UQ is independent of the states of the animal (size l and reserve density e) if the
following condition on the composition of E, V and N holds

1 + nHE

4
− nOE

2
− n

4
nNE

nNN

1 + nHV

4
− nOV

2
− n

4
nNV

nNN

=
nNE

nNV

(4.27)

in which case

UQ =
nNE

nNN

1 + nHE

4
− nOE

2
− n

4
nNE

nNN

=
nNV

nNN

1 + nHV

4
− nOV

2
− n

4
nNV

nNN

(4.28)

The UQ and the RQ are both constant if

nNE = nNV (4.29)

nHE − 2nOE = nHV − 2nOV (4.30)

Analogous to the RQ and UQ, we can define a Watering Quotient WQ = − J̇HD+J̇HG

J̇OD+J̇OG
:

the ratio of the water production to oxygen consumption that relates to dissipation and
growth. (For terrestrial animals, the evaporation of water invokes a drinking behaviour,
which is discussed on {151}.) The condition that the RQ, UQ and WQ are all independent
of the state of the animal directly translates to the condition that the reserves and the
structural biomass have the same elemental composition. The oxygen consumption, the
carbon dioxide production, the nitrogenous waste production and the water production
that relate to dissipation and growth are all proportional to the catabolic power, compar-
ing individuals of the same species (i.e. the same parameter values), but different states
(structural biomass and/or reserves).
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If the RQ and the UQ are both constant, the ratio of the carbon dioxide to the nitroge-

nous waste production equals RQ
UQ = nNN

nNE
− nCN , excluding contributions via assimilation

as before. If the WQ is constant as well, the ratio of the water to the nitrogenous waste

production equals WQ
UQ = nHE

2
nNN

nNE
− nHN

2
.

4.5.2 Ammonia excretion

Many algae take up nitrogenous compounds, such as ammonia, from the environment, but
even algae also excrete ammonia, associated with maintenance and growth. This follows
from the balance equation for nitrogen, given the composition of reserves and structural
mass. Ammonia excretion can be quantified for V1-morphs as follows.

Let nNE and nNV denote the chemical indices for nitrogen in reserves and structural
mass. The ammonia excretion that is associated with maintenance and growth can then
be written as

J̇NH ,D + J̇NH ,G = (jNH ,D + jNH ,G)MV = nNE(ṗD + ṗG)/µE − nNV ṗG/µGV (4.31)

jNH ,D + jNH ,G = nNEyEV (k̇E + ṙ)− nNV ṙ (4.32)

with dissipating power ṗD = MV µGV k̇M and growth power ṗG = MV µGV ṙ (see Table 3.6);
the mass–mass coupler yEV is the ratio of two energy–mass couplers, yEV = µGV /µE, where
µE represents the chemical potential of the reserves, and µGV the reserve energy investment
per unit increase of structural mass.

The flux of nitrogenous waste that relates to assimilation amounts to J̇N,A = ηNAṗA,
with ηNAnNN = −ηXAnNX + nNE/µE + ηPAnNP .

4.6 Products

From a dynamic systems point of view, minerals can be considered as products, with
contributions from the basic powers, apart from the fact that their fluxes can become
negative (e.g. oxygen for heterotrophs). Faeces is a product as well, where the contributions
from dissipating and growth powers are zero, which ties faeces production directly to
assimilation. Many micro-organisms produce a variety of products via several routes.
If the deb model still applies in the strict sense, the mere fact that product formation
costs energy implies that product formation must be a weighted sum of the basic powers:
assimilation, dissipation (maintenance) and growth. The energy drain to product formation
can then be considered as an overhead cost in these three processes.

The necessity to tie product formation to all the three energy fluxes in general be-
comes obvious in a closer analysis of fermentation. If product formation is independent
of one or more energy fluxes, mass balance equations dictate that more than one product
must be made under anaerobic conditions, and that the relative amounts of these prod-
ucts must depend on the (population) growth rate in a very special way. In the Monod
model, which does not include maintenance and reserves (see {317}), assimilation is pro-
portional to growth investment, which leaves just a single energy flux available to couple to
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product formation. In the Marr–Pirt model, which does not include reserves, assimilation
is proportional to maintenance plus growth investment, which leaves two energy fluxes
available to couple to product formation. Maintenance and reserves together allow for a
three-dimensional base for product formation: J̇P = ṗAηPA + ṗDηPD + ṗGηPG, see (4.5).
The quantitative aspects of products only differ from that of ‘minerals’ in that the weight
coefficients for products are free parameters, while those for ‘minerals’ follow from mass
conservation.

Since most unicellulars behave approximately as V1-morphs, assimilation rate and
maintenance are both proportional to biomass, with constant proportionality coefficients
at steady state. Leudeking and Piret [554] proposed in 1959 that product formation is a
weighted sum of biomass and change in biomass (growth). They studied lactic acid fer-
mentation by Lactobacillus delbruekii. The Leudeking–Piret kinetics has proved extremely
useful and versatile in fitting product formation data for many different fermentations [40].
It turns out to be a special case of the deb theory.

For practical applications where no energies are measured, it might be useful to convert
powers to mass fluxes via the coefficients ζ∗1∗2 = η∗1∗2µEmEm, which leads to the specific
production flux for V1-morphs

jP = ζPM k̇Mg + ζPAk̇Ef + ζPGṙg. (4.33)

Milk of female mammals is an example of a product that is coupled to maintenance,
which requires a temporal change in parameter values to describe its production. The same
holds for plant secretions (e.g. resin), in response to wounds, for example.

4.7 Fermentation

Many organisms can live in anaerobic environments, partly as a relic from their evolutionary
history, as life originated in a world without free oxygen. Most parasites [926,927], as well
as gut and sediment dwellers [277,278] do not usually encounter much oxygen, and aquatic
environments can be low in oxygen as well. Some fish [972,973] and mollusc [123] survive
periods without oxygen. Parasitic helminths sport anaerobic metabolism in the core of
their bodies, and aerobic metabolism in the peripheral layers, which become relatively less
important during growth [925].

The mass balance equation reveals that such organisms must produce at least one prod-
uct, with an elemental composition that is independent (in the sense of linear algebra) of
the composition of the other ‘minerals’ (carbon dioxide, water and nitrogenous waste).
Usually, several products are formed. Under anoxic conditions, lipids cannot be metabo-
lized, because their degree of reduction is too high, and the respiration chain cannot be
used.

The description of the formation of each product involves three parameters, namely
the coupling coefficients with the three basic powers; the absence of oxygen involves three
constraints. So if just one product is formed, no free parameters are left, and we can simply
replace oxygen by that product. So, if the single product is ethanol, and the nitrogenous
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waste ammonia, the matrix of chemical indices for the minerals and its inverse become
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Fermentation is an anaerobic process in which organic compounds act as electron donor
as well as electron acceptor. Usually several products are made rather than just one.
These products can be valuable substrates under aerobic conditions, but under anaerobic
conditions mass balances force organisms to leave them untouched. Cellulose is fermented
to products such as acetate, propionate, butyrate and valerate in cows [810], which micro-
organisms cannot use as substrates under anaerobic conditions (much to the benefit of the
cow!). Under anaerobic conditions we have the constraints that

(

µ−1
AO µ−1

DO µ−1
GO

)

= 0

The practical implementation of these constraints in non-linear regressions is via Lagrange
multipliers, which can be found in standard texts on calculus. An interesting consequence
of these constraints is that there are no free parameters for product formation if just one
product is made. Figure 4.8 illustrates that the deb model accurately describes the fermen-
tation process (biomass composition, substrate and product fluxes) with only 17/11 = 1.5
parameter per curve. The experimental data do not obey the mass balance for carbon
and oxygen in detail. Measurements of the volatile ethanol seem to be less reliable. The
mass balance-based model fit of Figure 4.8 suggests that the measured values represent
75% of the real ones when the measurement error is considered as a free parameter. The
saturation coefficient XK was poorly fixed by the data, and the chosen value should be
considered as an educated guess.

Yeasts appear to be relatively rich in proteins when they grow fast, but their maximum
growth rate is about half that of Klebsiella. Three products are made by the yeast: glycerol
(nHP1 = 8/3, nOP1 = 1), ethanol (nHP2 = 3, nOP2 = 0.5) and pyruvate (nHP3 = 4/3, nOP3 =
1). A negative parameter for product formation means that the product is consumed,
rather than produced, in the corresponding energy flux. So it is possible that compounds
are produced at a rate proportional to one energy flux and consumed at a rate proportional
to another energy flux. No theoretical problems occur as long as there is an overall net
production.

Note that the maintenance rate coefficient k̇M for Klebsiella at 35 ◦C is about ten times
that for Saccharomyces at 30 ◦C. The maintenance rate coefficient for fungi is usually found
to be much smaller in the literature [74], which Bulthuis [138] explained by the fact that
fungi make a lot of protein at high population growth rates, which costs a lot of energy. As
the maintenance rate coefficient is the ratio of maintenance to structure costs, its value for
fungi is low. Since protein density is coupled to the growth rate, however, the assumption
of homeostasis dictates that most protein must be conceived as part of the reserves, so the
costs of synthesis of structural biomass are not higher for this reason.

Figure 4.8 shows that biomass density hardly depends on the throughput rate. In prac-
tice, this also holds for most other compounds, except for the concentration of substrate.
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Figure 4.8: All these functions of population growth rate of Saccharomyces cerevisiae at
30 ◦C and a glucose concentration of 30 g l−1 in the feed have been fitted simultaneously [365].
The observation that the maximum throughput rate is 0.34 h−1 has also been used. Data from
Schatzmann [809]. The curves are based on expectations of the deb model, with parameters

k̇E = 0.461 h−1 g = 0.385 k̇M = 0.0030 h−1

yV E = 1.206 yXE = 10.28 XK = 1.79 g l−1

nHX1 = 1.70 nOX1 = 0.637 nNX1 = 0.071
nHE = 1.55 nOE = 0.572 nNE = 0.205

ethanol glycerol pyruvate
ζP1,A = 8.047 ζP2,A = 7.398 ζP3,A = 0.0313
ζP1,D = 3.019 ζP2,D = 2.711 ζP3,D = 0.0062
ζP1,G = 0.336 ζP2,G = 0.972 ζP3,G = −0.0365
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If changes in concentrations affect chemical potentials substantially, the chemical potential
for substrate will be the first point to check (although substrate is usually processed intra-
cellularly, rather than in the environment). The extremes of the substrate concentration

are found for throughput rate ḣ = 0, where X0 = XKgk̇M

k̇E−gk̇M
, and for throughput rate ḣ = ḣm,

where X0 = Xr if death is negligible. The chemical potential of a compound depends on
its concentration X as µ = µref + RT ln X/Xref, where R = 8.31441 JK−1mol−1 is the gas
constant. The maximum relative effect of differences in concentrations of substrate on the
chemical potential is

µX0,max − µX0,min

µX0,ref

=
RT

µX0,ref

ln

{

k̇E − gk̇M

gk̇M

Xr

XK

}

In the example of Figure 4.8, where the chemical potential of glucose is 2856 kJ mol−1 in
the combustion frame of reference, the maximum relative effect amounts to 0.00777, which
is negligibly small in view of many other uncertainties. Although the effect of changes
in concentrations should be tested in each practical application, in this section I will not
explicitly correct chemical potentials for differences in concentrations.

4.8 Water balance

The drinking rate equals the water flux, J̇HX = J̇H for aquatic animals, but terrestrial
animals have to deal with evaporation of water. The water balance implies that the sum
of the water fluxes by metabolism, evaporation and drinking amounts to zero. Embryos
usually do not drink and are ‘designed’ such that evaporation takes care of water out-
flux, although small changes in water content have been found. The water content of
tissues in birds gradually decreases during growth, which led Ricklefs and Webb [768]
and Konarzewski [503] to model juvenile growth on the basis of the water content of the
tissue. Here, we idealize the process by assuming strict homeostasis for both the structural
biomass and the reserves, while focusing on juveniles and adults. Note that water emission
via urine is incorporated in the composition of the nitrogenous waste, which could be large
enough to let the water outflux J̇H be negative and turn it into a water influx.

Evaporation has two main routes, one via water loss linked to respiration, J̇HO, and one
via transpiration, J̇HH . Water loss via respiration is proportional to oxygen consumption
via the amount of inhaled air, so J̇HO = J̇OyHO, while transpiration is proportional to
surface area, so J̇HH = {J̇HH}V 2/3

m l2, where {J̇HH} does not depend on the state of the
animal. Both loss rates depend on water pressure in the air, temperature, wind speed and
behavioural components. The deb model leads to a drinking rate of

J̇HX =
(

0 1 yHO 0
)

J̇M + {J̇HH}V 2/3
m l2 (4.34)

This two-parameter model for the drinking process is, of course, an idealized picture which
pushes the concept of homeostasis to the extreme. The water content of urine is actually
rather variable, depending on environmental and behavioural factors. However, the model
might be helpful as a first approximation to reveal the coupling that must exist between
drinking and energetics.
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Water plays an essential role in the transport of nutrients from the environment to
terrestrial plants, and in the translocation of their metabolites. Its quantitative role can
only be understood in a multi-variate setting, see next subsection.

4.8.1 Doubly labelled water

An ingenious method to measure the carbon dioxide flux indirectly is via the differential
loss of isotopes of (injected) doubly labelled water. The method overcomes the problem
that direct measurement of the carbon dioxide flux gives an instantaneous value only, and
its measurement affects (the behaviour of) the animal. The interest in carbon dioxide
fluxes stems from their relationship with energy fluxes, which is discussed on {155}. The
method is based on the assumptions that labelled oxygen of water is exchanged (rapidly)
with oxygen of carbon dioxide, and that the loss of deuterium reflects the loss of water. A
few additional simplifying assumptions are also useful to obtain a simple interpretation of
the results, such as labelled and unlabelled body water are completely mixed, and loss of
label other than via water and carbon dioxide loss, is negligible [558].

The total water flux equals J̇HL = J̇HX + yHN J̇N , where yHN denotes the moles of
water in the nitrogenous waste, per mole of nitrogenous waste. The amount of body water
equals MH = yHV MV + yHEME, so that the specific rate at which deuterium is lost equals
ḣH = J̇HL/MH . An estimate for MH can be obtained by back-extrapolation of the oxygen
label density at time zero, given a known amount of injected label. The specific loss rate of
deuterium, combined with the total amount of body water, leads to an estimate for total
water flux J̇HL. The specific loss rate of oxygen label equals ḣO = (J̇HL + 2J̇C)/MH , which
can be used to obtain J̇C , when J̇HL and MH are known.

4.8.2 Plant–water relationships

Terrestrial plants have intimate relationships with water, and total biomass production
is found to vary almost proportionally to the annual precipitation across the globe [665,
page 124]. Since plants cannot move, the local availability of water is the main factor
determining the distribution of plants species [1015]. Like all organisms they need water
for metabolic purposes, as autotrophs they need it as electron donor, but, above all, they
need it for transport [748]. From a geophysiological perspective, plants are structures that
pump water from the soil into the atmosphere. The evaporation of water from the leaves
generates a water flux from the roots to the shoot, which is used for internal transport and
for nutrient uptake from the soil. Factors that control evaporation include temperature,
relative humidity, wind speed, and water supply in the soil [801,853]. Plants can modify
evaporation by stomata in the leaves, but this regulation is limited by the need to acquire
carbon dioxide. Jones [455], Nobel [670] and Lambers et al. [542] give an excellent
discussion of quantitative aspects.

Suppose that the arrival rate of nutrients at the receptor in the root, J̇r, is proportional
to its concentration in the water, Xn, and the water flux per receptor. The water flux
is proportional to the shoot area where transpiration takes place, which controls nutrient
transport, and to the availability of water in the soil, XH . The proportionality factor
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includes the regulation of stomata opening by the plant, and atmospheric factors (tem-
perature, wind, humidity). The number of receptors is proportional to the surface area of
the root. The surface areas of roots and shoot are proportional to Ar =Mr(Vr)V

2/3
r and

As =Ms(Vs)V
2/3
s , respectively. The uptake rate of nutrient is proportional to the number

of receptors times k̇ρJ̇r

k̇+ρJ̇r
, where ρ is the binding probability, and k̇ the dissociation rate

between receptor and bounded nutrient. This leads to the uptake rate of nutrient

J̇N = {J̇NAm}Ar(1 + XKN/XN)−1, XKN ∝ (XHAs/Ar)
−1 (4.35)

The surface area of the shoot appears in the saturation ‘constant’ XKN , which is no longer
constant.

Nutrient uptake is arrested by lack of water transport in this formulation, because the
saturation constant becomes very large. This mechanism gives a direct coupling between
nutrient uptake and precipitation. In water-rich soils, the control of transport on nutrient
uptake might be less, and in subaquatic conditions even absent. This boils down to an
additive term X0, which relates to diffusive transport of the nutrient: XKN ∝ (X0 +
XHAs/Ar)

−1.

4.9 Energy balance

The dissipating heat is usually related to oxygen consumption, by a fixed conversion of 519
(±13) kJ(mol O2)−1 [40]. This choice is not fully satisfactory, because it lacks a mechanistic
underpinning, and because it is obviously not applicable to anaerobic conditions. The
correlation between dissipating heat and carbon dioxide production has been found to be
reduced by variations in the type of substrate [173]. Heijnen [389] related dissipating
heat to C-moles of formed biomass. This choice is problematic because of maintenance.
If substrate density is low enough, no new biomass will be produced but heat will still
dissipate.

The assumption that the free energy per C-mole of structural biomass and reserves
does not change implies a direct link between the dissipating heat and the free energies
of structural mass and reserve. This assumption has been made palatable in the section
on energy {35}, and is at the basis of a route to measure these free energies, as well as a
theoretical underpinning of the method of indirect calorimetry. We first need to study the
energy balance of the system ‘individual plus relevant compounds’.

4.9.1 Dissipating heat

The dissipating heat ṗT+ follows from the energy balance equation

0 = ṗT+ + µT
MJ̇M + µT

OJ̇O (4.36)

= ṗT+ + (µT
O − µT

Mn−1
MnO)ηOṗ (4.37)

where
µT

M ≡ ( µC µH µO µN ) and µT
O ≡ ( µX µV µE µP )
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are the chemical potentials of the various compounds. The gist of the argument is that
the energy that is allocated to reserves and structural biomass appear as parameter values,
while the energy that is fixed in these masses is given by the chemical potentials, the
differences appearing as dissipating heat, i.e. overhead costs.

The dissipating heat contributes to the thermal fluxes to and from the individual. The
individual loses heat via convection and radiation at a rate ṗTT = {π̇T}(Tb − Te)V

2/3 +
{π̇R}(T 4

b − T 4
e )V 2/3. Here Te denotes the absolute temperature in the environment, in-

cluding a relatively large sphere that encloses the individual. For radiation considera-
tions, the sphere and individual are assumed to have grey, opaque diffuse surfaces. Tb is
the absolute temperature of the body; V 2/3 is the body surface area; {π̇T} is the ther-
mal conductance and {π̇R} = ǫσ is the emissivity times the Stefan–Boltzmann constant
σ = 5.6710−8 J m−2 s−1 K−4; see for instance [532]. The body temperature does not change
if the energy invested in heating balances the heat loss, ṗT+ = ṗTT . This relationship can
be used to obtain the body temperature or the heating costs, given knowledge about the
other components. It specifies, for instance, how a temporary increase in activity reduces
heating costs, using complementary physiological information about activity efficiencies
[130,977,998].

Most animals, especially the aquatic ones, have a high thermal conductance, which gives
body temperatures only slightly above the environmental ones. Endotherms, however, heat
their body to a fixed target value, usually some Tb = 312 K, and have a thermal conductance
as small as {π̇T} = 5.43 J cm−2 h−1 K−1 in birds and 7.4–9.86 J cm−2 h−1 K−1 in mammals,
as calculated from [402]. The thermal conductance can be modified by environmental and
behaviour factors, see e.g. [712,713].

Most endotherms are terrestrial and lose heat also via evaporation of water at a rate
ṗTH , say. The relationship ṗT > ṗTH + ṗTT determines the lower boundary of the thermo–
neutral zone: the minimum environmental temperature at which no endothermic heating
is required. It also specifies the heating requirement at a given environmental temperature.
To see how, we first have to consider the water balance in more detail, to quantify the heat
ṗTH that goes into the evaporation of water. The individual loses water via respiration
at a rate proportional to the use of oxygen, i.e. J̇HO = yHOJ̇O, see [517,942], and via
transpiration, i.e. cutaneous losses. The latter route varies between 2% and 84% of the
total water loss in birds, despite the lack of sweat glands [200]. Water loss, J̇HH , via
transpiration is proportional to body surface area, to the difference in vapour pressure of
water in the skin and the ambient air, to the square root of the wind speed, and depends
on behavioural components. The heat loss by evaporation amounts to ṗTH = µTH(J̇H +
J̇HO + J̇HH), with µTH = 6 kJ mol−1. Within the thermo–neutral zone, endotherms control
their body temperature among others by evaporation, through panting or sweating, which
affects the water balance via enhanced drinking.
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4.9.2 Indirect calorimetry

Indirect calorimetry uses measurements of oxygen consumption, carbon dioxide and nitro-
gen production to estimate dissipating heat ṗT+

ṗT+ = µT
T J̇M with (4.38)

µT
T ≡

(

µTC µTH µTO µTN

)

(4.39)

Its basis is just empirical when applied to individuals, rather than pure compounds, and has
ancient roots, {3}. Examples are: µTC = 60 kJ mol−1, µTH = 0, µTO = −350 kJ mol−1 and
µTN = −590 kJ mol−1 in aquatic animals [108] that excrete ammonia as nitrogenous waste,
or −86 nCN

nNN
kJ mol−1 in birds [92]. For mammals, corrections for methane production have

been proposed [125]. The coefficients µT can be obtained by direct calorimetry, using
multiple regression. The mass fluxes prove to be a weighted sum of the three basic powers,
see {125}. Dissipating heat is again a weighted sum of the three powers and so of (three)
mass fluxes, which justifies the method of indirect calorimetry.

Now we can reverse the argument and wonder how measurements of heat dissipation
can be used to obtain the chemical potentials of the organic compounds. Substitution of
(4.3) and (4.38) into (4.36) results in

µT
O = (µT

T + µT
M)n−1

MnO (4.40)

The problem of how to obtain the relative abundances of the elements in the structural
biomass and in the reserves has been discussed on {134}.

The method of indirect calorimetry can easily be adjusted for under anaerobic con-
ditions, if a single product is excreted. The new regression coefficients µ′

T can be found
from the aerobic ones µT by equating the chemical potentials µO. This leads to µ′T

T =
(µT

T +µT
M)n−1

Mn′
M−µ′T

M, with n′
M the ‘mineral’ chemical indices with oxygen replaced by

product, and µ′
M the chemical potentials of the minerals, with oxygen replaced by prod-

uct. If the nitrogenous waste is ammonia (NH3) and the product is ethanol (CH3O0.5), the
chemical potentials are µ′T

M = (0 0 657 0) kJ Cmol−1 and µM = 0 in a combustion frame
of reference, and

n−1
Mn′

M =











1 0 1 0
0 1 1.5 0
0 0 −1.5 0
0 0 0 1











which leads for µT
T = (60 0 − 350 − 590) kJ mol−1 to µ′T

T = (60 0 − 72 − 590) kJ Cmol−1.

4.9.3 Thermodynamic constraints

Given the assumption of constant chemical potentials for the organic compounds, the
second law of thermodynamics implies that the processes of assimilation, dissipation and
growth are exothermic, i.e. we can decompose the dissipating heat into three positive
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contributions ṗT
T+ ≡ ( ṗTA ṗTD ṗTG ), with ṗT

T+1 = ṗT+, which follow from the balance
equations for these three processes

0T = ṗT
T+ + (µT

O − µT
Mn−1

MnO)ηO diag(ṗ) (4.41)

where diag(ṗ) is the diagonal matrix with the elements of ṗ on the diagonal. The sum of
the three equations (4.41) returns the overall balance equations (4.38), since diag(ṗ)1 = ṗ.
We see that the heat that dissipates in connection with a basic power is proportional to
that power, and that the three factors that multiply the basic powers in these three balance
equations should all be negative. This implies a constraint for each column of ηO. In a
combustion frame of reference, where µM = 0, these constraints translate to µT

OηO < 0T .

4.10 Summary

The basic deb model, as specified by the assumptions listed in Table 3.3 {121}, fully
determines the fluxes of organic compounds (food, faeces, reserves and structural mass);
those of mineral compounds (carbon dioxide, oxygen, water and nitrogenous waste) follow
from the conservation law for atoms. The model, therefore, specifies all mass fluxes. These
mass fluxes can all be written as weighted sums of three basic energy fluxes (powers):
assimilation, dissipation and growth. Dissipating heat can also be written as weighted
sums of the three basic powers, which means that dissipating heat is a also weighted
sum of three mineral fluxes (carbon dioxide, oxygen and nitrogenous waste). This is well
known in empiry, and used in the widely applied method of indirect calorimetry to obtain
dissipating heat from the three mineral fluxes; a theoretical explanation has not been given
before, as far as I know. Growth-related changes in biomass composition can be used to
obtain the composition of reserves and structure, as is illustrated by examples.

Respiration is one of two mineral fluxes, carbon dioxide or oxygen. The fluxes are
proportional to each other, given certain constraints on the composition of reserves, relative
to structural mass. Respiration that is not associated with assimilation is then proportional
to the catabolic rate. The theory also quantifies the respiration that is associated with
assimilation, known as the Specific Dynamic Action; its nature is still considered to be
enigmatic, but now explained in first principles.

Aging is thought to result as a byproduct of respiration via free radicals. The deb
theory specifies the quantitative aspects for multicellulars with differentiated cells on the
basis of the following supplementary assumptions

1 oxygen causes net dna damage with a certain efficiency

2 damaged dna produces ‘wrong’ proteins at constant rate, which cumulate in
the body

3 the hazard rate is proportional to the density of ‘wrong’ proteins
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This results in a module for aging with just a single parameter: the aging acceleration.
Unicellulars do not age gradually, but instantaneously; the parameter is the aging rate.
The deb model specifies the ontogeny of respiration, and so of aging, and how it depends
on feeding and other energetic aspects. The efficiency with which oxygen causes net dna
damage seems to increase with age in endotherms, but is constant in ectotherms. Mutagenic
compounds, such as nitrite, have effects very similar to those of free radicals, and accelerate
aging.

Similar to other mineral fluxes, nitrogenous waste not only originates from assimilation
directly, but also from maintenance (dissipation) and growth. Although this might not
seem surprising, it differs from its treatment in Static Energy Budgets, see {365}, and
turns out to be most useful in the analysis of trophic interactions, {304}.

Products can be included in just one single way, without changing the assumptions of
Table 3.3; they, too, must be weighted sums of the three basic energy fluxes, the three
weight coefficients per product are free parameters. In this way, products are included in
the overhead costs of the three powers. Consequently, fermentation gives three constraints,
which fully determine the three weight coefficients of a single product, or partly determine
those of more products.

The drinking of water by terrestrial organisms and plants, to balance the metabolic
turnover of water, can be quantified on the basis of two supplementary assumptions about
water loss

1 water evaporates in proportion to the surface area at a rate that depends on
environmental conditions (temperature, humidity, wind speed)

2 water evaporates in proportion to respiration

These assumptions apply to animals as well as plants. Drinking by plants has complex
interactions with nutrient uptake and is shown to affect the saturation constant. The water
balance has intimate relationships with the thermal balance, and so with the energetics of
endotherms. These routes have been explored briefly.
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Chapter 5

Multivariate DEB models

As long as all required nutrients and energy are available to the organism in fixed relative
amounts, it can buffer temporal variations in abundance using a single reserve. This situ-
ation is approximated in organisms that eat other organisms, as discussed in the previous
chapters. If energy and various nutrients are taken up independently, however, several
reserves are required to buffer variations in abundance. The surface layers of seas are poor
in nutrients and rich in light, while the reverse holds for the bottom of the photozone.
Algal cells, which commute between these two environments on the wind-induced currents,
can barely grow and survive, unless they use intracellular energy and nutrient reserves.

The purpose of this chapter is to show how the deb theory can be extended to in-
clude several substrates, reserves and structural masses, in a way that reduces to the
one-reserve, one-structure case if just one nutrient (or light) is limiting, or if nutrient abun-
dances covary, and the reserve turnover times are identical. The concept of the Synthesizing
Unit, cf. {41} will be used to show that a nutrient becomes almost non-limiting as soon as
its availability exceeds that of the limiting nutrient, only by a small amount, relative to its
needs. Simultaneous limitations of growth by nutrients and light only occur incidentally,
and usually during a short period. This is why the simple one-reserve deb theory can be
applied so widely.

A notational problem that is inherent to fluxes of compounds is their sign. If a com-
pound is disappearing, the sign is negative, if it is appearing it is positive, but detailed
specification of the process is required. Fluxes are denoted by the symbol J̇ ; the first
index specifies the compound, the second index specifies the process if required. If only
the compound is indicated, the flux is always taken to be positive.

Each reserve requires specifications of its assimilation process and of its contribution to
maintenance costs. Together with a single structural mass, and so a single growth process,
2n+1 powers have to be specified to delineate n reserves. Each of these powers contributes
to the dissipation of heat; the fixed weight coefficients directly follow from the conservation
law for energy. Product formation is directly associated with these powers, and generally
requires 2n + 1 coupling parameters per product for quantification. Fluxes of non-limiting
nutrients are also directly associated with the powers, and the 2n + 1 coupling parameters
follow from the conservation law for mass.

To structure the model appropriately, fast processes are separated from slow ones,
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and many transport processes are only included implicitly at the whole-individual level.
Transport of metabolites through phloem in plants, for instance, shares important system
properties with blood in animals: a small capacity is combined with a high turnover, which
means that material in phloem should not play an explicit role at the whole-individual level.
The transformation from nutrients and light to reserves is taken as a single step, while in
fact many intermediary metabolites are formed.

5.1 Several substrates

As is widely recognized, two different substrates can be classified as substitutable or sup-
plementary. This classification is straightforward in idealized modelling contexts, where
one or more substrates are taken up from the environment and transformed into a reserve
in a process called assimilation. Substrates and reserves are again taken to be generalized
compounds, i.e. mixtures of chemical compounds that do not change in composition, and
which can be quantified in terms of C-moles or moles. Pure chemical compounds represent
a special case of generalized compounds. Two substrates are substitutable if each com-
pound can be chemically converted into that reserve, while they are supplementary if both
substrates are required simultaneously, at a fixed stoichiometry.

5.1.1 Substitutable substrates

Two substitutable substrates can compete for access to the same carrier, or they can use
different carriers. (The term ‘carrier’ actually stands for the whole assimilation machinery,
not just for the protein in the outer membrane.) This results in different uptake rates,
which will be briefly discussed.

Sequential processing

Suppose that two substrates can be used as a source for the synthesis of reserves, and
that substrate 1 arrives at rate J̇1 at a suitable carrier. Each molecule binds with fixed
probability ρ1 if the carrier is in the binding phase, and no binding occurs if the carrier is
in the production phase. Substrate 2 arrives at a rate J̇2 and is bound with probability
ρ2. The carrier switches from the binding phase to the production phase after a successful
binding of either substrate molecule, and switches back to the binding phase at rate k̇1 or
k̇2, so k̇−1

1 stands for the mean handling time of a substrate 1 molecule. The dynamics of
the number of carriers in the binding phase, N0, reads

d

dt
N0 = (N −N0)k̇X −N0

(

ρ1J̇1 + ρ2J̇2

)

(5.1)

where N = nMV stands for the total number of carriers, which is here taken to be propor-
tional to structural mass MV , as is appropriate for V1-morphs. The production phase lasts
a period k̇−1

1 for substrate 1, and k̇−1
2 for substrate 2, so the mean transition rate from the

production to the binding phase is k̇X = (θ1k̇
−1
1 + (1 − θ1)k̇−1

2 )−1, with weight coefficient

θ1 =
(

1 + ρ2J̇2

ρ1J̇1

)−1
.
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In steady state d
dt

N0 = 0, the specific substrate assimilation rate jX = J̇X/MV amounts
to

jX = n
(

k̇−1
X +

(

ρ1J̇1 + ρ2J̇2

)−1
)−1

(5.2)

Diffusion-based transport processes in the medium result in arrival rates J̇1 and J̇2 which
are proportional to the concentrations X1 and X2 in the environment, with proportionality
factors ḃ1 and ḃ2, say; the mechanism is based on the law of mass action. I introduce
the saturation constants XK ∗ = k̇∗(ρ∗ḃ∗)

−1, with ∗ ∈ {1, 2}, the scaled concentrations
x∗ = X∗/XK ∗, and the maximum specific uptake rates j∗m = nk̇∗. The specific substrate
assimilation rate (5.2) can now be written as

jX =
(

j−1
Xm + (x1j1m + x2j2m)−1

)−1
(5.3)

where the maximum specific assimilation rate is given by jXm = θ1j1m + θ2j2m with weight

coefficient θ1 =
(

1 + x2

x1

j2m

j1m

)−1
and θ1 + θ2 = 1. The latter weight coefficient varies with

varying concentrations of substrates 1 and/or 2. The uptake of substrate has four com-
pound parameters; the maximum specific uptake rate relates to the number of carriers and
handling time, and the saturation constant relates to handling time, diffusion rate and
binding probability. The uptake of substrate can be decomposed into contributions from
substrates 1 and 2

jX = j1 + j2; j1 = θ1jX ; j2 = θ2jX (5.4)

In the special case of equal handling times for both substrates, k̇1 = k̇2 = k̇X , or
j1m = j2m = jXm, the specific assimilation rate (5.3) reduces to

jX = jXm

(

1 + (x1 + x2)−1
)−1

= jXmf

which has three compound parameters.

Feeding on prey

The decomposition of biomass into a structural component and a reserve component implies
that a predator feeds on a mixture of two compounds, rather than just a single one, even if
it specializes on a single species of prey. The significance of the contribution of prey reserves
to predator nutrition is obvious in the example of waterfleas feeding on algae. Most of the
organic carbon of algae consists of cellulose in the cell wall, and of chlorophyll. However,
the waterflea cannot digest both compounds of the structural biomass, and mainly feeds on
starch and lipids. The quantitative aspects of feeding on prey differs from the general case
of sequentially processed substitutable substrates by the tight coupling of the abundances
structural mass and reserves. The reserves of the prey can be treated as a kind of nutritional
quality of prey biomass.

Suppose that the prey’s reserves do not extend the predator’s handling time. If the
prey does not have an energy buffer allocated to its reproduction, the assimilation power
of the predator amounts to ṗA = (µAV + µAEm◦

E)J̇X , where µAV stands for the conversion
of prey structural mass into predator assimilative power, µAE for the conversion of prey
reserves into predator assimilative power, m◦

E = M◦
E/M◦

V = e◦m◦
Em for the ratio of the
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reserve to the structural mass of the prey, and the feeding rate J̇X for the molar flux of
prey structural biomass. Parameters and variables that relate to the prey are indicated
with ◦ to distinguish them from those of the predator.

Let µAX = µAV + µAEm◦
Em denote the conversion of well-fed prey biomass into as-

similation power, and κA =
(

1 + 1
m◦

Em

µAV

µAE

)−1

=
(

1 + κ◦g◦ µ◦
E

µ◦
GV

µAV

µAE

)−1

the fraction of

the assimilative power of the predator that originates from the digestion of prey re-
serves, when feeding on well-fed prey. The assimilative power can then be represented as
ṗA = (1− κA + κAe◦)µAX J̇X , so that the maximum assimilative power is ṗAm = µAX J̇Xm,
where J̇Xm denotes the maximum ingestion rate in terms of structural biomass. This can
be summarized as ṗA = (1 − κA + κAe◦)fṗAm, since J̇X = fJ̇Xm. The dynamics of the
scaled reserve density of a V1-morph predator becomes

d

dt
e = k̇E(f − κAf + κAe◦f − e) (5.5)

Energy extracted from reserves through digestion cannot exceed the energy invested
in reserves, µAE < µ◦

E, and energy extracted from structural biomass through digestion
cannot exceed energy contained in this mass, which itself cannot exceed energy invested
in the synthesis of this mass, µAV < µ◦

V < µ◦
GV . Therefore µAX < µ◦

GV (1 + 1
κ◦g◦

), and κA

is probably, but not necessarily, larger than (1 + κ◦g◦)−1.
If the prey has a reproduction buffer, it is possible that the assimilative power exceeds

ṗAm, in this scaling, which indicates that the scaled reserve density of the predator can
exceed 1, in principle. The quantitative description of feeding on prey can be further
detailed by accounting for the selection of prey by the predator, based on the structural
biomass and reserves of the prey, and/or by allowing the handling time to depend on
these state variables. In this way, the saturation constant becomes dependent on the state
variables of the prey as well. Although this might be realistic in particular applications,
these mechanisms are not worked out here.

Parallel processing

The situation for bacteria that feed on glucose and fructose, for instance, is different because
the carriers for glucose in the outer membrane of the bacterial cell cannot handle fructose.
These substrates, therefore, do not compete for access to the same carriers, and their
transformation into reserves is, to some extent, independent. The uptake of substrates
amounts to

jX = j1 + j2; j1 = j1m(1 + x−1
1 )−1; j2 = j2m(1 + x−1

2 )−1 (5.6)

Data on the aerobic production of the yeasts Saccharomyces cerevisiae and Kluyveromyces
fragilis strongly suggest the existence of two different uptake routes for glucose [365], see
Figure 5.1. A low-affinity high-capacity carrier is active under anaerobic and aerobic con-
ditions, and ethanol and acetaldehyde are produced in association with this assimilation
process. A high-affinity low-capacity carrier is active under aerobic conditions only, and no
products are produced in association with this assimilation process. Some strains, however,
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Figure 5.1: Aerobic growth and production of the yeast Saccharomyces cerevisiae at 30 ◦C in
a chemostat. Data from Postma et al. [731,732] and Verduyn [943]. The data fits, modified
from Hanegraaf [365], assume two assimilation processes for glucose, and product formation
coupled to one assimilation process, which reduces the energy gain from glucose for metabolism
by a factor κA = 0.187 (sd 0.026). The glucose concentration in the feed is 83.3 mM; the
maximum throughput rate is ḣm = 0.5 h−1; a measurement error on acetaldehyde is estimated
to be 0.7 [365]. The composition of structure and reserves have been set at nHV = 1.75,
nOV = 0.61, nNV = 0.14, nHE = 1.7, nOE = 0.62, nNE = 0.23. Parameters: jXm1 = 2.16
(sd 0.15) mM/M h, jXm2 = 81 (sd 13) mM/M h, XK1 = 0.1 mM, XK2 = 40 mM, k̇E = 0.54
(sd 0.009) h−1, k̇M = 0.003 h−1, g = 0.050 (sd 0.009), ζP1A2 = 55 (sd 8.9), ζP2A2 = 43 (sd
8.9), ζP3A2 = 2.35 (sd 0.8), ζP4A2 = 2.47 (sd 1.32), ζP5A2 = 0.34 (sd 1.02), yEX = 0.51 (sd

0.035), yEV = 0.78 (sd 0.10). The curves follow from ḣ = ek̇E−gk̇M
e+g ; e = jXm1f1+κAjXm2f2

jXm1+κAjXm2
;

κA =
µA2X

µA1X
; W = (wV + ewEyEV /g) ḣ(Xr−X)

jXm1f1+jXm2f2
; fi = X

X+XKi
; XPi =

ζPiA2
k̇Ef2(Xr−X)

jXm1f1+jXm2f2
; jC =

jXm1f1(1− yEX) + jXm2f2(1− κAyEX) + k̇MyEV + ḣ(yEV − 1)− k̇Ef2nC ; jO = jXm1f1(yEXn−
1)+ jXm2f2(κAyEXn−1)+ k̇Ef2(nC +nH/4−nO/2)− k̇MyEV n+ ḣ(1−nNV /2−nOV /2−nyEV );
nC =

∑

i ζPiA2 ; nH =
∑

i nHPiζPiA2 ; nO =
∑

nOPiζPiA2 ; n = 1 + 1
4nHE − 1

2nOE − 3
4nNE .
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produce glycerol in association with the latter assimilation. When the process of glucose
uptake and product formation is studied for increasing chemostat throughput rates under
aerobic conditions, the quantitative dominance of the two carriers switches at a throughput
rate of 0.2 h−1, but no metabolic switches are required to capture this behaviour.

5.1.2 Supplementary substrates

When two substrates are supplementary, Synthesizing Units specify how the production
rate depends on the substrate availabilities, as quantified in (2.15).

5.1.3 Photosynthesis sensu lato

The very extensive research on photosynthesis is usually geared to details around electron
acquisition and carbon fixation. Here I also include polymer synthesis as an endpoint of
the assimilation process, and assume pseudo-equilibria for the many intermediary steps.
The aim is to quantify the kinetics of two transformations

CO2 + H2O + light→ CH2O + O2

{

2 H2O + 4hν → O2 + 4 H+ + 4 e−

CO2 + 4 H+ + 4 e− → CH2O + H2O

yCH ,ECH2O + yNO,ENO3 → CHnHEOnOENnNE + yC,ECO2 + yH,EH2O + yO,EO2 + yNH ,ENH3

Straightforward stoichiometry shows that

yC,E = yCH ,E − 1; yO,E = −yCH ,E + yNO,E 9/4− nOE/2− nNE 3/4 + nHE/4 + 1

yH,E = yCH ,E − nHE/2− yNO,E 3/2 + nNE 3/2; yNH ,E = yNO,E − nNE

Some of these coefficients might be negative. The nitrogen source, here nitrate, can be
replaced by others, of course. The carbohydrate CH2O has the role of carbon as well as
energy source for the synthesis of reserves E. This requires the implementation of a yield
coefficient yCH ,E > 1 in the second transformation, which does not depend on light directly.

The uptake of light, carbon dioxide and nitrate is quantified via their contribution in
two types of reserves: carbohydrates EC (polysaccharides and/ or lipids) and a generalized
compound, E, which also contains nitrogen. These three supplementary ‘nutrients’ are
processed in parallel, which means that an increase in the abundance of one nutrient
can increase the assimilation of other. Notice that this still involves just the assimilation
process. The processes of maintenance and growth run simultaneously, and contribute to
the exchange of minerals between organism and environment.

Figure 5.2 gives a simplified schedule for the photosynthetic process sensu lato. The
photopigment system of cyanobacteria, photoautotrophic protoctists and plants consists
of two Photo Systems (PSs). When a photon is captured by the antenna and transferred
to an unexcited PS II, it switches to the excited state, transfers an electron from water to
PS I, and switches back to the unexcited state. PS I can likewise accept a photon from its
antenna, and also accepts an electron from PS II, which allows it to pass an electron via
nadph to the carbon-fixation cycle (Calvin–Benson cycle). The enzyme Rubisco partakes
in this cycle, and accepts the electron and a carbon dioxide molecule from its carrier, and
reduces the latter to carbohydrate. Part of the carbohydrate is stored as such or excreted,
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Figure 5.2: Diagram of the simpli-
fied autotrophic assimilation, where
light L, carbon dioxide C and am-
monia N are converted into carbo-
hydrates EC and (general) reserves
E by Synthesizing Units (circles, see
text). Photorespiration modifies the
synthesis of carbohydrates. Alter-
native nitrogen sources can be in-
troduced.
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part is delivered to the synthesis machinery. The latter machinery also accepts ammonia
from its carrier to synthesize reserves. All units behave as Synthesizing Units (SUs) {43}:
PS II, the C-carrier and the N -carrier represent 1-SUs, and PS I, the Calvin–Benson cycle
and the synthesizing machinery represent 1,1-SUs.

Pigment systems

For (negative) photon flux jL,F and large values for the flux ratios zL1 and zL2 , assimilated
light quantifies as

jL2,A = jL2,Am

(

1 +
jL2,FK

−jL,F

)−1

≃ −zL2jL,F with zL2 =
jL2,Am

jL2,FK

(5.7)

jL,A = jL1,Am



1 +
jL1,FK

−jL,F

+
jL2,AK

jL2,A

−
(

−jL,F

jL1,FK

+
jL2,A

jL2,AK

)−1




−1

≃ jL1,Am

(

1 +
jL1,AK

−jL,F

)−1

with jL1,AK = jL1,FK +
jL2,AK

zL2

−
(

j−1
L1,FK +

zL2

jL2,AK

)−1

jL,A ≃ −zL1jL,F with zL1 = jL1,Am/jL1,AK (5.8)

where jLi,FK and jLi,AK are specific half saturation fluxes, i.e. parameters that are associ-
ated with the behaviour of SUs, and jLi,Am are the maximum specific assimilation rates for
photons for pigment system i = 1, 2. Although the electron input to the carbon-fixation
cycle is (approximately) proportional to the light intensity, this does not mean that there
is no upper limit to the light intensity that can be used, because the electrons experience
increasing resistance to their use in the process of carbon-fixation. Electrons that are not
used in carbon fixation or photorespiration ‘leak’ away via the Mehler reaction [721], also
known as pseudocyclic electron transport, which involves oxygen uptake, and oxygen pro-
duction of equal size [267]. The interception of light barely depends on temperature, while
other metabolic processes do, which explains the need to handle spoiled electrons.

Green, purple and heliobacteria photosynthesize under anaerobic conditions, using bac-
teriochlorophylls and a single pigment system (PSII in purple and green non-sulfur bacteria,
and PSI in green sulfur bacteria and heliobacteria). They must have an equivalent of the
Mehler reaction to get rid of the excess electrons.
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Carbon fixation

The output from the carbon-fixation cycle can be derived according to a similar reasoning
as applied for electron production. For xC = XC/XKC we have with substitution of (5.8)

jC,A = jC,Am(1 + x−1
C )−1 = jC,AmfC (5.9)

jCH ,A = jCH ,Am(1 + z−1
C )



1 +
jC,AK

jC,A

+
jL,AK

jL,A

−
(

jC,A

jC,AK

+
jL,A

jL,AK

)−1




−1

jCH ,A =
jCH ,Am(1 + z−1

C )

1 + z−1
C f−1

C +
jL,FK

−jL,F
−
(

zCfC +
−jL,F

jL,FK

)−1 = jCH ,AmfCH
(5.10)

with zC = jC,Am/jC,AK , jL,FK = jL,AKz−1
L1

, jC,AK the specific half saturation flux for carbon
dioxide, jC,Am the maximum specific carbon dioxide assimilation rate, jCH ,Am the maximum
specific carbohydrate assimilation rate.

Photorespiration

Rubisco is the most abundant enzyme on Earth, it constitutes 5–50% of the soluble protein
in algal cells [267], and is involved in the fixation of carbon dioxide. Rubisco can operate
in two modes on the substrate ribulose-1,5-biphosphate (RuP2)

Carboxylase activity: RuP2 + CO2 +H2O → 2[3P-glycerate]

Oxygenase activity: RuP2 + O2 → 1[3P-glycerate]+ 1[2P-glycolate]

The second reaction is known as photorespiration. The net effect is that the binding of CO2

or O2 leads to the synthesis or degradation of carbohydrates. The binding is competitive,
with widely varying relative strength among algal classes. The counterproductive effects
of oxygen might be a historic accident, since Rubisco evolved in a period which was essen-
tially free of oxygen [751]. C4 plants, which bind carbon dioxide to an organic compound
with four C-atoms in a micro-environment that is poor in oxygen, avoid photorespiration
almost completely. They do not use Rubisco, but phosphoenolpyruvate (PEP) carboxy-
lase for the binding of CO2. Different species in the same genus can have C3 and C4

metabolism, and orache Atriplex prostrata, for instance, has both C3 and C4 metabolism.
The oxygen use that is associated with primary carboxylation only occurs in light, and is
called photorespiration. This can be modelled as follows.

Let θ = θ.., θ.O, θ.C , θL., θLO, θLC denote the fractions of the photosynthetic system
(RuP2 plus PSs) that is in complex with nothing, oxygen, carbon, photon, photon and
oxygen, or photon and carbon, respectively. The changes in the fractions are given by

d
dt

θ.. = k̇OθLO + k̇CθLC − (j′L + j′O + j′C)θ..
d
dt

θ.O = j′Oθ.. − j′Lθ.O
d
dt

θ.C = j′Cθ.. − j′Lθ.C

d
dt

θL. = j′Lθ.. − (j′O + j′C)θL.
d
dt

θLO = j′Lθ.O + j′OθL. − k̇OθLO
d
dt

θLC = j′Lθ.C + j′CθL. − k̇CθLC

where j′∗ = ρ∗yCH∗j∗ denotes the arrival flux j∗ times the binding probability ρ∗, and the
coefficient yCH∗ couples ∗ to CH ; k̇O and k̇C stand for the dissociation rates of oxygenase
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and carboxylase products. The net flux of carbohydrate is found by equating the changes
in fractions to zero and solving for θ. The result is

jCH ,A = θLC k̇C − θLOk̇O =
j′C − j′O

1 +
j′C
k̇C

+
j′O
k̇O

+
j′C+j′O

j′L
− j′C+j′O

j′L+j′C+j′O

(5.11)

For j′O = 0 this reduces to jCH ,A =
(

k̇−1
C + j′L

−1 + j′C
−1 − (j′L + j′C)−1

)−1
, which is identical

to (5.10). At the compensation point j′O = j′C , no net synthesis of carbohydrate occurs.

Nitrogen incorporation

The incorporation of ammonia into carbohydrates finally results in the flux of reserves for
xN = XN/XKN

jN,A = jN,Am(1 + x−1
N )−1 = jN,AmfN (5.12)

jE,A =
jE,Am

(

1 + z−1
N + z−1

CH
− (zN + zCH

)−1
)

1 +
jN,AK

jN,A
+

jCH,AK

jCH,A
−
(

jN,A

jN,AK
+

jCH,A

jCH,AK

)−1

jE,A =
jE,Am

(

1 + z−1
N + z−1

CH
− (zN + zCH

)−1
)

1 + z−1
N f−1

N + z−1
CH

f−1
CH
− (zNfN + zCH

fCH
)−1 (5.13)

with zN = jN,Am/jN,AK and zCH
= jCH ,Am/jCH ,AK . This relationship gives the production

of reserves E as a function of the three ‘nutrients’ light, carbon dioxide and ammonia. The
production of carbohydrates EC now amounts to jEC ,A = jCH ,A − jE,A.

5.1.4 Calcification

Bicarbonate is by far the dominant form of inorganic carbon in
seawater. At the typical pH of about 8.3, 98% of the inorganic car-
bon is in this form. Few organisms can use this source, one prob-
lem is to deal with the electrical charge. Coccolithophorans, such
as Emiliania huxleyi (right), mastered this art, by using calcium
in the transformation Ca2+ + 2 HCO−

3 → Ca CO3 + CO2 + H2O,
where the calcium carbonate is exported by the Golgi apparatus
in the form of beautifully shaped extra-cellular coccoliths, and
the carbon dioxide is used as carbon substrate for the synthesis
of carbohydrates and lipids (for which they obviously need water and light as well). The
coccoliths accumulate in a polysaccharide layer, and are shedded at cell death. Emiliania
is so abundant that the coccoliths can easily be seen on satellite images in huge areas in the
northern Atlantic and Pacific Ocean where they bloom regularly. A substantial fraction of
carbonates in rocks originates from coccoliths, and coccolithophorans may play a key role
in the carbon metabolism of the Earth [986].

Since carbon dioxide is relatively rare, and the transformation of carbonate and bi-
carbonate to carbon dioxide is slow, and the water that envelopes the cell is stagnant,
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see {235}, cells in the sea can become limited by carbon under otherwise optimal growth
conditions [1013]. This points to the gain of using bicarbonate as an additional carbon
source, with an inherent gradient in the CO2/HCO−

3 ratio in the diffusive boundary layer
[1014]. The process of calcification can be modelled in the context of the deb theory by
treating carbon dioxide and bicarbonate as substitutable substrates, with light as a sup-
plementary ‘substrate’, for the synthesis of lipids as reserve, while calcium carbonate is
formed as a product in this assimilation process. This implementation ties calcification to
photosynthesis.

As long as calcium is not rate limiting, and the environment is homogeneous, the
carbohydrate production amounts to

jCH
=
(

k̇−1
C + (j′C + j′C−)−1 + j′L

−1 −
(

j′C + j′C− + j′L
)−1

)−1

where j′C = ρCjC and j′C− = ρC−jC−/2 are the effective arrival rates of carbon dioxide
and bicarbonate; and the factor 0.5 in j′C− relates to the stoichiometry of the calcification
process. The calcification rate now becomes

jCa =
jCH

j′C−

j′C + j′C−

Calcification is also reported to occur in the dark, to some extent. This might relate to
heterotrophic activity to acquire the energy for carbon fixation.

5.2 Several reserves

The number of reserves can be chosen independently of the number of nutrients, as a
compromise between simplicity and realism. The case of two reserves and two nutrients
serves as an example, see Figure 5.3; the model extends to more reserves and possibly
limiting nutrients without causing additional problems, on the basis of the SU kinetics
specified in (2.15).

The general idea is to apply the rules for SUs to quantify the transformation of nutrients
to each reserve, and of reserves to structural mass. This takes n + 1 SUs in the case of
n reserves. The rejected substrate fluxes do not pose any problem in the case of the
assimilation SUs, because they are fed back into the environment. In the case of the
growth SU, however, we have to specify their fate in more detail. This is why I start with
the specification of growth, given the reserve densities, and then consider reserve dynamics.

5.2.1 Growth

Just like the mono-variate case, both reserve densities mEi, i = 1, 2, follow first-order
kinetics, which means that for a reserve mass MEi, the catabolic flux, which is mobilized
from the reserve, equals

J̇Ei,C = MEi(k̇Ei −
d

dt
ln MV ) = MEi(k̇Ei − J̇V,G/MV ) = MEi(k̇Ei − jV,G) (5.14)
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where k̇Ei denotes the rate constant of the first-order process, and jV,G = ṙ the specific
growth rate. (The first index relates to the compound, the second one to the process.)
The second term in (5.14) relates to the dilution by growth, and the specific growth rate
of structural mass equals the population growth for V1-morphs.

The maintenance costs J̇Ei,M are taken to be proportional to structural mass MV ,
quantified in C-moles, so J̇Ei,M = jEi,MMV , and specific maintenance requirement jEi,M

for reserve i is taken to be constant. This means reserve i sends a flux J̇Ei,G = J̇Ei,C− J̇Ei,M

to the SU for growth of structural biomass, which is assumed to be fast (i.e. its J̇V m is
large) and has high affinities for the reserve ‘molecules’ (i.e. ρi = 1). This does not imply,
however, that the maximum growth is fast, because the dilution by growth restricts the
input flux to the SU, while a maximum in the reserve density also restricts the flux to the
SU. The latter results from a specification of the assimilation process.

The growth-SU merges the catabolic fluxes from the reserves stoichiometrically to pro-
duce structural mass, but stoichiometric constraints imply that the growth SU rejects some
of the arriving reserve ‘molecules’. The growth rate is found from (2.15) to be

J̇V,G =
d

dt
MV =





∑

i

(

J̇Ei,G

yEi,V

)−1

−
(

∑

i

J̇Ei,G

yEi,V

)−1




−1

ṙ =
J̇V,G

MV
=





∑

i

(

mEi(k̇Ei − ṙ)− jEi,M

yEi,V

)−1

−
(

∑

i

mEi(k̇Ei − ṙ)− jEi,M

yEi,V

)−1




−1

(5.15)

for reserve density mEi = MEi/MV and yield coefficient yEi,V , which quantifies the number
of C-moles of reserve i needed to synthesize a C-mole of structure. This equation can be
transformed into a cubic polynomial in J̇V,G, which can easily be solved as a function of the
state of the cell {ME1,ME2,MV }. Note that specification of the details of the assimilation
processes and the fate of the rejected reserve fluxes is required to relate the extracellular
nutrient levels to reserve densities.

Figure 5.4 illustrates that the combination of first-order kinetics of reserves and a fast
SU for growth is realistic. Note that cell content on phosphorus and vitamin B12 have
been measured, rather than reserves. In view of the very small values, the reserves hardly
contribute to total biomass, which can then be conceived as structural biomass. The
overhead costs in the synthesis of structural mass and the maintenance costs for these
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Figure 5.4: The specific growth rate ṙ of the Haptophyte Pavlova lutheri as a function of the
intracellular reserves of phosphorus (reserve 1) and vitamin B12 (reserve 2) at 20 ◦C (left), and
the relationship between the observed growth rate and the calculated one (right). Data from
Droop [235]. The parameters are given in Figure 5.5.

nutrients have been neglected.

5.2.2 Reserve dynamics

The growth-SU rejects the reserve fluxes at rates

J̇Ei,R = J̇Ei,C − J̇Ei,M − yEi,V J̇V,G

= MV

(

(k̇Ei − ṙ)mEi − jEi,M − yEi,V ṙ
)

(5.16)

Each rejected reserve ‘molecule’ is excreted with probability (1 − κEi) in one form or
another, and fed back to the reserves with probability κEi, so the balance equation for
reserves MEi or reserve densities mEi = MEi/MV becomes

d

dt
MEi = J̇Ei,A − J̇Ei,C + κEiJ̇Ei,R

= J̇Ei,A − (1− κEi)(k̇Ei − ṙ)MEi − κEi(jEi,M + yEi,V ṙ)MV (5.17)

d

dt
mEi = jEi,A − (1− κEi)(k̇Ei − ṙ)mEi − κEi(jEi,M + yEi,V ṙ)− ṙmEi (5.18)

If SUs behave according to (2.15) when taking up nutrients from the environment and
synthesizing reserves, the assimilation rate of reserve i, i = 1, 2, amounts to

J̇Ei,A = jEi,AMV = jEi,AmMV





1 +
∑

j

x−1
ji −





∑

j

xji





−1






−1

(5.19)

where the scaled nutrient concentration xji = Xj/XKji represents the ratio of the nutrient
concentration Xj to the saturation constant XKji, which combines the affinity of substrate
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j to SU i relative to the maximum assimilation rate J̇Ei,Am, and the stoichiometric require-
ment of product i for substrate j. If nutrient j is not required for the synthesis of reserve i,
we take XKji to be infinitesimally small, which makes xji very large, and (5.19) reduces to
a simple Michaelis–Menten kinetics. The uptake rate of substrate j by assimilation SU i is
yj,EiJ̇Ei,A. The saturation constants are independent of the cell size, while the maximum
assimilation rates are proportional to the structural biomass MV , so J̇Ei,Am = jEi,AmMV .

In steady state, i.e. Xj is constant for long enough, we have d
dt

MEi = ṙMEi, so (5.17)
implies

jEi,A = ṙmEi + (1− κEi)(k̇Ei − ṙ)mEi + κEi(jEi,M + yEi,V ṙ) (5.20)

which, in combination with (5.15), gives mE1, mE2 and ṙ as functions of the substrate
concentrations x1 and x2. If κEi = 1, so all reserve i molecules that are rejected by the
growth SU are fed back to the reserves, non-limiting reserves would accumulate without
bound.

5.2.3 Simultaneous nutrient limitation

Data from an experiment with the chemostat in steady state are used to test the simulta-
neous limitation model for realism. The balance equation for the nutrients in the medium
of a chemostat with throughput rate ḣ are

d

dt
Xj = (Xrj −Xj)ḣ−

∑

i

yj,EiJ̇Ei,A (5.21)

d

dt
X∗

j =
∑

i

(1− κEi)yj,EiJ̇Ei,R +
∑

i

yj,EiJ̇Ei,M −X∗
j ḣ (5.22)

where Xj is the concentration of nutrient j, X∗
j the nutrient content of excretions due

to reserves that are mobilized but rejected by the growth SU and not fed back to the
reserves, and (the second term) nutrients involved in maintenance losses. Xrj denotes the
concentration of substrate j in the feed. The summation is over all reserves i. I suppose
that the excreted nutrients are metabolically changed such that they cannot be reused
immediately.

At steady state, the substrate concentrations Xj in the chemostat do not change, so
d
dt

Xj = 0, j = 1, 2, and

(Xrj −Xj)ḣ = MV

∑

i

yj,EijEi,A (5.23)

X∗
j ḣ = MV

∑

i

yj,Ei

(

(1− κEi)
(

k̇EimEi − (mEi + yEi,V )ṙ
)

+ κEi
jEi,M

)

(5.24)

The biomass density in the chemostat follows from the fact that the specific growth rate
ṙ = ḣ is known. The equations (5.15), (5.19), (5.20) and (5.23) together define the biomass
density MV , the nutrient concentrations Xj and the reserve densities at steady state mEi,
given the throughput rate ḣ and the nutrient concentrations in the feed Xrj. Although
the system consists of five coupled equations, it can be reduced to a single one in X1 for
uncoupled assimilation fluxes (y1,E1 = 1, y1,E2 = 0, y2,E1 = 0, y2,E2 = 1), while the range
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of Xj is given by (δ−1
j −1)−1 < Xj/XKj < Xrj/XKj, with δj = κEj(jEj,M + yEj,V ṙ)/jEj,Am.

It can be shown that the resulting equation in X1 has one or three roots, while only one
root satisfies the range restriction for X2. A bisection method can be used to arrive at a
high quality initial estimate for the proper root, followed by a Newton–Raphson method
to obtain that root accurately.

The details of the measurement method determine whether or not the excretions are
included in the medium concentrations. In the data presented and analysed in Figure 5.5,
phosphorus and cobalt (in vitamin B12) were measured using isotopes. As a consequence,
the measured medium concentrations include the excreted labelled phosphorus and cobalt,
and correspond to Xj + X∗

j . The cellular contents correspond to
∑

i yj,Ei(yEi,V + mEi). If
the assimilation fluxes for phosphorus and vitamin B12 are not coupled, the cellular content
reduces to yEj,V + mEj. This simplification reduces the total number of parameters to be
estimated to 10 for 20 data sets, or 220 data points. The balance equation for nutrient j
in the medium plus that in the cells at steady state reads

Xrj = Xj + X∗
j +

∑

i

yj,Ei(yEi,V MV + MEi) = Xj + X∗
j + MV

∑

i

yj,Ei(yEi,V + mEi) (5.25)

These balance equations have been checked for the model fits in Figure 5.5, but they apply
only approximately to the data, because of measurement errors. Since tiny deviations in
the amount of biomass and cellular content substantially change medium concentrations,
the latter has been given a low weight in the simultaneous regressions of the 20 curves in
Figure 5.5.

5.2.4 Non-limiting reserves can dam up

The significance of the excretion is in avoiding the possible occurrence of ‘explosion’; if a
cell cannot grow because of the absence of an essential nutrient, and it would continue to
take up other nutrients, the accumulation of those nutrients would be unbounded without
excretion. The combination of a first-order dynamics of reserve densities and 0 ≤ κEi < 1
implies the existence of an upper boundary for reserve densities if upper boundaries for the
assimilation rates exist. The steady-state reserve density mE2 is maximal if assimilation
is maximal, jE2,A = jE2,Am, while expenditure is minimal, which occurs when growth is
zero, J̇V,G = 0, i.e. when J̇E1,C = J̇E1,M = J̇E1,A or mE1 = jE1,M/k̇E1. The maximum

reserve density is found from (5.17) to be mE2m =
jE2,Am−κE2jE2,M

(1−κE2)k̇E2
. This illustrates the

point that excretion is essential: mEim → ∞ for κEi → 1. I will call the fractions κEi

recovery fractions. The density of the reserve that fully arrests growth is at minimum, and
has the value

jE,M

k̇E
. Excretion is a common feature; extracellular release of organic carbon

in phytoplankton has been reported to be as high as 75 % of the totally fixed carbon [582].

The density of the limiting reserve increases (hyperbolically) with the growth rate, while
the non-limiting reserves can decrease with the growth rate. This very much depends on
the recovery fraction κE. The reserve density of the non-limiting nutrients can build up
to spectacular levels, which easily lead to the wrong conclusion that (all) reserve densities
decrease with the growth rate.
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Figure 5.5: The phosphorus and vitamin B12 cellular contents and medium concentrations,
and the biomass density, as functions of throughput rate ḣ of the Haptophyte Pavlova lutheri

at four levels of these nutrients in the feed. Data from Droop [235]. The parameters are
the reserve turnover rates k̇E1 = 1.19 (sd 0.09) d−1, k̇E2 = 1.22 (sd 0.09) d−1, stoichiometric
requirements yE1,V = 0.39 (sd 0.05) fmol cell−1, yE2,V = 2.35 (sd 0.27) 10−21 mol cell−1, maximum
specific assimilation rates jE1,Am = 4.91 (sd 0.14) fmol (cell d)−1, jE2,Am = 76.6 (sd 82) 10−21

mol (cell d)−1, recovery fractions κE1 = 0.69 (sd 0.08), κE2 = 0.96 (sd 0.006), maintenance
rates k̇M1 = 0.0079 (sd 0.012) d−1, k̇M2 = 0.135 (sd 0.047) d−1, given the saturation constants
XK1 = 0.017 µM, XK2 = 0.12 pM by Droop. The simultaneously fitted curves obey mass
balances, and reveal measurement errors in the vitamin concentrations.
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If (traces of) all essential nutrients are required for the assimilation of each reserve, rare
nutrients reduce the uptake of abundant ones and ‘explosion’ is avoided in almost all cases
of practical interest, even if κEi = 1; ‘explosion’ can still occur theoretically, in the absence
of maintenance costs (jEi,M = 0). The deb model accomodates, therefore, two controls on
reserve accumulation: via assimilation of nutrients and via recovery.

Biological phosphate removal

The accumulation of reserves that are synthesized from non-limiting nutrients is exploited
technically in the process of phosphate removal in sewage treatment plants, using Acineto-
bacter calcoaceticus . These remarkable bacteria cannot use hexoses as carbon and energy
source [875]. Sewage water typically contains 10–30 mg/ l phosphorus. Under aerobic con-
ditions, actinobacters decompose carbohydrates, such that they extract energy but little
carbon. The energy is fixed in polyphosphates, by taking up phosphate. Under anaero-
bic conditions, energy is limiting and volatile fatty acids, such as acetates, are taken up
and converted into poly 2-hydroxy butyrate (phb), while stored polyphosphates are used
for energy supply in this transformation [426]. The quantitative details of this coupling
are not quite clear yet; one possibility is that the rejected polyphosphate flux is used for
the assimilation of phb. The excreted phosphate is technically precipitated with calcium
carbonate. This gives the scope for phosphate removal by alternating between aerobic and
anaerobic conditions; the specific maintenance requirement jE,M for phosphate is probably
very small.

5.2.5 Oxygen flux

The physiological literature frequently presents Photosynthesis-Irradiance (PI) curves, where
photosynthesis is usually measured via oxygen production. The rate of photosynthesis is
in practice frequently measured by the rate of oxygen production, but the relationship
is, however, rather indirect. The assimilation process consists of an oxygen-producing
transformation that generates carbohydrate reserves, and an oxygen-consuming one that
generates generalized reserves. Oxygen-consuming maintenance and two growth processes
run simultaneously

CHnHEOnOENnNE → CO2 + y′H,EH2O + y′O,EO2 + nNENH3

yE,V CHnHEOnOENnNE → CHnHV OnOV NnNV + y′C,V CO2 + y′H,V H2O + y′O,V O2 + y′NHV NH3

where straightforward stoichiometry shows that

y′H,E = nHE/2− nNE 3/2; y′O,E = −1− nHE/4 + nOE/2 + nNE 3/4

y′C,V = yE,V − 1; y′O,V = yE,V nOE/2− nOV /2− yE,V + 1− y′H,V /2

y′H,V = yE,V nHE/2− nHV /2− yE,V nNE 3/2 + nNV 3/2; y′NH ,V = yE,V nNE − nNV

The second growth transformation consists of a catenation between the second assimila-
tion transformation and the first growth transformation. The significance of this delayed
synthesis of generalized reserves is an increase in metabolic flexibility; the organism can
produce carbohydrates in the temporary absence of a nitrogen source. Storage of carbo-
hydrates only makes sense if nitrogen compounds are stored as well, as long as strong
homeostasis applies.
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Figure 5.6: Diagram of nitrogen assim-
ilation, where light and carbon dioxide
are converted into carbohydrate reserves
EC , and nitrate into nitrate reserves EN ,
which are used to synthesize structure.
Ammonia can be used as an alternative
nitrogen source, but barely accumulates.
The circles indicate Synthesizing Units.

This all adds up to the oxygen flux

jO = (mEC
+ yO,EmE + yO,EyE,V + y′

O,V )jV,G + y′
O,EjE,M (5.26)

where mEC
= jEC ,A/jV,G is the carbohydrate reserve density and mE = jE,A/jV,G is the

generalized reserve density. At steady state, these values become constant, and depend on
the specification of the reserve kinetics.

If the growth SU is fast, no generalized reserves are rejected, and the specific catabolic
flux from the generalized reserves, jE,C1 = mE k̇E, adds to the specific flux jE,C2 of gener-
alized reserves that are synthesized from carbohydrate reserves and nitrogen reserves; the
sum being spent on maintenance and growth. Catabolized carbohydrates are rejected at
rate jEC ,C − yCH ,EjE,C2 , and a fraction κE returns to the carbohydrate reserves. This leads
to the following relationships, where ṙ = jV,G

jE,C2 = yE,V ṙ + jE,M −mE k̇E

d

dt
mE = jE,A − k̇EmE

d

dt
mEC

= jEC ,A − (1− κE)(k̇EC
− ṙ)mEC

− κEyCH ,EjE,C2 − ṙmEC

The reserve densities mE and mEC
can be solved explicitly for steady state, given ṙ, and

substituted into (5.26).
The interpretation of experimental data is further hampered by the common practice

of presenting oxygen fluxes relative to chlorophyll, usually Chlorophyll a; this is practical,
because chlorophyll is rather easy to measure. This compound represents, just like all other
compounds in the body, a weighted sum of the generalized reserves and the structural mass:
MChl = yChl,EME+yChl,V MV , or mChl = yChl,EmE+yChl,V . The chlorophyll-specific oxygen
flux, therefore, amounts to jO/mChl, which can be related to environmental and growth
conditions, but involves many aspects of physiology, not just photosynthesis.

5.2.6 Ammonia–nitrate interactions

Many organisms can use several nitrogen substrates for assimilation, including ammonia,
nitrite, nitrate, urea, amines and amino acids. Plants have access to nitrogen in organic
compounds via mycorrhizae. Ammonia is rather toxic, so it does not accumulate as such;



176 5. Multivariate DEB models

it is directly assimilated into amino acids, such as glutamate and glutamine. Nitrite is
also rather toxic, and has mutagenic properties, see {216}; nevertheless, it is stored by
some organisms. Nitrate is first reduced to nitrite, and then to ammonia, before further
use [288]. These reductions require substantial energy, which is probably the reason why
ammonia is usually strongly preferred as a substrate. It is even generally believed that
ammonia inhibits nitrate uptake, but this does not seem to hold true [227]. Organisms
vary in their properties with respect to nitrogen uptake. The intensively studied yeast
Saccharomyces cerevisiae cannot assimilate nitrogen oxides [963]. Some yeasts and bacte-
ria nitrify ammonia to nitrate. Selective preferences for ammonia and nitrate can explain
main patterns in plant associations [85]. Soil types differ substantially in ammonia and
nitrate availability for plants [266], and their ratio strongly influences the occurrence of
plant species, even at a very small spatial scale, such as the shifting mosaic of gap and
understory conditions in a forest [180,534]. Probably because of its toxicity, ammonium
assimilation occurs in the roots and not in the shoots of plants.

Figure 5.6 indicates how an alternative nitrogen substrate for ammonia can be imple-
mented in a deb framework. Ammonia is stored before use, just like nitrate, but the
maximum storage capacity is very low, and the turnover rate very high. Homeostasis of
structural mass requires that the product of the synthesis of ammonia and carbohydrate is
identical to the generalized reserve, which means that the synthesis occurs twice: just after
assimilation (prior to storage) from assimilates and after storage, just prior to synthesis of
structural mass from catabolized products. The rules for sequential processing of substi-
tutable substrates can be used to quantify the fluxes, cf. (5.3). The extra requirement of
energy in the processing of nitrate can be taken into account by the stoichiometric coupling
with carbohydrates, which can depend on the substrate that is used. Many applications
allow a reduction of this redundancy, and a description without generalized reserves will be
adequate. Ammonia is not only taken up, but is also excreted in association with growth
and maintenance.

The assimilation of ammonia, nitrate and carbohydrates is given by (5.11) and (5.12).
Treating ammonia and nitrogen as substitutable substrates, and complementary to carbo-
hydrates, the specific assimilation of generalized reserves is

jE,A =
(

j−1
E,Am + (j′NH ,A + j′NO,A)−1 + j′−1

CH ,A − (j′NH ,A + j′NO,A + j′CH ,A)−1
)−1

(5.27)

where j′∗,A = ρ∗y∗,Ej∗,A, and yCH ,E = θA
NH

yNH
CH ,E + θA

NO
yNO

CH ,E, where θA
NH

+ θA
NO

= 1, and
θA

NH
= j′NH ,A(j′NH ,A + j′NO,A)−1. The maximum of jE,A is not necessarily constant: jE,Am =

θA
NH

jNH
E,Am + θA

NO
jNO
E,Am. Since the reduction of nitrate is rather energy consuming, and

extracted from the oxidation of carbohydrates, the relationship yNH
CH ,E < yNO

CH ,E holds. The
requirement for carbohydrates can vary in time, and depends on the nitrogen source.

The specific catabolic rates of the four reserves are j∗,C = (k̇∗ − jV,G)m∗. The specific
catabolic rate of the reserves E is jE,C1 = (k̇E − jV,G)mE. The synthesis of a compound
identical to generalized reserves from catabolic products for metabolic use (maintenance
and growth), jE,C2 is similar to that from assimilation products (5.27), with j∗,C replacing
j∗,A. The growth SU is assumed to be fast enough to avoid spoiling of reserves, so jV,G =
yV E(jE,C1 + jE,C2 − k̇E,M).
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Ammonia is hardly stored, which means that rejected ammonia is not fed back to
the reserves (κENH

= 0), but excreted. The turnover rate k̇ENH
is large; this gives an

extremely low ammonia reserve, mENH
≃ 0, and the catabolic rate equals jENH ,C = jNH ,A−

θA
NH

yNE jE,A. The rejected ammonia flux is jENH ,R = jENH ,C − θC
NH

yNE jE,C2 , with θC
NH

+
θC

NO
= 1 and θC

NO
= j′NO,C(j′NH ,A − θA

NH
ρNH

jE,A + j′NO,C)−1. The rejected fluxes of nitrate
and carbohydrate reserves are jENO,R = jENO,C − θC

NO
yNE jE,C2 and jEC ,R = jEC ,C − jE,C2 ,

from which fractions κENO
and κEC

are fed back to the reserves, the rest being excreted.
The dynamics of the reserve densities mEC

and mENO
is given by (5.18). The specific rate

of ammonium excretion amounts to jNH ,E = jENH ,R + yNE jE,M + (nNE yEV − nNV )jV,G.
The middle term relates to maintenance, the third one to growth overheads.

When nitrogen is limiting, the assimilation of generalized reserves (5.27) reduces to
jE,A = (j−1

E,Am + (j′NH ,A + j′NO,A)−1)−1. The carbohydrate reserve no longer limits growth

and jE,C2 = (j−1
E,Am + (yEN ρNH

(jNH ,A − θA
NH

yNE jE,A) + j′NO,C)−1)−1 = (j−1
E,Am + (j′NH ,A −

θA
NH

ρNH
jE,A + j′NO,C)−1)−1.

The nitrogen in biomass can be decomposed into contributions from structural mass
and the reserves, nNW = nNV + nNEmE + mNO

. The specific nitrogen content is not
constant during transient phases, but will become constant during the cell cycle in constant
environments. This is an implication of the weak homeostasis assumption that is basic to
the dynamics of reserves.

5.3 Several structural masses
The bill of the guillemot Uria

aalge is just one example of non-

isomorphic growth. Although of

little energetical significance, the

κ-rule provides the structure to

describe such deviations.

In the development of the deb theory, only somatic and reproductive tissue have been
distinguished for the sake of simplicity. The assumption of isomorphy covers other tissues
as fixed fractions of the somatic tissue, conceived as a lumped sum. The elaboration below
makes it clear that the mechanism behind the κ-rule implies a particular type of growth
regulation. It also reveals the intimate connection between the κ-rule, {87}, and allometric
growth.

In a bit more detail, the κ-rule (3.12) can be rephrased as

κ
Vi

V+

ṗC = [EGi]
d

dt
Vi + [ṗMi]Vi (5.28)
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Figure 5.7: Examples of allometric growth: log y = a + b log x. Left: The head length (from
the tip of the nose to the blow hole), with respect to total body length minus the head length in
the male blue whale, Balaenoptera musculus. The first four data points are from foetuses, where
growth is isomorphic (b = 1). Thereafter the head extends more rapidly (b = 1.65). Right: The
weight of the large chela with respect to that of the rest of the body in the male fiddler crab
Uca pugnax. Initially the chela grows rapidly (b = 1.63) until a rest of body weight of 850 mg,
thereafter it slows down a little (b = 1.23). Data from Huxley [438].

where Vi denotes the volume of tissue (or organ or part of body) i, and V+ ≡
∑k

i=1 Vi is
the total body volume. Since blood flow is space-filling, the fraction Vi/V+ stands for the
relative length of the track followed by blood as it flows through tissue i. The basic deb
model delineates only somatic and reproductive tissue, so k = 2. Isomorphism implies
that Vi/V+ remains fixed, so κ = κ1V1/V+ has been taken, while d

dt
V1 = d

dt
V2. The extra

uptake by reproductive tissue did not result in enhanced growth of the reproductive tissue,
but in production that is lost to the body. If isomorphism is dropped as a condition
and if more types of tissue are to be distinguished, (5.28) can be written as [EGi]

d
dt

Vi =
κ

V+
ṗC(1 − [ṗMi]V+

κṗC
)Vi. Allometric growth of tissue i with respect to tissue j results, that is

dVi

dVj
=

[EGj ]

[EGi]
Vi

Vj
, if [ṗMi]V+

κṗC
is small.

Allometric growth of a body part occurs if the contribution of part i to total body
volume is insignificant, because V+ 6=

∑

i αiV
βi if βi 6= 1 for some i, whatever the values

of positive αi’s. Absolute growth requires specification of how feeding and digestion (and
heating for endotherms) depend on the volume and shape of the different tissues. It is likely
to become complex. Allometric growth of extremities and skeletal elements frequently
occurs, as illustrated in Figure 5.7. Houck et al. [430] used this growth as a criterion to
delineate taxa in fossil bird Archaeopteryx .

It is improbable, however, that whole-organism energetics is seriously affected by these
relative changes. This subsection only serves to illustrate that the mechanism behind
allometric growth (of appendages) is intimately connected to the κ-rule. Note that the
dimensional problems that are usually connected to allometric relationships, {13}, do not
apply in this implementation of allometric growth.

Isomorphs thus require growth regulation over the different body parts. Without con-
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trol, allometric growth results. For isomorphs [Vi] ≡ Vi/V+ must remain fixed, so that
d
dt

Vi = [Vi]
d
dt

V+ must hold. For the deb model this implies that the organism must ac-

celerate or retard the growth of organ/tissue/part i by a factor [Vi]
dV+

dVi
≃ gi

∑

j[Vj]/gj,

with gi ≡ [EGi]
κi[Em]

. (The approximation holds for ṗMi << κiṗC .) The mechanism of control
may be via the density of carriers that transfer resources from the blood to the tissue.
The carrier density in membranes of large tissues/parts should be less than that in small
tissues/parts for a particular value.

The acceleration/retardation factor demonstrates that the carrier density does not have
to change during growth. Other types of growth regulation are also possible. This discus-
sion is only about the effects of regulation, rather than about its mechanism.

5.3.1 Organ size and function

An intriguing set of problems relates to the function–size coupling of organs. Kidneys, for
instance, remove nitrogenous waste from the body, and the deb theory predicts how the
nitrogen excretion rate should depend on body size. Two lines of thought seem promising.
Assuming that the relative kidney size remains constant (structural homeostasis), how
should kidney function depend on kidney size such that the amount of work per unit of
kidney remains constant? Can anatomical details explain this relationship? The other
line of thought is to relate kidney function to kidney size from its anatomical design, and
work out a regulation scheme for the kidney size such that the amount of work per unit of
kidney remains constant during ontogeny. From a more abstract point of view, this type
of problem has much in common with the material discussed in the section on syntrophy,
{304}, where the body acts as a donor of nitrogenous waste, and the kidney as receiver.

5.3.2 Roots and shoots

The delineation of (at least) two types of structural mass is essential if we are to under-
stand the development and growth of plants that use roots for the uptake (and excretion)
of nutrients, and shoots for light uptake, gas exchange (carbon dioxide and oxygen), the
evaporation of water (necessary for nutrient uptake by the roots) and reproduction. Bi-
jlsma [85] makes a distinction between primary and secondary structures for both roots
and shoots. The argument for such a refinement is to incorporate mechanical arguments
to model stiffness versus transport. A simpler alternative is to use a single state variable
and change stiffness via products (cellulose, lignin) that accumulate in the plant. Envi-
ronmental factors can affect this production. Plants seem to follow the obvious strategy of
investing relatively more in roots when water or nitrogen is limiting, and in shoots if light
is limiting [126].

The interactions between the roots and shoots of plants seem to be a mixture between a
two-structure organism and a symbiosis, which gives them a substantial relative flexibility
in growth. Table 5.1 presents a summary of the fluxes, Figure 5.8 gives a diagram of fluxes,
while Table 5.2 specifies the fluxes, as follows from the deb theory in its simplest form.
Figure 5.9 gives an example of a plant growth curve for a single choice of parameter values,
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Table 5.1: The chemical compounds of the plant and their transformations and indices. The
+ sign means appearance, the − sign disappearance. The signs of the mineral fluxes depend on
the chemical indices and parameter values. The labels on rows and columns serve as indices to
denote mass fluxes and powers. The table shows the flux matrix J̇T , rather than J̇ , if the signs
are replaced by quantitative expressions presented in Table 5.2.
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L C H O NH NO PS V S ECS ENS ES PR V R ECR ENR ER

assimilation AS − − − + + + + −
growth GS + + − + + + + − − −

sh
o
ot

dissipation DS + + − + + + − − −
reproduction R + + − + + − − −
translocation T + + − + + − − ± − − ∓
assimilation AR + ± − − − − + + +

ro
ot growth GR + + − + + + + − − −

dissipation DR + + − + + + − − −

and illustrates the effect of light restriction. Many extensions of the model are conceivable,
such as limitations by other nutrients.

The proposed model has eight state variables (structure, and three reserves for root and
shoot). We need generalized reserves to accomodate all micro-nutrients that are required
to generate structure, and carbon and nitrogen reserves to allow nitrogen uptake during
darkness. The carbon and nitrogen reserves do not necessarily consist of pure carbohydrates
and nitrates, respectively; they can be thought of as generalized reserves that are enriched
in these compounds. Limitation by micro-nutrients is not discussed here, so they are
assumed to be non-limiting.

All reserves are initially zero except the root’s generalized reserve MER, which repre-
sents the initial mass of the seed. Due to the translocation mechanism, the generalized root
reserve soon partitions itself across those of shoots and roots, at a rate that depends on the
values k̇ES and k̇ER. The initial structural masses of roots and shoots are infinitesimally
small, just like those of animal embryos. Flowering plants first develop one or two cotyle-
dons, leaf-like structures that differ morphologically from normal leaves, and are usually
rather thick, because of the relatively high shoot’s generalized reserves, MES. When the
shoot develops further, these reserves are reorganized over stem and leaves.

The generalized reserves are actively translocated between roots and shoots, as pro-
posed by Bijlsma [85]. The translocation from one reserve to another is discussed in the
section on foetal development {104}. If the reserve turnover rates A∗k̇E∗ are identical, and
the translocation fast, the κ-rule emerges, as has been discussed in the previous section.
Generally, however, these turnover rates differ because they involve surface area/volume
relationships, and so the shape correction function, as discussed on {252}. The nitrogen
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Table 5.2: The fluxes in and between the shoot S and the root R of a plant that experiences
the forcing variables: light J̇L,F and concentrations of carbon dioxide XC and oxygen XO (in the
air), ammonia XNH

, nitrate XNO
and water XH (in the soil). The dimensionless quantities AS =

(VS/VdS)−1/3MS(VS) = (VS/VdS)−VS/VmS and AR = (VR/VdR)−1/3MR(VR) = (VR/VdR)−VR/VmR

are introduced to simplify the notation, where Vd∗ are reference volumes that occur in the surface
area/volume relationship, and M is the shape correction function, and Vm∗ parameters, see
{252}. The relations 1 = κSS + κRS + κTS and 1 = κSR + κTR hold (the first index refers to
soma, reproduction and translocation as destinations of catabolic fluxes). The fluxes J̇ ′

∗1,∗2 are

gross fluxes, i.e. help fluxes for specifying the net fluxes J̇∗1,∗2 . Flux indices RS and RR refer
to rejection, C1S and C1R to catabolism of reserves E∗, C2S and C2R to catabolism of reserves
EN∗ plus EC∗; the other indices are listed in Table 5.1.
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J̇ES,CS = J̇ES,C1S + J̇ES,C2S ; J̇ ′
ECS,CS = (AS k̇ECS − ṙS)MECS ; J̇ ′
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≡ ṙRMV R; J̇ER,C1R = (ARk̇ER − ṙR)MER
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Figure 5.8: The diagram of a deb model for the
interactions between the root and the shoot of
a plant. A seed has initially only an amount of
generalized root-reserve ER, all other reserves
and the structural masses of the root, V R, and
the shoot, V S, are negligibly small; Transloca-
tion fills the generalized reserves of the shoot,
ES, during the embryonic stage. Assimilation
of ammonia, NH , nitrate, NO, carbon dioxide
C, and light, L, is switched on at birth. Wa-
ter, H, interferes with the uptake of nutrients
from the soil; oxygen, O, interferes with the as-
similation of carbon dioxide. Besides general-
ized reserves, carbohydrate reserves, ECR and
ECS, and nitrogen reserves ENR and ENS are
filled (and used) during the juvenile and adult
stages. A fixed fraction of the rejected carbo-
hydrate and nitrogen reserves are translocated,
and enters via the assimilation systems. The
root remains in the juvenile stage; the alloca-
tion to maturity maintenance can be combined
with that to somatic maintenance, and the allo-
cation to maturation can be combined with that
to growth. The shoot generally enters the adult
stage, and requires explicit treatment of these
fluxes. Maturation converts to reproduction at
puberty. Circles indicate SUs.

(nitrate) and carbon (carbohydrate) reserves are used independently by roots and shoots;
only the ‘spoils’ are translocated, in a way similar to symbiontic partners, cf. {306}. The
translocated fluxes partake in the assimilation of the receiver.

The synthesis of generalized reserves, as a chemical compound, occurs twice in the root
and in the shoot, as described on {175}:

• The assimilation process (AS and AR). In the root, ammonia and nitrate are taken
up from the soil, and carbohydrate is received from the shoot. In the shoot, nitrate
is received from the root, and carbohydrate is photosynthesized. The resulting com-
pound is stored in the reserves ER and ES, respectively. The nitrogen and carbon
that cannot be transformed into generalized reserves are stored in the specialized
reserves.

• The catabolic processes (C2S and C2R). Nitrate and carbohydrate are mobilized from
the reserves; the resulting flux is merged with the mobilised generalized reserves and
used for development and/or reproduction, and growth plus somatic maintenance.
A fixed fraction of the nitrate and carbohydrate that is rejected by the Synthesizing
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Figure 5.9: Examples of plant growth curves that result
from the deb model. The lower curves refer to root car-
bon, the upper ones to total plant carbon (root plus shoot).
The grey curves refer to light restriction, and show that this
affects the root more than the shoot. This realistic trait
naturally results from the mechanism of exchange of car-
bohydrates and nitrogen; no optimization argument is in-
volved. The model has a rich repertoire of growth curves,
of root/shoot mass ratio ontogeny’s, and of responses to
changes in environmental factors, depending on parameter
values.

Units that produces generalized reserves is fed back to the reserves, the remaining
fraction is translocated.

The binding probability ρNO
regulates the priority of ammonia relative to nitrate in the

assimilation of reserves, as is discussed on {175}. The assimilated nitrate that is not used
in this pathway is stored, but ammonia that is not used is excreted (ρNH

= 1 is taken here).
The costs of synthesis of reserves ER from ammonia or nitrate are accommodated in the
conversion coefficients yNO

CH ,E and yNH
CH ,E; nitrate has to be reduced prior to this synthesis,

and the costs are covered by the oxidation of carbohydrates, which gives yNO
CH ,E > yNH

CH ,E.
The balance equations for the catabolic processes are

J̇ ′
ECS,CS − κECSJ̇ECS,RS = (1− κECS)J̇ECS,RS + J̇ECS,T + J̇ECS,GS + J̇ECS,DS + J̇ECS,R

J̇ ′
ENS,CS − κENSJ̇ENS,RS = J̇ENS,T + J̇ENS,GS + J̇ENS,DS + J̇ENS,R

J̇ES,C1S = J̇ES,T + J̇ES,GS + J̇ES,DS + J̇ES,R; J̇ER,C1R = J̇ER,T + J̇ER,GR + J̇ER,DR

J̇ ′
ENR,CR − κENRJ̇ENR,RR = (1− κENR)J̇ENR,RR + J̇ENR,T + J̇ENR,GR + J̇ENR,DR

J̇ ′
ECR,CR − κECRJ̇ECR,RR = J̇ECR,T + J̇ECR,GR + J̇ECR,DR

where all fluxes are here taken to be positive. The left-hand sides specify what is leaking
away from the reserves, and the right-hand sides specify the various destinations. The
fluxes RS and RR on the left-hand sides specify the return fluxes of what can not be
used by the SUs. The ‘spoil’ fluxes RS and RR on the right hand sides appear in the
assimilation fluxes of the partner (root and shoot, respectively).

Assimilation in Table 5.2 should be set to zero for embryos. The root remains in
the juvenile stage, the shoot is adult if MV S > MVpS. The fluxes to reproduction (or
maturation in embryos and juveniles) as specified in Table 5.2 represent outgoing fluxes
from the reserves and includes overheads; a fraction κR of this flux is fixed in seeds, and
the flux should be divided by the initial root reserve to arrive at a reproduction rate in
terms of seeds per time.

If a plant lives for many years, and the resolution of the growth process is limited, the
yearly shedding of leaves can be accommodated (approximately) in the constant specific
maintenance costs jES,MS. For short-living species, this will be less satisfactory and the
maintenance costs should show a cyclical pattern explicitly. Aging in plants does not follow
the pattern of animals, because plants can replace cells that are hit by the aging process.
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The formulation in Table 5.2 does not account for water reserves. Water controls the
saturation constant of the nitrogen uptake from the soil, see {152}. Photosynthesis and
photorespiration are discussed on {164}ff. Wood production can be associated with growth
and maintenance.

The weight of a plant has contributions from the structure, and all reserves, but also
from the accumulation products, which can have supporting functions for the structures.
Their production is associated with somatic maintenance, and continues even when growth
of the structure ceases. In that case, weights do not have an asymptote. Chlorophyll is
part of the structure and the generalized reserves of the shoot. The prime in the conversion
coefficient y′

ER,ES from root to shoot reserves indicates that y′
ER,AS 6= y′

ES,AR; root reserves
have no chlorophyll and other differences in composition exist as well.

5.4 Summary

The deb model can be extended in a straightforward way to deal with several substrates
(nutrients), reserves and structural masses, using the rules for the behaviour of Synthesizing
Units (SUs) on the basis of the following supplementary assumptions

1 Each reserve has an assimilation SU, and each structural mass a growth SU
for their synthesis from substrates.

2 A fixed part of any catabolic flux that is rejected by a growth SU adds to the
originating reserve, the rest is excreted.

3 Each structural mass requires a fixed mass-specific maintenance. The mainte-
nance requirements, therefore, have a fixed stoichiometry; each catabolic flux
contributes to maintenance, but the costs are reserve-specific.

4 A single reserve can fuel the synthesis of several structural masses by parti-
tioning the catabolic flux; a straightforward generalization of the κ-rule.

The resulting dynamics allows a rich repertoire, because of the flexible behaviour of SUs.
Two routes exist for the convergence to a single-substrate, single-reserve deb model: a
single substrate and reserve is limiting growth, or the abundances of the various substrates
covary and all rejected catabolic fluxes are excreted. The transition of limiting to (almost)
non-limiting behaviour of substrate and/or reserve is rather sharp, as results from the rules
for the behaviour of SUs.

The limiting reserve increases with the growth rate, but the non-limiting reserves can
decrease with the growth rate as a consequence of the damming, which depends on the
fraction of reserves that is excreted.

Photosynthesis is quantified as a two-step process: from light, water and carbon dioxide
to carbohydrate and from carbohydrate and nitrogen compounds to (generalized) reserves.
The rejected carbohydrates and nitrogen compounds are stored separately. Photorespira-
tion follows naturally from competitive binding of carbon dioxide and oxygen to Rubisco.
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Calcification is described, where carbon dioxide and bicarbonate are sequentially pro-
cessed, substitutable substrates for photosynthesis, and calcification is stoichiometrically
coupled with bicarbonate uptake.

The interaction between ammonia and nitrogen has been worked out, because of its
ecological importance. The nitrogen compounds are treated as substitutable substrates in
the synthesis of generalized reserves. The latter compound is synthesized from ammonia,
nitrate and carbohydrate reserves prior to storage from assimilates, and prior to growth
from catabolic fluxes. The ammonia reserves have an extremely low capacity.

The production and use of oxygen is shown to have a rather indirect relationship with
photosynthesis, although it is widely used as a quantifier.

The growth of body parts can be very close to the widely applied allometric growth on
the basis of the multivariate extension of the κ-rule.

A model for plant growth is proposed, which represents a mixture between a bivariate
structured individual and a symbiosis between root and shoot; the generalized reserves are
actively translocated, while each has its own nitrogen and carbohydrate reserve, where the
partner receives the ‘spoils’, as in a symbiontic relationship.
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Chapter 6

Uptake and effects of non-essential
compounds

Non-essential compounds differ from essential ones by the absence of regulated use. The
first purpose of this chapter is to show how energetics interferes with many aspects of the
uptake and effects of non-essential compounds and how the deb theory can be used to
specify these processes in a quantitative way. It provides the methodology to translate
effects on individual performance to effects on populations and ecosystems. After a brief
introduction of biological aspects, this chapter starts with a one-compartment model, in
which the physiological change of the organism is first neglected. The kinetics is then made
more realistic by incorporating physiological interactions as specified by the deb model.
Then follows a discussion of the inverse relationship, i.e how toxins affect the energetics of
individuals and the consequences for the population.

The need to characterize the effects of compounds and extrapolate them to the popu-
lation and ecosystem level originates from the huge problems that humans are creating in
their environment at the moment. It is relatively easy to determine effects on individuals
in the laboratory, whereas the real problems are at the ecosystem level. This calls for
models to link them. The purposes are to analyse how bad a particular pollution event
or situation is, to set priorities for cleaning up the mess and to set norm values for the
maximum emission of compounds into the environment for industry and transport. We can
only be extremely modest in our claims to understand long-term effects at the ecosystem
level.

Bio-toxins

The study of effects of chemical compounds is relevant not only to the assessment of
environmental risk, but also to fundamental ecology and evolution. The appearance of
oxygen as a by-product of photosynthesis in the atmosphere has probably been fatal for
most pre-Cambrian organisms. Botulin, one of the most potent toxins known, is produced
by the bacterium Clostridium botulinum and causes frequent casualties among fish and
birds in fresh waters. The soil bacterium Bacillus thuringiensis produces a toxin that
kills insects effectively [425]. The bacterium Vibrio alginolyticus excretes tetrodotoxin,
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which is a potent toxin that several unrelated organisms use for various purposes. The
dinoflagellate Pfiesteria piscicida excretes toxins that kill significant numbers of fish in the
coastal areas of the West Atlantic.

Some bacteria quickly transform sugar into acetate for later consumption, while ac-
etate suppresses the growth of competitors. Sphagna, a class of mosses that dominate
in peat land, suppress other plant growth by lowering the pH [187]. Natural growth-
suppressing compounds that are produced by fungi, such as penicillin, are intensively
applied in medicine.

The production of cyanides, alkaloids and other secondary metabolic products by plants
obviously functions to deter herbivores. This is not always fully successful, and herbivores
sometimes use these toxins to deter predators. Heliconid caterpillars accumulate toxins
from passion flowers, and advertise this with bright warning colours. The protection from
predation is sometimes so effective that similar species, that cannot handle the toxins
metabolically, mimic the colour pattern to acquire the same protection. This is Bate-
sian mimicry, well known in the case of the monarch butterfly Danaus plexippus (which
accumulates toxins from euphorbids); its colours are adopted by the viceroy Limenitus
archippus [938]. The male rattlebox moth Utetheisa ornatrix has another striking use of
toxins; he supplies his mate with plant-derived pyrrolizidine alkaloids, together with his
sperm, which will protect her against predation for several hours.

The reason why the Australian brushtail possum Trichosurus vulpecula turned into
a pest in New Zealand, but not in Australia, is probably because it does not feed on
Eucalyptus leaves there, but on trees that lack the cyanides that restrict its reproduction
in Australia. The tannins of acorns effectively block digestion by the European red squirrel
Sciurus vulgaris, for instance, but the American grey squirrel Neosciurus carolinensis found
a way to deal with this defence of the oak and so managed to outcompete the red squirrel
in parts of Europe [576].

Like plants, many species of animal use toxins to protect themselves against predation;
most nudibranchs (snails of the subclass Opistochranchia) accumulate nematocysts from
their cnidarian prey for protection, while their prey use these formic acid harpoons to
collect food; termites [734], arrow frogs (Dendrobatidae), and some birds (the hooded
pitohui, Pitohui dichrous [256]) produce and accumulate chemicals to protect themselves
against predators. The tetraodontid fish Fugu vermicularis and the starfish Astropecten
polyacanthus use tetrodotoxin for this purpose [922]. Cephalopods excrete a mixture of
ink and toxins to confuse and paralyse an approaching predator; Peripatus emits some glue
when offended.

Examples of chemical offence are easy to find. Snakes, wasps, spiders, centipedes, cone
shells and many other organisms use venoms to kill offensively. Tetrodotoxin is used by
chaetognats and the blue ringed octopus Hapalochlaena maculata to capture prey via
sodium channel blocking. Mosquitos and leeches use chemicals to prevent blood from
coagulating.

The ability of the parasitic bacterium Wolbachia to induce parthenogenesis in normally
sexually reproducing species (doubtlessly via chemical interference) has recently attracted
a lot of attention [641]. The parasitic cirripede Sacculina converts a male crab Carcinus
into a female, with all secondary sex characteristics, but the allocation to reproduction
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is converted to the parasite. Many parasites use endocrine disrupters to interfere in the
host’s allocation of resources.

Biology is full of examples of chemical warfare with sometimes striking responses and
defence systems [6]. This collection of random examples serves to illustrate the wide occur-
rence of chemicals that affect organisms; the function of their production being frequently
rather obscure.

6.1 One-compartment kinetics

The simplest, and frequently realistic, model for toxicokinetics is the one-compartment
uptake/elimination model [997] in a variable environment. This model forms the basis
of most work that has been done in ecotoxicity and environmental risk assessment; see
Thomann and Mueller [916] for a lucid introduction. One-compartment models do not
always give a satisfactory fit with experimental data. For this reason more-compartment
models have been proposed [188,330,446,802]; because of their larger number of param-
eters, the fit is better, but an acceptable physical identification of the compartments is
usually not possible. These models, therefore, contribute little to our understanding of
kinetics as a process. A more direct link with the physiological properties of the organism
and with the lipophilicity of the compound seems an attractive alternative, which does not,
however, exclude more-compartment models. As usual, the problem is not so much in the
formulation of those complex models but in the useful application. Too many parameters
can easily become a nuisance if few, scattered, data are available.

A chemical compound is usually present in the environment in several, and sometimes
many, chemical species. Molecules of many compounds can dissociate into ions, which
easily bind to ligands that are usually abundantly present, and can transform into other
compounds. These species differ in their availability to the organism, which makes the
subject of toxicokinetics in natural environments a rather complex one. The compound
can enter the organism via different routes: directly from the environment across the skin,
via specialized surfaces that play a role in gas exchange, via food, etc. In the aquatic
environment uptake directly from water is especially important for hydrophilic organic
compounds [129], and metals [102,103,772]. In aquatic animals that are chemically isolated
from their environment, such as aquatic insects, birds and mammals, the common uptake
route is via food. Walker [961] gives a discussion of uptake routes. The compound can leave
the organism using the uptake routes in reverse direction, or via reproductive output and/or
products (e.g. moults in arthropods, milk in mammals). Several taxon-specific mechanisms
occur. Collembola, for instance, can accumulate metal in mid-gut epithelium and excrete
this tissue periodically as part of the moult [729,730]. This epithelium contains granules,
probably filled with calcium phosphate, which may be excreted into the gut lumen. These
granules probably play a role in the excretion of an overload of lead in the food [457,894].

Avoiding disencouragement, we start simple and focus on the well-mixed aquatic en-
vironment where the compound is present in just one chemical species at a concentration
cd(t). Suppose that inside the organism the compound is also present in just one chemical
species, and that the exchange between the different body parts is fast. The compound can



190 6. Uptake and effects of non-essential compounds

be present in different concentrations in the different organs, but the ratio of the concen-
trations in different organs is fixed. In such a situation, it suffices to follow the kinetics via
the mean concentration in the body, [MQ](t), which is defined as the ratio of the amount
of the compound in the body to the body volume V .

Suppose that the concentration in the tissue follows a simple one-compartment process,
i.e. uptake is proportional to environment concentration and elimination is proportional
to tissue concentration. The uptake kinetics is the same as in the Lotka–Volterra model
for the uptake of food, {314}, and can be considered as a linear approximation of the
hyperbolic functional response for low concentrations. If growth is negligibly small

d

dt
[MQ] = k̇e(PV dcd(t)− [MQ]) or (6.1)

d

dt
cV = k̇e(cd(t)− cV ) (6.2)

where k̇e is the elimination rate (dimension time−1). The product k̇ePV d is the uptake

rate (dimension volume of environment
volume of tissue · time ). The product k̇e[MQ]V is interpreted as elimination

flux (dimension mass time−1) and the product k̇ePV dcd(t)V is the uptake flux (dimension
mass time−1). Index V refers to the structural body volume, and d to the dissolved fraction
in the environment; both are preparations for more complex situations that are discussed
later. PV d is the partition coefficient: the ultimate ratio of the concentrations in the tissue
to that in the environment, also known as the bioconcentration coefficient. It is treated
as a constant, which can be less than 1. The interpretation of this partition coefficient
refers to the steady-state situation. A better definition for PV d, which I use here, is the
ratio of the uptake to the elimination rate. Both definitions are equivalent for simple
one-compartment models, but not for more elaborate ones. Although many texts treat the
bioconcentration coefficient as a dimensionless one, it actually has dimension environmental
volume×(body volume)−1 because the sum of both types of volume does not have a useful
role to play. Most texts in fact use environmental volume×(body dry weight)−1, or for
soils environmental dry weight×(body dry weight)−1.

The concentration cV ≡ [MQ]PdV , with PdV = P−1
V d is proportional to the tissue con-

centration, but has the dimensions of an environment concentration. It has a very useful
role in practical applications, because the tissue concentration frequently plays the role of
a hidden variable, because it is not measured.

The explicit expression of [MQ](t) in terms of cd(t) is found from (6.1) to be

[MQ](t) = [MQ](0) exp{−tk̇e}+ k̇ePV d

∫ t

0
exp{−(t− t1)k̇e}cd(t1) dt1 (6.3)

If cd(t) is actually constant, (6.3) reduces to

[MQ](t) = [MQ](0) exp{−tk̇e}+
(

1− exp{−tk̇e}
)

PV dcd or (6.4)

cV (t) = cV (0) exp{−tk̇e}+
(

1− exp{−tk̇e}
)

cd (6.5)

which is known as the accumulation curve.
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6.2 Partition coefficient

The concept of one-compartment kinetics has many hidden implications. This section
discusses how the partition coefficient, the ionization constant and the acidity affect the
exchange parameters. This section can be skipped without loss of continuity.

The most obvious property of chemicals for the understanding of toxicokinetics is the
n-octanol/water partition coefficient, Pow, which can be estimated from the chemical struc-
ture of the compound. Octanol serves as a model for typical lipids of animals, although
the model in not always perfect [842]. It has a density of 827 g dm−3, and a molecular
weight of 130 Dalton, so that 1 dm3 of octanol contains 6.36 mol. Most comparisons are
restricted to the interval (102, 106) for the Pow. The size of the molecule tends to increase
with Pow and, if the Pow is larger than 106, the molecules are generally too big to enter
cells easily [170].

6.2.1 Kinetics as a function of partition

The molecular details of the transport of a compound between two matrices, such octanol
and water, directly lead to the relationship between the elimination rate and Pow; the Pow

has information about the steady state, the elimination rate about the waiting time to
reach that steady state. Let us focus on a closed system that evolves to a steady state.

Suppose that N molecules of a compound are distributed over two matrices, and that
they can freely travel from one matrix to the other. Both matrices occupy a unit of volume.
N0(t) molecules are present in matrix 0 and N1(t) = N − N0(t) molecules in matrix 1 at
time t. If first-order kinetics applies, and the total number of molecules N = N0(t) +N1(t)
is constant, the change of N0 is given by

d

dt

(

N0

N1

)

=

(

−k̇01 k̇10

k̇01 −k̇10

)(

N0

N1

)

or (6.6)

d

dt
N0 = k̇+(N∗

0 −N0) (6.7)

with k̇+ = k̇01 + k̇10 and the equilibrium value for N0 is N∗
0 = Nk̇10/k̇+. An implicit

assumption is that the compound is homogeneously distributed within each matrix.
Suppose now that the exchange rates are proportional to the ratio of the binding forces

to the two matrices, i.e. k̇01 = k̇ρ1/ρ0 and k̇10 = k̇ρ0/ρ1, where ρi is the binding force of
the compound to molecules of matrix i, i ∈ {0, 1}, and k̇ is a proportionality constant that
depends on the properties of the compound, but not on those of the matrix. Although
phrased differently, the setting is identical to the concept of fugacity, the escaping tendency
of a compound from a phase, that has been successfully used to describe the behaviour of
compounds in the environment [580]; it has a simple thermodynamic interpretation [530].

The definition of the partition coefficient is P01 = N∗
0 /N∗

1 . Since N∗
0 /N∗

1 = N∗
0 /(N −

N∗
0 ) = k̇10/k̇01 = ρ2

0/ρ
2
1, we have that ρ0/ρ1 =

√
P01. The result directly follows that

k̇01 = k̇
√

P10 and k̇10 = k̇
√

P01 = k̇/
√

P10.
The bioconcentration coefficient PV d for fish relates to the octanol/water partition

coefficient as PV d = 0.048 Pow, [579]. Hawker and Connell [382] found the allometric



192 6. Uptake and effects of non-essential compounds

Figure 6.1: The elimination rate in Daphnia

pulex is approximately proportional to 1/
√

Pow

for the compounds isoquinoline, acridine, and
benz(a)acridine at 21 ◦C. Data from Southworth
et al. [868].

k̇
e
,
h
−

1

log Pow

relationships PV d = 0.0484 P 0.898
ow for daphnids and PV d = 0.0582 P 0.844

ow for molluscs in
the range 102 ≤ Pow ≤ 106. The scatter in the data is big enough for the relationship
PV d = 0.02 Pow to apply to both daphnids and molluscs. The proportionality factor directly
relates to the fat content. In general we can say that PV d = moPow, where mo stands for
the mass-specific octanol equivalent of the organism, which seems to be taxon-specific.
High correlations between PV d and mo have been found for fenitrothion in a variety of
algae [475], for instance.

Hawker and Connell [381,382] related the elimination rate k̇e to Pow and found k̇e =
8.851 P−0.663

ow d−1 for fish, k̇e = 113 P−0.507
ow d−1 for Daphnia pulex and k̇e = 9.616 P−0.540

ow

d−1 for molluscs. The proportionality factor is inversely proportional to the volumetric
length of the animal (see below), which explains the wide range of values. The results
for daphnids are most reliable, because they all have the same body size in this case,
and confirm the expectation k̇e ∝ P−1/2

ow , which is based on first-order kinetics. Some
workers proposed diffusion layer models where the uptake rate depends hyperbolically
on the membrane–water partition coefficient [287], but the derivation neglects the link
between diffusion rates and partition coefficients. Others take elimination rates inversely
proportional to the animal–water partition coefficient [329,916], with the odd implication
that the uptake rate is independent of the partition coefficient. This is not consistent with
first-order kinetics, where the two media play roles that are exchangeable, which implies
a skew-symmetrical relationship between the uptake and elimination rates as functions of
the partition coefficient; the square root relationship is the only one that satisfies the skew
symmetry.

The deb theory predicts that the density of octanol equivalents increases with the body
size of the different species of animal because the specific maximum reserve capacity [Em]
increases with a volumetric length, cf. {270}, and reserves are relatively rich in lipids.
These are only general trends and many exceptions occur. The eel Anguilla is much fatter
than other fish of similar size, for instance. Data from Hendriks [397] confirm the general
trend; see Figure 6.2.
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Figure 6.2: The elimination rate depends on the
n-octanol–water partition coefficient Pow and the
weight W of an organism. It is roughly proportional

to P
−1/2
ow W−1/3 with proportionality constant

√
10

d−1kg−1/3 for 181 halogenated organic compounds in
fish. Data compiled by Hendriks [397]. The marker
codes are: Pow ≤ 102 (×), 102 ≤ Pow < 106 (•),
106 ≤ Pow ≤ 108 (+). The range of fish weights is
0.1–900 g. No corrections for differences in tempera-
ture have been made, nor for differences in fat content
of the fish. 10 log P

−1/2
ow W−1/3, kg−1/3
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6.2.2 Kinetics as a function of ionization

The situation is a bit more complex when the compound can be
present in molecular as well as in ionic form. Let N−

i denote the
number of ions in matrix i, and k̇i

·− and k̇i
−· the ionization and de-

ionization rates in matrix i, and k̇−
01 the transport rate of the ionic

form from matrix 0 to matrix 1. The dynamics now becomes
-�

6

?

-�

6

?
N0 N−

0

N1 N−
1

k̇01 k̇10 k̇−
01 k̇−

10

k̇0
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·−
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−·
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(6.8)

The definition of the ionization constant in matrix i is 10−pKi = 10−pHiN−∗
i /N∗

i , where
pHi stands for the pH in matrix i. Suppose that the processes of ionization and de-
ionization are fast with respect to the transport processes, i.e. N−

i (t)/Ni(t) = k̇i
·−/k̇i

−· =

10pHi−pKi = P i
−·. This seems to be acceptable because ionization and de-ionization do

not require macro-scale movements of molecules. This implies that Ni(t) + N−
i (t) = (1 +

P i
−·)Ni(t) and d

dt
(Ni(t) + N−

i (t)) = (1 + P i
−·)

d
dt

Ni(t). Suppose also that the ratio of the
binding forces of the ionic forms to the molecules of both matrices equals that of the
molecular forms, so k̇−

01 = k̇−ρ1/ρ0 and k̇−
10 = k̇−ρ0/ρ1. Substitution into (6.8) gives

d

dt

(

N0 + N−
0

N1 + N−
1

)

=

(

−k̇′
01 k̇′

10

k̇′
01 −k̇′

10

)(

N0 + N−
0

N1 + N−
1

)

(6.9)

with k̇′
01 =

k̇+k̇−P 0
−·

1+P 0
−·

ρ1

ρ0
and k̇′

10 =
k̇+k̇−P 1

−·

1+P 1
−·

ρ0

ρ1
denoting the overall specific exchange rates

of molecules plus ions between the matrices. The partition coefficient being defined as

P01 =
N0(∞)+N−

0 (∞)

N1(∞)+N−
1 (∞)

, P01 =
(

ρ0

ρ1

)2
only holds if k̇− = k̇. This is very unlikely, however, and

the previously derived result for molecules without ionic forms does not apply to ionizing
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ones. Generally we have

P01 =
k̇′

10

k̇′
01

=
1 + P 0

−·

k̇ + k̇−P 0
−·

k̇ + k̇−P 1
−·

1 + P 1
−·

ρ2
0

ρ2
1

(6.10)

Suppose now that we change the pH in matrix 1 (e.g. the environment), while the pH in
matrix 0 (e.g. the organism) is kept fixed. If the pH in matrix 1 is extremely low, say
pH1 = −∞, or P 1

−· = 10pH1−pK1 = 0, and all of the compound is present in molecular

form, (6.10) reduces to P01 =
1+P 0

−·

k̇+k̇−P 0
−·

k̇
ρ2
0

ρ2
1
. If, on the other hand, the pH in matrix 1 is

extremely high, say pH1 = ∞, or P 1
−· = ∞, and all of the compound is present in ionic

form, (6.10) reduces to P01 =
1+P 0

−·

k̇+k̇−P 0
−·

k̇− ρ2
0

ρ2
1
. It directly follows that (6.10) can be rewritten

as

P01(pH1) =
P01(−∞) + P01(∞)10pH1−pK1

1 + 10pH1−pK1

(6.11)

which shows how the partition coefficient depends on the pH in matrix 1 (environment),
where P01(−∞) and P01(∞) play the role of parameters, on the assumption that the pH
in matrix 0 (organism) is independent of the pH in matrix 1.

Substitution into the expressions for k̇′
10 and k̇′

01, with k̇−/k̇ = k̇−
10/k̇10 = k̇−

01/k̇01, results
in

k̇′
10 = k̇

√

√

√

√

√

1 +
k̇−
10

k̇10
P 1
−·

1 + P 1
−·

1 +
k̇−
10

k̇10
P 0
−·

1 + P 0
−·

P01 and k̇′
01 = k̇

√

√

√

√

√

1 +
k̇−
01

k̇01
P 0
−·

1 + P 0
−·

1 +
k̇−
01

k̇01
P 1
−·

1 + P 1
−·

P10 (6.12)

It directly follows that

k̇′
01(pH1) =

√

√

√

√

k̇′2
01(−∞) + k̇′2

01(∞)10pH1−pK1

1 + 10pH1−pK1

(6.13)

where k̇′
01(−∞) = k̇

√

√

√

√

1+
k̇−
01

k̇01
P 0
−·

1+P 0
−·

P10 and k̇′
01(∞) = k̇

√

√

√

√

1+
k̇−
01

k̇01
P 0
−·

1+P 0
−·

k̇−
01

k̇01
P10 denote the exchange

rates if all the compound is present in, respectively, the molecular and the ionized form in
matrix 1, and the pH in matrix 0 is fixed.

When applied to toxicokinetics, one matrix corresponds to animal tissue, and one to
fresh or sea water. Ionized and un-ionized (molecular) forms of a compound are taken up at
different rates, while the pH affects their relative abundance and so the toxicokinetics [504].
If ions hardly exchange, so k̇−

10 = k̇−
01 = 0, knowledge about k̇10 or k̇01 is then no longer

required; knowledge about pHi, pKi and Pow = P−1
wo can be used to relate elimination rates

of different compounds to each other, where octanol serves as a chemical model for animal
tissue. Octanol is a good model compound to study lipophilicity, but a poor model to study
the ionization tendency. The derivation above shows that compounds that can ionize must
be compared with care; an increase in lipophilicity frequently comes with a decrease in
ionization tendency. It also shows how the pH affects the elimination rate and the partition
coefficient via P i

−· = 10pHi−pKi . This can be useful for comparing the toxicokinetics of a
single compound under different environmental conditions. Homeostasis ensures that the
pK and pH in animal tissue hardly depend on the environmental conditions.
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tṙB

k̇e/ṙB
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Figure 6.3: Uptake and elimination during growth. The scaled tissue concentrations start from
cV (0) = 0 (left), or cV (0) = cd (right), where cd stands for the environment concentration. The
different curves represent different choices for the value of the elimination rate k̇e, relative to the
von Bertalanffy growth rate ṙB. The finely dotted curve represents (scaled) body length and
the coarsely dotted curve the (scaled) reproduction rate. The (scaled) lengths at the start of
exposure and reproduction are realistic for the water flea Daphnia magna and the value tṙB = 2
corresponds with 21 d for D. magna at 20 ◦C. All curves in both graphs have an asymptote at
the value 1. If the product of the von Bertalanffy growth rate and the exposure time tṙB > 0.4,
the curves in the left and right panels are almost identical, i.e. independent of the initial tissue
concentration. The deviations from cV = cd can therefore be attributed to ‘dilution by growth’.

6.3 Energetics affects toxicokinetics

6.3.1 Dilution by growth

Body growth affects the toxicokinetics even at very low values, as Figure 6.3 illustrates.
The physics of the transport processes strongly suggests that uptake and elimination are
proportional to the surface area of the organism; it thus links up beautifully with the
structure of the deb model. Since the elimination rate is also proportional to the tissue
concentration, thus to the amount per volume, it is proportional to the ratio of the surface
area to the volume, thus inversely proportional to the volumetric length. This is why the
elimination rate must be divided by a scaled length if the body size changes, as has been
experimentally verified [841,844]. The change in scaled tissue concentration cV is given by

d

dt
cV =

k̇e

l
(cd − cV )− cV

d

dt
ln l3 (6.14)

where the term cV
d
dt

ln l3 accounts for the dilution by growth. If food density is constant,
the deb model reduces to d

dt
l = (f−l)ṙB, where ṙB is the von Bertalanffy growth rate. This

model still classifies as a one-compartment kinetics model with time-varying coefficients.
Newman and Mitz [662] found that the elimination rate of zinc in guppies was about
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proportional to weight−0.42 (which is consistent with the expected proportionality with
length−1, in view of the scatter), but the zinc-uptake rate was about proportional to
weight−0.9. This has the unexpected consequence that the bioconcentration coefficient
is proportional to weight−0.48. The elimination rate of mercury did not seem to depend
on the size of the mosquitofish, while the mercury-uptake rate tended to decrease with
size, so that the bioconcentration coefficient also decreases with size [661]. Boyden [107]
also found negative correlations between body size and concentrations of cadmium, cop-
per, iron, lead and zinc in some species of mollusc, but no correlations for cadmium, iron,
nickel, lead and zinc in other species of mollusc and a positive correlation for cadmium in
Patella vulgata.

The kinetics of these metals seems to interfere with the metabolism in a more complex
way. The substantial scatter in the data hampers firm conclusions from being drawn.
When the experimental protocol involves a shift up and thus a transition from low to high
concentrations of contaminant, negative correlations between body size and concentrations
of contaminant can be expected if elimination and uptake rates decrease with body size: it
takes longer for big bodies to reach equilibrium. This mechanism can at best only explain
part of the observations.

6.3.2 Changes in lipid content

Changes in lipid content, and thus in energy reserves, affect toxicokinetics. Since energy
kinetics has a direct link with food uptake, and uptake of a compound from food can
be substantial, the link between toxicokinetics with food uptake and reserves kinetics is
here discussed in the context of the deb model. Changes in lipid content frequently occur
in uptake experiments; it is practically impossible to feed a cohort of blue mussels in a
two-month uptake/elimination experiment adequately in the laboratory; at the end of the
experiment, the lipid content is reduced substantially. This affects the kinetics of lipophilic
compounds.

Accumulation of lipophilic compounds and partitioning between different organs can
be explained by the occurrence of stored lipids. Schneider [816] found large differences
of poly-chlorinated biphenyl (PCB) concentrations in different organs of the cod, but the
concentrations did not differ when based on the phospholipid-free fraction of extractable
lipids. Models for feeding-condition-dependent kinetics have been proposed [359,362,545],
but they have a large number of parameters. The application of the deb model involves
relatively few parameters, because of the one-compartment kinetics and instantaneous
partitioning of the compound in the organism, as proposed by Barber et al. [45] and
Hallam et al. [359]. The assumption that compounds are partitioned instantaneously
is supported by a study of the elimination rate of 4,4′-dichlorobiphenyl (PCB15) in the
pond snail Lymnaea stagnalis [1000]; Wilbrink et al. found that elimination rates are
equal for different organs, implying that ratios of concentrations in different organs do not
change. The fact that structural biomass consists of organs that have different partition
coefficients for the xenobiotic is covered by the assumptions of isomorphism, homeostasis
and instantaneous partitioning. The combination of these three assumptions implies that
the concentration–time curve in one organ can be obtained from that in another organ by
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applying a fixed multiplication factor.
The amount of compound in the body can be partitioned as MQ = MQV +MQE +MQR

in contributions from structural body volume, MQV , reserves, MQE, and the reproduction
buffer, MQR. The latter contribution can be substantial in species like the blue mussel,
which reproduces once a year and discharges half its body mass at spawning. Again, we as-
sume instantaneous partitioning of the compound over these compartments, and introduce
partition coefficients based on moles of compound per C-mole of body compartment. Since
the reproduction buffer has the same chemical composition as the reserves, the amount of
compound can be written as

MQ = MQV

(

1 +
[MEm]

[MV ]
PEV (e + eR)

)

= MQV PWV (6.15)

where PEV denotes the partition coefficient between reserves and structural biomass on
the basis of C-moles. The factor PWV , which depends on the (changing) reserve density,
can formally be considered as a partition coefficient between the total body mass and the
structural body mass.

According to the deb model, ingestion of food occurs at rate k̇X = fl2k̇Xm. Suppose
that the compound is present in food at concentration cX (mole per C-mole). Egestion
of faeces occurs at rate k̇P = fl2k̇Pm, with k̇Pm the maximum specific egestion rate.
Suppose that the compound is present at concentration cP in the fresh faeces, and that
cX

cP
= PXP is constant. The partition coefficient PXP can be conceived as a measure of

the extraction efficiency of the compound from food. The uptake flux via food amounts to

cX k̇X − cP k̇P = cX k̇X − cX k̇X
k̇Pm

k̇Xm
PPX = cXfl2(k̇Xm − k̇PmPPX) = cXfl2k̇ePV X , where k̇e

denotes the elimination rate from the body, and PV X ≡ (k̇Xm− k̇PmPPX)k̇−1
e is introduced

to simplify the notation.
Suppose that the compound is present in the dissolved form at concentration cd (mole

per volume), while the exchange rates between water and body are again taken to be
proportional to surface area. The nature of the uptake can be passive or active, but the
rate is taken to be proportional to the concentration in the environment and/or to food
uptake. Allowing for these two uptake routes, and for dilution by growth, the kinetics
amounts to

d

dt
[MQ] =

k̇e

l
PV dcd +

k̇e

l
PV XfcX − [MQ]

(

k̇e

l
PV W +

d

dt
ln l3

)

(6.16)

d

dt
cV =

k̇e

l
(cd + PdXfcX − PV W cV )− cV

d

dt
ln l3 (6.17)

where the partition coefficient PV W = P−1
WV is given in (6.15), k̇e

l
PV d is the uptake rate

from the water, k̇e

l
PV Xf is the uptake rate from the food, k̇e

l
is the elimination rate from

the body, PdX = PV X/PV d, and cV = [MQ]PdV , as before. The definition of the partition
coefficient PV d is the ratio of the uptake rate from water to the elimination rate; it is no
longer interpreted as the ultimate ratio of the concentration in the body to that in the
water. Likewise, PdX is not interpreted as the ultimate ratio of the concentration in the



198 6. Uptake and effects of non-essential compounds

food to that in the water. For PV W = 1 and PdX = 0, (6.17) reduces to (6.14), and for
l = f it further reduces to (6.2). The model still classifies as a one-compartment model
with time-varying coefficients.

Since most measurements are done on the basis of weights, the kinetics of the variable
〈MQ〉w = [MQ]/[Ww] is of practical interest; it represents the number of moles per unit
of wet weight. Like the total amount of compound, wet weight can be decomposed into
the contributions made by the structural body volume, the reserves and the reproduction
buffer, as done in (2.6). The change in concentration on the basis of weights is

d

dt
〈MQ〉w =

1

[Ww]

d

dt
[MQ]− 〈MQ〉wwE

[MEm]

[Ww]

(

d

dt
e +

d

dt
eR

)

(6.18)

where the second term relates to the change in weight, as implied by [Ww] = dV +
wE[MEm](e + eR), cf. (2.6). Apart from the initial conditions, this specifies the dynam-
ics in the period between the moments of spawning or reproduction. At such moments,
(wet) weight as well as the amount of xenobiotic compounds are discontinuous, because
the buffer of energy allocated to reproduction is emptied, possibly together with its load of
xenobiotic compound. The most simple assumption is to let the compound in that buffer
transfer to the egg. If reproduction occurs at time tR, and if t−R denotes a moment just
before tR, and t+

R just after, the ratio of the concentrations of compound equals

〈MQ〉w(t+
R)

〈MQ〉w(t−R)
=

dV + wE[MEm]PEV (e + eR)

dV + wE[MEm]PEV e

dV + wE[MEm]e

dV + wE[MEm](e + eR)
(6.19)

The first factor corresponds to the ratio of xenobiotic masses in moles, the second factor to
the ratio of body weights. This result can be larger or smaller than 1, depending primarily
on the partition coefficient PEV . If the moments of reproduction are frequent enough to
neglect the contribution of eR to wet weight and compound load, d

dt
eR can be replaced by

e0Ṙ, which can be left out if the reproductive output is negligibly small.
The elimination route via reproduction can be very important for rapidly reproducing

species, such as daphnids. Even in guppies it can be noticeable [843]. It is also possible
that no compound is transduced through the reproduction process, as has been found for
4,4′-DCB in Lymnaea [1000]. This implies a (sudden) increase of the concentration at
reproduction.

The change of concentration at reproduction has, of course, an intimate relationship
with the initial conditions for the offspring, which depend on the feeding conditions and the
loading of the mother. Experience with chronic toxicity tests shows that most effects occur
at hatching, which means that an egg must be considered to be rather isolated, chemically,
from its environment apart of course, from gas exchange. An extreme consequence is that
the amount of compound at egg formation is the same as that at hatching. This means
that the concentration at hatching relates to that of the mother just after reproduction as

〈MQ〉w(ab) = 〈MQ〉w(t+
R)

PEV Vm

PWV Vb

e0 (6.20)

where the ratio PWV is given in (6.15) and should now be evaluated at eR = 0.
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The parameters that relate to the kinetics of the compound are the elimination rate
k̇e, and the partition coefficients PV d, PV X and PEV . In addition, there are a number of
parameters that relate volumes to weights. The third class of parameters is from the deb
model via the expressions for d

dt
l, d

dt
e and d

dt
eR. Not all parameters are required to fit

the model to experimental data. If food density and cd/cX do not change, for instance,
and the reproduction buffer plays a minor role, PWV is constant, and the four toxicokinetic
parameters combine in just two compound parameters (PV d+PV XcX/cd)/PV W , and k̇ePV W .
It is obvious that additional physiological knowledge will help us to interpret experimental
results, especially if the physiological condition changes during the experiment. Although
some of the physiological parameters can be estimated from uptake/elimination curves in
principle, an independent and more direct estimation is preferable.

Figures 6.4 and 6.5 illustrate the performance of the model to describe the uptake/elimi-
nation behaviour of the compounds hexachlorobenzene (octanol/water partition coefficient
log Pow = 5.45 [797]) and 2-monochloronaphthalene (log Pow = 3.90 [678]). The mussels
and fish were not fed during the experiment, which implies that their energy reserves
decreased during this time. The fish depleted its energy reserves faster, because it was
smaller than the mussel and its temperature was higher. As a result of the decrease
in reserves, the fish started to eliminate the compound during the accumulation phase of
the experiment. The model successfully describes this phenomenon. The experiments were
short enough to assume that the size of the test animals did not change and that the energy
allocation to reproduction was negligibly small during the experiment. The concentration
of xenobiotic compounds in the water changed during accumulation. A cubic spline was,
therefore, fitted to these concentrations and used to obtain the concentrations in the wet
weight.

6.3.3 Bioconcentration coefficient

The bioconcentration coefficient, BC, is an important concept in the kinetics of xenobiotics.
It is used among other things as a crude measure to compare xenobiotic compounds and
species and to predict effects. For aquatic species and hydrophilic compounds, it is usually
defined as the ratio of the concentration in the organism to that in the water, which are
both taken to be constant. For terrestrial species and/or lipophilic compounds, it is usually
defined as the ratio of the concentration in the organism to that in the food. Applying
the BC concept is a bit complicated in the present context, because the concentration in
the organism does not become stationary, because of growth and reproduction, even if
the concentration in the environment is constant, i.e. in water, food and at constant food
density. If the growth rate is low in comparison to the exchange rates, the compound
can be in pseudo-equilibrium, but its concentration still depends, generally, on the size
of the organism. In addition, reproduction causes a cyclic change in concentration. The
oscillations become larger if the organism accumulates its reproductive output over a longer
time period. If food density is constant for a long enough period, we have e = f and d

dt
e = 0.

The ultimate concentration on the basis of wet weight then reduces for low growth and
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Figure 6.4: Measured concentration of hexachlorobenzene (HCB) in water and in a starving 6.03
cm3 freshwater mussel Elliptio complanata at 20 ◦C during a 264 h uptake/elimination experi-
ment. Data from Russel and Gobas [797]. The least-squares-fitted curves are the cubic spline
function for concentrations in the water and the model-based expectation for the concentration
in the wet weight. From [521].
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Figure 6.5: Measured concentration of 2-monochloronaphthalene (2-MCN) in water and in a
starving 0.22 cm3 female guppy Poecilia reticulata at 22 ◦C during a 168 h uptake/elimination
experiment. Data from Opperhuizen [678]. The least-squares-fitted curves are the cubic spline
function for the concentrations in the water and the model-based expectation for the concentration
in the wet weight. From [521].
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Figure 6.6: Bioconcentration coefficients (BCs)
for PCB153 in aquatic organisms in the field,
as given in [521]. Data from Oliver and Ni-
imi [664,676] and from the Dutch Ministry of
Public Works and Transport. The curve repre-
sents the least-squares fit of the linear relation-
ship between the BC and the volumetric length.
PV XV1/3 = 46 mm. 10 log body wet weight, g
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[Ww]

(

1 +
[MEm]

[MV ]
PEV f

)

(6.21)

This expression can be used to predict how BC depends on body size if species are com-
pared on the basis of the theory presented on {269}. Since PV X is proportional to J̇Xm,
BC is expected to be linear in the volumetric length. The trend in [Em] almost cancels
out. Figure 6.6 illustrates that the BC for the highly lipophilic compound 2,4,5,2′,4′,5′ hex-
achlorobiphenyl (PCB153) for aquatic animals is indeed linear in the volumetric length.

This expectation is thus based solely on differences in the uptake of the amount of
food. Accumulation in the food chain occurs particularly in terrestrial habitats, and more
debatably in aquatic ones. Since top predators tend to have the largest body size, it can be
difficult to distinguish food chain effects from body size effects. Food chain effects operate
through the partition coefficient for food/water, and body size effects act via the uptake
of food.

6.3.4 Metabolic transformations

If compounds are metabolized, the usual effect is that the products are less lipophilic than
the original compound, so PEV is reduced. In this way, the product will be eliminated at
a higher rate. If the metabolic transformation behaves as a first-order process, this only
affects the value of the elimination rate, and not the model structure. It has long been
recognized, however, that elimination frequently involves a metabolic activity that can be
satiated [958,959,960]. Many compounds, such as salicylurate [555,556], are found to have
a capacity-limited elimination route. Wagner [957] used Michaelis–Menten (MM) kinetics
to describe the elimination of ethanol from human serum, i.e.

d

dt
[MQ] = k̇ePV dc−

k̇e[MQ]

1 + [MQ]/[MQ]M
or (6.22)

d

dt
cV = k̇ec−

k̇ecV

1 + cV /cM

(6.23)
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with cV = [MQ]PV d, cM = [MQ]MPV d, PV d being the ratio of the uptake to the elimi-
nation rate, and k̇e and [MQ]M or cM are the parameters of the MM-elimination. The
concentration cM has the interpretation of the maximum sustained concentration in the
environment that can be ‘handled’ by the organism. If the concentration exceeds this value,
the concentration in the organism will build up continuously.

The MM-elimination route can supplement a first-order elimination route, which gives

d

dt
cV = k̇ec− k̇lcV −

k̇ecV

1 + cV /cM

(6.24)

The first-order elimination route might relate to respiration, and can be taken propor-
tional to the respiration rate k̇C of the organism. The MM-elimination route might relate
to excretion by the kidney or the liver, and taken proportional to the excretion rate of ni-
trogenous waste k̇N of the organism, for instance. A coupling of elimination with exudate
excretion in algae has been suggested [840]. These couplings with the energy budget reveal
how these parameters change with size during growth, or with the nutritional status, and
how they differ from one species to another. We can again allow for dilution by growth,
cf. (6.14), and different uptake routes and changes in lipid content, cf. (6.17). Needless to
say, we then need a rather elaborate series of measurements, because of the six parameters
that have to be estimated.

Note that (6.24) collapses to first-order kinetics if cV ≪ cM , and if cV ≫ cM , with
elimination rate k̇e + k̇l or uptake rate k̇ec− k̇ecM = k̇e(c− cM), respectively. If cV varies in
a rather small window around cM , (6.24) approximates first-order kinetics, with elimination
rate k̇l + k̇e/4. In all those cases, cM cannot be estimated; we need a rather big window for
measurements of cV around cM for that purpose. Problems disappear if the elimination flux
via the MM-route can be measured directly, by measuring the compound or its products,
in the urine, for instance.

6.4 Toxicants affect energetics

Only two types of effects are of primary, ecotoxicological, interest: those that affect survival
and those that affect reproduction. These effects determine population dynamics, and thus
production and existence. Due to the coupling between the various processes of energy
uptake and use, many other effects of compounds have an indirect effect on reproduction.
For instance, the conservation law for energy implies that a reduction of food uptake
has indirect effects on reproduction. The deb model describes the routes that translate
these effects into an effect on reproduction; allocation to reproduction depends on reserve
density, which depends on feeding rate, which depends on body size, which depends on
growth. Maintenance competes with growth for allocation, so effects on maintenance can be
translated into effects on growth, and thus into effects on reproduction. Small individuals
eat less than large ones, so less energy is available for reproduction. Effects on feeding,
growth and maintenance indirectly affect reproduction on the basis of the deb model.
These types of effects relate directly to energetics. Their consequences can be evaluated
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by changing one or more parameter values of the deb model. Such a study is not very
different from a more general one on the evolutionary implications of parameter settings.

The environmental relevance of mutagenic effects is still in debate. A frequently heard
opinion from some industrialists is that mutagenic effects have no environmental impact at
all, stating that the direct effect on survival is negligibly small and the loss of gametes does
not count from an ecological point of view. The way aging is treated within the deb model
closely links up with mutagenic effects, particularly if the free radical mechanism is correct.
Mutagenic compounds have about the same effect on organisms as free radicals. As a con-
sequence, mutagenic effects can be studied by changing aging acceleration (in the case of
metazoans). The deb model offers the possibility of evaluating the consequences of muta-
genic effects along the same lines as the effects on energy fluxes. I have already mentioned
the setting of aging acceleration as a compromise between the life span of individuals and
the evolutionary flexibility of the genome. The effects of changes in aging acceleration must
then be found over a time scale of many generations and involve interspecies relationships.
This makes such effects extremely hard to study, both experimentally and theoretically.
The lack of reliable models for this time scale makes it difficult to draw firm conclusions.
The fact that mutagenic compounds tend to be rather reactive and, therefore, generally
have a short life in the environment is part of the problem, which perhaps makes them less
relevant to the problem of environmental pollution if emissions are only incidentical.

The significance of mutagenic effect on human health is widely recognized, particularly
in relation to the occurrence of tumours and cancer. The Ames test is frequently applied to
test compounds for mutagenic effects. The deb model offers a framework for interpreting
the sometimes unexpected results from these tests. The Ames test is discussed on {214}
for this reason, in a subsection of the section on effects on populations, as it is basically
aimed at this level of organization.

The environmental significance of teratogenic effects, i.e. effects on the development of
organisms, is even less well recognized than the significance of mutagenic effects. Fortu-
nately, only a few compounds seem to have a teratogenic effect as their primary one, and
these fall outside the scope of this book.

Each physiological process has its own tolerance range for any compound. The upper
boundaries can be ordered, which means that at low tissue concentrations that produce
effects, only one physiological process is affected, while at high tissue concentrations many
processes are affected. As long as the partitioning of the compound over the various body
fractions is fast with respect to the uptake/elimination kinetics for the whole animal, it
is not essential to specify the tissue or organ in which the most sensitive physiological
process is affected. This only becomes essential if the partitioning is slow. This makes
multi-compartment models as a basis for effect studies so much more complex to apply: we
have to know a great deal more. Notice that one-compartment models can handle different
concentrations in different organs as long as partitioning is fast. Observed deviations from
one-compartment kinetics with constant coefficients frequently relate to the variations in
the coefficients, not necessarily to the presence of more compartments.

Basic to the description of small effects of toxicants is the notion that each molecule
that exceeds the tolerance range contributes to the same extent to the effect. Interactions
between the molecules only occur at higher tissue concentrations. Hence, the effect size is,
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as a first approximation, a linear function of the tissue concentration. This point of view
relates to the Taylor approximation for non-linear functions that describe how effect size
relates to tissue concentrations: we use only the first term of the Taylor approximation
at the upper boundary of the tolerance range. The theorem by Taylor states that we can
describe any non-linear function in a given interval arbitrarily well with an appropriate
polynomial function if we include enough higher order terms. So when we want to im-
prove the description of effects, if they happen to deviate from a linear relationship with
tissue concentrations, we simply include the squared term, the cubed term, etc. Such
improvements will rapidly become counterproductive because we increase the number of
parameters that must be estimated and because higher tissue concentrations will affect
more physiological processes. So we are increasing precision at the wrong points. Practice
teaches that very good descriptions can be obtained by just taking effect size to be linear
in the tissue concentration, even at rather high effect sizes, provided that we focus on the
correct physiological process.

An approach to modelling effects that has proven to be rather successful is to tie the
occurrence of effects to the concentration in the tissue. Combined with the idea that the
compound partitions instantaneously over the different body fractions, as is discussed in
the previous section, it no longer matters if the effects originate from the disfunctioning of
one or more particular organs, or of the whole body. If the concentration in one particular
organ exceeds some threshold, it will at the same time exceed another threshold in another
organ. This is of course no longer true if partitioning is a slow process with respect to the
uptake and elimination rate of the compound.

The simple observation that the effects of a mildly toxic compound that strongly ac-
cumulates cannot be distinguished from those of a strongly toxic compound that poorly
accumulates teaches us that the partition coefficients do not occur as independent param-
eters in effect models. However, the elimination rate does; it shows up as the rate at which
effects build up to their ultimate levels during exposure. If the effects build up rapidly,
such as for surfactants, the elimination rate is high. A rapid build-up should not be con-
fused with a high toxicity, however; the uptake rate and the toxicity of the compound also
affect these properties. The elimination rate can thus be estimated from effect data. If the
elimination rate is known from toxicokinetic data, this knowledge can be used to analyse
effect data.

6.4.1 No effects

Organisms have evolved in a chemically varying environment; consequently they can cope
with varying concentrations of any particular compound, as long as the variations are
within a certain range. The upper boundary for this range, i.e. the internal no-effect
concentration, might be zero for particular compounds. Each molecule of such compounds
induces effects with a certain probability, but for most compounds, the upper boundary is
positive. The lower boundary is zero for most compounds, because they are not necessary
for life. Elements such as copper are required, so the lower boundary for copper is positive.
Effects of a shortage of a compound resemble those of an overdose in their kinetics. The
founder of ecotoxicology, Sprague [872] studied the effects of toxicants in bioassays, using
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oxygen shortage as an example. Although many interrelationships exist between nutrition
and toxic effects, the upper boundary of the tolerance range attracted most attention in
ecotoxicology, because of its application in risk assessment studies, while ecology focused
on the lower boundary (see White [991]).

The No-Effect Concentration (nec) is a concept that is specific to the organization level
of the individual. Even if each molecule has an effect, regulation systems in the individual
cancel these effects; if a compound affects the binding capacity of blood for oxygen molecule
by molecule, the individual reacts by producing more haemoglobin, or functionally related
compounds. So, effects at low concentrations will not show up in oxygen-rich environments.
This example also illustrates that the nec can depend on environmental conditions.

6.4.2 Effects on survival

For some reason, not all individuals show effects of the same intensity at the same time
if exposed to the compound in a certain concentration or at a certain dose. Part of the
differences can be explained by differences in physiological condition, lipid content and
size. It is possible to remove most but not all differences by strict standardization of the
organisms that are used for the experiments.

A solution to these problems can be found in a stochastic approach to the occurrence
of effects on a single individual, much along the same lines as is done for the modelling of
aging. The survival of a single individual is then described in terms of a hazard rate that
depends on the concentration of the compound in the organism, i.e. the hazard rate is

ḣc ∝ ([MQ]0,l − [MQ])+ and/or ḣc ∝ ([MQ]− [MQ]0,u)+ (6.25)

where [MQ]0,l and [MQ]0,u stand for the lower and the upper boundary of the concentrations
of compound that do not affect survival.

The proportionality constant that describes the effect on the hazard rate probably
differs for shortages and excesses. This relates to differences in mechanisms. If the con-
centration exceeds the tolerance range substantially, it is likely that death will strike via
other mechanisms than for small excesses. This restricts the applicability of the model
to relatively small ranges of concentration. In practice, however, very wide concentration
ranges are frequently used, as in range-finding tests on a routine basis.

In the rest of this subsection, I assume that [MQ]0,l = 0 for simplicity’s sake, and
reduce the notation [MQ]0,u to [MQ]0. The idea for hazard modelling can be worked out
quantitatively as follows for a constant concentration in the environment.

Because of the general lack of knowledge about relevant concentrations in tissue, those
in the environment will be used to specify the hazard rate. If the initial concentration in the
tissue is negligibly small and if the concentration of compound in the tissue follows simple
first-order (i.e. one-compartment) kinetics (6.2), the hazard rate at constant concentration
c in the environment is

ḣc = ḃ†(cV − c0)+ = ḃ†((1− exp{−tk̇e})c− c0)+

The proportionality constant ḃ† is the killing rate with the dimension (environment concen-
tration× time)−1. It is a measure of the toxicity of the compound with respect to survival.
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The nec c0 ≡ [MQ]0PdV in the environment is the highest concentration that will never
result in an effect if the concentration is constant. If c > c0, but constant, and if the
initial concentration in the tissue is 0, effects start to show at t0 = −k̇−1

e ln{1 − c0/c},
the moment at which the concentration in the tissue exceeds the nec. In the absence of
‘natural’ mortality, the survival probability q for c > c0 and t > t0 is

q(c, t) = exp
{

−
∫ t

0
ḣc(t1) dt1

}

(6.26)

= exp
{

ḃ†k̇
−1
e c(exp{−t0k̇e} − exp{−tk̇e})− ḃ†(c− c0)(t− t0)

}

(6.27)

This equation has three parameters, which are of all of practical interest: the nec
c0, the killing rate ḃ† and the elimination rate k̇e. The more elaborate description of the
deb-based kinetics could be used to describe survival patterns in more detail. Practical
limitations are likely to ruin such an attempt if no measurements for the concentration
in the tissue are available. An appropriate experimental design can usually avoid such
complications.

Figure 6.7 illustrates the application of (6.27) to the results of some standard toxicity
tests. Note that this formulation implies that the concentration–response relationships
become steeper for longer exposure periods.

An interesting special case concerns extremely small elimination rates, so k̇e → 0, and
PV d → ∞, such that the uptake rate k̇ePV d = k̇dV remains fixed. The accumulation
process reduces to d

dt
[MQ] = k̇dV c, so that [MQ](t) = k̇dV ct if the initial concentration in

the tissue is negligibly small. The nec (in the environment) is now 0, because a very
small concentration in the environment will result ultimately in a very high concentration
in the tissue. A nec in the tissue, i.e. the upper boundary of the tolerance range, still
exists, of course, and is exceeded at t0 = [MQ]0(k̇dV c)−1. The hazard rate amounts to
ḣc = b̈†c(t− t0)+. The relationship between the killing acceleration b̈† and the killing rate
ḃ†, in the case that k̇e 6= 0, is b̈† = ḃ†k̇e. The survival probability is

q(c, t) = exp{−b̈†c(t− t0)2/2} (6.28)

For small necs in the tissue, so t0 → 0, this represents a Weibull distribution with shape
parameter 2. The only difference with the survival probability related to aging, cf. {255}, is
the extra accumulation step of products made by affected dna, which results in a Weibull
distribution with shape parameter 3.

In this special case, the full response surface in the concentration-exposure time-plane
is described by just one parameter, the killing acceleration b̈†. One step towards more
elaborate models is the introduction of the upper boundary of the tolerance range, via
[MQ]0/k̇da in t0. Next comes the introduction of the elimination rate k̇e, which allows a
new parameter basis: ḃ†, k̇e and c0. Then follow changes in the chemical composition (and
size) of the animal by introduction of the partition coefficients PEV and PPX , and/or a
separation of uptake routes via the dissolved fraction {k̇dV } or via food {k̇xV }. Finally,
we should allow for metabolic transformations. So the level of model’s complexity can be
fully trimmed to the need and/or practical limitations. The more complex the model is,
the more one needs to know (and measure) about the behaviour of the compound in the
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guppies (Poecilia reticulata) in dieldrin
ḃ† = 0.038 l µg−1 d−1, k̇e = 0.712 d−1, c0 = 4.49 µg l−1

gammarids (Chaetogammarus marinus) in 3,4-dichloroaniline
ḃ† = 0.40 l mg−1 d−1, k̇e = 0.335 d−1, c0 = 1.41 mg l−1

daphnids (Daphnia magna) in potassium dichromate
ḃ† = 0.40 l mg−1 d−1, k̇e = 0.125 d−1, c0 = 0.26 mg l−1

Figure 6.7: Stereo view of the number of surviving individuals, z-axis, as a function of exposure
time, x-axis, to toxic compounds, y-axis. The expected number of surviving individuals is based
on the idea that the hazard rate is proportional to the concentration in the tissue that exceeds
the nec under first-order kinetics. Unpublished data, kindly provided by Ms Adema (IMW–TNO
laboratories).
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Figure 6.8: The 14 days lc50 val-
ues as a function of octanol-water parti-
tion coefficient for guppies (Poecilia retic-

ulata) exposed to 21 chlorinated aro-
matic and other some chlorinated hydro-
carbons whose Pow ranged from 10−0.22

(pentachlorobenzene) to 105.21 (acetone).
(Data from Könemann [504]). The cal-
culations are based on the assumptions
that the elimination rates equal 50/

√
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d−1, the killing rates equal 10−6.6Pow
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environment, changes in the nutritional status of the animals, growth, reproduction, etc.
If experimental research and model-based analysis of results are combined in the proper
way, one will probably feel an increasing need to define precise experimental conditions
and avoid complicating factors, such as uncontrolled changes in exposure.

This description of effects on survival makes the theory on competing risks available
for direct application to toxicity and links up smoothly with standard statistical analyses
of hazard rates; see for instance [51,179,197,463,606]. The significance of a toxic stress for
a particular individual depends on other risks, such as aging and starvation. If ḣ stands
for the hazard tied to aging as before, and ḣp for other risks, such as predation, an obvious
instantaneous measure for the significance of the toxic stress is

ḣc(ḣ + ḣc + ḣp)−1

Ionization and Pow

Since the stress value is linear in the number of molecules in the organism, it follows directly
from (6.11) that the killing rate and the nec depend on the pH and the pK as

ḃ†(pH) =
ḃ†(−∞) + ḃ†(∞)10pH−pK

1 + 10pH−pK
; c−1

0 (pH) =
c−1

0 (−∞) + c−1
0 (∞)10pH−pK

1 + 10pH−pK

where ḃ†(−∞) and ḃ†(∞) stand for the killing rate if all of the compound were present in,
respectively, the molecular and the ionized form and pK is the dissociation coefficient. A
similar relationship has been proposed by Könemann [504] for lc50−1, where the lc50 is
defined as the concentration cL50(t) for which q(cL50(t), t) = 0.5 holds; it is frequently used
as a quantifier for lethal effects.

Since the equilibrium tissue concentration is proportional to Pow, we should expect to
find that the killing rate ḃ† ∝ Pow, the tolerance concentration c∗ ∝ P−1

ow and the nec
c0 ∝ P−1

ow . The empirical study by de Wolf [1012] supports these expectations.
Könemann [505] observed that the 14 days log lc50 of the guppy Poecilia reticulata for

50 ‘industrial chemicals’ is lc50 = 0.0794 P−0.87
ow mol dm−3. To understand this relationship,
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we have to realize that for a large elimination rate, so a small Pow, the 14 days lc50 is
close to the ultimate value, but for a large Pow, the ultimate lc50 is much lower than the
lc50.14d. Taking these complexities into account, Figure 6.8 confirms that ḃ† ∝ Pow and
k̇e ∝ P−0.5

ow are indeed consistent with the finding by Könemann (see ). Unfortunately, the
data of Figure 6.8 did not allow us to check the relationship for the nec. Although the
necs had been set to zero, adopting the function nec = 10P−1

ow mmol dm−3 hardly changes
the result. The conclusion is that the quantitative structure–effects relationships for lc50s
follow from first principles.

6.4.3 Effects on growth and reproduction

Toxic effects of chemicals change the allocation via the parameter values. Since the pro-
cesses of assimilation (i.e. the combination of feeding and digestion), growth, maintenance
and reproduction are intimately interlinked, changes in any of these processes will result
in changes in reproduction [519]. Two classes for the mode of action of compounds will
be distinguished: direct and indirect effects on reproduction.

When reproduction is affected directly, assimilation, growth and maintenance are not
affected. There are two closely related routes within the deb framework to affect repro-
duction directly. One is via survival of each ovum, and the other is via the energy costs of
each egg.

Direct effects on reproduction

The survival probability of each ovum is affected as discussed in the previous section on
effects on survival, except that the sensitive period is taken to be relatively short and fixed
rather than the whole life span. (Age zero refers to the moment at which the ovum starts to
develop, rather than the moment of hatching or birth.) The combination of an effect on the
hazard rate of the ovum and a fixed sensitive period results in a survival probability that
depends on the local environment of the ovum. This leads to another important difference
with the previous section: the local environment of the ovum is the tissue of the mother
rather than the environment concentration. The relevant concentration, therefore, changes
in time even if the environment concentration is constant. The toxicity parameters that
appear in the survival probability of an ovum are the nec, as before, and the tolerance
concentration, which is inversely related to the product of the killing rate and the length of
the sensitive period. The elimination rate defines how the effect builds up during exposure.

In terms of number of eggs per time, the reproduction rate equals the ratio of the
energy allocated to reproduction and the energy costs of an egg. If the compound affects
the latter, it can be modelled by making the energy costs a (linear) function of the tissue
concentration. The model is mathematically different from the hazard model but behaves
quantitatively rather similarly, as is illustrated in Figure 6.9.

Indirect effects on reproduction

Allocation to reproduction starts as soon as the cumulative investment in the increase of
the state of maturity exceeds some threshold value. Since direct effects on reproduction
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Figure 6.9: Direct effects of cadmium on Daphnia reproduction. The mean cumulated number
of young per female daphnid as a function of the exposure time to several concentrations of
cadmium. The fitted curves represent least-squares fits of the hazard (left) and the cost (right)
model for effects on reproduction to the same data.
Given an elimination rate of k̇e = 0.05 d−1, the esti-
mated values for the nec c0, the tolerance concentra-
tion c∗ and the maximum reproduction rate Ṙm in the
control are

c0,µg l−1 c∗,µg l−1 Ṙm,d−1

hazard 0.023 0.166 13.1
cost 0.047 0.069 13.1

only affect the translation from energy allocated to reproduction into number of offspring,
these modes of action do not affect the time of onset of reproduction. Indirect effects on
reproduction via assimilation, maintenance and growth do delay the onset of reproduction.
The occurrence of such delays is the best criterion for distinguishing direct from indirect
effects.

Indirect effects on reproduction all follow the same basic rules: the relevant parameter
(surface-specific assimilation rate, volume-specific maintenance costs or volume-specific
costs of structure) is taken to be a linear function of the tissue concentration. Since
the assimilation rate represents a source of income rather than costs, it is assumed to
decrease linearly with the tissue concentration rather than increase, see Figure 6.10. This
is consistent with the effect of oxygen on the assimilation of autotrophs: photorespiration
subtracts from photosynthesis, see {166}.

The effects on the reproduction rate as a function of environment concentration and
exposure time all work out rather similarly and have the same three toxicity parameters:
nec, tolerance concentration and elimination rate. If growth is measured during exposure,
or if the animals’ size at the end of the exposure period is measured, it is possible to identify
the mode of action. The differences in effects on reproduction are too small to identify the
mode of action on the basis of effects on reproduction alone. Figure 6.11 compares the
three indirect effect models fitted to the same data. It shows that the models differ little
in terms of goodness of fit.
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Figure 6.10: The effect of CuCl2 on the assimilation of Lumbricus rubellus. Data kindly provided
by Mrs C. Klok [492] and fits by J. J. M. Bedaux. The newly hatched worms were exposed
in sandy loam soil and fed ad libitum with Alnus leaves at 15 ◦C and 90% relative humidity.
Parameter values: Wb = 0 mg, Wm = 11.663 mg, ṙB = 0.018 d−1, g = 1, c0 = 4.45 mg kg−1,
cA = 1193 mg kg−1, k̇e =∞ d−1.

Stress value

The quantitative aspects of the various modes of action can be summarized as follows.
The compound affects a single target parameter value at low concentrations via the di-
mensionless stress value s = c−1

∗ (cV − c0)+ = (cV /c∗ − s0)+, where cV is the scaled tissue
concentration (that has the dimensions of an environment concentration), c0 the nec and
c∗ the tolerance concentration. The tolerance concentration is a parameter that has the
dimension of an environment concentration, and it belongs to a specific physiological target
parameter; its name refers to the fact that the value decreases for increasing toxicity of the
compound.

The deb model identifies the following target parameters: the maximum specific as-
similation rate {ṗA}, the specific maintenance rate [ṗM ], the costs of structure [EG], the
costs of reproduction E0, and the hazard of the ovum ḣ (during a short period). It is
conceivable that other parameters can be affected as well, such as the threshold for the
cumulative investment in development that triggers the stage transition. These primary
parameters can be written as simple functions of the stress value, and occur in a number
of compound parameters that define the post-embryonic growth and reproduction process
via

d

dt
e = (f − e)

k̇Msgs

l
(6.29)

d

dt
l = (lmse− l)

k̇Msgs

3(e + gs)
(6.30)

Ṙs(l) =
Ṙms

1− l3p





(

lm0

lms

)3
el2

g + e

(

k̇M0

k̇Ms

g0 + l

)

− l3p





+

(6.31)
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c0,µg l−1 c∗,µg l−1 k̇e,d
−1 Ṙm,d−1

maint. 3.84 31.7 0.75 9.50
growth 3.51 3.85 0.90 9.56
assim. 3.37 65.8 0.87 9.53

Figure 6.11: Indirect effects of 3,4-dichloroaniline on Daphnia reproduction. The mean cu-
mulated number of young per female daphnid as a function of the exposure time to several
concentrations of 3,4-dichloroaniline. The fitted curves represent least-squares fits of the model
for effects on reproduction via maintenance, growth and assimilation to the same data. The
estimated values for the nec c0, the tolerance concentration c∗, the elimination rate k̇e and the
maximum reproduction rate Ṙm in the control are given in the table of parameters.



6.4. Toxicants affect energetics 213

where the index s indicates that the compound parameter depends on the stress value
through multiplication of the value without stress (index 0) by a factor that is given in the
table

model target Ṙms

Ṙm0

gs

g0

k̇Ms

k̇M0

lms

lm0

hazard ḣovum exp{−s} 1 1 1
costs κR (1 + s)−1 1 1 1

maint. [ṗM ] (1 + s)
1−l3p(1+s)3

1−l3p
1 1 + s (1 + s)−1

struct. [EG] 1 1 + s (1 + s)−1 1

assim. {ṗAm} 1−l3p(1−s)−3

1−l3p
(1− s)−1 1 1− s

Growth and reproduction under stress, as given in (6.29), (6.30) and (6.31), should be
supplemented with the scaled toxicokinetics (6.2), (6.14), (6.17), (6.23) or (6.24) and the
initial conditions, to complete the specification. The dynamics of sublethal effects are thus
characterized by just two parameters, the nec c0 and the tolerance concentration c∗, and
at least one toxicokinetic parameter, the elimination rate k̇e. Additional parameters can
be included in more elaborate descriptions of toxicokinetics. Although the stress value
can change in time, because of a varying tissue concentration, none of these three param-
eters depends on exposure time, but the resulting effects can already be quite complex in
transient environments.

6.4.4 Receptor-mediated effects

Up till now, the effect of a compound has been taken directly proportional to the tissue
concentration. In a number of cases, the effect might be more complex, and does not only
relate to the actual tissue concentration, but also to its (recent) history. A simple model
on the basis of receptors gives an example.

Suppose that the total number of receptors N+ in an organism remains constant, and
that the compound transforms functional receptors into non-functional ones at a rate
that is proportional to the ‘meeting frequency’ between the compound and the number
of functional receptors. Non-functional receptors can resume their functioning at a given
probability rate, or the organism can produce new functional receptors at a rate that is
proportional to the number of non-functional receptors. Let Nn(t) denote the number of
non-functional receptors, and Nf (t), the number of functional ones, while Nn(t) + Nf (t) =
N+. The change in the number of non-functional receptors then amounts to

d

dt
Nn = ḃfncV Nf − ṙnfNn = ḃfncV N+ − (ṙnf + ḃfncV )Nn (6.32)

with ṙnf the specific recovery rate, ḃfn the knock-out rate, and cV the scaled tissue con-
centration. The stress value can be taken linear in the number of non-functional receptors,
s = N−1

s (Nn −N0)+ = (Nn/Ns − s0)+, where the parameter Ns scales the number of non-
functional receptors to the stress, and N0 is the number of non-functional receptors that
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does not result in an effect on the stress. If we start with unexposed individuals, we have
Nn(0) = 0, Nf (0) = N+ and cV (0) = 0. This formulation can be combined with a simple
first-order kinetics for the tissue concentration, if the amount of compound involved in the
binding process is negligibly small.

The model has the interesting property that the amount of memory of the effect is
tunable. For large values of ḃfn and ṙnf , the number of non-functional receptors is in
pseudo steady state, the amount of memory is negligibly small, and the stress is a hyperbolic

function of the tissue concentration, rather than a linear one, since Nn ≃ N+

(

1 +
ṙnf

ḃfncV

)−1

.

If ṙnf ≫ ḃfn and Ns is small, or the concentration is small, the model converges to the
earlier one, where the effect depends linearly on the actual tissue concentration.

Receptor-mediated effects on survival can be modelled by simply taking the hazard rate
as being proportional to the stress, which amounts to the coupled differential equations for
the scaled number of non-functional receptors nn = Nn/N+ and the survival probability q

d

dt
nn = ḃfncV − (ṙnf + ḃfncV )nn;

d

dt
q = −q(k̇†nn − ḣ0)+

on the assumption that all of the compound in tissues contributes to knocking out receptors,
but that the individual can handle a threshold level of non-functioning receptors.

6.4.5 Mutagenic effects

Ames test

The Salmonella test, also known as the Ames test, is a popular test for the mutagenic
properties of a compound [19,591]. It is discussed here because the results of the test can
sometimes only be understood if energy side-effects are taken into account, for which the
deb model gives a useful framework [420].

The test is carried out as follows. Bacteria (mutants of Salmonella typhimurium) that
cannot produce the amino acid histidine are grown on an agar plate with a small amount of
histidine but otherwise large amounts of all sorts of nutrients. When the histidine becomes
depleted, these histidine auxotrophs stop growing at a colony size of typically 8–32 cells.
Histidine auxotrophic bacteria can undergo a mutation enabling them to synthesize the
necessary histidine themselves, as can the wild strain. They become histidine-prototrophic
and continue to grow, even if the histidine on the plate is depleted. (They only synthe-
size histidine if it is not available in the environment.) Colonies that contain histidine-
prototrophs are called revertant colonies and can eventually be observed with the naked
eye when the colony size is thousands of cells. The number of revertant colonies relates to
the concentration of the compound that has been added to the agar plate and its mutagenic
capacity.

Liver homogenate of metabolically stimulated rats is sometimes added to simulate mu-
tagenicity for vertebrates. The primary interest in mutagenicity is because of human health
problems, as explained. Vertebrates have many metabolic pathways that prokaryotes do
not have. Enzymes in this homogenate sometimes transform non-mutagenic compounds
into mutagenic ones, sometimes they do the opposite or have no effect at all.
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Some initial histidine is necessary, because bacteria that do not grow and divide do not
seem to mutate, or, at least, the mutation is not expressed. This ties mutation frequency
to energetics. It is a most remarkable observation, with many consequences. Since mainte-
nance processes also involve some protein synthesis, one would think that mutations should
also be expressed if growth ceases, but observation teaches otherwise. If a compound is
both mutagenic and reduces growth, the moment of histidine depletion is postponed, so
that effective exposure time to the mutagenic compound is increased. Some brands of agar
contain small amounts of compounds that become (slightly) mutagenic after autoclaving.
This gives a small mutagenic response in the blank. If a test compound only affects growth
and is not mutagenic at all, the number of revertant colonies will increase with the con-
centration of test compound. Such responses make it necessary to model the combined
mutation/growth process for the interpretation of the test results.

The rest of this section gives a simple account, appropriate for deb V1-morphs from
a culture that resembles the (initial) growth conditions on the agar plate. For a more
detailed account; see [420]. A description for deb rods would be more accurate but also
more complex and would hide the message.

Suppose that the initial amount of histidine on a plate is just enough for the synthesis
of Nh cells. Figure 9.7 shows that the histidine reserves are small enough to be neglected.
If the inoculum size on the plate is N0, the number of cells develops initially as N(t) =
N0 exp{ṙt}. Histidine thus becomes depleted at time th = ṙ−1 ln{1 + Nh/N0}. If the
mutation rate per unit of DNA is constant, say at value ḣM , the probability of at least one
mutation occurring in the descendants of one auxotrophic cell becomes for low mutation
rates

1− exp
{

−ḣM

∫ th

0
(N(t)/N0) dt

}

= 1− exp

{

− ḣMNh

ṙN0

}

≃ ḣMNh

ṙN0

(6.33)

The probability of back mutation is small enough to be neglected. The expected number
of revertant colonies is N0 times (6.33), so that the number of revertant colonies is hardly
affected by the inoculum size. The effect of an increase in the number of micro-colonies on
the plate is cancelled by the resulting reduction of exposure time.

A consequence of the assumption that the mutation frequency per unit of DNA is
constant is that the mutations are independent of each other. This means that the number
of revertant colonies on a plate follows a binomial distribution, which is well approximated
by the Poisson distribution for low mutation rates. (There are typically less than 100
revertant colonies with a typical inoculum size of 108 per plate.)

The significance of this expression is that the effect of inoculum size and the amount
of histidine become explicit. Variations in these variables, which are under experimental
control, translate directly into extra variations in the response. If a compound affects the
population growth rate, it also affects the expected number of revertant colonies. I refer
to the subsection on population growth rates, {217}, for a discussion of how individual
performance (substrate uptake, maintenance, growth) relates to population growth rates.
This defines how effects on individual performance translate into effects on population
growth rates. This remark not only applies to effects of the test compound, but also to
the nutritional quality of the agar.
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Figure 6.12: The hazard rates for the rotifer Asplanchna girodi for different food levels: 20 (3)
30 (△) 60 (2) 120 (▽) and 240 (1) paramecia rotifer−1 d−1 at 20 ◦C. Data from Robertson and
Salt [777]. The one-parameter hazard curves are based on the scaled food densities as estimated
from the ultimate volumes (3, right), which give f = 0.877, 0.915, 0.955, 0.977, 0.988. The
resulting five aging accelerations are plotted in the right figure (△). They proved to depend
linearly on food density, with an intercept that is consistent with the aging acceleration found
for daphnids.

The mutation rate is usually found to be proportional to the concentration of test
compound. This means that each molecule has a certain probability of causing a muta-
tion. Deviations from this relationship can usually be related to changes in the stability
of the compound on the plate. Many mutagenic compounds are rather reactive, so the
concentration usually decreases substantially before th. Others, such as nitrite, diffuse to
the deeper layers of the agar plate and become less available to the bacteria in the upper
layer. It is easy to circumvent this problem by adding the compound to the (thick) nu-
tritive bottom layer when it is still liquid, rather than to the (thin) top layer. However,
this would increase the financial costs of the test. If metabolic activation is applied, the
concentrations of the original compound and the products are likely to become complex
compound-specific functions of time. One strategy for interpreting the test results is to
analyse and model the time stability of compounds in the Ames test. A better strategy
would be to change the experimental procedure in such a way that these complexities do
not occur.

Food-induced aging acceleration

Some data sets, such as that of Robertson and Salt [777] on the rotifer Asplanchna
girodi feeding on the ciliate Paramecium tetraurelia, indicate that the hazard rate increases
sharply with food density. See Figure 6.12. Although the shapes of the hazard curves are
well described by (4.22), this equation does not predict the extreme sensitivity to food
density. This particular data set shows that aging acceleration is linear in the food density,
which suggests that something that is proportional to food density affects the build-up of
damage-inducing compounds or the transformation of these compounds into damage. One
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possibility is nitrite derived from the lettuce used to culture the ciliates; nitrite is known
for its mutagenic capacity [420].

6.4.6 Effects of mixtures

The toxicity of mixtures of compounds is of substantial practical interest, which explains
the wide interest in the subject. A compound that can be present in molecular and ionic
forms can be thought of as a mixture. Since the stress value is assumed to depend linearly
on the tissue concentration, the evaluation of effects of binary mixtures of compounds
within the deb context is relatively straightforward. If two compounds have the same
physiological target parameter, and do not interact, a natural choice for the stress value
would be

s = (cV 1/c∗1 + cV 2/c∗2 − s0)+ (6.34)

where cV 1 and cV 2 are the scaled tissue concentrations of compounds 1 and 2, c∗1 and
c∗2 are the tolerance concentrations, and s0 is the stress value that the organism can
handle, without showing effects. The idea is that the threshold s0 reflects the physiological
flexibility of the organism, rather than an absence of effects at the molecular level. Such a
mechanism would suggest s = (cV 1− c01)+/c∗1 + (cV 2− c02)+/c∗2, which has one parameter
more. Since the elimination rates can differ for the two compounds, such an extra parameter
would add up to at least six toxicity parameters for the dynamic effects of the mixture if
there is no interaction between the compounds.

Compounds can interact in complex ways in their toxic effects. Hewlett and Plackett
[407] found that the insecticide thanite intensifies biochemically the toxicity of aprocarb,
but that the inverse was not the case. Excluding this type of complex interaction, we
can think of the stress value as some non-linear function of the two tissue concentrations,
where we are interested in small stress values only. For this purpose, we can introduce an
interaction term as is standard in the analysis of variance, and arrive at

s =
(

cV 1

c∗1

+
cV 2

c∗2

+
cV 1cV 2

C∗

− s0

)

+

(6.35)

where the parameter C∗ (dimension: squared environment concentration) is inversely pro-
portional to an interaction term, analogous to the model of the analysis of variance. It
can be positive, in the case of synergism, and negative, if the compounds counteract. For
effects on the hazard rate, this translates to

ḣc = (ḃ†1cV 1 + ḃ†2cV 2 + Ḃ†cV 1cV 2 − ḣ0)+ (6.36)

where Ḃ† is the interaction parameter, and ḣ0 the hazard rate that measures the stress
value with which the animal can cope without effects on survival.

6.4.7 Population consequences of effects

The general theory to evaluate properties of individuals in terms of dynamics of populations
is discussed on {303}ff. Here I only remark that different modes of action translate differ-
ently to consequences for the population, which can be understood intuitively as follows.
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ṙ/ṙm
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Figure 6.13: Population growth rate in a stressed situation is plotted against that in a blank
situation, when only one energy parameter is affected at the same time for reproducing isomorphs
(left) and dividing filaments (right). The effect of compounds with different modes of action is
standardized such that the maximum population growth rate is 0.9 times that in the blank. Food
density is assumed to be constant. Relative effects in isomorphs on structure costs [EG], reserve
capacity [Em] and reproduction κR are almost independent of the feeding conditions, while those
on assimilation {ṗAm}, maintenance [ṗM ] and survival ḧa are much stronger under poor feeding
conditions. The effect on the partitioning fraction κ is different from the rest and probably does
not correspond to an effect of a toxic compound. The relative effects on filaments are largely
comparable to those on isomorphs for growth and maintenance. Effects on assimilation [ṗAm]
coincide with effects on survival ḣa.

If the population is at its carrying capacity, ṙ = 0, and reproduction and loss rates are
both very low, food availability completely governs the reproduction rate. All resources are
used for maintenance. Effects on maintenance, therefore, show up directly in this situation,
but effects on growth and reproduction remain hidden, unless the effect is so strong that
replacement is impossible. If the population is growing at a high rate, energy allocation
to maintenance is just a small fraction of available energy. Even considerable changes in
this small fraction will, therefore, remain hidden, but effects on production rates are now
revealed. These principles are illustrated in Figure 6.13. They imply that at a constant
concentration of compound in the environment, the effect at the population level depends
on food availability and thus is of a dynamic nature. This reasoning does not yet use the
more subtle effects of uptake via food as opposed to those via the environment directly.

The effects at low population growth rates can be studied if the population is at its car-
rying capacity. If food supply to a fed-batch culture is constant, the number of individuals
at carrying capacity is proportional to the food supply rate, cf. Figure 9.16. If the loss rate,
and so the reproduction rate, is small, the ratio of the food supply rate to the number of
individuals is a good measure of the maintenance costs. Figure 6.15 illustrates that some
compounds, such as vanadium and bromide, affect these maintenance costs, while others
do not and ‘only’ cause death in this situation. It also shows that the effect is almost linear
in the concentration, as are the effects on survival, aging and mutagenicity.
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Figure 6.14: Stereo view of the population growth rate of the rotifer Brachionus rubens (z-
axis) as a function of food density (y-axis) and concentration of toxic compound (x-axis): 3,4
dichloroaniline (above) and potassium metavanadate (below). Food density is in 1.36× 109 cells
Chlorella pyrenoidosa per litre, temperature is 20 ◦C. The difference in shape of the response
surfaces is due to differences in the mode of action of the compounds, as predicted by the deb

theory.

6.5 Summary

Non-essential compounds are taken up in a similar way to essential ones, the difference
is in their use: non-essential ones are not used, but eliminated. The concentrations in
the environment are usually small enough to let the uptake rate be proportional to the
concentration, and densities in the body are usually small enough to let the elimination
rate be proportional to the density in the body. On the basis of the fugacity argument, this
first-order kinetics provides the rules for how kinetic parameters co-vary among compounds
with the octanol–water partition coefficient, and the ionization constant.

Energetics modifies the kinetics in a number of ways: dilution by growth, changes
in the body’s lipid content, the existence of several uptake and elimination routes, and
metabolic transformation. Since the exchange rate with the environment is proportional
to the surface area of the body, these various modifications link up beautifully with the
structure of the deb model, and are evaluated in this chapter.
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Figure 6.15: The ratio of the food supply rate for a population of daphnids to the number
of individuals at carrying capacity in fed-batch cultures as a function of the concentration of
compound at 20 ◦C. The crosses, +, refer to the occurrence of mortality. Only compounds that
affect maintenance give a positive response.

Non-essential compounds can modify energetics in a number of ways, by changing one
or more parameters of the deb model. Small changes in the parameter values can taken
to be linear in the density of non-essential compounds in the body, on the basis of the
Taylor approximation. The changes can be effectuated by multiplying the appropriate
parameter(s) with a time-varying stress factor. This quantifies the direct and indirect
effects of compounds on energetics dynamically as a function of the concentration in the
environment and exposure time, and provides the basis of the estimation of necs of non-
essential compounds. This is of substantial value for Environmental Risk Assessment for
toxicants produced by humans.

The description of the effects of non-essential compounds in terms of changes in the
parameter values allows the effects of compounds on individuals to be translated into those
on populations. Effects at the molecular level have a nec of zero, because each molecule
can react. At the individual level, it is generally larger than zero, because individuals can
handle small physiological handicaps. At the population level, effects can vary with food
levels even if toxicokinetics is in full steady state; this depends on the mode of action of
the compound.



Chapter 7

Case studies

The purpose of this chapter is to place the deb theory in a wider context and to evaluate
combinations of primary processes and their consequences. The last three chapters treated
them one by one, as far as possible, to reveal and explain the basic structure of the theory.
Now the models for the primary processes will gain colour as the processes change together
in a variable environment. Each section can be read independently, and deals with a
problem that may have taxon-specific elements. Some applications aim to illustrate how
particular measurements can be interpreted within the context of the deb theory; some aim
to show how mechanisms that are included can interact and explain observed phenomena;
other applications are in fact extensions of the deb theory in various directions to reveal
constraints for modelling processes at a lower level of organization, and to show how such
processes give some background for the assumptions on which the deb model is based.

Although the sections cover a range of topics, many important ones are painfully lack-
ing, which only reflects that the theory is still in a stage of development. My hope is
that it is possible to reduce the dazzling amount of seemingly complex eco-physiological
phenomena to a small set of simple underlying principles that can be based on lower levels
of organization help to structure modelling attempts at the biochemical level.

7.1 Changing feeding conditions

Food density is never really constant, as experienced by an individual. The relative size
of food particles with respect to the individual and the food density itself are important.
Moreover, feeding frequently takes the form of meals. The next subsections analyse phe-
nomena at an increasing time scale.

7.1.1 Scatter structure of weight data

For simplicity’s sake, the processes of feeding and growth have been modelled determin-
istically, so far. This is not very realistic, as (feeding) behaviour especially is notoriously
erratic. This subsection discusses growth if feeding follows a special type of random pro-
cess, known as an alternating Poisson process or a random telegraph process. Because of
the resulting complexity, I rely here on computer simulation studies.
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Figure 7.1: Computer-simulated scaled weight1/3, (Ww/dV Vm)1/3, is plotted against scaled time
in the left figure, if feeding follows an alternating Poisson process. The shade areas give frequency
intervals of 99, 90 and 50%, the drawn curve gives the mean and the dotted one gives the
deterministic growth curve, if feeding is constant at the same mean level. The coefficient of
variation is given in the right figure. The parameters are λ0 = 11.666, λ1 = 5, g = 1, lb = 0.05
and wE [MEm]/dV = 0.5. The small difference between the mean and deterministic curves relates
to the step size of the numerical integration (Mrs F. D. L. Kelpin, pers. comm.).

Suppose that feeding occurs in meals that last an exponentially distributed time interval
t1 with parameter λ̇1, so Pr{t1 > t} = exp{−tλ̇1}. The mean length of a meal is then
λ̇−1

1 . The time intervals of fasting between the meals is also exponentially distributed,
but with parameter λ̇0. Food intake during a meal is copious, so the scaled functional
response switches back and forth between f = 1 and f = 0. The mean value for f is
Ef = λ̇0(λ̇0 + λ̇1)−1. This on/off process is usually smoothed out by the digestive system,
but let us here assume that this is of minor importance. According to (4.8), (4.7), and
Table 3.5, growth in scaled length of juveniles (that are able to shrink) is given by

d

dτ
e =

g

l
(f − e) and

d

dτ
l =

g

3

e− l − lh
e + g

where τ = tk̇M is the scaled time. A single parameter, g, is involved in this growth process,
while two others, λ0 and λ1, occur in the description of the on/off process of f . (Note that
the λ’s do not have dots, because scaled time is dimensionless.) The process is initiated
with l(0) = lb and e(0) equals the scaled energy density of a randomly chosen adult.

Figure 7.1 shows the results of a computer simulation study, where scaled weight relates
to scaled length and scaled energy density, according to (2.6) as

Ww(dV Vm)−1 = (1 + ewE[MEm]/dV )l3

The resemblance of the scatter structure with experimental data is striking, see for instance
Figure 2.5. This does not imply, however, that the feeding process is the only source of
scatter. Differences of parameter values between individuals are usually important as well.
The results do suggest a mechanism behind the generally observed phenomenon that scatter
in weights increases with the mean.
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7.1.2 Step up/down in food availability

The difference between age-based and size-based models becomes apparent in situations of
changing food densities. As long as food density remains constant, size-based models can
always be converted into age-based ones, which makes it impossible to tell the difference.

Figure 7.2 shows the result of an experiment with Daphnia magna at 20 ◦C, exposed to
constant high food densities with a single instantaneous switch to a lower food density at 1,
2 or 3 weeks. The reverse experiment with a single switch from low to high food densities
has also been done, together with continuous exposure to both food densities. Figure 3.14
has already shown that the maintenance rate coefficient k̇M and energy conductance v̇ can
be obtained by comparing growth at different constant food densities. These compound
parameters, together with ultimate and maximum lengths and the common length at birth,
have been obtained from the present experiment without a switch. These five parameters
completely determine growth with a switch, both up and down, leaving no free parameters
to fit in this situation. The excellent fit strongly supports to the deb theory.

7.1.3 Mild starvation

If a growing individual is starved for some time, it will (like the embryo) continue to grow
(at a decreasing rate) till it hits the non-growth boundary of the state space (e = l).
Equation (3.30) describes the e, l-path. Depending on the amount of reserves, the change
in volume will be small for animals not far from maximum size. Strömgren and Cary
[899] found that mussels in the range of 12–22 mm grew 0.75 mm. If the change in size is
neglected, the scaled reserve density changes as e(τ) = e(0) exp{−gτ/l} and the growth of

scaled length is d
dτ

l = g
3

exp{−gτ/l}−l/e(0)
exp{−gτ/l}+g/e(0)

. Figure 7.3 confirms this prediction.

Respiration during starvation is proportional to the use of reserves; see {135}. It
should, therefore, decrease exponentially in time at a rate of v̇V −1/3 if size changes can
be neglected. See (3.10). Figure 7.4 confirms this prediction for a daphnid. If a shape
coefficient of δM = 0.6 is used to transform the length of the daphnid into a volumetric one,
the energy conductance becomes v̇ = 0.6× 1.62× 0.23 = 0.22 mm d−1. This value seems
to be somewhat small in comparison with the mean energy conductance of many species,
cf. {277}. The next section suggests an explanation in terms of changes in allocation rules
to reproduction during starvation.

7.1.4 Food intake reconstruction

Many data sets on growth in the literature do not provide adequate information about
food intake. Sometimes it is really difficult to gain access to this type of information
experimentally. The blue mussel Mytilus edulis filters what is called ‘particulate organic
matter’ (POM). Apart from the problem of monitoring the POM concentration relevant
to a particular individual, its characterization in terms of nutritional value is problematic.
The relative abundances of inert matter, bacteria and algae change continuously. In the
search for useful characterizations, it can be helpful to invert the argument: given an
observed size and temperature pattern, can the assimilation energy be reconstructed in
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Figure 7.2: Length-at-age for the waterflea
Daphnia magna at 20 ◦C feeding at a high (•)
and a low (◦) constant density of the green alga
Chlorella pyrenoidosa (a), and with a single
interchange of these two densities at 1 (b,e),
2 (c,f) or 3 (d,g) weeks. The curves b to g
describe the slow adaptation to the new feeding
regime. They are completely based on the 5
parameters obtained from a, so no additional
parameters were estimated. From [513].
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Figure 7.3: Growth rate in the starved
mussel Mytilus edulis at 21.8 ◦C. Data from
Strömgren and Cary [899]. The parame-
ter estimates (and standard deviations) are

g
e(0) = 12.59 (1.21), k̇M = 2.36 (0.99) 10−3

d−1 and v̇ = 2.52 (0.183) mm d−1.

Figure 7.4: The oxygen consumption rate
(•) and the carbon dioxide production rate
(◦) in starved Daphnia pulex of 1.62 mm at
20 ◦C. Data from Richman [764]. The expo-
nential decay rate is 0.23 (0.032) d−1.

order to relate it to measurements of POM? The practical gain of such a reconstruction is
in the use of correlation measures to determine the nutrition value of bacteria, alga, etc.
Since the correlation coefficient is a linear measure, a direct correlation between bacteria
numbers and mussel growth, for instance, only has limited value because assimilation and
growth are related in a complex way, whereas bacteria numbers and assimilation are related
linearly.

Kautsky [468] measured mussels from four size classes kept individually in cages (di-
ameter 10 cm) at a depth of 15 m in the Baltic at a salinity of 7 ◦/◦◦. Suppose that (the
mean) food density changes slowly enough to allow an approximation of the energy reserves
with e = f . The growth equation (4.7) then reduces to

d

dt
l =

(f(t)− l)+

3(f(t) + g)
gk̇M 15(T (t) > T0) exp

{

TA

(

1

288
− 1

T (t)

)}

(7.1)

where k̇M 15 is the maintenance rate coefficient at the chosen reference temperature of 15 ◦C
= 288 K and T0 is at the lower end of the tolerance range. The next step is to choose cubic
spline functions to describe the observed temperature pattern T (t) and the unobserved
scaled functional response f(t). The reconstruction of f(t) from length–time data then
amounts to the estimation of the knot values of the spline at chosen time points, given
realistic choices for the growth parameters. Figure 7.5 shows that the simultaneous least-
squares fit of the numerically integrated growth description (7.1) is acceptable in view of
the scatter in the length data (not shown), which increases in time in the upper size class
in the original data. The scaled functional response (i.e. the hyperbolically transformed
food abundance in terms of its nutritional value) appears to follow the temperature cycle
during the year. Such a reconstructed food abundance can be correlated with POM and
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Figure 7.5: The reconstruction
of the scaled functional response
since the first of August from mean
length–time data for four length
classes of the mussel Mytilus edulis

as reported by Kautsky [468] (up-
per four curves). The reconstruc-
tion (the curve in the middle with
two peaks) is based on a cubic
spline description of the measured
temperature (lower curve and capri-
cious line) and the parameter values
Lm = 100 mm, g = 0.13, k̇M 15 =
0.03 d−1 and TA = 7600 K. time, d
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chlorophyll measurements to evaluate their significance for the mussel.

If food intake changes too fast to approximate the reserve density with its equilibrium
value, the reserve density should be reconstructed as well. Figure 7.6 illustrates this for
the penguin. The von Bertalanffy growth is shown to apply to the adelie penguin, which
indicates that body temperature is constant and food is abundant. The deviation at the
end of the growth period probably relates to the refusal of the parents to feed the chicks
in order to motivate them to enter the sea. The small bodied adelie penguin manages to
synchronize its breeding cycle with the local peaks in plankton density in such a way that
it is able to offer the chicks abundant food. Typically there are two such peaks a year in
northern and southern cold and temperate seas. The plankton density drops sharply when
the chicks are just ready to migrate to better places. This means that a larger species, such
as the king penguin, is not able to offer its chicks this continuous wealth of food, because
its chicks require a longer growth period (see Chapter 8 on comparison of species for an
explanation, {267}). So they have to face the meagre period between plankton peaks.
(Food for king penguins, squid and fish, follows plankton in abundance.) The parents
do not synchronize their breeding season with the calendar; they follow a 14–17 month
breeding cycle [845]. The largest living penguin, the emperor penguin, also has to use
both plankton peaks for one brood, which implies a structural deviation from a simple von
Bertalanffy growth curve.

Given weight–time data, food intake can be reconstructed on the basis of the deb
theory. The relationship between (wet) weights, volumes and energy reserves is given in
(2.6). For juveniles, where ER = 0, we have [Ww] = dV +wE[MEm]e and specific wet weight
is thus not considered to be a constant. Growth according to (3.18) and (3.10) is given by

d

dt
Ww = [Ww]

d

dt
V + wE[MEm]V

d

dt
e (7.2)

= v̇V 2/3

(

[Ww]

e + g

(

e− lh − (V/Vm)1/3
)

+ [WEw](f − e)

)

(7.3)
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Figure 7.6: Weight ontogeny of the small adelie penguin Pygoscelis adeliae (left) and the large
emperor penguin Aptenodytes forsteri (right). Data from Taylor [909] and Stonehouse [887].
The adelie data follow the fitted von Bertalanffy growth curve, which suggests food abundance
during the nursery period. The cubic spline through the emperor data is used to reconstruct food
intake fV 2/3 = J̇X/{J̇Xm}. dV = 0.3 g cm−3, wE [MEm] = 0.7 g cm−3, g = 0.1, v̇ = 0.6 cm d−1,
lh = 0.01, Vm = 6000 cm3, e0 = 0.6.

Solution of f and substitution of (3.10) gives

f = e +
[Ww]2/3

v̇[WEw]W
2/3
w

d

dt
Ww −

[Ww]/[WEw]

g + e



e− lh −
(

Ww

Vm[Ww]

)1/3


 (7.4)

[MEm]wE

[Ww]

d

dt
e =

d

dt
ln Ww −

v̇

g + e



(e− lh)

(

[Ww]

Ww

)1/3

− V −1/3
m



 (7.5)

The steps to reconstruct feeding are as follows: first fit a cubic spline through the weight
data, which gives Ww(t) and so d

dt
Ww(t). Use realistic values for e(0), dV , wE[MEm], g,

Vm, lh and v̇ and recover e(t) through numerical integration of (7.5) and then f(t) by
substitution. Figure 7.6 gives an example. The peaks in the reconstruction will probably
be much sharper if the chick’s stomach contents are taken into account. This reconstruction
can be useful in cases where feeding behaviour that is hard to observe directly is studied
and knowledge concerning energetics from captive specimens is available. The significance
of this example is to show that the deb theory hardly poses constraints for growth curves
in general. The simple von Bertalanffy growth curve only emerges under the conditions of
constant food density and temperature.

7.1.5 Prolonged starvation

If the reserve density drops below the non-growth barrier e = l, a variety of possible phys-
iological behaviours seems to occur, depending on the species and environmental factors.
Deviation from the κ-rule is necessary, because the standard allocation to growth plus
maintenance is no longer sufficient for maintenance, even if growth ceases. Pond snails
seem to continue energy allocation to reproduction during prolonged starvation under a
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light:dark 16:8 cycle (summer conditions, denoted by LD), but they cease reproduction un-
der a 12:12 cycle (spring/autumn conditions, denoted by MD) [98,1028]. This makes sense
because under summer conditions, an individual can expect high primary production, so,
if it has consumed a plant, it will probably find another one in the direct neighbourhood.
Under spring/autumn conditions, however, it can expect a long starvation period. By
ceasing allocation to reproduction, it can increase its survival period by a factor of two; see
Figure 7.8. Another aspect is that offspring have a remote survival probability if there is
no food around. They are more vulnerable than the parent, as follows from energy reserve
dynamics. These dynamics can be followed on the basis of the assumption that LD snails
do not change the rule for utilization of energy from the reserves, and neither MD nor LD
snails cut somatic maintenance.

Any switch in a continuous-time model is a nuisance to analyse, and special care has to
be taken to specify what exactly happens at the switch to be mathematically consistent.
If an individual ceases reproduction during starvation, any consistent specification of d

dt
e

must be continuous in f , e and l. One possibility is by first obeying maturity maintenance
requirements, then switching on reproduction gradually if food intake increases from a
low level. Other consistent specifications are possible. This amounts to the following
specifications for the scaled powers p′∗ ≡ ṗ∗(k̇Mg[Em]Vm)−1 and the scaled reserve density
dynamics of an ectotherm (lh = 0, cf. Table 3.5):

e < l e = l e > l

p′A fl2 fl2 fl2

p′Gm
+ p∗R 0 ((1− κ)l3 − pMm)+ (1− κ)( e−l

1+e/g l2 + (l3 − l3p)+)

p′G 0 0 κ e−l
1+e/g l2

p′Mm
0 min

{

(pA − pMs)+, (1− κ)min{l3, l3p}
}

(1− κ)min{l3, l3p}
p′Ms

κl3 κl3 κl3

d
dte(k̇Mg)−1 f/l − κ (pA − pMs − pMm − pR)l−3 f/l − e/l

If starvation is complete and volume does not change, i.e. f = 0 and l is constant, the
energy reserves will be e(t) = e(0) exp{−gk̇M t/l}; see (4.8). Dry weight is a weighted sum
of volume and energy reserves, so according to (2.7) for LD snails we must have

Wd(l, t) = Vml3(dV d + wEd[MEm]e(0) exp{−gk̇M t/l}) (7.6)

if the buffer of energy allocated to reproduction is emptied frequently enough (ER small).
For MD snails, where e(t) = e(0)− ([ṗM ]/[Em])t, dry weight becomes

Wd(l, t) = Vml3(dV d + wEd[MEm](e(0)− t[ṗM ]/[Em])) (7.7)

So the dry weight of LD snails decreases exponentially and that of MD snails linearly.
Figure 7.7 confirms this. It also supports the length dependence of the exponent.

When storage levels become too low for maintenance, some species can decompose
their structural biomass to some extent. If feeding conditions then become less adverse,
recovery may be only partial. The distinction between structural biomass and energy
reserves fades at extreme starvation. The priority of storage materials over structural
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Figure 7.7: Dry weight during starvation of long-day (LD, left) and mid-day (MD, right) pond
snails Lymnaea stagnalis at 20 ◦C. The left figure gives dry weights (z-axis) as a function of
starvation time (x-axis) and length (y-axis: 1.6–3.3 cm). In the right figure, the length of the
MD pond snails was 3 cm. From [1028]. The surface and curve are fitted deb-based expectations.
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Figure 7.8: Survival time during starvation of LD (left) and MD (right) pond snails as a function
of length. From [1028]. The data points × in the right figure are not included in the deb-based
fit. These large individuals had deformations of the shell.
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biomass is perhaps even less strict in species that shrink during starvation. Species with
(permanent or non-permanent) exoskeletons usually do not shrink in physical dimensions,
but the volume-specific energy content nonetheless decreases during starvation.

If we exclude the possibility of prolonging life through decomposition of structural body
mass, and if death strikes when the utilization rate drops below the maintenance level, the
time till death by starvation can be evaluated.

In animals such as LD snails, that do not change storage dynamics, the utilization rate,
− d

dt
[E], equals the maintenance rate, [ṗM ] for [E]/[Em] = V 1/3[ṗM ]/{ṗAm} or e = κl. Since

e(t) = e(0) exp{−k̇M tg/l}, death strikes at t† = l
k̇Mg

ln e(0)
κl

. This only holds if the length

increase is negligibly small.
In animals such as MD snails, which change storage dynamics to d

dt
e = −[ṗM ]/[Em] or

e(t) = e(0)− t[ṗM ]/[Em], death strikes when e = 0, that is at t† = e(0)[Em]/[ṗM ] = e(0)

κk̇Mg
.

This only holds as long as there is no growth, so e(0) < l. In practice, this is a more
stringent condition than the previous one. The first part of the starvation period usually
includes a period where growth continues, because e > l. This complicates the analysis of
starvation data, as illustrated in the following example. In a starvation experiment with
MD snails, individuals were taken from a standardized culture and initially fed ad libitum
for 4 days prior to complete starvation. If we assume that food density in the culture has
been constant, so e(0) = fc, say, with fc being about 0.7, and f = 1 during the 4 days prior
to the starvation experiment, the change in length is negligibly small. The initial storage
density is e(0) = 1−(1−fc) exp{−4k̇Mg/l}, according to (3.10). The time till growth ceases
is found again from (3.10) and the boundary condition l = e(0) exp{−tk̇Mg/l}. (Although
the length increase is negligibly small, energy allocation to growth can be substantial.)
After a period l(κk̇Mg)−1 death will strike, so

t† =
l

k̇Mg

(

1

κ
+ ln

{

l−1
(

1− (1− fc) exp{−4k̇Mg/l}
)}

)

(7.8)

Figure 7.8 confirms model predictions for the way survival time depends on length in LD
and MD snails, and shows that MD snails can prolong life by a factor of two by not
reproducing during starvation. In contrast to the situation concerning embryonic growth,
this confirmation gives little support to the theory, because the shape of the survival time–
length curve is very flexible for the LD case, although there are only two free parameters.
The upper size class of the MD snails has been left out of the model fit, because the shape
of their shell suggested a high age, which probably affected energy dynamics.

7.1.6 Shrinking

Many species can, to some extent, shrink in structural mass during starvation, as a way
to pay their somatic maintenance costs. Even animals with a skeleton, such as shrews
of the genus Sorex , can exhibit a geographically varying winter size depression, known
as the Dehnel phenomenon [317]. Molluscs seem be to able to reduce shell size [230].
During starvation, isomorphs mobilize a power e{ṗAm}V 2/3 from the reserves, and V1-
morphs eV [Em]k̇E. Shrinking releases a power −µV [MV ] d

dt
V from the structure, where
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d
dt

V ≤ 0. Assuming that the individual does not invest in reproduction under these

conditions, somatic maintenance has to be paid at a rate [ṗM ]V = k̇M [EG]V .

The (negative) growth is found from κe{ṗAm}V 2/3 = k̇M [EG]V + [EG] d
dt

V , which gives
d
dt

V = eV 2/3κ{ṗAm}/[EG]−k̇MV . Substitution into the total dissipating power gives a total

rate of e{ṗAm}V 2/3−µV [MV ] d
dt

V = e{ṗAm}V 2/3(1−κµV [MV ]/[EG]) + k̇MV µV [MV ], which
should exceed the somatic maintenance costs. The latter cannot be paid if e{ṗAm}V 2/3(1−
κµV [MV ]/[EG])+k̇MV µV [MV ] < k̇MV [EG], i.e. e < αV 1/3[ṗM ]/{ṗAm} for α = 1−µV [MV ]/[EG]

1−κµV [MV ]/[EG]
.

This prediction rests on energy considerations only, but maintenance costs also have a mass
aspect, and the specific maintenance costs [ṗM ] might depend on the source, i.e. reserves
or structure. The growth rate at death by starvation is d

dt
V = k̇MV (ακ− 1).

The second law of thermodynamics ensures that [EG] > µV [MV ], and so 0 < α ≤ 1.
This implies that, for κ = 1, the individual cannot fully pay the somatic maintenance costs
by shrinking. The maturity maintenance costs can considered to be reducible maintenance
costs, while the somatic maintenance costs are mandatory.

7.1.7 Dormancy

Some species manage to escape adverse feeding conditions (and/or extreme temperature
or drought) by switching to a torpor state in which growth and reproduction cease, while
maintenance (and heating) costs greatly diminish. The finding that metabolic rate in
homeotherms is proportional to body weight during hibernation [470] suggests that main-
tenance costs are reduced by a fixed proportion.

As heating is costly, a reduction in the body temperature of endotherms saves a lot
of energy. Bats and hummingbirds lower their body temperature in a daily cycle. This
probably relates to the relatively long life span of bats (for their size) [281]. Although
most bird embryos have a narrow temperature tolerance range, swifts survive significant
cooling. This relates to the food-gathering behaviour of the parents. Dutch swifts are
known to collect mosquitoes above Paris at a distance of 500 km, if necessary. During
hibernation, not only is the body temperature lowered, but other maintenance costs are
reduced as well.

Hochachka and Guppy [415] found that the African lungfish Protopterus and the
South American lungfish Lepidosiren reduce maintenance costs during torpor in the dry
season, by removing ion channels from the membranes. This saves energy expenses for
maintaining concentration gradients over membranes, which proves to be a significant part
of the routine metabolic costs. This metabolic arrest also halts aging. The life span of
lungfish living permanently submerged, so always active, equals the cumulative submerged
periods for lungfish that are regularly subjected to desiccation. This is consistent with the
deb interpretation of aging.

If maintenance cannot be reduced completely in a torpor state, it is essential that
some reserves are present, {37}. This partly explains why individuals frequently survive
adverse conditions as freshly laid eggs, because the infinitesimally small embryo requires
little maintenance; it only has to delay development. The start of the pupal stage in holo-
metabolic insects is also very suitable for inserting a diapause in order to survive adverse
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conditions, {253}.

7.1.8 Emergency reproduction

The determination of sex in some species is coupled to dormancy in a way that can be
understood in the context of the deb model. Daphnids use special winter eggs, packed in
an ephippium. The diploid female daphnids usually develop diploid eggs that hatch into
new diploid females. If food densities rapidly switch from a high level to a low one and the
energy reserves are initially high, the eggs hatch into diploid males, which fertilize females
that now produce haploid eggs [855]. After fertilization, the ‘winter eggs’ or resting eggs
develop into new diploid females. The energy reserves of a well-fed starving female are just
sufficient to produce males, to wait for their maturity and to produce winter eggs.

The trigger for male/winter egg development is not food density itself, but a change
of food density. If food density drops gradually, females do not switch to the sexual
cycle [512], cf. Figure 9.16. Sex determination in species such as daphnids is controlled
by environmental factors, so that both sexes are genetically identical [136,385]. Mrs D.
van Drongelen and Mrs J. Kaufmann informed me that a randomly assembled cohort of
neonates from a batch moved to one room proved to consist almost exclusively of males
after some days of growth, while in another cohort from the same batch moved to a different
room all individuals developed into females as usual. This implies that sex determination
in Daphnia magna, and probably in all other daphnids and most rotifers as well, can be
affected even after hatching. More observations are needed. Male production does not seem
to be a strict prerequisite for winter egg production [491]. Kleiven, Larsson and Hobæk
[491] found that crowding and shortening of day length also affect male production in
combination with a decrease in food availability at low food densities. The females that
hatch from winter eggs grow faster, mature earlier and reproduce at a higher rate than
those from subitaneous eggs [27]; the size at maturation and the ultimate body size are
also larger for the exephippial generation. The physiological nature of these interesting
differences is still unknown.

The switch to sexual reproduction as a reaction to adverse feeding conditions frequently
occurs in unrelated species, such as slime moulds, myxobacteria, oligochaetes (Nais) and
plants. The difference between emergency and suicide reproduction, see {262}, is that the
individual can still switch back to standard behaviour if the conditions improve.

7.1.9 Geographical size variations

The energy constraints on distribution, apart from barriers to migration, consist primarily
of the availability of food in sufficient quantity and quality. The second determinant is
the temperature, which should be in the tolerance range for the species for a long enough
period. If it drops below the lower limit, the species must adopt adequate avoidance
behaviour (migration, dormancy) to survive.

The minimum food density for survival relates to metabolic costs. If an individual is able
to get rid of all other expenses, mean energy intake should not drop below [ṗM ]V +{ṗT}V 2/3

for an individual of volume V , so the minimum ingestion rate, known as the maintenance
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ration, should be {J̇Xm}
{ṗAm}

([ṗM ]V + {ṗT}V 2/3). For a 3-mm daphnid at 20 ◦C this minimum

ingestion rate is about six cells of Chlorella (diameter 4 µm) per second [511]. The
minimum scaled food density X/XK is xs = lh+l

1/κ−lh−l
.

This minimum applies to mere survival for an individual. For prolonged existence,
reproduction is essential to compensate at least for losses due to aging. The ultimate
volumetric length, fV 1/3

m − V
1/3
h , should exceed that at puberty, V 1/3

p , which leads to the

minimum scaled food density xR = lh+lp
1/κ−lh−lp

.

Several factors determine food density. It is one of the key issues of population dynam-
ics. The fact that von Bertalanffy growth curves frequently fit data from animals in the
field indicates that they live at relatively constant (mean) food densities. In the tropics,
where climatic oscillations are at a minimum, many populations are close to their ‘car-
rying capacity’, i.e. the individuals produce a small number of offspring, just enough to
compensate for losses. It also means that the amount of food per individual is small, which
reduces them in ultimate size. Towards the poles, seasonal oscillations divide the year into
good and bad seasons. In bad seasons, populations are thinned, so in the good seasons a
lot of food is available per surviving individual. Breeding periods are synchronized with
the good seasons, which means that the growth period coincides with food abundance. So
food availability in the growth season generally increases with latitude [540]. The effect
is stronger towards the poles, which means that body size tends to increase towards the
poles for individuals of one species. Figure 7.9 gives two examples. Other examples are
known from, for instance, New Zealand including extinct species such as the moa Dinornis
[137]. Note that size increase towards the poles also comes with a better ability to survive
starvation and a higher reproduction rate, traits that will doubtlessly be of help in coping
with harsh conditions.

Geographical trends in body sizes can easily be distorted by regional differences in soils,
rainfall or other environmental qualities affecting (primary) production. Many species or
races differ sufficiently in diets to hamper a geographically based body size comparison.
For example, the smallest stoats are found in the north and east of Eurasia, but in the
south and west of North America [482]. The closely related weasels are largest in the
south, both in Eurasia and in North America. Patterns like these can only be understood
after a careful analysis of the food relationships. Simpson and Boutin [846] observed that
muskrats Ondatra zibethicus of the northern population in Yukon Territory are smaller and
have a lower reproduction rate than the southern population in Ontario. They could relate
these differences to feeding conditions, which were better for the southern population, in
this case.

Bergmann [70] observed the increase in body size towards the poles in 1847, but
he explained it as an effect of temperature. Large body size goes with small surface
area/volume ratios, which makes endotherms more efficient per unit body volume. This
explanation has been criticized [613,818,824]. It is indeed hard to see how this argument
applies in detail. Animals do not live on a unit-of-body-volume basis, but as a whole
individual [613]. It is also hard to see why the argument applies within a species only,
and why animals with body sizes as different as mice, foxes and bears can live together in
the Arctic. The tendency to increase body size towards the poles also seems to occur in
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Figure 7.9: The brown kiwi Apteryx australis in subtropical north of New Zealand is lighter
than in the temperate south. The numbers give ranges of weights of male and female in grams,
calculated from the length of the tarsus using a shape coefficient of δM = 1.817 g1/3 cm−1.
Data from Fuller [305]. A similar gradient applies to the platypus Ornithorhynchus anatinus in
Australia. The numbers give the mean weights of male and female in grams as given by Strahan
[895]. The deb theory relates adult weights to food availability and so to the effect of seasons.
This interpretation is supported by the observation that platypus weight increases with seasonal
differences at the same latitude in New South Wales. The seasons at the three indicated sites are
affected by the Great Dividing Range in combination with the easterly winds.

ectotherms, which requires a different explanation. The deb theory offers an alternative
explanation for the phenomenon because of the relationship between food availability and
ultimate body volume. Temperature alone works in the opposite direction within this
context. If body temperature has to be maintained at some fixed level, individuals in the
Arctic are expected to be smaller while living at the same food density, because they have
to spend more energy on heating, which reduces their growth potential. The effect will,
however, be small since insulation tends to be better towards the poles.

It is interesting to note that species with distribution areas large enough to cover
climatic gradients generally tend to split up in isolated races or even subspecies. This
can be seen as a form of adaptation, cf. {263}. The differences in ultimate size have
usually become genetically fixed. This is typical for ‘demand’ systems where regulation
mechanisms set fluxes at predefined values which are obtained through adaptation. Within
the deb theory this means that the parameter values are under genetic control and that
the minimum food level at which survival is possible is well above the level required for
maintenance. The matter is taken up again on {291}.
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7.2 Diffusion limitation

The purpose of this subsection is to show why small deviations from the hyperbolic func-
tional response can be expected under certain circumstances, and how the functional re-
sponse should be corrected.

Any submerged body in free suspension has a stagnant water mantle of a thickness that
depends on the roughness of its surface, its electrical properties and on the turbulence in
the water. The uptake of nutrients by cells that are as small as that of a bacterium
can be limited by the diffusion process through this mantle [498]. Logan [563,564]
related this limitation to the flocculation behaviour of bacteria at low food densities. The
existence of a diffusion-limited boundary layer is structural in Gram-negative bacteria
such as Escherichia [496], which have a periplasmic space between an inner and outer
membrane. The rate of photosynthesis of aquatic plants [858,989] and algae [770] can
also be limited by diffusion of CO2 and HCO−

3 through the stagnant water mantle that
surrounds them. Coccolithophores, such as Emiliania, have a layer of polysaccharides with
coccoliths (i.e. calcium carbonate platelets), which might limit diffusion. Since diffusion
limitation affects the functional response, it is illustrative to analyse the deviations a bit
more in detail. For this purpose I re-formulate some results that originate from Best [81]
and Hill and Whittingham [411] in 1955.

7.2.1 Homogeneous mantle

Suppose that the substrate density in the environment is constant and that it can be
considered as well mixed beyond a distance l1 from the centre of gravity of a spherical cell
of radius l0. Let X1 denote the substrate density in the well-mixed environment and X0

that at the cell surface. The aim is now to evaluate uptake in terms of substrate density
in the environment, given a model for substrate uptake at the cell surface.

The build-up of the concentration gradient from the cell surface is fast compared with
other processes, such as growth; the gradient is, therefore, assumed to be stationary.

The conservation law for mass implies that the flux Ẋ(l) at distance l from the centre
of gravity of the cell obeys the relationship 4πl21Ẋ(l1) = 4πl22Ẋ(l2) for any two choices
of distances l1 and l2. From the choice l1 = l and l2 = l + dl follows l2 d

dl
Ẋ + 2lẊ = 0.

According to Fick’s diffusion law, the mass flux over a sphere with radius l is proportional
to the substrate density difference in the adjacent inner and outer imaginary tunics (i.e. 3D-

annulus), so Ẋ ∝ − d
dl

X. This leads to the relationship l2 d2

dl2
X + 2l d

dl
X = 0 or d

dl

(

l2 d
dl

X
)

=

0, which is known as the Laplace equation. The boundary conditions X(l0) = X0 and

X(l1) = X1 determine the solution X(l) = X1 − (X1 −X0) 1−l1/l
1−l1/l0

.

The mass flux at l0 is, according to Fick’s law, 4πl20Ḋ
d
dl

X(l0), where Ḋ is the diffusivity.

It must be equal to the uptake rate J̇X = J̇XmX0/(XK + X0). This gives the relationship
between the density at the cell surface and the density in the environment as a function of
the thickness of the mantle

X0 = g(X1|XK , XK1) =
1

2
Xc +

1

2

√

X2
c + 4X1XK (7.9)



236 7. Case studies

0 1

0

0.5

1

J̇
X

/J̇
X

m

X1(XK + XK1)
−1

XK1 =∞
20

5
1

0

X
/X

K

XK1 = 5 X1/XK

l0 l1

5

2

1

.5

Figure 7.10: The shape of the functional
response depends on the value of the man-
tle saturation coefficient; it can vary from a
Holling type II for small values of the man-
tle saturation coefficient, to Holling type I for
large values.

Figure 7.11: Substrate density as a function of
the distance from the cell centre in the case of a
homogeneous water mantle, for different choices
for the substrate densities X1 in the well-mixed
medium.

with Xc ≡ X1−XK −XK1 and XK1 = J̇Xm

4πḊl0

(

1− l0
l1

)

. Since the cell can only ‘observe’ the
substrate density in its immediate surroundings, X0 must be taken as the argument for the
hyperbolic functional response and not X1. Measurements of substrate density, however,
refer to X1, which invites one to write the functional response as a function of X1, rather
than X0, so J̇X(X1) = J̇Xm

g(X1|XK ,XK1)
XK+g(X1|XK ,XK1)

.

The extent to which a stagnant water mantle changes the uptake rate and the shape
of the functional response depends on the value of the mantle saturation coefficient XK1,
and therefore on the thickness of the mantle relative to the size of the individual and the
diffusivity relative to the maximum uptake rate. If the mantle saturation coefficient is
small, the mantle has hardly any effect, i.e. X0 → X1 for XK1 → 0, and the functional
response is of the hyperbolic type. If it is large, however, the functional response approaches
Holling’s type I [424], also known as Blackman’s response [89], where the ingestion rate
is just proportional to food density up to some maximum; see Figure 7.10 and 7.11. This
exercise thus shows that the two types of Holling’s functional response are related and
mixtures are likely to be encountered. This response is at the root of the concept of
limiting factors, which still plays an important role in eco-physiology.

The uptake rate depends on the size of the individual in a rather complex way if diffusion
is rate limiting. Figure 7.12 illustrates that irregular surfaces are smoothed out. For
relatively thick water mantles and at low substrate densities, especially, it is not important
that the cell is spherical. The approximate relationship V ≃ l30π4/3 will be appropriate
for most rods. The rod then behaves as a V0-morph, since the boundary of the mantle is
limiting the uptake and hardly changes during growth of the cell.

Increasing water turbulence and active motion by flagellas will reduce the thickness
of the water mantle. Its effect on mass transfer is usually expressed by the Sherwood
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Figure 7.12: Irregular surfaces that catch food are
smoothed out by a water mantle if (Eddy) diffu-
sion through this layer limits the uptake rate; the
thicker the mantle, the more efficient the smooth-
ing. This is here illustrated for a heliozoan, which
has thin protoplasm-covered spines that help to
catch small food particles (bacteria, algae, micro-
organisms).

Figure 7.13: Stereo view of the substrate up-
take rate of a cell in suspension relative to that
in completely stagnant water, as a function of the
substrate density in the medium (x-axis) and the
thickness of the water mantle (y-axis). Parameter
choice: J̇Xm = 4πḊXK l0

number, which is defined as the ratio of mass fluxes with to those without turbulence.
If X1 ≪ XK , the Sherwood number is independent of substrate density, and amounts to
(

1 + XK1/XK

1−l0/l1

)

(1 + XK1/XK)−1. For larger values of X1, the Sherwood number becomes
dependent on substrate density and increasing turbulence will less easily increase mass
transfer, because uptake will be rate limiting; see Figure 7.13. This probably defines the
conditions for producing sticky polysaccharides which result in the development of films
of bacteria on hard substrates or of flocs. If a cell attaches itself, it loses potentially
useful surface area for uptake, but increases mass transfer via convection. Although the
quantitative details for the optimization of uptake can be rather complex, the qualitative
implication that cells usually occur in free suspension when substrate densities are high,
and in flocs when they are low can be understood from Sherwood numbers.

Since diffusivity is proportional to (absolute) temperature, see e.g. [33], and up-
take rates tend to follow the Arrhenius relationship, {53}, the temperature dependence of
diffusion-limited uptake is likely to depend on temperature in a more complex way.

It is conceivable that slowly moving or sessile animals exhaust their immediate sur-
roundings in a similar way to that described here for bacteria in suspension, if the transport
of food in the environment is sufficiently slow. Trapping devices suffer from this problem
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Figure 7.14: Substrate density as a function of
the distance from the cell centre for a Gram-
negative bacterium. The inner membrane is
at distance l0, the outer membrane at distance
l2, and beyond distance l1 the medium is com-
pletely mixed. Four different choices for sub-
strate densities X1 in the medium have been
made, to illustrate that the higher X1 the more
the substrate density at the inner membrane X0

is reduced. distance
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too [448]. Patterson [692] showed by changing the flow rate that the physical state of
the boundary layer surrounding the symbiosis of coral and algae directly affects nutrient
transfer. The shape, size and polyp-wall thickness of scleractinian corals could be related to
diffusion limitation of nutrients. Some processes of transport can be described accurately
by diffusion equations, although the physical mechanism may be different [674,852].

7.2.2 Mantle with barrier

For Gram-negative bacteria, which have an inactive outer membrane with a limited per-
meability for substrate transport, the relationship between the substrate density at the
active inner membrane and that in the well-mixed environment is a bit more complicated.
On the assumption that the substrate flux through the outer membrane is proportional to
the difference of substrate densities on either side of the outer membrane, the permeability

affects the mantle saturation coefficient XK1, i.e. XK1 = J̇Xm

4πḊl0

(

1− l0
l1

+ l0Ḋ
l22Ṗ

)

, where l2 is

the radius at which the outer membrane occurs and Ṗ is the permeability of that mem-
brane (dimension length.time−1). The periplasmic space is typically some 20–40% of the
cell volume [657], so that l0/l2 ≃ 0.9. If l2Ṗ ≫ Ḋ, the resistance of the outer membrane
for substrate transport is negligible. Figure 7.14 illustrates how substrate density decreases
towards the inner membrane.

7.2.3 Non-homogeneous mantle

Suppose now that the cell has, besides a stagnant water mantle, also a layer of polysac-
charides, where the diffusivity has value Ḋ0, while it has value Ḋ2 in the water mantle.
Suppose that the boundary of the layer is at distance l2 from the cell centre, so l0 < l2 < l1.
The substrate density at the boundary of the polysaccharide layer can now be solved by
equating the uptake rate to the flux at the cell membrane. This value can be substituted
when the flux at the layer boundary is set equal to the uptake rate. The relationship
between X0 and X1 is still given by (7.9), but the mantle saturation constant is now
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XK1 = J̇Xm

4πḊ2l2

(

1− l2
l1

) (

1 + Ḋ2l1
Ḋ0l2

1−l2/l0
1−l1/l2

)

. So, just like the barrier in the preceding section,
inhomogeneities in the mantle only affect the mantle saturation coefficient, not the shape
of the functional response.

7.3 Digestion

Microflora is likely to play an important role in the digestion process of all herbivores. It can
provide additional nutrients by fermenting carbohydrates and by synthesizing amino acids
and essential vitamins. Daphnids are able to derive structural body components and lipids
from the cellulose of algal cell walls [817], though it is widely accepted that daphnids, like
almost all other animals, are unable to produce cellulase. Endogenous cellulase production
is only known to occur in some snails, wood-boring beetles, shipworms and thysanurans
[569]. The leaf-cutting ant Atta specifically cultures fungi, probably to obtain cellulase
[594]. Bacteria have been found in the guts of an increasing number of crustaceans [653],
but not yet in daphnids [817]. In view of the short gut residence times for daphnids, it is
improbable that the growth of the daphnid’s gut flora plays an important role. Digestion
of cellulose is a slow process, and the digestive caecum is situated in the anterior part of
the gut. Daphnids, therefore, probably produce enzymes that can pass through cell walls,
because they do not have the mechanics to rupture them.

Many studies of energy transformations assume that the energy gain from a food item
does not depend on the size of the individual or on the ingestion rate. The usefulness of
this assumption in ecological studies is obvious, and the deb model uses it as well. In view
of the relationship of gut residence time to both size and ingestion rate, this assumption
needs further study.

The nutritional gain from a food particle has been observed to depend on gut residence
time [764,812]. These findings are suspect for two reasons, however. The first reason is that
assimilation efficiencies are usually calculated per unit of dry weight of consumer, while the
energy reserves contribute increasingly to dry weight with increasing food density, but do
not affect digestion. The second reason is that, while the nutritional value of faecal pellets
may decrease with increasing gut residence time, it is not obvious whether the animal or
the gut microflora gains from the difference. I discuss here to what extent digestion is
complete and the composition of faeces does not change if the composition of food does
not change.

When animals such as daphnids are fed with artificial resin particles mixed through
their algal food, the appearance of these particles in the faeces supports the plug flow type
of model for the digestion process, as proposed by Penry and Jumars [264,697,698].

The shape of the digestive system also suggests plug flow.
The basic idea is that materials enter and leave the system in
the same sequence and that they are perfectly mixed radially.
Mixing or diffusion along the flow path is assumed to be
negligible. (This is at best a first approximation, because
direct observation shows that particles sometimes flow in
the opposite direction.)
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Suppose that a thin slice of gut contents can be followed during its travel along the
tube-like digestive tract, under conditions of a constant ingestion rate. The small changes
in the size of the slice during the digestion process are ignored. The gut content of a 4-mm
D. magna is about 0.1 mm3, while the capacity is about 6.3×105 cells of Scenedesmus, see
Figure 3.9, of some 58 µm3 per cell, which gives a total cell volume of 0.0367 mm3. The
cells occupy some 37% of the gut volume, which justifies the neglect of volume changes
for the slice. The volume of the slice of thickness Lλ is Vs = πLλL

2
φ/4, where Lφ is the

diameter of the gut, and πLλLφ is the surface area of contact between slice and gut.

Suppose that the gut wall secretes enzymes into the slice, which catalyse the trans-
formation of food X into faeces and a product P , which can be absorbed through the
gut wall. The rate of this transformation, called digestion, is taken proportional to the
concentration of active enzymes which have been secreted. If the secretion of enzymes is
constant and the deactivation follows a simple first-order process, the amount Mg of active
enzyme in the slice will follow d

dt
Mg = {J̇g}πLλLφ − k̇gMg, where {J̇g} is the (constant)

secretion rate of enzyme per unit of gut wall surface area and k̇g is the decay rate of enzyme
activity. The equilibrium amount of enzyme is thus Mg = {J̇g}πLλLφ/k̇g and I assume
that this equilibrium is reached fast enough to neglect changes in the concentrations of
active enzyme. So the enzyme concentration is larger in smaller individuals because of the
more favourable surface area/volume ratio of the slice.

A simple Michaelis–Menten kinetics for the change in the amount of food gives d
dt

MX =

−k̇XyXgfXMg, where fX = MX/(MKX + MX) is the scaled functional response for diges-
tion. The compound parameter k̇XyXg is a rate constant for digestion.

If the absorption of product through the gut wall again follows Michaelis–Menten ki-
netics, the change of the amount of product in the slice is given by d

dt
MP = −yPX

d
dt

MX −
k̇P yPcfP Mc with fP ≡ MP /(MKP + MP ) the scaled functional response for absorption
and Mc = {Mc}πLλLφ the amount of carriers in the gut wall with which the slice makes
contact, while the surface-area-specific number of carriers {Mc} is taken to be constant.
The parameter k̇P yPc is a rate constant for absorption. This two-step Michaelis–Menten
kinetics for digestion with plug flow has been proposed independently by Dade et al. [191].

The digestion process in the slice ends at the gut residence time tg, given in (3.6), which
decreases for increasing ingestion rate and is minimal for the scaled functional response for
feeding f = 1. The conservation law for mass can be used to deduce that the total amount
of product taken up from the slice equals MPu(tg) = ((MX(0) −MX(tg))yPX −MP (tg)),
where MX(0) denotes the amount of food in the slice at ingestion. An ideal gut will digest
food completely (MX(tg) = 0) and absorb all product (MP (tg) = 0).

To evaluate to what extent food density in the environment and the size of the organism
affect digestion, via gut residence time and gut diameter, it is helpful to define the digestion
and uptake efficiency MPu(tg)(yPXMX(0))−1. For isomorphs, where gut diameter Lφ is
proportional to whole body length L, the energy uptake from food is independent of body
size. A shorter gut residence time in small individuals is exactly compensated by a higher
enzyme concentration. This is because the production of short-living enzymes is taken to
be proportional to the surface area of the gut. An obvious alternative would be a long-
living enzyme that is secreted in the anterior part of the digestive system. If this part is a
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Figure 7.15: The assimilation rate
as a function of ingestion rate for mus-
sels (Mytilus edulis) ranging from 1.75 to
5.7 cm. Data from [58,59,103,383,485],
figure from [367]. All rates are cor-
rected to 15 ◦C. The fitted line is ṗA =
k̇X{ṗAm}/{J̇Xm} with {ṗAm}/{J̇Xm} =
11.5 (sd 0.34) J mg POM−1. ingestion rate, mgpom/h
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fixed proportion of the whole gut length the result of size independence is still valid.
Efficiency depends on food density as long as digestion is not complete. The undigested

amount of food MX(tg) can be solved implicitly and a relationship results between the rate
of enzyme secretion and the ingestion rate of food items by imposing the constraint that
the MX(tg) must be small. So it relates ingestion rate to food quality.

If the saturation coefficient MKX of the digestion process is negligibly small, digestion
becomes a zero-th order process, and the amount of food in the slice decreases linearly with
time (and distance). This has been proposed by Hungate [435], who modelled the 42 hour
digestion of alfalfa in ruminants. Digestion is complete if tg > MX(0)(k̇XyXgMg)−1, and so
k̇gJ̇Xm < k̇XyXgJ̇g, where J̇g denotes the total enzyme production by the individual; both
J̇Xm and J̇g are proportional to V 2/3 for an isomorph.

The above model can be extended easily to cover a lot of different enzymes in different
sections of the gut, without becoming much more complicated, as long as the additivity
assumptions of their mode of action and their products hold. Food usually consists of many
components that differ in digestibility. Digestion can only be complete for the animal in
question if the most resistant component is digested.

The existence of a maximum ingestion rate implies a minimum gut residence time. With
a simple model for digestion, it is possible to relate the digestive characteristics of food
to the feeding process, on the assumption that the organism aims at complete digestion.
The energy gain from ingested food is then directly proportional to the ingestion rate,
if prolonged feeding at constant, different, food densities is considered. See Figure 7.15.
Should temperature affect feeding in a different way than digestion, the close harmony
between both processes would be disturbed, which would lead to incomplete digestion
under some conditions.

7.3.1 Comparison of substrates

When different substrates are compared, the conversion efficiency of substrate to biomass
tends to be proportional to the chemical potential µX , on the basis of C-moles. It seems
reasonable to assume that µAX is proportional to the chemical potential of substrate. If
we tie the maximum reserve capacity [Em] to [ṗAm], see {270} for arguments, the specific
energy conductance k̇E becomes independent of the chemical potential and the molar yield
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Figure 7.16: The molar yield of biomass corrected
for a fixed population growth rate of ṙ = 0.2 h−1 is
proportional to the chemical potential of substrate,
expressed per C-mole in combustion reference. Data
from Rutgers [799] for Pseudomonas oxalaticus

(•) and from van Verseveld, Stouthamer and others
[615,946,947,948,949] for Paracoccus denitrificans (◦)
under aerobic conditions with NH+

4 as the nitrogen
source, corrected for a temperature of 30 ◦C. No prod-
uct, or a negligible amount, is formed during these
experiments [946].
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Figure 7.17: The amount of dissipating heat
at maximum population growth rate is linear in
the free energy per C-mole of substrate on the
basis of combustion reference (pH = 7). Data
from Rutgers [799] and Heijnen and van Dijken
[389,390] for Pseudomonas oxalaticus, growing
aerobically at 30 ◦C on a variety of substrates. chem. potential substrate, kJ/ C-mol
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of biomass becomes proportional to the chemical potential for a fixed value of ṙ via [Em]
in g and in [MEm]. This is confirmed in Figure 7.16.

The dissipating heat ṗT+ is found from

0 = ṗT+ + (µT
O − µT

Mn−1
MnO)ηOṗ(e, 1)MV +/MV m

If the population is growing at maximum rate, we have that f = e = 1, and

ṗ(1, 1) =
(

k̇E

g
k̇M

k̇E−k̇Mg
1+g

)

µGV MV m

When different substrates are compared, the dissipating heat tends to increase with the
free energy of substrate. This is to be expected, because the maximum volume-specific
assimilation rate [ṗAm] and the maximum reserve capacity [Em] are proportional to the
free energy per C-mole of substrate µX , see on {241}, so, the reserve turnover rate k̇E is
independent of µX , g ∝ µ−1

X , and the dissipating heat at maximum population growth rate
is approximately linear in µX if the combustion frame of reference is used. This frame
of reference is necessary because a high free energy of substrate corresponds with a high
degree of reduction, which requires more oxygen to release the energy. In the combustion
reference, this extra use of oxygen does not affect the relationship between free energy of
substrate and heat dissipation. This is confirmed by the data of Rutgers [799]; see Figure
7.17.
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The idea that the type of substrate and environmental conditions affect the sub-
strate/energy conversion µAX (and [Em]) but nothing else is consistent with analyses of
data from Pirt [716], who plotted the inverse of the yield against the inverse of the pop-
ulation growth rate and obtained the linear relationship formulated by Marr et al. [592].
According to the deb theory for V1-morphs with small reserve capacities [Em], this re-

lationship is 1
YWX

= µGV

µAX
(1 + k̇M

ṙ
). As S. J. Pirt noted, this relationship is linear in ṙ−1,

but the slope depends on the substrate-energy conversion µAX . Pirt found a wide range of
0.083–0.55 h−1 on a weight basis for two species of bacteria growing on two substrates, aer-
obically and anaerobically. The ratio of the slope to the intercept equals the maintenance
rate coefficient, k̇M , which does not depend on the substrate-energy conversion. Pirt’s data
fall in the narrow range of 0.0393–0.0418 h−1 [513]. These findings support the funnel
concept, which states that a wide variety of substrates is decomposed to a limited variety
of building blocks, which depend of course on the nature of the substrate and environmen-
tal conditions; these products are then built into biomass, which only depends on internal
physiological conditions, subject to homeostasis.

7.4 Cell wall and membrane synthesis

The cell has to synthesize extra cell wall material at the end of the cell cycle. Since the cell
grows in length only, the growth of surface material is directly tied to that of cytoplasmic
material. Straightforward geometry shows that the change in surface area A of a rod
with aspect ratio δ and volume at division Vd is given by d

dt
A = (16π 1−δ/3

δVd
)1/3 d

dt
V . So

the energy costs of structure can be partitioned as [EG] = [EGV ] + {EGA}(16π 1−δ/3
δVd

)1/3,

where {EGA} denotes the energy costs of the material in a unit surface area of cell wall
and [EGV ] that for the material in a unit volume of cytoplasm. For reasons of symmetry,

it is more elegant to work with [EGA] ≡ {EGA}V −1/3
d rather than {EGA}. The dimensions

of [EGV ] and [EGA] are then the same: energy per volume. At the end of the cell cycle,
when cell volume is twice the initial volume, the surface material should still increase
from A(Vd) to 2A(Vd/2) = (1 + δ/3)A(Vd). This takes time, of course. If all incoming
energy not spent on maintenance is used for the synthesis of this material, the change in

surface area is given by d
dt

A = k̇E

gA
(fA − Vd/V

1/3
m ), where gA ≡ [EGA]/κ[Em]. So A(t) =

(A(0) − Vd/fV 1/3
m ) exp{tf k̇E/gA} + Vd/fV 1/3

m . The time it takes for the surface area to

reach (1 + δ/3)V
2/3
d , starting from A(0) = V

2/3
d , equals

tA =
gA

fk̇E

(

ln 2 + ln
V∞ − Vd/2

V∞ − Vd

)

(7.10)

For the time interval between subsequent divisions, t(Vd) must be added, giving

td =
gA

fk̇E

ln 2 +

(

gA

fk̇E

+
(f + g)V∞

fk̇EVdδ/3

)

ln
V∞ − Vd/2

V∞ − Vd

(7.11)

The extra time for cell wall synthesis at the caps is not significant for filaments, as their caps
are comparatively small. Neither does it play a significant role in unicellular eukaryotic
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isomorphs, because they do not have cell walls to begin with. The cell’s volume is full of
membranes in these organisms, so the amount of membrane at the end of the cell cycle
does not need to increase as abruptly as in bacteria, where the outer membrane and cell
wall (if present) are the only surfaces. Comparable delays occur in ciliates for instance,
where the cell mouth does not function during and around cell division.

Cooper [175] and Koch [500] argued that the weight increase of bacterial cells is always
of the exponential type, apart from minor contributions of cell wall, dna, etc. If the activity
of the carriers for substrate uptake is constant during the cell cycle, an implication of this
model is that carriers should be produced at a rate proportional to the growth rate, and
consequently to cell volume rather than to surface area. This would increase the number
of carriers per unit of surface area of active membrane during the cell cycle. At the end of
the cell cycle the number of carriers per unit of surface area should (instantaneously) drop
by a factor of (1 + δ/3)−1 due to the production of the new membrane without carriers
that separates the daughter cells. This factor amounts to 5/6 = 0.83 for cocci and 1 for
V1-morphs. The factor stands for the ratio of the surface area of a body with volume Vd to
two times the surface area of a body with volume Vd/2; so it is 2−1/3 = 0.79 for isomorphs.
To my knowledge, such a reduction has never been demonstrated. The carrier density
is assumed to be constant in the deb theory. If the carrier density in the membrane
is constant in the case of exponential growth (in non-V1-morphs), the carrier activity
should increase during the cell cycle. This requires the loss of homeostasis and/or complex
regulation of carrier activity. In the deb theory, the carrier activity is constant during the
cell cycle. Although exponential growth of the cell seems an attractively simple model at
first sight, theory to tie the growth rate to nutrient levels no longer comes naturally for
such an extreme ‘demand’ type of system. Moreover, phenomena such as the small cell
size in oligotrophic oceans, the growth of stalks in Caulobacter, the removal of disused dna
need other explanations than given in this book. Another point is of course that, if bacteria
increased their weight exponentially, they would deviate from unicellular eukaryotes in this
respect, where exponential growth is obviously untenable, cf. Figure 1.1. The problem of
what makes prokaryotes fundamentally different from eukaryotes in terms of energetics
should then be addressed.

7.5 Protein synthesis

rna, mainly consisting of ribosomal rna, is an example of a compound known to increase
in abundance with the growth rate [495]. This property is used to measure the growth rate
of fish, for example [135,432]. In prokaryotes, which can grow much faster, the increase
in rrna is much stronger. This section will, therefore, focus on prokaryotes. Within the
deb model, we can only account for this relationship when (part of the) rna is included
in the energy reserves. This does not seem unrealistic, because when cells experience a
decline in substrate density and thus a decline in energy reserves, they are likely to gain
energy through the degradation of ribosomes [199]. It also makes sense, because the
kinetics of reserve energy density is assumed to be first order, which implies that the use
of reserves increases with their density. The connection between the abundance of rna,
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Figure 7.18: The concentration of rna

as a function of the population growth rate
in E. coli . Data from Koch [495]. The
least-squares estimates of the parameters are
θe = 0.44 (sd 0.05), θv = 0.087 (sd 0.005) and
[WEd]/[WV d] = 20.7 (sd 5.4).

Figure 7.19: Elongation rate in E. coli for
δ = 0.3, ld = 0.24 (sd 0.019), g = 32.4 (sd
91.9). Data from Bremer and Dennis [113].
Both elongation rate and population growth
rate are expressed as fractions of their maxi-
mum value of ṙm = 1.73 h−1 with an elonga-
tion rate of 21 aa s−1rib−1.

i.e. the apparatus for protein synthesis, and energy density is, therefore, a logical one. No
assumption of the deb model implies that the energy reserves should be inert materials
that only wait for further use. The analysis of the data from Esener in the section on
mass–energy coupling, {125}, also points to the conclusion that rrna can be a significant
part of the reserves in bacteria.

The dynamics of rna is most easy to describe when rna constitutes a fixed fraction of
the energy reserves. This is also the simplest condition under which homeostasis for energy
reserves holds in sufficient detail to apply to rna. The rate of rna turnover is completely
determined by this assumption. It also has strong implications for the translation rate and
the total number of translations made from a particular rna molecule.

rna as a fraction of dry weight is given in Figure 7.18. If the weight of rna is a fraction
θv of the dry weight of structural biomass and a fraction θe of the dry weight of the energy
reserves, the fraction of dry weight that is rna equals

WRNA/Wd =
θv[WV d]V + θe[WEd]fV

[WV d]V + [WEd]fV
=

θv + θef [WEd]/[WV d]

1 + f [WEd]/[WV d]

The parameters of Figure 9.8 were used to relate ṙ to f . This indicates that at least in E.
coli most rna is part of the reserves, and about half the energy reserves consist of rna.

The mean translation rate of a ribosome, known as the peptide elongation rate, is
proportional to the ratio of the rate of protein synthesis to the energy reserves, E. The
rate of protein synthesis is proportional to the growth rate plus part of the maintenance
rate, which is higher the lower the growth rate in bacteria [892]. The peptide elongation
rate is plotted in Figure 7.19 for E. coli at 37 ◦C. If the contribution of maintenance to
protein synthesis can be neglected, the elongation rate at constant substrate density is
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Figure 7.20: In combination with the structural
homeostasis hypothesis, the following rules im-
ply a molecular mechanism for first-order kinet-
ics for reserve density: (generalized) substrate
is taken up by substrate carriers from the envi-
ronment, converted into a reserve precursor and
added to (generalized polymer) reserves. Re-
serve carriers mobilize reserves at a constant
rate per carrier and a fixed fraction of this flux is
used for the synthesis of reserve carriers; the rest
of this flux is used for maintenance and growth,
where reserves are the source of energy (via de-
composition in mitochondria) as well as building
blocks for structural mass (including substrate
carriers). The carrier density in the membranes
does not change and carriers have a limited life
span. The turnover of substrate carriers is paid
via maintenance.

proportional to the ratio of the growth rate d
dt

V to the stored energy [Em]fV . As shown
by (3.41), the elongation rate in a rod of mean volume should be proportional to ṙ/f
at population growth rate ṙ. The relationship allows the estimation of the parameter ld,
which is hard to obtain in another way.

The lifetime of a compound in the reserves is exponentially distributed with a mean
residence time of (k̇E( δ

3
Vd

V
+ 1− δ

3
))−1. The mean residence time thus increases during the

cell cycle. At division it is k̇−1
E , independent of the (population) growth rate. The total

number of transcriptions of a ribosome, in consequence, increases with the population
growth rate. Outside the cell, rna is rather stable. The fact that the rna fraction of dry
weight depends on feeding conditions indicates that an rna molecule has a restricted life
span inside the cell.

7.6 Structural homeostasis

This section presents a mechanism that explains why the dynamics of the reserve density,
i.e. the ratio of the reserves to the structural volume, follows a first-order process and
how the assumption of weak homeostasis can be substantiated. The mechanism behind
this reserve dynamics can be simple if the growth rate is small and dilution by growth
plays no role: each reserve ‘molecule’ has a constant probability of being utilized. If the
growth rate is large, however, as can be the case for unicellulars, a special mechanism is
required to explain why dilution by growth is not involved in the use of reserves. One such
a mechanism can be as follows.

Suppose that the reserves of an isomorphic cell are localized in vesicles, see Figure 7.20.
Reserves are there because carriers in the outer membrane of the cell (or in membranes
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Figure 7.21: The structural cell volume V is grow-
ing to the right by a factor two, i.e. the cell diameter
is growing by a factor 21/3. The (energy) reserve E is
growing to the bottom by a factor two, i.e. the number
of vesicles is growing by a factor two. Structural home-
ostasis is obtained if the total amount of membranes
in the vesicles is proportional to EV −1/3. This implies
that the number of vesicles reduces, if the structural
cell volume grows, but not the amount of reserves. In
that case, the reserve density does not change at con-
stant substrate concentration: structural homeostasis
implies weak homeostasis.

that wrap digestive vesicles) bind substrate outside the cell; substrate is then (possibly)
converted to reserve precursors, and transporters, gliding along the cytomatrix [165],
deliver these precursors to carriers in the membranes of reserve vesicles. The latter carriers
release reserve molecules in the vesicle and operate in a way that the reserve precursor
density in the cytosol remains constant, for instance because the transporter density is
constant. This implies that the rate of transformation of reserve precursors into reserves
equals the rate at which enzymes that are located in the outer membrane of the cell bind
substrate molecules from the environment and release reserve precursors into the cytosol.
The number of such enzyme molecules in the outer membrane is just proportional to the
amount of outer membrane; carrier synthesis has in practice been found to be coupled to
membrane synthesis, and not directly to growth of the cytoplasm [217].

Reserves are mobilized by other enzymes in the membranes of reserve vesicles. The
density of these enzymes in the membranes (i.e. the number of enzyme molecules per
surface area of membrane) is constant, i.e. independent of the amount of membranes MC

quantified in C-moles, reserves E or structural cell mass MV . The enzymes take reserve
molecules from the vesicle content and release reserve products into the cytosol to fuel
cellular metabolism.

The deb model assumes that the change in reserves equals the difference between the
assimilation energy ṗA and the catabolic energy ṗC (i.e. the catabolic power is defined as
the energy flux that is mobilized from the reserves). The κ-rule states that a fixed fraction
κ of the catabolic energy is spent on growth, ṗG = µGV

d
dt

MV , plus maintenance, i.e. ṗM . I
assume a similar rule for the synthesis and breakdown of membranes. This amounts to

d

dt
E = ṗA − ṗC(E, V ) (7.12)

d

dt
MC = ṗC(E, V )ηCC −MC k̇C (7.13)

d

dt
MV = ṗC(E, V )ηV C −MV k̇M (7.14)

where ṗC denotes the catabolic power of the cell, ηCC the conversion efficiency of catabolic
power into membrane, k̇C the specific decay rate of membrane, ηV C = µ−1

CV the conversion
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efficiency of catabolic energy into structural biomass, and k̇M the maintenance rate coef-
ficient (i.e. k̇M = [ṗM ]/[EG]). There is no need to distinguish whether structural biomass
is first formed and then degraded, or whether maintenance costs are paid before synthesis
occurs, since both possibilities result in the same kinetics.

From (7.12) and (7.14), it follows that

d

dt
[E] = [ṗA]− [ṗC ]− [E]([ṗC ]ηV G/[MV ]− k̇M) or (7.15)

[ṗC ] =
[ṗA]− d

dt
[E] + k̇M [E]

1 + [E]ηV G/[MV ]
(7.16)

for [E] ≡ E/V , [ṗC ] ≡ ṗC/V and [ṗA] ≡ ṗA/V . The ratio ηV G/[MV ] quantifies the efficiency
of the conversion of catabolic energy into structural biovolume, since [MV ] stands for the
number of C-moles per unit of biovolume.

Suppose that the number of vesicles n and their radius change fast with respect to the
change in VC and that the radius is proportional to the radius of the cell, i.e. proportional
to the ratio of volume to surface area. This fast coupling between the linear dimensions of
vesicles and cell is called the structural homeostasis assumption, see Figure 7.21. Because
the membranes wrap the reserves, one must have that E = nV [En] (or [E] = n[En]) and

MC = nV 2/3{MCn} = [E]V 2/3{MCn}/[En] or (7.17)

d

dt
MC =

(

V 2/3 d

dt
[E] +

2

3
V −1/3[E]

d

dt
V

)

{MCn}
[En]

(7.18)

where [En] and {MCn} are conversion constants. Note that the assumption of the fast
coupling between the linear dimensions of the vesicles and the cell is equivalent to the
assumption that the number of vesicles is proportional to the reserve density.

From (7.13) and (7.18) and from (7.16), we obtain

[ṗC ] = µCCV −1

(

d

dt
MC + MC k̇C

)

(7.19)

=
{MCn}V −1/3

[En]ηCC

d
dt

[E] + (k̇C − 2
3
k̇M)[E]

1− 2
3

{MCn}ηV C

[En]ηCC [MV ]
[E]V −1/3

(7.20)

d

dt
[E] =

[ṗA]− [E]
(

V −1/3v̇
(

1− 2
3

k̇M

k̇C
+ 2

3
ηV C

[MV ]
[ṗA]

k̇C
+ [E] ηV C

[MV ]

)

− k̇M

)

1 + v̇
k̇C

V −1/3(1 + 1
3

ηV C

[MV ]
[E])

(7.21)

for v̇ ≡ {MCn}k̇C

[En]ηCC
.

Suppose that the membrane kinetics is fast with respect to the reserve kinetics, so
ηCC → ∞ and k̇C → ∞, such that ηCC/k̇C remains fixed. The consequence is that the
amount of membrane is in pseudo-equilibrium, i.e. d

dt
MC → 0, and the specific membrane

activity is constant, i.e. [ṗC ]/[MC ] = k̇C/ηCC . In other words: each enzyme in the mem-
brane binds a reserve ‘molecule’ inside a vesicle and releases a reserve product ‘molecule’
outside the vesicle into the cytosol at a rate that does not depend on the amount of reserves
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or the structural volume of the cell. The amount of membranes per structural cell volume
equals [M∗

M ] = [E]V −1/3{MCn}/[En], which implies that the energy costs of membrane
turnover are included in the overhead of the catabolic power. Since the membrane den-
sity is proportional to an inverse length measure, strict chemical homeostasis is lost if the
membrane composition differs from the structural biomass.

In the limit, (7.21) reduces to

d

dt
[E] = [ṗA]− [E]

(

V −1/3v̇(1 + [E]ηV C/[MV ])− k̇M

)

(7.22)

If [E]ηV C ≪ [MV ] (so [Em]ηV C ≪ [MV ], or g ≡ [EG]
κ[Em]

≫ 1) and k̇M ≪ v̇V −1/3 (so

k̇M ≪ v̇V −1/3
m = k̇Mg, which again gives g ≫ 1), we finally obtain

d

dt
[E] = [ṗA]− v̇[E]V −1/3 (7.23)

Since [ṗA] = f{ṗAm}V −1/3, we have the maximum reserve density [Em] = {ṗAm} [En]ηCC

{MCn}k̇C
.

This relationship shows that the maximum reserve density is an extensive quantity, i.e. a
physical design parameter, because {ṗA} is such a parameter, while the four other param-
eters are intensive quantities. The body size scaling rules, as implied by the DEB theory
(see {267}), show that the inequality g ≫ 1 is likely to apply to the very small organisms
since [EG] and κ do not depend on body size and [Em] is proportional to volumetric length,
so that g is inversely proportional to volumetric length.

The effect of dilution by growth on the dynamics of the reserves is small if d
dt

ln V ≪
v̇V −1/3. Using V −1 d

dt
V = [MV ]−1 d

dt
MV , and d

dt
MV = µ−1

E yV E ṗG, we obtain from Table 3.5

that V −2/3 d
dt

V = v̇
g

e−l−lh
1+e/g

. This quantity is much smaller than v̇ if g ≫ −l − lh. So, the
dilution is negligible if g is large. Dilution by growth can never become important because
fast growth cannot combine with a small change of energy reserves, because the costs of
growth are paid from the change in energy reserves.

For a V1-morphic cell, we have that MC = nV [M∗
Cn] = [E]V [M∗

Cn]/[En] and

[ṗC ] =
[M∗

Cn]

[En]ηCC

d
dt

[E] + (k̇C − k̇M)[E]

1− [M∗
Cn]ηV C

[En]ηCC [MV ]
[E]

(7.24)

d

dt
[E] =

[ṗA]− [E]
(

k̇E

(

1 + [ṗA]

k̇C

ηV C

[MV ]
− k̇M

k̇C
+ [E] ηV C

[MV ]

)

− k̇M

)

1 + k̇E/k̇C

(7.25)

= [ṗA]− [E](k̇E(1 + [E]ηV C)− k̇M) for k̇C →∞ (7.26)

≃ [ṗA]− [E](k̇E − k̇M) for g ≫ 1 (7.27)

where k̇E ≡ [M∗
Cn]k̇C

[En]ηCC
and [ṗA] = f [ṗAm]. The membrane-specific activity equals [ṗC ]/[MC ] =

k̇C/ηCC , just as for isomorphic cells.
The essential element in the proposed mechanism of first-order dynamics for reserve

density, and weak homeostasis, is a spatial micro-structure that is subjected to struc-
tural homeostasis. Although many reserves are actually wrapped by membranes, even in
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prokaryotes [553, p 31], membranes are not essential elements in the proposed mechanism.
What is essential is that the (polymer) reserves in a single droplet or granule can only be
assessed from the outside, so the relative accessibility decreases with the size of the granule.
The key element is thus the change in the surface area/volume ratio at a micro scale.

7.7 Growth of dynamic mixtures of morphs

Some organisms change in shape during growth in a complex fashion. Frequently it is still
possible, however, to take these changes in shape into account in a rather simple way.

7.7.1 Crusts

Crusts, i.e. biofilms of limited extent that grow on hard surfaces, are mixtures of V0-morphs
in the centre and V1-morphs in the periphery where the new surface is covered. Bacterial
colonies on an agar plate, conceived as super-organisms, are crusts. When crusts grow, an
increasing proportion of the biomass behaves as a V0-morph. With an extra assumption
about the transfer of biomass from one mode of growth to the other, the growth of the
crust on a plate is determined and can be worked out as follows for constant substrate
density.

Let Lǫ denote the width as well as the thickness of the outer annulus of the circular
crust of radius Lr that is growing exponentially in an outward direction. The width and
the thickness of the outer annulus remain constant. This biomass thus behaves as a V1-
morph; all other biomass in the centre of the crust behaves as a V0-morph. The surface
area of the crust is Ar(t) = πL2

r(t), and of the exponentially growing annulus Aǫ(t) =
π (L2

r(t)− (Lr(t)− Lǫ)
2) = π (2Lr(t)Lǫ − L2

ǫ). The total surface area is growing at rate
d
dt

Ar = ṙAǫ, so the radius is growing at rate

d

dt
Lr = ṙLǫ

(

1− Lǫ

2Lr

)

from which it follows that the diameter of the crust is growing linearly in time for Lǫ ≪ Lr.
This linear growth in diameter has been observed experimentally by Fawcett [272], and
the linear growth model originates from Emerson [254] in 1950 according to Fredrickson et
al. [297]. Figure 7.22 shows that this linear growth applies to lichen growth on moraines.
Richardson [763] discusses the value of gravestones for the study of lichen growth, because
of the reliable dates. Lichen growth rates are characteristic of the species, so the diameter
distribution of the circular patches can be translated into arrival times, which can then be
linked to environmental factors, for instance.

If substrate transport in the vertical direction on the plate is sufficient to cover all
maintenance costs, and transport in the horizontal direction is small, the growth rate of
the V0-morph on top of an annulus of surface area dA is

d

dt
V =

f{ṗAm} dA− [ṗM ]V

[EG] + [Em]f
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Figure 7.22: The lichens As-

picilia cinerea (above) and Rhi-

zocarpon geographicum (below)
grow almost linearly in a period
of more than three centuries on
moraine detritus of known age
in the European Alps. Data
from Richarson [763]. Linear
growth is to be expected from the
deb model, when such lichens are
conceived as dynamic mixtures of
V0- and V1-morphs. year of moraine deposition
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The denominator stands for the volume-specific costs of structural biomass and reserves.
Division by the surface area of the annulus gives the change in height Lh of the V0-morph
on the top of an annulus of surface area dA = V

2/3
d ; the height is found from (3.37) by

substituting V = LhV
2/3
d

d

dt
Lh =

v̇

e + g
(e− V −1/3

m Lh) or
d

dt
lh = 3ṙB(f − lh)

with the scaled height lh ≡ LhV
−1/3
m . The initial growth rate in scaled height is 3ṙB(f− lǫ).

The parameter lǫ ≡ LǫV
−1/3
m can be eliminated, on the assumption that the growth rate in

the outward direction equals the initial growth rate in the vertical direction, which gives
lǫ = ld/2 for ld ≪ f . For ld ≪ lr with lr ≡ LrV

−1/3
m , the end result amounts to

lh(t, lr) = f − (f − ld/2) exp

{

lr
f − ld

− 3ṙBt

}

(7.28)

The scaled height of the crust is thus growing asymptotically to f . Different crust shapes
can be obtained by accounting for horizontal transport of biomass and diffusion limitation
of food transport to the crust.

The spatial expansion of geographical distribution areas of species, such as the musk
rat in Europe, and of infectious diseases, cf. [104,105,386], closely resembles that of crusts.
Although these population phenomena differ in many respects from the growth of crusts as
(super) individuals, the reason why the expansion proceeds at a constant rate is basically
the same from an abstract point of view: material in the border area grows exponentially,
but the inner area hardly contributes to the expansion.

7.7.2 Flocs and tumours

Growth in the thickness of a biofilm on a plane, which behaves as a V0-morph, is thus
similar to that of a spherical biofilm on a small core in suspension, which behaves as an
isomorph as long as mass transport in the film is sufficiently large to consider the biomass
as homogeneous. Films are growing in a von Bertalanffy way in both situations, if growth
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via settling of suspended cells on the film is not important. Note that if maintenance is
small, so that the asymptotic depth of the film is large, the increase in diameter is linear
with time, so that volume increases as time3, as has been found for foetuses in (3.26) by
different reasoning. This mode of growth was called the ‘cube root’ phase by Emerson
[254], who found it applicable to submerged mycelia of the fungus Neurospora. The model
was originally formulated by Mayneord for tumour growth [601], and frequently applied
since then [541,619,879,990].

If mass transport in a spherical biofilm on a small core in suspension is not large, the
biomass in the centre will become deprived of substrate by the peripheral mass, and die from
starvation. Such a film is called a (microbial) floc. A concentration gradient of substrate
develops in the living peripheral mass, such that the organisms at the living/dead boundary
layer just receive enough substrate to survive, and do not grow. The organisms at the outer
edge grow fastest. The thickness of the living layer directly relates to the transport rate
of substrate, and so depends on the porosity of the floc. Flocs again behave as dynamic
mixtures of V0- and V1-morphs, and, just like crusts, the floc diameter eventually grows
linearly in time at constant substrate densities in the environment, if it does not fall apart
because of the increasing mechanic instability. This can be seen as follows.

Let Lǫ denote the thickness of the thin living layer of a spherical floc of radius Lr. The
thickness remains constant, while the living mass is growing exponentially at rate ṙ. The
outer layer behaves as a V1-morph, the kernel as a degenerated V0-morph. The total vol-
ume of the floc is Vr(t) = 4

3
πL3

r(t) and of the living layer Vǫ(t) = 4
3
π (Lr(t)

3 − (Lr(t)− Lǫ)
3) =

4
3
π (3L2

r(t)Lǫ − 3Lr(t)L
2
ǫ + L3

ǫ). The growth of the floc is given by d
dt

Vr = ṙVǫ, so the radius
is growing at rate

d

dt
Lr = ṙLǫ

(

1− Lǫ

Lr

+
L2

ǫ

3L2
r

)

For Lr ≫ Lǫ, the change in the radius Lr becomes constant, and the floc grows linearly
in time. The steady-state population growth rate of flocs can be obtained analytically,
given a fixed size at fragmentation into n parts. The dead volume increases with d

dt
V†(t) =

4π(Lr(t)−Lǫ)
2 d

dt
Lr(t). B. W. Brandt (pers. comm.) showed that the combination of diffu-

sive transport of substrate into the floc, and uptake that is a hyperbolic function of the sub-

strate density leads to a living layer of thickness
(

ḊXk

2jXmX1

)1/2
∫ x0
x†

(

y − x† + ln
1+x†

1+y

)−1/2
dy,

where Ḋ is the diffusion coefficient, the scaled substrate density at the living/ dead bound-

ary is x† = [ṗM ]
[ṗAm]−[ṗM ]

with specific maintenance power [ṗM ] and specific maximum assimi-

lation power [ṗAm], scaled substrate concentration x0 = X0/XK with saturation constant
XK , biomass density in the floc X1 and maximum specific substrate uptake rate [jXm]
[109].

7.7.3 Roots and shoots

The modelling step from algae to plants involves a number of extensions that primarily
relate to the fact that plants take up nutrients through roots, while shoots (including leaves)
are used for light and carbon dioxide uptake and water transpiration, which affect internal
nutrient and metabolite transport. This makes the allocation of resources to root versus
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Figure 7.23: Just after germination, plants usually grow as V1-morphs, but when the number of
leaves increases, self-shading becomes important, and the plant gradually behaves as an isomorph.
If they make contact with other plants, and leaves and roots form a closed layer, they behave as
V0-morphs; an increase in mass no longer results in an increase of surface area that is effectively
involved in nutrient or light uptake.

shoot growth of special interest, as well as shape changes that affect surface area/ volume
relationships via the scaling of assimilation and maintenance, respectively, with structural
mass. As illustrated in Figure 7.23, most plants naturally develop from a V1-morphic, via
an isomorphic, to a V0-morphic growth during their life cycle. Procumbant plants almost
skip the isomorphic phase and directly develop from V1- to V0-morphic growth, similar to
crusts [85]. Climbing plants seem to stay in the V1-morphic phase.

These changes in shape can be incorporated using the shape correction functionM(V ),
which can be chosen differently for roots and shoots. Given the wild diversity of plant
shapes and the extreme extent of local adaptations, it is hard to see how a choice can
be based on mechanistic arguments. Empirical and convenience arguments can hardly be
avoided at this point. A simple choice would be M(V ) = (V/Vd)1/3−(V/Vm)β

, which starts
from V1- and ends with V0-morphic growth when it reaches its maximum volume Vm.

7.8 Pupa and imago

Insects do not grow in the adult stage, called the imago. They are thus much less flexible
in their allocation of energy. Holometabolic insects (butterflies, wasps, beetles, flies) have
a pupal stage between the juvenile and the adult one, which has a development pattern
that strongly resembles that of the embryo or, more specifically, the foetus, since the
energy reserves at eclosion are usually quite substantial so that there is hardly any growth
retardation due to reserve depletion. This resemblance to a development pattern is not a
coincidence because the adult tissue develops from a few tiny imaginal disks, the structural
biomass of the larva being first converted to reserves for the pupa. So the initial structural
volume of the pupa is very small indeed. Since no energy input from the environment occurs
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Figure 7.24: The wet weight develop-
ment of the male pupa of the green-veined
white butterfly Pieris napi at 17 ◦C un-
til eclosion, after having spent 4 months
at 4 ◦C. Data from Forsberg and Wik-
lund [290]. The fitted curve is Ww(t) =
130.56− (7.16+t

9.61 )3, with weight in mg and
time in days, as is expected from the deb

theory.
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until development is completed, pupal weight decreases, reflecting the use of energy. This
can be worked out quantitatively as follows.

As discussed under foetal development {104}, growth is given by d
dt

V = v̇V 2/3, so that,

if temperature is constant, V 1/3(t) = V
1/3

0 +tv̇/3, where V0 represents the structural volume
of the imaginal disks. The energy in the reserves decreases because of growth, maintenance
and development, so that

E(t) = E0 −
[EG]

κ
V (t)− [ṗM ]

κ

∫ t

0
V (t1) dt1 (7.29)

= E0 −
[EG]

κ
(V

1/3
0 + t

v̇

3
)3 − [ṗM ]

4κv̇
(V

1/3
0 + t

v̇

3
)4 +

[ṗM ]

4κv̇
V

4/3
0 (7.30)

Together with the contribution of the structural volume, this translates via (2.6) into the
wet weight development

Ww(t) = wE
E0

µE
− (gwE [MEm]−dV )

(

V
1/3

0 + t
v̇

3

)3

− wE [MEm]

4V
1/3
m

(

(

V
1/3

0 + t
v̇

3

)4

− V
4/3

0

)

(7.31)

Tests against experimental data quickly show that the contribution of the third term,
which relates to maintenance losses, is too small to be noticed. So the weight-at-time
curve reduces to a three-parameter one. It fits the data excellently, see Figure 7.24. Just
as in foetuses, the start of the development of the pupa can be delayed, in a period known
as the diapause. The precise triggers that start development are largely unknown.

Imagos do not grow, so if the reserve dynamics (3.10) still applies, the catabolic rate
reduces to ṗC = {ṗAm}V 2/3e. If food density is constant or high, and aging during the
pupate state is negligible, the change in damage inducing compounds is

d

dt
[MQ] = µ−1

QC [ṗC ] = µ−1
QC{ṗAm}V −1/3f =

[EG]k̇Mf

κµQC l

where l ≡ (V/Vm)1/3 and V 1/3
m ≡ κ{ṗAm}/[ṗM ] as before. Note that, in this case, Vm cannot

be interpreted as the maximum body volume and κ cannot be interpreted as a partition
coefficient. Energy derived from food is spent on (somatic plus maturity) maintenance at a
constant rate (at constant temperature) in imagos; the rest is spent on reproduction. The
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Figure 7.25: The survival curves of
the female fruit fly Drosophila melanogaster

at 25 ◦C and unlimited food. Data from
Rose [788]. The fitted survival curve is
exp{−(ḣit)

3} with ḣi = 0.0276 (sd 0.00026)
d−1.

loss of the interpretations for Vm and κ is not a problem; the term [ṗM ]/κ represents the
sum of the somatic and maturity volume-specific maintenance costs, so V 1/3

m represents the
ratio of the maximum surface-area-specific assimilation rate to the volume-specific total
maintenance costs.

The hazard rate and the survival probability simplify to

ḣ(t) =
t2

2
ḧak̇Mf/l (7.32)

Pr{a† > ap + t|a† > ap} = exp
{

−1

6
t3ḧak̇Mf/l

}

= exp
{

−(ḣit)
3
}

(7.33)

for aging rate ḣi ≡ (1
6
ḧak̇Mf/l)1/3, and age at puberty ap. This is thus the Weibull

model with a fixed shape parameter of 3. The mean age at death as an imago then
equals Γ(1

3
)(3ḣi)

−1 ≃ 1.62(ḧak̇Mf/l)−1/3, where Γ stands for the gamma function Γ(x) ≡
∫∞

0 tx−1 exp{−t} dt.

Experimental results of Rose, Figure 7.25, suggest that this is realistic. He showed
that longevity can be prolonged in female fruit flies by selecting offspring from increasingly
older females for continued culture [788]. It cannot be ruled out, however, that this effect
has a simple nutrient/energy basis with little support for evolutionary theory. Selection
for digestive deficiency also results in a longer life span. Reproduction, feeding, respiration
and, therefore, aging rates must be coupled because of the conservation law for energy.
This is beautifully illustrated with experimental results by Ernsting and Isaaks [260], who
collected carabid beetles Notiophilus biguttatus from the field shortly after eclosion, kept
them at a high and a low level of food supply (springtail Orchesella cincta) at 16 h 20 ◦C:8
h 10 ◦C, and measured survival and egg production. A third cohort was kept at 10 ◦C at
a high feeding level. They showed that the respiration rate of this 4–7 mg beetle is linear
in the reproduction rate: 0.84 + 0.041Ṙ in J d−1 at 20/10 ◦C and 0.57 + 0.051Ṙ at 10 ◦C.
This linear relationship is to be expected for imagos on the basis of the aforementioned
interpretations. It allows a reconstruction of the respiration rate during the experiment
from reproduction data and a detailed description of the aging process. This is more
complex than the Weibull model, because metabolic activity was not constant, despite
standardized experimental conditions. The quantitative details are as follows.
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Figure 7.26: The reproduction rate (left figure) of the carabid beetle Notiophilus biguttatus

feeding on a high density (stippled graphs) of springtails at 20/10 ◦C (densely stippled) and at
10 ◦C (sparsely stippled) and a lower density (drawn graph) at 20/10 ◦C. The survival probability
of these cohorts since eclosion is given in the right figure. Data from G. Ernsting, pers. comm.
and [260]. The survival probability functions (right) are based on the observed reproduction
rates with estimated parameter ḧae0(κRgl3)−1 = 0.63 (0.02) a−2 for high food level and high
temperature, 0.374 (0.007) a−2 for low food level and high temperature, 0.547 (0.02) a−2 for high
food level and low temperature. The contribution of maintenance costs to aging is determined
from respiration data. A small fraction of the individuals at the high food levels died randomly
at the start of the experiments.

The catabolic rate is subdivided into the maintenance and reproduction costs as

ṗC = ṗM/κ + ṘE0/κR = (k̇M + Ṙe0(gκRl3)−1)[EG]V/κ

where the scaled egg cost e0 is given in (3.31). This gives the hazard rate and survival
probability

ḣ(t) =
1

2
ḧak̇M t2 +

ḧae0

κRgl3

∫ t

0

∫ t1

0
Ṙ(t2) dt2 dt1

Pr{a† > ap + t|a† > ap} = exp

{

−1

6
ḧak̇M t3 − ḧae0

κRgl3

∫ t

0

∫ t1

0

∫ t2

0
Ṙ(t3) dt3 dt2 dt1

}

Although e0 depends on the reserve energy density of the beetle, and so on feeding be-
haviour, variations will be negligibly small for the present purpose since food-dependent
differences in egg weights have not been found. The low temperature cohort produced
slightly heavier eggs, which is consistent with the higher respiration increment per egg.
The estimation procedure is now to integrate the observed Ṙ(t) three times and to use the
result in the estimation of the two compound parameters 1

6
ḧak̇M and ḧae0(κRgl3)−1 of the

survivor function from observations.
Figure 7.26 confirms this relationship between reproduction, and thus respiration, and

aging. The contribution of maintenance in respiration is very small and could not be
estimated from the survival data. The mentioned linear regressions of respiration data
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against the reproduction rate indicate, however, that κRgk̇M l3/e0 = 0.84/0.041 = 20.4 d−1

at 20/10 ◦C or 0.57/0.051 = 11 d−1 at 10 ◦C. This leaves just one parameter ḧae0(κRgl3)−1

to be estimated from each survival curve. The beetles appear to age a bit faster per
produced egg at high than at low food density. This might be caused by eggs being more
costly at high food density, because of the higher reserves at hatching. Another aspect is
that, at high food density, the springtails induced higher activity, and so higher respiration,
by physical contact. Moreover, the substantial variation in reproduction rate at high food
density suggests that the beetles had problems with converting the energy allocated to
reproduction to eggs, which led to an increase in κR and a higher respiration per realized
egg. Note that these variations in reproduction rate are hardly visible in the survival curve,
which is due to triple integration. The transfer from the field to the laboratory seemed to
induce early death for a few individuals at the high food levels. This is not related to the
aging process but, possibly, to the differences with field conditions.

The Weibull model for aging with a fixed shape parameter of 3 should not only apply
to holometabolic insects, but to all ectotherms with a short growth period relative to the
life span. Gatto et la. [312] found, for instance, a perfect fit for the bdelloid rotifer
Philodina roseola where the growth period is about 1/7-th of the life span. Notice that
constant temperature and food density are still necessary conditions for obtaining the
Weibull model.

The presented tests on pupal growth and survival of the imago support the applicability
of the deb theory to holometabolic insects, if some elementary facts concerning their life
history are taken into account. This suggests new interpretations for experimental results.

7.9 Changing parameter values

Parameter values are usually constant, by definition, but environmental and internal factors
might make them vary in time. Such variations occur at different time scales, and some
variations are permanent.

Several changes have already been introduced, and are briefly recapitulated in this
introduction. Starvation can induce changes energy allocation through κ, and prolonged
starvation can invoke drastic qualitative changes. Choices of diet are frequently predictable,
and sometimes relate to the life stage; this comes with changes in (maximum) ingestion
rate and assimilation energy. During pregnancy and the lactation period, and prior to
migration, the maximum ingestion and assimilation rates can be elevated, which involves
hormonal control. Toxicants and parasites can affect parameter values. Although not
worked out quantitatively, parameter values can be coupled to the aging process, where
maintenance, reproduction and feeding usually tend to decrease with age.

Some changes are briefly discussed in the next subsections, to reveal possible interpre-
tations of data in the light of the deb theory. They are arranged on an increasing time
scale.
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7.9.1 Changes due to body temperature

Empirical growth curves of birds frequently deviate from the von Bertalanffy growth curve,
even if food is abundant. Does this falsify the deb theory? Not necessarily. The body
temperature of endotherms can be well above the environmental temperature. If insulation
or heat transfer from mother to chick changes in time, deviations from the von Bertalanffy
growth curve are to be expected. Altricial birds provide an excellent case to illustrate the
problem of the energy interpretation of growth measurements in the case of an unknown
body temperature. This section offers partial solutions to the interpretation problem.

Birds become endothermic around hatching; precocial species usually make the transi-
tion just before hatching, and altricial ones some days after. The ability to keep the body
temperature at some fixed level is far from perfect at the start, so the body temperature
depends on that of the environment and the behaviour of the parent(s) during that period.
Unless insulation of the nest is perfect, the parents cannot heat the egg to their own body
temperature. There will be a few degrees difference, but this is still a high temperature,
which means that the metabolic rate of the embryo is high. So it produces an increasing
amount of heat as a byproduct of its general metabolism before the start of endothermic
heating.

The process of pre-endothermic heating can be described by: d
dt

Tb = αT ṗT+ − k̇be(Tb −
Te), where Tb is the body temperature of the embryo, Te the temperature of the envi-
ronment, αT the heat generated per unit of utilized energy and k̇be the specific heat flux
from the egg to the environment. The latter is here taken to be independent of the body
size of the embryo, because the contents of the egg are assumed to be homogeneous with
respect to the temperature. (The Brunnich’s guillemot seems to need a 40 ◦C temperature
difference between one side of the egg and the other to develop [760].)

Figure 7.27 illustrates the development of the lovebird Agapornis, with changing body
temperature (TA = 10 kK). The curves hardly differ from those with a constant temper-
ature, but the parameter estimates differ substantially. The magnitude of the predicted
temperature rise depends strongly on the parameter values chosen. The information con-
tained in the data of Figure 7.27 did not allow a reliable estimation of all parameters; the
predicted temperature difference of 4 ◦C is arbitrary, but not unrealistic.

It is interesting that the red-headed lovebird, A. pullaria from Africa, and at least 11
other parrot species in South America, Australia and New Guinea breed in termite nests,
where they profit from the heat generated by the termites. Breeding Golden-shouldered
parrots, Psephotus chrysopterygius , in captivity failed frequently, until it became known
that one has to heat the nest to 33 ◦C for some days before hatching and for two weeks
after.

The significance of this exercise is the following: the least-squares-fitted curves remain
almost exactly the same, whether or not the body temperature changes, but the parameter
estimates for, for example the energy conductance, differ considerably. It follows that these
data are not suitable for estimating energy parameters unless the temperature is known
as a function of time. This holds specially for altricial birds because they hatch too early
to show the reduction in respiration rate that gives valuable information about parameter
values. The few studies on bird development that include temperature measurements
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Figure 7.27: Embryo weight and respiration ontogeny in the parrot Agapornis personata. Data
from Bucher [134]. The curves are deb model predictions accounting for a temperature increase
of 4 ◦C during development; see text. The temporary respiration increase at day 23 relates to
hatching. This detail is not part of the model.

indicate that the temperature change during incubation is not negligibly small. Drent
[233] found an increase from 37.6 to 39 ◦C in the precocial herring gull Larus argentatus .

The change in body temperature also causes deviations from the simplest formulation
of the deb model after hatching in some species. My conjecture is that they are the
main reason why the (empirical) logistic growth curve fits better than the von Bertalanffy
curve for birds living at food abundance; as body temperature is measured in only a few
exceptional studies, it makes sense to study the inverse argument. Given the observed
growth pattern and the deb model, can the body temperature ontogeny be recovered at
abundant food?

At abundant food, (4.7) reduces to d
dt

l = ṙB(1 − l), where the von Bertalanffy growth

rate ṙB = k̇M

3
g

1+g
is now considered not as a constant but as a function of time, since the

temperature and thus the maintenance rate coefficient k̇M change. Integration gives

l(t) = 1− (1− l(0)) exp
{

−
∫ t

0
ṙB(t1) dt1

}

with (7.34)

ṙB(t) = ṙB∞ exp{TA(T−1
∞ − Tb(t)

−1)} (7.35)

where ṙB∞ is the ultimate growth rate when the body temperature is kept constant at
some target temperature in the range 39 – 41 ◦C, or T∞ = 312 (non-passerines) or 314 K
(passerine birds). Body temperature is thus given by

Tb(t) =

(

1

T∞

− 1

TA

ln
d
dt

l

ṙB∞(1− l)

)−1

(7.36)

Given an observed growth and size pattern, this equation tells us how to reconstruct the
temperature. The reconstruction of body temperature, therefore, rests on the assumption
of (time inhomogeneous) von Bertalanffy growth (7.34) and an empirical description of the
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observed growth pattern. It is a problem, however, that both the growth rate and the length
difference with its asymptote 1 vanish, which means that their ratio becomes undetermined
if inevitable scatter is present. General purpose functions such as polynomials or splines
to describe size-at-age are not suitable in this case.

A useful choice for an empirical description of growth is

d

dt
l =

ṙB∞

δl

(l−δl − 1)l or l(t) = (1− (1− l(0)δl) exp{−ṙB∞t})1/δl (7.37)

because it covers both von Bertalanffy growth (shape parameter δl = 1), and the frequently
applied logistic growth (δl = −3) and all shapes in between. For the shape parameter
δl = 0, the well-known Gompertz curve arises: l(t) = l(0)exp{−ṙBt}. Nelder [658] called this
model the generalized logistic equation. It was originally proposed by Richards [761] to
describe plant growth. The graph of volume as a function of age is skewly sigmoid, with
an inflection point at V/V∞ = (1 − δl/3)3/δl for δl ≤ 3. Substitution of (7.37) into (7.36)
gives

Tb(t) =

(

1

T∞

− 1

TA

ln
1

δl

1− l−δl

1− l−1

)−1

(7.38)

Note that if growth is of the von Bertalanffy type, so δl = 1, this reconstruction amounts to
Tb(t) = T∞, which does not come as a surprise. This interpretation of growth data implies
that the growth parameters of the logistic, Gompertz and von Bertalanffy growth curves
are comparable in their interpretation and refer to the target body temperature. The deb
theory gives the physiological backgrounds. Figure 7.28 gives examples of reconstructions,
which indicate that the body temperature at hatching can be some 10 ◦C below the target
and it increases almost as long as growth lasts. The reconstruction method has been
tested on several data sets where the body temperature has been measured during growth
[1029]. It has been found to be quite accurate given the scatter in the temperature data.
Figure 7.28 gives one example. Although the Arrhenius temperature can be estimated
from combined weight/temperature data, its value proved to be poorly defined.

An important conclusion from this exercise is that deviations from von Bertalanffy
growth at constant food abundance in birds can be explained by changes in body temper-
ature.

7.9.2 Changes at puberty

Growth curves suggest that some species, e.g. humans, change the partition coefficient κ
and the maximum surface-area-specific assimilation rate {ṗAm} at puberty in situations
of food abundance; see Figure 7.29. These changes amount to changes in the ultimate
length and the von Bertalanffy growth rates via Lm = (κ{ṗAm}/[ṗM ] − V

1/3
h )/δM and

ṙB = [ṗM ](3[EG] + κ[Em])−1. Suppose that the volume-specific maintenance costs [ṗM ],
the volume-specific structure costs [EG], and the heating volume Vh do not change at
puberty. Table 3.1 suggests that k̇M ≡ [ṗM ]/[EG] will be about 0.1 d−1 at 37 ◦C. If a man
of 180 cm weighs 75 kg and if half this weight is structural biomass, the shape coefficient
is approximately δM = 0.19. For V

1/3
h is 10 cm, the observed changes in ultimate length
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Great skua, Catharacta skua

ṙB∞ = 0.111 (0.009) d−1, δl = −1.159(0.326)
Long-tailed skua, Stercorarius longicaudus

ṙB∞ = 0.267 (0.035) d−1, δl = −2.538
(0.804)

age,d

w
ei

gh
t1

/
3
,
g1

/
3

b
o
d
y

te
m

p
er

at
u
re

,
◦
C

age,d

w
ei

gh
t1

/
3
,
g1

/
3

b
o
d
y

te
m

p
er

at
u
re

,
◦
C

Manx shearwater, Puffinus puffinus

ṙB∞ = 0.114 (0.008) d−1, δl = −2.483 (0.467)
Guillemot, Uria aalge

ṙB∞ = 0.125 (0.037) d−1, δl = −0.883
(1.707)
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Figure 7.28: The empirical, generalized, logistic growth curves have been fitted to measured
data for some birds. The von Bertalanffy growth rate ṙB∞ at the ultimate body temperature and
shape parameter δl are given. On the basis of these fits the body temperature was reconstructed,
on the assumption that T∞ = 312 K and TA = 10 kK. The shaded areas around the body
temperature curves indicate the 95% confidence interval based on the marginal distribution for k.
The reconstruction method is tested on the guillemot data (lower right figure) where measured
body temperatures were available. The bars indicate the standard deviation. Both temperature
parameters, T∞ = 312.3 (sd 2.32) K and TA = 8.225 (sd 16.3) kK, have been estimated from the
combined weight/temperature data. Data from Furness, de Korte in [308], Thompson in [121]
and [583] respectively.
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Figure 7.29: Length-at-age of man, de
Montbeillard’s son, in the years 1759-
1777. Data from Cameron [149]. The
curve is the von Bertalanffy one with
an instantaneous change of the ultimate
length from 177 (sd 4.6) cm to 201 (sd
8.2) cm and of the von Bertalanffy growth
rate from 0.123 (sd 0.0093) a−1 to 0.285
(sd 0.094) a−1 at the age of 13 (sd 0.215)
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and the von Bertalanffy growth rate correspond with a change by a factor 2.8 for {ṗAm}
and by a factor 0.426 for κ. This analysis can only be provisional. Deviations from strict
isomorphism may affect estimates.

7.9.3 Changes in response to the photoperiod

The allocation of energy to reproduction in the pond snail Lymnaea stagnalis depends on
the photoperiod, as is discussed in ‘prolonged starvation’, {227}. The photoperiod also
affects the allocation under non-starvation conditions. This is obvious from the ultimate
length. Snails kept under a 12 h:12 h cycle (MD conditions) have a larger ultimate length
than under a 16 h:8 h cycle (LD conditions) [1028]. MD snails also have a smaller von
Bertalanffy growth rate and a smaller volume at puberty, cf. {112}, but MD and LD snails
are found to have the same energy conductance of v̇ ≃ 1.55 mm d−1 at 20 ◦C. This is a
strong indication that the photoperiod only affects the partition coefficient κ.

7.9.4 Suicide reproduction

Like Oikopleura, salmon, eel and most cephalopods die soon after reproduction. The distri-
bution of this type of behaviour follows an odd pattern in the animal kingdom. Tarantula
males die after first reproduction, but the females reproduce frequently and can survive
for 20 years. Death after first reproduction does not follow the Weibull-type aging pattern
and probably has a different mechanism. Because the (theoretical) asymptotic size is not
approached in cephalopods, they also seem to follow a different growth pattern. I be-
lieve, however, that early death, not the energetics, makes them different from iteroparous
animals. The arguments are as follows.

Starting not close to zero, the surface area in von Bertalanffy growth is almost linear
in time across a fairly broad range of surface areas. This has led Berg and Ljunggren [69]
to propose an exactly linear growth of the surface area for yeast until a certain threshold
is reached; see Figure 1.1. Starting from an infinitesimally small size, however, which is
realistic for most cephalopods, length is almost linear in time, so the volume increases
with cubed time: V (t) = ( v̇ft

3(f+g)
)3. Over a small trajectory of time, this closely resembles

exponential growth, as has been fitted by Wells [982], for instance.
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Squids show a slight decrease in growth rate towards the end of their life (2 or perhaps 3
years [900]), just enough to indicate the asymptotic size, which happens to be very different
for female and male in Loligo pealei. It will be explained in the section of primary scaling
relationships, {270}, that the costs of structure [EG] in the von Bertalanffy growth rate

ṙB = [ṗM ]/3
[EG]+κ[Em]f

hardly contribute in large-bodied species because they are independent

of asymptotic length, while maximum energy density is linear therein. So ṙB ≃ [ṗM ]
3κ[Em]f

.

The product ṙBV 1/3
∞ ≃ v̇/3 should then be independent of ultimate size. On the basis of

data provided by Summers [900], the product of ultimate length and the von Bertalanffy
growth rate was estimated to be 0.76 and 0.77 dm a−1 for females and males respectively.
The equality of these products supports the interpretation in terms of the deb model.
The fact that the squids die well before approaching the asymptotic size only complicates
parameter estimation.

A large (theoretical) ultimate volume goes with a large maximum growth rate. If the
maximum growth rates of different species are compared on the basis of size at death,
the octopus Octopus cyana grows incredibly quickly, as argued by Wells [982]. Assuming
that the maximum growth rate is normal, however, a (theoretical) ultimate volume can
be inferred by equating ṙBV 1/3

∞ for the octopus to that for the squid, after correction of
temperature differences. Summers did not indicate the temperature appropriate for the
squid data, but on the assumption that it has oscillated between 4 and 17 ◦C and that
TA = 12.5 kK, the growth rate has to be multiplied by 9.3 to arrive at the temperature
that Wells used, i.e. 25.6 ◦C. The data of Wells indicate a maximum growth rate of 4

9
ṙBVm =

25.5 dm3 a−1. The ultimate volume is thus
(

9×25
4×9.3×0.77

)3/2
= 22 dm3 for the octopus. This

is three times the volume at death.

7.9.5 Adaptation

Figure 7.30 illustrates that prolonged exposure to limiting amounts of glucose eventually
results in substantially improved uptake of glucose from the environment by bacteria. The
difference in saturation constants between a ‘wild’ and an adapted population can amount
to a factor of 1000. The outer membrane adapts to the specialized task of taking up a
single type of substrate, which may jeopardize a rapid change to other substrates. This
adaptation process takes many cell division cycles, as is obvious from the measurement of
population growth rates, which itself takes quite a few division cycles.

When substrate is absent for a sufficiently long period of time, the metabolic machinery
that deals with handling those substrates can be deleted from dna, see {294}. This is a
route to speciation, which leads to permanent changes in parameter values.

7.10 Summary

A variety of aspects are discussed to show how the basic deb model can be applied and
extended to deal with details of energetics.

• Reactions to variations in food levels depend on the time scale of starvation; allocation
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Figure 7.30: The population growth rate of Escherichia coli on glucose limited media. Schulze
and Lipe’s culture [823], left, had been exposed to glucose-limitation just prior to the experiment,
while that of Senn [827], right, had been pre-adapted for a period of three months. The coarsely
stippled curve in the right graph does not account for a time lapse between sampling from the
continuous culture and measurement of the concentration of glucose [647]; the finely stippled
one accounts for a time lapse of 0.001 h; the drawn one for a time lapse of 0.01 h.

rules are affected first, then follow reserve dynamics, and dormancy. The Bergman
rule is explained as an adaptation to variation patterns in food availability.

• Transport processes in the environment can modify functional responses, and build
up spatial structures.

• Constraints on digestion are discussed for an efficiency that is independent of body
size and food density. The digestion of substrates is compared on the basis of chemical
potentials.

• The synthesis of material that relates to surface area requires a waiting time that
can be expressed in terms of energetic costs, and affects the population growth rate.

• rna is mainly part of the reserves; reserve turnover gives excellent predictions for
elongation rates of proteins.

• A mechanism is proposed for reserve dynamics and weak homeostasis, called struc-
tural homeostasis, which couples the size of subcellular structures to cell size. The
role of membranes is an essential element in the mechanism that leads to first-order
dynamics of reserve densities, with a turnover rate that is inversely proportional to
length.

• The growth of organisms that change shape in rather complex but predictable ways,
because of the spatial structure that develops during transport of substrate, is anal-
ysed.

• Pupae and imagos are discussed as examples of modifications in life stage patterns,
and the implied consequences for reproduction and aging.
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• Changes of parameter values are discussed that can occur at the various time scales;
the evolutionary time scale involves changes that lead to speciation, as discussed in
the next chapter.
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Chapter 8

Comparison of species

The range of body sizes is enormous. A bacterium with full phys- life span volume
10log a 10log m3

life

earth

whale whale
bact.

bact.

atp

H2O

iological machinery has a volume of about 0.25× 10−18 m3. Some
parasitic forms are much smaller. The blue whale has a volume
of up to 135 m3. A sequoia may even reach a volume of 2000 m3,
but one can argue that it is not all living material. Ironically, the
organism with the largest linear dimensions is usually classified as
a ‘micro-organism’: the fungus Armillaria bulbosa is reported to
occupy at least 15 hectares and exceeds 10 Mg or 10 m3 [860]. The
factor between the volumes of bacterium and whale is 5.4× 1020,
that between the volume a water molecule occupies in liquid water
and that of a bacterium is ‘only’ 1010. The interdivision interval
of a bacterium can be as short as 20 min; the life span of whales may exceed 100 a [281],
while some plants live for several millennia.

These differences in size and life span reflect differences in physiological processes,
which the deb theory tries to capture. The deb model has structural body volume as a
state variable. This implies that parameters that occur in the description of the process
of energy uptake and use are independent of the body volume of a particular individual.
Ultimate body volume, and in particular the maximum body volume, can be written as
a simple compound parameter. This is why (some) parameters of the deb model must
have a (simple) relationship with ultimate body volume. This powerful argument is so
simple that it can easily be overlooked. A comparison of the energetics of different species,
ranging from bacteria to whales, reduces, in the deb theory, to a comparison of sets of
parameter values. This is different from comparison within a species, where we have only
one set of parameter values, though different body volumes. This chapter deals with theory
of parameter values, which includes body size scaling relationships, optimization problems
and evolutionary aspects.

8.1 Genetics and parameter variation

The parameter values undoubtedly have a genetically determined component, which can
to some extent be modulated phenotypically. As I hopefully made clear, the processes
of feeding, digestion, maintenance, growth and reproduction are intimately related. They
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involve the complete cellular machinery. Although mechanisms for growth which involve
just one gene have been proposed [225], the many contributing processes make it likely
that thousands are involved. This restricts the possibilities of population genetic theories
dealing with auxiliary characters that do not have a direct link with energetics. (This is not
meant to imply that such theories cannot be useful for other purposes.) In the context of
quantitative genetics, some instructive points should be mentioned here. For this purpose
a particular property of the deb model, which I call the invariance property (just to have
a name to refer to), should be discussed first. This property is at the basis of body size
scaling relationships to be discussed later. These relationships express how species-specific
characters depend on body size.

The invariance property of the deb model is that two species with parameter sets
that differ in a very special way behave identically with respect to energetics as long as
food density is strictly constant. So they will have exactly the same energy dynamics,
volume and reproduction ontogenies, and so on, for all life stages. The derivation of the
relationship between both parameter sets is simple if two individuals are compared with
the same body volume and with a maximum-surface-area-specific ingestion rates that differ
by a ‘zoom’ factor z, so {J̇Xm}2 = z{J̇Xm}1. To behave identically, the ingestion rates
must be equal: J̇X2 = J̇X1. Since their volumes are equal, V2 = V1, (3.2) implies that
f2 = f1/z or XK2 = zXK1 + (z − 1)X. Since the assimilation rates must be the same,
ṗA2 = ṗA1, it follows that {ṗAm}2 = z{ṗAm}1. They must have the same storage dynamics,
so (3.10) implies [Em]2 = z[Em]1. Identical growth defined by (3.18) implies that the other
parameters should be the same, so Vb2 = Vb1, Vp2 = Vp1, Vh2 = Vh1, κ2 = κ1, [ṗM ]2 = [ṗM ]1
and [EG]2 = [EG]1.

If food density is not strictly constant, but fluctuates a little, both species behave in a
different manner as far as energy is concerned. This is due to the non-linear relationship
between the scaled functional response f and food density X. The change of f with
respect to X is d

dX
f = XK(XK + X)−2 = (1− f)2/XK . So if f approaches 1, the change

in the ingestion rate, and so in the energy reserve density, becomes negligibly small. This
overall homeostasis is probably selectively advantageous, because it implies that regulation
systems have a much easier job to coordinate the various processes of energy allocation,
which allows for optimization. The mechanism is not unlike the restriction of the tolerance
range for the temperature of enzymes of homeotherms relative to heterotherms.

The invariance property has an interesting consequence with regard to selection pro-
cesses. At a constant food density, the (constant) surface-area-specific ingestion rate,
surface-area-specific assimilated energy, and reserve energy density can be regarded as
achieved physiological characters. Fluctuations in reserve density, that result from fluc-
tuations in food density, reduce substantially for decreasing maximum feeding rates. The
reduction reflects an increase in homeostasis and allows a better regulation of metabolic
activity. This may drive selection to a (genetic) fixation of the maximum feeding and
assimilation rates and the reserve capacity to the realized values, a phenomenon known as
‘dwarfing’. This mechanism possibly explains the Bergmann rule, as discussed on {232}.

The parameter values for different individuals are likely to differ somewhat. Differences
in ultimate volume at constant food density testify to this. To what extent this has a
genetic basis is not clear, but the heredity of size in different races of dogs and transgenic
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mice and turkeys reveals the genetic basis of growth and size. Phenotypic factors exist as
well. An important statistical implication is that parameter estimates can in principle no
longer be based on means: the mean of von Bertalanffy curves with different parameters is
not a von Bertalanffy curve. This problem obviously grows worse with increasing scatter.
The modelling of parameter variation can easily introduce a considerable number of new
parameters. To select just one or two parameters to solve this problem seems arbitrary.
An attractive choice might be to conceive the factor z, just introduced, to be a stochastic
variable, which couples four energy parameters. This introduces stochasticity only at
fluctuating food densities.

8.2 Body size scaling relationships

The standard way to study body size scaling relationships is allometric: apply linear
regression to the logarithmically transformed quantity of interest as a function of the
logarithm of total body weight [146,612,700,815]. I have already given my reservations with
respect to the physical dimensions, {13}, but I also object to the application of regression
methods. My objections have a deeper root than the presence of ‘measurement error’ in
the independent variable, which is usually the whole body wet weight. The dependent
variable, i.e. some quantity of interest, can be considered to be a compound parameter
for a particular species, and this can hardly be conceived of as a random variable. Each
species of the (limited) set living on Earth happens to have a particular value for the
quantity under consideration. This value is a result of evolutionary processes. Values of
related species are thus likely to be dependent in a statistical sense. Moreover, evolutionary
theory aims to explain a particular value while the application of regression methods implies
that you leave the deviation in the black box. The random deviation from the (allometric)
deterministic function, which regression analysis treats as ‘measurement error’, does not
have a meaningful biological interpretation. A consequence of this point of view is that
statistical tests on the ‘exact’ value of the scaling exponent must be considered to be
misleading.

I prefer a different approach to the subject of body size scaling relationships which is
implicit in the deb theory. Although the relationships are mostly not of the allometric
type if log–log plotted, straight lines approximate the result very well. To facilitate a
comparison with the literature, I will refer frequently to the allometric (dimensionless)
scaling exponent.

The tendencies discussed in the next few sections can be inferred on the basis of gen-
eral principles of physical and chemical design. On top of these tendencies, species-specific
adaptations occur that cause deviations from the expected tendencies. A general prob-
lem in body size scaling relationships is that large bodied species frequently differ from
small bodied species in a variety of ways, such as behaviour, diet, etc. These life styles
require specific adaptations, which hamper simple inter-species comparison. McMahon
[611] applied elasticity arguments to deduce allometric scaling relationships for the shape
of skeletal elements. Godfrey et al. [331] demonstrated, for mammals, that deviations
from a simple geometrical upscaling of skeletal elements is due to size-related differences
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Table 8.1: The relationship between the parameters of the deb model for species 1 and 2 accord-
ing to the invariance property (upper panel) and according to the primary scaling relationships
(lower panel). The ratio of the ultimate volumetric body lengths of species 1 and 2 equals the
zoom factor z.

XK2 = XK1z + X(z − 1) {J̇Xm}2 = {J̇Xm}1z [ṗM ]2 = [ṗM ]1 {ṗT }2 = {ṗT }1
V

1/3
b2 = V

1/3
b1 {ṗAm}2 = {ṗAm}1z [EG]2 = [EG]1 ḧa2 = ḧa1

V
1/3
p2 = V

1/3
p1 [Em]2 = [Em]1z κ2 = κ1 κR2 = κR1

XK2 = XK1z {J̇Xm}2 = {J̇Xm}1z [ṗM ]2 = [ṗM ]1 {ṗT }2 = {ṗT }1
V

1/3
b2 = V

1/3
b1 z {ṗAm}2 = {ṗAm}1z [EG]2 = [EG]1 ḧa2 = ḧa1

V
1/3
p2 = V

1/3
p1 z [Em]2 = [Em]1z κ2 = κ1 κR2 = κR1

in life styles.

8.2.1 Primary scaling relationships

The parameter values of the deb model tend to depend on maximum body volume in
a predictable way that does not use any empirical argument. This makes it possible to
predict how physiological quantities that can be written as functions of deb parameters
depend on maximum body volume. The core of the argument is that parameters that
relate to the physical design of the organism are all proportional to volumetric maximum
length, while the rest are size independent. The latter parameters relate to molecular
processes, which are thus essentially density based. Reaction rates as described by the law
of mass action depend on meeting frequencies between particles and do not depend on the
(absolute) size of the organism. The difference between physical design and density-based
parameters relates to the difference between intensive and extensive quantities.

The parameter values of a reference species number 1 with maximum body volume Vm,1

have an extra index to compare the parameter set with that of another species, number 2,
with maximum body volume Vm,2. The primary scaling relationships are given in Table 8.1
and are compared with the relationships from the invariance property of the deb model.
This property is that parameter sets that differ in a special way that involves an arbitrary
factor z result in identical energetics at strictly constant food densities, cf. {267}. A
striking resemblance exists between the relationships of parameter sets on the basis of the
primary scaling relationships and the invariance property. The only deviations are in size
at birth and puberty, and in the saturation constant.

From the primary scaling relationships, other scaling relationships can be derived for
all processes to which the deb theory applies. Maximum volume itself is just one, though
eye catching, compound parameter. Maximum volume is a result of energy uptake and use,
not a factor determining these processes. Maximum volume can serve as a paradigm to
compare species: Vm2 = (κ2{ṗAm}2/[ṗM ]2)3 = (κ1z{ṗAm}1/[ṗM ]1)3 = z3Vm1. One possible
interpretation of the arbitrary zoom factor z is thus the ratio between the ultimate length
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measures of two species. Although it is usual and convenient to study how physiological
quantities and life histories depend on body size, it is essential to realize that all, inclusive
of body size itself, depend on the coupled processes of energy uptake and use. Before I
discuss how other compound parameters depend on body size, it is instructive to review
the primary parameters first.

Molecular biology stresses again and again the similarities of cells, independent of the
body size of the organism. It thus seems reasonable to assume that cells of equal size have
about the same maintenance costs. Since the maintenance of cells is probably a major
part of the maintenance of the whole individual, it seems natural that volume-specific
maintenance is independent of body size. The same holds for the costs of growth. The
values of [ṗM ], {ṗT}, [EG], κ and ḧa for a particular growing individual could in principle
differ (a bit) for each time increment. The deb model, however, assumes that these process
parameters are constant. The assumption that they are independent of ultimate volume
is the only one that is consistent with the structure of the deb model.

Since κ and [ṗM ] are independent of maximum body size, {ṗAm} has to be proportional
to the cubic root of the ultimate volume, because of the relationship V 1/3

m = κ{ṗAm}/[ṗM ].
This relationship makes {ṗAm} a physical design parameter. The parameters {J̇XAm} and
[Em] are also physical design parameters, because the ratio of them to {ṗAm} relates to
density-based molecular processes. Since the deb model in fact assumes that digestion is
complete (else digestion efficiency would depend on feeding level, cf. {239}), and the ratio
{ṗAm}/{J̇XAm} represents digestion efficiency, {J̇XAm} has to be proportional to {ṗAm}
and so to the cubic root of the ultimate volume as well. The same holds for the reserve ca-
pacity parameter [Em], because the ratio {ṗAm}/[Em] stands for energy conductance. Like
digestion efficiency, it could in principle change (a bit) for each time increment in a growing
individual, but it is assumed to be constant in the deb model. Both ratios could have been
introduced as the primary parameters, which would turn maximum assimilation rate and
storage capacity into compound parameters. This is mathematically totally equivalent.
Such a construction would leave Vb, Vp, {J̇XAm} and XK as the only parameters relating
to the physical design of the organism.

The body size dependence of the saturation coefficient is less easy to see, because
species differ so much in their feeding behaviour. At low food densities this constant can
be interpreted as the ratio of the maximum ingestion to the filtering rates in a filter feeder
such as Daphnia. If maximum beating rate is size independent, as has been observed,
the filtering rate is proportional to surface area. Since the maximum specific ingestion
rate {J̇XAm} scales with a length measure, the saturation coefficient XK should scale with
a length measure as well. More detailed modelling of the beating rate would involve
‘molecular’ density-based formulations for the filtering process, which turns the saturation
coefficient into a derived compound parameter. This is not attempted here, because the
formulations would only apply to filtering, while many species do not filter.

The argument that the life stage parameters Vb and Vp (and Vd for dividers) are expected
to be proportional to maximum volume Vm is that the threshold for investment in the
increase of the state of maturity is proportional to volume, so the ratio of these threshold
levels to volume is an intensive measure. These life stage parameters show, however, an
extremely wide range of variation among different taxa. Huge fishes can lay very small eggs
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Figure 8.1: The length at first reproduction is
proportional to the ultimate length in clupoid
fishes. Data from Blaxter and Hunter [91].
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and thus have small values for Vb. For example, the ocean sunfish Mola mola can reach a
length of 4 m and can weigh more than 1500 kg, it can produce clutches of 3 × 1010 tiny
eggs. The other extreme within the bony fishes is the ovoviviparous coelacanth Latimeria
chalumnae, which can reach a length of 2 m and a weight of 100 kg. It produces eggs
with a diameter of 9 cm in clutches of some 26. (If we include the cartilaginous fish, the
whale shark Rhincodon typus wins with a 12–18 m length, more than 8165 kg weight and
eggs of some 30 cm.) The tendency of egg size to be proportional to ultimate size only
holds for related species at best, as within the squamate reptiles [835]. This matter will
be discussed further under r and K strategies, {292}. The size at first reproduction seems
to vary much less, see Figure 8.1.

The gist of the argument for primary scaling relationships is that they can be derived
from the structure of the deb model and they do not involve empirical arguments.

8.2.2 Secondary scaling relationships

This section gives examples of the derivation of body size scaling relationships of a variety
of eco-physiological phenomena that can be written as a compound parameter of the deb
model. The derivation follows the same path time and again and has the following struc-
ture. The quantity of interest is written as a function of scaled state variables (e and l)
and primary parameters. Food density is taken to be high (f = 1) and the scaled reserve
density is set at equilibrium (e = 1). I now append index 1 to all primary parameters to
identify the reference species and multiply the primary parameters that scale with max-
imum body length with (V/Vm1)1/3, where V stands for the maximum body size of the
species of interest.

Body weight

Since the independent variable in body size scaling relationships is standard wet weight,
we should first consider how wet weight relates to the primary parameter values. From
(2.6) it follows for [E] = [Em] that Ww = (dV + (1 + eR)[Em]wE/µE)V . The maximum
volumetric length is (κ{ṗAm}−{ṗT})/[ṗM ], see (3.23) for f = 1, so that the maximum wet
weight equals

Ww ≃ (dV + wE[MEm])(1− lh)3Vm
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at abundant food for isomorphs that have a relatively small amount of reserves allocated
to reproduction ([ER]≪ [Em]).

Wet weights are sensitive to body composition. The structural body mass and in
particular water content and type of reserve materials are different in unrelated species.
This hampers comparisons that include species as different as jelly fish and elephants. If
comparisons are restricted to related species, for example among mammals, the structural
volume–weight conversion dV will be independent of body volume, while wE[MEm] increases
with volumetric length, because it includes the maximum reserve capacity. Since {ṗAm}
increases with a volumetric length, while κ, {ṗT} and [ṗM ] are independent of body volume,
this means that the volume-specific wet weight [Ww] ≡ Ww/V increases with body volume
for two reasons. The first is the increasing contribution of energy reserves, the second is
the decreasing effect of volume reduction due to heating. The last reason only applies to
endotherms, of course.

To quantify how the specific wet weight depends on structural body volume, I append
index 1 to specify the set of parameter values for a reference species, and obtain a wet
weight of a species with a maximum structural volume V

Ww(V) ≃ (dV 1 + wE[MEm]1(V/Vm1)1/3)
(

1− (Vm1/V)1/3lh
)3 V

Respiration

Respiration rate should be discussed first for historical reasons; see Kleiber’s law on {4}.
The scaling exponent has been found to be 0.66 for unicellulars, 0.88 for ectotherms and
0.69 for endotherms [706]. The exact value differs among authors taking their data from
the literature. The variations are due, in part, to differences in the species included and in
the experimental conditions under which respiration rates were measured. For crustaceans
Vidal and Whitledge [950] present values of 0.72 and 0.85, and Conover [171] gives 0.74.
If species ranging from bacteria to elephants are included, the value 0.75 emerges. It has
become an almost magic number in body size scaling relationships. Many explanations have
been proposed; some are based on muscle tension [611] or running speed [736], for instance.
West et al. [984] derived the value 0.75 from an ingenious optimization argument. This
value minimizes the (negligible) transport costs of material through a space-filling, self-
isomorphic, fractal-like branching system of tubes, where the final branches (the capillaries
in a circulatory system) are assumed to be body size invariant in terms of size and flux. The
volume of tissue that each capillary serves does depend on body size, however, which makes
the argument less consistent. The observed scaling of respiration rates with body size do
also involve species, however, that have an open circulatory system (so, no capillaries),
or no circulatory system at all, such as micro-organisms, cnidarians, nematodes, annelids,
molluscs. The derivation assumes that the cross-sectional area of the branching fractal
remains constant, which implies that the flow in the capillaries equals that in the aorta,
which is in fact much lower [11].

As for intra-species relationships, I find these explanations not completely satisfactory,
because mechanics plays only a minor role in energy budgets and the argument is too
specific, since it applies to a very much restricted group of species. As mentioned, respira-
tion rates are usually thought to reflect routine metabolic costs. It is no wonder that the
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Figure 8.2: The metabolic rate of unicellu-
lars (◦, at 20 ◦C), ectotherms (•, at 20 ◦C)
and endotherms (∗, at 39 ◦C) as a function
of body weight. Modified from Hemmingsen
[247,396]. The difference between this figure and
the many others of the frequently reproduced
data set is that the curves relate to deb-based
expectations, and are not allometric regressions.
Nonetheless they appear almost as straight lines.
The lower line has slope of 2/3, the upper one a
slope of 1.

explanation for why the scaling exponent is less than one for ectotherms is still a hot issue.
I hope to have made it clear by now that costs other than routine metabolic ones also
contribute to respiration, which makes it possible for respiration to scale with an exponent
less than one, while routine metabolic costs scale with an exponent of one.

The carbon dioxide production of well-fed animals that is not associated with assim-
ilation is given by (4.12). If we compare individuals with the same parameter set, this
expression shows that the mineral fluxes, and so the oxygen consumption rate and the car-
bon dioxide production rate, depend on structural body length via the powers ṗD and ṗG,
which are both weighted sums of surface area and volume, i.e. of l2 and l3. This is nothing
new. If we compare species of different (maximum) body size, however, we keep the state
variables constant, and vary the parameters that depend on the maximum structural body
volume. In the respiration rate (4.12), V 1/3

m , l−1
h and g−1 are proportional to structural

body length; none of the other parameters depend on maximum structural body volume.
Generally, this again results in a scaling of respiration somewhere between a surface area
and a volume, but it is rather critical which individuals are included. If we include only
fully grown individuals of ectothermic species, the dissipating and growth powers no longer
depend on the investment ratio g, and respiration is proportional to structural body vol-
ume. Even in this case, however, the weight-specific respiration decreases with body weight,
because of the increasing contribution of reserves to body weight. Growth is asymptotic,
however, and if individuals are selected with a structural length of some fixed fraction of
the maximum possible one, the contribution of surface area will be more important.

In conclusion, the respiration rate will appear almost as a straight line in a double-log
plot against body weight, the slope being somewhere between 0.66 and 1, depending on
the species and the relative size of the individuals that have been included, see Figure 8.2.
The scaling relationship for unicellulars is less informative, because assimilation is included
and respiration depends sensitively on substrate composition (which is unknown to me).
Surface-bound heating costs dominate in endotherms, so a plot that includes them will be
close to a line with slope 0.66. The slope for the Bathyergidae, a family of rodents that
are practically ectothermic, see Figure 3.13, is found to be close to 1 [571], as expected.
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Maximum ingestion rate

The maximum ingestion rate for an individual of volume V is J̇Xm = {J̇Xm}V 2/3, so

J̇XmV = {J̇Xm}1V
−1/3
m1 V . The maximum ingestion thus scales allometrically with body

volume, but with a scaling exponent of 0.66 for intra-species comparisons and 1 for inter-
species comparisons. Farlow [268] gives an empirical scaling exponent of 0.88, but value 1
also fits the data well. For endotherms especially, a scaling exponent of somewhat less than
1 is expected for weight as the independent variable, because of the increase in volume-
specific weight, as explained. In a thorough study of scaling relationships, Calder [146]
coupled the inter-specific ingestion rate directly to the respiration rate, without using an
explicit model for energy uptake and use. The present deb-based considerations force one
to deviate from intuition.

Gut capacity

Within a species, isomorphy implies a gut capacity that is a constant fraction of body
volume. This must also hold for inter-species comparisons, as long as body design and
diet are comparable and this has been found for birds and mammals [146]. The mean
gut residence time of food particles is thus independent of body size as a consequence,
because ingestion rate is proportional to body size, while it was found to be proportional
to a length measure for intra-species comparisons. This is of major ecological significance
for herbivores, because it determines which type of food can be digested. The poorly
digestible substrates can only be used successfully by animals with a big body size. The
giant sauropods of the Jurassic fed mainly on cycads and conifers, which require long
gut residence times for digestion. Giant carnivores probably evolved in response to giant
herbivores; the explanation of their body size probably relates to the survival of meagre
periods.

Maximum filtering rate

The filtering rate is maximal at low food densities. If particle retention is complete, it is
given by Ḟm = J̇Xm/XK = V 2/3{J̇Xm}/XK . So, ḞmV = V2/3{J̇Xm}1/XK1. This was found
by Brendelberger and Geller [114].

Speed

Since biomechanics is not part of the deb theory, this is not the right place for a detailed
discussion on Reynolds and Froude numbers, although interesting links are possible. Speed
of movement has only a rather indirect relationship with feeding or other aspects that bear
on energy budgets. A few remarks are, therefore, made here.

McMahon and Bonner [612] found that the speed of sustained swimming for species
ranging from larval anchovy, via salmon, to blue whales scales with the square root of
volumetric length; they underpinned this finding with mechanical arguments. Since the
energy costs of swimming are proportional to squared speed and to surface area, cf. {73},
the total costs of movement would scale with cubed length, or V , for a common travelling
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time. This is consistent with the deb theory, where the costs of travelling are taken to be
a fixed fraction of the maintenance costs.

A similar result appears to hold for the speed of flying, but by a somewhat different
argument. The cruising speed, where the power to fly is minimal, is proportional to the
square root of the wing loading [912]. If a rough type of isomorphy applies, comparing
insects, bats and birds, wing loading, i.e. the ratio of body mass to wing area, scales with
length, so that cruising speed scales with the square root of length [612].

Arguments for why the standard cruising rate for walking tends to be proportional to
length, are given on {71,73}. If energy invested in movement is proportional to volume and
taken to be part of the maintenance costs, the intra- and inter-species scaling relationships
work out in the same way.

Maximum diving depth

Birkhead [86] found that the maximum diving depth for auks and penguins tends to be
proportional to volumetric length. This can be understood if diving depth is proportional
to the duration of the dive; the latter is proportional to length, cf. {71} by the argument
that the respiration rate of these endotherms is about proportional to surface area and
oxygen reserves to volume.

Minimum food density

The minimum food density at which an isomorph of body volume V can live for a long
time is found from the condition that energy derived from ingested food just equals the
maintenance costs, so J̇X{ṗAm}/{J̇Xm} = ṗM , or f† =

X†

XK+X†
= [ṗM ]

{ṗAm}
V 1/3. The solution is

X† = V 1/3XK [ṗM ]/{ṗAm}

1−V 1/3[ṗM ]/{ṗAm}
. At this food density, the individual can only survive, not reproduce.

For different species, we obtain the condition X†V = V1/3XK1[ṗM ]1/{ṗAm}1

1−V
1/3
m1 [ṗM ]1/{ṗAm}1

. Minimum food

density, also called the threshold food density, is thus proportional to volumetric length.
An important ecological consequence is that, at a given low food density, small individuals
can survive, while the large ones can not. This explains, for instance, why bacteria in
oligotrophic seas are so small.

This result only applies to situations of constant food density. If it is fluctuating, stor-
age capacity becomes important, which tends to increase with body size; see {227}. The
possibility of surviving in dynamic environments then works out to be rather complex.
Stemberger and Gilbert [882] found that the threshold food density tends to increase
with body size for rotifers, as expected, but Gliwicz [328] found the opposite for clado-
cerans. This result can be explained, however, by details of the experimental protocol.
The threshold food density was obtained by plotting the growth rate against food density
and selecting the value where growth is nil. Growth at the different food densities was
measured from two-day-old individuals exposed to a constant food density for four days.
The reserves at the start of the growth experiment, which depend on culture conditions,
will contribute substantially to the result.
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Maximum growth

The maximum growth in cubed scaled length is d
dt

l3 = 4
27

gk̇M

1+g
(1− lh)3, see Table 3.5. The

maximum growth rate for different species equals

4

27

k̇M1g1

(V/Vm1)1/3 + g1

(V1/3 − V
1/3
h1 )3

and is thus about proportional to volume2/3. This fits Calow and Townsend’s data very
well [148].

von Bertalanffy growth rate

The von Bertalanffy growth rate at high food density is ṙBV = (3/k̇M1 + 3V1/3/v̇1)−1 for
different species. It decreases almost linearly with volumetric length. This is consistent
with empirical findings; see Figure 8.3. The parameters and data sources are listed in Table
8.2. This table is extensive because the fit with the von Bertalanffy growth curve is used to
support the argument that it is possible to formulate a theory that is not species-specific,
{1}. If one collects growth data from the literature, an amazingly large fraction fits the
von Bertalanffy curve despite the fact that most data sets are from specimens collected
in the field. Since it is hard to believe that food density has been constant during the
growth period, this suggests that food has been abundant; this is relevant for population
dynamics.

If the von Bertalanffy growth rate is plotted against maximum volumetric length, the
scatter is so large that it obscures their relationship. This is largely due to differences
in body temperature. A fish in the North Sea with a yearly temperature cycle between
3 and 14 ◦C grows much more slowly than a passerine bird with a body temperature of
41 ◦C. This is not due to fundamental energy differences in their physiology. If corrected
to a common body temperature according to the Arrhenius relationship with an Arrhenius
temperature of 12.5 kK, the expected relationship is revealed and the differences between
fishes and birds disappear. Since temperature had not been measured in most cases, I had
to estimate it in a rather crude way. For most molluscs and fish data I used general infor-
mation on local climate and guessed water temperatures (which depend on the, frequently
unknown, depth). The body temperatures of birds and mammals have also been guessed.
Uncertainties about temperature doubtlessly contributed the most to the remaining scat-
ter. The corrected rates are not meant as predictions of actual growth rates at this body
temperature because most North Sea fish and birds would die almost instantaneously if
the temperature was realized. The average energy conductance, v̇, of 261 species at 37 ◦C
appears to be 5.49 mm d−1, 0.885 mm d−1 at 25 ◦C, or 0.433 mm d−1 at 20 ◦C. This is the
best evidence that the maximum storage capacity increases with volumetric length, just
as the maximum surface-area-specific assimilation rate does.

The contribution of maintenance to the von Bertalanffy growth rate is small for large
bodies, which explains why the von Bertalanffy growth rate is about proportional to V−1/3,
as Ricklefs [767] found for birds for instance.
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Table 8.2: The von Bertalanffy parameters and their standard deviations as calculated by
non-linear regression. The shape coefficient converts the size measure used to volumetric length.
For shape coefficient 1, the data refer to wet weight, except for Saccharomyces, Actinophrys

and Asplanchna, where volumes were measured directly. The data for Mnemiopsis and Calanus

refer to dry weight. The other data are length measures, mostly total body length. Where
the standard deviation is not given, the parameters from the authors are given. Temperatures
in parentheses were inferred from the location on Earth. Where two temperatures are given,
a sinusoidal fluctuation between these extremes is assumed. In the column ‘sex’: f=female,
m=male, l=larva.

species sex length sd shape rate sd location temp source
mm mm coeff a−1 a−1 NS EW ◦C
L∞ δM ṙB

Ascomyceta

Saccharomyces carlsbergensis 4.59e-32.16e-5 0.806 11830 318 lab lab 30 [69]
Heliozoa

Actinophrys spec. 0.0043 2.2e-5 1 2891 368 lab lab [904]
Rhizopoda

Amoeba proteus 2.79 0.016 0.01 832.2 56.9 lab lab 23 [733]
Ciliata

Paramecium caudatum 2.969 0.062 1638 210 lab lab 17 [813]
Ctenophora

Pleurobrachia pileus fm 15.04 0.436 0.702 33.27 2.49 lab lab 20 [346]
Mnemiopsis mccradyi fm 8.851 0.927 3.90 11.61 1.88 lab lab 26 [757]
Rotifera

Asplanchna girodi f 0.2400 7.32e-4 1 193.7 4.92 lab lab 20 [777]
Annelida

Dendrobeana veneta fm 14.5 0.24 1 12.04 0.73 lab lab 20 H. Bos, pc
Mollusca

Aplysia californica fm 112.2 6.05 1 4.840 0.871 lab lab 18–20 [699]
Urosalpinx cinerea fm 30.94 1.31 0.397 0.8116 0.11 31S 152E -1–25 [294]
Achatina achatina fm 106.5 2.45 0.543 1.121 0.0770 5N 0E (25) [418]
Helix aspera fm 25.06 0.498 0.68 1.098 0.0960 lab lab (18–20) [195]
Patella vulgata fm 46.93 0.306 0.310 0.4296 7.91e-3 54N 4.40W (4–17) [1022]
Monodonta lineata fm 21.92 0.130 0.716 0.6213 0.0171 52.25N 4.05W (4–17) [1004]
Biomphalaria pfeifferi fm 7.538 0.0497 1 4.879 0.201 lab lab 25 [626]
Lymnaea stagnalis fm 15.37 0.0584 1 10.81 0.204 lab lab 20 [856]
Helicella virgata fm 9.888 0.215 1 3.316 0.163 35S 139E 11–16 [722]
Macoma baltica 21.57 0.154 0.423 3.00 0.0869 41.31N 70.39W 10.56 [326]
Cerastoderma glaucum 29.24 1.86 0.558 2.221 0.380 40.50N 14.10E 13–30 [444]
Venus striatula 37.76 25.1 0.471 0.1961 0.210 55.50N 4.40W 6–13 [23]
Ensis directus 142.2 0.187 0.5830 54.35N 8.45E 4–17 [903]
Mytilus edulis 95.92 2.02 0.394 0.1045 5.109e-3 53.36N 9.50W 7–17 [778]
Placopecten magellanicus 162.3 1.01 0.388 0.1671 2.842e-3 47.10N 53.36W 0–18 [577]
Perna canaliculus 191.2 10.6 0.394 0.3555 0.0342 36.55S 174.47E 17 [409]
Hyridella menziesi 74.62 2.05 0.400 0.1331 8.38e-3 36.55S 147.47E [447]
Mya arenaria 91.31 0.407 0.1866 41.39N 70.42W (4–17) [124]
Loligo pealei f 455.3 39.5 0.398 0.4201 0.0551 41.31N 70.39W (4–17) [900]
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Loligo pealei m 918.2 111 0.398 0.2122 0.0315 41.31N 70.39W (4–17) [900]
Brachiopoda

Terebratalia transversa 48.39 1.09 0.640 0.3140 0.0163 47.30N 122.5W (4–17) [684]
Crustacea

Daphnia pulex f 2.366 0.0192 0.526 44.25 2.10 lab lab 20 [764]
Daphnia longispina f 2.951 0.0260 0.520 61.32 2.92 lab lab 25 [442]
Daphnia magna f 5.136 0.0970 0.526 35.04 1.83 lab lab 20 [513]
Daphnia magna m 2.813 0.0440 0.526 66.80 5.11 lab lab 20 [513]
Daphnia cucullata f 1.049 0.0214 0.480 58.25 9.71 lab lab 20 [951]
Daphnia hyalina f 1.717 0.0399 0.520 47.52 5.93 lab lab 20 [951]
Ceriodaphnia pulchella f 0.7503 0.0122 0.520 39.89 5.04 lab lab 20 [951]
Ceriodaphnia reticulata f 1.038 0.0210 0.520 49.28 3.30 lab lab 20 [513]
Chydorus sphaericus f 0.4115 1.10e-3 0.560 52.63 0.969 lab lab 20 [951]
Diaphanosoma brachyurum f 1.380 0.0198 0.520 46.50 3.72 lab lab 20 [951]
Leptodora kindtii f 8.632 0.204 0.300 26.96 2.64 lab lab 20 [951]
Bosmina longirostris f 0.5289 0.0215 0.520 38.73 6.50 lab lab 20 [951]
Bosmina coregoni f 0.4938 0.0104 0.520 66.90 9.59 lab lab 20 [951]
Calanus pacificus 6.295 1.02 0.215 8.863 1.89 lab lab 12 [680]
Dissodactylus primitivus f 11.02 0.410 0.635 1.025 0.0732 lab lab (18) [719]
Dissodactylus primitivus m 9.013 0.212 0.635 1.362 0.0742 lab lab (18) [719]
Euphasia pacifica 12.91 2.35 0.197 1.008 0.369 lab lab 10 [596]
Homarus vulgaris 186.6 6.99 0.939 0.05543 3.36e-3 lab lab 10 [406]
Cancer pagurus f 9.707 0.385 1 0.2711 0.0122 50.30N 2.45W (5–18) [67]
Cancer pagurus m 115.6 0.513 1 0.3513 0.0174 50.30N 2.45W (5–18) [67]
Dichelopandalus bonnieri 25.73 1.97 0.882 0.4795 0.0824 54N 4.40W (4–17) [8]
Gammarus pulex m 4.355 0.0570 1 3.300 0.177 lab lab 15 [901]
Gammarus pulex f 4.089 0.0554 1 2.218 0.123 lab lab 15 [901]
Calliopius laeviusculus 15.27 0.699 0.262 13.52 1.96 lab lab 15 [192]
Uniramia

Tomocerus minor 3.903 0.0848 0.351 6.600 0.379 lab lab 20 [458]
Orchesella cincta 3.652 0.0858 0.351 4.948 0.351 lab lab 20 [458]
Isotomata viridis 3.034 0.0751 0.351 6.52 0.469 lab lab 20 [458]
Entomobrya nivalis 1.981 0.0830 0.351 3.416 0.418 lab lab 20 [458]
Lepidocyrtus cyaneus 1.181 0.0666 0.351 9.840 2.17 lab lab 20 [458]
Orchesella cincta 1.281 0.0151 1 6.817 0.354 lab lab 20 [449]
Phaenopsectra coracina 1.745 0.147 1 2.388 0.779 63.14N 10.24E 4 [1]
Diura nanseni 2.782 0.0460 6.328 0.536 60.15N 6.15E 0–20 [37]
Capnia pygmaea 1.024 0.0967 2.493 0.663 60.15N 6.15E 1–20 [37]
Locusta migratoria 10.82 0.237 1 44.82 7.36 lab lab 23–36 [568]
Chironomus plumosus f 4.053 0.272 1 21.88 5.50 lab lab 15 [441]
Chironomus plumosus m 3.211 0.0415 1 52.74 4.77 lab lab 15 [441]
Cheatognata

Sagitta hispida fm 9.431 0.150 0.15 44.80 5.25 lab lab 21 [756]
Echinodermata

Lytechenus variegatus 46.10 0.147 0.70 3.913 0.199 18.26N 77.12W 26–29 [471]
Echinocardium cordatum 34.50 0.425 0.696 0.4590 0.0232 53.10N 4.15E 5–12 [241]
Echinocardium cordatum 36.70 0.375 0.696 0.5320 0.0259 53.40N 4.30E 5–14 [241]
Echinocardium cordatum 44.90 0.405 0.696 0.4960 0.0212 54.15N 4.30E 5–16 [241]
Tunicata

Oikopleura longicauda fm 0.829 0.049 0.520 56.56 6.62 lab lab 20 [275]
Oikopleura dioica 0.952 0.327 0.560 63.97 37.3 lab lab 20 [275]
Chondrichthyes

Raja montaqui fm 695.9 11.0 0.184 0.1874 0.0140 52–54N 3–7E (4–17) [423]
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Raja brachyura 1589 213 0.184 0.1018 0.0261 52–54N 3–7E (4–17) [423]
Raja clavata f 1303 107 0.184 0.09297 0.0163 52–54N 3–7E (4–17) [423]
Raja clavata m 952.7 29.8 0.184 0.1557 0.0145 52–54N 3–7E (4–17) [423]
Raja erincea 542.9 32.6 0.184 0.2787 0.0542 41.05N 73.10W 1–19.1 [762]
Prionace glauca 4230 0.165 0.1100 48N 7W (5–18) [885]
Osteichthyes

Accipenser stellatus 2120 30.5 0.198 0.05396 1.46e-3 (45.10N)(28.30E)(4–23) [76]
Clupea sprattus 157.0 0.557 0.200 0.5847 4.60e-3 52.30N 2E (4–17) [440]
Coregonus lavaretus 397.3 8.39 0.203 0.3295 0.0221 54.35N 2.50W (5–15) [39]
Salvelinus willughbii f 385.4 72.9 0.225 0.2495 0.0973 54.20N 2.57W (5–15) [302]
Salvelinus willughbii m 328.9 12.7 0.224 0.3545 0.0366 54.20N 2.57W (5–15) [302]
Salmo trutta 585.8 18.0 0.216 0.4769 0.0411 53.15N 4.30W (4–17) [436]
Salmo trutta 576.2 20.6 0.240 0.2921 0.0253 57.40N 5.10W 5–12.8 [150]
Salmo trutta 420.2 3.13 0.240 0.4157 0.0107 54.20N 2.57W (5–15) [182]
Oncorhynchus tschawytscha 155.2 11.9 1 0.9546 0.217 36S 147E (11–16) [144]
Thymallus thymallus 459.6 8.44 0.240 0.4656 0.0224 52.09N 2.41W (5–15) [394]
Esox lucius f 948.7 88.3 0.209 0.2101 0.0718 50.17N 3.39W (5–15) [111]
Esox lusius m 703.6 13.0 0.209 0.4016 0.0455 50.17N 3.39W (5–15) [111]
Esox masquinongy 2091 848 0.199 0.04503 0.0263 44N 79W (5–15) [644]
Rutilus rutilus 441.6 15.8 0.258 0.1661 0.0116 52.30N 0.30E (5–15) [181]
Leuciscus leuciscus 252.6 2.32 0.258 0.3329 0.0131 52.30N 0.30E (5–15) [181]
Barbus grypus 1036 25.2 0.206 0.1265 6.59e-3 35.75N 44.7E (17–30) [9]
Abramis brama 546.0 0.225 0.1142 53.15N 2.30W (5–15) [334]
Gambusia holbrookii f 61.72 2.34 0.250 0.9366 0.216 38.40N 9.40W (5–25) [293]
Poecilia reticulata f 50.58 1.14 0.252 1.667 0.0690 lab lab 21 [939]
Merluccius merluccius 1265 78.4 0.222 0.2075 0.0184 55.45N 5W (8–12) [38]
Lota lota 1009 60.3 0.193 0.09768 0.0103 53N 98W (5–15) [408]
Gadus merlangus f 898.6 12.2 0.222 0.08626 2.07e-4 54N 4.40W (8–12) [106]
Gadus merlangus m 772.8 9.03 0.222 0.08626 2.07e-4 54N 4.40W (8–12) [106]
Gadus morhua 1089 43.2 0.222 0.1308 9.26e-3 40N 60W 10 [502]
Gadus aeglefinus 106.5 1 0.2000 53–57N 0–7E (4–17) [82]
Atherina presbyter 124.0 3.20 0.238 1.091 0.109 51.55N 1.20W (5–18) [935]
Gasterosteus aculeatus 52.41 2.62 0.250 1.019 0.249 52.20N 3W (4–17) [456]
Pungitius pungitius 41.28 1.03 0.200 1.777 0.468 52.20N 3W (4–17) [456]
Nemipterus marginatus 232.8 35.8 0.243 0.5047 0.227 6N 116E (26–30) [693]
Labrus bergylta 509.2 8.64 0.258 0.07170 3.30e-3 54N 4.40W (4–17) [219]
Ellerkeldia huntii 152.1 10.8 0.319 0.3350 0.0791 35.30S 174.40E (12–22) [454]
Lepomis gibbosus 61.86 9.04 1 0.1415 0.0342 45.40N 89.30W (5–15) [638]
Lepomis macrochirus 71.62 16.8 1 0.1292 0.0467 45.40N 89.30W (5–15) [638]
Perca fluviatilis 317.9 22.5 0.25 0.1615 0.0242 56.10N 4.45W 8–14 [828]
Tilapia species 129.6 20.7 1 3.542 1.10 31.30N 35.30E (37) [572]
Liza vaigiensis 746.3 31.8 0.258 0.1758 0.0147 17S 145E (18–27) [342]
Mugil cephalus 595.0 27.2 0.258 0.3350 0.0370 17S 145E (18–27) [343]
Valamugil seheli 635.3 35.0 0.258 0.2725 0.0291 17S 145E (18–27) [343]
Seriola dorsalis 1373 30.7 0.231 0.1155 5.72e-3 33N 118W (15–20) [57]
Ammodytes tobianus 140.9 1.98 0.147 0.7305 0.0595 50.47N 1.02W 5–18 [753]
Thunnus albacares 2745 636 0.266 0.1481 0.0509 0–10N 165E (26–30) [672]
Thunnus thynnus 3689 448 0.266 0.06623 0.0144 53–57N 0–7E (4–17) [928]
Coryphoblennius galerita 69.55 2.72 0.250 0.4011 0.0598 50.20N 4.10W (5–18) [635]
Pomatoschistus norvegicus 48.80 0.770 0.252 2.466 0.305 56.20N 5.45W (8–14) [324]
Gobio gobio 154.9 15.9 0.250 0.7519 0.495 51N 2.15W [587]
Gobio gobio 174.8 3.84 0.250 0.4165 0.0321 51.50N 8.30W (4–17) [474]
Gobius cobitis 213.9 14.9 0.295 0.2082 0.0385 48.45N 4W (5–18) [321]
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Gobius paganellus 79.89 1.94 0.200 0.4790 0.0463 54N 4.40W (4–17) [634]
Lesueurigobius friesii 65.82 0.623 0.252 0.5628 0.0349 55.45N 5W 8–12 [655]
Lesueurigobius friesii 63.72 0.409 0.252 0.6826 0.0322 56.20N 5.45W (8–14) [322]
Blennius pholis 150.5 3.36 0.250 0.2464 0.0176 50.20N 4.10W (5–18) [635]
Arnoglossus laterna 93.55 3.06 0.200 0.4544 0.0895 56.15N 5.40W (8–14) [323]
Hypoglossus hypoglossus 632.7 54.7 1 0.04797 6.04e-3 59N 152W (3–14) [867]
Scophthalmus maximus f 669.4 14.2 0.266 0.2165 0.0298 53–57N 0–7E (3–14) [453]
Scophthalmus maximus m 495.3 6.93 0.272 0.3247 0.0222 53–57N 0–7E (3–14) [453]
Pleuronectes platessa 142.1 1 0.09500 53–57N 0–7E (4–17) [82]
Solea vulgaris 78.41 1 0.4200 53–57N 0–7E (4–17) [82]
Amphibia

Rana tigrina l 12.79 0.670 1 15.75 1.88 lab lab 30–33 [196]
Rana sylvatica l 8.201 0.154 1 30.97 6.64 36.05N 81.50W 21–26 [1001]
Triturus vulgaris l 26.40 0.353 3.960 59.30N 10.30E -5–14 [222]
Triturus cristatus l 40.40 0.353 4.080 59.30N 10.30W -5–14 [222]
Reptilia

Emys orbicularis f 182.1 1.98 0.500 0.2707 0.0124 (22) [168]
Emys orbicularis m 161.8 1.56 0.500 0.3453 0.0172 (22) [168]
Vipera berus 539.0 33.0 0.075 0.3734 0.0657 (20) [299]
Eunectes notaeus f 3283 50.9 0.075 0.2552 0.0165 lab lab (20) [705]
Eunectes notaeus m 2946 94.5 0.075 0.2030 0.0251 lab lab (20) [705]
Aves

Eudyptula minor nov. 114.7 5.67 1 15.60 2.69 39.5 [484]
Pygoscelis papua 191.8 3.35 1 15.31 0.965 39.5 [955]
Pygoscelis antarctica 163.6 5.29 1 16.88 2.12 39.5 [955]
Pygoscelis adeliae 159.9 7.77 1 15.47 2.81 39.5 [955]
Pygoscelis adeliae 188.7 3.47 1 14.32 0.698 39.5 [909]
Aptenodytes patagonicus 250.0 1 8.508 0.164 39.5 [889]
Pterodroma cahow 63.16 0.465 1 62.96 1.55 39.5 [1005]
Pterodroma phaeopygia 79.2 0.93 1 20.08 3.43 39.5 [372]
Puffinus puffinus 83.90 0.069 1 41.55 2.87 39 [121]
Diomedea exulans 229.1 1.02 1 5.541 0.176 39.5 [924]
Oceanodroma leucorhoa 41.53 0.282 1 26.37 1.58 39.5 [769]
Oceanodroma furcata 44.73 0.339 1 23.28 1.16 39.5 [97]
Phalacrocorax auritus 149.5 6.31 1 18.18 1.81 39.5 [242]
Phaethon rubricaudata 101.1 1.45 1 13.03 0.923 39.5 [211]
Phaethon lepturus 72.79 1.12 1 18.77 2.03 39.5 [211]
Sula sula 80.01 1.18 1 11.82 1.53 39.5 [211]
Sula bassana 172.7 2.50 1 12.41 0.639 39.5 [659]
Cionia cionia 158.0 6.10 1 18.36 2.35 39.5 [183]
Phoeniconaias minor 116.8 3.01 1 11.31 1.30 39.5 [75]
Florida caerulea 68.19 1.16 1 42.63 3.61 39.5 [983]
Anas platyrhynchos 117.3 0.330 1 17.75 0.410 39.5 [404]
Anas platyrhynchos 151.3 0.353 1 17.04 0.307 39.5 [404]
Anas platyrhynchos 145.5 1.94 1 10.26 0.680 39.5 [631]
Anas platyrhynchos 154.8 1.65 1 13.14 4.56 39.5 [794]
Anser anser 181.5 2.99 1 7.895 0.626 39.5 [631]
Buteo buteo f 103.7 1.17 1 27.57 1.34 39.5 [725]
Buteo buteo m 95.99 1.11 1 27.90 1.45 39.5 [725]
Falco subbuteo 66.16 0.689 1 46.77 3.57 39.5 [84]
Meleagris gallopavo 256.1 9.89 1 4.340 0.782 39.5 [164]
Meleagris gallopavo 296.2 26.2 1 3.657 1.18 39.5 [164]
Phasianus colchicus f 100.3 1.86 1 6.610 0.738 39.5 [631]
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Phasianus colchicus m 118.8 4.25 1 5.004 0.746 39.5 [631]
Gallus domesticus f 136.5 1.24 1 4.625 0.209 39.5 [687]
Gallus domesticus m 153.5 2.22 1 4.522 0.305 39.5 [687]
Bonasia bonasia 85.17 2.68 1 7.807 0.740 39.5 [72]
Colinus virginianus 56.90 0.328 1 10.81 0.427 39.5 [789]
Coturnix coturnix 55.41 0.761 1 14.94 0.784 39.5 [117]
Rallus aquaticus 51.66 0.730 1 14.45 0.0882 39.5 [838]
Gallinula chloropus 67.05 1.20 1 20.00 1.72 39.5 [258]
Philomachus pugnax f 47.41 1.04 1 39.46 2.75 39.5 [811]
Philomachus pugnax m 59.94 2.18 1 29.09 2.97 39.5 [811]
Haematopus moquini 103.4 5.69 1 10.63 1.40 39.5 [417]
Chlidonias leucopterus 42.76 0.502 1 66.39 4.08 39.5 [464]
Sterna fuscata 57.94 0.364 1 22.21 1.07 39.5 [128]
Sterna dougalli 50.15 1.12 1 33.97 3.77 39.5 [549]
Sterna hirundo 46.74 1.10 1 35.29 4.76 39.5 [549]
Rissa tridactyla 76.07 0.715 1 32.98 1.79 39.5 [597]
Larus argentatus 115.1 1.70 1 16.53 0.791 39.5 [869]
Catharacta skua 131.3 4.64 1 17.42 2.37 39.5 [888]
Catharacta skua 100.5 0.610 1 40.69 3.12 39 [308]
Catharacta maccormicki 104.8 0.310 1 60.29 3.18 39 [308]
Stercorarius longicaudus 83.90 0.069 1 41.55 2.87 30 [308]
Ptychoramphus aleuticus 59.66 0.373 1 23.73 0.913 39.5 [945]
Cuculus canoris 45.49 0.884 1 49.29 4.00 39.5 [1023]
Cuculus canoris 50.26 1.45 1 38.56 3.68 39.5 [1023]
Cuculus canoris 52.02 7.20 1 42.11 2.12 39.5 [1023]
Cuculus canoris 52.44 1.40 1 39.91 3.60 39.5 [1023]
Glaucidium passerinum f 42.36 0.309 1 46.98 2.02 39.5 [820]
Glaucidium passerinum m 41.86 0.484 1 41.57 2.51 39.5 [820]
Asio otus 64.94 0.596 1 36.54 1.77 39.5 [999]
Tyto alba 68.25 1.18 1 21.68 2.70 39.5 [349]
Strix nebulosa 98.26 0.960 1 16.43 0.730 39.5 [630]
Steatornis capensis 94.59 5.24 1 12.96 2.39 39.5 [866]
Apus apus 37.44 0.274 1 45.55 2.88 39.5 [981]
Selasphorus rufus 16.33 0.475 1 58.44 9.88 ≤ 41 [172]
Amazilia fimbriata 16.12 0.110 1 69.86 3.54 ≤ 41 [380]
Ramphastos dicolorus 70.11 1.89 1 28.52 4.01 39.5 [112]
Sturnus vulgaris 40.83 0.332 1 82.71 5.04 41 [988]
Bombycilla cedrorum 34.16 0.392 1 73.37 4.31 41 [765]
Petrochelidon pyrrhonota 31.19 0.520 1 69.64 6.40 41 [765]
Toxostoma curvirostre 36.62 0.695 1 49.82 3.62 41 [765]
Tyrannus tyrannus 35.53 0.673 1 59.43 4.60 41 [648]
Sylvia atricapilla 25.59 0.142 1 108.2 11.7 41 [80]
Garrulus glandarius 52.34 2.85 1 39.82 8.52 41 [479]
Campylorhynchus brunneicap. 32.79 0.200 1 65.85 6.70 41 [766]
Emberiza schoeniclus 25.88 0.238 1 138.7 12.1 41 [93]
Troglodytes aedon 22.29 1 105.9 41 [29]
Phylloscopus trochilus 22.41 0.576 1 76.78 8.86 41 [819]
Parus major 27.47 0.207 1 59.90 2.33 41 [43]
Parus ater 23.40 0.232 1 75.74 3.88 41 [565]
Motacilla flava 9.910 0.298 2.913 55.19 4.42 41 [220]
Agelaius phoeniceus f 35.94 0.951 1 75.16 7.58 41 [185]
Agelaius phoeniceus m 40.66 0.529 1 65.28 2.74 41 [185]
Gymnorhinus cyanocephalus 44.84 0.596 1 49.68 2.97 41 [52]
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Eremophila alpestris 30.81 1.24 1 75.98 10.9 41 [62]
Mammalia

Macropus parma 148.6 0.615 1 2.736 0.0942 35.5 [602]
Macropus fuliginosus 261.6 34.8 1 2.397 0.910 35.5 [724]
Trichosurus caninus 137.8 1.06 1 1.754 0.561 35.5 [433]
Trichosurus vulpecula 139.3 1.34 1 3.715 0.184 35.5 [573]
Perameles nasuta 100.5 0.967 0.961 4.743 0.175 35.5 [573]
Setonix brachyurus 116.6 1 1.728 0.117 35.5 [936]
Suncus murinus f 26.58 0.160 1 30.92 1.37 37 [237]
Suncus murinus m 29.88 0.267 1 20.64 1.27 37 [237]
Sorex minutus 65.00 0.294 32.97 0.674 36 [437]
Desmodus rotundus 30.68 0.175 1 8.775 0.277 (35.5) [814]
Homo sapiens m 1648 58.5 0.244 0.1490 0.0158 37 [149]
Lepus europaeus 148.3 1.60 1 5.034 0.530 37 [120]
Oryctolagus cuniculus 116.6 1.11 1 6.507 0.272 37 [936]
Notomys mitchellii 27.09 0.412 1 21.54 1.64 38 [184]
Notomys cervinus 23.85 0.456 1 23.94 3.00 38 [184]
Notomys alexis 27.43 0.382 1 20.03 1.24 38 [184]
Pseudomys novaehollandiae 24.88 0.101 1 13.00 0.386 38 [472]
Castor canadensis 234.4 1.64 1 5.117 0.365 38 [10]
Mus musculus 34.24 0.474 1 15.09 0.924 38 [687]
Mus musculus f 31.87 0.129 1 22.33 1.31 38 [687]
Mus musculus m 33.98 0.118 1 26.66 1.28 38 [687]
Rattus fuscipes 171.5 4.08 0.280 9.333 0.843 38 [908]
Rattus norvegicus 75.23 0.301 1 9.286 0.279 38 [687]
Tachyoryctes splendens 64.87 0.992 1 8.231 0.680 38 [743]
Balaenoptera musculus 37810 5420 0.188 0.05884 0.0208 37 [857]
Balaenoptera musculus f 26200 0.188 0.2240 37 [562]
Balaenoptera musculus m 25000 0.188 0.2160 37 [562]
Balaenoptera physalus f 22250 0.180 0.2220 37 [562]
Balaenoptera physalus m 21000 0.180 0.2221 37 [562]
Balaenoptera borealis f 15300 0.197 0.1337 37 [562]
Balaenoptera borealis m 14800 0.197 0.1454 37 [562]
Delphinapterus leucas f 3056 54.4 0.254 0.2700 0.0399 37 [320]
Delphinapterus leucas m 3589 86.5 0.254 0.1876 0.0227 37 [320]
Canis domesticus 387.2 1.46 1 4.168 0.120 37 [687]
Lutra lutra f 178.1 1.32 1 2.870 0.156 37 [884]
Lutra lutra m 197.7 1.38 1 2.692 0.143 37 [884]
Pagaphilus groenlandicus 486.4 7.44 1 0.4787 0.0673 37 [546]
Mirounga leonina m 5580 356 0.254 0.1492 0.0265 37 [547]
Mirounga leonina f 2933 42.7 0.254 0.3094 0.0480 37 [547]
Mirounga leonina m 1799 149 1 0.1185 0.0278 37 [133]
Mirounga leonina f 704.0 20.4 1 0.3661 0.0982 37 [133]
Leptonychotes weddelli 685.4 1 0.3001 0.0184 37 [133]
Loxodonta a.africana f 1392 14.5 1 0.1016 8.16e-3 37 [548]
Loxodonta a.africana m 1723 45.4 1 0.07173 7.81e-3 37 [548]
Rangifer tarandus f 470.2 1.84 1 1.263 0.0589 37 [607]
Rangifer tarandus m 534.4 4.39 1 1.000 0.0617 37 [607]
Bos domesticus f 815.4 3.66 1 0.9957 1.73e-3 38.5 [687]
Alces alces 712.6 12.7 1 0.5930 0.159 37 [399]

An interesting application of the scaling of the von Bertalanffy growth rate with body
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Figure 8.3: The von Bertalanffy growth rate as a function of maximum volumetric length. The
left figure shows the rate as estimated from the original data, while the right figure gives the rates
corrected to a common body temperature of 25 ◦C. The markers refer to ▽ birds, 2 mammals,
△ reptiles and amphibians, ◦ fishes, × crustaceans, + molluscs, ⋄ others. The line has slope −1,
which is expected on the basis of the deb theory.

size is in speculations about the body temperature of dinosaurs. It relates to the question of
whether or not dinosaurs were endotherms, which is still a topic of considerable controversy
[269]. The blood vessels in bones [42], the bone structure [49], and predator/ prey ratios
[268] resemble those of birds and mammals, the general morphology points to a very
active life style [41], all indications that dinosaurs were endotherms [209]; the absence of
respiratory turbinates in dinosaurs is recently taken as evidence that they were ectotherms
with no need to recover water from their breath [792], the micro-distribution of oxygen
isotope in bones led some to conclude that the body temperature varied considerably in a
5-Mg Tyrannosaurus [633], and many speculations about growth and reproduction rates of
dinosaurs are based on the low ectothermic levels [152]. The problem of sufficient heat loss
in big dinosaurs in hot mesozoic climates was stressed by others. Although some dinosaurs
weighed up to 100 Mg [25], big dinosaurs were not born big, not all of them were big as
adults and they also roamed in cold climates [139]. Studies by Alexander [12] showed that
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Figure 8.4: The measured
length-at-age for the ma-
iasaur (data by Horner,
based on age estimates
from bone structure [738])
and the fitted von Berta-
lanffy growth curve (ulti-
mate length 7.6 m, von
Bertalanffy growth rate
0.347 a−1). This sug-
gests a body temperature
of 37.6 ◦C, see text.
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Figure 8.5: The gestation time of eutherian
mammals tends to be proportional to volumet-
ric length (line). Data from Millar [632]. The
times have been corrected for differences in rel-
ative birth weight, i.e. birth weight as a fraction
of adult weight, by multiplying by the ratio of
the mean relative birth weight1/3, 0.396, to the
actual relative birth weight1/3. The symbols re-
fer to ∗ Insectivora, + Primates, ⋄ Edentata, ◦
Lagomorpha, • Rodentia, × Carnivora, 2 Pro-

boscidea, 1 Hyracoidea, △ Perissodactyla, ▽ Ar-

tiodactyla.
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the body temperature of small dinosaurs would exceed the environmental temperature by
a few degrees only.

Maiasaurs fit the von Bertalanffy growth curve very well, see Figure 8.4. This indicates
that the body temperature was constant during their life span. What is the body tempera-
ture for which the observed growth rate fits the mean pattern for all 260 species? Corrected
for a body temperature of 25 ◦C, the mean energy conductance was found to be v̇ = 0.3 m
a−1 and a maintenance rate coefficient k̇M = 2.5 a−1 is typical for terrestrial vertebrates
(the latter value affects the calculations only a little). If the weight of a maiasaur of length
7.6 m is estimated at some 2.82 Mg, we arrive at an expected von Bertalanffy growth rate
of ṙB = 0.063 a−1 at 25 ◦C, while the observed value is ṙB = 0.347 a−1, see Figure 8.4.
The Arrhenius temperature of TA = 12.5 kK leads to an estimated body temperature for
the maiasaur of 12.5(12500

298
− ln 0.347

0.063
)−1 kK or 37.6 ◦C. I think that a range of plus or minus

2 ◦C indicates acceptable values. The result is consistent with inferences from incubation
times, {287}. It would be most interesting to have data for smaller species and/or species
in cold climates, but this will probably remain a wish.

Minimum embryonic period

Because the deb model is volume structured rather than age structured, the length of
the various life stages is closely tied to growth. The gestation time is proportional to
volume1/3, excluding any delay in implantation. Weasels and probably armadillos are
examples of species that usually observe long delays, possibly to synchronize the juvenile
period with favourable environmental conditions. Figure 8.5 illustrates that the expected
scaling relationship is appropriate for 250 species of eutherian mammals. The mean energy
conductance was found to be 2 mm d−1 at some 37 ◦C. This is less than half the mean-
temperature-corrected value found from the von Bertalanffy growth rates of juveniles and
adults, a difference that must be left unexplained at this moment.

Incubation time (3.34) depends on volume in a more complex way, but it is also ap-
proximately proportional to body volume1/3, or alternatively to egg volume1/4; the scaled
egg costs e0 do not depend on body size, so that egg costs themselves E0 = e0Em scale
with V4/3 or V ∝ E

3/4
0 so that ab ∝ V1/3 ∝ E

1/4
0 . Figure 8.6 gives the log–log plot for
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Figure 8.6: The incubation time for European breeding birds as a function of egg weight (left
figure). Data from Harrison [373]. The lines have a slope of 0.25. The tube noses (◦) sport long
incubation times. If corrected for a common relative volume at birth (right figure), this difference
largely disappears.

the species that breed in Europe. These data are very similar to those of Rahn and Ar
[744], who included species from all over the world. Although the scatter is considerable,
the data are consistent with the expectation. Note that, within a species, large eggs hatch
earlier than small ones, though one needs to look for species with egg dimorphism to find
a large enough difference between egg weights.

The tube noses Procellariiformes incubate longer, while they also have relatively heavy
eggs, and so relatively large chicks. If corrected for this large volume at birth, their
incubation time falls within the range of other species. This correction has been done by
calculating the egg weight first, from ([Ww]π/6)(egg length)(egg breadth)2. (Data from
Harrison [373].) The weight at birth is about 0.57 times the initial egg weight [953]. The
scaled length at birth is about (Wb/W∞)1/3. (This is not ‘exact’ because of the weight-
volume conversion and the volume reduction due to heating.) Bergmann and Helb [71]
give adults weights. The incubation time is then corrected for differences in scaled length
at birth on the basis of (3.34) for small values of the investment ratio g and a common
value for the scaled length at birth, 0.38.

The application of the deb model has been useful in identifying the proper question,
which is not why the incubation time of tube noses is that long, but why they lay so
large an egg. The bird champion in this respect is the kiwi Apteryx , which produces
eggs of 350–400 g, while the adult weight is only 2200 g. It has an incubation period
of a respectable 78 days. The relatively low incubation temperature of 35.4 ◦C extends
incubation in comparison to other birds, which usually incubate at 37.7 ◦C [145,146]. This
accounts for some 17–20 days extension with an Arrhenius temperature of 10–12.5 kK,
however, most of this long incubation relates to the very large relative size of the egg. The
relative size of the egg itself is a result of the energy uptake and use pattern. This matter
is taken up again in the discussion on strategies, {293}.

If one or more primary parameters are known, the value of a certain compound param-
eter such as the (minimum) incubation time can be predicted with much more accuracy.
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On the basis of growth data for the cassin’s auklet during the juvenile phase, I predicted
an incubation period of 40 days [514], not knowing that it has been measured and actually
found to be 37–42 days [589]. It is more difficult to verify my prediction of an incubation
period for the maiasaur of 145 days if it was ectothermic. This calculation accounted for
a birth length of 35 cm with an adult length of 700 cm [427], while the Nile crocodile
has a birth length of 20 cm, an adult length of 700 cm and an incubation period of 80–90
days [353]. If true, the maiasaur must have been a very patient animal! A higher (body)
temperature doubtlessly reduces the incubation time considerably, cf. {283}.

The reptilian champion in incubation time is the tuatara Sphenodon punctatus where
the 4-g hatchling leaves the egg after 15 months. The low temperature, 20–25 ◦C, con-
tributes to this record.

The European cuckoo is a breeding parasite which parks each of its many eggs in the
nest of a ‘host’, which has an adult body weight of only 10% of that of the cuckoo. The
eggs of the host are one-half to three-quarters the size of that of the cuckoo. On the basis
of egg size alone, therefore, the cuckoo egg should hatch later than the eggs of the host,
while in fact it usually hatches earlier despite the later date of laying. If the relative size of
the egg with respect to the adult is taken into account, the deb theory correctly predicts
the observed order of hatching. The essence of the reasoning is that, since the cuckoo is
much larger than the host, the cuckoo uses the reserves at a higher rate (i.e. {ṗAm} is
larger), and, therefore, it grows faster in the absolute sense. Growth is so much faster that
the difference in birth weight with the chicks of the host is more than compensated. In
non-parasitic species of the cuckoo family, the eggs are much larger [1023], which indicates
that the small egg size is an adaptation to the parasitic way of life. The extra bonus for
the European cuckoo is that it can produce many small eggs (about 20–25), which helps
it to overcome the high failure rate of this breeding strategy.

Minimum juvenile period

The juvenile period at high food density for different species is

apV =
1

ṙBV

ln
V

1/3
m1 − (Vh1Vm1/V)1/3 − V

1/3
b1

V
1/3
m1 − (Vh1Vm1/V)1/3 − V

1/3
p1

It increases almost linearly with length. This relationship fits Bonner’s data, as given in
Pianka [100,708] very well; however, this data set uses actual lengths, rather than the
more appropriate volumetric ones.

The Guinness book of World Records mentions the striped tenrec Hemicentetes semi-
spinosus , see Figure 8.7, as the mammal with the shortest juvenile period [544]. The
cuis Galea musteloides , a 300- to 600-g South American hystricomorph rodent, usually
ovulates at some 50 days, but sometimes does so within 11 days of birth [837,962]. Many
smaller mammals have a longer juvenile period, which points to the fact that body scaling
relationships only give tendencies and not reliable predictions.
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Figure 8.7: The striped tenrec Hemi-

centetes semispinosus is a curious ‘in-
sectivore’ of 110 g from the rain forests
of Madagascar that feeds on arthro-
pods and earthworms and finds its way
about using sonar. Walking in the for-
est, you can spot it easily by its head
shaking, not unlike that of an angry
lizard. Its juvenile period of 35 days
is the shortest among mammals. The
gestation period is 58 days [250].

Energy investment in an egg

For small values of the energy investment ratio g, the scaled energy investment e0 in a
single egg, as given in (3.32), is independent of maximum body volume, so that, for the
unscaled energy investment E0V = E01(V/Vm1)4/3. This does not necessarily translate
into the egg weight being proportional to body weight4/3, because the energy content, i.e.
the chemical composition, may also show scaling relationships. The larger species also
have to observe mechanical constraints, and small species can have problems with heating
themselves during development. This may cause deviations from expected tendencies.
The volume of the hatching young is proportional to the maximum volume of the adult (if
corrected for the volume reduction due to heating in endotherms), according to primary
scaling relationships. The European birds have egg weights approximately proportional to
adult weights. Calder [146] and Rahn et al. [747] obtained egg weights proportional to
adult weights0.77; Birkhead [86] found that the egg weight of auks is proportional to adult
weight0.72.

Water loss from eggs

The use of energy (stored in lipids, etc.) relates to the water that will evaporate from bird
eggs. Part of this water is formed by the oxidation of energy-rich compounds, and part of
it consists of the watery matrix in which the compounds are embedded for the purpose of
giving enzymes the correct environment and for transport of the products. The total loss of
water during the incubation period, therefore, reflects the total use of energy E0−Eb. Since,
like the energy investment in a single egg E0, the amount of energy at birth Eb = [Em]Vb

is also proportional to V4/3, the loss of water must be a fixed proportion of egg volume.
Rahn, Ar and Paganelli [26,745] found that it is some 15% of the initial egg weight. If
the use of energy relates to water loss directly, one would expect the initial loss rate to
be small and build up gradually. The egg usually decreases linearly in weight, as Gaston
[310] found for the ancient murrelet Synthliboramphus antiqua. This is to be expected on
physical grounds, of course. The specific density of an egg can be used to determine the
length of time it has been incubated. This process of water loss implies that the water
content of the reserves changes during incubation, but its range is rather restricted. The
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functional and physical aspects of water loss from eggs thus coincide beautifully.

Maximum reproductive rate

The maximum reproductive rate, as given in (3.52), is ṘmV = Ṙm1(Vm1/V)1/3 for the
different species. This is a beautiful example showing that the size relationships within a
species work out differently from those between species. Intra-species comparisons show
that large individuals reproduce at a higher rate than small ones, while the reverse holds
for inter-species comparisons. Like most of the other scaling relationships mentioned in
this chapter, this only reflects tendencies that allow substantial deviations. The trade-off
between a small number of large young and a large number of small young is obvious.

The partition coefficient κ does not depend on body size; thus, a small species spends the
same fraction of energy that it utilizes from its reserves on reproduction as a large species.
(That is, if the energy required to maintain maturity is negligibly small.) Most studies
do not deal with dynamic models for energy allocation, however, but with static ones.
Such studies aim to describe the (instantaneous) allocation of resources to the various end
points, given an individual of a certain size. If we express the energy spent on reproduction
as a fraction of the energy taken up from the environment (at constant food density), this
fraction decreases with increasing body volume. This is because ingestion rate increases
with volume, see {275}, and utilized energy (respiration rate) with a weighted sum of
surface area and volume. This illustrates once again the importance of explicit theories for
the interpretation of data.

Starvation

In the section on prolonged starvation {227}, the time till death by starvation for an indi-
vidual with an initial scaled energy density of e(0) = l was found to be t† = v̇−1V 1/3 ln κ−1

or t† = v̇−1V 1/3κ−1 depending on its storage dynamics during starvation. In the first ex-
pression the individual does not change its storage dynamics, and in the second one it
spends energy on maintenance only. The corresponding survival times for different species
are thus t†V = v̇−1

1 V1/3 ln κ−1
1 or t†V = v̇−1

1 V1/3κ−1
1 . They are thus proportional to volume1/3.

Threlkeld [921] found a scaling exponent of 1/4, but 1/3 also fits the data well.
Constant food densities thus select for small body volume, because small volume aids

survival at lower food densities; fluctuating food densities select for large body volume,
because a large body volume gives better survival over prolonged starvation. Brooks and
Dodson [122] observed that, in the absence of predators, the larger species of zooplankton
dominate. The deb theory suggests that the explanation does not lie in the size dependence
of threshold food density (because this would operate the other way round), but in the
length of periods for which no animal can find sufficient food. This has been confirmed
experimentally by Goulden and Hornig [340].

Life span

Growth never stops in the most elementary formulation of the deb model, but it is practical
to consider the moment at which body volume exceeds (1− ǫ)3V∞ as the end of the growth
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period, for some chosen small fraction ǫ = 0.05, say. The length of the growth period at
constant food density is given in (3.21) and amounts to ṙ−1

B ln ǫ(1− lb/f). It thus increases
with volumetric length for different species, just as the juvenile period. The mean life
span of ectotherms with a relatively short growth period that die from aging is found
from (7.33) to be 1

3
Γ(1

3
)(1

6
ḧak̇M)−1/3 for l = f . The mean life span is thus independent

of the maximum body volume of a species. Finch [281] concluded that the scanty data
on life spans of ectotherms do not reveal clear-cut relationships with body volume. Large
variations in life spans exist, both within and between taxa. The ratio of the growth period
to the mean life span is 5.55ḧ1/3

a k̇
−2/3
M (1 + f/g) ln ǫ(1− lb/f) and increases with volumetric

length. If this ratio approaches 1, life span tends to increase with maximum body volume
in a sigmoid manner.

In the section on aging, {139}, I discussed the coupling between the effectiveness of
antioxidants, life spans and genetical flexibility. If aging allows long life spans, individ-
uals are likely to have effective means for dealing with a threatening environment, such
as avoidance behaviour for dangerous situations (learning), physiological regulation to ac-
commodate changes in diet, temperature and so on. This is likely to involve large brain
size and thus an indirect coupling between brain size and life span. The brain may also be
involved in the production of antioxidants or the regulation thereof, which makes the link
between brain size and life span more direct. Birds have larger brain-to-body-weight ratios
than mammals and live twice as long. The life spans both of mammals and birds tend to
scale empirically with weight0.2 [146,281], which is close to volume1/3. Although I have
not worked out aging for endotherms quantitatively, this is consistent with the deb-based
expectation, because surface-bound heating costs dominate respiration, and thus aging.
Brain size is found, empirically, to be approximately proportional to surface area in birds
and mammals [146]. Mammals tend to have higher volume-specific respiration rates than
birds [980], which contributes to the difference in mean life span and jeopardizes easy
explanations.

It must be stressed that these life span considerations relate to aging, though it is doubt-
ful that aging is a major cause of death under field conditions. Suppose that size and age
independent of death dominate under those conditions and that food web interactions work
out such that the population remains at the same level while food is abundantly available.
To simplify the argument, let us focus on species that have a size at first maturation close
to the ultimate size. The death rate can then be found from the characteristic equation
(9.33) for ṙ = 0 and Pr{a† > a} ≃ exp{−ḣa} and Ṙ(a) ≃ (a > ap)ṘmV . Substitution

gives exp{−ḣVapV} = ḣV/ṘmV . I have shown already that the age at first maturation apV

increases almost linearly with length, {287}, and the maximum reproduction rate ṘmV

decreases with length, {289}. The death rate ḣV must, therefore, decrease with length, so
that the life span ḣ−1

V increases with length.
These considerations help to explain the results of Shine and Charnov [835], who

showed that the product of the von Bertalanffy growth rate and the life span, ṙBV/ḣV , is
independent of body size for snakes and lizards. Charnov and Berrigan [158] argued that
the ratio of the juvenile period to the life span is also independent of body size. They
tried to understand this empirical result from evolutionary arguments. Since the juvenile
period is approximately proportional to length as well, {287}, the ratio of this period to
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the life span is roughly independent of body size. The present derivation also specifies
the conditions under which the result is likely to be found, without using evolutionary
arguments.

8.2.3 Tertiary scaling relationships

Primary and secondary scaling relationships follow directly from the invariance property
of the deb model. The class of tertiary scaling relationships invokes indirect effects via
the population level. The assumptions that lead to the deb model, Table 3.3, must for
tertiary scaling relationships be supplemented with assumptions about individual interac-
tions. Chapter 9, on ‘living together’, considers the most simple one: interaction is via the
resource only, {303}. This makes tertiary scaling relationships a weaker type. Body size
scaling relationships are usually much less obvious at the community level [190], because
of a multitude of complicating factors. Nonetheless, they can be of interest for certain
applications.

Abundance

Geographical distribution areas are frequently determined by temperature tolerance limits;
see {53}. Temperature and food abundance also determine species abundance in more
subtle ways.

Since both the maximum ingestion rate and maintenance costs are proportional to
body volume, abundance is likely to be inversely proportional to body volume, so N ∝
V−1. This has been found by Peters [700], but Damuth [193] gives a scaling of −0.76.
This relationship can only be an extremely crude one. Abundances depend on primary
production levels, positions in the food web, etc. Nee et al. [656] point to the relationships
between phylogenetic position, position in food webs and abundances in birds.

Distribution

High food densities go with large ultimate body sizes within a species. If different geo-
graphical regions which differ systematically in food availability are compared, geographical
races can develop in which these size differences are genetically fixed. Since high food den-
sities occur more frequently towards the poles and low food densities in the tropics, body
sizes between these races follow a geographical pattern known as the Bergmann rule; see
{232}.

It is tempting to extend this argument to different species feeding on comparable re-
sources. This is possible to some extent, but another phenomenon complicates the result.
Because of the yearly cycle of seasons, which are more pronounced towards the poles, food
tends to be more abundant towards the poles in the good season, but at the same time the
length of the good season tends to shorten. The time required to reach a certain size (for
instance the one at which migration is possible) is proportional to volumetric length. This
implies that maximum size should be expected at the polar side of the temperate regions,
depending on parameter values, migratory behaviour, endothermism, etc. This probably
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holds for species such as geese, which migrate to avoid bad seasons. Geist [313] reported
a maximum body weight at some 60 ◦ latitude and smaller weights both at higher and
lower latitudes for New World deer and races of wolves. He found a maximum body size
for sheep at some 50 ◦ latitude. Ectotherms that stay in the region can ‘choose’ the lower
boundary of the temperature tolerance range such that they switch to the torpor state as
soon as the temperature drops to a level at which food becomes sparse. This reduces the
growth rate, of course, but not the ultimate body size. Whether the mean body size in a
population is affected then depends on harvesting mechanisms.

Population growth rate

Since the (maximum) reproduction rate decreases with a length measure and the juvenile
period increases with a length measure, the maximum population growth rate decreases
somewhat faster than a length measure, especially for the small species. A crude approxi-
mation is the implicit equation obtained from (9.34)

exp{−ṙVap1(V/Vm1)1/3} = (V/Vm)1/3ṙV/Ṙm1

For dividing isomorphs, the population growth rate is inversely proportional to the
division interval, which corresponds to a juvenile period from an energetics point of view.
This gives ṙV = ṙ1(V/Vm1)−1/3. Fenchel [276] obtained an empirical scaling of weight−1/4

for protozoa, and Niklas [665] obtained a value of (gram C)−0.213 for blue-green bacteria
and (gram C)−0.22 for unicellular algae. Correction for the contribution of reserves in the
size measures gives results very close to the expected scaling relationship.

8.3 Allocation strategies

Several comparisons of strategies have already been made to support statements during
model development and analysis; this section presents some additional strategies, that
would disrupt the flow of arguments if discussed in other chapters.

8.3.1 r versus K strategy

The ecological literature is full of references to what is known as r and K strategies,
as introduced by MacArthur and Wilson [575]. The symbol r refers to the population
growth rate and K to the carrying capacity; these two parameters occur in the logistic
growth equation, which plays a central role in ecology. Under the influence of Pianka
[707], organisms are classified relative to each other with respect to a number of coupled
traits, the extremes being an ‘r-strategist’ and a ‘K-strategist’. Many of these traits can
now be recognized as direct results of body size scaling relationships for eco-physiological
characteristics. The search for factors in the environment selecting for r or K strategies
can, as a first approximation, be translated into that for factors selecting for a small or
large body size.
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Figure 8.8: The energy costs of producing an egg relative to that of a foetus (left) and incubation
time relative to gestation time (right), as a function of the investment ratio g and scaled length
at birth lb (plotted on the y-axis) at high energy density at birth, eb = 1.

8.3.2 Small versus large eggs

Most optimization arguments lead to the uninspiring result that reproduction rate or pop-
ulation growth rate is maximized by producing an infinitely large number of infinitesimally
small young. No energy argument seems to forbid this possibility. It is hard to understand
why it pays to produce (few) large eggs. One possibility is in accounting for a changing spa-
tially heterogeneous environment. Reproduction is usually synchronized with a favourable
season, which is usually short. The reason why the crossbill breeds in midwinter in Scot-
land, for instance, is that it feeds its young with spruce seeds, which are mature early in
spring. This habitat is not always favourable for them; if the seeds are finished, they have
to move out. The same holds for ducks breeding in Iceland, where the adult starts to in-
cubate while there is still snow. When the chicks hatch, food is available, but not for long;
soon after they are able to fly, the conditions grow worse and they are forced to migrate
to the sea. These examples are obvious, but the principle is probably quite common. The
selection constraint is, therefore, a maximum period for completing development up to a
stage allowing for migration.

It is consistent with the structure of the deb model that such a stage can be tied to
a certain body volume. That the time needed to reach such a volume is strongly reduced
by laying large eggs is obvious from the expression for the juvenile period. The fact that
birds with large eggs, such as shearwaters and the kiwi, also have long incubation times
does not devalue the argument. The deb model shows that the time taken for the chick
to reach a certain size would be even longer if the eggs were smaller. This insight is one
of the gains of formalized reasoning, where all relevant variables can be considered at the
same time. Another aspect to consider for endotherms is that small young have a hard
time maintaining a high body temperature.
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8.3.3 Egg versus foetus

The ratio of the energy costs of egg to foetus production is shown in Figure 8.8 in the case
of high reserve density at birth, eb = 1. This figure also shows the ratio of the incubation
and gestation time. For very small investment ratios, g, the latter ratio becomes

√
2ebu

3
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(

1

2
ln

u2 + u
√

2 + 1

u2 − u
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2 + 1
+ arctan

u
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with u ≡ (4eb/lb − 1)−1/4. For very small scaled lengths at birth, this ratio becomes

Bxb
(1

3
, 0)x

−1/3
b /3, with xb ≡ g

eb+g
. The development of the embryo in an egg is somewhat

retarded at the end of incubation, because of the diminishing reserves. This means that
the incubation period is somewhat longer than the corresponding gestation period and
that the cumulative costs at birth of an egg are somewhat higher than those of a foetus.
This comparison assumes that all parameters are equal. Another difference is that, when
breeding, the incubating individual is more restricted in its freedom than the pregnant
mother.

8.3.4 Versatility versus specialization

Bacteria as a group are much more diverse in their metabolism than eukaryotes. Within
the α-subgroup of the purple non-sulphur bacteria, there is a wide variety of complex
metabolic pathways, each involving a considerable number of genes [891]. This can only
be understood by assuming that the ancestor of this group possessed all the pathways
for, for example denitrification, aerobic and anaerobic photosynthesis, methylotrophy, etc.
During evolution, most species lost one or more of these traits; This brings us to the
problem of understanding why it can be beneficial for species to cut out dna that is not
used in a particular environment rather than leaving it unused.

As shown in Figure 8.9, the deb model offers an explanation; the population growth
rate decreases for increasing dna duplication time tD, particularly at high substrate lev-
els. As the growth process continues during dna duplication, the cell becomes larger the
longer the dna duplication period, if dna duplication is triggered once the cell reaches a
certain specific size. Since the uptake of substrate relates to surface area, and the surface-
area/volume ratio grows worse the larger the cell, the cell is better off reducing the time
required to duplicate dna. The effect of the dna duplication time on the population growth
rate is less at low substrate levels, because the division intervals are extended under these
circumstances.

Cutting out disused dna is just one way to reduce the dna duplication time [893].
Another possibility is to maintain two chromosomes that are duplicated simultaneously,
as in Rhodobacter sphaeroides [902], or, more frequently, to maintain megaplasmids [298,
452,891].

The evolutionary significance of a high population growth rate is probably found in the
spatial and temporal heterogeneity of the environment. Useful substrates for heterotrophs
are usually rare. If a plant or animal dies, the locally present microbes will grow at a
high rate over a short period. If the subsequent selection processes thin randomly, the
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Figure 8.9: Maximum population growth rate decreases for increasing dna duplication times.
The curves are for aspect ratio δ = 0, and 0.6. The aspect ratio is specified just prior to division
and is fixed. Cell shape and relative size are indicated just before and after division for δ = 0.1
and 0.6, at a doubling time of 0 and 1.5 h. Cell volume at division relative to the volume that
triggers dna duplication, Vd/Vp, is given in the right figure. Numerical studies show that the
figure is independent of parameter values for lp, g and k̇M , given maximum population growth
rate.

most abundant species has the best opportunity of surviving until the next time substrate
becomes available. Since the ratio of the numbers grows exponentially at a rate equal to
the difference in the population growth rates, small differences can be significant for long
growth periods.

8.3.5 Growth versus reproduction: determinate growth

The relative amount of effort spent on reproduction differs from one species to another.
Even within a species, it can depend on environmental conditions. Based on work with
Mrs K. Lika, this subsection compares the consequences of two allocation strategies in
animals: indeterminate growth, where growth continues during the reproductive stage,
and determinate growth, where growth is stopped during the reproductive stage. Both
animals are otherwise similar, and have no differences during the embryonic stage, when
no food uptake occurs, and the juvenile one, when no allocation to reproduction occurs.
Both strategies frequently occur, even among rather closely related species: cladocerans
sport indeterminate growth (Daphnia magna can grow by a factor two in length, that is a
factor eight in volume, during the reproductive period), while copepods sport determinate
growth.

Embryo and juvenile stages

The age at birth ab and the energy costs per egg E0 vary somewhat with the food density,
because the reserve density at birth is taken to equal that of the mother: [Eb] = f [Em] at
steady state. This applies to both allocation strategies that are compared. For simplicity’s
sake, I here take ab constant and neglect maintenance costs during the embryonic stage,
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Figure 8.10: The age at puberty ap (left) and length at puberty V (ap)
1/3 (right) as functions of

scaled functional response f , and partition coefficient κ. The parameter values are V
1/3
b = 0.8

mm, [ṗM ]/[Em] = 0.1 d−1, [ṗJ ]/[Em] = 0.15 d−1, Ep/[Em] = 10 mm3, {ṗAm}/[Em] = 2.5 mm d−1,
[EG]/[Em] = 0.02.

which results in the energy costs per egg E0 = ([EG] + [Em]f)Vb. Up to the age at puberty
ap, the determinate animal is identical to the indeterminate one. At constant food density
the volume V (a) is given by

V (a) =
(

V 1/3
∞ − (V 1/3

∞ − V
1/3
b ) exp{−ṙBa}

)3
(8.1)

with ṙB = (3[EG] + 3κf [Em])−1[ṗM ] and V 1/3
∞ = fV 1/3

m and V 1/3
m = κ{ṗAm}

[ṗM ]
, where κ is

the fraction of catabolic power that is allocated to somatic maintenance plus growth, as
opposed to maturity maintenance plus maturation or reproduction.

The age at puberty ap is reached when the cumulative investment in maturation exceeds
a threshold value: Ep =

∫ ap
ab

((1− κ)ṗC(a)− [ṗJ ]V (a)) da, where Ep is the threshold value
for energy invested in maturation, ṗC the catabolic power and [ṗJ ] is the specific maturation
maintenance cost. The catabolic power is defined as the power that is released from the
reserves to fuel metabolism. Substitution gives

Ep = (1− κ)f
(

{ṗAm}
∫ ap

ab

V 2/3(a) da− [Em] (V (ap)− Vb)
)

− [ṗJ ]
∫ ap

ab

V (a) da (8.2)

If [ṗJ ] = 1−κ
κ

[ṗM ], the relationship (8.2) reduces to Ep = [EG](V (ap)−Vb)
1−κ

κ
, which reveals

that V (ap) does not depend on the scaled functional response f . The stage transition
occurs when cumulative investment in maturation exceeds a fixed threshold, while at the
same time structural mass exceeds a fixed threshold; age at puberty ap does depend on f ,
however. For other values of [ṗJ ], V (ap) does depend on f , and κ, and stage transition no
longer occurs at a fixed structural mass.

Figure 8.10 illustrates how the age and length at puberty depend on the scaled func-
tional response f and the partitioning fraction κ. The value of κ for which the length at
puberty does not depend on the feeding rate is κ = (1 + [ṗJ ]/[ṗM ])−1 = 0.4, which is just
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outside the range for which maturity can be reached for this parameter combination (see
also Figure 8.11). The volume at puberty can differ up to a factor of 6 from the ultimate
volume at indeterminate growth for this choice of parameter values.

Adult stage

The hazard rate has a direct relationship with energetics, and relates to mean life span
through Ea† =

∫∞
0 Pr{a† > a} da =

∫∞
0 exp{− ∫ a

0 ḣ(t) dt} da. For a reproduction rate Ṙ(a),
the life span reproduction amounts to

NR =
∫ ∞

ap

Ṙ(a) Pr
{

a† > a
}

da (8.3)

Constant fraction allocation

In the constant fraction allocation strategy, a constant fraction κ of catabolic energy is
allocated to somatic maintenance plus growth during all life stages. During the embryonic
and juvenile stage, a constant fraction is allocated to maturity maintenance plus matura-
tion; the investment in maturation switches to reproduction after the cumulated energy
investment in maturation exceeds a certain threshold Ep. Maturity maintenance does
not increase after the switch, but is proportional to volume before the switch. Somatic
maintenance is always proportional to volume.

The reproduction rate is

Ṙ(a) =
κR

E0

(

(1− κ)f

κf/[EG] + 1/[Em]

(

{ṗAm}
[Em]

V 2/3(a) +
[ṗM ]

[EG]
V (a)

)

− [ṗJ ]V (ap)

)

(8.4)

while the volume V (a) is given by (8.1).
If the aging acceleration is small enough, such that the period of substantial growth

is short with respect to the life span, the hazard rate and the survival probability can be
approximated by

ḣ(a) =
ḧa[ṗM ]

2κ[EG]
(a− ap)2; Pr{a† ≥ a} = exp

{

− ḧa[ṗM ]

6κ[EG]
(a− ap)3

}

for a ≥ ap.
The mean life span equals

Ea† = ap + Γ
(

1

3

)

(

6κ[EG]

27ḧa[ṗM ]

)1/3

≃ ap + 1.62

(

κ[EG]

ḧa[ṗM ]

)1/3

(8.5)

Bang-bang allocation

The bang-bang allocation strategy is the same as the fixed-fraction allocation one, but
growth is ceased at certain volume Vp; all catabolic energy is then allocated to maintenance
(somatic plus maturity) plus reproduction. This leads to the reproduction rate

Ṙ =
κR

E0

(

f{ṗAm}V 2/3(ap)− ([ṗM ] + [ṗJ ])V (ap)
)

(8.6)
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κ
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Figure 8.11: The grey area indicates the combina-
tion of values for the scaled functional response f and
the partitioning fraction κ, for which the adult state
is reached; the age at puberty is infinitely large at its
border. The fat curve represents values for f and κ
where the reproduction rate of the determinate ani-
mal equals that of a fully grown indeterminate one.
The dotted curves represent boundaries for which the
neonate just can pay somatic and maturity mainte-
nance costs. Parameter values: see Figure 8.10.

If the aging acceleration is small enough, such that survival to puberty is almost sure,
the hazard rate and the survival probability for the determinate animal can be approxi-
mated for a ≥ ap by

ḣ(a) =
ḧa{ṗAm}f

2[EG]V 1/3(ap)
(a− ap)2; Pr{a† ≥ a} = exp

{

− ḧa{ṗAm}f
6[EG]V 1/3(ap)

(a− ap)3

}

The mean life span is

Ea† = ap + Γ
(

1

3

)

(

6[EG]V 1/3(ap)

27ḧa{ṗAm}f

)1/3

≃ ap + 1.62

(

[EG]V 1/3(ap)

ḧa{ṗAm}f

)1/3

(8.7)

and the life span reproduction simplifies to NR = Ṙ(Ea† − ap).

Comparison of reproduction and life span

Assuming that aging allows, the reproduction rate of the fully grown indeterminate animal
exceeds that of the determinate one if

(1− κ)V∞ − V 1/3
∞ V 2/3(ap) + κV (ap) ≥ 0 (8.8)

Somatic maintenance costs can only be paid by the neonate if V∞ ≥ Vb. Maturity can

only be maintained by the neonate if V∞ ≥ Vb

(

κ
1−κ

[ṗJ ]
[ṗM ]

)3
. Reproduction is only initiated

if V∞ > V (ap). For very low feeding rates, the ultimate size can drop below the size at
birth, as implied by the model assumptions. Figure 8.11 illustrates that the reproduction
rate of a fully grown indeterminate animal exceeds that of the determinate one for all
biologically meaningful combinations of f and κ, given the parameter values. The area
left of the concave (upper-left to lower-right) dotted curve is less relevant, because this is
where the ultimate size is below that of the neonate. The area left of the convex (lower-left
to upper-right) dotted curve represents values for f and κ where neonates cannot maintain
their state of maturity.
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Figure 8.12: The life span reproduction NR (left) and the population growth rate ṙ (right) of
the indeterminate (solid) and the determinate (dotted) animals as a function of the partitioning
fraction κ at abundant food (f = 1). Parameters: see Figure 8.10, and κR = 1, ḧa = 5 10−7 d−1.

Comparison of (8.5) and (8.7) shows that the life span of the indeterminate animal
exceeds that of the determinate one if V∞ > V (ap), which is always the case. The reason
is in the decreasing specific oxygen consumption for increasing body size, {135}. The
assumption that death by aging is negligibly small before puberty obviously breaks down
when the juvenile period becomes excessively large.

Figure 8.12 gives the life span reproduction and the population growth rate as a function
of the partition coefficient at abundant food (f = 1), and shows that the differences
between both allocation rules are substantial for the life time reproduction, but small for
the population growth rate, given this choice of parameter values.

The bang-bang allocation will probably lead to larger population growth rates for high
death rates, because reproduction is larger just after maturation and the contribution of
the early offspring to the population growth rate is more important than that made by later
offspring. This is because the early offspring will reproduce earlier as well, the interest upon
interest principle. Selection for high population growth rates can be expected in situations
of alternating periods of food abundance, followed by starvation with random thinning.

The difference between determinate and indeterminate growth disappears if the switch
to the adult stage is outside the growth period, so the body size at puberty is close to the
ultimate body size. Copepods, which cannot grow once they start reproduction, in fact
follow the von Bertalanffy growth curve quite well. The difference with daphnids, which
keep their growth potential, only becomes apparent if the animals are continuously exposed
to low food densities during their juvenile stage, and then exposed to high food densities
during the adult stage. This might be a rather artificial situation, with little relevance
to field ecology. Holometabolic insects cannot grow after the pupal stage, and juveniles
and adults feed on different diets; the coupling of energetic properties between adults and
juveniles still awaits further study in the context of the deb theory.



300 8. Comparison of species

8.4 Evolutionary aspects

Comparing species ultimately leads to speculations about the origin of life. Such specu-
lations are relatively straightforward in the context of the deb theory, because it is not
species-specific. Therefore, it probably also applies to the very first forms of life. So it
does not suffer from the problem inherent to collections of species-specific models for en-
ergetics: if model 1 applies to species A and model 2 to species B, what model would
apply to the common ancestor of species A and B if changes during evolution are gradual?
This problem only has a solution if models 1 and 2 can be converted to each other in a
continuous way, which poses severe constraints on the structure of models that make sense
in an evolutionary context.

For didactical reasons, I introduced the deb theory in this book starting with a single
type of reserve. Present-day organisms that can be described by a single type of (general-
ized) reserve probably evolved from organisms with more reserves that gradually became
coupled. The deb model has this evolutionary consistency, as can be deduced from (5.18).
The partitionability requirement of reserve dynamics is crucial here. If κEi = κE, and
k̇Ei = k̇E, and we introduce

∑

i mEi = mE,
∑

i jAi = jA,
∑

i jMi = jM , and
∑

i nV i = nV ,
equation (5.18) can be summed over all reserves to obtain

d

dt
mE = jA − (1− κE)(k̇E − jG)mE − κE(jM + nV jG)− jGmE

κE→0
= jA − k̇EmE

This shows how organisms can gradually couple the dynamics of several reserves, and
obtain a higher degree of homeostasis. A first-order process for reserve density only arises
if reserve ‘molecules’ that are rejected by the growth-Synthesizing Unit are not fed back
to the reserves. The coupling of reserves is attractive to an organism if the availabilities
of nutrients are coupled as well. If food consists of animal prey, this coupling is almost
perfect, and the conversion is efficient because the composition of prey resembles that of
the consumer. If food consists of plant material, the coupling is still considerable, but,
since the compositions of plant and consumer differ more, the conversion is less efficient.

The very first cells probably did not have an advanced structure, so they are likely to
have been isomorphically growing spheres. The cells probably did not have an advanced
system for dividing into two equal parts either. The surface tension of the (outer) mem-
brane prohibits the separation of very small daughter cells. In turbulent environments
protocells cannot grow to a large size before being torn apart into daughter cells that are
not very different in size. In less turbulent environments cells can grow to larger sizes,
while the daughter cells are able to differ more in size.

The formation of bi-layered membranes could have occurred and still does occur abiot-
ically, especially on agitated surfaces of water, such as in coastal areas. Modern cells have
phospholipid membranes that are impermeable to most compounds and exchange material
with the environment through ion channels, which are complex proteins (in organisms alive
today). Such exchange, therefore, requires a rather advanced machinery for protein syn-
thesis which was probably rna based. (Ling [561] argues, however, that uptake is largely
determined by properties of the cytoplasm and that membranes are not that impermeable.)
Since the discovery that rna can catalyse its own splicing in the absence of proteins [155],
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most authors now agree that rna appeared earlier than proteins [671], even though the
abiotic synthesis of such complex rna has not been demonstrated. It is hard to see how
rna in the environment could have been of much significance. Its concentration as well
as that of its substrates (amino acids) were doubtlessly extremely low. The accumulation
of the products inside membranes of protocells could hardly have been significant. The
situation is obviously much better for rna molecules captured in protocells with a mem-
brane, provided that the membrane is permeable to amino acids and other substrates. dna
appeared later to fulfil the function of an archive for rna.

Growth can occur abiotically via the accumulation of compounds in the membranes
from the environment. Originally these compounds were probably rarely subjected to
chemical transformation. If rna was present in the protocells that catalyzed transforma-
tions, such that accumulation was enhanced, positive selection of such protocells would be
a fact. The catalytic role of proteins then comes next. The energy required for transforma-
tions can originally have been extracted from fermentation processes in an anoxic world.
These organisms gave rise to chemo-autotrophs. According to de Duve [243], endogenic
reactions were originally fuelled by thioesters. Photosynthesis possibly developed, at least
3.5 109 years ago, from phototactic chemo-autotrophs in hydrothermal environments [667].
The oxygen-requiring respiratory chain probably developed from the machinery required
for nitrification. The accumulation rate of substrate at low concentrations was probably
proportional to the surface area of the membrane just as it still is. Protocells will have
grown in the ‘cube root’ phase, see {252}, because maintenance processes were relatively
unimportant.

The general picture of the evolution of metabolic systems that emerges is more or less
as follows. Initially metabolism became increasingly independent of temporary variations
in the nutritional quality of the environment by increasing their storage capacity for the
various nutrients; temporary peaks in the availability of a nutrient can only be used if other
nutrients are not essential for this uptake, so the number of reserves equals the number
of essential nutrients. Then followed a phase where organisms increased their control over
the uptake of resources by increasing their taxis, and homeostasis abilities at the same
time. It allowed them to use specialized enzymes to catalyse particular transformations,
so increasing and regulating the rate of these transformations. The proper functioning
of these enzymes requires a steady turnover, and so maintenance costs, which are further
increased by the taxis activities. These maintenance requirements have tight links with
storage capacities in varying environments to ensure the integrity of the metabolic system.

The animal line of development perfectioned the control over uptake by feeding on
other organisms, which gives an almost perfect coupling of resources. This allowed animals
to eliminate many routes of metabolite synthesis, to couple the use of various reserves
such that a single generalized reserve emerged, and an almost perfect homeostasis was
reached. This specialization came hand in hand with an increase of the taxis abilities,
through the development of advanced motor systems and senses, which need a nervous
system for information processing and muscle control. They used this nervous system to
increase their control over homeostasis as well. This more active life style increased the
maintenance costs, which is no problem as long as it leads to higher assimilation as well.

The plant line of development specialized in increasing the adaptive abilities. Plants
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became extremely flexible in morphology, with direct links to the control over uptake of the
various nutrients and light (roots versus shoots). They invented the use of products (wood,
silica) to solve mechanical problems, and learned to use animals to solve the problem of
finding partners in the reproduction process, and of exporting seeds to uncolonized areas,
while being confined to a particular site. They also learned to use fungi to capture nutrients
that are locked in organic compounds, and some use bacteria to make dinitrogen biologically
available.

The increase in biodiversity allowed a specialization of functions, which enhanced
metabolic versatility, by using other species or their activities; compare mixotrophs with
a producer-consumer-decomposer community, for instance. The processes of syntrophy
and even more advanced forms of symbiosis developed early in evolution and have been
reestablished many times since then, resulting in loose and tight links between virtually
all organisms. This will be explored in the next chapter.

8.5 Summary

The most amazing aspect of the deb theory is that, while it deals with mechanisms,
rules are implied for the covariation of parameter values among species. This rests on a
classification of parameters as intensive or extensive, such that ratios of extensive ones are
intensive. When expressed in the proper dimensions, the extensive parameters scale with
a volumetric length. The reasoning is closely linked to an invariance property of the deb
model: two parameter sets may differ in a very special way, while the resulting energetics
are identical at constant food levels.

The scaling of each of the primary parameters is derived, and then that of functions
of these parameters, and finally that of quantities that relate more indirectly to primary
parameter values and involve interactions between organisms and properties of the en-
vironment. They all capture observed scaling relationships very well. The functions of
parameters relate to many aspects of life history, and physiological quantities, such as
respiration. Many fruitless attempts have been made to explain why respiration scales
with body weight to the power 0.75 (approximately). The explanation offered by the deb
theory is that the inter-specific scaling results from an increasing contribution made by the
reserves to body weight; the intra-specific scaling results in the decreasing contribution of
growth to the energy budget for increasing body weight.

I argue that many discussions in the literature about investments in offspring in fact
relate to body size scaling relationships. Allocation to growth versus reproduction is dis-
cussed in some greater depth to reveal the coupling of traits in the context of the deb
theory. These couplings cause deviations from the general opinion that the ‘optimal’ strat-
egy for growth versus reproduction is the bang-bang strategy: first grow, then reproduce.
This turns out not to hold generally.

The chapter closes with a short discussion about evolutionary aspects that pertain to
the structure of models for energetics. It emphasizes the importance of the partitionability
assumption of the deb theory, and the evolutionary implications. I sketch some patterns
in the evolutionary development of energetics in the light of the animal–plant dichotomy.



Chapter 9

Living together

The primary purpose of this chapter is to evaluate the consequences of the deb model for
individuals at the population and higher levels if extremely simple rules are defined for
the interaction between individuals and the energy balance of the whole system. The first
section deals with trophic interactions between species, and the constraints on parameter
values that ensure a stable coexistence. Then follows a discussion of population dynamics,
food chains and (simple) ecosystems.

9.1 Trophic interactions

The deb theory can be used to analyse the dynamics of systems with complex types of
mass exchange between the participants in trophic relationships, a rich spectrum ranging
from competition to predation. The present aim is to discuss some constraints in these
patterns that ensure weak homeostasis of structural masses: the relative abundance of the
structural masses of the participating species is independent of the substrate densities in
the environment at steady state.

Trophic relationships are hard to classify; all relationships seem to be unique at close
inspection. They are usually based on the judgement of being beneficial for one or both
partners, and many different definitions exist for particular inter-species relationships. The
oxpecker Buphagus feeds on insects that are attracted to wounds of giraffes, antelopes and
other bovids; it is not difficult to see why the thin-skinned small antelopes make evident
that they do not really appreciate this ‘help’ from the birds: oxpeckers try to keep wounds
attractive for insects. I observed what solution oxpeckers have when wounds are in short
supply. I will refrain from a judgement of benefits, and discuss the various relationships
purely on the use of substrates. This is not meant to imply, however, that non-trophic
relationships are of little importance to population dynamics.

9.1.1 Competition

When two species feed on the same substrate in a well mixed environment, they are said to
compete for that substrate. The ratio of the structural masses of two competing V1-morphs
is constant, despite variations in the substrate concentration, if the specific population
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growth rates are identical, so ṙ1 = ṙ2, for ṙi = fik̇Ei−gik̇Mi

fi+gi
, for i = 1, 2, and fi is the scaled

functional response. The growth rates are only equal if XK1 = XK2, [ṗAm1] = [ṗAm2],
k̇M1 = k̇M2, k̇E1 = k̇E2 and g1 = g2. In other words, the ratio is only constant if the species
are virtually identical in all their energetic properties. The significance of this remark is
that syntrophic relationships allow more differences between the species to maintain weak
homeostasis. The strict constraints for weak homeostasis explain why pure forms of inter-
species competition are rare; most competing species have partially overlapping diets, and
differ in preferences. Competition is perhaps most frequent among primary producers,
but even they differ in preferences for the various chemical species of nutrients (ammonia
versus nitrate, organic nitrogen, etc.).

The literature on population dynamics stresses the competitive exclusion principle: the
number of competing species cannot exceed the number of substrates at steady state. The
theoretical value of the result is limited, however. Real steady states are rare; complex
systems easily have cyclical behaviour, even in homogeneous environments. Changes in
feeding conditions come with changes in biomass composition, and the number of substrates
is actually large, even if the number of species is small. Lack of sustainable diversity in
community models is only problematic in models with simplistic views on chemical aspects.

9.1.2 Syntrophy

Two species have a syntrophic relationship if a recipient species lives off the products of
a donor species. The term commensalism is frequently used when the donor does not
experience adverse effects. Syntrophy is very common, but the coupling varies from very
direct to indirect. Many species of insects and fungi are coprophagic, i.e. they live off
animal faeces (its production is coupled to assimilation). A rich diversity of animals and
fungi live off fallen tree leaves (their production is coupled to maintenance). The nitrifying
bacteria Nitrosomonas and Nitrobacter oxidize ammonia to nitrite, and nitrite to nitrate,
respectively, while other groups (Pseudomonas, Micrococcus, Thiobacillus) convert nitrate
to dinitrogen. An even more indirect coupling exists between plants and oceanic diatoms,
where plants mobilize silica from rocks [90], which diatoms require to make frustules;
terrestrial plants allow diatoms to play a leading role in the plankton of the oceans.

The house dust mite Glycyphagus demesticus lives, with help of the fungus Aspergillus
repens , off human skin flakes (their production is coupled to maintenance); these mites
frequently cause allergic reactions in humans, which might stimulate flake production. The
moth Hypochrosis drinks tears of big mammals, such as Asian elephants and, incidentically,
humans, but stimulates tear production at the same time. The sucking of mammalian blood
by mosquitos or of plant saps by mistletoes or aphids is only a small step further towards
a biotrophic relationship.

Methanogens were originally believed to be able to grow on propionate, butyrate and
alcohols longer than methanol [1027]. For example Methanobacillus omelianskii seemed to
oxidize ethanol (C2H6O) to acetate (C2H3O−

2 ) and use the electrons to reduce CO2 to CH4.
This ‘species’ turned out to consist of two, which use substrates and produce products as
follows
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Donor 2 C2H6O + 2 H2O + O2 → 2 C2H3O−
3 + 2 H+ + 4 H2

Recipient 4 H2 + CHO−
3 + H+ → CH4 + 3 H2O

Sum 2 C2H6O + CHO−
3 + O2 → 2 C2H3O−

3 + H+ + CH4 + H2O
The donor needs the activities of the recipient to keep the concentration of its product,

hydrogen, down to extremely low levels. This is required to extract energy from the
degradation of ethanol. This pair serves as an example of a syntrophic relationship, which
will be analysed quantitatively for V1-morphs. What are the constraints on the production
of hydrogen such that the biomass ratio between the species does not change, and the two
species behave as a single one, at least in steady state? The interest in the question is to
derive evolutionary constraints on the origin of syntrophy.

Direct transfer

The donor obtains its substrate from the environment and the recipient receives product
from the donor, which serves as substrate. They grow at specific rates

ṙ1 =
fk̇E1 − k̇M1g1

f + g1

and ṙ2 =

k̇E2jP

jP,Am2

MV 1

MV 2
− k̇M2g2

jP

jP,Am2

MV 1

MV 2
+ g2

where f stands for the scaled functional response of the donor, and jP = ζPM k̇M1g1 +
ζPAk̇E1f + ζPGg1ṙ1 for the specific flux of product from the donor to the recipient, see
(4.33). The flux of product is thus jP MV 1, while the maximum flux that can be handled
by the recipient is jP,Am2MV 2; the ratio of the two quantifies the scaled reserve density (at
steady state). The first assumption is that all product can be handled.

Weak homeostasis is obtained if MV 1/MV 2 remains constant, so if ṙ1 = ṙ2, independent
of the substrate availability of the donor. The first observation is that ṙ1 = 0 if f =
g1k̇M1/k̇E1, and ṙ2 = 0 if

MV 1

MV 2

=
g2

g1

k̇M2

k̇M1

jP,Am2

k̇E2

1

ζPM + ζPA

This constraint can be substituted into the expression for ṙ2 and allows ṙ1 = ṙ2 for f =

g1
k̇M1+ṙ1

k̇E1−ṙ1
, to be written as

(1 + ṙ1/k̇M2)k̇M1g1(ζPM + ζPA) = (1− ṙ1/k̇E2)jP

Substitution of jP shows that this constraint can be re-written as a third-order polynomial
in ṙ1 being equal to zero, which only holds if all coefficients are equal to zero. This leads

to ζPG = 0, ζPA 6= 0, k̇E1 = k̇E2 = k̇E and ζPM

ζPA

(

k̇M1

k̇E
+ k̇M1

k̇M2

)

= 1− k̇M1

k̇M2
.

The conclusion is that homeostasis can be achieved if no product formation is associated
with donor growth, the turnover rates are equal, and a simple constraint applies to the
parameter values. The ratio of the structural masses to the reserves can be expressed as
simple functions of parameters at steady state

MV 1

MV 2

=
g2

g1

1 + k̇M2/k̇E

1 + k̇M1/k̇E

jP,Am2

ζPAk̇E

and
ME1

ME2

=
MEm1

MEm2

g1

g2

1 + k̇M1/k̇E

1 + k̇M2/k̇E

(

1 +
g1

f

k̇M2 − k̇M1

k̇M2 + k̇E

)−1
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The ratio of the reserves is only independent of substrate availability for the donor if
the maintenance rate coefficients are equal (k̇M2 = k̇M1), that is when ζPM = 0. The
conclusion is that the conditions for weak homeostasis are much less stringent, compared
to a competition relationship.

Indirect transfer

Suppose that the donor and the recipient live in a chemostat of throughput rate ḣ which
is fed with medium containing ethanol in concentration XSr, and other substrates that
might be necessary, except for hydrogen. The donor delivers its product into the well-
mixed chemostat. Changes in biomass ratios of donor and recipient are still possible given
the constraints of homeostasis if the saturation constant of the recipient for the product is
not very small.

The changes in the concentrations of ethanol (substrate S), hydrogen (product P ), and
structural biomass of species 1 and 2 are for f1 = (1+XKS/XS)−1 and f2 = (1+XKP /XP )−1

d

dt
XS = (XSr −XS)ḣ− ζSAf1k̇E1XV 1;

d

dt
ei = (fi − ei)k̇Ei, i ∈ {1, 2} (9.1)

d

dt
XP = (ζPM k̇M1g1 + ζPAk̇E1f1 + ζPGṙ1g1)XV 1 − ζPAf2k̇E2XV 2 −XP ḣ (9.2)

d

dt
XV 1 = (ṙ1 − ḣ)XV 1 with ṙ1 =

k̇E1e1 − k̇M1g1

e1 + g1

(9.3)

d

dt
XV 2 = (ṙ2 − ḣ)XV 2 with ṙ2 =

k̇E2e2 − k̇M2g2

e2 + g2

(9.4)

The expressions for the specific growth rate follow from the deb theory, as does the pro-
duction of product (here hydrogen), which is, generally, a weighted sum of the three basic
powers. At steady state we have ḣ = ṙ1 = ṙ2, and the problem is to find the weight
coefficients ζP∗ for the production of hydrogen such that XV 2/XV 1 does not depend on ḣ.

The steady-state scaled functional responses are fS1 = g1
k̇M1+ḣ

k̇E1−ḣ
and fP2 = g2

k̇M2+ḣ

k̇E2−ḣ
,

from which follow the concentrations XS = XKSfS1/(1−fS1) and XP = XKP fP2/(1−fP2).
The ratio of the biovolume densities of species 2 and 1 at steady state is

XV 2

XV 1

=
ζPM k̇M1g1 + ζPAk̇E1fS1 + ζPGḣg1

ζPAk̇E2fP2

+
ζSAk̇E1fS1

ζPAk̇E2fP2

XP

XSr −XS

The ratio varies within a limited range only, for varying throughput rate ḣ and substrate
concentration XSr, if the saturation constant XKP is small, and the constraints apply for
weak homeostasis at direct transfer.

9.1.3 Symbiosis

Two species have a symbiontic relationship if the syntrophic one is reciprocal. It is ex-
tremely common; think for instance of the micro flora in digestive tracts of animals, or a
mycorrhiza in and around plant roots. A discussion of its frequently amazing forms can
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easily fill a book, and most relationships are probably still unknown. The term mutualism
is frequently used to indicate a relationship that is reciprocally ‘beneficial’, without a di-
rect trophic basis that is reciprocal, such as ant–plant relationships, where plants provide
protein granules, and ants take care of plant-eating insects. Another example is the plant–
pollinator relationship, where plants provide nectar and pollen, and the pollinator (insects,
bats, birds) takes care of directed pollen dispersal. These cases represent syntrophic rela-
tionships as far as the use of substrates is concerned.

Algae frequently go for symbiontic relationships
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@
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A
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free
living

with plants, animals, and other protoctists [759].
Many (tropical) coelenterate species host endosym-
biontic dinoflagellates named zooxanthellae [907],
which can still live independently from the host [223].
Scleractinian corals hosting Symbiodinium species
are the dominant reef builders. Chloroplasts, includ-
ing that of Symbiodinium, are considered to be en-
dosymbionts themselves. Membrane compositions
reveal that chloroplasts of the endosymbiontic di-
noflagellate Amphidinium wigrense are similar to
the cryptomonad endosymbionts of Gymnodinium
acidotum, which have lost their nucleus [1002]; the
chloroplasts of these cryptomonads are possibly de-
rived from a rhodophyte, which encapsulated a prokary-
ote. Such multiple nestings are frequent [850]. The
view of the eukaryotic cell as an integrated symbion-
tic community is taking ground [590]. An analysis
of trophic interactions in a symbiosis has relevance
for cellular biology in general. This motivates a more detailed discussion here.

The algal symbionts receive ammonia and carbon dioxide from the host and return
lipids and glycerol [53,881], which supplement the prey taken by the host. The host
can increase the inorganic carbon supply for the symbionts, using the enzyme carbonic
anhydrase, which catalyses the interconversion of CO2 to HCO−

3 [651]. This reduces the
carbon dioxide concentration in the host and increases its uptake from the environment.
The transfer of bicarbonate to the symbiont is coupled to the calcification process, Ca2+

+ 2 HCO−
3 → CaCO3 + CO2, where the carbonate is precipitated by the host and the

carbon dioxide is used by the symbiont, cf. {167}. Symbionts are also found to have
heterotrophic abilities [881] for compounds that are likely to be formed during fermentation
processes. In oligotrophic environments, hosts can increase production by one to two orders
of magnitude, with the help of symbionts [364].

The stabilizing mechanism in the host–symbiont relationship is that the symbiont re-
quires ammonia from the host for growth, and the host requires carbohydrates from the
symbiont for extra growth that is allowed by food supply. The symbiont cannot grow if
it supplies enough carbohydrates to the host to allow the host to use all the ammonia
itself; the host generates ammonia, and the symbiont only receives the ‘spoils’ [364]. This
priority in use is reciprocal, and also applies to carbohydrates.
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Table 9.1: The chemical compounds of the symbiosis and their transformations and indices.
The + signs mean appearance, the − signs disappearance. The signs of the mineral fluxes
depend on the chemical indices and parameter values. The labels on rows and columns serve as
indices to denote mass fluxes and powers. The table shows the flux matrix J̇T , rather than J̇ , if
the signs are replaced by quantitative expressions presented in Table 9.2.
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L C H O N P X CH V H EH V S ES

assim 1 A1H + + − + + − +
assim 2 A2H + + − − − +
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t

growth GH + + − + + −
dissip DH + + − + −
assim AS − − − + − + +

sy
m

b
.

growth GS + + − + + −
dissip DS + + − + −
carbon C 1 1 1 1 1 1 1 1
hydrogen H 2 3 nHP nHX 2 nHV H nHEH nHV S nHES

oxygen O 2 1 2 nOP nOX 1 nOV H nOEH nOV S nOES

nitrogen N 1 nNP nNX nNV H nNEH nNV S nNES

A number of simplifying assumptions are made:

• Bicarbonate is included in CO2, which in fact stands for inorganic carbon. The
complex biochemistry of calcification is simplified to a proportionality with the CO2

that is taken up from the environment. The reported coupling of coral calcification
to nitrogen metabolism [186] is taken into account by the full assimilation process,
which requires light, inorganic carbon as well as nitrogen.

• Nitrate is assumed not to be present in the environment; it can be included in the
nitrogen flux to the symbiosis, if the (variable) nitrate/ammonium ratio is taken into
account in the assimilation costs yCH ,ES and yCH ,EH .

• Water and oxygen are non-limiting; the performance of the symbiosis is only affected
by light, CO2, ammonia and food. The composition of food is constant. Self shading
is neglected; light is used proportional to the mass of symbiont, and independent of
the surface area of the host.

• Each partner has only one reserve, so the state variables are MV H , MEH , MV S, MES.
The symbiont does not store nitrogen separately; this seems realistic due to lack
vacuoles [752]. It, therefore, makes little sense to store carbohydrates as a separate
reserve.
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Table 9.2: The fluxes in a symbiosis between a heterotrophic isomorphic host H and an au-
totrophic V1-morphic symbiont S, which experiences the light flux J̇L,F , and the densities of inor-
ganic carbon XC , nitrogen XN and food X. The reserves enter the fluxes via mEH = MEH/MV H

and mES = MES/MV S . The parameter MV d just serves as reference for MV H to scale jEH,A1Hm,
jN,A2Hm, jC,A2Hm and k̇EH .

J̇C,A1H = −J̇X,A1H − J̇P,A1H − J̇EH,A1H ; J̇N,A1H = −nN,X J̇X,A1H − nN,P J̇P,A1H − nN,EH J̇EH,A1H ;

J̇P,A1H = yP,EH J̇EH,A1H ; J̇X,A1H = −yX,EH J̇EH,A1H ; J̇EH,A1H =
jEH,A1Hm

1+XK/X (MV H/MV d)
2/3;

J̇N,F = − jN,A2Hm

1+XKN /XN
(MV H/MVd

)2/3; J̇C,F = − jC,A2Hm

1+XKC/XC
(MV H/MVd

)2/3;

J̇C,A2H = J̇CH ,AS − J̇EH,A2H ; J̇N,A2H = −yN,EH J̇EH,A2H ; J̇CH ,A2H = −yCH ,EH J̇EH,A2H ;

J̇EH,A2H =
(

(yEH,N J̇N,A+H)−1 + (yEH,CH
J̇CH ,AS)−1 − (yEH,N J̇N,H + yEH,CH

J̇CH ,AS)−1
)−1

;

J̇N,A+H = J̇N,A1H + J̇N,GH + J̇N,DH + (JN,+S)+ − J̇N,F ; J̇N,+S = J̇N,AS + J̇N,GS + J̇N,DS ;

J̇C,GH = (yEH,V H − 1)J̇V H,GH ; J̇N,GH = (nN,EH yEH,V H − nN,V H)J̇V H,GH ;

J̇EH,GH = −yEH,V H J̇V H,GH ; J̇V H,GH = MV H
(MV d/MV H)1/3k̇EHmEH−jEH,DH/κH

mEH+yEH,V H/κH
;

J̇C,DH = −J̇EH,DH ; J̇N,DH = −nN,EH J̇EH,DH ; J̇EH,DH = −jEH,DHMV H ;

J̇C,AS = −J̇CH ,A+S ; J̇C,A+S = J̇C,+H + J̇C,GS + J̇C,DS ;

J̇C,+H = −j̇C,F + J̇C,A1H + J̇C,A2H + J̇C,GH + J̇C,DH ;

J̇N,AS = −nN,ES J̇ES,AS ; J̇N,A+S = (J̇N,+H)+ + J̇N,GS + J̇N,DS

J̇N,+H = J̇N,A+H + J̇N,A2H ; J̇CH ,AS = J̇CH ,A+S − yCH ,ES J̇ES,AS ;

J̇CH ,A+S =
(

J̇−1
C,A+S + (yCH ,LJ̇L,F )−1 − (J̇C,A+S + yCH ,LJ̇L,F )−1

)−1

;

J̇ES,AS =
(

(yES,N J̇N,A+S)−1 + (yES,CH
ρCH

J̇CH ,A+S)−1 − (yES,N J̇N,A+S + yES,CH
ρCH

J̇CH ,A+S)−1
)−1

;

J̇C,GS = (yES,V S − 1)J̇V S,GS ; J̇N,GS = (nN,ES yES,V S − nN,V S)J̇V S,GS ;

J̇ES,GS = −yES,V S J̇V S,GS ; J̇V S,GS = MV S
k̇ESmES−jES,DS

mES+yES,V S
;

J̇C,DS = −J̇ES,DS ; J̇N,DS = −nN,ES J̇ES,DS ; J̇ES,DS = −jES,DSMV S

• Both assimilation processes of the host are parallel; that from carbohydrates and
ammonia is fast (these substrate fluxes already have upper boundaries).

• The binding probabilities of all substrates to the Synthesizing Units are taken to be
close to one, except that of carbohydrate by the symbiont, which is possibly tunable
by the host [229].

• The environment is treated as homogeneous. Flow regimes and diffusive boundary
layers usually modify feeding and nutrient uptake [691].

Table 9.2 specifies the fluxes of 11 compounds as indicated in Table 9.1. The fluxes are
determined by 19 parameters, and chemical indices, as functions of four enviromental vari-
ables: light, inorganic carbon, nitrogen and food. The symbiosis can live fully heterotrophic
as well as fully autotrophic; as a consequence, it can take up significant amounts of inor-
ganic nitrogen [691]. Figure 9.1 shows that calcification can enhance growth; its measured
yearly maximum is 4 kg CaCO3 m−2a−1, or 3–5 mm a−1 [864]; its daily maximum is three
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erotrophic isomorphic host and an au-
totrophic V1-morphic symbiont, and their
ratio. Light and food are non-limiting and
free nitrogen is absent; inorganic carbon
is non-limiting (drawn) or absent (finely
stippled). Coarsely stippled: host with-
out symbiont.

times as high [863]. The chosen parameter values are just provisional; the figure only
serves to illustrate the model structure.

Although the reproduction of the host has been taken into account by the parameter κH ,
the reproduction flux is not listed explicitly. The fluxes associated with assimilation A2H
and AS are given implicitly, and must be obtained numerically. This is hardly a handicap in
practice, because a simple Newton Raphson procedure turns out to be converging rapidly
starting from J̇C,A2H = J̇N,A2H = 0. The change in state is given by d

dt
M = J̇1. The

specification allows the following assertions

• The symbiont does not grow if

J̇N,+S = 0, in which case J̇N,+H = 0 as well; all ammonia released in maintenance
is used for assimilation; J̇N,+H = 0 if J̇N,A+H + J̇N,A2H = 0.

mES = jES,DS/k̇ES; the reserves just cover the maintenance costs. Reserves do
not change if k̇ESMES = J̇ES,AS; assimilation equals the catabolic rate.

• The host does not grow if mEH =
jEH,DH

κH k̇EH

(

MV H

MV d

)1/3
; reserves do not change if

k̇EH(MV d/MV H)1/3MEH = J̇EH,A1H + J̇EH,A2H .

• The ratio of the structural masses of symbiont and host does not change if their
specific growth rates are equal, so if jV S,GS = jV H,GH .

• The flux ratio J̇EH,A2H(J̇EH,A1H + J̇EH,A2H)−1 quantifies the photo- versus hetero-
trophic activity of the host. It is fully phototrophic if J̇X,F = 0. The host gains
nothing from the symbiont if J̇CH ,AS = 0, or if J̇CH ,A+S = J̇ES,AS. Muscatine et al.
[650] proposed a related measure: the fractional contribution of translocated zoox-
anthellae C to animal daily respiratory C requirements CZAR = J̇CH ,ASJ̇−1

C,+H100%.
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• The effect of calcification can be evaluated under the various feeding conditions (J̇L,F ,

J̇N,F and J̇X,F ) with the fraction
J̇EH,A1H+J̇EH,A2Hgiven J̇C,F =0

J̇EH,A1H+J̇EH,A2Hgiven J̇C,F =−∞
.

• The host is of no use for the symbiont if it captures no prey, and competes with the
symbiont for nitrogen.

Figure 9.1 reveals an important implication of the specification of fluxes in Table 9.2:
the symbiont/host ratio of structural masses hardly varies. No other regulation seems to be
required, other than trophic interactions. The host can tune the population of symbionts
via the binding parameter ρCH

of carbohydrates to the assimilation SU of the symbiont.
The symbiosis can be simplified smoothly to a mixotroph with a single structure and

reserve, by sacrificing the limited degree of freedom in composition. The explicit role of
carbohydrates then disappears. A satisfactory description of the diurnal cycle requires
separate carbohydrate and nitrogen reserves.

9.1.4 Biotrophy and parasitism

In a biotrophic relationship, the receiver lives off the host’s body parts, without necessarily
killing the host; it is a transition between a syntrophic and a predatory one. This defini-
tion includes most parasites, cows and excludes adult tapeworms (which are competitors).
The pearlfish Carapus lives inside living sea cucumbers for shelter, where it feeds on the
reproductive tissues. Many parasites, such as the avian schistosome Trichobilharzia which
lives on the reproductive tissues of the pond snail Lymnaea, induce their host to increase
its investment in growth, by increasing κ, cf. {87}; this, paradoxically, decreases short-
term investment in reproduction, but increases the long-term investment via an increase
in body size and so in feeding rate, cf. {295}. When the eggs are consumed a little fur-
ther in their development, and are outside the body of the mother, as in the case of the
snake Dasypeltis feeding on bird eggs, the relationship is usually called predatory, rather
than parasitic. Parasites frequently have intimate metabolic and life history relationships
with their host [163,781,994]. dna sequencing reveals that the feared typhus bacterium
Rickettsia prowazekii is the closest free-living relative of mitochondria [21], which are
completely integrated into almost all eukaryotic cells [590].

9.1.5 Predation and saprotrophy

Although many heterotrophic species eat living prey individuals, most prey–predator mod-
els in ecology fail to recognize that the relationship is more complex than just the disap-
pearance of prey individuals and the coupled production of predators. Predators usually
have a strong preference for the less healthy prey individuals, and almost all predators are
scavengers as well, i.e. they feed on dead biomass, which classifies them as saprotrophs.
When a predator dies, a rich supply of substrates and nutrients becomes available in the
form of its corpse, which directly or indirectly comes back to the prey. Accidental death
or death from aging by the predator can be considered as maintenance-coupled substrate
production processes at the population level. All organisms, therefore, have syntrophic
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relationships with others at the population level. Predators also provide food for the prey
via the release of nutrients (nitrogenous waste, faeces); if the prey happens to be algae or
plants, the nutrients can be used directly, or these intermediate organisms will be directly
or indirectly food for the prey. These indirect trophic relationships need to be included for
a proper understanding of population dynamics.

Many carnivores have cannibalistic tendencies in periods of low prey abundance. This
obviously reduces intra-species competition in the predator population, with more food
available to the surviving individuals, while relieving the pressure on the prey. Cannibal-
ism has a strong stabilizing effect on population dynamics. deb models can be used to
understand why dwarfs and giants can develop in cannibalistic populations [161].

Predation can also be beneficial to the prey, when ill individuals are preferred, and
prey densities are kept low. This hampers the spreading of infectious diseases, which is
frequently more devastating for the prey population than predation. Prey can develop
intricate behavioural and physiological adaptations to avoid predation [839,964], and prey
species that share a common predator can develop interrelationships [2].

9.2 Population dynamics

The significance of the population level for biological insight at all organization levels is
manifold. It not only sets food availability and predation pressure for each individual, but
it also defines the effect of all changes in life history, which is pertinent to evolutionary
theory. All other individuals belong to the environment of the particular individual whose
fitness is being judged. Fitness, whatever its detailed meaning, relates to the production
of offspring, thus it changes the environment of the individual. This is one of the reasons
why fitness arguments, which are central to evolutionary theories, should always involve
the population level. Feeding on the same resource and being eaten are the major topics in
population dynamics, but a real understanding requires analysis of all trophic interactions,
as specified in the section on ‘Canonical Communities’, {352}.

Most models of population dynamics treat individuals as identical objects, so that a
population is fully specified by its total number or total biomass. Such populations are
called non-structured populations. This obviously leads to attractive simplicity; see e.g.
Hastings [378] for an easy introduction. I discuss some doubts about their realism on
{314}, doubts that can be removed by turning to structured populations. Structured
populations are populations where the individuals differ from each other by one or more
characteristics, such as age, which affect feeding, survival and/or reproduction. The deb
model provides an attractive, albeit somewhat complicated, structure. I will show the
connection between non-structured and deb-structured populations step by step.

V1-morphs have the unique property that they grow proportionally to their volume
as individuals, which makes them an ideal paradigm for the connection between non-
structured populations and structured ones. The definition of an individual is hard to make
for V1-morphs and, in the deb model, of no importance; it indeed makes no difference if
the population consists of one single large V1-morph or many small ones. For isomorphs
the situation is different, of course. The simplicity of non-structured population dynamics
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comes with several unrealistic phenomena that have the potential to devalue any conclusion
about real-world populations. I discuss some of them on {328}.

The introduction of a structure does not necessarily lead to realistic population models
because of the effects of many environmental factors that typically operate at popula-
tion level: spatial heterogeneity, seasonality, erratic weather, climatic changes, processes
of adaptation and selection, subtle species interactions and so on. The occurrence of in-
fectious diseases is perhaps one of the most common causes of decline and extinction of
species, which typically operates in a density-dependent way. This means that population
dynamics, as discussed in this chapter, still has to be embedded in a wider framework to
arrive at realistic descriptions of population dynamics.

Spatial structure can profoundly mod-
ify population dynamics, as illustrated
here for a compact school of fish, where
only the individuals at the front actu-
ally feed, while the others starve and
frequently interchange position with
the individuals in the front. If the
school increases its number of indi-
viduals, without changing shape, the
feeding rate by the school is propor-
tional to the number of individuals to
the power 2/3 (based on the same argument as the deb model uses for individuals), which
implies that the feeding rate by the individual decreases for increasing numbers of individ-
uals in the school. This is, however, not a proper population perspective, since this should
include rules for the birth and death of schools; the school is here a ‘super’ individual.

The interaction between individuals of the same species is here restricted to feeding on
the same resource. This point of view might seem a caricature in the eyes of a behavioural
ecologist. The general idea, however, is not to produce population models that are as
realistic as possible, but to study the consequences of feeding on the same resource. A
comparison is then made with non-structured population dynamics and with real-world
populations to determine the pay-off between realism and model complexity. If deb-
structured population dynamics predictions are not realistic, while the deb model is at
the individual level, this will give a key to factors that are important in this situation.
The basic energetics and trophic interactions must be right before the significance of the
more subtle factors can be understood. My fear is that most of the factors shown to be
relevant will be specific for a particular species, a particular site and a particular period
in time. This casts doubts on the extent to which general theory is applicable and on
the feasibility of systems ecology. The main application of population dynamics theory
here concerns a mental exercise pertaining to evolutionary theory, with less emphasis on
direct testing in real-world populations. The theory should, however, be able to predict
population behaviour in simplified environments, such as those found in laboratory setups,
in bio-reactors and the like, so that it has potential practical applications.
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9.2.1 Non-structured populations

The chemostat, a popular device in microbiological research, will be used to make the
transition from the intensively studied non-structured populations to deb-structured pop-
ulations. In a chemostat, food (substrate) is supplied at a constant rate to a population,
which is called a continuous culture. Food density in the inflowing medium is denoted by
Xr and the medium is flowing through the chemostat at throughput rate ḣ times the vol-
ume of the chemostat Vc. Together with the initial conditions (food and biomass density)
these controls determine the behaviour of the system, in particular the food (substrate)
density X0 and the biomass density X1 as functions of time. The index 0 in the notation
for food density is added for reasons of symmetry with X1: the biomass density of preda-
tors, i.e. the ratio of the sum of the individual masses and the volume of the chemostat,
Vc. So X1 =

∑N
i=1 MV i/Vc, if there are N individuals in the population. The reactor is

assumed to be spatially homogenous, and is called a ‘continuous flow stirred tank reactor’
by engineers.

The chemostat as a model can also be realistic for particular situations outdoors [282,
301]. An important difference between chemostat models and many population dynamic
models is that food (substrate) does not propagate in the formulation here, while expo-
nential or logistic growth is the standard assumption in most literature [377,489,539,604].
I do not follow this standard, however, because I want to stick to mass and energy bal-
ance equations in a strict way. The growth rate of food should, therefore, depend on its
resource levels, which should be modelled as well. In the section on food chains, {344},
higher trophic levels, X2, X3 · · · will be introduced, not lower ones.

Batch cultures, which do not have a supply of food other than that initially present,
are a special case of chemostat cultures, where ḣ = 0. I start with the Lotka–Volterra
model, which was and probably still is the standard prey–predator model in ecology. In a
sequence of related models, the effect of the stepwise introduction of biological detail that
leads to deb-structured populations will be studied.

Lotka–Volterra

The Lotka–Volterra model assumes that the predation frequency is proportional to the
encounter rate with prey (here substrate), on the basis of what is known as the law of mass
action, i.e. the product of the densities of prey and predator. It can be thought of as a
linear Taylor approximation of the hyperbolic functional response around food density 0:
f = (1+XK/X0)−1 ≃ X0/XK for X0 ≪ XK . The ingestion rate is taken to be proportional
to body volume, as is appropriate for V1-morphs, so that the sum of all ingestion rates
by individuals in the population is found by adding the volumes of all individuals and
applying the same proportionality constant.

The Lotka–Volterra model for chemostats with throughput rate ḣ is

d

dt
X0 = ḣXr − jXm

X0

XK

X1 − ḣX0 (9.5)

d

dt
X1 = Y jXm

X0

XK

X1 − ḣX1 (9.6)
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where Y stands for the yield factor, i.e. the conversion efficiency from prey to predator
biomass; this is taken to be constant here. This model does not account for maintenance
or energy reserves, so that in the context of the deb model we have Y = κµAX

µGV
, with

[ṗM ] = 0 and [Em] = 0. At the individual level, this model implicitly assumes that the
feeding rate is proportional to the volume of the individual. This aspect corresponds with
the V1-morph case of the deb model. The analysis of the population dynamics can best be
done with the dimensionless quantities τ ≡ tḣ, Xm ≡ jXm/ḣ, xr ≡ Xr/XK , x0 ≡ X0/XK ,
x1 ≡ X1/XK . These substitutions turn (9.5) and (9.6) into

d

dτ
x0 = xr − Xmx0x1 − x0 (9.7)

d

dτ
x1 = Y Xmx0x1 − x1 (9.8)

The equilibrium is found by solving x0 and x1 from d
dτ

x0 = d
dτ

x1 = 0. The positive
solutions are x∗

0 = (Y Xm)−1 and x∗
1 = Y xr − −1

Xm. The yield factor in this model has
a double interpretation. It stands for the efficiency of converting food into biomass at
both the individual and the population levels. To see this, one has to realize that food

influx is at rate ḣXKxr and food output is at rate ḣXKx∗
0 = ḣXK

Y Xm
at equilibrium. So total

food consumption is ḣXK(xr− 1
Y Xm

). Biomass output is ḣXKx∗
1 = ḣXK(Y xr− −1

Xm). The

conversion efficiency at the population level thus amounts to
ḣXK(Y xr−−1

Xm)

ḣXK(xr−(Y Xm)−1)
= Y . This is

so simple that it seems trivial. That this impression is false soon becomes obvious when we
introduce more elements of the deb machinery; the conversion efficiency at the population
level then behaves differently from that at the individual level for non-V1-morphs.

The linear Taylor approximation around the equilibrium of the coupled system (9.7)
and (9.8) equals for xT ≡ (x0, x1) and x∗T ≡ (x∗

0, x
∗
1)

d

dτ
x ≃

(

−Xmx1 − 1 −Xmx0

Y Xmx1 Y Xmx0 − 1

)

x=x∗

(x− x∗) (9.9)

≃
(

−Y Xmxr −Y −1

Y 2Xmxr − Y 0

)(

x0 − 1
Y Xm

x1 − Y (xr − 1
Y Xm

)

)

(9.10)

The eigenvalues of the matrix with coefficients, the Jacobian, are −1 and −Y Xmxr + 1,
so that this system does not oscillate. See Edelstein-Keshet [248], and Yodzis [1025]
for valuable introductions to this subject, and Hirsch and Smale [413], Ruelle [795],
and Arrowsmith and Place [31,32] for more advanced texts. Mathematical texts on non-
linear dynamics systems are now appearing at an overwhelming rate [65,232,352,445,917],
especially with a focus on ‘chaos’. Simple biological problems still seem too complex
to analyse analytically, however, and one has to rely on numerical analyses. Figure 9.2
compares the dynamics of the Lotka–Volterra model with other simplifications of the deb
model.

Although this model cannot produce oscillations, with a minor change it can, by feeding
the outflowing food (substrate) back into the bio-reactor. This is technically a simple
operation. Most microbiologists even neglect the small outflow in open systems in their
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Lotka–Volterra Monod

0 x∗
0 x0

0

x∗
1

x1

0 x∗
0 x0

0

x∗
1

x1

Marr–Pirt Droop

0 x∗
0 x0

0

x∗
1

x1

0 x∗
0 x0

0

x∗
1

x1

deb

0 x∗
0 x0

0

x∗
1

x1 Equilibrium values for x0 and x1

and parameters

model x∗
0 x∗

1 xr Yg Xm g ld

Lotka 0.39 8.17 10 0.85 3 - -
Monod 0.65 7.95 10 0.85 3 - -
Marr 0.97 6.12 10 0.85 3 - 0.1
Droop 1.82 4.23 10 0.85 3 1 -
deb 4.25 2.37 10 0.85 3 1 0.1

Figure 9.2: The direction fields and isoclines for the deb model for V1-morphs in a chemostat
with reserves at equilibrium, and the various simplifications of this model. The lengths and
directions of the line segments indicate the change in scaled food density x0 and scaled biovolume
x1. The isoclines represent x0, x1-values where d

dτ x0 = 0 or d
dτ x1 = 0. All parameters and

variables are made dimensionless, as indicated in the text. Figure 9.4 gives the direction field
when the reserves are not in equilibrium.
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mass balances. The situation is covered by deleting the third term in (9.7), i.e. −x0.

The eigenvalues of the Jacobian then become −1
2
Y Xmxr± 1

2

√

(Y Xmxr)2 − 4Y Xmxr. For
Y Xmxr < 4, the eigenvalues are complex, thus the system is oscillatory.

Monod, Marr–Pirt and Droop

If the hyperbolic functional response is used in the Lotka–Volterra model, rather than the
linear Taylor approximation, we arrive with some reconstructions of the original formula-
tions at the well-known model of Monod. Marr et al. [592] and Pirt [716] extended this
model to account for maintenance, while Droop [234,236] extended it in another way to
account for (nutrient) reserves. Maintenance or reserves have been introduced directly at
the population level, however, which presents the problem of reconstructing the implicit
assumptions at the individual level. This problem can most easily be solved with the deb
model for V1-morphs.

The energy reserve density follows the functional response according to a first-order
process; see (3.14). So, if e1 and e2 denote the scaled energy density of two particular
individuals, the difference decays exponentially with a relaxation time of k̇−1

E , because
d
dt

(e1 − e2) = −k̇E(e1 − e2). Even if substrate density changes so rapidly that the energy
reserve density is not at its equilibrium, and even if the initial energy densities of the
individuals differ, the energy reserve densities of all individuals soon follow the same time-
curve. It follows that d

dt
X1 ∝

∑

i
d
dt

Mi ∝ d
dt

∑

i Mi. So the change of the sum of the
masses equals the sum of the changes of each mass, which are simple functions of volumes
in the deb model for V1-morphs; see (3.38). The structured population of V1-morphs
collapses to a non-structured one. In order to compare its dynamics with classic models, I
now assume that the specific energy conductance is large enough with respect to changes of
food density, d

dt
ln X0 ≪ k̇E, meaning that the energy reserves are close to their equilibrium

value e = f . This condition will be removed in the subsection on deb V1-morphs on {320}.
The result is now that reconstructions of the models of Marr–Pirt, Droop and Monod are
special cases of the deb model for V1-morphs. It reads

d

dτ
x0 = xr − Xmfx1 − x0 (9.11)

d

dτ
x1 = Y Xmfx1 − x1 (9.12)

with f = (1+x−1
0 )−1. The yield factor Y is only constant in the Monod model. The growth

dynamics for V1-morphs, (3.38), can be used to show that the conversion efficiency equals

[ṗM ]
[Em]

0 6= 0 0 6= 0

Monod Marr–Pirt Monod Marr–Pirt

0 κµAX

µGV
κµAX

µGV

f−ld
f

Yg Yg
f−ld

f

Droop deb for V1s. Droop deb for V1s.

6= 0 κµAX

µGV

g
f+g

κµAX

µGV

g
f

f−ld
f+g

Yg
g

f+g
Yg

g
f

f−ld
f+g
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In the microbiological literature, Yg is known as the ‘true’ yield, i.e. the yield excluding
maintenance losses. In the Lotka–Volterra and the Monod model, the (actual) yield equals
the ‘true’ yield, Y = Yg, but in the Marr–Pirt, Droop and deb models we find that Y < Yg

and that Y is a function of food density, while Yg is a constant. The conversion from food
into biomass cannot be constant for models allowing for maintenance; this is obvious if one
realizes that maintenance has priority over growth. So if feeding conditions are poor, a
larger fraction of the available energy is spent on maintenance, compared with good feeding
conditions.

The biologically interesting equilibrium values x∗
0 and x∗

1 can easily be obtained from
(9.11) and (9.12), but the result is line filling. The linear Taylor approximation in the
equilibrium for the Monod case is:

d

dτ
x ≃







−xr+x∗2
0

x∗
0+x∗2

0
− 1

Yg

xr−x∗
0

Xmx∗2
0

0





 (x− x∗) (9.13)

The eigenvalues of the Jacobian are −1 and − 1
YgXm

(xr − 1
YgXm−1

)(YgXm − 1)2, so the

system does not oscillate. The linear Taylor approximation of the functional response is
accurate for small equilibrium values of food density, and thus a high value for YgXm,
which means that the Monod and the Lotka–Volterra models for the chemostat are very
similar. The Monod model has less tendency to oscillate than the Lotka–Volterra model.
This becomes visible if the substrate is fed back to the bio-reactor. (Thus we omit the
term −x0 in (9.11).) Contrary to the Lotka–Volterra model, the eigenvalues of the Jacobian
cannot become complex, so the system cannot oscillate.

Figure 9.2 gives the direction fields of the various simplifications of the deb model
and Figure 9.4 gives the direction field of the deb model for V1-morphs in which energy
reserves are allowed to deviate from their equilibrium values. The functional response in
the equilibrium of the Monod model is only 0.4, for the chosen parameter values, which
results in a close similarity with the Lotka–Volterra model. The direction fields of the
Marr–Pirt and Droop models are rather similar, so the effects of introducting maintenance
and reserves are more or less the same. When introduced simultaneously, as in the deb
model, the effect is enhanced. Note that the isocline d

dτ
x0 = 0 hits the axis x1 = 0 at

x0 = xr, which is just outside the frame of the picture for the deb model, but far outside
for the Lotka–Volterra model. For very small initial values for x0 and x1, the direction
fields show that x0 will first increase very rapidly to xr, without a significant increase of
x1, then the d

dt
x0 = 0-isocline is crossed and the equilibrium value x∗

0, x
∗
1 is approached

with strongly decreasing speed. This means that x0 falls back to a very small value for
Lotka’s model, but much less so for the deb model. The most obvious difference between
the models is in the equilibrium values, where x∗

1 ≫ x∗
0 in Lotka’s model, but the reverse

holds in the deb model. The other models take an intermediate position. The approach of
x0, x1 to the equilibrium value closely follows the d

dt
x0 = 0-isocline if x1 > x∗

1 in all models.
The speed in the neighbourhood of the isocline is much less than further away from the
isocline, and the differences in speed are larger for Lotka’s model than for the deb model.
These extreme differences in speed mean that the numerical integration of this type of
differential equations needs special attention.
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Death

The usefulness of the chemostat in microbiological research lies mainly in the continuous
production of cells that are in a particular physiological state. This state depends on the
dilution rate. In equilibrium situations, this rate is usually equated to the population
growth rate. The implicit assumption being made is that cell death plays a minor role. As
long as the dilution rate is high, this assumption is probably realistic, but if the dilution
rate is low, its realism is doubtful. Low dilution rates go with low substrate densities and
long inter-division intervals. In the section on aging {139}, the hazard rate for V1-morphs
is tied to the respiration rate and so, indirectly, to substrate densities in (4.23). The law
of large numbers states that the hazard rate can be interpreted as a mean (deterministic)
death rate for large populations. The dynamics for the dead biovolume, x† reads

d

dt
x† = ḣax1 − ḣx† (9.14)

with ḣa denoting the hazard rate. It can easily be seen that, in the equilibrium, we

must have that ḣx∗
† = ḣax

∗
1, so the fraction of dead biovolume equals

x∗
†

x∗
1+x∗

†

= ḣa

ḣ+ḣa
. The

dynamics of the biomass should account for this loss, thus

d

dt
x1 = Y jXmfx1 − (ḣ + ḣa)x1 (9.15)

Substitution of the expression for the hazard rate and the yield and the condition d
dt

x1 = 0

leads to the equilibrium value for f : g(k̇M +ḣ)

k̇E−ḣ−ḣa(1+g)
. Back-substitution into the hazard rate

and the yield finally results in

x∗
†

x∗
1 + x∗

†

=
k̇M + ḣ

k̇M + (k̇M + ṙ◦m)ḣ/ḣa

(9.16)

where ṙ◦m = k̇E−k̇Mg
1+g

is the gross maximum population growth rate. (The net maximum

population growth rate is ṙm = ṙ◦m − ḣa and ḣ ≤ ḣm ≤ ṙm ≤ ṙ◦m. The maximum through-

put rate is ḣm = k̇E−ḣa(1+g)−gk̇M (1+XK/Xr)
1+g(1+XK/Xr)

. Since most microbiological literature does not
account for death, and saturation coefficients are usually small, these different maximum
rates are usually not distinguished. The concept ‘population growth rate’ is introduced
on {323}.) Figure 9.3 illustrates how the dead fraction depends on the population growth
rate.

The significance of the fraction of dead cells is not only of academic interest. Since it
is practically impossible to distinguish the living from the dead, it can be used to ‘correct’
the measured biomass for the dead fraction to obtain the living biomass.

In the section on aging, {139}, I speculate that prokaryotes might not die instanta-
neously, but first switch to a physiological state called ‘stringent response’. The fraction
(9.16) can then be interpreted as the fraction of individuals that is in the stringent re-
sponse. A typical difference between both types of cells is the intracellular concentration
of Guanosine 4-phosphate (ppGpp), which is usually expressed per gram of total biomass.
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Figure 9.3: The fraction of dead cells depends
hyperbolically on the population growth rate,
and increases sharply for decreasing population
growth rates. The three curves correspond with
k̇M/ṙm = 0.05, ḣa/ṙm = 0.01 (lower), k̇M/ṙm =
0.1, ḣa/ṙm = 0.01 (middle) and k̇M/ṙm = 0.05,
ḣa/ṙm = 0.1 (upper curve). For high growth
rates, the dead fraction is close to ḣa/ṙm, which
will be very small in practice. The curves make
it clear that experimental conditions are ex-
tremely hard to standardize at low growth rates.
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Figure 9.4: Stereo view of the direction field and isoclines for the deb model for V1-morphs in a
chemostat. The parameter values are the same as in Figure 9.2 and the projection of this direction
field on the x, y-plane reduces to the direction field given in Figure 9.2, where the reserves are set
at equilibrium.

This quantification implicitly assumes that all cells in the population behave in the same
way physiologically, and not that the population can be partitioned into cells that are in the
stringent response and those that are not. It remains to be determined which presentation
is the more realistic.

Reserves and expo-logistic growth

The full deb model for V1-morphs in chemostats is in need of an auxiliary equation for
energy reserves, which amounts to the following three coupled equations

d

dτ
x0 = xr − Xmfx1 − x0 (9.17)

d

dτ
e = YgXmg(f − e) (9.18)

d

dτ
x1 = YgXmg

e− ld
e + g

x1 − x1 − ha
1 + g

e + g
ex1 (9.19)
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Figure 9.5: The potassium-limited
growth of E. coli at 30 ◦C. Data
from Mulder [646]. The expo-
logistic growth is fully from re-
serves when potassium is depleted
from the environment. Parameters
for biomass in dimensionless extinc-
tion units: initial potassium con-
centration X0(0) = 0.825 mM, ini-
tial biomass x1(0) = 0.657, max-
imum specific uptake rate jXm =
0.125 mM h−1, investment ratio g =
0.426, reserve turnover k̇E = 0.925
h−1.

These coupled equations can be reduced to one integro-differential equation by integration
of d

dτ
e and d

dτ
x1, and substitution of the results into the differential equation for x0. This

is of little help, however, because this equation also has to be solved numerically.
The direction field of this model is given in Figure 9.4. Mortality is excluded, ḣa = 0,

to facilitate comparison with the situation where reserves are in equilibrium; see Figure
9.2.

A special case of conceptual interest can be solved analytically. This case relates to
batch cultures, where no input or output (of substrate or biomass) exists, and the biomass
just develops on the substrate that is present at the start of the experiment. If the satura-
tion coefficient, the maintenance costs and aging rate are small, deb V1-morphs will grow
in a pattern that might be called expo-logistic. Initially they will grow exponentially and
after a certain time (which corresponds to the depletion of the substrate) they switch to
logistic growth, depleting their reserves. The biomass–time curve is smooth, even at the
transition from one mode of growth to the other.

Worked out quantitatively, we get the following results. The functional response f is
initially 1, since XK is small with respect to X0. If the inoculum is from a culture that
has not suffered from substrate depletion, we have e = 1 and X1(t) = X1(0) exp{ṙmt},
so the population growth rate is maximal, i.e. ṙm = (k̇E − k̇Mg)(1 + g)−1. The substrate
concentration develops as X0(t) = X0(0) − ∫ t

0 jXmX1(t1) dt1. It becomes depleted at t0,
say, where X0(t0) = 0. Substitution gives

X0(t) = X0(0)(exp{ṙmt0} − exp{ṙmt})(exp{ṙmt0} − 1)−1

where depletion occurs at time t0 = 1
ṙm

ln
{

1 + X0(0)
X1(0)

ṙm

jXm

}

. The reserves then decrease

exponentially, i.e. e(t0 + t) = exp{−k̇Et}. The biovolume thus behaves as X1(t0 + t) =

X1(t0) exp
{

∫ t
0

k̇Ee(t0+t1)−k̇Mg
e(t0+t1)+g

dt1

}

. For small maintenance costs, k̇M → 0, this reduces to

X1(t0 + t) = X1(t0) 1+g

exp{−k̇Et}+g
. This is the solution of the well-known logistic growth

equation d
dt

X1 = k̇E

(

1− X1(t)
X1(0)

g
1+g

)

X1, see Figure 9.5. The equation originates from Pearl
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[695] in 1927. If the maintenance costs are not negligibly small, the integral for X1(t) has to
be evaluated numerically. Biomass will first rise to a maximum and then collapse at a rate
that depends on the maintenance costs. This behaviour offers the possibility to determine
these costs experimentally. The quantitative evaluation can easily be extended to include
fed-batch cultures for instance, which have food (substrate) input and no output of food
or biomass, but this does involve numerical work.

Similar biovolume–time curves can also arise if the reserve capacity rather than the
saturation coefficient is small. If maintenance and aging are negligible as before, the batch
culture can be described by d

dt
X0 = −jXmfX1 and d

dt
X1 = YgjXmfX1. We must also have

X1(t) = X1(0) + Yg(X0(0)−X0(t)). Substitution and separation of variables gives

jXmYgt =
XKYg

X1(∞)
ln

X1(t)(X1(∞)−X1(0))

X1(0)(X1(∞)−X1(t))
+

1

2
ln

X1(t)

X1(0)

Although this expression looks very different from the corresponding one for small
saturation coefficients, the numerical values are practically indistinguishable, as shown in
Figure 9.6, where both population growth curves have been fitted to data on Salmonella.
The only way to distinguish a difference is in the simultaneous fit for both biomass and
substrate. This illustrates the rather fundamental problem of model identification for
populations, even in such a simple case as this with only four free parameters. (To reduce
the number of free parameters, maintenance and aging were taken to be negligible for both
special cases.) Although Salmonella is a rod-shaped bacterium, it is treated here as a V1-
morph because of its small aspect ratio; full treatment of rods is much more complicated,
as shown later in this chapter. The conclusion to be drawn is that these data are not very
informative and models for individual dynamics are soon too complicated to be of much
help with the interpretation.

If other information is available to allow a choice between various possibilities, such as
in the case of very efficient histidine uptake by deficient Salmonella strains, cf. {214}, the
growth of batch cultures can be used to estimate the reserve capacity. This has been done
in Figure 9.7 to illustrate that under particular circumstances, the deb model implies mass
fluxes, as discussed in more detail on {125}.

9.2.2 Structured populations

It is not my intention to review the rapidly growing literature on structured population
dynamics, but, for those who are unfamiliar with the topic, some basic notions are intro-
duced below to help develop intuition. See Heijmans [388], Metz and Diekmann [622],
 Lomnicki [566], Ebenman and Persson [246], DeAngelis and Gross [202], Tuljapurkar
and Caswell [934], Gurney and Nisbet [355], and Cushing [189] for reviews of recent
developments.

In unstructured models, all individuals are treated as identical, so their state (the
i-state) is degenerated, and the population state (the p-state) is simply the number of
individuals. This is different in structured models, where a population exists of individuals
that differ in their i-state, and the p-state is defined as the frequency distribution of the
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Figure 9.6: A batch culture of Salmonella ty-

phimurium strain TA98 at 37 ◦C in Vogel and Bon-
ner medium with glucose, (excess) histidine and bi-
otin added. Two models have been fitted and plot-
ted: one assumes that the saturation coefficient is
negligibly small, but the reserves capacity is sub-
stantial, while the other does the opposite. Only
the substrate density will tell the difference (stip-
pled curves), but this is not measured. Parame-
ters: k̇E = 18.6 (sd 0.37) d−1, g = 0.355 (sd 0.063),
x0(0)/jXm = 0.020 (sd 0.0036) d or x1(∞) = 1.28
(sd 0.02), Y xK = 1.31 (sd 0.86), Y jXm = 23.6 (sd
11.5). time, d
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Figure 9.7: Batch cultures of a histidine-deficient
strain of S. typhimurium, with initially only 0, 0.5,
1 or 5 µg histidine ml−1 in the medium, stop grow-
ing because of histidine depletion. The fit is based
on the assumption of negligible maintenance re-
quirements for histidine, which implies that the ex-
tinction plateau is a linear function of the added
amount of histidine. The parameters are jXm = 8
(sd 0.44) µg His ml−1 h−1, k̇E = 5.3 (sd 1.2) h−1

and g = 7.958 (sd 0.00205). One extinction unit
corresponds with 7.56× 108 cellsml−1, so that the

yield is Yg = k̇E
jXmg = 0.0834 ml µg His−1. This cor-

responds with 1.1× 10−10g His cell−1 = 3.15× 105

molecules His cell−1 with a maximum of 4 × 104

molecules histidine in the reserve pool. time, d
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individuals over the i-state. Individuals with almost identical i-states are thus taken to-
gether in a cohort, and counted. I first consider a one-dimensional i-state (age), to illustrate
the concept p-state. The significance of this particular i-state is that a multi-dimensional
i-state can always be reduced to this one if the environment is constant (including food
density).

Stable age distributions

If food density is constant or high (with respect to the saturation coefficient), the distri-
bution of individual states in the population, such as age and volume, stabilizes, while the
numbers grow exponentially. This distribution can be evaluated in a relatively simple way,
which makes it possible to evaluate statistics such as the mean volume and its variance,
mean life span, etc. Situations may occur where the individual states change cyclically, so
that such a stable distribution does not exist. The distribution of individual states has a
limited practical value, because it only holds at prolonged constant food densities. How
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long food density must remain constant for state distributions to stabilize is hard to tell
in specific cases and impossible in general. The main value of stable distributions lies in
finding practical approximations for the behaviour of population models based on individ-
uals. The derivation of stable state distributions is easiest when looking at the stable age
distribution, which I will explain briefly. More extensive treatment is given by Frauenthal
[295].

Let φN(a, t) da denote the number of females at time t aged somewhere in the interval
(a, a + da), where da is an infinitesimally small time increment. The total number of
individuals is thus N(t) =

∫∞
0 φN(a, t) da. Individuals that have age a at t must have been

born at t−a and must be still alive to be counted in N , so we have the recursive relationship
φN(a, t) = φN(0, t − a) Pr{a† > a}, where φN(0, t) da denotes the number of births in

(t, t+da). The birth rate relates to the reproduction rate as φN(0, t) =
∫∞
0 φN(a, t)Ṙ(a) da,

where Ṙ(a) is the reproduction rate of an individual of age a. If we substitute the birth
rate into the recursive relationship, we arrive at the integral equation

φN(0, t) =
∫ ∞

0
φN(0, t− a) Pr{a† > a}Ṙ(a) da (9.20)

Rather than specifying the number of births before the start of the observations at t = 0,
we specify the founder population φN(a, 0) = φ0(a) and write

φN(0, t− a) = φ0(a− t)/ Pr{a† > a− t} for a > t

The integral in (9.20) can now be partitioned and gives what is known as the renewal
equation

φN(0, t) =
∫ t

0
φN(0, t−a) Pr{a† > a}Ṙ(a) da+

∫ ∞

t

Pr{a† > a}
Pr{a† > a− t}φ0(a−t)Ṙ(a) da (9.21)

The second term thus relates to the contribution of the individuals that were present in
the founder population. Depending on the survival probability and age-dependent repro-
duction rate, its importance decreases with time. Suppose that it is negligibly small at
some time t1 and that the solution of (9.21) is of the form φN(0, t) = φN(0, 0) exp{ṙt}, for
some value of ṙ and φN(0, 0). Substitution into (9.21) gives for t > t1

φN(0, 0) exp{ṙt} =
∫ t1

0
φN(0, 0) exp{ṙ(t− a)}Pr{a† > a}Ṙ(a) da or (9.22)

1 =
∫ t1

0
exp{−ṙa}Pr{a† > a}Ṙ(a) da (9.23)

The latter equation is known as the characteristic equation. It is possible to show that,
under some smoothness restrictions on reproduction as a function of age, this equation has
exactly one real root for the population growth rate ṙ1. The other roots are complex and
have a real part smaller than |ṙ1|. The general solution for φN(0, t) is a linear combina-
tion

∑

i φi(0, 0) exp{ṙit}. For large t, the exponential exp{ṙ1t} will be dominant, so the
asymptotic solution will be φN1(0, 0) exp{ṙ1t}; because the other roots are of little practi-
cal interest, the index will be dropped and ṙ is thus taken to be the dominant root. The
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Figure 9.8: The mean volume of E. coli

as a function of population growth rate at
37 ◦C. Data from Trueba [933]. For a cho-
sen aspect ratio δ = 0.28, a maintenance
rate coefficient k̇M = 0.05 h−1 and an in-
vestment ratio g = 1, the least-squares
estimates (with sd) of the volume at the
start of dna replication is Vp = 0.454 (sd
0.069) µm3, the time required for division
is tD = 1.03 (sd 0.081) h and the energy
conductance v̇ = 31.3 (sd 32) µm h−1. pop. growth rate, h−1
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smoothness restrictions on Ṙ(a) are violated if, for instance, reproduction is only possible
at certain ages. In this case, the information about the age distribution of the founder
population is not lost.

The stable age distribution – i.e. the distribution of the ages of a randomly taken
individual, a – is defined by φa(a) da ≡ φN(a, t) da/N(t) for t → ∞. As before, we have
for large t

φN(a, t) = φN(0, t− a) Pr{a† > a} = φN(0, 0) exp{ṙ(t− a)}Pr{a† > a}

As N(t) ≡ ∫∞
0 φN(a, t) da serves only to normalize the distribution, we get the simple

relationship between the age distribution and the survivor probability of the individuals

φa(a) =
exp{−ṙa}Pr{a† > a}

∫∞
0 exp{−ṙa1}Pr{a† > a1} da1

(9.24)

Note that a is defined for the population level, while a† is the age at which a particular
individual dies, so it is defined for the individual level. For a stable age distribution, the
adage ‘older and older, rarer and rarer’ always holds. The mean age in the population is
thus

Ea =
∫ ∞

0
aφa(a) da =

∫∞
0 a exp{−ṙa}Pr{a† > a} da
∫∞

0 exp{−ṙa}Pr{a† > a} da
(9.25)

Stable size distributions

Volume distribution is intimately related with the growth of dividing individuals, as has
been widely recognized [167,216,375,593,956]. It can most easily be expressed in terms of
its survivor function. If death plays a minor role, (9.24) gives the stable age distribution
for Pr{a† > a} = (a < ad) with ad = ṙ−1 ln 2. For dividing individuals aged between 0 and
ad, the stable age distribution is given by φa(a) da = 2ṙ exp{−ṙa} da = 2 ln 2

ad
2−a/ad da. For

reproducing immortal individuals, the stable age distribution is φa(a) da = ṙ exp{−ṙa} da.
The expected value of scaled length to the power i amounts to E li =

∫

φa(a)l(a)i da.
The mean length increases less steeply with increasing substrate density or ṙ than

length at division, because the mean age reduces. Figure 9.8 shows that the mean volume
of rods depends on population growth rate in the predicted way.
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The survivor function of the stable age distribution is thus: Pr{a > a} ≡ ∫ ad
a φa(a1) da1 =

(a < ṙ−1 ln 2)(2 exp{−ṙa} − 1). The stable age distribution only exists at constant food
densities, where volume increases if age increases. It was first derived by L. Euler in the
eighteenth century [500]. The remarks on the need for scatter for stability of age distribu-
tions also apply to size distributions. See Diekmann et al. [214,215] for a more technical
discussion.

If growth is deterministic and division occurs at a fixed size and the baby cells are of
equal size, no stable age distribution exists. If there is some scatter in size at division, a
stable age distribution exists, unless growth is exponential [66], because the information
about the age distribution of the founder populations never gets lost. If sisters are not
exactly the same size, a stable age distribution exists, even if growth is exponential. The
age distribution has a weaker status, that of an eigenfunction: if the founder population
has this particular age distribution, the age distribution will not change, while all other age
distributions for the founder population will change cyclically with period ad. In practice,
however, scatter in growth rate and the size of baby cells will be more than sufficient for
a rapid convergence to the stable age distribution.

The survivor function of the stable volume distribution is

Pr{V > V } = Pr{a > t(V )} = 2 exp{−ṙt(V )} − 1 for V ∈ (Vd/2, Vd]

where t(V ) is the age at which volume V is reached. The probability density is thus

φV (V ) dV = (V ≥ Vd/2)(V ≤ Vd)2ṙ exp{−ṙt(V )} dt (9.26)

For isomorphs, t(V ) is given in (3.21). Since scaled length, l, has a monotonous relationship
with volume; we have Pr{l > l} = Pr{V > V }. The survivor function of the stable length
distribution for isomorphs that divide at scaled length ld becomes

Pr{l > l} = 2
1+ln f−l

f−lb
/ ln

f−lb
f−ld − 1 (9.27)

The same can be done for rods, which leads to

Pr{l > l} = 2
ln

1−ld/f

(1−ld/f−δ/3)(l/ld)3+δ/3
/ ln

2(1−ld/f)

1−ld/f+δ/3 − 1 (9.28)

and for V1-morphs
Pr{l > l} = (l1/l)

3 − 1 (9.29)

These relationships can be important for testing assumptions about the growth process
using the stable length distribution. Actual stable length distributions reveal that the
scaled length at division, ld, is not identical for all individuals, but has some scatter, which
is close to a normal distribution [501]. It is assumed that the size-age curve does not
depend on the size of the baby cell. As soon as a small baby cell has grown to the size of a
larger baby cell, the rest of their growth curves are indistinguishable. Let φV b

denote the
probability density of the number of baby cells of volume V , i.e. cells of an age less than
an arbitrarily small period ∆t, and φV d

the probability density of the number of mother
cells of volume V , i.e. cells which will divide within the period ∆t. A practical way to
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determine φV b
(V ) dV and φV d

(V ) dV empirically is to make photographs at t and t + ∆t
of the same group of cells and select cells that are divided at t + ∆t, but not at t. The
photograph at t can be used to obtain φV d

(V ) dV and that at t + ∆t to obtain φV b
(V ) dV .

When N denotes the total number of cells in the population, the number of cells with a
volume in the interval (V, V + dV ) is NφV (V ) dV . Painter and Marr [685] argued that
the change in this number is given by

d

dt
NφV = 2

d

dt
NφV b

− d

dt
NφV d

−N
∂

∂V

(

φV
dV

dt

)

(9.30)

The first term stands for the increase caused by birth, the second one for loss attributed to
division and the third term for loss due to growth. Since the stable volume distributions
do not depend on time and d

dt
N = ṙN , some rearrangement of terms gives

∂

∂V

(

φV
dV

dt

)

= ṙ
(

2φV b
− φV d

− φV

)

This is a linear inhomogeneous differential equation in φV (V ), with solution

φV (V ) =
dt

dV
ṙ exp{−ṙt(V )}

∫ V

Vmin

exp{ṙt(V1)}(2φV b
(V1)− φV d

(V1)) dV1 (9.31)

where Vmin is the smallest possible cell volume and, since φV (Vmax) = 0, ṙ satisfies [956]

∫ Vmax

Vmin

exp{ṙt(V1)}(2φV b
(V1)− φV d

(V1)) dV1 = 0 (9.32)

The connection with the previous deterministic rules for division can be made as follows.
When mother cells divide into two equally sized baby cells, we have φV b

(V ) = 2φV d
(2V ).

So, φV b
(V ) dV = (V = Vd/2) and φV d

(V ) dV = (V = Vd) when division always occurs at
Vd. Substitution into (9.31) gives (9.26) and into (9.32) gives t−1

d ln 2, as before. When
division always occurs at Vd, so φV d

(V ) dV = (V = Vd), and the sizes of the baby cells are
Va and Vp, we have φV b

(V ) dV = (V = Va)/2 + (V = Vp)/2 with Va + Vp = Vd and Va < Vp.
Substitution into (9.31) gives

φV (V ) dV = (V ≥ Va)(V ≤ Vd)ṙ exp{ṙ(t(Va) + t(Vp)(V ≥ Vp)− t(V ))} dt

and substitution into (9.32) gives 1 = exp{−ṙtda}+ exp{−ṙtdp}.
Figure 9.9 gives the stable length distribution for Escherichia coli, together with the

model fit with a log-normal distribution for the length at division. Since the curves ap-
proach the x-axis very closely for large cell lengths, the approximation ṙ = t−1

d ln 2 is
appropriate. Although the goodness of fit is quite acceptable and only three parameters
occur, the one relating to the growth process, V∞, is not well fixed by the data. Again, the
conclusion must be that this population response is consistent with what can be deduced
from the individual level, but that the population behaviour gives poor access to that of
individuals.
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Figure 9.9: The probability density of the length of E. coli B/r A (left) and K (right) at a
population growth rate of 0.38 and 0.42 h−1 respectively at 37 ◦C. Data from Koppes et al. [527].
For an aspect ratio of δ = 0.3, the three parameters are Vd = 0.506 µm3, V∞ = −0.001 µm3 and
σ2 = 0.026 and Vd = 2.324 µm3, V∞ = −1 µm3 and σ2 = 0.044. Because of the relatively large
variance of the volume at division, these frequency distributions give poor access to the single
parameter that relates to the growth process V∞.

Reproducing neonates

There is no way to prevent neonates from giving rise to new neonates in unstructured
populations. This artefact of the formulation can dominate population dynamics at lower
growth rates. Comparison with a simple age-structured population, in which individuals
reproduce at a constant rate after a certain age ap, can illustrate this.

In a constant environment, any population grows exponentially given time, structured
as well as non-structured. (Real populations will not do so because the environment will
soon change because of food depletion.) Let N(t) denote the number of individuals at time
t. The numbers follow N(t) = N(0) exp{ṙt}, where the population growth rate ṙ is found
from the characteristic equation

1 =
∫ ∞

0
Pr{a† > a}Ṙ(a) exp{−ṙa} da (9.33)

Suppose that death plays a minor role, so Pr{a† > a} ≃ 1, and that reproduction is

constant after age ap, so Ṙ(a) = (a > ap)Ṙ, where, with some abuse of notation, Ṙ in the
right argument is taken to be a constant. Substitution into (9.33) gives

exp{−ṙap} = ṙ/Ṙ (9.34)

This equation ties the population growth rate ṙ to the length of the juvenile period and
the reproduction rate. It has to be evaluated numerically. For unstructured populations,
where ap = 0 must hold, the population growth rate equals the reproduction rate, ṙ = Ṙ.
For increasing ap, ṙ falls sharply; see Figure 9.10. This means that neonates giving birth
to new neonates contribute significantly to unstructured populations.
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Figure 9.10: For a constant reproduction rate
Ṙ in the adult state, the population growth rate
depends sensitively on the length of the juve-
nile period, as shown in the upper curve. The
unit of time is Ṙ−1 and mortality is assumed
to be negligible. The lower curve also accounts
for the fact that individuals are discrete units
of biomass. The required accumulation of re-
productive effort to produce such discrete units
reduces the population growth rate even further,
especially for short juvenile periods. Note that
the effect of food availability is not shown in this
figure, because it only affects the chosen unit of
time. scaled juvenile period apṘ
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Discrete individuals

The formulation of the reproduction rate such as Ṙ(a) = (a > ap)Ṙ treats the number
of individuals as a continuous variable. Obviously, this is unrealistic, because individuals
are discrete units. It would be more appropriate to gradually fill a buffer with energy
allocated to reproduction and convert it to a new individual as soon as enough energy has
been accumulated. In that case, the reproduction rate becomes Ṙ(a) = (a = ap + i/Ṙ)/da,
for i = 1, 2, · · ·. It is zero almost everywhere, but at regular time intervals it switches to
∞ over an infinitesimally small time interval da, such that the mean reproduction rate as
an adult over a long period is Ṙ as before. Giving death a minor role, the characteristic
equation becomes

1 =
∞
∑

i=1

exp{−ṙ(ap + i/Ṙ)} = exp{−ṙ/Ṙ− ṙap}
(

1− exp{−ṙ/Ṙ}
)−1

(9.35)

In analogy with (9.34) this can be re-written as

exp{−ṙap} = exp{ṙ/Ṙ} − 1 (9.36)

to reveal the effect of individuals being discrete units rather than continuous flows of
biomass; see Figure 9.10. The effect is most extreme for ap = 0, where ṙ = Ṙ ln 2, which is
a fraction of some 0.7 of the continuous biomass case. If young are not produced one by one,
but in a litter, which requires longer accumulation times of energy, the discreteness effect
is much larger. For a litter size n and a reproduction rate of Ṙ(a) = (a = ap + in/Ṙ)n/da,
the population growth rate is n−1 ln{1 + n} times the one for continuous biomass with the
same mean reproduction rate and negligibly short juvenile period.

The effect of the discrete character of individuals is felt most strongly at low reproduc-
tion rates. Since populations tend to grow rapidly in situations where reproduction reduces
sharply because of food limitation, this problem is rather fundamental. Reproduction, i.e.
the conversion of the energy buffer into offspring, is usually triggered by independent fac-
tors (a two-day moulting cycle in daphnids, seasonal cycles in many other animals). If
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reproduction is low, details of buffer handling become dominant for population dynamics.
Energy that is not sufficient for conversion into the last young dominates population dy-
namics. Whether it gets lost or remains available for the next litter makes quite a difference
and, unfortunately, we know little about what exactly does happen.

Population growth rates and division intervals

The relationship between the population growth rate and division interval can be obtained
as follows. When the substrate density is constant for a sufficiently long period and death
has little effect, the population of dividing individuals will grow exponentially at rate
ṙ = a−1

d ln 2, where the division interval ad tends to some fixed value at constant food
densities. This relationship, which is well known in microbiology, is obvious if one realizes
that, starting from a single, just divided, individual in an environment that has not changed
over a long period, the development of the population in terms of cell numbers is given
by N(t) = 2t/ad = exp{ṙt} if the observations are done at t = 0, ad, 2ad, · · ·. Strictly,
the development of cell numbers in continuous time is a step function. If we start from a
large population rather than a single individual, the cell numbers will be close to N(t) =
N(0)2t/ad = N(0) exp{ṙt}, but not exactly so, because of the deterministic nature of the
growth and division process. This preserves information about the age distribution of
the founder population, as explained on {325}. In practice more than enough scatter is
found in almost all aspects of the growth and division process. We can, therefore, assume
for practical purposes that information about the founder population rapidly fades, even
without formulating these stochastic processes explicitly.

The relationship between population growth rate and the division interval can also
be obtained from a formulation that allows for the production of neonates by letting the
mother cell disappear at the moment of division, when two baby cells appear. Thus we
write Pr{a† > a} = (a ≤ ad) and Ṙ(a) da = 2(a = ad). Substitution into the characteristic
equation (9.33) gives 1 = 2 exp{−ṙad}.

The division interval ad is given in (3.21), (3.40) or (3.43). Substitution gives the
expressions for the population growth rates at constant substrate densities and for their
relative values with respect to the maximum population growth rates, which are collected
in Figure 9.11. The scaled length at division, ld, is a function of f , because of the fixed
period required to duplicate dna. It has to be solved numerically from (3.54), but, for
most practical purposes, it can probably be treated as a constant. For small aspect ratios,
δ, the expressions for rods reduce to that for V1-morphs, while for an aspect ratio of
δ = 0.6 rods resemble isomorphs. The table in Figure 9.11 therefore illustrates how the
population growth rate of dividing deb isomorphs reduces stepwise to well known classic
models. It also illustrates why many microbiologists do not like models that explicitly deal
with substrate density; the saturation coefficient for uptake is usually very small for most
combinations of micro-organisms and substrate types, and the saturation coefficient for
population growth is even smaller, so that problems arise in measuring such low densities.
Natural populations of micro-organisms tend either to grow at the maximum rate, or not
to grow at all. This on/off behaviour is a major obstacle in the analysis of population
dynamics.
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Figure 9.11: The population growth rate ṙ for dividing organisms as it simplifies when expressed
as a fraction of its maximum ṙm and small maintenance costs [ṗM ] and/or storage capacity [Em].
The last three rows in the ‘V1-morphs’ column correspond to the models by Marr–Pirt, Droop
and Monod. These models are graphically compared with the deb model for V1-morphs in the
figure below. The symbols l1 and V1 stand for ld and Vd for f = 1.
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ṙ
ṙm
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mum ṙm. The Marr–Pirt model, ṙ ∝ x−ld/(1−ld)

x+1 ,
which includes maintenance, has a translation
to the right. The Droop model, ṙ ∝ x
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ṙ/
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Figure 9.12: The population growth rate as a function of the concentration of substrate or
food. The left figure concerns the rod Klebsiella aerogenes feeding on glucose at 35 ◦C. Data
from Rutgers et al. [800]. The right figure concerns the isomorphic ciliate Colpidium campylum

feeding on suspensions of Enterobacter aerogenes at 20 ◦C. Data from Taylor [910]. The functions
are given in the table of Figure 9.11.

The population growth rate is plotted against the substrate concentration for the rods
Escherichia coli and Klebsiella aerogenes in Figures 7.30 and 9.12, and for the isomorph
Colpidium also in Figure 9.12. The curves closely resemble simple hyperbolic functions,
which indicates that they contain little information about some of the parameter values
of the individual-based deb model, particularly the energy investment ratio g. Since
the goodness of fit is quite acceptable, the modest conclusion can only be that these
population responses give little reason to change assumptions about the energy behaviour
of individuals. Figure 9.12 also illustrates that the scatter in population responses tends
to increase dramatically with body size.

If propagation is via eggs, the population growth rate in constant environments has to
be evaluated numerically from the characteristic equation (9.33).

Population structure

As long as food density remains constant and stable age distributions exist, it is possible
to study most phenomena analytically, as illustrated in the preceding sections. For many
purposes non-equilibrium situations should be considered, which requires computer simu-
lation studies. Two strategies can be used to follow population dynamics: the family-tree
method and the frequency method.

The family-tree method evaluates the changes of the state variables for each individual
in the population at each time increment. For this purpose, the individuals are collected
in a matrix, where each row represents an individual and each column the value of a
state variable. At each time increment rows can be added and/or deleted and at regular
time intervals population statistics, such as the total volume of individuals, are evaluated.
The amount of required computer time is thus roughly proportional to the number of
individuals in the population which must, therefore, be rather limited. This restricts the
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Figure 9.13: Computer simulation of a deb-
structured population of Daphnia magna, compared
to a real laboratory population at 20 ◦C with a sup-
ply of 5 × 107 cells Chlorella saccarophila d−1, start-
ing from 5 individuals. Data from Fitsch [284]. The
parameter values were obtained independently of the
observations of individuals. Parameters:

{J̇Xm} 5× 104 cells mm−2 h−1 gk̇M 0.33 h−1 g 0.033
XK 3× 105 cells ml−1 lb 0.133 lp 0.417

ḧa 1.1× 10−6 h−2 cv 0.5 κR 0.9
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applicability of this method for analytical purposes, because at low numbers of individuals
stochastic phenomena, such as those involved in survival, tend to dominate. The method is
very flexible, however, which makes it easy to incorporate differences between individuals
with respect to their parameter values. Such differences are realistic and appear to affect
population dynamics substantially; see {335}. Kaiser [461,462] used the programming
environment simula successfully to study the population dynamics of individual dragon
flies, mites and rotifers. Kreft et al. [531] simulated the spatial aspects of the individual-
based population dynamics of bacteria.

The frequency method is based on bookkeeping in terms of (hyperbolic) partial dif-
ferential equations. Several strategies exist to integrate these equations numerically. The
method of the escalator boxcar train, perfected by de Roos [784,785], follows cohorts of
individuals through the state space. The border of the state space where individuals ap-
pear at birth is partitioned into cells, which are allowed to collect a cohort of neonates for
a specified time increment. The reduction of the number of individuals in the cohorts is
followed for each time increment, as the cohort moves through the state space. The amount
of computer time required is proportional to the number of cohorts, which relates to the
volume of the state space as measured by the size of the cells. The number of cells must
be chosen by trial and error. The escalator boxcar train is just one method of integrat-
ing the partial differential equation, but it appears to be an efficient one compared with
methods that use a fixed partitioning of the state space into cells that transfer numbers of
individuals among them.

A nasty problem of the (partial) differential equation approach to describe population
dynamics is the continuity of the number of neonates if the reproduction rate is very small.
This situation occurs in equilibrium situations, if the loss rate is small. The top predators
especially are likely to experience very small loss rates. Details of the handling of energy
reserves to produce or not produce a single young prove to have a substantial effect on
population dynamics.
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Figure 9.14: The number of individuals (black) and the total biovolume (grey) in a simulated
batch culture of daphnids subjected to aging as the only method of harvesting. The individuals
accumulate reproductive effort during the incubation time in the left figure, while they reproduce
egg by egg in the right one. The parameters are ḣXr = 7 units d−1, lb = 0.133, lp = 0.417,
J̇Xm = 4.99 units d−1, κ = 0.3, k̇M = 10 d−1, g = 0.033, ḧa = 2.5× 10−5 d−2.

Synchronization

Computer simulations of fed-batch cultures of reproducing isomorphs reveal a rather unex-
pected property of the deb model. In these simulations the food supply to the population
is taken to be constant and the population is harvested by the process of aging and in a
random way. To reduce complicating factors as much as possible, only parthenogenetically
reproducing females are considered, using realistic parameter values for Daphnia magna
feeding on the green alga Chlorella pyrenoidosa at 20 ◦C. Reproduction in daphnids is cou-
pled to moulting, which occurs every 2 to 3 days at 20 ◦C, irrespective of food availability.
Just after moulting, the brood pouch is filled with eggs which hatch just before the next
moult. So the intermoult period is beautifully adapted to the incubation time and the
buffer for energy allocated to reproduction stays open during the intermoult period. These
details are followed in the simulation study because many species produce clutches rather
than single eggs.

Figure 9.14 shows a typical result of the population trajectory: the numbers oscillate
substantially at low random harvesting rates. Closer inspection reveals that the shape of
the number cycles closely follows the survival function of the aging process. The individuals
appear to synchronize their life cycles, i.e. their ages, lengths and energy reserve densities,
despite the fact that the founder population consists of widely different individuals. This
synchronization is reinforced by the accumulation of reproductive effort in clutches, but it
also occurs with single-egg reproduction. The path individuals take in their state space
closely follows the no-growth condition. Growth in these populations can only occur via
thinning by aging and the resultant amelioration of the food shortage. After reaching adult
volumes, the individuals start to reproduce and mothers are soon outcompeted by their
offspring, because they can survive at lower food densities. This has indeed been observed
in experimental populations [339,913].
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Table 9.3: Oscillations can affect crude population statistics. This table compares statistics for
computer simulations, assuming that reproduction is by clutches, or by eggs laid one at a time,
with statistics that assume the stable age distribution.

statistic clutch single-egg stable age

mean scaled functional response, f 0.355 0.340 0.452
mean scaled biomass density, x 1.095 0.99 0.943
mean number of individuals, N 87.0 55.3 18.3
scaled yield coefficient, y 0.214 0.186 0.120

Having observed the synchronization of the individuals, it is not difficult to quantify
population dynamics from an individual perspective when we now know that the scaled

functional response cycles from f = lb to lp. Starting from a maximum N(0) =
ḣpXrg2k̇2

M

{J̇Xm}l3
b
v̇2 at

time 0, the numbers drop according to N(t) = N(0) exp{− ∫ t
0 ḣ(t1) dt1}, down to N(tn) =

N(0)(lb/lp)3. The total biovolume is about constant at X1 = ḣpXrV
1/3
m

κ{J̇Xm}
; see Table 9.3. At

the brief period of take-over by the next generation, the population deviates a little from
this regime. It is interesting to note that growth and reproduction are fully determined by
the aging process in this situation. Length-at-age curves do not resemble the saturation
curve that is characteristic of the von Bertalanffy growth curve; they are more or less
exponential. Biovolume density and the yield are increased by the oscillatory dynamics,
compared to expectation on the basis of the stable age distribution.

If the harvesting effort is increased, the population experiences higher food densities and
the model details for growth and reproduction become important. The shape of the length-
at-age curves switches from ‘exponential’ to von Bertalanffy, the cycle period shortens, the
generations overlap for a longer period because competition between generations becomes
less important, and the tendency to synchronize is reduced. All these changes result from
the tendency of populations to grow and create situations of food shortage if the harvesting
rates drop.

Similar synchronization phenomena are known for the bakers’ yeast Saccharomyces
cerevisiae [154,689]. It produces buds as soon the cell exceeds a certain size. This gives a
synchronization mechanism that is closely related to that for Daphnia.

Variation between individuals

Although it is not unrealistic to have fluctuating populations at constant food input [855],
the strong tendency of individuals to synchronize their life cycles seems to be unrealistic.
Yet the model describes the input-output relationships of individuals rather accurately. A
possible explanation is that at the population level some new phenomena play a role, such
as slightly different parameter values for different individuals. This gives a stochasticity
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of a different type than that of the aging process, which is effectively smoothed out by
the law of large numbers. This way of introducing stochasticity seems attractive because
the replicability of physiological measurements within one individual generally tends to be
better than that between individuals. The exact source of variation in energy parameters,
however, is far from obvious. This applies especially to parthenogenetically reproducing
daphnids, where recombination is usually assumed not to occur. Hebert [384] however, has
reported that (natural) populations of daphnids, which probably originate from a limited
number of winter eggs, can have substantial genetic variation. Branta [110] was able to
obtain a rapid response to selection in clones of daphnids, which could not be explained
by the occurrence of spontaneous mutations. Cytoplasmic factors possibly play a much
more important role in gene expression than is recognized at the moment. Koch [497] has
discussed individual variability among bacteria.

In principle, it is possible to allow all parameters to scatter independently, but this
seems neither feasible nor realistic. High ingestion rates, for instance, usually go with high
assimilation rates and storage capacities. The parameter values of the deb model for dif-
ferent species appear to be linked in a simple way, as discussed in the section on parameter
variation {267}. We assume here that the parameters for the different individuals within
a species are also linked in this way but vary within a narrow range. The parameters for a
particular individual remain constant during its lifetime. In this way, we require only one
simple individual-specific multiplier operating on (some of) the original parameters of the
deb model to produce the scatter. The way the scatter appears in the scaled parameters
is even simpler [522].

Parameter variation between individuals has interesting effects on population dynam-
ics: a log-normally distributed scatter with even a small coefficient of variation is enough
to prevent death by starvation at the take-over of the new generation. Moreover, each gen-
eration becomes extinct only halfway through the period of the next generation and the
amplitude of the population oscillations is significantly reduced; see Figure 9.14. This may
be quantified by its effect on the coefficient of variation for population measures, defined
as
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(
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dt (9.37)

for j = 0, 1, 2, 3. Integration is taken over one typical cycle of length tn and the summation
over all individuals in the population. For values larger than 0.2, the coefficient of vari-
ation of the scatter parameter barely depresses the variation coefficient of the population
measures further; see Figure 9.15.

Figure 9.13 demonstrates that computer simulations of deb-structured daphnids closely
match the dynamics of laboratory populations. The strength of the argument is in the fact
that the parameter values for individual performance have been obtained independently.

The oscillations are also likely to be less if one accounts for spatial heterogeneities. This
is realistic even for daphnids, because some of the algae adhere to the walls of the vessels
and some (but not all) daphnids feed on them [304,429]. The general features of the
dynamics of experimental populations are well captured by the deb model. Emphasis is
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Figure 9.15: The coefficient of variation of the
total number, length, surface area and volume of
individuals in the population as functions of the
coefficient of variation of the scatter parameter
that operates on the parameters of individuals.
The sharp initial reduction points to the limited
realism of strictly deterministic models. cv of par’s of individuals
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given to the competition for food, which Slobodkin [855] considered to be the only type of
interaction operative in his experimental food-limited populations. He suggested that the
competition between different age-size categories was responsible for the observed intrinsic
oscillations, which is confirmed by this model analysis. Mrs N. van der Hoeven [419]
has concluded, on the basis of a critical survey of the literature on experimental daphnid
populations with constant food input, that some fluctuations are caused by external factors.
Even populations that tend to stabilize do so, however, by way of a series of damped
oscillations, while others seem to fluctuate permanently.

Adaptive dynamics

When parameter values for energy budgets vary among individuals, and rules about how the
values carry over to new generations are formulated, selective forces are specified through
competition for the same resources. Such selective forces need not be external, the deb
assumptions already imply these forces, namely how differences in feeding translate into
differences in reproduction. These rules can obviously be modified as a result of interactions
with other populations, such as predators, whose actions directly or indirectly relate to the
parameter value of the individuals. Predators can select for particular body sizes, for
instance, and body size is determined by deb parameters. Given a specification of the
environment in which the individuals live, the mean parameter values can evolve, and
the (multivariate) frequency distribution can become multi-modal, reflecting the process
of speciation. Many qualitative properties of this process can be evaluated, even without
detailed specification of the models for individuals. This type of problem is called adaptive
dynamics [213,318,624].

9.2.3 Mass transformation in populations

Mass fluxes in populations are the sum of the individual mass fluxes, but interactions
between substrate and biomass densities through the processes of feeding and competition
substantially complicate the conversion of substrate to biomass. The results for reproducers
and dividers are discussed briefly in the following sections.
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Propagation through reproduction

Let us consider a population of parthenogenetically reproducing individuals that develop
through embryonic, juvenile and adult stages. Sexually reproducing animals can be in-
cluded in a simple way, as long as the sex ratio is fixed. The population structure, derived
from the collection of individuals that make up that population, is based on individual
characteristics. Suppose that there is a maximum for the amount of structural body mass
and reserves for individuals, and that we use the scaled length l, the scaled reserve density
e and the age a to specify the state of the individual (the techniques to model the dynamics
are readily available for an arbitrary number of state variables [360,361]).

Suppose that a population of individuals lives in a ‘black box’ and that the individuals
only interact through competition for the same food resource. Food is supplied to the black
box at a constant rate ḣXMX , where ḣX has dimension time−1 and MX is the amount of
food (in C-moles per black box volume). Eggs are removed from the black box at a rate
ḣe; juveniles and adults are harvested at a rate ḣ randomly, i.e. the harvesting process
is independent of the state of the individuals (age a, reserves e, size l). Furthermore,
the aging process harvests juveniles and adults at a state-dependent rate ḣa, which is
beyond experimental control. Individuals harvested by the aging process leave the black
box instantaneously.

The present purpose is to study how food supplied to the black box converts to body
mass and reserves that leave the box in the form of harvested individuals, when the amounts
of oxygen, carbon dioxide, nitrogenous waste and faeces in the black box are kept constant.
This implies that these mass fluxes to and from the box equal the use or production by all
individuals in the box. Food is not removed, which implies that the amount of food in the
box depends on both the food supply and the harvesting rates of individuals.

Before analysing the conversion process in more detail, it is helpful to point out the
fundamental difference between the population and the individual level. If no harvesting
occurs at all, and food is supplied to the bio-reactor, the population will eventually grow
to a size where food input just matches the maintenance needs of the individuals. In
this situation no individual is able to grow or reproduce (otherwise we would not have a
steady state). The conversion efficiency is then zero. Figure 9.16 illustrates this situation
for experimental Daphnia populations. By increasing the harvesting rate, the conversion
efficiency increases also, at least initially. This illustrates that the conversion process is
controlled by the way the population is sandwiched between food input and harvesting.
Individual energetics only set the constraints.

In many field situations, the harvesting rate will not be set intentionally. The process
of aging can be considered, for instance, as one of the ways of harvesting through intrinsic
causes, but this does not affect the principle. The present aim is to study the behaviour of
the yield factor in steady-state situations, so ṙ = 0, and compare the different life styles:
V1-morphs, rods and isomorphs, propagating via division and eggs. For this purpose, let us
strip the population of as many details as possible and think of it in terms of the diagram
given in Figure 9.17.

In summary, the conversion process has three control parameters, ḣX , ḣe and ḣ, and the
aim is now to evaluate all mass fluxes in terms of these three control parameters, given the
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Figure 9.16: Populations of daphnids Daphnia

magna fed a constant supply of food, the green alga
Chlorella pyrenoidosa at 20 ◦C, grow to a maximum
number of individuals that is directly proportional
to food input [512]. From this experiment, it can
be concluded that each individual requires six algal
cells per second just for maintenance. No deaths oc-
curred before day 24. A reduction of food input to
30 × 106 cells day−1 after day 24 resulted in almost
instant death if the populations were at carrying ca-
pacity. The 240× 106 cells day−1 population was still
growing when the food supply was suddenly reduced,
so the energy reserves were high, and it produced
many winter eggs. The daily food supply related to
the cumulated number of winter eggs as
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Figure 9.17: The population, quantified as the
sum of the volumes of the individuals, converts
food into faeces, while extracting energy. Part of
this energy is lost in maintenance processes and
part of it is deposited in losses, i.e. the cumu-
lated harvest. The harvesting effort determines
the allocation rules and sets the population size
and so its impact on resources.

properties of the individuals. This result is of direct interest to particular biotechnological
applications, and to the analysis of ecosystem behaviour, provided that the control pa-
rameters are appropriate functions of other populations and the degradation of faeces and
dead individuals is specified to recycle the nutrients that are locked in these compounds.

The index + refers to the population, to distinguish fluxes at the population level from
those at the individual level. Embryos are treated separately from juveniles and adults,
not only because this allows different harvesting rates for both groups, but also because
they do not eat, and therefore do not interact with the environment through food.

Given the initial conditions φe(0, a, e, l) and φ(0, a, e, l), the change in density of embryos
and of juveniles plus adults over the state space is given by the McKendrick-von Foerster
hyperbolic partial differential equation [289,849]

∂

∂t
φe(t, a, e, l) = − ∂

∂l

(

φe(t, a, e, l)
d

dt
l

)

− ∂

∂e

(

φe(t, a, e, l)
d

dt
e

)

+

− ∂

∂a
φe(t, a, e, l)− ḣeφe(t, a, e, l) (9.38)
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∂

∂t
φ(t, a, e, l) = − ∂

∂l
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φ(t, a, e, l)
d

dt
l

)

− ∂

∂e

(

φ(t, a, e, l)
d

dt
e

)

+

− ∂

∂a
φ(t, a, e, l)− (ḣ + ḣa(a, e, l))φ(t, a, e, l) (9.39)

where
∫ a2
a1

∫ l2
l1

∫ e2
e1

φ(t, a, e, l) de dl da is the number of individuals (juveniles plus adults) aged
somewhere between a1 and a2, with a scaled energy density somewhere between e1 and
e2 and a scaled length somewhere between l1 and l2. The total number of juveniles plus
adults equals N(t) =

∫∞
0

∫ 1
lb

∫ 1
0 φ(t, a, e, l) de dl da. The total number of embryos likewise

equals Ne(t) =
∫∞
0

∫ lb
0

∫∞
0 φe(t, a, e, l) de dl da. The boundary condition at a = 0 reads

φe(t, 0, e0, l)
d

dt
a = δ(l = l0)

∫ ∞

0

∫ 1

lp
Ṙ(e, l)φ(t, a, e, l) dl da for all e (9.40)

where l0 denotes the scaled length at a = 0, which is taken to be infinitesimally small, lb
the scaled length at birth (i.e. the transition from embryo to juvenile), lp the scaled length
at puberty (i.e. the transition from juvenile to adult), and e0 the scaled reserve at a = 0,
which can be a function of e of the mother. The function δ(l = l0) is the Dirac delta
function in l (dimension: l−1). The boundary condition at l = lb reads

φ(t, a, e, lb)
d

dt
a = φe(t, a, e, lb)

d

dt
a for all a, e (9.41)

The individuals can differ at a = 0, because e0 can depend on e, and individuals can make
state transitions at different ages and different scaled reserves. The dynamics for food
amounts to

d

dt
MX+ = ḣXMX + J̇X+ (9.42)

J̇X+ ≡
∫ ∞

0

∫ 1

lb

∫ 1

0
φ(t, a, e, l)J̇X(e, l) de dl da (9.43)

where MX+ denotes the food density in C-moles per black box volume, and J̇X(e, l) the
(negative) ingestion rate of an individual of scaled energy reserves e and scaled length l,
as discussed in the previous section. The faecal flux J̇P+ is simply proportional to the
ingestion flux, i.e. J̇P+/J̇X+ = J̇P /J̇X .

The molar fluxes of body mass and reserves (∗ = V,E), are given by

J̇∗+ = ḣe

∫ ∞

0

∫ lb

0

∫ ∞

0
φe(t, a, e, l)M∗(e, l) de dl da+ (9.44)

+
∫ ∞

0

∫ 1

lb

∫ 1

0
(ḣ + ḣa(a))φ(t, a, e, l)M∗(e, l) de dl da (9.45)

The mineral fluxes J̇M+ and the dissipating heat ṗT+ follow from (4.3) and (4.38)

J̇M+ = −n−1
MnOJ̇O+ (9.46)

0 = ṗT+ + µT
MJ̇M+ + µT

Ok̇O+. (9.47)
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Due to the linear relationships between mass and energy fluxes, the mass fluxes are simple
metrics on the densities φe and φ, which are solutions of the partial differential equations
(9.38) and (9.39); the determination of the solution generally requires numerical integra-
tion.

Steady-state situations

At steady state, the easiest approach is to relate the states of the individuals to age, and
replace the density φ(t, a, e, l), by the relative density φ◦(t, a) = φ(t, a)/N(t). This relative
density no longer depends on time at steady state, so we omit the reference to time. J̇∗(a)
denotes the flux of compound ∗ with respect to an individual of age a, where ab is the age
at birth and ap the age at puberty. These ages might be parameters, but the deb model
obtains them from MV (ab) = MV b and MV (ap) = MV p.

The characteristic equation applies at steady state

ME0 = exp{−ḣeab}
∫ ∞

ap

exp
{

−ḣa−
∫ a

0
ḣa(a1) da1

}

J̇ER
(a) da (9.48)

The characteristic equation can be used to solve for the food density MX+, and so the
scaled functional response f . Given this food density, the trajectories of the state variables
are fixed.

The age distributions of embryos and juveniles plus adults are given by

φ◦
e(a) =

ḣe exp{−ḣea}
1− exp{−ḣeab}

for a ∈ [0, ab] (9.49)

φ◦(a) =
(ḣ + ḣa(a)) exp{−ḣa− ∫ a

0 ḣa(a1) da1}
∫∞
ab

exp{−ḣ− ∫ a
0 ḣa(a1) da1} da

for a ∈ [ab,∞) (9.50)

We introduce the expectation operators Ee and E , i.e. EeZ ≡
∫ ab

0 Z(a)φ◦
e(a) da and EZ ≡

∫∞
ab

Z(a)φ◦(a) da, for any function Z(a) of age.
The harvesting rates of organic compounds equal their mass fluxes, i.e.

J̇O+ ≡













J̇X+

J̇V +

J̇E+

J̇P+













= ηNEṗ =













−ḣXMX

NeEeḣeMV + NE(ḣ + ḣa)MV

NeEeḣeME + NE(ḣ + ḣa)ME

ḣXMXµAX/µAP













(9.51)

The numbers of juveniles plus adults in the population, N , and of embryos, Ne, are given
by

N =
J̇X+

E J̇X

and Ne = (1− exp{−ḣeab})
NE J̇ER

ḣeME0

Propagation through division

The aging rate of dividing organisms is taken to be independent of age and this hazard
rate is included in the harvesting rate ḣ; the state variable age is not used, so the scaled
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length l and the scaled reserve density e specify the state of the individual. The conversion
process of substrate into biomass has two control parameters: ḣX and ḣ.

Given the initial condition φ(0, e, l), the dynamics of density φ(t, e, l) is then given by

∂

∂t
φ(t, e, l) = − ∂

∂l

(

φ(t, e, l)
d

dt
l

)

− ∂

∂e

(

φ(t, e, l)
d

dt
e

)

− ḣφ(t, e, l) (9.52)

with boundary condition

φ(t, e, lb)
d

dt
l

∣

∣

∣

∣

∣

l=lb

= 2φ(t, e, ld)
d

dt
l

∣

∣

∣

∣

∣

l=ld

for all e (9.53)

where the scaled length at ‘birth’ relates to the scaled length at division as lb = ld2−1/3.
This dynamics implies that both daughters are identical.

Suppose now that the dynamics of the scaled reserves is independent of the scaled
length, and that the dynamics of the scaled length is proportional to the scaled length.
The scaled reserve density then has the property that all individuals will eventually have
the same scaled reserve density, which may still vary with time. (The deb model for V1-
morphs is an example of such a model.) For simplicity’s sake, we will assume that this also
applies at t = 0, which removes the need for an individual structure. The consequence is
that a population that consists of one giant individual behaves the same as a population
of many small ones.

The partial differential equation (9.52) collapses to two ordinary differential equations,
one of which is at the population level for the structural body mass

d

dt
ln MV + =

d

dt
ln l3 − ḣ (9.54)

where the scaled volume kinetics d
dt

l3 = 3l2 d
dt

l is given by the model for individuals. The
other differential equation is at the individual level for the scaled reserve density kinetics
d
dt

e, which should also be specified by the model for individuals, see e.g. Table 3.6. The
scaled reserve density kinetics specifies the (nutritional) state of a random individual.

The expressions for the dissipating heat (9.47), and mineral fluxes (9.46) still apply
here, while J̇O+ = ηṗ+, with ṗ+ =

∫ ld
lb

∫ 1
0 ṗ(e, l3)φ(t, e, l) de dl, and ṗ(e, l3) denotes ṗ,

evaluated at scaled energy reserve e and cubed scaled length l3. (For V1-morphs it is
more convenient to use l3 as an argument, rather than l.) This result is direct because
∫ ld
lb

∫ 1
0 l3φ(t, e, l) de dl = MV +/MV m, so that

ṗ+ = ṗ(e,
∫ ld

lb

∫ 1

0
l3φ(t, e, l) de dl) = ṗ(e,MV +/MV m) = ṗ(e, 1)MV +/MV m

The latter equality only holds for models such as the deb model for 1S–V1-morphs, where
all powers are proportional to structural body mass. The dynamics for food amounts to

d

dt
MX+ = ḣXMX + J̇X+ = ḣXMX −

ṗA(e, 1)

µAX

MV +

MV m

(9.55)

where ṗA(e, 1) does not depend on the scaled reserves e, in the deb model.
The environment for the population reduces to the chemostat conditions for the special

choice of the harvesting rate ḣ relative to the supply rate: ḣXMX = ḣ(MX −MX+).
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Figure 9.18: The expected molar yield of oxy-
gen as a function of the measured value based
on the assumption of a constant and common
biomass composition of nHW1 = 1.8, nOW1 = 0.5
and nNW1 = 0.2 for a wide variety of bacte-
ria (•), yeasts (⋄), fungi (2) and the green alga
Chlorella (△). The expectation is based on mea-
sured yields of biomass. Data gathered by Heij-
nen and Roels [391] from the literature on aero-
bic growth on a wide variety of substrates with-
out product formation and NH+

4 as nitrogen sub-
strate. measured yield, mol O2/ C-mol
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Steady-state situations

The population growth rate must be zero at steady state. We use this to solve the value of

the scaled functional response, i.e. f = k̇M +ḣ

k̇M/ld−ḣ/g
in the case of the deb model. This model

has the nice property that e = f at steady state; it then follows that MX+ = MKf/(1−f),
where MK is the saturation constant of the Holling type II functional response.

The stable age distribution amounts to

φ◦(a) = 2ḣ exp{−ḣa} for a ∈ [0, ḣ−1 ln 2] (9.56)

The number of individuals in the population, the total structural body mass and the
organic fluxes are given by

N =
J̇X+

E J̇X

=
MV +

l3dMV m ln 2
(9.57)

MV + ≡ NEMV =
ḣXMX [MV ]

f [MX ][J̇Xm]
(9.58)

J̇O+ = ηṗ+ = ηṗ(f, 1)MV +/MV m (9.59)

The mean mass per individual is thus EMV = MV +/N .
The relationship (9.46) for the mineral fluxes still holds. Since the row of n−1

M that
corresponds to oxygen, i.e. the third row, can be interpreted as the ratio of the reduc-
tion degrees of the elements to that of oxygen if the N substrate is ammonia (cf. {131}),
the third row of n−1

MnO can be interpreted as the ratio of the reduction degrees of the
organic components to that of oxygen. It follows that −δOJ̇O+ = δT

OJ̇O+, when δO de-
notes the reduction degrees of the organic compounds. If the structural biomass has the
same composition as the reserves, and if no products are formed, this further reduces to
−δOJ̇O+ = δX J̇X+ +δW J̇W+, or −δOYOW = δXYXW +δW , where index W refers to the total
biomass, i.e. the sum of the structural biomass and the reserves, and Y to yield coefficients.
This result is well known from the microbiological literature [391,779] and follows directly
from the general assumptions in Table 3.3.
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Figure 9.18 compares the measured oxygen yield with the yield that has to be expected
on the basis of this relationship and measured values of biomass yields for a wide variety
of organisms and 15 substrates that differ in nHX and nOX , but all have nNX = 0. The
substantial scatter shows that the error of measurement is large and/or that the biomass
composition is not equal for all organisms and is not independent of the growth rate.
Generally n∗V 6= n∗E, and n∗W depends on the population growth rate ṙ.

9.3 Food chains and webs

Many ecosystems have consumers that are linked in a food web; the food chain being its
simplest form. Bi- and tri-trophic chains are intensively studied [377,379,489,539,603,
604]. Most models, however, have growing zero-trophic levels, and are based on implicit
assumptions about their food dynamics. This will be avoided here, to allow the application
of mass and energy balances. Some popular models are even at odds with conservation
principles [506,508].

A basic problem in the analysis of food web dynamics is the large number of parameters
that show up, which reduces the value of the exhausting undertaking of a systematic
approach to the analysis of the system’s potential behaviour. Several strategies are required
to minimise that problem. One of them is to use body size scaling relationships to tie
parameter values across species. This reduces the problem of community dynamics in
principle to that of particle size distributions in taxon-free communities, as reviewed by
Damuth et al. [194].

The next sections explore transient and asymptotic behaviour of bi- and tri-trophic
chains; the results are based on work by B. W. Kooi and M. P. Boer [94,95,96,366,507,510].

9.3.1 Transient behaviour of bi-trophic chains

The non-equilibrium dynamics of food chains can be rather complex and sensitively de-
pends on the initial conditions. Figure 9.19 illustrates results for a substrate–bacteria–
myxamoebae chain in a chemostat. B. W. Kooi has been able to fit the experimental data
to the deb model for V1-morphs with remarkable success. All parameters were estimated
on the basis of a weighted least-squares criterion. The fitted system does not account for
the digestion of reserves; its incorporation resulted in very similar fits, while the extra
parameters were poorly fixed by the data. The main dynamic features are well described
by the model. The myxamoebae decrease more rapidly in time than the throughput rate
allows by shrinking during starvation. The type of equilibrium of this chain is known
as a spiral sink, so that this chain ultimately stabilizes, and the period reduces with the
amplitude. The numerical integration of the set of differential equations that describe the
system was achieved using a fourth-order Runge–Kutta method.

This particular data set was used to illustrate the application of catastrophe theory by
Saunders [808], who concluded that simple generalizations of the Lotka–Volterra model
cannot fit this particular data set, because growth is fast when substrate is low. He
suggested that the feeding rate for each individual myxamoeba is proportional to the
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Figure 9.19: A chemostat with a bi-trophic
chain of glucose X0, the bacterium Escherichia

coli X1 and the cellular slime mould Dic-

tyostelium discoideum X2 at 25 ◦C, throughput
rate ḣ = 0.064 h−1 and a glucose concentration
of Xr = 1 mg ml−1 in the feed. The 4th graph
gives the mean cell volumes of Dictyostelium.
Data from Dent et al. [208].

The parameter values and equations are

X0(0) 0.433 mg ml−1

X1(0) 0.361 X2(0) 0.084 mm3 ml−1

e1(0) 1 e2(0) 1 -

XK1 0.40 XK2 0.18
µg
ml

, mm3

ml
g1 0.86 g2 4.43 -

k̇M1 0.008 k̇M2 0.16 h−1

k̇E1 0.67 k̇E2 2.05 h−1

jXm,1 0.65 jXm,2 0.26
mg

mm3 h
, h−1

d

dt
X0 = ḣ(Xr −X0)−

X0X1jXm,1

XK1 + X0

d

dt
X1 =

(

k̇E1e1 − k̇M1g1

e1 + g1
− ḣ

)

X1 −
X1X2jXm,2

XK2 + X1

d

dt
X2 =

(

k̇E2e2 − k̇M2g2

e2 + g2
− ḣ

)

X2

d

dt
e1 = k̇E1

(

X0
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− e1

)
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(
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Table 9.4: List of basic local bifurcations for odes: dx/dt = f(x, α), and maps: yn+1 = f(yn, α)
with normal forms. The bifurcation point is α = 0. λ is the eigenvalue of the Jacobian matrix
evaluated at the equilibrium ( d

dtx = 0 and yn+1 = yn) and µ is the Floquet multiplier evaluated
at the limit cycle. The bifurcation type depends on the real (Re) parts of these characteristic
exponents. With food web dynamics, a stable positive attractor originates at a supercritical
transcritical bifurcation (superscript +) and an unstable positive equilibrium or limit cycle at
a subcritical transcritical bifurcation (superscipt −). Superscript ± refers to supercritical and
subtritical.

symbol bifurcation normal form characteristic
exponents

Te Tangent, of equilibrium d
dtx = α− x2 Re λ = 0

Tc Tangent, of limit cycle yn+1 = yn + α− y2
n Re µ = 1

TC±
e Transcritical, of equilibrium d

dtx = αx± x2 Re λ = 0
TC±

c Transcritical, of limit cycle yn+1 = (1 + α)yn ± y2
n Re µ = 1

H± Hopf d
dtx = −y + x(α± (x2 + y2))
d
dty = x + y(α± (x2 + y2)) Re λ1,2 = 0

F± Flip yn+1 = −(1 + α)yn ± y3
n Re µ = −1

product of the bacteria and the myxamoebae densities. This implies an interaction between
the myxamoebae; Bazin and Saunders [61] suggested that the myxamoebae measure their
own density via folic acid. Although interactions cannot be excluded, the goodness of
fit of the deb model makes it clear that it is not necessary to include such interactions.
The significance of realistic descriptions without interaction is in the extrapolation to
other systems; if species-specific interactions do dominate systems behaviour, there can be
hardly any hope for the feasibility of community ecology. Reserves cause a time delay in
the reaction of the predator to fluctuations in prey and explain why a high growth rate
can combine with low substrate densities in these oscillatory systems.

9.3.2 Asymptotic behaviour: bifurcation analysis

When the number of loosely coupled variables is sufficiently large in a system, the system
is likely to have very complex asymptotic behaviour, including the occurrence of multiple
attractors, possibly of the chaotic type. This is almost independent of the specific model;
the behaviour has been observed in several models for tri-trophic food chains. Bifurcation
analysis deals with qualitative changes in the asymptotic behaviour of the system, when
a parameter is varied in value. Table 9.4 gives the possible bifurcation types, which all
have been found in tri-trophic food chains. The bifurcation type depends on the value
of the eigenvalue of the Jacobian matrix evaluated at the equilibrium and the Floquet
multiplier, which is an eigenvalue of the Poincaré next-return map. If all complex values
of the Floquet multipliers are within the unit circle, the dynamic system’s orbit converges
to a limit cycle.
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Methods

The analysis of bifurcation behaviour must be done numerically, using specialized software:
locbif [480] and auto [221] can calculate bifurcation diagrams using continuation meth-
ods. The theory is documented in [538]. The analyses cannot be done on a routine basis,
however, and the user must have a fairly good idea of what to expect and what to look
for. Although the software is rapidly improving in quality, at present it is still deficient
in computing certain types of global bifurcations, for instance, and one has to rely on
‘in-house’ software to fill in the gaps, see [94].

Results of bifurcation analyses are frequently reported in the form of bifurcation dia-
grams. These diagrams connect points where system’s asymptotic behaviour changes in a
similar way when the bifurcation parameters are varied. So, the system has similar asymp-
totic behaviour for values of bifurcation parameters within one region. The construction of
such diagrams is only feasible if there are just one or two of such parameters. Many food
chain studies take parameters that represent properties of species which cannot be changed
experimentally. When the organisms live in a chemostat, two natural bifurcation parame-
ters are the throughput rate and the concentration of substrate in the feed. Diagrams with
these parameters are called operating diagrams.

Bifurcation diagrams for bi- and tri-trophic chains

Figure 9.20 shows the bifurcation diagram, as computed by B. W. Kooi and M. P. Boer
for bi- and tri-trophic chains living in a chemostat. The reserve capacity is reduced to zero
for all species, so they follow the Marr–Pirt model. The system amounts to

d

dt
X0 = (Xr −X0)ḣ− jXm,1f0,1X1

d

dt
X1 = (jXm,1f0,1Yg,1 − k̇M,1 − ḣ)X1 − jXm,2f1,2X2

d

dt
X2 = (jXm,2f1,2Yg,2 − k̇M,2 − ḣ)X2 − jXm,3f2,3X3

d

dt
X3 = (jXm,3f2,3Yg,3 − k̇M,3 − ḣ)X3

where jXm,i is the maximum specific feeding rate of species i; fi,j = (1 + XKj/Xi)
−1 is

the scaled function response; Yg,i is the ‘true’ yield coefficient, k̇M,i the maintenance rate
coefficient. The bifurcation parameters are Xr and ḣ.

The bi-trophic chain has simple asymptotic behaviour only. If the species are not
washed out, they can either coexist in a single stable equilibrium, or in a single limit
cycle. A supercritical Hopf bifurcation separates the corresponding parameter regions. The
diagram beautifully illustrates the paradox of enrichment, which is the observed induction
of oscillatory behaviour that follows an increase in resource levels [790].

Figure 9.20 illustrates that the bifurcation diagram of the tri-trophic chain is very
complex in a small part of the parameter space. A detailed discussion is beyond the scope
of this book, and is given in [509]. The diagram has an ‘organizing centre’ M1, which
is a codimension-two point; the transcritical curves TCe,3 and TCc,3 for equilibrium and
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Figure 9.20: Bifurcation diagrams for Marr-Pirt model of bi- and tri-trophic chains. The right
figure is a detail of the left one. The transcritical bifurcation curves TCe,1, TCe,2 and the su-
percritical Hopf bifurcation curve H−

2 relate to both bi- and tri-trophic chains, all others only to
tri-trophic chains. The bifurcation parameters are the dilution rate ḣ and the substrate concen-
tration in the reservoir Xr. Left of the TC−

e,2 curve, the predator is washed out;

between this curve and the H−
2 curve, the bi-trophic chain

has a stable equilibrium, and right of the curve H−
2 it has

a stable limit cycle. The curves TC−
e,3 and H−

3 mark sim-
ilar regions for the tri-trophic chain. Within the folded
(closed) flip-bifurcation curve F−

1 the limit cycle is unsta-
ble. Homoclinic G=

e , G=
c and heteroclinic G 6=

e,c bifurcation
curves denote global bifurcations to multiple attractors.

Parameters:
i 1 2 3

XK 8 9 10 mg l−1

jXm 1.25 0.33 0.25 h−1

Yg 0.4 0.66 0.6

k̇M 0.025 0.01 0.0027 h−1

limit cycles, where X3 = 0, originate here. The points M2 and M3 on these curves are
the origins of the tangent bifurcation curves Te,3 and Tc,3 for equilibria and limit cycles. A
pair of interior equilibria or limit cycles disappears simultaneously as the two bifurcation
parameters passes a tangent bifurcation curve. The latter tangent bifurcation curve Tc,3

has a cusp bifurcation point N . This type of bifurcation is often associated with a so-called
catastrophe.

Figure 9.21 presents part of the orbit of the three trophic levels in a chemostat, using
the Monod model. The bifurcation parameters are in the chaotic region of the bifurcation
diagram. The bifurcation diagram for the tri-trophic chain on the basis of the full deb
model for V1-morphs resembles that of the Marr–Pirt model [508].

Canonical map for tri-trophic chains

Many aspects of the bifurcation pattern of continuous-time systems can be understood from
discrete-time systems, where the variables at time point n + 1 are taken to be functions
of those at time point n. These systems are called maps. M. P. Boer [94] showed that
the bifurcation behaviour of a tri-trophic chain of the Marr–Pirt and Monod type can be
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Figure 9.21: Stereo
view of part of the orbit
of the three trophic
levels (x1, x2 and x3 in
the x-, y-, z-direction,
respectively) of the
Monod model for a
food chain on a chaotic
attractor (throughput
rate ḣ = 0.08732 h−1

and substrate level
Xr = 200 mg l−1).

understood from the one-dimensional map

xn+1 = fα,β(xn) = 16βx3
n − 24βx2

n + 9βxn − β + α

where x is an abstract variable, and α and β bifurcation parameters; fα,β is thus a cubic
polynomial in xn, which is not invertable. There are two critical points, c1 = 1

4
and

c2 = 3
4
; f(c1) = α is a local maximum, and f(c2) = α − β is a local minimum. The map

does not have a corresponding one-dimensional continuous system, and the equivalence
is abstract, involving a Poincaré next-return map, where subsequent intersections of the
dynamic system’s orbit are compared with a plane chosen at a suitable location in the
state space. All the points of intersection appear to lie close to a single curve when plotted
against the preceding points, as occurs in the Lorenz system [567]. The shape of this
curve resembles a cubic polynomial. A useful way to construct such a map is to select the
local minima of the highest trophic level and to plot subsequent values against each other.
The significance of identifying this one-dimensional map as a canonical form of the multi-
dimensional system is in the powerful mathematical theory that exists for one-dimensional
maps [618,210,581,848,898].

Figure 9.22 gives the map fα,β for α = β = 0.8, for which the map has three fixed
points, p1 < p2 < p3, and is invariant on the interval [p1, p3]. The fixed points p1 and p3

are repellors, since d
dx

f(pi) > 1. Then with q ∈ (p1, c1) we have limn→−∞ fn
0.8,0.8(q) → p1

and with r ∈ (c2, p3) we have limn→−∞ fn
0.8,0.8(r) → p3, where superscript n denotes the

number of times the map f is applied.
An orbit starting at a point q ∈ (p1, c1) is called homoclinic if there exists an n > 0

such that fn(q) = p1. This homoclinic orbit is called degenerated if d
dx

fn(q) = 0, which
is the case in Figure 9.22. An orbit starting at a point r ∈ (c2, p3) is called heteroclinic if
there exists an n > 0 such that fn(r) = p1. The heteroclinic orbit in Figure 9.22 is also
degenerated, since d

dx
fn(r) = 0. For further background, see for instance [210].

Figure 9.23 shows a one-parameter bifurcation diagram with bifurcation parameter α,
for β = 0.8. It is symmetrical with respect to the point (α, x) = ((1+β)/2, 1/2) = (0.9, 0.5).
The unstable equilibrium values p1 and p3 are plotted.
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Figure 9.22: The function fα,β for α = 0.8
and β = 0.8. The points p1, p2 and p3 are
fixed points, and c1 and c2 are critical points.
At point q a degenerate homoclinic orbit starts
(f2

0.8,0.8(q) = p1 and limn→−∞ fn
0.8,0.8(q) → p1

for q ∈ (p1, c1)). At point r a degenerate
heteroclinic orbit starts (f2

0.8,0.8(r) = p1 and
limn→−∞ fn

0.8,0.8(r)→ p3 for r ∈ (c2, p3)). The
solid interval on the diagonal is the basin of
attraction.
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Figure 9.23: One-parameter bifurcation dia-
gram of the canonical map for β = 0.8. The
dashed curves indicate the repellors p1 and p3.
The points on the dotted curves lie on a hetero-
clinic orbit. The points on the dashed-dotted
curve lie on a homoclinic orbit. The attractors
are plotted as points. The grey regions are the
basin of attraction of these attractors. This
diagram is point-symmetrical with respect to
point (0.9, 0.5).

ȳ
•

minimum of x3

n
ex

t
m

in
im

u
m

of
x

3

6.485.765.044.323.6

6.48

5.76

5.04

4.32

3.6

ḣ
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Figure 9.24: The left figure shows the next minimum of x3 as a function of the current minimum
for the Monod model, with dilution rate ḣ = 0.08732 h−1 and concentration substrate in the
feed Xr = 200 mg l−1. The resulting map resembles the canonical cubic map with two critical
points. The point y is the minimum of a limit cycle of the saddle type. The right figure shows the
one-parameter bifurcation diagram of the Monod model, which again shows striking similarities
with that of the canonical cubic map.
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At the tangent bifurcation point T , at α ≈ 0.2255, the heteroclinic orbits disappear,
together with the basin of attraction and the fixed points p1 and p2. In the region between
this tangent bifurcation T and homoclinic bifurcation point G= (α ≈ 0.5361), the bifur-
cation diagram resembles the well-known bifurcation diagram of the (unimodal, with one
critical point) logistic map yn+1 = ryn(1− yn) for r ∈ [1, 4] discussed in [599].

For increasing α the fixed point becomes unstable and a cascade of period doubling
leads to chaotic dynamics. As with the unimodal logistic map for r = 4, the strange at-
tractor disappears suddenly at a homoclinic bifurcation point. In the interval α ∈ [0.8, 1.0]
there is chaotic dynamics with abrupt destruction of the chaotic attractor and its basin
of attraction at the end points of this interval in α = 0.8 and α = 1.0. Here homoclinic
orbits to the equilibria p1 and p3, respectively, degenerate at the global bifurcation point
(see Figure 9.22). With α = (1 + β)/2 the equilibria p3 and p1 switch roles.

In the one-parameter bifurcation diagram of Figure 9.23 points on a heteroclinic orbit
between p3 and p1 are plotted in the interval α ∈ [≈ 0.2255, 0.8]. At the global bifurcation
point G 6=, the heteroclinic orbits between points p3 and p1 become degenerate. Figure 9.23
also gives the basin of attraction. In the absence of heteroclinic orbits, α ∈ [0.8, 1.0], the
basin is connected. However, with heteroclinic orbits α ∈ [≈ 0.2255, 0.8] convergence to
a positive attractor for α ∈ [≈ 0.2255, 0.5361] occurs in disconnected intervals with end
points on heteroclinic orbits, and the basin boundary has a complex geometry close to the
equilibrium p3. In the ‘hole’ in the chaotic region there is convergence only for the countable
points at the homoclinic and heteroclinic orbits and otherwise there is no convergence. At
the tangent bifurcation point T the boundary basin is a vertical line where α is constant,
that is the basin of attraction disappears abruptly at the tangent bifurcation together with
the fixed points p1 and p2.

Figure 9.24 illustrates the next minimum map for the Monod model for a tri-trophic
chain in the chemostat, and the one-parameter bifurcation diagram for the throughput
rate. Both the map and the diagram have striking similarities with the canonical map
given in Figures 9.22 and 9.23. A full analysis of the two-parameter bifurcation diagram
can be found in [94].

Stability and invasion

Nisbet et al. [668] noted that the experimental system appears to be much more stable
than is predicted by the bi-trophic Monod model. They concluded that the introduction
of maintenance, as proposed by Marr–Pirt, increases the range of operation parameters
that give stable chains; however, real-world chains still appear to be more stable. Consis-
tent with the single trophic systems, compared in Figure 9.2, the deb model for bi- and
tri-trophic chains is much more stable than the Monod and the Marr–Pirt model. The
experimental conditions which lead to the damped oscillation of Figure 9.19 are in the
stable region of the bifurcation diagram, close to the supercritical Hopf bifurcation curve
H−

2 in Figure 9.20. If the throughput rate were a little bit higher, the oscillations would
not have been damped, but sustained.

A species can invade a trophic system in a chemostat if its per capita growth rate
exceeds the throughput rate at an infinitesimally small population size. For most food web
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Figure 9.25: The Canonical Community consists of
three ‘species’: producers that gain energy from light
and take up nutrients to produce biomass, consumers
that feed on producers and decomposers that recycle
nutrients from producers and consumers. The com-
munity is rather closed for nutrients, but requires a
constant supply of energy. Influx and efflux of nutri-
ents largely determine the long-term behaviour of the
community.
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models, this occurs when the Lyapunov exponent, which is associated with the dynamics
of the invader, is positive at the boundary of the attractor. The transcritical bifurcation
point, when the Lyapunov exponent is zero, marks the region where invasion is possible.
Using this criterion, numerical studies by B. W. Kooi showed that another level-two species
can invade in a bi-trophic deb chain. This means that the level-two species allows escape
from the competitive exclusion principle, see [859], and the two competing species can
coexist on a single substrate in the presence of a predator.

Before the 1970s the general insight was that an increase in diversity comes with an
increase in stability. May [598] showed that the opposite holds for randomly connected
Lotka–Volterra systems. Later, it became evident that the spatial scale is essential, and
meta-population theory showed that instability at a small spatial scale can go with stability
at a large spatial scale. We are now witnessing a new insight: diversity can go with stability
in non-linear systems with more realistic dynamics, even in spatially homogeneous systems.

9.4 Canonical community

Figure 9.25 illustrates the structure of an idealized, simple, three-species ecosystem. Pro-
ducers (algae) use light and nutrients to produce organic matter, which is transformed
by consumers (grazers), while decomposers (bacteria) release nutrients from the organic
matrix [880]. The system is ‘open’ to energy flow, but closed to inputs or removal of
elemental matter. It might live in a closed bottle, for instance. Exchanges of mass with
the rest of the world can be included at a later stage. It is found in many ecosystems,
for example, and is very similar to the one used for material turnover in microbial flocs in
sea-water plankton systems [332,586].

Microcosms are fairly realistic experimental models for ecosystems [83,337]. Kawabata
and co-workers [307,469,654] studied a closed community consisting of the bacterium
Escherichia coli, the ciliate Tetrahymena thermophila and the euglenoid Euglena gracilis,
for direct and indirect effects of γ-rays. The ciliate grazes on the bacterium, and lives off
organic products that are excreted by the euglenoid, which has mixotrophic capabilities.
A stable coexistence developed for a period exceeding 130 days. The bacterium did not
survive an irradiation of 500 Gy, but the two remaining species continued to exist at lower
levels.
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Table 9.5: The chemical compounds of the Canonical Community and their transformations
and indices. The + signs mean appearance, the − signs disappearance. The signs of the mineral
fluxes depend on the chemical indices and parameter values. The labels on rows and columns
serve as indices to denote mass fluxes and powers. The table shows flux matrix J̇T rather than
J̇ if the signs are replaced by quantitative expressions presented in Table 9.6.
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assim 1 A1C + + − + + + − − −
assim 2 A2C + + − + + + − −
growth GC + + − + + −
dissip DC + + − + −
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death HC + + − −
assim 1 A1P − − − + +
assim 2 A2P − − − + − +
growth GP + + − + + − −
dissip 1 D1P + + − + −p
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d

dissip 2 D2P + + − + −
assim 1 A1D + + − + − +
assim 2 A2D + + − + − +
assim 3 A3D + + − + − +
assim 4 A4D + + − + − +
growth GD + + − + + −

d
ec
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er

dissip DD + + − + −
carbon C 1 1 1 1 1 1 1 1 1 1 1 1
hydrogen H 2 3 1.6 1.6 1.8 1.8 1.8 1.8 1.6 2 1.6 1.6 1.6
oxygen O 2 1 2 0.4 0.4 0.5 0.5 0.5 0.5 0.4 1 0.4 0.4 0.4
nitrogen N 1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.4

The results presented here are from [526]. The Canonical Community differs from a
prey–predator system by the inclusion of the zero-th trophic level in the dynamics of the
system. Prey–predator systems that allow mass balances always require external supply of
inert substrate. Many prey–predator systems in the literature, however, assume intrinsic
growth of the prey, independent of its food, and, therefore, imply complex dynamics of vari-
ables that are excluded from the system. Another difference with a prey–predator system
is that all components affect nutrients, which implies more complex trophic interactions
between components, as discussed by e.g. Andersen [20].
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9.4.1 Mass transformations in communities

The chemical compounds and their transformations in the Canonical Community are pre-
sented in Table 9.5. When we replace the signs by model-dependent quantitative expres-
sions, such as in Table 9.6, this turns Table 9.5 into a matrix of fluxes that is known as a
scheme matrix [754], which will be indicated by matrix J̇ ; element i, j of matrix J̇ , called
J̇i, j, gives the flux of compound i involved in transformation j. We quantify the com-
pounds in terms of moles (for minerals) or C-moles (for organic compounds and biomass),
and indicate the vector of moles of all compounds by M .

The symbol J̇C denotes the vector of C-fluxes, while J̇C, GD denotes the C-flux associ-
ated with the growth of decomposers. The flux J̇+

C adds all positive contributions in J̇C ,
and J̇−

C all negative ones, so J̇+
C + J̇−

C = 0; the quantity J̇+
∗ /M∗ quantifies the turnover rate

of compound ∗ in the system. Index M collects the 4 minerals, O the 11 organic com-
pounds; J̇M, GD denotes the 4 mineral fluxes that are associated with decomposer growth,
J̇O, GB does the same for the 11 organic fluxes; nM collects the 4× 4 chemical indices for
minerals, nO is the 4× 11 matrix of chemical indices for the organic compounds. Indices
C, P and D refer to consumers, producers and decomposers.

When the transformations can be written as functions of the total amount of moles
of the various compounds, M , the dynamics of M can be written as d

dt
M = J̇1, which

just states that the change in masses equals the sum of the columns of the scheme matrix.
The Jacobian d

dMT J̇1 at steady state contains interesting information about the possible
behaviour of the system close to the steady state.

Table 9.5 illustrates a case where decomposers and consumers have one type of reserve,
and the producers have two, one with and one without nitrogen, to account for their larger
metabolic flexibility. Consumers mainly feed on reserves, because they cannot digest cell
wall material, which makes up a substantial part of structural mass, and faeces is only
derived from structural mass (which implies that its composition does not depend on the
nutritional status of the prey). Only ammonia is included, not because it is the most im-
portant nutrient, but because organisms excrete it. It makes little sense to include nitrate,
for example, without including ammonia; the exclusion of nitrate is just for simplicity’s
sake.

The system is closed for mass, which means that nJ̇ = 0. At steady state, we have

Table 9.6: (see next page) Fluxes in the Canonical Community of the consumers V C, producers
V P , and decomposers V D that live in a confined environment, in which all are conceived as
V1-morphs. The compounds and transformations are introduced in Table 9.5. Consumers and
decomposers have one type of reserves (EC and ED, respectively), the producers have two types
(E1P and E2P ). Detritus includes producer-faeces PP , decomposer-faeces PD (both produced
by consumers), and dead consumers (structural mass PV and reserves PE). Carbon dioxide
(C) and ammonia (N) are obtained from the balance equation for carbon and nitrogen. The
variables x refer to the scaled mass densities: xPP = MPP /XK, PP , xPD = MPD/XK, PD, xPV =
MPV /XK, PV , xPE = MPE/XK, PE , xP = MV P /XK, V P , xD = MV D/XK, V D, xLi = J̇L/J̇K, Li

(i = 1, 2), xN = MN/XK, N2, xCi = MC/XK, Ci (i = 1, 2), where J̇L is the light flux that is
supplied to the system to keep it going.
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J̇V P, A1C = −MV C jV P, AC,m
xP

1 + xP + xD
; J̇PP, A1C = −yPP, V P J̇V P, A1C

J̇V D, A2C = −MV C jV D, AC,m
xD

1 + xP + xC
; J̇PD, A2C = −yPD, V DJ̇V D, A2C

J̇EC, AiC = −
∑

∗

yEC, ∗J̇∗, AiC for (i, ∗) ∈ {(1, V P ), (1, E1P ), (1, E2P ), (2, V D), (2, ED)}

J̇EiP, A1C = mEiP J̇V P, A1C for i ∈ {1, 2}; J̇ED, A2C = mEDJ̇V D, A2C

J̇V C, GC = MV C
mEC k̇EC − jEC, MC

mEC + yEC, V C
; J̇EC, DC = −jEC, MCMV C ; J̇PE, HC = mEC J̇PV, HC

J̇PV, HC = ḣaMV C
yV C, EC mEC

1 + yV C, EC mEC
; J̇V C, HC = −J̇PV, HC ; J̇EC, HC = −J̇PE, HC

J̇E1P, A1P = MV P jE1P, AP,m fP1
with fP1

=



1 +
∑

∗

x−1
∗ −

(

∑

∗

x∗

)−1




−1

for ∗ ∈ {L,C}

J̇E2P, A2P = MV P jE2P, AP,m fP2
for ∗ ∈ {L,N,C}

fP2
=



1 +
∑

∗

x−1
∗ −

(

∑

∗/∈L

x∗

)−1

−
(

∑

∗/∈N

x∗

)−1

−
(

∑

∗/∈C

x∗

)−1

+

(

∑

∗

x∗

)−1




−1

J̇V P, GP = ṙV P, GP MV P with ṙV P, GP =





∑

i

ṙ−1
Ei
−
(

∑

i

ṙEi

)−1




−1

and

ṙEi
=

mEiP (k̇EiP − ṙV P, GP )− jEiP,MP

yEiP, V P
; J̇EiP, GP = −yEiP, V P J̇V P, GP for i ∈ {1, 2}

J̇EiP, DiP = −jEiP, MP MV P − (1− κEi)((k̇EiP − jV P, GP )MEiP − (jEiP, MP + jV P, GP yEiP, V P )MV P )

J̇∗, AiD = −MV D j∗, AD,m
x∗

1 + xPP + xPD + xPV + xPE

J̇ED, AiD = −J̇∗, AiDyED, ∗ for (i, ∗) ∈ {(1, PP ), (2, PD), (3, PV ), (4, PE)}

J̇V D, GD = MV D
mED k̇ED − jED, MD

mED + yED, V D
; J̇ED, DD = −jED, MDMV D

d

dt
MPP = J̇PP = J̇PP, A1C + J̇PP, A1D;

d

dt
MPD = J̇PD = J̇PD, A2C + J̇PD, A2D

d

dt
MPV = J̇PV = J̇PV, HC + J̇PV, A3D;

d

dt
MPE = J̇PE = J̇PE, HC + J̇PE, A4D

d

dt
MV C = J̇V C = J̇V C, GC + J̇V C, HC ;

d

dt
MV P = J̇V P = J̇V P, GP + J̇V P, A1C

d

dt
MEC = J̇EC = J̇EC, GC + J̇EC, HC + J̇EC, DC + J̇EC, A1C + J̇EC, A2C

d

dt
MV P = J̇V P = J̇V P, GP + J̇V P, A1C ;

d

dt
MV D = J̇V D = J̇V D, A2C + J̇V D, GD

d

dt
MEiP = J̇EiP = J̇EiP, A1C + J̇EiP, AiP + J̇EiP, GP + J̇EiP, DiP for i ∈ {1, 2}

d

dt
MED = J̇ED = J̇ED, A2D + J̇ED, A1D + J̇ED, A2D + J̇ED, A3D + J̇ED, A4D + J̇ED, GD + JED, DD

d

dt
MC = J̇C = −J̇PP − J̇PD − J̇PV − J̇PE − J̇V C − J̇EC − J̇V P − J̇E1P − J̇E2P − J̇V D − J̇ED

d

dt
MN = J̇N = −0.1J̇PP − 0.1J̇PD − 0.2J̇PV − 0.2J̇PE − 0.2J̇V C − 0.2J̇EC +

−0.2J̇V P − 0.4J̇E2P − 0.2J̇V P − 0.4J̇EP
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Figure 9.26: The steady-state distribution of carbon and nitrogen in the Canonical Community
while increasing the total amount of carbon (upper left), nitrogen (upper right) or light (middle
panels), using the deb model for V1-morphs. The lower panels present the amounts of assimilated
light (by the producers), which is proportional to the amount of dissipating heat. The non-
changed amounts are 1000 units for carbon, 500 units for nitrogen, and 1000 for light. The
amounts of carbon and nitrogen are plotted cumulatively, from bottom to top, for the minerals
(carbon dioxide, C (very small, not labelled), or ammonia, N), detritus (very small, not labelled),
consumers C, (structure and reserve), producers P (structure, C- and N,C-reserves, grey shaded),
decomposers D (structure and reserve). The producers have three carbon components, and two
for nitrogen, because one reserve lacks nitrogen. An increase of light above 4 units has no effect
(so all lines are horizontal).
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d
dt

M = J̇1 = 0.

Figure 9.26 illustrates that an increase of total nitrogen, starting from a situation where
nitrogen is limiting, shifts carbon proportionally from detritus and producers to carbon
dioxide, consumers and decomposers, till it ceases to be limiting. A similar increase in
carbon also results in a proportional increase in the biomass of all three living components,
but ammonia decreases linearly, until it hits a threshold at which the community becomes
extinct. An increase of the light level has a more complex effect on biomass. It results in a
peak for the consumers and the decomposers, and a dip for the producers, while an increase
beyond the level at which light ceases to be limiting has no effect at all. Assimilated light,
in the lower panels of Figure 9.26, quantifies ‘the rate of living’. It is curious to note that
‘the rate of living’ is decreasing for increasing nitrogen, as long as nitrogen is limiting.
Ammonia is practically absent if nitrogen is strongly limiting, all nitrogen is then fixed
into the biota. This corresponds well with widely known qualitative observations: nitrogen
minerals are extremely low in oligotrophic systems (lakes, oceans as well as rain forests).

The Canonical Community can be simplified to a two-species, or even a single-species,
community of mixotrophs. Since grazing no longer limits life span, aging has to be taken
into account for proper behaviour. The Canonical Community can also be extended in
many ways: inclusion of exchange with the outside world and of spatial structure, and
replacement of consumers by a food web of consumers, or of producers and decomposers by
sets of competing producers and decomposers. Some of these extensions can be developed
systematically.

9.5 Summary

This chapter deals with the metabolic interactions between individuals, and shows that
individuals depend on each other in many ways; the boundaries between individuals can
be somewhat vague, and the notion of ecosystem metabolism is developed.

Trophic interactions span a spectrum from competition, via syntrophy, symbiosis and
biotrophy, to predation. The strength of the deb theory is illustrated in the setup of
a full quantitative specification of partners in a symbiontic relationship. The effects of
calcification can be evaluated in corals, for instance, and environmental conditions specified
where the host does not gain from the symbiont.

Populations can be considered as a set of individuals; their dynamics follows from
the eco-physiological behaviour of individuals, when the environment in which they live
is specified. Spatial structure is very important, but not considered in this text. The
distinction between individuals and populations disappears for V1-morphs in the deb
theory. I show how popular models by Monod, Marr–Pirt, Droop, Lotka–Volterra and
the logistic one can be considered as special cases of the deb model, which also have
intriguing implications for the internal dynamics of population structure. Synchronization
of life cycles among individuals can occur spontaneously. Variations in parameter values, in
combination with a set of rules that specify how the values carry over to new generations,
imply selective forces that lead to speciation.

Food chains can show very complex dynamics if the chain length exceeds two. Multiple
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attractors occur easily, sometimes of the chaotic type. Examples illustrate the application
of bifurcation analysis, and a canonical one-dimensional map exists for tri-trophic chains.
Contrary to general insight, an increase in diversity can go with an increase in stability in
homogeneous environments for more realistic dynamics.

Canonical Communities serve to illustrate the metabolic interactions between produc-
ers, consumers and decomposers as quantified by the deb theory. If fully closed for mass,
the community seems to increase metabolic activity for decreasing nitrogen levels, up to
a threshold value, while the activity is proportional to the carbon levels, and satiating in
the light levels. The analysis of Canonical Communities unifies the traditionally separated
characterizations of ecosystems in terms of structure and function; this separation makes
no sense in the context of the deb theory.



Chapter 10

Evaluation

The aim of this short chapter is to place the deb model in the context of research in
eco-energetics, and to evaluate some of its concepts. The chapter loops back to the general
introduction in the first chapter, and especially to the section on modelling, cf. {7}. I first
focus on the deb theory, as presented in this book, then follows a comparison with some
other approaches to the subject of energetics.

10.1 Energetics and metabolism

Metabolism can be defined as the chemical transformation of chemical compounds (in living
systems), which has energetic aspects. These energetic aspects are sometimes particularly
interesting themselves; for example, the thermal balance of endotherms, or the dissipation
of heat in bioreactors, or particular stoichiometries in biochemical reactions. The main role
of energy in the context of the deb theory, however, is that of an abstract variable that has
close links with transformations of chemical compounds. The fluxes of many compounds
through organisms are frequently closely linked to each other, and rather than following one
particular compound, energy is followed. This has several advantages in systems that can
be understood with only one reserve component as state variable. If the fluxes of various
compounds are not closely linked, such as in photoautotrophic systems, this simplification
breaks down and we need to follow a set of compounds, as well as energy (in the form of
light and dissipating heat). This extension can be considered as a multi-variate analogue
of the mono-variate situation.

The significance of energy as the major player in the metabolic game, is that we can
have little hope of understanding the multi-variate situation if we do not understand the
mono-variate one. So energy itself is not considered to be much more important than
any particular chemical compound, but the transformation of chemical compounds can be
simplified in a particular way using energy as a descriptor. Although the thermodynamic
basis of the detailed relationship between energy and compounds in living systems is in-
credibly complex, arguments are presented {35} that support a very simple approximate
relationship that seems adequate for almost all practical purposes.
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10.2 Principles of the deb theory

Objective

The major objective of the deb theory is to formulate a consistent framework for quan-
titative bioenergetics that helps us to connect the different levels of organization: from
molecules to ecosystems. The core of the theory is a model for the energetics of an individ-
ual, as it changes during the life cycle. The objective implies that this model must not be
species specific, and weighs the criterion ‘generality’ with respect to ‘realism’ and ‘simplic-
ity’. One might think that such a generic model must result in poor fits with experimental
data, but this does not seem to be the case. The conclusion, therefore, must be that the
deb theory is very useful, for the time being. Much work remains to be done, however,
both in terms of testing against experimental data and on further developing consistent
theory for the molecular and the ecosystem levels.

Systems theory as the model language

All acceptable models about energetics should be formulated in terms of dynamic systems,
or, at least, it must be possible to re-formulate them that way. The deb model satisfies this
requirement, as it has state variables, inputs and outputs, and explicit rules for changes of
state. It is thus possible to represent the individual as a point in the state space, which is
spanned by scaled length, scaled reserve density and accumulated damage. As time passes,
the point moves through the state space. Individuals appear with zero scaled length,
infinite scaled reserve density, and no damage, and disappear at death. In a population
there are many individuals around, so many points are moving simultaneously through
the state space for individuals. The population can be monitored as a changing frequency
distribution of individuals in the state space for individuals.

Consistency

Consistency has priority over realism for judging mechanistic models. The first reason is
that models are idealizations, so a certain lack of realism is to be expected. Second, the
realism of an internally inconsistent model cannot be satisfactory, because of the absence
of a link with explanatory mechanisms. Since an experienced modeller knows many ways
to improve a fit for a particular data set, a good fit itself does not provide substantial
support for the model. Although it is relatively easy to adapt a model, it is much more
difficult to adapt the list of assumptions from which such a model should follow. Finally,
a lack of realism does not necessarily imply a fault in the model; the data themselves may
be suspect too. Lack of realism only says that model predictions and data are inconsistent,
again underlining the importance of inconsistency. Nevertheless, lack of fit is certainly a
good reason for reconsidering the model assumptions.

To illustrate the far-reaching implications of model assumptions, I want to point to a
problem with the predecessor of the deb model, which became known as the Kooijman–
Metz model [524]. It is still applied because of its putative simplicity [56,786,787] and
differs from the deb model by disregarding reserves.
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The problem concerns what happens if food is (during a very short period) insufficient
for maintenance. The obvious route is to assume instantaneous death, but this is not
realistic. One option is to decrease maintenance temporarily as far as necessary (although
no biological arguments are known to me) and to assume that time until death follows
an exponential distribution. Survival is then no longer coupled explicitly to the internal
state of the organism. Although this problem can be solved by introducing an extra state
variable, which could be called ‘damage’, the model then loses its simplicity. If maintenance
is paid from food, if available, otherwise from biomass, problems become apparent as soon
as one tries to set up mass balances using models that include maintenance but not reserves.
We need at least one extra parameter, a switch, and a much more complex description of
mass transformations. The price for refraining from modelling reserves is high; we have to
give up modelling the embryonic stage, and new parameters appear that specify embryonic
costs and incubation periods. Moreover, no useful body size scaling relationships can be
based on a model without reserves. Furthermore, the modelling of product formation is
problematic (because assimilation, maintenance and growth span up a vector space of two
dimensions only), and modelling the kinetics of lipophilic compounds is hardly feasible. The
conclusion is that, although the inclusion of reserves is not always essential for obtaining
realism with all types of data (e.g. data on growth at one constant level of food availability),
neglecting reserves greatly limits the scope of a model.

Consistency arguments easily lead to the conclusion that at least one reserve should
consist of a generalized compound, rather than a set of pure compounds, to accommodate
all essential nutrients that are not modelled explicitly. The same argument also implies
that assimilation must be close to the minimum type, where a single nutrient limits growth,
to avoid the unrealistic implication that non-modelled nutrients must be present at very
high densities to guarantee that they do not affect assimilation. (The frequently applied
multiplicative model for nutrient uptake fails this consistency test.) The requirement
that reserves can be gradually coupled to reduce the number of freely varying reserves
greatly restricts the class of possible dynamics for reserves. This consistency requirement
is imposed by the process of evolution for reserves consisting of pure compounds, while
the argument is basic for reserves consisting of generalized compounds. I have shown
that the partionability requirement for reserves, in combination with the weak homeostasis
assumption, not only fully determines reserve dynamics, but also imposes constraints on
allocation rules.

Conservation laws

Cornerstones of the deb theory are the mass and energy conservation laws. They constitute
a special kind of consistency argument. This might seem trivial to non-biologists, but most
existing theories and models in physiology and population dynamics do not observe these
laws explicitly, and frequently violate them. The application of these conservation laws
to very open systems, such as living organisms, is not always easy. It implies a strict
homeostasis for each body component and a simple coupling between mass and energy
fluxes.

The minimum number of body components for realistic models that cover all life stages
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seems to be two. The description of nutrient limitations requires more than one type
of reserve, plants require more than one type of structural body mass, because they use
different organs for the uptake of the various nutrients and they are very flexible in the
resource allocation to these organs. The assumption that mass fluxes are proportional to
surface areas seems to be quite natural (i.e. it has an obvious physical interpretation),
which makes the scaling between surface areas and body mass particularly important.
This introduces a morphological element into the study of mass and energy fluxes. The
representation of the complex chemical reaction that specifies the growth and reproduction
process in terms of a vector of reaction rates, together with stoichiometric constraints, is
a direct implication of the application of mass and energy conservation laws.

Apart from energy and mass, time is also a conserved quantity and time budgets play
a central role in feeding behaviour. This conservation law is at the basis of the hyperbolic
(Holling type II) functional response: the uptake system does not ‘accept’ arriving food
particles when it is busy processing a food particle; one behavioural component excludes
another at the same moment. In particular cases, it makes sense to elaborate on this and
account for time lost for feeding because of social interactions, for instance. This approach
is central to the optimal foraging theory [883], which deals with priorities that individuals
have for activities that maximize some fitness measure. It is not difficult to see that
behavioural components can in principle be optimized, because the individual has, to some
extent, the freedom to choose. Even in this situation, however, there are doubts that this
actually leads to profound insight [710]. Behavioural and physiological components are
closely linked, and the individual has less freedom to choose from physiological options.
A field that is known as life history theory [780,878] extends the argument to include
physiological components in the evolutionary optimization of fitness. This is a grey area,
where the success of such an approach depends sensitively on the constraints considered.
The deb theory provides such a set of constraints, which restricts optimization arguments
to parameter values.

Generality

The deb theory is extreme in the point of view that assumptions regarding the eco-
physiological behaviour of organisms apply to all species in all life stages, unless it is obvious
from the nature of the assumption that it applies only to a limited set of species and/or
stages. Comparison of species helps to distinguish species-specific assumptions from the
general ones. Models that restrict the maximum body size of female animals by allocating
an increasing amount of resources to reproduction, for instance, are problematic because of
the existence of males, which do have a restricted maximum body size but are not able to
allocate this way; sex determination is frequently affected by environmental factors. Size
control should be implemented in a way that applies to both females and males. Other
examples: juveniles differ energetically from embryos only by feeding, heterotrophs only
differ from autotrophs in the way they obtain the substrate for the formation of reserves.
Observations of one species or stage are used to structure the modelling of the energetics
of another. The approach has proven to be successful, in my judgement.
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Mechanisms

The deb theory is built on a relatively short list of assumptions that can be called ‘mech-
anistic’. Although any statement has descriptive aspects, the easiest test for being mech-
anistic is in applications to other situations and in the possibility of formulating models
at a lower level or organization that result in the model of interest, see {246}. Descriptive
models only apply to the situation for which they are made; models based on mechanistic
assumptions can be constructed for new situations, using supplementary situation-specific
assumptions. The mathematical formulations differ from one situation to another, but the
mechanistic assumptions remain the same. Many examples have been worked out in this
book.

Hierarchy in metabolic organization

The types of assumptions used to specify the deb model for the individual imply a sup-
posed hierarchy in the organization of metabolism. The generation and use of atp, for
instance, is part of the machinery cells use to couple the degradation and formation of
particular compounds, but atp dynamics is not given an organizing role. atp change is
the focus of bioenergetics, mainly because it can be used to measure the difference in free
energy between substrate and product. Hormones are considered to be compounds that
organisms use to regulate and couple particular processes, by binding them to receptors
to induce action. Hormones themselves do not organize metabolism; this is the task of
model components higher up in the hierarchy, that controls the dynamics of the hormones.
The hierarchy in metabolic control is a concept that is basic to understanding why the
deb model is appropriate for organisms that differ in the hormones they use. The con-
cept is implied by the use of generalized compounds, such as structural body mass and
reserves, rather then actual compounds, such as particular proteins. A full understanding
of metabolism involves modules that show how actual compounds relate to generalized
compounds in detail. Much work still has to be done to formulate such modules as part
of the metabolic regulation system. It will be exciting to discover to what extent these
regulation systems are not species specific.

Support and testability

A lot of effort went into empirical tests of evaluations on the basis of data collected from the
literature. Adequate tests, however, require experimental programs specifically designed
to test the theory.

Since models are simplifications and idealizations of the empirical world, it must always
be possible to detect differences between model predictions and experimental data. This
certainly applies to the deb model, because it is really simple, while organisms are not.

When models have a large number of parameters, it usually implies that they are very
flexible, and can always be fitted successfully to any experimental data set, even if the
underlying assumptions lack any realism. This is why such effort has been invested to
keep the deb model as simple as possible. The possibility of testing the model for realism
steeply increases if combinations of different types of data can be fitted simultaneously. If
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the data only included weight as a function of age, for instance, a successful fit would give
little support in the absence of knowledge about food availability, feeding rate, respira-
tion, temperature, etc. If the data include information on all of these quantities, and the
simultaneous fits are still satisfactory, the support increases substantially.

An important aspect of theoretical work is to classify the assumptions as general or
specific. The general assumptions of the deb model provide the theoretical basis for the
mass–energy coupling, and for the empirical method of indirect calorimetry. The specific
assumptions can be changed without affecting this theoretical basis. Any attempt to
change the general assumptions, however, involves changes in the specific ones as well.
Such changes should deal with the problem of understanding how the method of indirect
calorimetry is so successful. Any attempt to change the strong homeostasis assumption, to
allow for changes in the chemical composition of structural mass and/or reserves, should
deal with the problem of how to quantify their amounts. Quantifications in terms of
weights, volumes and carbon contents, for instance, are then no longer equivalent, and
I can see no argument for a choice of one of these measures. (This is why more state
variables should be introduced to increase the flexibility of chemical composition, rather
than changing the strong homeostasis assumption.) These examples show the existence of
a natural hierarchy in assumptions, which is most useful for developing a sound theoretical
framework for metabolic organization. We can more easily change the specific assumptions
and study the implications for the system’s performance, while we need strong arguments
to change the more general assumptions. Models that only differ in specific assumptions
are more related to each other than models that differ in general assumptions. This can
be a basis for the delineation of a family tree for models.

I consider the correct predictions for the body size scaling relationships as the strongest
empirical support for the conclusion that the deb model captures the main features in
animal energetics quite realistically. The derivation of the body size scaling relationships
applies to all models that allow a classification of the parameters as intensive and extensive,
while the ultimate body size can be written as a function of parameters. The resulting
relationships depend on the model, of course.

In each particular practical situation that requires interpretation of quantitative data,
aspects and/or factors are involved that are specific for that particular situation, as are
aspects that are more general and relate to general underlying principles. The significance
of a mechanistic approach is to recognize these aspects, and decompose the signal into
its various components. With the aid of a theory for the general aspects, the task of
understanding the signal reduces to understanding the aspects that are specific for that
situation. If the purpose is to test a theory for realism, it helps to select experimental
conditions such that hardly any situation-specific aspects are involved. Testability is not a
property of a theory only, but of the theory in combination with an experimental setup and
the data collected from the experiments. Moreover, testability comes in gradations; it is
simpler to study the various contributing processes one by one, rather than in combination.
However, this is frequently not possible. The implication is that assumptions can usually
only be tested for realism in bundles [487], which complicates the process of identifying
the unrealistic assumption(s).
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gross energy consumption, µX J̇X

faecal energy, µP J̇P-
apparent assimilated energy, µX J̇X − µP J̇P
?

urinary energy, µN J̇N-
metabolizable energy, µX J̇X − µP J̇P − µN J̇N
?

heat increment of feeding, κfdµX J̇X-
heat increment of fermentation, κfmµX J̇X-

net energy, (1− κfd − κfm)µX J̇X − µP J̇P − µN J̇N
?

maintenance metabolism, ṗT + (κbm + κac)ṗM-
basic metabolism, κbmṗM-
thermoregulatory, ṗT-
activity, κacṗM-

production, κprṗM + (µV + µEmE)J̇V + µE J̇ER-
energy storage (growth), (µV + µEmE)J̇V-
hair, feathers, cuticle, κprṗM-
reproduction (eggs, semen, milk), κRṗR-

work, (κAµX − yPXµP )J̇X − µN J̇N − ṗT − κM ṗM − (µV + µEmE)J̇V − µE J̇ER
-

Figure 10.1: A typical static
energy budget [1009, page 87]. The
symbols refer to the powers in the
dynamic energy budget, and reveal
the links; see text for explanation.

10.3 Other approaches

10.3.1 Static Energy Budgets

Most of the literature on animal energetics concerns Static Energy Budgets (sebs). The
term budget refers to the conservation of energy, i.e. the various allocated powers add to
the power input. sebs can only be compared to debs at steady state, by averaging over
a sufficient number of meals, but not so many that size changes. Figure 10.1 gives the
relationship between both approaches. The following differences exist

• seb deals with energies that are fixed in the different products, while deb deals with
energies allocated to assimilation, maintenance and growth; the difference is in the
overhead costs. The reconstruction assumes that the seb balance is complete, so no
products are formed coupled to growth, and also that we are dealing with an adult,
and are using a combustion frame of reference (the energy content of oxygen, carbon
dioxide, water and ammonia is set to zero). Some of the mapping depends on details
of how the quantities are actually measured. The total balance sheet amounts to
µX J̇X = µP J̇P + (µV + µEmE)J̇V + κRṗR + µN J̇N + ṗT+, or ṗA = ṗM + ṗJ + ṗT +
(1 + mEyV E)ṗG + ṗR.

• ‘faecal energy’ represents a fixed fraction of ‘gross energy consumption’ in deb, so
µP J̇P = µP yPX J̇X .

• ‘urinary energy’ is decomposed in deb into contributions from assimilation, main-
tenance and growth: J̇N = J̇N,A + J̇N,M + J̇N,G. Subtraction from the ‘apparent
assimilation energy’ complicates the mapping of the remaining energy to mainte-
nance and (re)production.
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• ‘heat increment of feeding’ and of ‘fermentation’ are included in the overhead costs of
assimilation and, therefore, fractions of the ‘gross energy consumption’. The fractions
κfd and κfm are constants.

• ‘net energy’ equals ṗA−µN(J̇N,M + J̇N,G), assuming that both heat increments cover
all assimilation overheads, except for the assimilation part of urinary energy. It
follows that κfd + κfm = 1−yPXµP /µX

1+µNηNA
.

• ‘basic metabolism’, ‘activity’, and ‘hair, feather, cuticle’ are all fractions of somatic
maintenance costs in deb, so κbm + κac + µN J̇NM/ṗM = 1. This mapping includes
the overhead costs of maintenance in ‘basic metabolism’, the correctness depending
on the way it is measured.

• ‘energy storage’ includes the energy fixed in new reserves and new structural mass.
Notice that µV J̇V < ṗG; the overhead costs of growth in deb go into ‘work’ in seb.

• ‘milk production’ (of female mammals) comes with a temporal change in the param-
eters {J̇Xm} and {ṗAm} in deb.

• ‘work’ includes part of the overhead costs of growth and maintenance in sebs’ balance
sheet. The abbreviations κA = 1 − κfd − κfm and κM = κbm + κac + κpr have been
made. Alternative expressions are: ṗA−ṗM−ṗT−κRṗR−µN J̇N,G−(µV +µEmE)J̇V =
ṗG(1 + mEyV E) + ṗR(1− κR) + ṗJ − µX J̇X + µpJ̇P + κRṗR + ṗT+ = ṗT+ + ṗJ + ṗR +
ṗG(1 + yV EmE) + µP J̇P − µX J̇X .

The significance of including certain energy allocations in the overhead of others is in
the comparison of energy budgets, both between different organisms and with respect to
changes in time. Such inclusions greatly simplify the structure of energy budgets, and
reduce the flexibility, i.e. reveal patterns of covariation of allocations. It boils down to the
sharp distinction that debs make between the power allocated to, for example, growth, and
the power that is actually fixed in new biomass; sebs can only handle the energy that is
fixed in new biomass, because the energy allocated to growth can only be assessed indirectly
via changes of the budget in time. The reconstruction beautifully shows that ‘work’ has
many contributions in seb, and cannot be interpreted easily. The term is misleading, by
suggesting that the individual can spend it freely.

Von Bertalanffy [77] related the respiration rate to the rate of anabolism. I cannot
follow this reasoning. At first sight, synthesis processes are reducing by nature, which
makes catabolism a better candidate for seeking a relationship with respiration. In the
standard static budget studies, respiration rates are usually identified with maintenance
metabolism. These routine metabolic costs are a lump sum, including the maintenance of
concentration gradients across membranes, protein turnover, regulation, transport (blood
circulation, muscle tonus), and an average level of movement. The Scope For Growth (sfg)
concept rests on this identification. The idea behind this concept is that energy contained
in faeces and the energy equivalent of respiration are subtracted from energy derived from
food, the remainder being available for growth [60]. The sfg concept is built on sebs,
{365}. In the deb model, where energy derived from food is added to the reserves, the
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most natural candidate for a relationship with respiration is the rate at which the reserves
are used. This is underpinned on {135}.

Although respiration rates are measured over short periods (typically a couple of min-
utes) and the actual growth of the body is absolutely negligible, the energy investment in
growth can still be substantial. Parry [688] estimates the cost of growth between 17 and
29% of the metabolism of an ‘average’ ectotherm population. The respiration rate includes
routine metabolic costs as well as costs of growth [796]. This interpretation is, therefore,
incompatible with the sfg concept. Since the deb model does not use respiration rates
as a primary variable, the interpretation problems concerning respiration rates only play
a role in testing the model.

10.3.2 Net production models

The deb model assumes that assimilates are added to reserves, and reserves are used to fuel
other metabolic processes (maintenance, growth, development, reproduction). R. Nisbet
proposed the term assimilation models for models based on this assumption, to distinguish
them from net production models. The latter models first subtract maintenance costs from
assimilates, before allocation to other metabolic processes occurs. Several net production
models have been worked out [20,359,560,669,791]. Both types of models classify as deb
models, and it will not always be easy to use experimental data to choose between the two
possibilities.

One problem is that only fully specified models can be tested with experimental data;
one has to specify all allocation rules. The models then differ in more than one respect,
because it is not possible to change the way of paying maintenance without changing the
allocation to growth in the deb model. This hampers firm conclusions with respect to
the choice between assimilation and production models. Moreover, small differences in
goodness of fit can hardly be used to make such a judgement. The cause of a lack of fit
can be another assumption about allocation. Differences in goodness of fit are sometimes
small [791].

The choice of an assimilation structure rather than a net production structure is pri-
marily motivated by simplicity in several respects, including mechanistic arguments with
respect to metabolic control. The first argument is that embryos do not feed, but never-
theless have to pay maintenance costs. Net production models then suffer from the choice
of letting embryos differ from juveniles by allowing embryos to pay maintenance from re-
serves, or treating yolk as a new state variable that is typical for embryos [560]. The
second argument is that if feeding is not sufficient to pay maintenance costs, they have to
be paid from reserves; it does not seem realistic to assume that an animal dies from star-
vation while it has lots of reserves. Most animals feed on meals anyway, while the storage
in the gut cannot explain the survival between the meals. Net production models must,
therefore, contain elements of assimilation models, and switches have to be installed to
pay maintenance from assimilates and/or from reserves. The analysis of the mathematical
properties of models with switches rapidly becomes more problematic with the number of
switches. The feeding and reproduction switch seems to be unavoidable for all energetic
models. This set of arguments relates to the organization of metabolism, which is much
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more independent of the environment in assimilation models than in net production mod-
els. This allows a simpler regulation system for metabolism, which is mainly driven by
signals from the nutritional state of the organism itself, rather than from signals directly
taken from the environment.

The net production models that are presently available have many more parameters
than the assimilation model in this book; the simplest and best comparable production
model is that formulated by Lika and Nisbet [560]. Besides structural mass, its state
variables include yolk (in the embryonic stage), reserves and the maximum experienced
reserve density in the juvenile and adult stages. Although it is possible to simplify net
production models and reduce the number of parameters, I am convinced that they need
more parameters and state variables than assimilation models with a comparable amount
of detail. This is because they have to handle switches, and specify growth investment
in a more complex way. The parameter κ of the assimilation model in this book specifies
the investment in growth (plus somatic maintenance) versus reproduction (plus maturity
maintenance); growth ceases automatically when the energy allocated to growth plus so-
matic maintenance is required for somatic maintenance. Reproduction can continue, while
growth ceases. Net production models need at least one extra parameter to obtain this
type of behaviour. Maintenance in net production models is paid for by food if possible,
but from reserves if necessary, which requires an extra parameter for the maintenance
costs. Maintenance is always paid from reserves in assimilation models (except in extreme
starvation during shrinking). The number of parameters and state variables is a measure
of the complexity of a model.

The mechanism for reserve dynamics and weak homeostasis that is proposed here,
structural homeostasis {246}, does not apply to net production models. I expect that it
is difficult to implement weak homeostasis mechanistically in net production models. If
true, this means that biomass composition is changing, even at steady state, and structure
always has to be disentangled from reserves in tests against experimental data. I also
expect that it is difficult to derive realistic body size scaling relationships and to explain
the method of indirect calorimetry on the basis of net production models.

Since reserves are wired prior to allocation to reproduction in production models, and
not used for growth, they are hard to apply to dividing organisms, such as micro-organisms.
The growth of plant biomass from tubers, and growth during starvation (cf. Figure 7.3),
for instance, are also hard to implement; it needs an extra state variable similar to yolk in
the embryo.

Toxic compounds, parasites or the light regime can change the value of κ, which has
complex consequences (growth is reduced and development lasts for a shorter time and/or
reproduction is greater because of the higher investment, which is partially cancelled by
the reduction of assimilation due to reduced growth). These complex changes can be
described realistically with effects on a single parameter in the present assimilation model,
while net production models need a more complex description that involves effects on more
parameters. This type of perturbation of metabolism is perhaps the strongest argument
in favour of assimilation models.
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monografieën. Kosmos, Amsterdam, 1982.

[726] K. G. Porter, J. Gerritsen, and J. D. Orcutt. The ef-
fect of food concentration on swimming patterns, feed-
ing behavior, ingestion, assimilation and respiration
by Daphnia. Limnol. Oceanogr., 27:935–949, 1982.

[727] K. G. Porter, M. L. Pace, and J. F. Battey. Cili-
ate protozoans as links in freshwater planktonic food
chains. Nature (Lond.), 277:563–564, 1979.

[728] R. K. Porter and M. D. Brand. Body mass depen-
dence of H+ leak in mitochondria and its relevance to
metabolic rate. Nature (Lond.), 362:628–630, 1993.

[729] L. Posthuma, R. F. Hogervorst, E. N. G. Joosse, and
N. M. van Straalen. Genetic variation and covaria-
tion for characteristics associated with cadmium tol-
erance in natural populations of the springtail Orch-
esella cincta (l.). Evolution, 47:619–631, 1993.

[730] L. Posthuma, R. F. Hogervorst, and N. M. van
Straalen. Adaptation to soil pollution by cadmium ex-
cretion in natural populations of Orchesella cincta(l.)
(Collembola). Arch. Environ. Contam. Toxicol.,
22:146–156, 1992.

[731] E. Postma, W. A. Scheffers, and J. P. van Dijken.
Kinetics of growth and glucose transport in glucose-
limited chemostat cultures of Saccharomyces cere-
visiea cbs 8086. Yeast, 5:159–165, 1989.

[732] E. Postma, C. Verduyn, W. A. Scheffers, and J. P. van
Dijken. Enzyme analysis of the crabtree effect in
glucose-limited chemostat cultures of Saccharomyces
cerevisiea. Appl. Environ. Microbiol., 55:468–477,
1989.

[733] D. M. Prescott. Relations between cell growth and cell
division. In D. Rudnick, editor, Rythmic and synthetic
processes in growth, pages 59–74. Princeton Univer-
sity Press, 1957.



392 Bibliography

[734] G. D. Prestwich. The chemical defences of termites.
Sci. Am., 249:68–75, 1983.

[735] H. H. Prince, P. B. Siegel, and G. W. Cornwell. Em-
bryonic growth of mallard and pekin ducks. Growth,
32:225–233, 1968.

[736] W. G. Pritchard. Scaling in the animal kingdom. Bull.
Math. Biol., 55:111–129, 1993.

[737] D. R. Prothero and W. A. Berggren, editors. Eocene-
Oligocene climatic and biotic evolution. Princeton
University Press, 1992.

[738] L. Psihoyos. Hunting dinosaurs. Random House, New
York, 1994.

[739] D. M. Purdy and H. H. Hillemann. Prenatal growth
in the golden hamster (Cricetus auratus). Anat. Rec.,
106:591–597, 1950.

[740] A. Pütter. Studien über physiologische Ähnlichkeit.
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[793] M. Rubner. Über den Einfluss der Körpergrösse auf
Stoff- und Kraftwechsel. Z. Biol., 19:535–562, 1883.

[794] W. Rudolph. Die Hausenten. Die Neue Brehm-
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Glossary

acidity The negative logarithm, with base 10, of the proton concentration expressed in
mole dm−3. It is known as the pH

alga An autotrophic (or mixotrophic) protoctist

allometry The group of analyses based on a linear relationship between the logarithm
of some physiological or ecological variable and the logarithm of the body weight of
individuals

altricial A mode of development where the neonate is still in an early stage of development
and requires attention from the parents. Typical altricial birds and mammals are
naked and blind at birth. The opposite of altricial is precocial

anabolism The collection of biochemical processes involved in the synthesis of structural
body mass

animal Metazoan, ranging from sponges to chordates

Arrhenius temperature The value of the slope of the linear graph one gets if the loga-
rithm of a physiological rate is plotted against the inverse absolute temperature. It
has dimension temperature, but it does not relate to a temperature that exists at a
site

aspect ratio The dimensionless ratio between the length and the diameter of an object
with the shape of a cylinder (filaments, rods). The length of rods includes both
hemispheres

assimilation Generation of reserves from substrates (food)

ATP Adenosine triphosphate is a chemical compound that is used by all cells to store or
retrieve energy via hydrolysis of one or two phosphate bonds

Avogadro constant The number of C-atoms in 12 g of 12C, which is 6.02205 1023 mol−1

Bernoulli equation A differential equation of the type d
dx

y + f(x)y = g(x)ya, where a is
any real number and f and g are arbitrary functions of x. Bernoulli found a solution
technique for this type of equation



404 Glossary

C-mole Ratio of the number of carbon atoms of a compound to the Avogadro’s constant,
where the frequencies of non-carbon elements are expressed relative to carbon

canonical Relating to the simplest form to which various equations and schemata can be
reduced without loss of generality

catabolism The collection of biochemical processes involved in the decomposition of com-
pounds for the generation of energy and/or source material for anabolic processes;
here used for the use of reserves for metabolism (maintenance and growth)

chemical potential The change in the total free energy of a mixture of compounds per
mole of substance when an infinitesimal amount of a substance is added, while tem-
perature, pressure and all other compounds are constant

coefficient of variation The dimensionless ratio of the (sample) standard deviation and
the mean. It is a useful measure for the scatter of realizations of a random variable
that has a natural origin. The measure is useless for temperatures measured in
degrees Celsius, for example

combustion reference In this frame of reference, the chemical potentials of H2O, HCO−
3 ,

NH+
4 , H+ and O2 are taken to be 0. The chemical potentials of organic compounds

in the standard thermodynamic frame of reference (pH=7, 298 K, unit molarity) are
corrected for this setting by equating the dissipation free energy in both frames of
reference, when the compound is fully oxidized. The chemical potential of compound
CHxOyNz in the combustion frame of reference is expressed in the standard frame
of reference as µchxoynz = µ◦

chxoynz
+ 1

2
(2 − x + 3z)µ◦

h2o
− µ◦

hco
−
3
− (1 − z)µ◦

h
+ −

zµ◦

nh
+
4

+ 1
4
(4 + x− 2y − 3z)µ◦

o2

compound parameter A function of original parameters. It is usually a simple product
and/or ratio

cubic spline function A function consisting of a number of third-degree polynomials
glued together in a smooth way for adjacent intervals of the argument. This is done
by requiring that polynomials which meet at a particular argument value xi have the
same value yi, and the same first two derivatives at that point. The points xi, yi,
for i = 1, 2, · · · , n with n ≥ 4 are considered as the parameters of the cubic spline.
For descriptive purposes, splines have the advantage over higher order polynomials
because their global behaviour is much less influenced by local behaviour

DEB Initials of the Dynamic Energy Budget model or theory, which is discussed in this
book. The term ‘dynamic’ refers to the contrast with the frequently used Static
Energy Budget models, where the specifications of the individual do not change
explicitly in time

density The ratio of two masses; but these masses are not necessarily homogeneously
mixed, contrary to the concept ‘concentration’
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dissociation constant The negative logarithm, with base 10, of the ratio of the product
of the proton and the ion concentration, to the molecule concentration. It is known
as the pK

DNA Deoxyribonucleic acid, the carrier of genetic information in all living cells

eclosion Hatching of imago from pupa (of a holo-metabolic insect)

ectotherm An organism that is not an endotherm

eigenvalue If a special vector, an eigenvector, is multiplied by a square matrix, the result
is the same as multiplying that vector by a scalar value, known as the eigenvalue.
Each square matrix has a number of different independent eigenvectors. This number
is less than or equal to the number of rows (or columns). Each eigenvector has its
own eigenvalue, but some of the eigenvalues may be equal

endotherm An animal that usually keeps its body temperature within a narrow range by
producing heat. Birds and mammals do this for most of time that they are active.
Some other species (insects, tuna fish) have endothermic tendencies

enthalpy Heat content with dimension energy mole−1. The enthalpy of a system increases
by an amount equal to the energy supplied as heat if the temperature and pressure
do not change

entropy The cumulative ratio of heat capacity to temperature of a body when its tem-
perature is gradually increased from zero (absolute) temperature to the temperature
of observation. Its dimension is energy×(temperature mole)−1. The equivalent def-
inition of the ratio of enthalpy minus free energy to temperature is more useful in
biological applications

estimation The use of measurements to assign values to one or more parameters of a
model. This is usually done in some formalized manner that allows evaluation of the
uncertainty of the result

eukaryote An organism that has a nucleus; it contrasts with prokaryote, and includes
protoctists, plants and animals

expectation The theoretical mean of a function of a random variable. For a function g
of a random variable x with probability density φx, its formal definition is Eg(x) ≡
∫ g
x (x)φx(x) dx. For g(x) = x, the expectation of x is the theoretical mean

exponential distribution The random variable t is exponentially distributed with pa-
rameter ṙ if the probability density is φt(t) = ṙ exp{−ṙt}. The mean of t equals
ṙ−1

filament An organism with the shape of a cylinder that grows in length only. The aspect
ratio is so small that the caps can be neglected in its energetics
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first-order process A process that can be described by a differential equation where the
change of a quantity is linear in the quantity itself

flux An amount of mass or energy per unit of time. An energy flux is physically known
as a power

free energy The maximum amount of energy of a system that is potentially available
for ‘work’. In biological systems, this ‘work’ usually consists of driving chemical
reactions against the direction of their thermodynamic decay

functional response The ingestion rate of an organism as a function of food density

generalized compound Mixture of chemical compounds that does not change in compo-
sition: fixed stoichiometries for synthesis (organic substrate, reserves and structural
mass are generalized compounds)

growth Increase in structural body mass, measured as an increase in volume in most
organisms. I do not include anabolic processes that are part of maintenance

hazard rate The probability per time increment that death strikes at a certain age, given
survival up to that age

heat capacity The mole-specific amount of heat absorbed by a substance to increase one
Kelvin in temperature. Heat capacity typically depends on temperature and has
dimension energy mole−1

heterotroph An organism that uses organic compounds as a source of energy

homeostasis The ability of most organisms to keep the chemical composition of their
body constant, despite changes in the chemical composition of the environment

iteroparous Able to reproduce several times, rather than just once

isomorph An organism that does not change its shape during growth

large number law The strong law of large numbers states that the difference between
the mean of a set of random variables and its theoretical mean is small, with an
overwhelming probability, given that the set is large enough

maintenance A rather vague term denoting the collection of energy-demanding processes
that life seems to require to keep going, excluding all production processes. I also
exclude heat production in endotherms

mass action law The law that states that the meeting frequency of two types of particles
is proportional to the product of their densities, i.e. number of particles per unit of
volume

morph Organism in which surface area that is involved in uptake grows proportional to
volume0 (V0-morph) or to volume1 (V1-morph)



Glossary 407

NADPH Nicotinamide adenine dinucleotide phosphate is a chemical compound that is
used by all cells to accept pairs of electrons

nutrients Inorganic substrates used for the synthesis of reserves; carbon dioxide and am-
monia are examples, and light is also included for convenience

ODE Ordinary differential equation, which is an equation of the type d
dt

y = f(t, y), for
some function f of t and y

ovoviviparous Having embryos that develop energetically independent from, but inside
the mother

parameter A quantity in a model that describes the behaviour of state variables. It is
usually assumed to be a constant

parthenogenesis The mode of reproduction where females produce eggs that hatch into
new females without the interference of males

partition coefficient The ratio of the equilibrium concentrations of a compound dis-
solved in two immiscible solvents, which is taken to be independent of the actual
concentrations. The concentrations are here expressed per unit of weight of solvent
(not per unit of volume or per mole of solvent)

phylum A taxon that collects organisms with the same body plan

plant Embryophyte, which includes mosses, ferns and relatives, gymnosperms and flow-
ering plants

Poisson distribution A random integer-valued variable X is Poisson distributed with
parameter (mean) λ if Pr{X = x} = λx

x!
exp{−λ}. If intervals between independent

events are exponentially distributed, the number of events in a fixed time period will
be Poisson distributed

polynomial A polynomial of degree n of argument x is a function of the type
∑n

i=0 cix
i,

where c0, c0, · · · , cn with cn 6= 0 are fixed coefficients

precocial A mode of development where the neonate is in an advanced state of develop-
ment and usually does not require attention from the parents. Typical precocial birds
and mammals have feathers or hair and gather food by themselves. The opposite of
precocial is altricial

probability density function A non-negative function, here called φ, belonging to a
continuous random variable, x for instance, with the property that

∫ x2
x1

φx(x) dx =
Pr{x1 < x < x2}

prokaryote An organism that does not have a nucleus, i.e. a eubacterium or archaebac-
terium; it contrasts with an eukaryote

protoctist An eukaryote that is not a plant or animal
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reduction degree A property of a molecule. Its value equals the sum of the valences of
the atoms minus the electrical charge

relaxation time A characteristic time that indicates how long a dynamic system requires
to return to its equilibrium after perturbation. It is a compound parameter with the
dimension time, standing for the first term of the Taylor expansion of the differential
equation that describes the dynamics of the system, evaluated in its equilibrium

respiration quotient The ratio between carbon dioxide production and oxygen consump-
tion, expressed on a molar basis

rod A bacterium with the shape of a croquette or sausage, that grows in length only, at a
certain substrate density. It is here idealized by a cylinder with hemispheres at both
ends

sd Standard deviation, estimated by the square root of the variance

state variable A variable which determines, together with other state variables, the be-
haviour of a system. The crux of the concept is that the collection of state variables,
together with the input, determines the behaviour of the system completely

survivor function A rather misleading term standing for the probability that a given
random variable exceeds a specified value. All random variables have a survivor
function, even those without any connection to life span. It equals one minus the
distribution function. The term is sometimes synonymous with upper tail probability

taxon A systematic unit, which is used in the classification of organisms. It can be species,
genus, family, order, class, phylum, kingdom

Taylor expansion The approximation of a function by a polynomial of a certain degree
that is thought to be accurate for argument values around a specified value. The
coefficients of the polynomial are obtained by equating the function value and its
first n derivatives at the specified value to that of the n degree polynomial

volumetric length The cubic root of the volume of an object. It has dimension length

weighted sum The sum of terms that are multiplied with weight coefficients before ad-
dition. If the terms do not have the same dimension, the dimensions of the different
weight coefficients convert the dimensions of weighted terms to the same dimension

zero-th order process A process that can be described by a differential equation where
the change of a quantity is constant

zooplankter An individual belonging to the zooplankton, i.e. a group of usually small
aquatic animals that live in free suspension and do not actively move far in the
horizontal direction



Notation and symbols

Some readers will be annoyed by the notation, which sometimes differs from that typi-
cally used in a particular specialization. One problem is that conventions in microbiology,
for example, differ from those in ecology, so not all conventions can be observed at the
same time. The symbol D, for example, is used by microbiologists for the dilution rate
in chemostats, but by chemists for diffusivity. A voluminous literature on population dy-
namics exists, where it is standard to use the symbol l for survival probability. This works
well as long as one does not want to use lengths in the same text! Another problem is
that most literature does not distinguish structural biomass from energy reserves, which
both contribute to dry weight, for example. So the conventional symbols actually differ in
meaning from those used here. Few texts deal with such a broad spectrum of phenomena
as this book. A consequence is that any symbol table is soon exhausted if one carelessly
assigns new symbols to all kinds of variables that show up.

The following conventions are used to reduce this problem and to aid memory.

Symbols

• Variables denoted by symbols that differ only in indices have the same dimensions.
For example ME and MV are both moles.

• The interpretation of the leading character does not relate to that of the index char-
acter. For example, the M in ME stands for mass in moles, but in k̇M it stands for
maintenance.

• Lowercase symbols frequently relate to uppercase ones via scaling; e is a scaled E.
Likewise, this applies to J , L, M , W and X. Exceptions are F , P , R and T .

• Analogous to the tradition in chemistry, quantities which are expressed per unit
of biovolume have square brackets, [ ]. Quantities per unit of biosurface area have
braces, { }. Quantities per unit of weight have angles, 〈 〉, (with indices w and d for
wet and dry weight). This notation is chosen to stress that these symbols refer to
relative quantities, rather than absolute ones. They do not indicate concentrations
in the chemical sense, because most of the compounds concerned are not soluble.
Parentheses, square brackets and braces around numbers refer to equations, refer-
ences and pages respectively.
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• Rates have dots, which merely indicate the dimension ‘per time’. Dots (and primes)
do not stand for the derivative as in some mathematical and physical texts (see the
subsection ‘Expressions’). Dots, brackets and braces allow an easy test for some
dimensions, and reduce the number of different symbols for related variables. If
time has been scaled, i.e. the time unit is some particular value making scaled time
dimensionless, the dot has been removed from the rate that is expressed in scaled
time.

• Random variables are underscored. The notation x|x > x means the random variable
x given that it is larger than the value x. It can occur in expressions for the proba-
bility, Pr{}, or for the probability density function, φ(), or the distribution function,
Φ().

• Vectors and matrices are printed in bold face. A bold number represents a vector
or matrix of elements with that value; so J̇1 is the summation of matrix J̇ across
columns and 1T J̇ across rows; x = 0 means that all elements of x are 0.

Indices

Indices are catenated, the first subscript frequently specifying the variable to which the
symbol relates. For example MV stands for a mole of structural biomass, where V is struc-
tural biovolume. Some indices have a specific meaning
∗ indicates that several other symbols can be substituted.

It is known as a ‘wildcard’ in computer science.
As superscript it denotes the equilibrium value of the variable.

′ indicates a scaling as superscript.
i, j are counters that refer to types or species; they can take the values 1, 2, · · ·.
m stands for ‘maximum’. For example J̇Am is the maximum value that J̇A can attain.
+ can refer to the sum of elements, such as V+ =

∑

i Vi, or to addition, such as Xi+1, ortoaspecialmeaning
Indices for compounds refer to

C carbon dioxide C− bicarbonate E reserves ER reprod. reserves
H water M minerals NH ammonia NO nitrate
O dioxygen O org. compounds P product (faeces) Q toxic compound
V structural mass X food

Indices for processes refer to
a aging A assimilation C catabolism D dissipation
F feeding G growth J matur. maintenance M som. maintenance
R reproduction T+ dissipating heat T heating (endotherms)

Expressions

• An expression between parentheses with an index ‘+’ means: take the maximum of
0 and that expression, so (x − y)+ ≡ max{0, x − y}. The symbol ‘≡’ means ‘is per
definition’. It is just another way of writing, you are not supposed to understand
that the equality is true.
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• Although the mathematical standard for notation should generally be preferred over
that of any computer language, I make one exception: the logic boolean, e.g. (x < xs).
It always comes with parentheses and has value 1 if true or value 0 if false. It appears
as part of an expression. Simple rules apply, such as

(x ≤ xs)(x ≥ xs) = (x = xs)

(x ≤ xs) = (x = xs) + (x < xs) = 1− (x > xs)
∫ x
x1=−∞(x1 = xs) dx1/dx = (x ≥ xs)
∫ x
x1=−∞(x1 ≥ xs) dx1 = (x− xs)+

• The following operators occur
d
dtX|t1 derivative of X with respect to t evaluated at t = t1

∂
∂tX|t1 partial derivative of X with respect to t evaluated at t = t1

Eg(x) expectation of a function g of the random variable x

var x variance of the random variable x: E(x− Ex)2

cv x coefficient of variation of the random variable x:
√

var x/Ex
cov (x, y) covariance between the random variables x and y: E(x− Ex)(y − Ey)

cor (x, y) correlation between x and y: cov (x, y)/
√

var x var y

xT transpose of vector or matrix x (interchange rows and colums)

... catenation across columns: n = (nM
...nO)

Units, dimensions and types

The SI system is used to present units of measurements. My experience is that some
readers are unfamiliar with the symbol ‘a’ for year.

In the description of the dimensions in the list of symbols, the following symbols are
used

− no dimension L length (of individual) e energy (≡ ml2t−2)
t time l length (of environment) T temperature
# number (mole) m mass (weight)

These dimension symbols just stand for an abbreviation of the dimension, and differ in
meaning from symbols in the symbol column. A difference between the dimensions l and L
is that the latter involves an arbitrary choice of the length to be measured (e.g. including
or excluding a tail). The morph interferes with the choice. The dimensions differ because
the sum of lengths of objects for which l and L apply does not have any useful meaning.
The list below does not include symbols that are used in a brief description only. The page
number refers to the page where the symbol is introduced.

The choice of symbols relates to dimensions, and not to types. Three types are specified
in the description in the list: constant, c, variable, v, and function, f . This classification
cannot be rigorous, however. The temperature T , for example, is indicated to be a constant,
but it can also be considered as a function of time, in which case all rate constants are
functions of time as well. On the other hand, variables such as food density, X, can be held
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constant in particular situations. Variables such as structural biovolume V are constant
for a short period, such as is relevant to the study of the process of digestion, but not for
a longer period, such as is relevant for the study of life cycles. The choice of type can be
considered as a default, deviations being mentioned in the text.

Table 3.4 gives useful relationships between energies, volumes and masses.

List of frequently used symbols

symbol dim type page interpretation

a t v {324} age, i.e. time since gametogenesis of fertilization
ab t v {97} age at birth (hatching), i.e. end of embryonic stage
ap t v {255} age at puberty, i.e. end of juvenile stage
a† t v {139} age at death (life span)

ḃ† l3#−1t−1 c {205} killing rate by xenobiotic compound
Bx(a, b) - f {107} incomplete beta function
c0 # l−3 c {206} no-effect concentration of xenobiotic compound in the environment
cd # l−3 v {189} concentration of xenobiotic compound in the water (dissolved)
cX # l−3 v {197} concentration of xenobiotic compound in food
cV # l−3 v {190} scaled concentration of xenobiotic compound in tissue: [MQ]PdV

d∗ mL−3 c {23} density of compound ∗
Ḋ l2t−1 c {235} diffusivity
e - v {105} scaled energy density: [E]/[Em] = mE/mEm

e0 - v {107} scaled energy costs of one egg/foetus: E0/Em

eb - v {107} scaled energy density at birth
eR - v {117} scaled energy allocated to reproduction: ERE−1

m

E e v {82} non-allocated energy in reserve
E0 e v {97} energy costs of one egg/foetus
Em e c {107} maximum non-allocated energy in reserve: [Em]Vm

ER e v {31} energy in reserve with allocation reproduction
[E] eL−3 v {83} energy density: E/V
[Eb] eL−3 v {97} energy density at birth
[EG] eL−3 c {94} volume-specific costs of structure
[Em] eL−3 c {85} maximum energy density

f - v {73} scaled functional response: f = X
XK+X = x

1+x

Ḟ l3t−1 v {74} filtering rate

Ḟm l3t−1 c {75} maximum filtering rate

g - c {94} energy investment ratio: [EG]
κ[Em]

ḣ t−1 v {141} number-specific predation probability rate (hazard rate)

ḣa t−1 c {144} aging rate for unicellulars: [EG]
κµQC

k̇E+k̇M
g+1

ḧa t−2 c {141} aging acceleration: ∝ [EG]
κµQC

ḣm t−1 c {319} max. throughput rate in a chemostat without complete washout

j∗ # #−1t−1 v {120} structure-specific flux of compound ∗: J̇∗/MV

J̇∗ # t−1 v {130} flux of compound ∗
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J̇∗1,∗2 # t−1 v {169} flux of compound ∗1 associated with process ∗2
J̇ # t−1 v {130} matrix of fluxes of compounds J̇∗1,∗2

{J̇Xm} #L−2t−1 c {75} surface-area-specific max ingestion rate

[J̇Xm] #L−3t−1 c {76} volume-specific maximum ingestion rate: {J̇Xm}V −1/3
d

k̇e t−1 c {190} elimination rate of xenobiotic compound

k̇E t−1 c {86} specific-energy conductance: {ṗAm}V −1/3
d [Em]−1 = [ṗAm]/[Em]

k̇M t−1 c {94} maintenance rate coefficient: [ṗM ]/[EG]

l - v {105} scaled body length: (V/Vm)1/3

lb - c {107} scaled body length at birth: (Vb/Vm)1/3

ld - c {119} scaled cell length at division: (Vd/Vm)1/3 = k̇Mg/k̇E

lh - c {95} scaled heating length: (Vh/Vm)1/3

lp - c {112} scaled body length at puberty: (Vp/Vm)1/3

L L v {23} length: V 1/3/δM

Lb L c {117} length at birth: V
1/3
b /δM

Ld L c {29} length at cell division

Lm L c {117} maximum length: V
1/3
m /δM

Lp L c {117} length at puberty: V
1/3
p /δM

m∗ # #−1 v {34} mass of compound ∗ in moles relative to MV : M∗/MV

mEm # #−1 v {120} max molar reserve density: MEm/MV = [MEm]/[MV ]
M∗ # v {33} mass of compound ∗ in moles

M(V ) - f {27} shape (morph) correction function: real surface area
isomorphic surface area

[MEm] # L−3 c {35} maximum reserve density in non-embryos in C-moles [Em]/µE

[Msm] # L−3 c {80} maximum volume-specific capacity of the stomach for food
[MV ] # L−3 c {34} number of C-atoms per unit of structural body volume V
n∗1∗2 ##−1 c {126} number of atoms of element ∗1 present in compound ∗2
n # #−1 c {126} matrix of chemical indices n∗1∗2

N # v {324} (total) number of individuals:
∫

a φN (a) da
ṗ∗ e t−1 v {82} energy flux (power) of process ∗
ṗT+ e t−1 v {153} total dissipating heat
ṗ e t−1 v {129} vector of basic powers: (ṗA ṗD ṗG)
{ṗAm} eL−2t−1 c {81} surface-area-specific maximum assimilation rate

[ṗAm] eL−3t−1 c {86} volume-specific maximum assimilation rate: {ṗAm}V −1/3
d

[ṗM ] eL−3t−1 c {91} volume-specific maintenance rate: ṗM/V

{ṗT } eL−2t−1 c {93} surface-area-specific heating rate: ṗT V −2/3

P∗1∗2 - c {197} partition coeff. of a compound in matrix ∗1 and ∗2 (moles per volume)
Pow - c {191} octanol/water partition coefficient of a compound
PPX - c {197} faeces/food partition coefficient of a compound
PV d l3L−3 c {190} biomass/water (dissolved fraction) partition coefficient of a compound
PV W - c {197} structural/total body mass partition coefficient of a compound
q(c, t) - v {206} survival probability to a toxic compound
ṙ t−1 c {324} number-specific population growth rate

ṙB t−1 c {95} von Bertalanffy growth rate: (3/k̇M + 3fV
1/3
m /v̇)−1 = k̇Mg/3(f + g)

ṙm t−1 c {319} (net) maximum number-specific population growth rate
ṙ◦m t−1 c {319} gross maximum number-specific population growth rate
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Ṙ # t−1 v {114} reproduction rate, i.e. number of eggs or young per time

Ṙm # t−1 c {115} max reproduction rate
s - v {213} stress value
s0 - c {217} stress value without effect
t t v {20} time
td t v {243} inter division period
tD t c {118} DNA duplication time
tg t v {80} gut residence time
tR t v {198} time at spawning
ts t v {80} mean stomach residence time
T T c {53} temperature
TA T c {53} Arrhenius temperature
Tb T c {92} body temperature
Te T c {92} environmental temperature
v̇ L t−1 c {85} energy conductance (velocity): {ṗAm}/[Em]
V L3 v {31} structural body volume
Vb L3 c {111} structural body volume at birth (transition embryo/juvenile)
Vd L3 c {29} structural cell volume at division
Vh L3 c {94} structural volume reduction due to heating: {ṗT }3[ṗM ]−3

Vm L3 c {94} maximum structural body volume: (κ{ṗAm})3[ṗM ]−3 = (v̇/k̇Mg)3

Vp L3 c {111} structural body volume at puberty (transition juvenile/adult)
Vw L3 c {23} physical volume
V∞ L3 c {110} ultimate structural body volume
V L3 v {272} maximum structural body volume compared to reference: z3Vm1

w∗ m#−1 c {34} molar weight of compound ∗
Wd m v {31} dry weight of (total) biomass
Ww m v {23} wet weight of (total) biomass
x - v {315} scaled biomass density in environment: X/XK

X∗ # l−3or−2 v {73} biomass density of compound ∗ in environment; default: food
XK∗ # l−3or−2 c {73} saturation coefficient of compound ∗; default: food
Xr # l−3 c {314} substrate density in feed of chemostat
y∗1∗2 # #−1 c {147} coefficient that couples mass flux ∗1 to mass flux ∗2
Y # #−1 c {315} yield factor
z - v {270} zoom factor to compare body sizes
Γ(x) - f {255} gamma function
δ - c {29} aspect ratio
δl - c {260} shape parameter of generalized logistic growth

δM - c {23} shape (morph) coefficient: V 1/3/L
η∗1∗2 # e−1 c {130} coefficient that couples mass flux ∗1 to energy flux ∗2: µ−1

∗2∗1

η # e−1 c {130} matrix of coefficients that couple mass to energy fluxes
θ - v {42} fraction of a number of items: 0 ≤ θ ≤ 1
κ - c {65} fraction of catabolic power energy spent on maintenance plus growth
κA - c {162} fraction of assimilation that originates from well-fed-prey reserves
κE - c {170} fraction of rejected flux of reserves that returns to reserves
κR - c {114} fraction of reproduction energy fixed in eggs
µ∗ e#−1 c {151} chemical potential of compound ∗
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µ∗1∗2 e#−1 c {130} coefficient that couples energy flux ∗1 to mass flux ∗2: η−1
∗2∗1

µM e#−1 c {153} vector of chemical potentials of ‘minerals’
µO e#−1 c {153} vector of chemical potentials of organic compounds
ρ - c {43} binding probability of substrate
τ - v {222} scaled time
φN (a) # t−1 v {324} number of individuals of age in interval (a, a + da)
φx(x)dx - f {44} probability density of x evaluated in x
Φx(x) - f {46} distribution function of x evaluated in x:

∫ x
0 φx(x1) dx1

ζ∗1∗2 # #−1 c {148} coefficient that couples mass flux ∗1 to energy flux ∗2: µEmEmµ−1
∗2∗1
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Abramis, 280
Acartia, 77
Accipenser, 280
Achatina, 278
Acinetobacter, 38, 39, 174
Actinophrys, 278
Aepyceros, 104, 106
Agapornis, 98, 101, 258, 259
Agelaius, 282
albatross, see Diomedea
Alces, 283
Alligator, 101
Alopiidae, 76
Amazilia, 282
Ammodytes, 280
Amoeba, 2, 278
Amphibolurus, 101
amphipod, see Calliopius,

Cheatogammarus, Gam-

marus
Anas, 101, 281
angler, see Haplophryne
Anguilla, 22
Anous, 101
Anser, 101, 281
Anthochaera, 39
aphid, 60
Apiotrichum, 37, 38
Aplysia, 278
Aptenodytes, 22, 76, 227, 281
Apteryx, 234, 286
Apus, 231, 282
Archaeopteryx, 178
Armadillium, 97
Armillaria, 267
Arnoglossus, 281
arrow worm, see Sagitta
Arthrobacter, 67
Arum, 92
Ascomyceta, 62
Asio, 282
Aspergillus, 56, 78, 304
Aspicilia, 251
Asplanchna, 216, 278
Astropecten, 188
Atherina, 280
Atriplex, 166
Atta, 239
auklet, see Ptychoramphus
Azotobacter, 38

Bacillus, 109, 187
bacteria

bluegreen, 27, 38
Gram-negative, 238
green, 165
helio, 165
iron, 52
myxo, 232
non-sulphur, 165, 294
sulphur, 27, 165

Balaenoptera, 178, 283
bandicoot, see Perameles
Barbus, 280
Bathyergidae, 274
bever, see Castor
Biomphalaria, 278
Blennius, 281
Bombus, 92
Bombycilla, 282
Bonasia, 282
Bos, 106, 283
Bosmina, 279
Botryllus, 139
Brachionus, 56, 74, 219
bream, see Abramis
Brevoortia, 272
Buphagus, 303
burbot, see Lota
Buteo, 281

Calanus, 279
Calliopius, 56, 279
Calvaria, 59
Campylorhynchus, 282
Cancer, 279
Canis, 283
Canthocampus, 56
Capnia, 279
Capra, 106
Carapus, 311
Carcinus, 188
Cardium, 56
Caretta, 101
Carettochelys, 100, 101
Castor, 283
cat, see Felix
Catharacta, 261, 282
Caulerpa, 61
Caulobacter, 67
Cavia, 60, 106
Centengraulis, 272

Cerastoderma, 278
Ceratium, 28
Ceriodaphnia, 56, 58, 279
Cervus, 106
Chaetogammarus, 207
Chelonia, 101
Chelydra, 101
Chiasmodon, 79
chicken, see Gallus
Chironomus, 279
Chlidonias, 282
Chrysemus, 98
Chrysomonadida, 38
Chydorus, 54, 56, 279
Cionia, 281
Clethrionomys, 106
Clostridium, 187
Clupea, 272, 280
cod, see Gadus
coelacanth, see Latimeria
Colinus, 282
Collembola, 189
Colpidium, 332
Coluber, 99, 101
Columba, 101
comb jelly, see Mnemiopsis,

Pleurobrachia
Conus, 188
copepod, see Acartia, Calanus
coral, 307
Coregonus, 280
Coryphoblennius, 280
Coturnix, 101, 282
cow, see Bos
Cricetus, 106
Crocodylus, 99, 101, 287
cuckoo, see Cuculus
Cuculus, 282, 287
cuis, see Galea

dace, see Leuciscus
Dama, 106
Danaus, 188
Daphnia, 55, 56, 58, 82, 83, 87,

88, 91, 96, 97, 111, 136,
142, 192, 207, 212, 220,
223, 232, 233, 240, 271,
279, 333, 334, 336, 338, 339

Dasypeltis, 311
Delphinapterus, 283
Dendrobatus, 76, 188
Dendrobeana, 278
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Desmodus, 283
Diaphanosoma, 279
Dichelopandalus, 279
Dictyostelium, 345
Dinoflagellida, 38
Dinornis, 233
Diomedea, 100, 101, 281
Dissodactylus, 279
Diura, 279
dog, see Canis
dove, see Columba
Drosophila, 255
duck, see Anas

earthworm, see Dendrobeana
Echinocardium, 279
Echiurida, 61, 62
eel, see Anguilla
elephant, see Loxodonta
elk, see Alces
Ellerkeldia, 280
Elliptio, 200
Emberiza, 282
Emiliania, 167
Emydoidea, 98
Emydura, 101
Emys, 281
Engraulis, 272
Ensis, 278
Entodiniomorphida, 38
Entomobrya, 279
Equus, 106
Eremitalpa, 92
Eremophila, 283
Escherichia, 27, 56, 57, 109, 235,

245, 263, 321, 327, 332, 345
Esox, 280
Eucalyptus, 188
Eucoccidiida, 38
Eudyptes, 103
Eudyptula, 281
Euglenida, 38
Eunectes, 281
Eunice, 116
Euphasia, 279

Falco, 116, 281
Felix, 106
Florida, 281
Florideophyceae, 62
frog, see Dendrobatus, Rana,

Rhinoderma
Fugu, 188
Fusarium, 108, 109

Gadus, 280
Galea, 287
Gallinula, 282
Gallionella, 52
Gallus, 101, 282
Gambusia, 280
Gammarus, 279
gannet, see Sula
Garrulus, 282

Gasterosteus, 280
Glaucidium, 282
Glycyphagus, 304
Gobio, 280
Gobius, 116, 280, 281
goose, see Anser
grayling, see Thymallus
guillemot, see Uria
gull, see Larus, Rissa
guppy, see Poecilia
Gygis, 101
Gymnorhinus, 282

Haematopus, 282
hake, see Merluccius
halibut, see Hypoglossus
Halichoerus, 106
Hapalochlaena, 188
Haplophryne, 62
hare, see Lepus
Helianthus, 92
Helicella, 278
Heliconidae, 188
Heliocidaris, 60
Heliozoa, 237
Helix, 278
Helminthes, 148
Hemicentetes, 287, 288
herring, see Clupea
Heterocephalus, 92, 93
Holothuria, 61
Homarus, 279
Homo, 106, 144, 262, 283
hopping-mouse, see Notomys
horse, see Equus
human, see Homo
hummingbird, 231, see Amazilia,

Selasphorus
hummingbird, 92
Hydra, 112
Hydrodictyon, 119
Hypochrosis, 304
Hypoglossus, 281
Hyridella, 278

Isotoma, 279

jay, see Garrulus
jelly fish, see Scyphomedusae

kiwi, see Apteryx
Klebsiella, 56, 134, 332
Kluyveromyces, 110, 162
krill, see Euphasia

Labrus, 280
Lama, 106
Lamnidae, 76, 92
Lanius, 78
Larus, 101, 259, 282
Latimeria, 76, 272
Leipoa, 101
Lepidocyrtus, 279
Lepidosiren, 231

Lepomis, 280
Leptodora, 279
Leptonychotes, 283
Lepus, 106, 283
Lesueurigobius, 281
Leuciscus, 280
lichen, see Aspicilia, Rhizocar-

pon
Limenitus, 188
Liza, 280
lizard, see Sauria
Locusta, 279
Loligo, 262, 278, 279
Lota, 280
love bird, see Agapornis
Loxodonta, 283
Luidia, 61
Lumbricus, 211
lungfish, see Lepidosires, Pro-

topterus
Lutra, 283
Lymnaea, 70, 101, 112, 143, 196,

198, 227, 262, 278, 311
Lytechenus, 279

Macoma, 278
Macropus, 283
Maiasaura, 284, 285, 287
Meleagris, 281
Merismopedia, 28
Merluccius, 280
Methanobacillus, 304
Methanoplanus, 27
Mirounga, 62, 283
Mnemiopsis, 278
moa, see Dinornis
Mola, 272
mole rat, see Heterocephalus
Monodonta, 278
moose, see Alces
Moraria, 56
Motacilla, 282
mouse, see Mus
Mugil, 280
Mus, 104, 106, 283
musk rat, see Ondatra
mussel, see Mytilus
Mustela, 60, 233
Mya, 56, 278
Myrica, 62
Myrmecocystus, 40
Mytilus, 56, 70, 223, 226, 278

Nais, 56, 232
Nemipterus, 280
Neosciurus, 188
Neurospora, 108, 252
newt, see Triturus
Notiophilus, 256
Notodendrodes, 67
Notomys, 283

Oceanodroma, 281
Octopus, 263
Odocoileus, 106
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Odontaspidae, 76
Oikopleura, 60, 91, 117, 118, 279
oilbird, see Steatornis
Oncorhynchus, 98, 280
Ondatra, 233, 251
orache, see Atriplex
Orchesella, 279
Oreochromis, 91
Ornithorhynchus, 234
Oryctolagus, 106, 283
otter, see Lutra
Ovis, 106
owl, see Asio, Glaucidium, Strix,

Tyto

paddlefish, see Polyodon
Pagaphilus, 283
Panurus, 77
Paracoccus, 242
Paramecium, 278
Parus, 72, 282
Patella, 278
Patiriella, 76
Pavlova, 170, 173
Pediastrum, 27
Pelicanus, 101
penguin, see Aptenodytes, Eu-

dyptes, Pygoscelis
Penicillium, 108
Perameles, 33, 283
Perca, 280
perch, see Ellerkeldia, Perca
Peripatus, 188
Perna, 56, 278
Petrochelidon, 282
Pfiesteria, 188
Phaenopsectra, 279
Phaethon, 281
Phalacrocorax, 281
Phasianus, 281, 282
Philodina, 257
Philomachus, 282
Phoeniconaias, 281
Phylloscopus, 282
Physeter, 71
Pieris, 254
pig, see Sus
pike, see Esox
Pipistrellus, 106
Pitohui, 188
Placopecten, 278
plaice, see Pleuronectes
plant, 40, 152, 179, 252, 260, 301
platypus, see Ornithorhynchus
Pleurobrachia, 2, 56, 278
Pleuronectes, 77, 281
Poecilia, 200, 207, 280
Polyodon, 79
Pomatoschistus, 280
pond snail, see Lymnaea
Prionace, 280
Procellariiformes, 286
Protopterus, 231
Prymnesiida, 38

Psephotus, 258
Pseudomonas, 56, 242
Pseudomys, 283
Pterodroma, 101, 281
Ptychoramphus, 282, 287
Puffinus, 101, 261, 281
Pungitius, 280
Pygoscelis, 227, 281

quail, see Coturnix

rabbit, see Oryctolagus
racer, see Coluber
Raja, 279, 280
Rallus, 282
Ramphastos, 282
Rana, 101, 116, 281
Ranatra, 136
Rangifer, 283
Raphus, 59
Rattus, 106, 283
reindeer, see Rangifer
Rheobatrachus, 60
Rhincodon, 272
Rhinoderma, 76
Rhizocarpon, 251
Rhodobacter, 294
Rhodospirallacea, 52
Rickettsia, 311
Rissa, 282
roach, see Rutilus
rotifer, see Asplanchna, Bra-

chionus, Philomachus
ruff, see Philomachus
Rutilus, 280

Saccharomyces, 2, 38, 67, 150,
162, 163, 176, 278, 335

Sacculina, 188
Sagitta, 32, 89, 279
Salamandra, 76
Salmo, 99, 101, 280
Salmonella, 214, 322, 323
Salvelinus, 91, 280
sandeel, see Ammodytes
Sardina, 272
Sardinella, 272
Sardinops, 272
Sauria, 92
scaldfish, see Arnoglossus
Scenedesmus, 120
Schistosoma, 89
Sciurus, 188
Scophthalmus, 56, 281
Scyphomedusae, 61
seal, see Halichoerus, Leptony-

chotes, Mirounga
Selasphorus, 282
Seriola, 280
Setonix, 283
shearwater, see Puffinus
sheep, see Ovis
shrew, see Sorex
shrike, see Lanius

Sipunculida, 61
skate, see Raja
skua, see Catharacta, Stercorar-

ius
smelt, see Atherina
soft-shelled turtle, see Caret-

tochelys
Solea, 281
Sorex, 230, 283
sperm whale, see Physeter
Sphagnum, 188
Sphenodon, 101, 287
Sprattus, 272
squid, see Loligo
starling, see Sturnus
Steatornis, 282
Stercorarius, 261, 282
Sterna, 282
stick insect, see Ranatra
stickle back, see Gasterosteus,

Pygosteus
Stizostedion, 58
stoat, see Mustela
Stolephorus, 272
Streptococcus, 109
Strix, 282
Sturnus, 282
Sula, 281
Suncus, 283
Sus, 106
swallower, see Chiasmodon
swift, see Apus
Sylvia, 282
Symbiodinium, 307
Synthliboramphus, 288

Tachyoryctes, 283
tenrec, see Hemicentetes
Terebratalia, 279
Thiomargarita, 39
Thiopedia, 27
thrasher, see Toxostoma
Thunnus, 92, 280
Thymallus, 280
Tilapia, 280
tit, see Panurus,Parus
Tomocerus, 279
Toxostoma, 2, 282
Trichobilharzia, 311
Trichopsis, 21
Trichosurus, 188, 283
Trichotomatida, 38
Tricladida, 61
Triturus, 281
Troglodytes, 101, 282
trout, see Salmo, Salvelinus
tuatara, see Sphenodon
tube nose, see Procellariiformes
turbot, see Scophthalmus
Tyrannus, 282
Tyto, 282

Uca, 178
Uria, 177, 258, 261
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Urosalpinx, 278
Utetheisa, 188

Valamugil, 280
vampire, see Desmodes
velvet worm, see Peripatus
Venus, 278
Vibrio, 187
Vipera, 281

Volvocida, 38

walleye, see Stizostedion
waternymph, see Nais
Welwitschia, 89
whale, see Balaenoptera, Phy-

seter
Wolbachia, 188

wrasse, see Labrus
wren, see Campylorhynchus,

Troglodytus

yeast
bakers, see Saccharomyces
oleaginous, see Apiotrichum

yellowtail, see Seriola
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accumulation curve, 190
adaptation, 37, 55, 145, 234, 263, 264, 269
age, 20, 139, 231

acceleration, 141, 216
mean, 325

allometric
elasticity, 269
function, 4, 13, 14, 70, 136
growth, see growth

regression, 269
ammonia, 147, 175, 307
aspect ratio, see fraction

assumptions, 121, 156, 184
ATP, 5

BC, see Bioconc. coeff

bifurcation, 346
biofilm, 26
biotrophy, 311
blood, 65, 82, 87, 93, 178
buoyancy, 37

C-mole, 33
caecum, 83
calcification, 167
calorimetry

indirect, 155
canonical

community, 352
map, 348

carbohydrate, 37, 164, 307
carrier, 48, 246
carrying capacity, 233
cdc2, 140
cell cycle, 61, 118, 140
coefficient

allometric, 70, 73, 273
bioconcentration, 190, 191, 199
condition, 31
diffusion, 252
maintenance rate, 94, 136, 225
partition, 191, 196, 198, 208
ponderal, 31
Redfield, 33

saturation, 73–75, 95, 153, 236
shape, 23, 24
Sherwood, 237
specific-density, 23
Stefan–Boltzmann, 154
van’t Hoff, 58
variation, 336, 337

compensation point, 58, 167
competition, 303
composition, 34, 134, 150
compound

generalized, 34, 48
computer simulation, 332
conductance

energy, see energy

thermal, 93, 154
constant, see coefficient

convection, 93, 154, 237
conversion, 122

energy-young, 329
food-biomass, 315, 317, 338, 339
food-energy, 82
reserve-mole, 35
substrate-energy, 243
volume-length, 24
volume-mole, 34
volume-surface area, 25, 26
volume-weight, 23, 31

corrosion, 52
coupling

aging-energetics, 145
energy-life history, 232
feeding-digestion, 77
moulting-incubation, 334
mutagenicity-energetics, 215
organization levels, 7
parameters, 269, 336
support-estimate, 14
volume-surface, 6

crust, 250
culture

batch, 321, 323
chemostat, 314
fed-batch, 322, 334, 339
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Dehnel phenomenon, 230
density, 41
dephosphatation, 174
development, 87, 111

altricial, 98, 102, 105, 258
precocial, 102, 105
prokaryotic, 113

diet, 60, 76, 96
diffusion, 3, 67, 235
digestion, 239
dimension, 12, 136, 315
dimorphy

egg, 103
sex, 62, 141

direction field, 316, 320
distribution

binomial, 215
Erlangian, 44
exponential, 43, 80
gamma, 46
Gompertz, 142
normal, 15, 23, 24
Poisson, 44, 215
stable size, 328
stable age, 323
stable size, 325
Weibull, 141, 143, 206, 255

division, 118
DNA deletion, 294
dormancy, 231
dwarfing, 268
dynamics

adaptive, 337

ectotherm, 11, 92
effect

growth, 209
mixtures, 217
mutagenic, 203, 214
nil level, 204
population, 217
receptor-mediated, 213
reproduction, 209
survival, 205
teratogenic, 203
toxic, 202

efficiency
assimilation, 81
digestion, 240

egg
costs, 105
shell, 3
size, 293

winter, 232, 339
El Niño, 55
endotherm, 11, 92
energy, 5, 35, 153

activation, 54
assimilation, 81
charge, 6
conductance, 85
flow, 65
Gibbs free, see potential

investment ratio, 94
enthalpy, 35
entropy, 36
enzyme, 25, 30, 41, 54, 67, 92, 247
equation

balance, 19, 20, 83, 130, 240
Bernoulli, 105
characteristic, 324, 330
energy balance, 153
Laplace, 235
mass balance, 235
renewal, 324
van’t Hoff, 53
von Foerster, 339

evaporation, 93
evolution, 300

factor, see coefficient, fraction

fat, 37, 97
feeding

filter, 67
method, 66
rate, see rate

vacuole, 67
fermentation, 148
filament, 27
fitness, 312
floc, 237, 251
food

chain, 344
density, 66
deposit, 78

fraction
aqueous, 34
aspect, 29
Boltzmann, 54
death, 319

fugacity, 191
funnel concept, 5, 243

genetics, 234, 267
geography, 232, 251
gigantism, 89
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growth, 94
allometric, 26, 178
at starvation, 223
competitive, 21
cube root, 252
curve, 1, 109, 262
determinate, 295
embryonic, 96, 99, 259
expo-logistic, 321, 323
exponential, 108, 335
foetal, 103, 104
generalized logistic, 260
Gompertz, 20, 260
indeterminate, 295
isomorphic, 25
logistic, 259, 321
non-isomorphic, 108
rods, 109
scope for, 366
shifted, 223, 224
von Bertalanffy, 2, 32, 33, 72, 88, 111, 142,

143, 227
von Bertalanffy, 95

gut
capacity, 79, 81, 86, 227
flora, 35
residence time, see time

volume, 82

heat, 153
hibernation, 231
homeostasis, 30, 94

strong, 30
structural, 246
weak, 30, 83, 246, 303

homeothermy, 92, 154

index, see coefficient

generality, 362
individual, 19
insulation, 93
invariance property, 94, 268, 270
invasion, 351
ionization, 193, 208
isomorph, 25

Jacobian, 315, 354

kinetics, see process

Krebs cycle, 5

law
conservation, see balance eq.

Fick, 235

large numbers, 319, 336
mass action, 42, 54, 314

LC50, 208
length

volumetric, 24
light, 41, 164
light cycle, 228, 262
limiting factor, 40, 171, 236

maintenance, 22, 30, 89, 231
ration, 233

maturation, 66
maintenance, 112

membrane, 25, 30, 87, 90, 243
embryonic, 32, 98, 104

metabolic mode, 51
migration, 37, 91
milk, 76
mimicry, 188
mixtures

binary, 217
model

complexity, 9, 313
consistency, 9, 81, 271, 360
continuity, 329, 333
regression, 15
strategy, 7
theory, 8
verification, 7, 14, 135, 332, 363

morph
iso, 25
V0, 26
V1, 27

moult, 91, 93, 96
multiplier

Floquet, 346
Lagrange, 149

NADPH, 5
nitrate, 175
nitrite, 216, 217
nitrogen, 145
number, see coefficient

organ, 179
osmosis, 91, 98
overhead, 35
oxygen, 174

paradox
enrichment, 347

parameter
bifurcation, 346
changes, 257
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compound, 94
density-based, 271
estimation, 14, 258, 322
physical design, 271
variation, 17, 267, 335

parasite, 89, 311
partitionability, 84
period, see time

pH, 13, 208
phagocytosis, 67, 74
photopigment, 165
plug flow, 80, 239
population

deb V1-morphs, 320
equilibrium, 315
interaction, 313
level, 312
Lotka–Volterra, 314
stability, 315
statistics, 335
structured, 322
unstructured, 6, 312

potential
chemical, 36, 154

power, 123, 129
basic, 120, 129
catabolic, 82

ppGpp, 319
predation, 311
probability

survival, 139, 144, 206, 255, 324
process

alternating Poisson, 221
first-order, 80
first order, 85, 105
Michaelis–Menten, 43, 240
more-compartment, 189
one-compartment, 189
random telegraph, 221
variable coefficient, 196
zero-th order, 241

processing
parallel, 45, 162
sequential, 45, 160

product formation, 150
product formation, 147
propagation, 113
protein, 37

synthesis, see RNA

protocol
handshaking, 48

radiation, 93, 154

radical, 140
rate

aging, 55, 144, 255
anabolic, 4, 366
assimilation, 241
beating, 70
calcification, 167
carbon fixation, 166
catabolic, 4, 111
elimination, 190, 192
elongation, 245
encounter, 74
filtering, 70, 75
growth, 168
gut filling, 76
harvesting, 335, 338
hazard, 139, 142, 205, 216, 255, 319
heating, 92, 258
ingestion, 55, 66, 70, 72, 73, 76, 88
metabolic, 12, 366
moving, 71, 91
nitrogen fixation, 167
photorespiration, 166
photosynthesis, 164
pop. growth, 263, 295, 332
pop. growth, 294, 324, 330, 332
rejection, 75
reproduction, 55, 88, 114, 324
respiration, 12, 90, 98, 99, 135, 136, 174, 202,

259
swimming, 73, 275
throughput, 314
translation, 245
turnover, 86
uptake, 190
utilization, see catabolic

von Bert. growth, 55, 58, 96, 278, 284
von Bert. growth, 95, 263

receptor, 213
reconstruction

food intake, 226, 227
food intake, 223
temperature, 258, 261

regulation, 20
reproduction, 114

buffer, 115, 329
cumulated, 116–118
suicide, 262

reserve
at birth, 97
density, 37
dynamics, 82
energy, 22
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for one egg, 105
for one neonate, 107
material, 30, 38

response
functional, 73, 74, 82, 225, 236
stringent, 145, 319

retardation, 113
ribosome, 244
RNA, 37, 134, 244, 245
rod, 29, 294, 295
rule

κ, 65, 86
allocation, 20
Bergmann, 58, 232, 234, 291
Kleiber, 4, 90, 135, 136, 273
surface, 4, 136

saprotrophy, 311
satiation, 79
scaling

coefficient, 13
exponent, 13, 70

scheme
matrix, 354

shape, 23
changing, 26, 250
correction function, 26, 180, 253

sheet, 27
shrink, 228, 230
size, 22

mean, 325
range, 267
scaling, 269

abundance, 291
allocation, 289
assimilation, 271
bioconcentration, 201
body weight, 272
brain, 290
distribution, 291
diving depth, 276
filtering, 271, 275
gestation, 285
growth, 277
growth costs, 271
gut capacity, 275
incubation, 285, 286
ingestion, 271
initial, 288
life span, 289
maintenance, 271
max. volume, 270
max ingestion, 275

max reproduction, 289
min food density, 276
pop. growth, 292
primary, 270
puberty, 287
reserve capacity, 271
respiration, 273
saturation coefficient, 271
secondary, 272
speed, 275
starvation, 289
tertiary, 291
volume at birth, 271
Von Bert. growth, 277
water loss, 288
weight, 272

spatial heterogeneity, 336
speciation, 337
stage, 59

adult, 61
baby, 60
embryo, 59
foetus, 59
imago, 253
juvenile, 60
larva, 61
mitotic, 61
pupal, 61, 253
senile, 63, 139

starvation, 221, 229
stereo image, 207, 219, 237, 320, 349
stochastic

input, 17
variable, see variable

storage, see reserve

strategy, 292
r–K, 292
bang-bang allocation, 297
demand, 19, 95
egg size, 293
supply, 19
vivipary, 293, 294

stress, 211
substrate

substitutable, 160
supplementary, 164

symbiosis, 306
synchronization, 334
synthesizing unit, 43
synthrophy, 304

temperature, 11, 13, 53
Arrhenius, 53, 56, 105
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body, 92, 258
tolerance range, 55, 93

thermo-neutral zone, 93, 154
time

development, see incubation

duplication, 118, 294, 295, 330
gestation, 104
gut residence, 82
gut residence, 80, 81, 240
handling, 44
incubation, 54, 97, 107
inter division, 110, 119, 330
life, 139, 231
starvation, 229, 230
wall synthesis, 243

tissue
adipose, 37
cartilage, 3
ovary, 87
reproductive, 65
somatic, 65, 87

transformation, 125, 180, 201, 214, 308, 337, 353,
354

transporter, 246
triglycerides, see fat

tumour, 145, 251

uptake
luxurious, 37

variable
dimensionless, 14
explanatory, 22
extensive, 12, 270
intensive, 12, 270
state, 11, 20
stochastic, 15, 44, 269

volume
at birth, 95
at fertilization, 97
at puberty, 111
heating, 94
maximum, 94
ultimate, 95, 110, 216, 263

water, 151, 154
wax, 37
weaning, 60, 96
weight, see conversion

ash-free dry, 32
dry, 31
molar, 33
wet, 23

wood, 32, 128, 184

yolk, 99


