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Introduction 

Interaction between the global climate and the world’s biota is by no means a one-way street. 
Certainly, climate-related parameters like temperature and humidity play a major role in shaping the 
biological world. However, it has become more and more clear that biota in turn exert significant 
influences on our climate. In particular, they may affect the process of global warming. 

Generally, global warming is attributed to human-induced increases in the concentration of 
greenhouse gasses, of which carbon dioxide is most renowned. Indeed, the increase in CO2 has been 
shown to correlate well with the increase in human activities (e.g. the onset of the industrial 
revolution). However, full knowledge of human emissions will not suffice to predict future 
developments in the atmospheric CO2 concentration on a quantitative level. Carbon dioxide is a key 
compound in the global carbon cycle. This cycle features several vast, predominantly biological sinks 
and sources of carbon (esp. photosynthesis and respiration), which are each either directly or indirectly 
linked to atmospheric CO2. The cycle as a whole controls the availability of all carbon species, 
including carbon dioxide. A change in human emissions will undoubtedly affect carbon fixation and 
release of various sinks and sources, resulting in feedback loops of an as yet unknown nature. Clearly, 
one cannot reliably predict future atmospheric CO2 concentrations without having charted every step 
in the carbon cycle. 

A crucial part of the global carbon cycle is localized in the oceans. Not only do these harbor about 
20 % of the earth’s photosynthesis, they also constitute the sole site of calcite (CaCO3) formation. The 
main part of marine photosynthesis is performed by unicellular algae, rather than more conspicuous 
macroscopic species. Likewise, the main part of marine CaCO3 production has been suggested to be 
the work of a group of unicellular algae called coccolithophorids (rather than the work of corals, for 
instance). This ubiquitous group fixes CaCO3 internally in wheel-shaped coccoliths, which are 
subsequently exported and incorporated in an external shell. Calcification (i.e. CaCO3 fixation) occurs 
in the following reaction: 

2
3 3 2 2Ca 2 HCO CaCO CO H O−+ + → + +  

Coccoliths are relatively stable: when sinking to the ocean floor, only a small part of the CaCO3 
dissolves. Hence, sediments containing coccolithophorids often hold large amounts of CaCO3 (e.g. the 
white cliffs of Dover). Like any other alga, coccolithophorids also perform photosynthesis: they 
consume CO2 under influence of light, and use the carbon to synthesize numerous organic carbon-
containing compounds. Note that calcification and photosynthesis are counteracting processes with 
respect to CO2: the former produces it, while the latter consumes it. It is therefore doubtful where any 
CO2 produced in calcification ever leaves the cell. At any rate, coccolithophorids affect the availability 
of several carbon species: at the very least, they remove bicarbonate, and produce both organic carbon 
and calcite. Combined with the fact that several coccolithophorid species are very common, the impact 
of this group on the global carbon cycle is likely to be substantial. 

To obtain quantitative data about the current role of coccolithophorids in the carbon cycle, simple 
experiments might suffice. Carbon production and consumption rates, combined with a measure of 
abundance could provide an adequate picture. However, when one aims to predict developments in the 
global climate, experiments that focus on one particular (set of) species come up short: global changes 
depend fully on large-scale interactions between physical, chemical and biological processes. All these 
should be accounted for to arrive at a reliable prediction. This is far beyond the grasp of any 
experiment. Instead, one must resort to the use of models. Unlike experiments, they can describe the 
behavior of single species, and yet allow for application in a much broader context. Evidently, the goal 
of describing the role of coccolithophorids in the global carbon cycle is best served by the construction 
of a model. 



Modeling Emiliania huxleyi – photosynthesis, calcification and the global CO2 increase 

 6 

Thus far, efforts to model any aspect of coccolithophorids have been extremely limited. Even 
most experiments have to date focused on the role of only one environment variable at a time (e.g. 
ambient light, CO2 or nitrate), telling us little about more realistic, complicated scenarios of multiple 
nutrient limitation. This project aims to model the physiology of one the most common, and most 
studied coccolithophorids: Emiliania huxleyi. This species is found in all oceans, and can form 
extensive blooms during the summer. Primarily, we constructed the model to allow for application in 
climate-related research, in particular that dealing with the interaction between Emiliania and ambient 
carbon species. In addition, the model incorporates the availability of light and ambient nitrate, which 
is in keeping with recurrent experiments, and somewhat broadens the model’s applicability. 

The model is built on the framework provided by the Dynamic Energy Budget (DEB) theory 
(Kooijman, 2000). The DEB approach focuses on the properties of individual organisms, and generally 
results in mechanistic, dynamic models. DEB-based models explicitly obey the laws of mass- and 
energy conservation, which is obviously essential for any model that describes (part of) the 
geochemical element cycles. 

This paper is built up as follows: first, I describe the key concepts of DEB theory. These are 
subsequently applied to render an initial Emiliania model. The behavior of this model is compared 
with the results of a characteristic coccolithophorid experiment, dealing with the effect of light 
limitation on carbon production rates. Results indicate some serious model shortcomings, and give 
cause for modification of the model. The model is revised, and again compared with light-limitation 
data, which now renders significantly improved results. Subsequently, I present an example of the 
application of the model in its targeted area of research: it is used to describe the effect of an increase 
in ambient CO2 on organic- and inorganic carbon synthesis. The final chapter discusses various aspects 
of the model’s quality and usability. 
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Modeling theory: Dynamic Energy Budgets 

The Dynamic Energy Budget (DEB) theory aims to be a generic framework for modeling mass- and 
energy flows in biota. Clearly this is no trivial objective, for the underlying processes are neither 
restricted to one particular level of organization (e.g. cell, individual or population), nor to a particular 
species or group of species. In effect, DEB theory can build on none but the most basic organism 
characteristics. 
 
In this chapter, I will describe the key concepts of the DEB theory. These include the following:  

• Characteristics of the individual serve as the basis for all modeling decisions. 
• Structural organism volume is the primary state variable in all DEB-based models. 
• One or more additional state variables representing stored reserves can be added. 
• Transformation kinetics (amongst others responsible for the merging of metabolic fluxes) are 

based on biochemical, balance-law-obeying concepts. 
• Food uptake kinetics is identical to that of the most simple transformation, that with one 

substrate and one product. 
• All food taken up is initially transferred to the reserves. 
• Reserves supply nutrients and energy to maintenance, growth and reproduction. 
• A population of individuals can be described as one single individual for which its surface 

area is proportional to its volume. 
While the following presents an adequate summary of a number of key concepts of DEB theory 
(though by no means all concepts), at some points, argumentation might differ from that given by 
Kooijman. For a full overview of DEB theory, I refer to the book ‘Dynamic energy and mass budgets 
in biological systems’ (2nd edition, Kooijman, 2000). 

 
The individual organism 

The DEB theory was designed to provide a modeling approach that is not restricted to one particular 
level of biological organization. It should be applicable to processes at a biochemical scale as well as 
to those at a global scale, while maintaining the same core of assumptions and concepts. 

 
Clearly, the most straightforward way of integrating multiple levels of organization is to create a basic 
model of the lowest relevant unit in the hierarchy, and link multiple of such models to work the way 
up to higher levels. For instance, one could imagine a generic model for biochemical transformations, 
which serves as the basis for a model of a single cell, an organ, an organism, a population, an 
ecosystem, just by repeatedly chaining low-level models. For such a modeling approach to work, 
however, two conditions must be met: first, the biological unit that is chosen as the basis for all others 
must function as a whole, independent of specific interactions that occur at the level of subunits. 
Second, the model must include the properties that are responsible for the formation and coherence of 
higher-level units. To illustrate the second condition: a modeling approach that focuses on behavior 
might link the individual and population levels of organization, but it is unlikely to have any relevance 
at the biochemical level. Thus it would fail the goal of being applicable at every level or organization. 

 
In most biological research, the very rock bottom level of biological organization is placed at the level 
of biochemistry. This would favor a modeling approach that takes biochemical processes as its main 
low-level unit. However, such an approach is not feasible. To start with, it requires knowledge of 
every biochemical process that occurs in the species one desires to study. This knowledge is currently 
not available, and will probably not become available for a very long time. Secondly, the vast 
complexity that would result from a biochemical modeling approach, in particular when dealing with 
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complete organisms or ecosystems, would make all forms of model analysis impossible, if only 
because the lack of computing power. Hence, we need to step away from biochemistry as the basic 
level, and resort to a higher unit of organization that still conforms to the requirement of (relative) 
autonomy. 

In this case, a natural starting level is that of the individual organism. An individual-based 
approach strongly reduces complexity when compared to a biochemistry-based one, and thus allows 
for application at the level of populations and ecosystems. Also, the individual is the lowest level of 
biological organization that functions independently as a living unit. Thus it can be, and has been 
studied with relative ease, resulting in an ample supply of information that can assist at the modeling 
of individual-specific processes. Note that, even though the DEB framework focuses on the individual 
as a whole, this by no means implies that specifics of biochemistry cannot be included (for instance, 
the Emiliania model described in this paper contains biochemical pathways). It merely promotes the 
viewing of biological phenomena like feeding, reproduction and production of substances as being 
specific to individual organisms as a whole, rather than being a function of their biochemical 
characteristics. 

 
The importance of size 

The choice to use the individual as the basis of the DEB framework has many consequences; in effect 
it specifies that properties of individuals as a whole should stand at the basis of all further modeling 
choices. In particular, this has consequences for the choice of state variables. 

State variables describe the state of a model. In a given environment (with known values for the 
input variables) the exact behavior of the model is defined by the value of its state variables. If state 
variables are absent, the model is static: it always responds the same to given circumstances. Clearly, 
this would not be fit for a mass- and energy focused model of individual organisms: during different 
moments in its life, an individual could responds very different to one particular set of circumstances. 
Aspects like food uptake, energy requirement, and reproduction are all likely to depend on the state of 
the individual. Hence, a realistic framework for the modeling of individuals should include at least one 
state variable. 

One characteristic of individuals that clearly qualifies as a part of their state is size. Large 
individuals eat more than small ones, they require more energy, they are more likely to reproduce. A 
measure of size will thus be indispensable in predicting the behavior of an individual. However, 
choosing one universally applicable size state variable from the numerous measures of size that exist is 
not easy. Characteristics like mass, volume and surface area may each control a particular set of size-
related aspects: whereas an individual’s volume or mass is likely to determine characteristics like 
energy requirement and metabolic rates, its surface area is likely to control interaction with the 
environment, e.g. heat dissipation and unicellular food uptake. Neither measure of size can be missed. 
Fortunately, these different manifestations of size are not independent of each other. For instance, 
most species roughly maintain their shape during growth, which implies that their surface area will be 
proportional to their volume to the power ⅔. Thus, when the volume of an organism is known, its 
surface area will easy to determine, and vice versa. 

To allow for a strong influence of both volume and surface area, the individual's size is 
represented in the DEB framework by its volume; any surface area specific properties are simply taken 
proportional to volume⅔.  

 
Basic modeling units: elements and energy 

Any model aiming to describe quantitative aspects of nutrient handling will need to monitor all input, 
output and incorporation of substances. Key players in this field are the laws of mass and energy 
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conservation: an inflow must result in outflow or addition to the individual. Quantitative models that 
fail to obey those laws are hard to take seriously. 

Conservation laws can be implemented in various ways. For instance, mass balances can be 
maintained at levels ranging from protons to macromolecules. Since the main requirement for a mass 
balance unit is indestructibility, DEB theory focuses on chemical elements: the highest chemical unit 
that is not modified by biological processes. Accordingly, every substance taken up or exudated has to 
be defined by its ratio of chemical elements. For simplicity most DEB applications only check C, H, O 
and N balances, but the number of elements monitored is not restricted in principle by DEB theory. 
Extension of balances to include energy is straightforward: for every substance its chemical potential 
should be defined. Not in every DEB model both balances should be maintained; depending on one’s 
interests, either (but not both) could be excluded. The model dealt with in this paper focuses on mass 
balances only. For this reason I will describe only the mass-related aspects of DEB theory. 

 
Classification of organism content 

The core of an organism’s nutrient handling in terms of elements and energy lies at the chemical level. 
When individual-based processes like hunting and feeding are complete, the nutrients enter the 
network of metabolic pathways that in the end determines the fate of every atom consumed. 
Undoubtedly, the most true-to-life nutrient-monitoring approach would include each and every step in 
these pathways, thus providing complete predictions for the production rate and concentration of every 
substance involved. However, this would require one state variable for every compound: a goal not 
attainable and not worth pursuing, as it would result in a setup far too complex to analyze. Also, when 
we take a closer look to chemical content of organisms, such complexity seems rather superfluous: the 
ratio at which most compounds are present is near constant, which implies that a known concentration 
of just one compound suffices to predict the concentration of most others. This allows for a very 
straightforward manner of simplification: to describe an organism’s content, we can suffice by creating 
one state variable for every group of compounds that tend to show up in a constant ratio. Providing the 
ratio between the lumped compounds is in reality near constant, the model’s description of reality does 
not suffer. 

For the categorization and combining of compounds, DEB theory makes use of the fact that most 
vital constituents of every organism are present in a near constant ratio. Based on this observation, 
DEB theory assumes ‘strong homeostasis’, i.e. the vital part of every organism is of a constant 
composition. This generalized vital component is referred to as the structural part of an organism. In 
practice, the list of compounds that obey ‘strong homeostasis’ and consequently can be categorized as 
structure comprises almost all organism constituents. Thus, ‘structure’ becomes a collective for an 
extremely diverse set of compounds, ranging from DNA and proteins to lipid membranes and cell 
walls. 

 
Although one could assume the entire individual to consist of structure (i.e. to have a constant 
composition), in some situations this fails to describe important behavior. A phenomenon for which 
the use of structure alone is insufficient is buffering of food. Most organisms live in environments with 
fluctuating food density. They are able to endure periods of food scarcity, but only if these are 
preceded by periods of abundance. This suggests that they are able to buffer the food taken up, 
enabling them to fulfill their energy requirement at all times. Numerous examples of food buffering 
are known, ranging from nitrate storage in the vacuole of unicellular algae to lipid storage in human fat 
cells. Food buffers are often directed to buffer a specific nutrient, which implies that their composition 
can differ radically from that of the organism as a whole. Because of this difference in composition, 
the decrease of a specific buffer during food scarcity can cause extensive changes in average organism 
composition. This particularly contrasts with the behavior of a structure-only model. 
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DEB theory has been constructed to deal with food buffering specifically. Next to structure, it 
allows for the existence of reserves: state variables that represent the buffered assimilated substances. 
Like structure, reserves are generalized compounds of a constant composition. Consequently, two or 
more reserve substances can be combined into one single reserve variable only if they are present in a 
constant ratio. If their ratio varies significantly, their average composition will not be constant, thus 
requiring separation into multiple reserves. Yet there is no need to aim for a complete classification of 
every single compound whose concentration varies independently of structure or other reserves. Two 
main reasons exist for including a reserve in a DEB-based model: (1) in reality, the average organism 
composition fluctuates through significant increases and decreases of the reserve independent of 
structure and other reserves, and (2), temporary food scarcity does not necessarily result in death, 
because required energy and nutrients appear to be buffered. 

 
Based on the categorization of organism content, we can now refine our approach to organism size 
described previously. Size should be included as a state variable because it controls various aspects of 
an individuals behavior. When dealing with mass- and energy balances, one can think of aspects like 
the (maximum) rate of food uptake, energy requirements, reproduction, the (maximum) growth rate, 
etc. Since some of these appear to be volume-related while others correlate with surface area, one of 
these measures of size, combined with a linking function to the other, will be an essential model 
component. Consequently the DEB-framework includes volume as state variable. 

However, an individual’s actual volume includes both structural- and reserve volume. If total 
volume were used to determine an organism’s predominantly active characteristics like food uptake 
etc., the mere volume of the predominantly passive reserves would provide a rather undeserved boost 
in activity. Who would believe stored fat to significantly boost an individual’s energy requirement or 
hunting rate? For as far as reserves do exert an influence (e.g. increased transportation costs, increased 
insulation), their effect is strongly dependent on the specific species and reserve compounds one is 
dealing with, which makes inclusion in the generic DEB framework impossible. Instead, partly 
because organism size is mostly used in an active context, partly because it results in simpler kinetics, 
the DEB framework focuses on structural volume: only the volume occupied by structural compounds 
matters for size-related behavior. 

Structural volume is the primary state variable in the DEB framework. Most other (structural) 
measures of size can easily be derived from the structural volume. A link to the surface area is 
provided by the shape function (for isomorphs: 2

3A V∝ ). The constant composition of structure 
(including its water fraction) implies a clean, proportional relationship with both structural mass and 
weight. 

Whereas structure is measured in volume, all reserves are specified in densities: reserves mass (or 
energy) per structural volume. This facilitates a biochemically oriented approach, in which a 
compound’s concentration determines reaction rates rather than its absolute mass, weight or volume. 

 
Summarizing, the DEB framework includes the following state variables: 

structural volume V , dimension 3length  
reserve densities [ ]EM , with E  being the reserve identifier, dimension 3mass length−⋅  

This applies only when dealing with mass balances. If energy balances are checked, reserves are 
specified as [ ]E , with dimension 3energy length−⋅ . 

 
Generic transformation kinetics 

As in any model that deals with mass- and energy balances of organisms, substance transformations 
play an essential part in the DEB framework. Consumed food needs to be transformed into reserves, 
assimilated products need to be transformed into structure. This can involve simple one-substrate 
transformations, converting a substance into one or more products, but also more complicated ones. 
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The nature of the modeled transformations will depend strongly on the number and nature of food- and 
reserve types involved: as one distinguishes more food types to target one reserve (as non-
interchangeable substrates), reserve synthesis will become more complex; as one distinguishes more 
substrates (i.e. reserves, as will be shown later) to target structure-synthesis, the combining, structure-
producing transformation will become more complex. For instance, whereas ‘lion structure’ may be 
produced from one generalized ‘prey-compound’,  ‘plant structure’ is likely to be produced from 
separate nitrogen-containing (NO3

-, NH4
+) and carbon-containing (CO2) compounds. Because 

transformation specifics are strictly dependent on the targeted species, the DEB framework merely 
supplies generic transformation kinetics, which can deal with any number of substrates. 

 
All significant transformations occurring in organisms are enzyme-mediated. This should be reflected 
in the transformation kinetics one applies: it has to be enzyme-based. Particularly it should involve 
some kind of saturation: when substrate is abundant, the transformation rate should draw near a 
maximum. A number of approaches for multiple substrate kinetics exist, but a combination of a good 
foundation and simplicity is rare. While the single-limiting-nutrient approach of Droop gives results 
that are highly realistic, it lacks a mechanistic explanation. Also it presents problems in situations 
where multiple substrates are simultaneously limiting (Zonneveld, 1995). On the other hand classic 
enzyme kinetics (pseudo steady state, concentration-based) is well founded and accepted. However, 
extending it to large numbers of substrates is complicated. The kinetics cannot always be found 
analytically, and even if an analytic solution is available, the vast number of parameters make 
inclusion in the model less than tempting. 

Because transformations play such an important role in many DEB-based models, Kooijman tried 
to develop a mechanism that is both simple and mechanistically sound. Departing from classic 
concentration-based pseudo-steady state kinetics, he arrived at the so-called Synthesizing Unit (SU). 
This represents an enzyme that binds substrate irreversibly, i.e. substrate-enzyme dissociation rates are 
zero. An analytic solution for Synthesizing Unit kinetics is available for any number of substrates, and 
contains less parameters than full pseudo-steady state kinetics. For a one-substrate transformation, SU 
kinetics equals standard Michaelis-Menten. For a two-substrate transformation – which is the most 
complicated case dealt with in this paper – SU kinetics is given by the following formula: 

1 2 1 2

1 2 1 2

1 2 1 2

, 1 1 1

, , , ,

, , , , ,

1

1
P A

S P S P S P S P
S S S S

m P S P S P S P S P

J

J J J J
J y y y y

ρ ρ ρ ρ
− − −=

     
+ ⋅ + ⋅ − ⋅ + ⋅          
     

 

,P AJ  rate of product P  synthesis (assimilation) 
,m PJ  maximum rate of product P  synthesis 
,iS Pρ  binding probability of substrate iS  to SU producing P  (0< ,iS Pρ ≤1) 
,iS Py  yield: units of substrate iS  needed for one unit of product P  

iSJ  rate of substrate iS  arrival 
 

One of the most striking aspects of SU kinetics is that it deals with substrate fluxes instead of 
concentrations. In this SU kinetics deviates from its classic-enzyme-kinetics origin. The difference is 
only superficial, however. SU kinetics can easily be transformed into concentration-based kinetics by 
writing 

i iS Sk C⋅  (affinity constant multiplied by concentration) instead of , ,i i iS P S S PJ yρ ⋅ . Note that in 
that case the yield constant ,iS Py  will still be needed to determine the rate of substrate disappearance, 
i.e. the use of fluxes does not change the number of parameters. 

The main benefit of the use of fluxes then lies not in effective differences with concentrations, but 
rather in the implicit simplification fluxes provide. Concentration-based transformation kinetics 
requires the substrate concentration at the reaction site to be known. For biological transformations 
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this would entail describing the substrate concentration inside the organism, which is possible only by 
including internal substrate concentration as a state variable. Also the compartmentalization of the 
organism often requires the substrate to pass one or more compartments before arriving at the reaction 
site. In that case the final substrate concentration is determined by the concentration in intermediate 
compartments, thus requiring the incorporation of yet more state variables. Since addition of state 
variables significantly complicates the model, it is clear that simplification of the above situation is 
desired. 

Here flux-based kinetics shows its merit. Flux-based transformation rates are specified by 
substrate arrival rate. This approach can effectively skip any intermediate compartments, requiring no 
more than the last substrate arrival rate known before the transformation. Implicitly a number of 
assumptions are made, most importantly that in all intermediate compartments the substrate 
concentration is constant. Appendix C deals with the application of fluxes, and under what 
circumstances they can be a good approach. 

 
Food uptake 

After choosing the state variables for the model, one must define their in- and output fluxes. Because 
DEB models obey mass balance laws, all model compounds should be traceable to their import from 
the environment. This then is a natural starting point for defining substance fluxes. 

By far, the most influx of substances occurs through feeding. Feeding processes are diverse, 
however, ranging from hunting of prey to uptake of molecules over the cell membrane. DEB theory 
aims to be a modeling framework for all organisms, and therefore requires a generic description of 
feeding rate. Kooijman has chosen to use standard hyperbole kinetics for this purpose. The uptake rate 
for food type X  then becomes: 

1
2

, ,X A m X
XJ J

X X
= ⋅

+
 

As food density X  increases, ,X AJ  approaches the maximum rate of food uptake ,m XJ . When X  
equals 1

2
X , ,X AJ  is half of ,m XJ . The benefit of hyperbole kinetics is that it is already used in the 

description of highly diverse feeding behavior: the hyperbolic ‘functional response’ is the standard in 
ecology, while the mathematically identical Michaelis-Menten kinetics describes enzyme-mediated 
reactions like transport of substrates over the cell membrane. 

As you may recall, one of the reasons for including a state variable representing size was that size 
influences characteristics like food uptake. DEB theory accounts for this by making the maximum rate 
of food uptake ( ,m XJ ) proportional to the organism’s surface area. For single-cell organisms that take 
up nutrients over the cell membrane (as in this case) this is often assumed. 

Because DEB theory was primarily developed for isomorphic organisms, it takes surface area to 
be proportional to volume⅔. Then the maximum rate of food uptake also is proportional to volume⅔, 
making it possible to define it as follows: 2

3
, ,{ }m X m XJ j V= ⋅ . Here ,{ }m Xj  represents the surface-area-

specific maximum rate of food uptake. It is important to note that V  is used here in DEB context, i.e. 
it refers to structural volume rather than total volume. This implies that 2

3V  is no longer a true measure 
of surface area: it neglects volume occupied by reserves. 

In part, this measure of surface area is used for the sake of simplicity. V  already is a part of DEB 
models: it is the central state variable. If the actual volume were used to calculate the surface area, it 
would require evaluation of the reserve densities at numerous points in the model. This would result in 
implicit descriptions of feeding rate because of circular references (feeding, reserve turnover and 
growth would become more intertwined). In addition, it is likely that ,m XJ  correlates better with the 
structural rather than the actual surface area in numerous situations. It all depends on the question: do 
stored reserves contribute to a higher feeding rate? Take a single-cell organism in which nutrients are 
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taken up by membrane-bound transporters. In that case one can hardly imagine a temporary increase of 
internal reserve volume (e.g. expansion of a nitrate vacuole) to produce more transporters. In this case 
nutrient uptake should be independent of reserve volume. 

 
Reserve kinetics 

In a default DEB model consumed food is first transferred to a reserve buffer. Assimilated substances 
then will have to pass the reserves before contributing to growth or maintenance processes. This 
construction may seem rather counter-intuitive. Most will assume assimilated food to be available for 
growth right away. Any reserve buffers could be located aside of the pool of assimilated food, and 
release their contents when that pool decreased in size (i.e. during food scarcity). A model 
implementing that construction, however, would require one or more additional state variables 
representing assimilated food. To prevent this complication, DEB theory assumes substance transfer 
between the ‘assimilated food’ pool and the reserves to be infinitely fast, compared to the rate at which 
assimilated food is used in catabolic processes. When this is assumed, the model’s behavior is 
indistinguishable from that of a model in which all food is first directed to reserves. 

 
Generally reserve composition differs from food composition. If food assimilation flux ,X AJ  is to be 
directed to the reserve pool, the model must include a food→reserve conversion in order to arrive at 
reserve assimilation rate ,E AJ . DEB theory does not restrict food→reserve transformation types. I will 
give two examples of possible transformations. If one food type produces one or more different 
reserve types, one can define yield constants converting food into reserves: ,X Ey  units of food X  
produce 1 unit of reserve E . If multiple food types are combined to produce one reserve type, ,E AJ  
can be based on synthesizing unit kinetics, with ,X AJ  for substrate arrival rate. 

Since all food is first directed to reserves, the latter are the sole substrate source for processes like 
maintenance and growth. Consequently reserves need to become available if growth and maintenance 
processes are to receive substrate. For this purpose DEB models include the catabolic flux ,E CJ . When 
we combine the catabolic flux with the reserve assimilation rate, we can define the differential 
equation for reserve amounts ( EM ): 

, ,E E A E C
d M J J
dt

= −  

From this the differential equation for reserve densities ([ ]E EM M V= ) can be derived: 

, ,
1[ ] [ ] [ ] [ ]E E A E C E

d dM J J M V
dt V dt

= − − ⋅ ⋅  

Note that the 1[ ]EM V dV dt−⋅ ⋅  expression is a consequence of standard quotient ( EM V ) 
differentiation. 
 
What is the value of the structural-volume-specific catabolic flux ,[ ]E CJ ? This is determined by three 
restrictions imposed on the reserve dynamics: 

1. Reserve density at steady state should be independent of organism size (i.e. structural volume 
V ) under fixed external circumstances. Kooijman calls this the weak homeostasis assumption. 

2. Reserve availability (outflow) should not depend directly on food uptake. 
3. Every reserve should be partitionable: when a multiple reserve compounds are present in a fixed 

ratio, and they contribute to maintenance and growth in the same ratio, it should be possible to 
combine them in one generalized reserve. This implies that an arbitrary part Aκ  of any reserve 
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density should, when separated, produce Aκ  of the original catabolic flux if its growth and 
maintenance contribution are Aκ  of the original. 

 
Combined these restrictions severely limit the possible kinetics of ,[ ]E CJ : 

 
• For reserve density at steady state ( [ ] 0Ed M dt = ) to be independent of V , its differential should 

be proportional to xV . Here the factor x  can be any number, including 0. Commonly reserve 
assimilation ,[ ]E AJ  is proportional to food uptake. This applies for instance if food type X  is the 
sole source of reserve type E . Indirectly ,[ ]E AJ  then is proportional to 1

3V − , as can be seen in the 
following formula: 

2
3

1
3

1
2

, ,
, ,

{ }
[ ] { }X A m X

X A m X

J J V f XJ V J f f
V V X X

−
 ⋅ ⋅

= = = ⋅ ⋅ =  + 
 

Because restriction 2 dictates that ,[ ]E AJ  cannot be part of ,[ ]E CJ , weak homeostasis is possible 
only if the combined non-assimilative fluxes are proportional to 1

3V − . This then applies to the 
combination of structural-volume-specific catabolic flux and dilution by growth. In formula it 
translates to: 

1
3

,
1[ ] [ ] (...)E C E

dJ M V H V
V dt

−+ ⋅ ⋅ = ⋅  

for a function (...)H  that is independent of V . 
 

• It can be proven that for reserve partitioning to be possible, the total reserve density outflow 
should be directly proportional to [ ]EM . Combined with the above this corresponds to: 

1
3

,
1[ ] [ ] [ ]E C E E E

dJ M V v M V
V dt

−+ ⋅ ⋅ = ⋅ ⋅  

for some constant Ev , which is independent of both V  and [ ]EM . 
 

• Additionally reserve partitioning requires the proportion of the catabolic flux used for maintenance 
and growth combined to be independent of [ ]EM . 

 
Thus, the weak homeostasis and partitionability requirement lead to the following reserve dynamics: 

1
3

,[ ] [ ] [ ]E E A E E
d M J v M V
dt

−= − ⋅ ⋅  

The catabolic flux then becomes: 

1
3

,
1[ ]E C E E

dJ V M v V V
V dt

− = ⋅ ⋅ ⋅ − ⋅ 
 

 

In a multiple-reserve model, this kinetics applies to every individual reserve pool, each with an 
individual Ev . However, when multiple reserves function as non-interchangeable substrates for 
structure synthesis (e.g. separate C-containing and N-containing reserves in plants), the differential for 
reserve densities changes slightly. In that case the lack of one particular reserve can prevent structure 
synthesis, thereby decreasing utilization of the catabolic fluxes of other reserves. DEB theory defines 



Modeling Emiliania huxleyi – photosynthesis, calcification and the global CO2 increase 

 15

part of those ‘rejected reserves’ to return to the reserve pool, i.e. when one nutrient is lacking, others 
can – to some extent – dam up in reserves. Hence the reserve pool receives additional input (or, if you 
like, its outflow is decreased), represented by ,[ ]E E RJκ ⋅ : 

1
3

, ,[ ] [ ] [ ] [ ]E E A E E E E R
d M J v M V J
dt

κ−= − ⋅ ⋅ + ⋅  

Details about this reserve-return can be found in next paragraph. 
 

Maintenance and growth 

Most DEB models include three destinations for the catabolic flux ,E CJ : reproduction, maintenance 
and growth. Reserves allocated to reproduction are buffered and, at some moment in time, transformed 
into offspring. Because the Emiliania model described in this paper does not monitor individual 
reproduction, it does not implement the reproduction sink. Therefore I will not discuss this aspect any 
further. 
 
Structural matter combines a set of (bio)chemically extremely diverse compounds. As the ratio of 
these compounds is assumed constant, individual rates of synthesis and destruction will be strictly 
synchronized: structure grows and diminishes as a whole. When viewed from a distance, this indeed 
seems to apply to most organisms. However, any biologist will realize that an organism whose size 
appear to be static, still perform synthesis of most of its structural compounds. All its constituents are 
subject to deterioration, and the appearance of a constant composition is maintained only by 
continuous resynthesis. This applies to chemical compounds like proteins and mRNA’s, but also to 
high-level units like red blood cells. Since such ‘maintenance’ of structure is likely to require 
significant quantities of nutrients or nutrient derivates, it needs to be incorporated in the DEB 
framework. 

Obviously, maintenance cannot be implemented as continuous destruction and resynthesis of 
structure as a whole, for that would imply that all structural compounds deteriorate at the same rate. 
Hence, the DEB framework defines structure to require a fixed amount of substances (or energy, if one 
chooses to check energy balances) per time. This amount is assumed proportional to structural volume: 

, ,[ ]E M E MJ J V= ⋅ ; no reserve maintenance is included. ,E MJ  is subtracted from the catabolic flux, and 
is usually defined for every reserve type individually. Thus, the average composition (e.g. element 
ratio) of matter invested in maintenance can differ radically from that required for growth. Differences 
in turnover rate between individual structural compounds can therefore be accounted for. In most 
implementations of the DEB framework, maintenance is considered essential for survival of the 
organism; when the supply of available nutrients drops below the level required for maintenance, the 
individual dies. 
 
When maintenance costs have been paid, the remainders of the catabolic flux become available for 
growth as the growth-directed reserve flux ,E GJ . In a single-reserve model, growth is straightforward: 
all of ,E GJ  is transformed into new structural volume, with a transformation constant [ ]GE  defining 
reserve mass needed per unit of structural volume produced. 

When the model contains multiple reserve types, each indispensable for growth, the situation 
becomes more complicated. In effect the growth process now becomes a multiple substrate (reserves), 
one product (structural volume) transformation. The previously described synthesizing unit (SU) 
kinetics – developed for this type of transformation in particular – is applied here. The structural-
volume-synthesis rate thus becomes a function of the arrival rates of the different reserves, i.e. ,iE GJ  
for reserve iE . For simplicity, the maximum rate of structural volume synthesis ,m VJ  is taken to be 
infinitely high, and the reserve→SU binding probabilities ,iE Vρ  are taken to equal 1. This also 
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improves consistency, for when applied to single-reserve growth, SU growth kinetics equal complete 
use of ,iE GJ , as defined for single reserve models previously. In the case of a two-reserve model, it 
results in the following kinetics for growth: 

1 2 1 2

1 2 1 2

1 1 1

, , , ,

, , , ,

1
V

E G E G E G E G

E V E V E V E V

J
J J J J
y y y y

− − −=
     

+ − +          
     

 

As in any multiple-substrate transformation, part of the arriving substrate remains unused if another 
substrate is lacking: in synthesizing unit terms, a part is rejected. Reserves rejected at the growth 
synthesizing unit (flux ,iE RJ ) DEB theory defines to be partly resorbed in the source reserve pool, and 
partly exudated. A fixed part 

iEκ  of ,iE RJ  is defined to re-enter the reserve pool; leftovers are 
exudated. Exudation prevents an unrealistic infinite increase of reserve densities when another reserve 
is permanently lacking. It also accounts for natural phenomena like sugar exudation by aphids when 
their food contains little nitrogen. Note that VJ  is limited, both through exudation-limited reserve 
densities, and growth-limited catabolic fluxes. Omitting ,m VJ  in the SU kinetics therefore does not 
result in unlimited growth. 

 
From individual to population 

Although all concepts described previously relate to individuals, DEB theory does offer ways of 
extending these to populations. The entire population can be represented by a single DEB-individual, 
in effect an unstructured population. This approach does present one important problem, however: the 
assumption of isomorphism. A default DEB-individual grows isomorphically: its surface area is 
proportional to its volume⅔. This is not the case for populations, for – when viewed as a collection of 
equally sized individuals – their surface area is proportional to volume1 (V1-morphs in DEB theory). 
In reality of course, the volume-surface area dependency is a mixture of both: both the number of 
individuals and their size play a role. It can be shown, however, that a population becomes more like a 
V1-morph with increasing population size (assuming asynchronous division). Therefore most 
populations can safely be assumed to behave like a V1-morph. 

 
Describing V1-morphs instead of isomorphs requires model modifications in every area where the 
volume-surface area relationship is involved. Because DEB models make extensive use of this 
relationship, this involves almost every part of the model, including the very start: food uptake. Since 
the maximum rate of food uptake was taken to be proportional to (structural) surface area, it now must 
be proportional to V . Instead of 2

3
,{ }X mV J⋅  we get ,[ ]X mV J⋅ , where ,[ ]X mJ  is structural-volume-

specific. The structural-volume-specific food uptake as used in reserve density kinetics then becomes: 

1
2

, ,[ ] [ ]X A m X
XJ J

X X
= ⋅

+
 

Because ,[ ]X AJ  now is independent of V , the reserve kinetics should be modified for the weak 
homeostasis assumption to apply. Specifically the catabolic flux combined with dilution by growth 
should be independent of V . This then eliminates the 1

3V −  in the combined reserve outflow. 
Subsequently constant Ev  is replaced by Ek , because of different dimensions: while the dimension of 

Ev  is 1
3 1V t−⋅ , the dimension of Ek  is 1t− . The differential for reserve densities and the catabolic flux 

thus become: 
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, ,[ ] [ ] [ ] [ ]E E A E E E E R
d M J k M J
dt

κ= − ⋅ + ⋅  

( ),
1[ ]E C E E

dJ V M k r r V
V dt

 = ⋅ ⋅ − = ⋅ 
 

 

Therefore we can define a structural-volume-specific catabolic flux, which is independent of V : 
, ,[ ]E C E CJ J V= . This implies that the structural-volume-specific growth directed flux is independent 

of V  too: , , ,[ ] [ ] [ ].E G E C E MJ J J= −  In both single- and multiple-reserve models this results in a structure 
synthesis rate that is proportional to V . For single-reserve models this can easily be seen, for growth is 
proportional to ,E GJ . The two-reserve growth function serves as an example for multiple reserve 
models: 

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

1 1 1

, , , ,

, , , ,

1 1 1

, , , ,

, , , ,

1

[ ] [ ] [ ] [ ]

1

[ ] [ ] [ ] [ ]

V

E G E G E G E G

E V E V E V E V

E G E G E G E G

E V E V E V E V

J
V J V J V J V J

y y y y

V
J J J J
y y y y

− − −

− − −

=
     ⋅ ⋅ ⋅ ⋅

+ − +          
     

= ⋅
     

+ − +          
     

 

Accordingly population growth rate Vr J V=  is independent of V . 
 
Interestingly enough the complete V1-morph model is independent of V  when defined relative to 
structural volume. In biological terms: population size does not influence its behavior. When external 
circumstances are identical, both small and large populations will have the same structure-specific 
feeding rate, reserve densities (i.e. composition), growth rate, etc.  
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Model construction 

This project aims to model the physiology of Emiliania huxleyi, with application in climate-related 
research in mind. The model’s capacity to describe various forms of climate→organism interaction 
depends fully on the environmental variables included in the model. Based on interest and the 
availability of experimental data, we focus on the following: 

• light intensity, which features prominently in numerous Emiliania experiments and thus 
allows for comparison of the model behavior with data. 

• ambient CO2, which allows for the model to be deployed in two areas of climate-related 
research: reconstruction of palaeoclimate CO2 concentrations from Emiliania sediments, and 
predicting changes in the carbon cycle following the global CO2 increase. 

• ‘nitrate’, which in essence plays the role of a generic, possible limiting nutrient (i.e. the 
model lacks any specifics of nitrate metabolism) and allows for model deployment in 
ecosystem competition scenarios, for instance. 

To determine the impact on the carbon cycle, inclusion of the following aspects of Emiliania’s 
behavior was considered indispensable: 

• uptake and exudation of carbon species 
• organic carbon per cell and CaCO3 per cell, which allows for a link to sediment data through 

the inorganic : organic carbon ratio. 
• population growth rate, which provides some measure of changes in abundance. 

 
About physiology 

To be able to give an accurate picture of Emiliania’s role in the carbon cycle, the model must include 
all major carbon fluxes the cell incorporates. Based on our need to distinguish imported carbon 
species, exported carbon species, fixed organic carbon and fixed CaCO3, we classify Emiliania’s 
carbon fluxes as follows: CO2 → organic carbon (photosynthesis), organic carbon → CO2 (dark 
respiration) and HCO3

- → CaCO3/CO2 (calcification). 
 
Photosynthesis: CO2 → organic carbon 

Photosynthesis converts CO2 into organic carbon compounds under influence of light. This is an 
intracellular process, occurring in the chloroplast. As the chloroplast lacks an inherent source of CO2, 
it is dependent on diffusive entry of the solute from the cytoplasm. The cytoplasmic CO2 concentration 
itself is in turn coupled to that of the environment: CO2 can traverse the cell membrane reasonably 
well, causing the cytoplasmic CO2 concentration to approximate  that of the environment under most 
circumstances. Net CO2 production (e.g. at night) will induce net diffusive CO2 outflow, net CO2 
consumption will induce net diffusive CO2 inflow. 
The primary products of photosynthesis are carbohydrates: the cell’s sole source of organic carbon. All 
other organic carbon-containing compounds, whether lipids, proteins or others, are produced from (a 
derivate of) photosynthetically-produced carbohydrates. 
 
Dark respiration: organic carbon → CO2 

Dark respiration is a collective term for processes that produce CO2. The major part of CO2 production 
occurs in the mitochondrion, where energy (i.e. ATP) is generated from organic carbon compounds. 
For the most part, these compounds are derived from either carbohydrates or lipids. Next to basic 
respiration, various conversions of carbon-containing compounds may involve formation of some CO2. 
Independent of the source, however, every molecule of CO2 generated in dark respiration will have 
been formed from carbon that was originally fixed in photosynthesis. 
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All forms of respiration occur internally, and will thus increase the cytoplasmic CO2 concentration. 
This will increase outward-directed CO2 diffusion, causing either net CO2 outflow when 
photosynthesis is absent or low, or reduced net inflow when photosynthesis is high. 
 
Calcification: HCO3

- → CaCO3/CO2 

Unlike photosynthesis and dark respiration, which are common to all algae, calcification is relatively 
rare. While it is found in numerous species, the mechanism employed by coccolithophorids (the group 
of which E. huxleyi is a member) is exceptional, in that it occurs internally in a highly controlled 
environment. Calcification takes place in a specialized organelle, derived from the Golgi. Here, CaCO3 
crystallizes onto a carbohydrate frame, which lays the basis for the intricate coccolith shape. 
In general, the CaCO3 crystallization reaction itself is thought to be a passive process. Unlike the far 
majority of biochemical reactions, which is enzyme-mediated, CaCO3 crystallization would occur 
through standard chemical equilibria. Simply by generating high concentrations of Ca2+ and CO3

2- 
inside the coccolith vesicle, the cell could force CaCO3 precipitation: 

22
3 3Ca CO CaCO−+ +  

Thus, the main requirement for calcification in the coccolith vesicle is a continuous net influx of Ca2+ 
and CO3

2-. Clearly, as the cell lacks a source of either substrate, both will be imported in one form or 
another from the environment. Surprisingly, the CO3

2- used in CaCO3 formation has been shown to be 
derived from external HCO3

-, not carbonate (Brownlee et al., 1994). This has a significant advantage 
for the cell, as the external HCO3

- concentration is well above that of CO3
2-, making import much 

easier. There is a side effect, however; as the imported HCO3
- is converted into CO3

2-, the cell is left 
with H+: 

2
3 3HCO CO H− − +→ +  

Whether this conversion takes places in the cytoplasm or in the coccolith vesicle is unknown, but 
irrelevant for its impact. Even if it occurred in the coccolith vesicle, H+ would still end up in the 
cytoplasm, as the vesicle lacks an intrinsic proton sink. Thus, aside from producing CaCO3, 
calcification is a source of acidification, which will initially be felt in the cytoplasm. This is also 
suggested by the fact that Emiliania cells have a lower internal pH than non-calcifying species of 
microalgae (Nimer et al., 1994). Free cytoplasmic H+ is almost non-existent; as soon as it becomes 
available, it will interact with the inorganic carbon equilibria, mostly in the following reaction: 

3 2 2H HCO CO H O−+ + +  

Thus, the net calcification reaction is given by: 

2
3 3 2 2Ca (ext) 2HCO (ext) CaCO (coccolith) CO (cytoplasm) H O−+ + → + +  

Thus, in essence, calcification acts as yet another source of CO2. Like all cytoplasmic CO2, that 
produced in this manner can suffer two fates: it will either diffuse outward, or be consumed in 
photosynthesis. Clearly, the latter use could be highly beneficial to the cell. Particularly at high light 
intensity – when CO2 demand in photosynthesis is high and its diffusive entry from the environment is 
insufficient – calcification-produced CO2 is likely to contribute significantly to photosynthesis. This 
has in fact been demonstrated in various Emiliania experiments that dealt with calcifying and non-
calcifying strains: the former type was able to sustain almost double the photosynthetic rates of the 
latter. 
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A full, biochemically oriented overview of metabolic fluxes and transformations related to 
calcification can be found in Brownlee et al. (1994) and Anning et al. (1996). 
 
Use of the DEB framework 

To facilitate model comparison with results of – typically population-oriented – Emiliania 
experiments, the model was constructed to describe a population of E. huxleyi. This also allows us to 
provide some indication of its abundance, a characteristic that is of course in part responsible for 
Emiliania‘s climate-influencing ability. For simplicity, the population is not modeled as a collection of 
distinct individuals (which would involve a great number of parameters, a complicated model setup 
and less transparent results), but rather as a single, summarizing individual: DEB theory’s V1-morph. 
Model kinetics are V1-morph-specific, which becomes most visible in two areas: all aspects of the 
model are defined relative to the population’s structure, including substance fluxes and the growth 
rate, and all surface-area-specific properties are replaced by structure-specific properties (which is 
possible because a V1-morph’s surface area is proportional to its structure). 

The Emiliania model differs in one aspect from the original DEB model: structural volume has 
been replaced by structural mass, i.e. the quantity of structural organic carbon. This replacement is 
possible because DEB theory assumes the composition of structure to be constant (‘strong 
homeostasis’). A constant composition entails that volume is proportional to the quantity of the 
various chemical constituents. This implies that one can replace structural-volume-specific properties 
of the model by properties that are specific to the quantity of any structure constituent. Since this 
project focuses on carbon content of Emiliania, rather than the irrelevant and difficult to measure 
structural population volume, all occurrences of structural volume have been replaced by structural 
mass, specified as the amount of structural organic carbon. Because the original V1-morph model was 
defined relative to structural volume, replacing structural volume influences all parts of the model: 
fluxes and growth are now given relative to structural mass, surface-area-specific properties are 
replaced by structural-mass-specific properties, structural-volume-specific properties (e.g. 
maintenance requirement) are replaced by structural-mass-specific properties. 

 
Model construction 

To describe Emiliania’s physiology by DEB framework, we need to adhere to the DEB classification 
of compounds. This requires a clear distinction between nutrients, reserves and structure. Nutrients are 
taken up, and transformed into reserves. Reserve outflow drives organism maintenance, after which 
the reserve surplus, if any, becomes available to structure synthesis. 

The carbon flux overview presented above must be placed into this context. Photosynthesis can be 
well described as a process that transforms nutrients into a carbon reserve. Dark respiration, on the 
other hand, is an obligatory carbon-reserve-depleting process, which in context of the DEB framework 
is well described as combination of size-dependent organism maintenance, and growth-dependent 
energy consumption. Calcification does take up nutrients, as it requires both Ca2+ and HCO3

-, but 
unlike photosynthesis, its most conspicuous product, CaCO3, is not required for further metabolism. 
On the other hand, its CO2 producing efforts can be most relevant, as it is likely to significantly 
enhance photosynthesis. Thus, it is well described as a process supplying additional  CO2 to 
photosynthesis. 

 
Carbon pathways 

Photosynthesis is modeled as a synthesizing unit transformation, i.e. taken comparable to an enzyme-
mediated process in which substrate binding is irreversible. The rate of photosynthesis is assumed to 
be controlled by the availability of two ‘substrates’: CO2 and light (implicitly, any other required 
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substrates are assumed abundant). Both are required in order to synthesize the main product: a carbon 
reserve, referred to as CH2O. Note that, despite the name, the composition of the CH2O reserve is not 
restricted to carbohydrates; as it is merely defined to be build from CO2 and a certain amount of light, 
it may just as well contain lipids and other forms of organic carbon. That would merely increase the 
required amount of light per unit of reserve. The only requirement for the reserve is that is its 
composition is constant. 

As any synthesizing unit mediated process, photosynthesis is restricted by a maximum rate. This 
maximum rate is assumed proportional to the structural mass of the modeled ‘individual’, or – as it in 
fact represents an entire population of Emiliania – the number of individuals in the population. Thus, 
the structural-mass-specific rate of photosynthesis can be given by: 

( )2

2 2 2 2 2 2 2

CH O, 11 1 1
,CH O light,CH O CO ,CH O light,CH O CO ,CH O

1
A

m

j
j j j j j

−− − −
=

′ ′ ′ ′+ + − +
 

All fluxes are structural-mass-specific (identifier ,x yj , rather than ,x yJ ), with dimension mole CH2O 
per C-mole structure per day. 

2,CH Omj  is a constant, representing the maximum rate of photosynthesis. 

2light ,CH Oj′  and 
2 2CO ,CH Oj′  represent effective arrival rates of light and CO2, respectively. The latter two 

are functions of the true arrival rate 
2,CH Osubstratej , the substrate-per-CH2O yield 

2,CH Osubstratey  and the 
binding probability 

2,CH Osubstrateρ  of the substrate with respect to the SU: 

2

2 2
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CO ,CH O CO ,CH O
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′ = ⋅

′ = ⋅ = ⋅
 

As we assume all organic carbon to be produced from CO2, the CO2-per-CH2O yield 
2 2CO ,CH Oy  can 

safely be set to 1. 
 
Light arrival at the photosynthesizing unit is taken proportional to the external light intensity light{ }J , 
specified in µmol photons per m2 per second. In addition it is taken proportional to structural mass, i.e. 
the number of individuals in the population. Thus, the light availability per individual is independent 
of population size. The structural-mass-specific light arrival at the CH2O SU is given by: 

2light,CH O light{ }j Jα= ⋅  

2light,CH Oj  appears only in 
2light,CH Oj′ . This implies that α  only occurs in conjunction with 

2light,CH Oρ  and 

2light,CH Oy . These three constants can therefore be collapsed into a single constant lightγ , in effect 
representing the potential CH2O yield per external light intensity per present structural mass (potential 
because photosynthesis is restricted by a maximum rate, and by a possible lack of CO2). 
 
CO2 arrival at the photosynthesizing unit is more complicated than light arrival, because multiple 
sources contribute to it. Diffusion, dark respiration and calcification each supply some CO2. A 
biochemical approach would most likely account for this by including an internal CO2 pool, through 
which the various sources and sinks could interact. However, this is preferably avoided, as it would 
require an additional state variable. Instead, 

2 2CO ,CH Oj  is simply taken to be combination of inward CO2 
diffusion 

2 2CO ,CH Odifj , CO2 production in respiration 
2 2CO ,CH Orespj  and CO2 production in calcification 

2 2CO ,CH Ocalcj : 
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2 2 2 2 2 2 2 2CO ,CH O CO ,CH O CO ,CH O CO ,CH Odif resp calcj j j j= + +  

CO2 arrival through diffusion is taken proportional to the external CO2 concentration 
2COC  and 

structural mass, with proportionality constant 2COγ : 

2 2 2 2CO ,CH O CO COextj Cγ= ⋅  

CO2 arrival from respiration equals the combined CO2 production rates of DEB maintenance and 
growth processes. The DEB framework specifies substance fluxes related to maintenance and growth 
as the rate of disappearance (resp. ,substance MJ  and ,substance GJ )  Consequently, the rate at which 
respiration produces CO2 is the sum of 

2CO ,MJ  and 
2CO ,GJ , but with opposite sign. When made 

structural-mass-specific, this amounts to: 

( )2 2 2 2CO ,CH O CO , CO ,resp M Gj j j= − +  

Actual values of 
2CO ,Mj  and 

2CO ,Gj  are determined by the specifics of maintenance and growth, and 
can be found below. 
CO2 arrival from calcification is taken proportional to the external HCO3

- concentration 
3HCO

C −  and the 
structural mass, with proportionality constant 

3HCO
γ − : 

2 2 3 3
CO ,CH O HCO HCOcalcj Cγ − −= ⋅  

Note that calcification is not influenced by the availability of other substrates (e.g. Ca2+); these are 
assumed abundant. 
 
Photosynthesis can never make full use of offered substrates. Its production rate, and thereby the rate 
of substrate consumption, is restricted by the maximum rate of CH2O production 

2,CH Omj , and by 
potentially low arrival rates of CO2 and light. Hence, part of the arriving substrate fluxes is rejected. 
For all substrates, this rejected flux does not contribute any further to photosynthesis: it disappears 
from the scope of the model. The interpretation of this disappearance varies per type of substrate: 
rejected light is assumed to pass through or dissipate at heat, rejected CO2 that originated from 
diffusion or respiration is assumed to disappear through outward diffusion. However, to establish the 
often observed correlation between photosynthesis and calcification, we assume rejected calcification-
related CO2 to never have been produced by calcification, i.e. to result in outward HCO3

- diffusion. 
Calcification therefore only occurs if CO2 available through calcification is actually used in 
photosynthesis: calcification answers to photosynthesis demand only. 

 
From the rate of photosynthesis we can derive the uptake rate of CO2 and HCO3

-. The net CO2 uptake 
is specified by the difference between CO2 inflow (

2 2CO ,CH Odifj ) and outflow (the part of 
2 2CO ,CH Odifj  and 

2 2CO ,CH Orespj  rejected at the photosynthesizing unit). CO2 produced in calcification is per definition fully 
consumed in photosynthesis, and therefore not directly of influence for CO2 uptake. The ratio at which 
various CO2 sources are rejected is taken to equal the ratio at which they contribute to CO2 arrival. 
Thus, the net structural-mass-specific rate of CO2 uptake is given by: 

( )2 2 2 2

2 2 2 2 2 2

2 2

2 2 2 2

2 2 2

2 2

CO ,CH O CO ,CH O
CO CO ,CH O CO ,CH O CH O,

CO ,CH O

CO ,CH O CO ,CH O
CH O, CO ,CH O

CO ,CH O

dif resp
uptake dif A

dif resp
A resp

j j
j j j j

j

j j
j j

j

+
= − ⋅ −

+
= ⋅ −
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HCO3
- uptake is related to calcification only. The rate of calcification is defined as the rate at 

which photosynthesis consumes CO2 that is available through calcification. The rate at which 
photosynthesis consumes CO2 is equal to 

2CH O,Aj . The ratio at which various CO2 sources contribute to 
photosynthesis is taken equal to the ratio at which they contribute to CO2 arrival. Hence the net 
structural-mass-specific rate of HCO3

- uptake (which is twice the rate of CO2 production by 
calcification, based on calcification stoichometry) is given by: 

2 2

23
2 2

CO ,CH O
CH O,HCO

CO ,CH O

2 calc
Auptake

j
j j

j− = ⋅ ⋅  

 
All photosynthesis-produced CH2O is initially incorporated in a CH2O reserve pool. Following DEB 
theory, the differential equation for reserve density and the structural-mass-specific catabolic rate are 
given by: 

2 2 2 2 2 2CH O CH O, CH O CH O CH O CH O,A R
d m j k m j
dt

κ= − ⋅ + ⋅  

( )2 2 2CH O, CH O CH OCj m k r= ⋅ −  

Part of the catabolic flux is used to satisfy the structural-mass-specific maintenance requirement 

2CH O,Mj . CH2O left over becomes available for growth: 

2 2 2CH O, CH O, CH O,G C Mj j j= −  

CH2O consumed by maintenance is taken to be converted into CO2. Thus, maintenance-related CO2 
consumption is given by: 

2 2CO , CH O,M Mj j= −  

Note: no other reserve will be included that contain carbon. Thus, CH2O is the only maintenance-
related source of CO2. 
 
An additional nutrient dependency 

To extend the applicability of the model, another possibly limiting nutrient has been included in the 
model. This allows the model to describe situations in which behavior is influenced by input variables 
besides light intensity and the concentrations of CO2 and HCO3

-. In the model this nutrient is 
represented by nitrate: NO3

-. 
 Uptake of nitrate is assumed to occur through active transport only. Therefore the uptake rate can 

be described by standard DEB food uptake kinetics, rendering a hyperbolic relationship between 
nitrate uptake 

3NO ,A
j − and ambient nitrate concentration 

3NO
C − : 

3

3 3
1

3 32

NO
NO , ,NO

NO ,NO
A m

C
j j

C C
−

− −

− −

= ⋅
+

 

Like photosynthesis, nitrate uptake is restricted by a maximum rate, which is taken to be structural-
mass-specific: 

3,NOm
j − . 1

32,NO
C −  represents the external nitrate concentration at which nitrate uptake 

occurs at half of its maximum rate. 
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After uptake, nitrate is first incorporated in a reserve pool. This allows for temporary survival in 
low-nitrate environments. In addition, this reserve can influence the average composition of the 
population: depending on ambient nitrate concentration, the nitrate reserve can be a negligible to 
substantial part of the total content. The nitrate reserve follows standard DEB reserve kinetics, which 
means the differential equation for nitrate reserve density and the catabolic flux are given by: 

3 3 3 3 3 3NO NO , NO NO NO NO ,A R

d m j k m j
dt

κ− − − − − −= − ⋅ + ⋅  

( )
3 3 3NO , NO NOC

j m k r− − −= ⋅ −  

After paying the structural-mass-specific maintenance cost 
3NO ,M

j − , the structural-mass-specific 
growth-directed nitrate flux is given by: 

3 3 3NO , NO , NO ,G C M
j j j− − −= −  

Growth: synthesis of structural mass 

As in all DEB-based models, all substance pathways end with the synthesis of new structure, which in 
this case corresponds to population growth. Growth is specified as synthesis of structural mass. Here, 
it is taken to depend on the availability of two substrates: the CH2O reserve and the NO3

- reserve. This 
assumes any other substrates are abundant and not growth limiting. Following DEB theory, synthesis 
of structural mass is modeled as a slightly modified synthesizing unit transformation (no maximum 
rate, binding probabilities of 1), and thus dependent on growth-directed substrate fluxes (

2CH O,Gj , 

3NO ,G
j − ), and on the reserve-per-structural-mass yields (

2CH O,Vy , 
3NO ,V

y − ). The population growth rate 
(structural mass synthesized per structural mass present, 1

V VdM dt M −⋅ ) is given by: 

3 32 2

2 23 3

1 11

NO , NO ,CH O, CH O,

CH O, CH O,NO , NO ,

1

G GG G

V VV V

r
j jj j

y y y y
− −

− −

− −−
=

    
   + − +           

 

Note that this is an implicit description of growth, as both growth-directed fluxes depend on r  through 
their respective catabolic fluxes (

2CH O,Cj , 
3NO ,C

j − ). 
In most circumstances only part of the growth directed reserve fluxes is actually used for growth. 

Lack of one substrate prevents growth, and thereby the use of the other. A substrate flux is used in full 
only if the other substrate is abundant (essentially, if ,substrate Gj → ∞ ). Since the used part of a reserve 
flux corresponds to structural mass increase multiplied by the yield constant, the fluxes of unused 
(rejected) reserves are given by: 

2 2 2CH O, CH O, CH O,R G Vj j y r= − ⋅  

3 3 3NO , NO , NO ,R G V
j j y r− − −= − ⋅  

As defined by DEB and as signified by the previously described reserve kinetics, part of these rejected 
fluxes is reincorporated in the reserve pool. The parts returning to the CH2O and NO3

- reserve pools 
are defined by 

2CH Oκ  and 
3NO

κ − , respectively. Subsequently, what is left of the rejected reserve fluxes 
is exudated. 
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Only part of the carbon consumed in growth will end up in structural carbon-containing compounds. 
Per 

2CH O,Vy  mole CH2O consumed, one mole of structural carbon is generated. The additional CH2O 
will be used to generate the energy required for growth, and is assumed to be fully converted into CO2. 
Thus, we can specify the following rate of (negative) growth-related CO2 consumption: 

 ( )2 2CO , CH O, 1G Vj r y= − ⋅ −  

Figure 1: The model. This figure shows all modeled substance fluxes (arrows), substance transformations 
(rounded rectangles) and the two reserves (ellipses). Transformations that use synthesizing unit kinetics can
be identified by ellipses contained within the rectangle. These ellipses signify required substrate types. 

Colors are used to identify pathways of the various compounds: CO2 (■), light (■), CH2O (■), HCO3
- (■), 

CaCO3 (■), NO3
- (■) and structural mass (■). 

The following transformations can be seen: calcification (Ca), photosynthesis (Ps), nitrate uptake (Nu),
CH2O and NO3

- maintenance (M) and synthesis of structural mass (i.e. population growth, Gr). 
For clarity, rejected substrate fluxes that disappear from the scope of the model are not shown. Here, this is
the case for light and CO2 (both rejected at the photosynthesizing unit). Note that rejected CO2 that 
originated from diffusion, growth and maintenance is assumed to disappear through outward diffusion,
whereas that which originated from calcification is assumed to never have been produced by calcification
(i.e. it leaves the cell as HCO3

-). 
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Methods of analysis 

The model was designed to be applied to scenarios of global climate change, particularly those dealing 
with changes in the ambient CO2 concentration. These are relatively slow processes: the time required 
for even the slightest change will far exceed the lifespan of an Emiliania individual. Experiments have 
shown Emiliania populations to enter steady state (i.e. constant growth rate, constant cell 
characteristics) within five days, even following severe changes in major environmental parameters. 
Considering that climate change is far less abrupt, it is more than likely that during the process, 
populations are continuously in steady state. Therefore, model analysis focuses on steady state solving, 
rather than integration. 

First and foremost, the model’s behavior is compared with real-world data. The model was fitted 
to the results of an experiment that deals with the effect of light limitation on population growth and 
calcification. These aspects of Emiliania are well studied, and the quality of the model’s fit can 
provide some indication of its applicability. 

 
Steady state analysis 

Before diving into steady state solving mechanisms, it is important to realize what is meant by ‘steady 
state’. Contrary to what one might think, it does not necessarily imply a constant population size. The 
complete Emiliania model is independent of structural mass (i.e. population size) when defined 
relative to structural mass. Hence, given the same environment, a population with a size of, say, 2, will 
equal 2 separate populations of 1, both in composition and behavior. This implies no intrinsic 
maximum population size is present. Since we also assume ambient ‘nutrient’ availability (light, CO2, 
HCO3

-, NO3
-) to be independent of uptake by the population, it is clear that steady state does not equal 

a growth rate of zero. Rather, when kept in a constant environment long enough, the reserve densities 
(the amount of reserves per individual) will become constant, resulting in a constant population growth 
rate. At that point, reserve synthesis (through food uptake) will equal the sum of reserve use in 
maintenance/growth and reserve outflow. Summarizing, steady state is defined in this context as a 
situation in which the reserve densities of both CH2O and NO3

- are constant, and the population grows 
exponentially. 

The above definition implies that, at steady state, the following should be true: 

 
2CH O 0d m

dt
=  

3NO
0d m

dt − =  

These conditions would suffice to determine the values of 
2CH Om  and 

3NO
m −  (and thus to fully describe 

the steady state), if all model variables were explicitly defined. This is not the case, however: the 
growth rate r  is described by an implicit expression only. Thus, a complete description of steady state 
requires not only the finding of the values of reserve densities, but also the value of r . To achieve this, 
we make use of the fact that the value of r , like those of reserve densities, is bound by a condition: 
under all circumstances, it is described by: 

3 32 2

2 23 3

1 11

NO , NO ,CH O, CH O,

CH O, CH O,NO , NO ,

1

G GG G

V VV V

r
j jj j

y y y y
− −

− −

− −−
=

    
   + − +           
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From now on, I use ( )f r  as identifier for the right part of this expression. 
Combined, solving steady state requires finding the values of three variables, 

2CH Om , 
3NO

m −  and 
r , which are restricted by three conditions: 

2CH O 0dm dt = , 
3NO

0dm dt− =  and ( )r f r= . This is a 
problem that can typically easily be solved by a root solving routine like Newton’s, requiring n  
conditions to find the value of n  variables. 
 
In this specific case, additional simplification is possible. For both reserve densities, an ‘explicit’ 
description can be derived. Below, this is shown for a generic reserve compound. The differential 
equation for the reserve density should equal zero, i.e.: 

, , 0reserve reserve A reserve reserve reserve reserve R
d m j k m j
dt

κ= − ⋅ + ⋅ =  

The rejected flux ,reserve Rj  can be rewritten as follows: 

 ( ), , ,reserve R reserve reserve reserve M reserve Vj m k r j r y= ⋅ − − − ⋅  

When this expression is inserted in reservedm dt , the following expression for reserve density at steady 
state can be found: 

( )
, , ,

1 1
reserve A reserve reserve M reserve V

reserve
reserve reserve

j j r y
m

k r
κ

κ
− − ⋅

=
⋅ − +

 

For the carbohydrate- and nitrate reserves, this comes to: 

( )
2 2 2 2

2

2 2

CH O, CH O CH O, CH O,
CH O

CH O CH O1 1
A M Vj j r y

m
k r

κ
κ

− − ⋅
=

⋅ − +
 

( )
3 3 3 3

3

3 3

NO , NO NO , NO ,
NO

NO NO
1 1

A M V
j j r y

m
k r

κ

κ

− − − −

−

− −

− − ⋅
=

⋅ − +
 

Note that these are not truly explicit descriptions, as both depend on r , which in turn depends on 

2CH Om  and 
3NO

m − . When these descriptions for the reserve density in steady state are inserted in 
( )r f r= , our 3 variables/3 equations problem is reduced to one of 1 variable/1 equation. 

Unfortunately, as ( )f r  is a very complex function of r , multiple valid solutions for r  may exist. 
In other words: there may exist multiple, different steady states at a given set of parameters. Using 
Wolfram Corporation’s Mathematica 4, ( )r f r=  has been shown to be transformable into ( ) 0g r =  
with ( )g r  being an 11th order polynomial in r . For such a polynomial, 11 solutions of r  exist at 
which the function equals zero. These can be either complex or non-complex. Thus, there might be up 
to 11 different, valid (i.e. non-complex) solutions for r  with certain parameter sets. Whether this 
actually occurs it strictly dependent on the choice of parameter values; as all parameters are 
constrained by certain bounds (e.g. none should be < 0), the number of valid solutions may well be 
significantly reduced. 
 
The model in steady state was analyzed using a custom implementation of the Newton-algorithm, 
(Burden & Faires, 1985). This algorithm attempts to minimize n  user-supplied functions through the 
varying of n  user-selected variables. The user is responsible for providing fitting initial values for 
every variable. 
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At every iteration, an evaluation of the partial derivates of every function is performed. For each 
variable ix  and function 1( ,..., )i nf x x , these derivates were approximated numerically by calculating 
the difference between 7( 10 )i if x −+  and 7( 10 )i if x −− , and dividing by 72 10−⋅ . The algorithm requires 
inversion of the Jacobian matrix at every iteration. For this purpose, a custom implementation of the 
Gaussian matrix-inversion algorithm (Burden & Faires, 1985) was provided. The maximum number of 
iterations for the Newton algorithm was set at 100, but never attained in any situation tried. 
 
Before steady states were estimated for the full model, it was tested whether the more generic two-
reserves-for-growth DEB model (where food uptake is independent of growth) allowed for multiple 
steady states. In theory, up to 3 steady state could exist, as ( )f r r−  in that case can be transformed 
into a 3rd order polynomial. 

For numerous set of parameter values, and different initial estimates for r , I estimated steady 
state values of r  using the Newton algorithm (with ( )f r r−  set as the function to minimize). Food 
uptake was neglected, and both reserve densities were considered parameters. For every parameter, 3 
values were tried: an initial estimate p , 10 p  and 0.1 p . The parameters were varied independently 
of each other, resulting in 311 unique parameter sets. In addition, 101 different initial estimates for r  
were used, ranging from -5 up to 5, with steps of 0.1 between. 

Initially, steady state estimation proved difficult: numerous times, the maximum number of 
iterations of the Newton algorithm was exceeded, or the Jacobian matrix became singular. These 
problems were eliminated, however, when the Newton algorithm was set to minimize the 3rd order 
polynomial transformation of ( )f r r− , rather than the function itself. 

For many parameter sets, different solutions of r  were obtained at different initial estimates of r . 
This would suggest the existence of multiple valid steady states. However, for every one of these 
cases, all, or all but one of these solutions could be discarded based on other conditions, specifically 
the requirement that 

2CH O,Gj  and 
3NO ,G

j −  each should be ≥ 0. In other words: if a population is 
proclaimed dead when it is unable to pay maintenance costs, we never find more than one valid steady 
state. Note a total lack of steady states is indeed to be expected for certain parameter sets, as the 
maintenance requirement can exceed the capacity of reserve rendering processes. 

These results strongly suggests that at maximum, only one steady state exists for any given set of 
parameters, provided the their values lie within realistic ranges1. Hence, the Newton algorithm, which 
would otherwise be unsuitable because of its inability to reliably trace multiple valid values of r , 
seems well suited for this type of steady state analysis. Analysis of the results shows that an initial 
estimate of 0r =  will in all tested circumstances cause convergence of the algorithm around the valid 
steady state, providing one exists. Therefore, in all further steady state analyses the initial value of r  
provided to the Newton algorithm was set to 0. 

 
Data fitting 

To allow for the model’s behavior to be compared to results of experiments, the steady state solving 
algorithm was coupled to a Simplex parameter estimating routine. This algorithm attempts to minimize 
a user-specified function 1( ,..., )nf p p  by varying the value of n  user-selected parameters 1,..., np p . 
The algorithm maintains an internal list of 1n +  different parameter sets, which are initially supplied 
by the user. At every iteration an optimal set of parameters is predicted based on the value of 

1( ,..., )nf p p  at all current parameter sets. This newfound set replaces the parameter set that produced 
the highest value of 1( ,..., )nf p p . 

 

                                                      
1  Note: no additional testing was done to check whether the full model (in which food uptake depends on the 

growth rate) allowed for multiple steady states. In theory, 9 steady states (two out of 11 were eliminated) are 
possible. 
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To obtain an optimal fit for multiple datasets, 1( ,..., )nf p p  was chosen a weighted sum-of-squares 
function. This function equals the sum of weighted sum-of-squares functions for every dataset 
individually: 

1 , 1 1 , 2 1( ,..., ) ( ,..., ) ( ,..., ) ...n wss dataset n wss dataset nf p p f p p f p p= + +  

For a single dataset, the weighted sum-of-squares function equals the following, given the datasets 
contains multiple ( ),i iX Y  coordinates: 

( )2
1

1
1

( , ,..., )
( ,..., )

pn

i i i n
i

wss n

Y z X p p
f p p

Y
=

−
=
∑

 

Herein, pn  represents the number of points in the dataset, 1( , ,..., )i i nz X p p  represents the Newton 
estimate of variable Y , and Y  represents the average value of Y  for all data points combined (i.e. the 
weighing factor). Note that different datasets may describe relationships between different variables; 
i.e. one could combine a dataset describing light intensity vs. population growth with one describing 
nitrate concentration vs. calcification. 

 
The required initial 1n +  parameter sets were built from one set of parameter estimates. This base set 
was supplied at the start of the estimation, and served as the basis for all others. Set 1 equals the base 
set. Set 2 equals the base set, except for the fact that 1p  was increased by 25 %. Set 3 equals the base 
set, except for the fact that 2p  was increased by 25 %. Etc. 
 
The simplex routine was set to perform 5000 iterations, with no evaluation of intermediate results (e.g. 
tolerance checking). However, monitoring of several runs showed that no significant changes in 
estimated parameter values occurred after 3000 iterations. 
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Results and discussion: model I  

Comparison with data 

Historically, a major part of coccolithophorid research has focused on the relationship between light 
availability and growth/calcification. The model was designed to fit into this line of research, and 
should therefore adequately describe commonly observed trends in this field. 

I fitted the model to data obtained from batch growth experiments (van Bleijswijk, 1996). In these 
experiments, Emiliania cultures were kept at various light intensities for a period of 3 weeks. 
Individual cultures were diluted when their density exceeded 10-4 cells.ml-1, thus ensuring that the 
population’s impact on its environment (through depletion of nutrients, a decrease in light intensity, 
aggregation of waste products) was minimal. This allowed to maintain a constant growth rate during 
the full length of the experiment. Hence, the behavior of the populations should be well described by 
the model when it is in steady state. 

 
The model was fitted simultaneously to the following two datasets: 

• light intensity vs. the rate of organic carbon (OC) synthesis per present OC. As  the 
populations are in steady state, the CH2O reserve density of newly synthesized matter is 
identical to that of the standing population. Thus, the rate of OC synthesis per standing OC is 
identical to the population growth rate: 

( )2

2

CH O

CH O

1OC synthesis
OC present 1

r m
r

m
⋅ +

= =
+

 

where r  and 
2CH Om  depend on light intensity. 

• light intensity vs. the rate of inorganic carbon (CaCO3) synthesis per present OC. In the model, 
this rate is given by: 

2 2 2 2 2

2

,CH O CO ,CH O CO ,CH O3

CH O

CaCO  synthesis
OC present 1

A calcj j j
m

⋅
=

+
 

where 
2CH O,Aj , 

2CH Om  and 
2 2CO ,CH Oj  each depend on light intensity. 

 
From these synthesis rates, the molar inorganic carbon to organic carbon ratio was calculated. This 
ratio is identical for both cell contents and synthesis rates, as the population is in steady state. The 
adequacy of the model’s description of the IC : OC ratio served as an additional criterion in 
determining the model’s usability. 

 
Only parameters expected to affect light – carbon synthesis interaction were estimated. This excludes 
all parameters related to the nitrate pathway: as all nutrients were kept at optimal availability, nitrate 
(or any other nutrient not explicitly included in the model) should not affect the model’s behavior. 

3,NOm
j −  and 

3NO
k −  were set to a high values to ensure ample nitrate is present throughout the model, 

whereas other nitrate-related parameters were simply set to generic values. The effect of nitrate 
abundance is that growth cannot be nitrate-limited (i.e. 

3NO ,G
j − → ∞ ). Therefore, no CH2O arriving at 

the growth SU will be rejected. The value of 
2CH Oκ  consequently cannot influence the model’s 

behavior, and was not estimated. 
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Table 1 presents an overview of all parameter values. Values of the input variables of the model 
were set to 

2CO 15C =  µM, 
3HCO

2000C − =  µM and 
3NO

50C − =  µM (van Bleijswijk, 1996). 
 

Figures 2 to 4 present the results. The final parameter estimates as produced by the Simplex algorithm 
are included in table 1. However, these values are only provided to allow for complete reproduction of 
the results; by no means do the limited datasets constrain the parameters. Even the slightest change to 
the initial estimates resulted in vastly different final estimates, though the fitted curves appeared 
identical. 
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Figure 2: population growth as a function of light
intensity. 

Figure 3: calcification as a function of light inten-
sity.

Figure 4: the inorganic carbon : organic carbon
ratio as a function of light intensity. This statistic
is calculated by dividing the rate of calcification by
the rate of organic carbon production (both for the
data and the model). 
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parameter unit initial estimate final estimate

2,CH Omj  mol CH2O.C-mol MV
 -1.d-1 4 3.69

lightγ  mol CH2O.(µmol photons.m-2.s-1)-1.C-mol MV
 -1.d-1 0.05 0.0595

2 2CO ,CH Oρ  - 0.9 0.712

2COγ  mol CH2O.(µM CO2)-1.C-mol MV
 -1.d-1 1 1.90

3HCO
γ −  mol CH2O.(µM HCO3

-) -1.C-mol MV
 -1.d-1 0.02 0.0155

2CH Ok  d-1 2 2.37

2CH O,Mj  mol CH2O.C-mol MV
 -1.d-1 0.05 0.00

2CH O,Vy  mol CH2O.C-mol MV
 -1 1.2 1.00

2CH Oκ  - 0.9 -

3,NOm
j −  mol NO3

-.C-mol MV
 -1.d-1 50 -

1
32,NO

C −  µM 1 -

3NO
k −  d-1 20 -

3NO ,M
j −  mol NO3

-.C-mol MV
 -1.d-1 0.05 -

3NO ,V
y −  mol NO3

-.C-mol MV
 -1 1.2 -

3NO
κ −  - 0.9 -

Table 1: Estimated parameter values for model I, light vs. carbon synthesis. This table shows both the initial 
estimates used to start up the simplex algorithm, and the final estimates as produced by the simplex algorithm. 

 

Model behavior 

Both the curves for growth rate and calcification show a similar, hyperbole-like relationship with 
respect to the light intensity. However, one subtle but important difference exists: calcification can 
function at any non-zero light intensity (as it correlates with the light intensity through 
photosynthesis), whereas population growth requires a certain amount of light to start with. This 
requirement is caused by maintenance (i.e. 

2CH O,Mj ), which consumes some photosynthetically 
produced CH2O, and reduces the amount available for growth. Growth can therefore only occur when 
photosynthesis delivers over 

2CH O,Mj  in CH2O. 
At very low light intensities, the population cannot satisfy its maintenance requirement. At that 

point, it is proclaimed dead. Thus, the model curves start at the light intensity at which 

2 2CH O, CH O,A Mj j= , 0r = , and calcification is positive. This also implies that the IC-to-OC ratio has a 
positive vertical asymptote at precisely that light intensity. This asymptote is not visible in figure 4, 
due only to the minimal final estimate for 

2CH O,Mj . 
 

As the light intensity increases, both calcification and population growth saturate. The main cause for 
this is that photosynthesis – on which both processes strongly depend – approaches its maximum rate 

2,CH Omj . In addition, the growth rate is intrinsically restricted: part of the CH2O delivered by 
2CH O,Aj  

will never become available for growth, as it is used to ‘fills up’ newly synthesized structural mass. 
Consequently, increased synthesis of structural mass (i.e. a higher growth rate) decreases the 
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availability of CH2O at the growth SU. This is well seen in the kinetics for the catabolic flux 
( )2 2 2CH O, CH O CH OCj m k r= ⋅ − : reserve outflow directed at maintenance and growth is hampered by a high 

growth rate. Note that these mechanisms also imply that the maximum population growth rate does not 
equal 

2 2,CH O CH O,m Vj y . 
The increases in calcification and growth each are directly affected by 

2CH O,Aj , but whereas the 
growth rate is in addition intrinsically restricted, calcification suffers because it is measured per 
organic carbon present. As the rate of photosynthesis increases, the CH2O reserve density will too; 
consequently, calcification per OC will grow relatively slower than photosynthesis. 

It is interesting to note that the ratio between calcification and the growth rate appears constant. 
However, this is due mainly to the extremely low final estimates for 

2CH O,Mj  and 
2CH O,Vy . More 

realistic values of respectively 0.05 and 1.2 would emphasize the vertical asymptote at the lowest 
viable value of light{ }J , and cause the ratio to re-increase at higher light intensities. 
 
Quality of fit 

Clearly, the model describes the population growth rate very well. The same cannot be said for the 
description of calcification. The data show it to occur only at higher light intensities (> 6 µmol 
photons.m-2.s-1), whereas the model dictates that calcification takes place at any positive intensity. Yet 
the deviations are only slight. Therefore, the description of calcification too might be deemed adequate 
for most purposes. 

However, when both statistics are used to calculate the IC-to-OC ratio, the model fails miserably 
at delivering an adequate description. Whereas the data clearly show the ratio to equal zero at low 
light, and to rise with increasing light intensity, the model maintains a constant carbon ratio (even 
ignoring the theoretical vertical asymptote close to light{ } 0J = ). This is unfortunate, as the IC : OC 
ratio is a far more important statistic than carbon synthesis rates. The latter are usable in a narrow 
range of research only, as they require close monitoring of live Emiliania specimen. This is not the 
case for the carbon ratio, which can be determined more or less instantaneously from any sample, 
living or dead. Hence, more weight should be attributed to the model’s description of this ratio, than to 
those of synthesis rates. Clearly these results give cause for adjustment of the model. 
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Improving the model 

What to change? 

Clearly, the model’s main defect lies in its description of calcification. In the current model setup, 
CaCO3 production is inextricably linked to photosynthesis: the latter obtains part of its CO2 from 
calcification under all circumstances. Photosynthesis occurs at any positive light intensity, and hence, 
calcification does too. This does not match the relationship described by the data: at low light 
intensity, calcification is absent. 

In is not surprising that the model deviates from reality in its description of the calcification-
photosynthesis link, as the key kinetics was chosen for simplicity rather than realism. Therefore, the 
obvious way to enhance the model is to incorporate a realistic representation of the mechanisms 
surrounding photosynthesis and calcification. Instead of the direct link between the various CO2 
sources and photosynthesis, I chose to include an additional state variable for internal CO2. Through 
this variable, sinks and sources interact. To maintain consistency with other parts of the model, the 
state variable was chosen 

2COm : the amount of CO2 per C-mole structural mass. Thus, it is comparable 
with the reserves for CH2O and NO3

-. The differential equation for 
2COm  is given by: 

2 2 2 2 2CO CO , CO , CO , CO ,dif calc resp ps
d m j j j j
dt

= + + −  

Here we find the various CO2 sinks and sources described previously: diffusion, calcification, 
respiration and photosynthesis. 
 
CO2 sinks and sources 

Since we now have a measure of internal CO2, diffusion can be described by standard kinetics, i.e. as a 
function of the external and internal concentration. To obtain the internal concentration, we introduce 
[ ]VM , a constant specifying the amount of structural OC per cell volume. The product of [ ]VM  and 

2COm  equals the internal CO2 concentration. Inward-directed CO2 diffusion now corresponds to: 

( )2 2 2 2CO , ,CO CO CO[ ]dif d Vj k C M m= ⋅ − ⋅  

Here 
2,COdk  represents the newly introduced diffusion constant. Note that diffusion is taken 

proportional to structural mass (as 
2CO ,difj  is structural-mass-specific, and independent of VM ), rather 

than surface area. This is done for simplicity; calculating the true population surface area would 
require additional parameters and introduce more interdependencies. Diffusion is taken to be 
proportional to the external CO2 concentration, which requires rapid diffusion to and from the water 
layer surrounding the cell. It has been shown, however, that a stagnant, diffusion-limiting water mantle 
around cells as small as those of Emiliania huxleyi is almost non-existent, and of no effect on CO2 and 
HCO3

- uptake (Wolf-Gladrow and Riebesell, 1997). 
The strongest modification of the model relates to the kinetics for calcification. These are created 

from scratch, derived from (bio)chemical and physical mechanisms. As described previously, for 
every CaCO3 produced in calcification, one molecule of CO2 is generated. To maintain the high pH 
required for calcification inside the coccolith vesicle, all produced CO2 must be exported into the 
cytoplasm. Clearly, this process would be hindered by a high cytoplasmic CO2 concentration; as the 
molecule traverses lipid membranes with relative ease, no means of transport would be able to keep 
CO2 out of the vesicle if the cytoplasmic concentration is high enough. It is much more likely that the 
presence of CO2 is the controlling factor for calcification, rather than the availability of HCO3

- (which 
was the main factor of influence in the previous model); the latter substrate is amply available both 
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inside and outside of the cell. Considering these mechanisms, calcification is well implemented as a 
process that is restricted only by a MV-specific maximum rate ,m calcj , and by a high internal CO2 pool. 
For the sake of simplicity, linear kinetics were applied: 

2

2

2

CO
CO , ,

CO ,

1calc m calc
no calc

m
j j

m
 

= ⋅ −  
 

 

Here 
2CO ,no calcm  represents the internal CO2 density at which no calcification occurs. Note that this 

form of CO2 production is mathematically identical to CO2 diffusion, with respect to 
2COm . 

Implemented like this, calcification can therefore be regarded a diffusion-enhancer. 
 

Adding respiration-produced CO2 to the internal pool is straightforward: 

( )2 2 2CO , CO , CO ,resp M Gj j j= − +  

The rate of which CO2 is consumed by photosynthesis equals 
2CH O,Aj , as every CH2O produced in 

photosynthesis requires one CO2: 

2 2CO , CH O,ps Aj j=  

Note that, when 
2COm  is regarded a DEB framework-based reserve, this corresponds to complete 

reincorporation of rejected CO2 reserves into the pool: the 
2COκ  is 1. 

 
CO2 availability in photosynthesis 

As in the original model, the rate of photosynthesis is determined by the availability of its substrates: 
light and CO2. However, the availability of the latter substrate is now not determined by its sources 
directly. Rather, it follows from the size of the internal CO2 pool. This requires adjustment of 

2 2CO ,CH Oj , the rate at which CO2 arrives at the photosynthesizing unit. As 
2COm  is in all respects similar 

to a DEB framework-based reserve, it is most logical to describe CO2 availability with catabolic flux-
kinetics, i.e.: 

( )2 2 2 2CO ,CH O CO COj m k r= ⋅ −  

For the CO2 reserve, simplification of the catabolic flux is possible, however. The CO2 pool differs 
from the two other reserves in one important aspect: its size. Both the carbohydrate- and nitrate reserve 
may store large quantities of their respective compounds, sufficient to even duplicate the population in 
absence of nutrients (i.e. 

2 2CH O CH O,Vm y= , 
3 3NO NO ,V

m y− −= ). The internal CO2 concentration on the other 
hand will never far exceed that of the environment, which is at most 25 µM. Assuming [ ] 18VM =  C-
mol.l-1 (Riegman et al., 1998), this corresponds to an 

2COm  of approximately 1,4·10-6 mol·C-mol V-1: 
close to a factor 1,000,000 smaller than the other reserve densities. Still, this small reserve should 
deliver at least 2 mol CO2 per C-mol structure per day to photosynthesis if the maximum 
photosynthetic rate observed in experiments is to be attained. This corresponds to a minimum value for 

2COk  of 1,440,000 d-1. Clearly, this implies the effect of growth rate r  – which never exceeds 2 d-1 – 
on 

2 2CO ,CH Oj  is negligible. Therefore, it can be omitted from the equation, resulting in: 

2 2 2 2CO ,CH O CO COj m k= ⋅  
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The main advantage of this omission is that 
2 2CO ,CH Oρ  (see page 21) now can be assimilated into 

2COk , 
as both constants appear together throughout the model. Thus, the number of parameters is reduced by 
1. The rate of photosynthesis is now given by: 

( ) ( ) ( )2

2 2 2 2 2

CH O, 1 111
,CH O light light CO CO light light CO CO

1

{ } { }
A

m

j
j J m k J m kγ γ

− −−−
=

+ ⋅ + ⋅ − ⋅ + ⋅
 

 
Net inorganic carbon uptake 

The inclusion of the CO2 pool and its associated kinetics allows for very straightforward descriptions 
for CO2- and HCO3

- uptake. CO2 uptake is merely inward directed diffusion, i.e.: 

2 2CO CO ,uptake difj j=  

HCO3
- uptake follows from the rate of calcification; for every CO2 produced in CaCO3 formation, 2 

HCO3
- is taken up: 

23
CO ,HCO

2 calcuptake
j j− = ⋅  
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Implications for steady state analysis 

To describe the behavior of a population in steady state, the kinetics or calcification needed to be 
modified. Its current linear relationship with 

2COm  allow for both positive and negative calcification 
rates. The latter would imply dissolution of previously produced coccoliths. While such behavior has 
indeed been described (Sekino et al., 1996; Sekino & Shiraiwa, 1994), it is most definitely not wanted 
for populations in steady state. If such a population showed negative calcification rates, it would 
dissolve CaCO3 ad infinitum. In reality, such behavior would cause rapid destruction of all attached 
coccoliths, after which 

2CO ,calcj  would become 0. Only then would the population truly enter steady 
state. Hence, calcification in steady state cannot be negative. To ensure 

2CO , 0calcj ≥ , a maximum 
operator is added: 

2

2

2

CO
CO , ,

CO ,

max 0, 1calc m calc
no calc

m
j j

m
= ⋅ −

  
      

 

Figure 5: The modeled cell revisited. This figure shows all modeled substance fluxes (arrows), substance
transformations (rounded rectangles) and the three reserves (ellipses). Transformations that use synthesizing
unit kinetics can be identified by ellipses contained within the rectangle. These ellipses signify required
substrate types. 

Colors are used to identify pathways of the various compounds: CO2 (■), light (■), CH2O (■), HCO3
- (■),

CaCO3 (■), NO3
- (■) and structural mass (■). 

The following transformations can be seen: calcification (Ca), photosynthesis (Ps), nitrate uptake (Nu),
CH2O and NO3

- maintenance (M) and synthesis of structural mass (i.e. population growth, Gr). Note that
calcification can in principle operate in two directions: standard CaCO3 production is shown with standard
arrowheads, whereas CaCO3 dissolution is shown with dimmed arrowheads. 
For clarity, rejected substrate fluxes that disappear from the scope of the model are not shown. Here, this is
the case for light (rejected at the photosynthesizing unit). 
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The revised model was analyzed following the same approach as with the original. Steady state 
analysis was slightly more complicated, as the requirements for steady state are extended by the fact 
that 

2COdm dt  should equal 0. Thus, the original 1 unknown/1 condition problem (pp. 26 and further) 
becomes one of 2 unknowns/2 conditions for the revised model: solving steady state requires finding 
values for r  and 

2COm  that result in (1) the implicit description of r  to be valid and (2) 
2COdm dt  to 

equal 0. To this end, the Newton algorithm employed previously was used. 
Initial estimates were set to 0r =  and 

2 2CO CO [ ]Vm C M= . Note that the latter setting implies the 
internal CO2 concentration is identical to that of the environment (since 

2 2CO , CO[ ]int VC M m= ⋅ ). Using 
these initial estimates, realistic steady state values for r  and 

2COm  were found for every set of 
parameters expected to allow for population survival (obviously no steady state was found when 
nutrient uptake rates were low and maintenance requirements high, for instance). No additional testing 
was done to ensure uniqueness of the steady states found. 
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Results and discussion: model II 

Comparison with data  

Like the original model, the revised one was fitted to the light-carbon production data (van Bleijswijk, 
1996). Incorporation of the CO2 pool in the model introduced five new parameters related to 
photosynthesis-calcification interaction (

2,COdk , [ ]VM , ,m calcj , 
2CO ,no calcm , 

2COk ), and eliminated three 
(

2 2CO ,CH Oρ , 
2COγ , 

3HCO
γ − ). Thus, the number of parameters estimated increases from 8 to 10. 

Results are presented in figures 6 to 8. Estimated values for the parameters are included in table 2. 
As in the original model, the parameters are ill constrained by the data. This can easily be seen by 
comparing these and previous Simplex estimates for parameters shared across both models: 
differences in value of a factor 2 are common. 
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Figure 6: population growth as a function of light
intensity. 

Figure 7: calcification as a function of light inten-
sity.

Figure 8: the inorganic carbon : organic carbon
ratio as a function of light intensity. This statistic
is calculated by dividing the rate of calcification by
the rate of organic carbon production (both for the
data and the model). 
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parameter unit initial estimate final estimate

2,COdk  mol CO2.(mol CO2.l-1)-1.C-mol MV
-1.d-1 8·105 1.39·105

[ ]VM  C-mol MV.l-1 18 28.6

,m calcj  mol CO2.C-mol MV
 -1.d-1 5 4.83

2CO ,no calcm  mol CO2.C-mol MV
 -1 7.5·10-7 4.55·10-7

2COk  d-1 107 7.85·106

2,CH Omj  mol CH2O.C-mol MV
 -1.d-1 4 5.79

lightγ  mol CH2O.(µmol photons.m-2.s-1)-1.C-mol MV
 -1.d-1 0.05 0.0825

2CH Ok  d-1 4 2.82

2CH O,Mj  mol CH2O.C-mol MV
 -1.d-1 0.05 0.136

2CH O,Vy  mol CH2O.C-mol MV
 -1 1.2 1.00

2CH Oκ  - 0.9 -

3,NOm
j −  mol NO3

-.C-mol MV
 -1.d-1 50 -

1
32,NO

C −  µmol.l-1 1 -

3NO
k −  d-1 20 -

3NO ,M
j −  mol NO3

-.C-mol MV
 -1.d-1 0.05 -

3NO ,V
y −  mol NO3

-.C-mol MV
 -1 1.2 -

3NO
κ −  - 0.9 -

Table 2: Estimated parameter values for model II, light vs. carbon synthesis. This table shows both the 
initial estimates used to start up the simplex algorithm, and the final estimates as produced by the simplex 
algorithm. 

 

Model behavior 

Changes in the models behavior occur at 2 points: the rate of calcifcation, and the rate of 
photosynthesis. 

Through the inclusion of the CO2 pool, calcification has become more independent of 
photosynthesis. As photosynthesis consumes internal CO2, both diffusion and calcification respond 
through similar, linear kinetics to the drop in 

2COm . However, the parameters specifying their exact 
response differ. This can well be seen in figure 9, which shows the size of 

2COm , and the contribution 
of the various CO2 sources in steady state, using the current parameter estimates. Calcification requires 
a lower internal CO2 concentration to function than diffusion, and will therefore begin to function at 
higher photosynthetic rates, and, consequently, higher light intensities. This mechanism is responsible 
for the much improved fit of the light intensity-calcification dataset. 

The rate of photosynthesis will increase somewhat slower at increasing light intensity, due to 
changes in CO2 availability. In the original model, CO2 availability increased at higher light intensities 
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due to increased growth (which accounts for part of  
2CO ,Gj ). In the revised model, however, CO2 

availability drops, which is clearly visible in figure 9. 
 
Discussion 

Without a doubt, the revised model does a better job at describing the data. Changes to the rates of 
organic- and inorganic carbon production are slight, but sufficient to tremendously improve the 
description of the IC-to-OC ratio. The model still fails to describe the slight decrease in the IC-to-OC 
ratio at high light intensity shown by the data, but as such behavior is not confirmed by other 
experiments (Paasche, 1999), it does not hurt application of the model. 

Figure 9: internal CO2 and various CO2 sources as a
function of light intensity.  The internal CO2 concentration
is shown by the black line, while the CO2 contribution of
the various CO2 sources is shown by the colored surfaces.
Note that the total CO2 influx equals the rate of CO2
consumption by photosynthesis, as the population is in
steady state. 

One can clearly see the point at which calcification sets in
(around 7 µmol photons.m-2.s-1). Here the initial sharp drop
in internal CO2 ‘softens’. Note that the increased growth
rate at high light intensities seems to have no effect on CO2
arrival from respiration. This is due to the extremely low
estimate for  the CH2O-per-V yield. 
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Model test case: effects of a global CO2 increase 

While building rather than application of an Emiliania model has been the focus of this project, we do 
present an example of its use. This demonstrates the model’s applicability in major areas of research. 
Fairly recently (September 2000), Riebesell et al. published results of an experiment demonstrating the 
effects of an oceanic CO2 increase on the production of OC and CaCO3 in coccolithophorids. These 
results give some indication of the potential effects of the global CO2 increase. Specifically, they can 
be used to predict whether coccolithophorids will produce a positive or negative feedback. Emiliania 
huxleyi was one of two species studied. The experiments used diluted batch cultures (similar to those 
performed by van Bleijswijk), which were kept at 5 different concentrations of CO2. 

 
Methods 

The model was simultaneously fitted to two datasets, describing the rates of organic and inorganic 
carbon synthesis per cell. I assume the number of cells in the population ( N ) to be proportional to the 
population’s structural mass: 135 10VM N −= ⋅ ⋅  (Riegman et al., 1998). The conversion factor was 
derived from the carbon content of light-starved cells, which are unlikely to contain any non-structural 
carbon1. Using this relationship, cell-specific synthesis rates were transformed into structural-mass-
specific rates. As a result, the datasets can be described as follows: 

• Structural-mass-specific organic carbon production equals the production rates of structural 
carbon and CH2O reserves combined. Per mole of structure synthesized, an additional 

2CH Om  
mole of CH2O is created in steady state. This results in: 

( )2CH O
OC synthesis 1

structural mass
r m= ⋅ +  

• Structural-mass-specific CaCO3 production equals the rate at which CO2 is produced in 
calcification: 

2

3
CO ,

CaCO  synthesis
structural mass calcj=  

In addition, the rates of carbon production were used to calculate the IC : OC ratio. This ratio again 
applies both to cell contents and net carbon synthesis because the populations are in steady state. 
 
Estimated parameters and their initial estimates were identical to those used for the light-limitation 
datasets (table 3). Input variables were set to 

3NO
6.25C − =  µM and light{ } 150J = µmol photons.m-2.s-1 

(Riebesell et al., 2000). 
 

Results 

Results are presented in figures 10 to 12. Unfortunately, steady state estimation failed at high external 
CO2 concentrations (the maximum number of iterations of the Newton routine was exceeded). 

The final parameter estimates are included in table 3. Even more than previous datasets, however, 
these fail to restrain parameter values. The final estimates are completely dependent on the initial 
estimates chosen, and the values shown in table 1 are provided only to allow for complete result 
reproduction. 

                                                      
1  This is of course a rather crude estimate of the conversion factor, as it is derived from other experiments than 

those delivering the data. Unfortunately, no better measures of structural carbon per cell were available. 
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Figure 10: organic carbon production as a func-
tion of ambient CO2. Note that steady state
estimation failed at high ambient CO2. 

Figure 11: calcification as a function of ambient 
CO2. As in figure 10, steady state estimation failed 
at high ambient CO2. 

Figure 12: the inorganic carbon : organic carbon
ratio as a function of ambient CO2. This characte-
ristic is calculated by dividing the rates of calcifi-
cation and organic carbon production. 
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parameter unit initial estimate final estimate

2,COdk  mol CO2.(mol CO2.l-1)-1.C-mol MV
-1.d-1 8·105 2.66·104

[ ]VM  C-mol MV.l-1 18 10.8

,m calcj  mol CO2.C-mol MV
 -1.d-1 5 2.04

2CO ,no calcm  mol CO2.C-mol MV
 –1 7.5·10-7 2.54·10-6

2COk  d-1 107 3.56·106

2,CH Omj  mol CH2O.C-mol MV
 -1.d-1 4 6.77

lightγ  mol CH2O.(µmol photons.m-2.s-1)-1.C-mol MV
 -1.d-1 0.05 0.0654

2CH Ok  d-1 4 0.0458

2CH O,Mj  mol CH2O.C-mol MV
 -1.d-1 0.05 0.0676

2CH O,Vy  mol CH2O.C-mol MV
 –1 1.2 2.08

2CH Oκ  - 0.9 -

3,NOm
j −  mol NO3

-.C-mol MV
 -1.d-1 50 -

1
32,NO

C −  µmol.l-1 1 -

3NO
k −  d-1 20 -

3NO ,M
j −  mol NO3

-.C-mol MV
 -1.d-1 0.05 -

3NO ,V
y −  mol NO3

-.C-mol MV
 –1 1.2 -

3NO
κ −  - 0.9 -

Table 3: Estimated parameter values for model II, CO2 vs. carbon synthesis. This table shows both the 
initial estimates used to start up the simplex algorithm, and the final estimates as produced by the simplex 
algorithm. 

 

Discussion 

Unfortunately, if there is one thing demonstrated by these fits, it is that the model requires more 
datasets to reliably predict parameter values. Most estimated values are highly unrealistic, in particular 
that of 

2CH Ok , which should be about one hundred times as high. The latter deviation is mostly due to 
the lack of growth data1: the experiment merely provides data about organic carbon, which can be 
attributed to either the CH2O reserve or structure.  

An additional problem is that steady state estimation fails at high concentrations of ambient CO2. 
This may be due to the highly unrealistic parameter values, but the possibility cannot be excluded that 
even at realistic values, steady state estimation might fail. This then could only be solved by using 
better initial estimates for 

2COm  and/or r . 

                                                      
1  Though both organic carbon synthesis and inorganic carbon synthesis depend on growth, and should therefore 

to some extent contain growth data, the datasets are far too limited for this indirect constrain to come out. 
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General discussion 

Clearly, adjustment of the original model is a prerequisite if any broadly applicable Emiliania model is 
to be produced. In its present form, it simply fails to describe one of the most vital statistics used in 
this line of research. Introduction of a distinctly modeled CO2 pool eliminates this problem, and 
renders a model capable of describing the behavior of Emiliania in major research scenarios. In 
addition, it replaces the sole part of the model that used arbitrary, descriptive kinetics, with one based 
on mechanistic grounds. Therefore, the model is not merely suitable for description of common trends, 
but can also provide insight in underlying mechanisms. 

This in particular applies to the biochemical/physical machinery of calcification, for which 
numerous hypotheses have been formulated, but rarely tested. My results suggest that very simple 
physo-chemical interactions involving the internal CO2 concentration and pH can account for most 
typical calcification trends. These especially include the correlation between calcification and 
photosynthesis. The model may also well be able to explain related phenonema, like deviating rates of 
calcite formation at night (van Bleijswijk, 1996), and the possible functioning of attached coccoliths as 
a CO2 source (Sekino et al., 1996). In addition, differences between strains regarding their calcification 
rate (e.g. the existence of ‘naked’, non-calcifying types) can easily be attributed to slight differences in 
the parameters for calcification and diffusion. All this would be possible without exhaustively 
documenting all (bio)chemical pathways involved. 

 
As with any realism-increasing model adjustment, introduction of the CO2 pool comes with the cost of 
increased complexity. The number of state variables increases from two to three (although the nitrate 
pool was ignored for our purposes), and two parameters are added to the already substantial collection. 
Even more than in the original model, CO2 influences are felt at every step in the substances pathways: 
from the initial entry through the cell membrane, to the final creation of new cells. The ensuing 
interdependencies strongly complicate model analysis. This is clearly visible when the model is fitted 
to data: slightly ill-chosen initial parameter estimates cause disastrous fits, and a global minimum in 
the sum-of-squares function – providing one exists at all – is impossible to find. In part, this is of 
course due to the extremely limited datasets used. One can hardly expect the behavior of two, partly 
interdependent variables as population growth and calcification to constrain the values of eleven 
parameters. It might well be possible to produce sound estimates from a well-chosen set of, say, four 
statistics of the population and individual cells. 

However, simplification of model kinetics could significantly facilitate the use of the model. In 
particular, one can think of removal of the CO2 pool state variable. Model integration has shown that 
this pool reaches equilibrium extremely fast compared to both other reserves: this is a matter of 
milliseconds rather than days (results not published). Thus, for practically every conceivable 
experiment, the internal CO2 concentration is well approximated by that in steady state. If we make 
certain assumptions (e.g. neglecting CO2 contributions from maintenance and growth), it may well be 
possible to derive an explicit description of the steady state concentration. This description could 
replace the true concentration throughout the model, and make analysis much simpler. Such a move is 
essential if model integration desired, as this currently requires time steps of less than 1/10,000 second 
due to the volatile nature of the CO2 pool. Also, it would most likely eliminate any problems with 
steady state estimation, as seen with the CO2 datasets (page 42). 

 
While limitation of nutrients beside light and CO2 has been incorporated in the model (in nitrate), this 
aspect was mostly neglected during this project. Preliminary results suggest, however, that the model 
describes the effects of such limitation well. This in particular applies to the relationship between 
nutrient limitation and growth, calcification and the IC : OC ratio. 
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Concluding, the final model can describe the types of behavior that are most characteristic for 
Emiliania well. The complexity of the model however is likely to significantly restrain its application; 
only extensive datasets, describing the behavior of a large number of variables, will allow for reliable 
parameter estimation. 
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Summary 

Coccolithophorids are a group of unicellular marine algae considered to be responsible for the major 
part of the earth’s calcite production. This process plays an important role in the global carbon cycle, 
and may to a certain extent affect future developments in atmospheric CO2. Our aim was to model the 
physiology of one of the most common coccolithophorids: Emiliania huxleyi. The model should allow 
for application in research related to the global climate and carbon cycle. Using the Dynamic Energy 
Budget modeling approach (Kooijman, 2000), a dynamic model was constructed that described all 
major carbon fluxes in a population of E. huxleyi, as a function of external light intensity, CO2, HCO3

- 
and NO3

-. Steady state analysis of this initial model revealed some serious model shortcomings related 
to the interaction between calcification and photosynthesis. The model was modified to include a 
biochemically more realistic representation of these processes: an internal CO2 pool was added, which 
supplied CO2 to photosynthesis, and obtained CO2 from calcification. This corresponds more closely 
to the current hypotheses regarding calcification. Steady state analysis showed obvious improvements 
in the behavior of the model. Subsequently, the model was used to describe the behavior of Emiliania 
at various concentrations of ambient CO2, illustrating the model’s use in its targeted area of research. 
Although the model was able to describe the data, we must conclude that the datasets were too limited 
to constrain the parameter values. Clearly, the complexity of the model places severe requirements on 
the quality and quantity of the data used. If these requirements were satisfied, the model could be 
valuable not only in research related to the global climate, but also to that focusing on the biochemistry 
and physiology of calcification. 
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Appendix A: Equations and parameters of model I 

carbon pathways 
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parameter dimension interpretation 

2,CH Omj  mol CH2O.C-mol MV
 -1.d-1 maximum rate of photosynthesis per 

present structural mass 

lightγ  mol CH2O.(µmol photons.m-2.s-1)-1.C-mol MV
 -1.d-1 potential CH2O yield per light inten-

sity unit per present structural mass 

2 2CO ,CH Oρ  - binding probability of arriving CO2 
with respect to CH2O SU (= part of 
dissimilative CO2 usable in photo-
synthesis) 

2COγ  mol CH2O.(µM CO2)-1.C-mol MV
 -1.d-1 diffusive CO2 arrival at CH2O SU per 

external CO2 concentration per pre-
sent structural mass 

3HCO
γ −  mol CH2O.(µM HCO3

-) -1.C-mol MV
 -1.d-1 potential CO2 production in calcifi-

cation per external HCO3
- concen-

tration per present structural mass 

2CH Ok  d-1 maximum outflow rate of the CH2O 
reserve density  

2CH O,Mj  mol CH2O.C-mol MV
 -1.d-1 CH2O required for maintenance of 

structural mass per time 

2CH O,Vy  mol CH2O.C-mol MV
 -1 CH2O required per synthesized struc-

tural mass 

2CH Oκ  - part of rejected CH2O reserve 
(rejected at growth SU) that returns to 
the CH2O reserve pool 

3,NOm
j −  mol NO3

-.C-mol MV
 -1.d-1 maximum rate of nitrate assimilation 

per present structural mass 

1
32,NO

C −  µM external nitrate concentration at which 
nitrate assimilation occurs at half of 
its maximum rate 

3NO
k −  d-1 maximum outflow rate of the NO3

- 
reserve density  

3NO ,M
j −  mol NO3

-.C-mol MV
 -1.d-1 NO3

- required for maintenance of 
structural mass per time 

3NO ,V
y −  mol NO3

-.C-mol MV
 -1 NO3

- required per synthesized struc-
tural mass 

3NO
κ −  - part of rejected NO3

- reserve (rejected 
at growth SU) that returns to the NO3

- 
reserve pool 
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Appendix B: Equations and parameters of model II 
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parameter dimension interpretation 

2,COdk  mol CO2.(M CO2)-1.C-mol MV
-1.d-1 diffusion rate of CO2 between envi-

ronment and cytoplasm, per concen-
tration difference, per structural mass 
per time 

[ ]VM  C-mol MV.l-1 structural mass present per population 
volume 

,m calcj  mol CO2.C-mol MV
 -1.d-1 maximum rate of calcification (in 

amount of CO2 formed) per structural 
mass per day 

2CO ,no calcm  mol CO2.C-mol MV
 -1 internal CO2 density (amount of CO2 

per structural mass) at which no net 
production or dissolution of CaCO3 
occurs 

2COk  d-1 outflow rate of the CO2 reserve 

2,CH Omj  mol CH2O.C-mol V-1.d-1 maximum rate of photosynthesis per 
present structural mass 

lightγ  mol CH2O.(µmol photons.m-2.s-1)-1.C-mol MV
 -1.d-1 potential CH2O yield per light inten-

sity unit per present structural mass 

2CH Ok  d-1 maximum outflow rate of the CH2O 
reserve density  

2CH O,Mj  mol CH2O.C-mol MV
 -1.d-1 CH2O required for maintenance of 

structural mass per time 

2CH O,Vy  mol CH2O.C-mol MV
 -1 CH2O required per synthesized struc-

tural mass 

2CH Oκ  - part of rejected CH2O reserve 
(rejected at growth SU) that returns to 
the CH2O reserve pool 

3,NOm
j −  mol NO3

-.C-mol MV
 -1.d-1 maximum rate of nitrate assimilation 

per present structural mass 

1
32,NO

C −  µM external nitrate concentration at which 
nitrate assimilation occurs at half of 
its maximum rate 

3NO
k −  d-1 maximum outflow rate of the NO3

- 
reserve density  

3NO ,M
j −  mol NO3

-.C-mol MV
 -1.d-1 NO3

- required for maintenance of 
structural mass per time 

3NO ,V
y −  mol NO3

-.C-mol MV
-1 NO3

- required per synthesized struc-
tural mass 

3NO
κ −  - part of rejected NO3

- reserve (rejected 
at growth SU) that returns to the NO3

- 
reserve pool 
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Appendix C: When to use fluxes instead of concentrations 

One of the most remarkable aspects of the SU kinetics is that it deals with substrate arrival fluxes 
instead of substrate concentrations. Where Michaelis-Menten kinetics specifies k X⋅  ( k  being a 
constant and X  being substrate concentration), SU kinetics uses , ,/X P X X PJ yρ ⋅ . Herein ,X Pρ  is the 
binding probability of X  to the SU producing P , XJ  is the arrival flux of X  and ,X Py  is the number 
of units of X  required for one unit of P  (yield). While this approach might seem to be conceptually 
very different from concentration-based kinetics, both are in fact closely related. In fact, in most SU 
applications flux-based kinetics can be shown to equal true concentration-based kinetics if three 
conditions are met. 

Kooijman’s choice to use fluxes instead of concentrations finds its value in my opinion mainly in 
its implicit simplifications of concentration-based kinetics, rather than in its view on reaction 
mechanics. Its simplifying properties become clear when describing internal SU transformations. If 
these transformations were described by concentration-based kinetics, incorporation of additional state 
variables would be required, because internal substrate concentrations are a part of the state of the cell. 
Instead, the flux-based approach takes the SU rate to be a function of the substrate input flux. All 
substrate that was offered to the SU but not immediately transformed into product is rejected and does 
not influence the transformation rate any further. To make the flux-based approach a valid replacement 
for the concentration-based approach, the following must be true: 

,

,

X P
in X

X P

k X J
y
ρ

⋅ = ⋅  

for , ,/X P X X PJ yρ ⋅  is the flux-based replacement of the concentration-based ink X⋅ . Since the value of 
constant ,X Pρ  cannot be determined independently of SU kinetics, the main requirement for inX  is 
that it is a linear function of XJ . 

 
In a concentration-based approach, every substrate would require its own state variable: internal 
substrate concentration. The differential for those state variables would look like this: 

, , ,( , ...) ( , ...)in X X P P A in X out in
d X J y J k X J X
dt

= − ⋅ ⋅ − , 

inX  internal concentration of substrate X  
XJ  arrival flux of substrate X  (identical to XJ  in flux-based kinetics) 

, ( , ...)P A inJ k X⋅  concentration-based SU function: assimilation flux of product P  
, ( , ...)X out inJ X  substrate flux disappearing from the substrate pool without any 

involvement in the SU transformation 
 

, ( , ...)X out inJ X  is added to represent the ‘rejected substrate flux’ of flux-based SU kinetics, and is – 
using concentration-based kinetics – assumed to independent of the rate at which substrate arrives. 
This would be the case when substrate disappears through diffusion, for instance. 

 
As shown above, flux-based kinetics can replace concentration-based kinetics if inX  is a linear 
function of XJ , the substrate currently arriving. Since current substrate arrival rates are independent of 
previous ones, it requires inX  to be independent of earlier arrived substrate too, or: 
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, , ,

, , ,

( , ...) ( , ...) 0

( , ...) ( , ...)

in X X P P A in X out in

X X P P A in X out in

d X J y J k X J X
dt
J y J k X J X

= − ⋅ ⋅ − =

= ⋅ ⋅ +
 

This is the first condition: to replace concentration-based kinetics, flux-based kinetics requires a 
constant internal substrate concentration. 

 
Clearly, when we assume SU transformation rate and substrate outflow are independent of substrate 
inflow, inX  can only be linear function of XJ  if , , ,( , ...) ( , ...)X P P A in X out iny J X J X⋅ +  is a linear function 
of inX : 

, , ,( , ...) ( , ...)X P P A in X out in iny J k X J X c X⋅ ⋅ + = ⋅ , or 

, , ,( , ...) ( , ...)X out in in X P P A inJ X c X y J k X= ⋅ − ⋅ ⋅ , 

with c  being an unknown constant. 
 

We know the SU function , ( , ...)P A inJ k X⋅  to show a hyperbole-like response to an increasing inX . 
For , , ,( , ...) ( , ...)X P P A in X out iny J k X J X⋅ ⋅ +  to be a linear function of the internal substrate concentration, 

, ( , ...)X out inJ X  would have to supplement the SU function in order to arrive at inc X⋅ . 
This is the second condition: to replace concentration-based kinetics, flux-based kinetics requires 

the substrate outflow, or ‘rejected flux’ to show a relationship to inX  similar to 
, , ( , ...)in X P P A inc X y J k X⋅ − ⋅ ⋅ . 

 
While the first condition is probably met in most circumstances (i.e. the changes in internal substrate 
concentration are negligible compared to the turnover rate of internal substrate), the second one is not. 

In the simple case of substrate outflow through diffusion, its relationship with inX  will be ind X⋅ , 
with d  being the diffusion constant. The flux-based approach resulting in an outflow of 

( , ...)in inc X y g X⋅ − ⋅  will then only be a valid in the following situations: 
 

• The SU transformation rate is negligible compared to the outflow through diffusion. c  then is 
identical to the diffusion constant d . 
 

• inX  stays relatively small, thereby making 1 inc X⋅  ( 1c  being an unknown constant) an adequate 
approximation for the SU transformation rate. c  then becomes 1d c− . 
 

The flux-based approach is better not used in situations where substrate outflow (or rejected substrate 
flux) is small compared to the SU transformation rate, and the SU runs at speeds close to its maximum. 
The decision to use the flux-based approach should depend strongly on the destination of rejected 
substrate, and expected outflow-kinetics. The recommendation given above only applies in situations 
where substrate outflow is expected to resemble ind X⋅ , as with diffusion. 

 


