Chapter 18: Library Support

Chapter 18 deals with the functions called and objects created automatically during the course of a program's existence.

While we can't reproduce the contents of the Standard here (you need to get your own copy from your nation's member body; see our homepage for help), we can mention a couple of changes in what kind of support a C++ program gets from the Standard Library.



All the types that you're used to in C are here in one form or another. The only change that might affect people is the type of NULL: while it is required to be a macro, the definition of that macro is not allowed to be (void*)0, which is often used in C.

Return to top of page or to the FAQ.

Implementation properties


This header mainly defines traits classes to give access to various implementation defined-aspects of the fundamental types. The traits classes -- fourteen in total -- are all specilizations of the template class numeric_limits defined as follows:
   template<typename T> struct class {
      static const bool is_specialized;
      static T max() throw();
      static T min() throw();

      static const int digits;
      static const int digits10;
      static const bool is_signed;
      static const bool is_integer;
      static const bool is_exact;
      static const int radix;
      static T epsilon() throw();
      static T round_error() throw();

      static const int min_exponent;
      static const int min_exponent10;
      static const int max_exponent;
      static const int max_exponent10;

      static const bool has_infinity;
      static const bool has_quiet_NaN;
      static const bool has_signaling_NaN;
      static const float_denorm_style has_denorm;
      static const bool has_denorm_loss;
      static T infinity() throw();
      static T quiet_NaN() throw();
      static T denorm_min() throw();

      static const bool is_iec559;
      static const bool is_bounded;
      static const bool is_modulo;

      static const bool traps;
      static const bool tinyness_before;
      static const float_round_style round_style;

Return to top of page or to the FAQ.

Start and Termination

Not many changes here to <cstdlib> (the old stdlib.h). You should note that the abort() function does not call the destructors of automatic nor static objects, so if you're depending on those to do cleanup, it isn't going to happen. (The functions registered with atexit() don't get called either, so you can forget about that possibility, too.)

The good old exit() function can be a bit funky, too, until you look closer. Basically, three points to remember are:

  1. Static objects are destroyed in reverse order of their creation.
  2. Functions registered with atexit() are called in reverse order of registration, once per registration call. (This isn't actually new.)
  3. The previous two actions are "interleaved," that is, given this code:
                  extern "C or C++" void  f1 (void);
                  extern "C or C++" void  f2 (void);
                  static Thing obj1;
                  static Thing obj2;
    then at a call of exit(), f2 will be called, then obj2 will be destroyed, then f1 will be called, and finally obj1 will be destroyed. If f1 or f2 allow an exception to propogate out of them, Bad Things happen.

Return to top of page or to the FAQ.

Dynamic memory management

There are six flavors each of new and delete, so make certain that you're using the right ones! Here are quickie descriptions of new:

They are distinguished by the parameters that you pass to them, like any other overloaded function. The six flavors of delete are distinguished the same way, but none of them are allowed to throw an exception under any circumstances anyhow. (They match up for completeness' sake.)

Remember that it is perfectly okay to call delete on a NULL pointer! Nothing happens, by definition. That is not the same thing as deleting a pointer twice.

By default, if one of the "throwing news" can't allocate the memory requested, it tosses an instance of a bad_alloc exception (or, technically, some class derived from it). You can change this by writing your own function (called a new-handler) and then registering it with set_new_handler():

   typedef void (*PFV)(void);

   static char*  safety;
   static PFV    old_handler;

   void my_new_handler ()
       delete safety;
       popup_window ("Dude, you are running low on heap memory.  You
                      should, like, close some windows, or something.
                      The next time you run out, we're gonna burn!");
       set_new_handler (old_handler);

   int main ()
       safety = new char[500000];
       old_handler = set_new_handler (&my_new_handler);

bad_alloc is derived from the base exception class defined in Chapter 19.

Return to top of page or to the FAQ.

Comments and suggestions are welcome, and may be sent to Phil Edwards or Gabriel Dos Reis.
$Id: howto.html,v 1.5 1999/12/15 16:57:06 pme Exp $