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English summary

Throughout human history, infectious diseases have caused debilitation and
premature death to large portions of the human population, leading to serious
social-economic concerns. Many factors have contributed to the persisten-
ce and increase in the occurrence of infectious disease (such as demographic
factors, political, social and economic changes, environmental change, public
health care and infrastructure, microbial adaptation, etc.). According to the
World Health Organization (WHO), are the second leading cause of death
globally after cardiovascular diseases (WHO, 2010). In recent years, mathe-
matical modeling became an important tool for the understanding of infectious
disease epidemiology and has led to great advances in conceiving disease con-
trol strategies, including vaccination programs.

One of the most important infectious diseases is dengue, a major inter-
national public health concern with more than 55% of world population at
risk of acquiring the infection. Dengue is a viral mosquito-borne infection,
a leading cause of illness and death in the tropics and subtropics. Dengue
fever is caused by four antigenically distinct viruses, designated dengue types
1, 2, 3 and 4. Infection by one serotype confers life-long immunity to only
that serotype, and temporary cross-immunity to other related serotypes. The
temporary cross-immunity period lasts from three to nine months and it is
related to antibody levels created during the immune response to a previous
dengue infection. It is stated that such high antibody levels would be enough
to protect the individual against an immediately new dengue infection caused
by a different but related serotype.

Two variants of the disease exist: dengue fever (DF), a non-fatal form
of illness, and dengue hemorrhagic fever (DHF'), which may evolve toward a
severe form known as dengue shock syndrome (DSS). Epidemiological studies
support the association of DHF with secondary dengue infection. There is
good evidence that sequential infection increases the risk of developing DHF
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due to a process described as antibody-dependent enhancement (ADE), where
the pre-existing antibodies to previous dengue infection cannot neutralize but
rather enhance the new infection.

Treatment of uncomplicated dengue cases is only supportive, and severe
dengue cases requires careful attention to fluid management and proactive
treatment of hemorrhagic symptoms. A vaccine against dengue is not yet
available, since it would have to simulate a protective immune response to
all four serotypes, although several candidates of tetravalent vaccines are at
various stages of development. So far, prevention of exposure and vector
control remain the only alternatives to prevent dengue transmission.

In recent years, mathematical modeling became an interesting tool for
the understanding of infectious diseases epidemiology and dynamics. A series
of deterministic compartment models such as Susceptible-Infected (SI) and
Susceptible-Infected-Recovered (SIR) for example, have been proposed based
on the flow patterns between compartments of hosts. The SIR epidemic mo-
del divides the population into three classes concerning the disease stages:
susceptible (5), Infected (I) and Recovered (R). This model framework can
represent infectious diseases where waning immunity can happen. Assuming
that the transmission of the disease is contagious from person to person, the
susceptibles become infected and infectious, are cured and become recover-
ed. After a waning immunity period, the recovered individual can become
susceptible again to reinfection.

Multi-strain dynamics, such as dengue epidemiology, are generally mode-
led with extended SIR-type models. Dengue fever dynamic is well known to be
particularly complex with large fluctuations of disease incidences. To capture
differences in primary and secondary dengue infections, a two-strain SIR-type
model for the host population has to be considered. Dengue models including
multi-strain interactions via ADE, but without temporary cross-immunity,
have shown already deterministic chaos when strong infectivity on secondary
infection was assumed. The addition of the temporary cross-immunity peri-
od in such models brings a new chaotic attractor in wider and unexpected
parameter region.

In this thesis we present different extensions of the classical single-strain
SIR model motivated by modeling dengue fever epidemiology with its peculiar
ADE phenomenology. We focus on a minimalistic model, where the notion of
at least two different strains is needed to describe differences between prima-
ry and secondary dengue infections. The models divide the host population
into susceptible, infected and recovered individuals with subscripts for the
respective strains. The individuals can be (1) susceptibles without a previous
dengue infection; (2) infected and recovered for the first time; (3) susceptible
with an experienced previous dengue infection and (4) infected for the second
time with a different strain, more likely to be hospitalized due to the ADE
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effect leading to severe disease. Our analysis shows a rich dynamic structure,
including deterministic chaos in wider and more biologically realistic parame-
ter regions, just by adding temporary cross-immunity to previously existing
dengue models.

In Chapter 1 we present the properties of the basic SIR epidemic model
applied to infectious diseases. A summary of the analysis of the dynamics
identifying the thresholds and equilibrium points in order to introduce nota-
tion and terminology are presented. These results were then generalized to a
more advanced models motivated by dengue fever epidemiology. In Chapter 2
the basic two-strain SIR-type model motivated by modeling dengue fever epi-
demiology is presented. In this chapter we focused on the multi-strain aspect
and its effects on the host population. The effects of the vector dynamics or
seasonality is taken in account only by the effective parameters of the SIR-type
model, but these mechanisms are not modeled explicitly. In Chapter 3 a de-
tailed bifurcation analysis for the basic multi-strain dengue model is presented
where the ADE parameter ¢ and the temporary cross-immunity parameter o
are studied.

In Chapter 4 the seasonally forced system with temporary cross-immunity
and possible secondary infection is analyzed. This study was motivated by
dengue hemorrhagic fever monitoring data. The role of seasonality and im-
port of infected individuals are now considered as biologically relevant effects
to determine the dynamical behavior of the system. A comparative study bet-
ween three different scenarios (non-seasonal, low seasonal and high seasonal
with a low import of infected individuals) is presented. The extended models
show complex dynamics and qualitatively a good agreement between empirical
DHF monitoring data and the obtained model simulation.

At the moment only such minimalistic models have a chance to be qua-
litatively understood well and eventually tested against existing data. The
simplicity of the model (low number of parameters and state variables) offer
a promising perspective on parameter values inference from the DHF case no-
tifications. Such a technical parameter estimation is notoriously difficult for
chaotic time series due to the long term unpredictability versus short term
predictability. Recently, this short term predictability has been used for tem-
porally local approaches in statistical inference on the cost of difficulty in
obtaining a final definite best answer to the parameter estimation problem.

Being able to predict future outbreaks of dengue in the absence of human
interventions is a major goal if one wants to understand the effects of control
measures. Even after a dengue virus vaccine has become accessible or available,
this holds true for the implementation of a vaccination program. For example,
to perform a vaccine trial in a year where the disease epidemic generate a low
number of cases, would make the statistical tests of vaccine efficacy much more
difficult compared with the information provided by a vaccine trial performed
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in a epidemic year with much higher numbers of cases. Thus predictability
of the next season’s height of the dengue peak, on the basis of deterministic
balance of infected and susceptible, would be of major practical use.

Although the fact that disease propagation is an inherently stochastic phe-
nomenon, dengue models are mainly expressed mathematically as a set of de-
terministic differential equations, which are easier to analyze. The mean field
approximation, an approximation of stochastic processes leading to determi-
nistic dynamics, is a good approximation to be used in order to understand
better the behavior of the stochastic systems in certain parameter regions,
where the dynamics of the mean quantities are approximated by neglecting
correlations. However, it is only stochastic, as opposed to deterministic, mo-
dels that can capture the fluctuations observed in some of the available time
series data. In Chapter 5 the stochastic version of the minimalistic multi-strain
model is presented. In this chapter we investigate the interplay between sto-
chasticity, seasonality and imported cases of the disease. The introduction of
stochasticity reveal a scenario where noise and complex deterministic skele-
ton strongly interact. For large enough population size, the stochastic system
could be well described by the deterministic skeleton, where the essential dy-
namics are captured, gaining insight into the relevant parameter values purely
on topological information of the dynamics.

The two-strain dengue model is a 9 dimensional system and therefore, fu-
ture statistical inference can still attempt to estimate all initial conditions as
well as the few model parameters. Concerning data availability, long term
epidemiological data consist on monthly incidences of hospitalized DHF cases.
For such a data scenario, models that are able to generate both primary and
secondary infection cases (with a different strain, without the need of conside-
ring differences on the dynamics of different co-circulating dengue serotypes),
have shown a good qualitative agreement between empirical data and model
output (see Chapter 4 and Chapter 5). These results were obtained just by
combining the ADE effect, generating difference in transmissibility on pri-
mary and secondary infections, with the temporary cross-immunity aspect.
Differently from the minimalistic dengue model, the four-strain model is ma-
thematically represented by a system of 26 ODE’ s. It becomes a very high
dimensional system and obviously very difficult to be used for parameter infe-
rence due to the high number of initial conditions. In Chapter 6 we present the
multi-strain dengue model for the four existing serotypes. For four different
strains, 1, 2, 3 and 4, we now label the SIR classes for the hosts that have seen
each one of the possible strains. Again, without epidemiological asymmetry
between strains, once the serotype data are recent and very short to give any
realistic information concerning difference in biological parameters (such as
infection and recovery rates) for a given strain. In this chapter we present the
bifurcation diagram comparison for both two-strain and four-strain model. In

10



the relevant parameter region of ¢ < 1, when dengue patients in a secondary
infection evolving to severe disease due to the ADE phenomenon contribute
less to the force of infection, the bifurcation points appear to happen at similar
parameter regions, well below the region of interest ¢ ~ 1.

We conclude that the two-strain model in its simplicity is a good model
to be analyzed giving the expected complex behavior to explain the fluctua-
tions observed in empirical data. Statistical inference to estimate the basic
parameters of transmission, infectivity, disease severity (ADE parameter) and
temporary cross-immunity period using empirical data of incidence of severe
disease is needed to identify eventual deviations from the simplest symmetric
case investigated here. Further work on the parameter estimation using the
minimalistic dengue model is in progress.

The vector dynamics might also play a role in understanding the final
picture when comparing the model output with the available empirical data.
Following the investigations described in this thesis, a number of research di-
rections could be addressed, involving the minimalistic dengue model. Future
work would be to investigate extensions of the multi-strain model to address
the following questions and issues: (1) How much (more or less than first in-
fection) does secondary infection contribute to the force of infection? (2) Does
there exist a difference between the forces of infection for the different strains
and to what extent can the bifurcation structure explain the viral diversity
contribution? (3) Formulate hypotheses using the mechanism of temporary
cross-immunity suitable to recurrent infections protection. (4) Model the vac-
cine trials based on short term predictability of chaotic systems to be applied
when tetravalent vaccines will become available. And (5) propose targets for
intervention and control design according to the expected impact of the disea-
se. My special interest would be to get the model fully parametrized on data
referring to incidence of severe disease and prevalence of infection. With such
a model framework we would be able to give an insight into the predictability
of upcoming dengue outbreaks. This epidemiological tool would help to un-
derstand the effects of control measures and therefore to guide the policies of
prevention and control of the dengue virus transmission.
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Samenvatting

Een rijk dynamisch gedrag in multi-varianten modellen: niet-lineaire dynamiek
en deterministisch chaos in knokkerkoorts epidemiologie

Sinds mensenheugenis hebben infectie ziekten geleid tot slepende ziektes
en vroegtijdige sterfte onder grote delen van de wereld bevolking, leidend tot
grote sociale en economische problemen. Vele factoren hebben bijgedragen tot
het in stand houden en de toename van infectie ziekten: demografisch facto-
ren, politieke, sociale en economische veranderingen, verandering van de ge-
zondheidszorg, enz. Volgens de Wereldgezondheidsorganisatie (WHO), zijn ze
wereldwijd de tweede doodsoorzaak na hart en vaat ziektes WHO (2010). De
laatste jaren zijn wiskundige modellen belangrijke gereedschappen geworden
voor het verkrijgen van kennis over infectieziekten en hebben ze bijgedragen
aan de grote vooruitgang in het maken van strategieén voor het beheersen van
ziektes, bijvoorbeeld bij het opzetten van vaccinatie programma’s.

Knokkelziekte (Eng. dengue) is een door muggen, de tijgermug, overgedra-
gen virale infectieziekte. Deze ziekte is in de laatste jaren een groot internati-
onaal gezondheidsprobleem geworden en een belangrijke ziekte en sterfte bron
in (sub)tropische gebieden. Knokkelkoorts wordt veroorzaakt door vier anti-
geen verschillende virussen, bekend als dengue-varianten DENV 1, DENV 2,
DENV 3 en DENV 4. Infectie met één serotype geeft levenslange immuni-
teit voor slechts dat serotype en maar tijdelijke immuniteit voor de andere
serotypes. Tijdens de reactie op de infectie worden antilichamen gegenereerd.
Gedurende drie tot negen maanden is het niveau van de antilichamen voldoen-
de is om bescherming te bieden tegen infectie door een ander, maar gerelateerd,
serotype.

Er zijn twee varianten van de ziekte: knokkelkoorts (dengue fever (DF)) een
vorm zonder fatale afloop en hemorrhagische knokkelkoorts (dengue hemorr-
hagic fever (DHF)) die tot een shock kunnen leiden, bekend als een “dengue
shocksyndroom” (DSS) vaak met fatale afloop.

Epidemiologische studies wijzen erop dat de hemorrhagische dengue eerder
optreedt door een tweede infectie bij iemand die eerder een knokkelkoorts-
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aanval door een ander knokkelkoorts-virus heeft doorgemaakt. Een proces
beschreven als “antibody-dependent enhancement” (ADE) is hiervoor verant-
woordelijk. Daarbij kunnen de antilichamen die tijdens een eerdere infectie
door een ander serotype aangemaakt zijn, niet neutraliseren maar zelfs de
nieuwe infectie verergeren.

De behandeling van de milde vorm is alleen symptomatisch en ondersteu-
nend. De ernstige vorm vereist daarentegen veel aandacht waarbij de patiént
voldoende moet drinken, en eventueel extra vocht moet krijgen via een infuus.
Er bestaat nog geen vaccin tegen knokkelkoorts omdat een beschermende im-
muunreactie gestimuleerd moet worden voor de vier serotypes. Meerdere kan-
didaten, zoals tetravalent vaccines, zijn op dit moment in verschillende stadia
van ontwikkeling.

Tot nu toe is voorkoming van muggenbeten de enige mogelijke preventieve
bestrijdingsmaatregel tegen verspreiding van de ziekte. Muggenbeten kunnen
worden voorkomen door bijvoorbeeld het dragen van bedekkende kleding, het
verwijderen van mogelijke besmettingshaarden zoals schoon stilstaand water
waar de muggen bij voorkeur hun eitjes in leggen en het gebruik van verdel-
gingsmiddelen tegen de muggen.

Wiskundige modellen zijn een interessant gereedschap geworden voor het
leren begrijpen van de epidemiologie en dynamica van infectieziekten. Ver-
schillen deterministische compartimentsmodellen, zoals de SI en SIR model-
len, worden gebruik voor het beschrijven van het verloop van ziektes in een
populatie. In het SIR model wordt onderscheid gemaakt tussen drie klassen:
vatbaar (Susceptible), besmettelijk (Infected) en genezen (Recovered). Een
belanrijke parameter is the infectiviteit of infectiekracht die het tempo aan-
geeft waarmee een persoon die vatbaar is voor de betreffende besmettelijke
ziekte, besmet wordt en de genezingssnelheid gelijk aan de reciproke van de
infectieduur. Dit model kan gebruikt worden als er levenslange immuniteit is
en waarbij de infectiebesmetting overgedragen wordt van mens op mens: de
vatbaren worden geinfecteerd en besmettelijk en daarna weer beter. Men kan
dit model ook zo uitbreiden dat na een immuniteitsperiode tijdelijk genezen
personen weer vatbaar worden.

Bij meerdere vormen van de ziekte worden in het algemeen andere uitbrei-
dingen van de SIR-modellen gebruikt. Bijvoorbeeld, om de verschillen tussen
de eerste knokkelkoorts infectie veroorzaakt door één variant van de virus en
een tweede infectie door een andere variant te bestuderen zijn twee-varianten
SIR-modellen gebruikt. Modellen voor interacties tussen meerdere varianten
met ADE maar zonder een tijdelijke immuniteitsperiode voor nadere varianten
hebben deterministisch chaotisch gedrag laten zien waarbij de infectiekracht
van de tweede infectie veel groter was dan de infectiekracht van de eerste in-
fectie. De uitbreiding met een tijdelijke cross-immuniteitsperiode geeft een
nieuw type chaotisch gedrag bij biologisch realistische parameterwaarden voor
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de infectiekracht voor de tweede infectie.

In dit proefschrift worden meerdere uitbreidingen van de klassieke enkel-
variant SIR populatie model bestudeerd. Deze modellen zijn van toepassing
voor het bestuderen van een knokkelkoorts epidemiologie met het kenmerkend
ADE fenomeen. We zijn geintereseerd in een minimalistisch model waarbij
tenminste twee varianten nodig zijn om de verschillen tussen de eerste en
een tweede infectie te kunnen beschrijven. In het model worden voor twee
populaties de volgende klassen onderscheiden. Personen kunnen vatbaar zijn
voor beide varianten zonder ooit geinfecteerd geweest te zijn, besmettelijk van
de eerste infectie en besmettelijk van een tweede infectie waarbij de persoon
al een keer besmet geweest is door infectie met de nadere variant en volledig
genezen. De personen die voor de tweede keer besmet zijn hebben meer kans
in het ziekenhuis te belanden vanwege het ADE effect dat leidt tot de ernstige
vorm van de ziekte. De uitbreiding van bestaande knokkelkoorts modellen
met een tijdelijke cross-immuniteit laat een rijk dynamisch gedrag zien met
deterministische chaos voor biologisch realistischer parameterwaarden waarbij
de infectiekracht van de tweede infectie juist iets kleiner is dan die van de
eerste infectie.

In Hoofdstuk 1 worden de eigenschappen van het basale SIR epidemiolo-
gisch model voor infectie ziekten beschreven met daarbij een overzicht van de
analyse van het dynamisch gedrag, zoals het identificeren van drempels voor
het uitbreken van de ziekte. Daarbij wordt ook meteen de terminologie in-
gevoerd. Deze resultaten worden daarna gegeneraliseerd voor geavanceerdere
knokkelkoorts epidemiologie modellen.

In Hoofdstuk 2 wordt het twee-varianten SIR-type model voor knokkel-
koorts epidemiologién geformuleerd. Hoofdstuk 3 geeft een gedetailleerde bi-
furcatie analyse van het knokkelkoorts model in termen van de ADE parameter
phi, een maat voor de relatieve bijdrage van een tweede infectie ten opzichte
van die van de eerste infectie en de parameter voor de lengte van de tijdelijke
immuniteit voor een andere variant «.

Hoofdstuk 4 behandelt de invloed van seizoensinvloeden waarbij tweede
infecties met tijdelijke cross-immuniteit mogelijk zijn. Waarnemingen van
incidenties van knokkelkoorts suggereren dat seizoensinvloeden maar ook de
import van ziektes via geinfecteerde personen mede bepalend zijn voor het dy-
namisch gedrag van knokkelkoorts incidenties. Verschillende scenario’s: resp.
geen, lage en sterke seizoensinvloeden met daarbij een beperkte import via
geinfecteerde personen worden bestudeerd. Deze uitgebreide modellen laten
complexe dynamiek zien die kwalitatief goed overeenstemt met empirische
waarnemingen over DHF gevallen.

Tegenwoordig is het mogelijk met twee-varianten modellen het gedrag kwa-
litatief goed te doorgronden waarbij de voorspellingen vergeleken kunnen wor-
den met waarnemingen. De eenvoud van het model (lage aantal parameters en
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toestandsvariabelen) maakt het mogelijk parameterwaarden te schatten waar-
bij gebruik gemaakt wordt van waargenomen aantallen DHF gevallen. Deze
schattingstechnieken zijn moeilijk toe te passen op tijdsreeksen met chaotisch
gedrag. Maar korte termijn voorspellingen zijn mogelijk. Als men de effecten
van beleidsmaatregelen wil begrijpen is het belangrijk toekomstige uitbraken
van knokkelkoorts te kunnen voorspellen. Als een virus vaccin beschikbaar
komt dan blijft dit werk relevant voor de implementatie van vaccinatie pro-
gramma’s. Om een voorbeeld te geven: als een proef voor het bepalen van de
effectiviteit van vaccinaties gedaan wordt in een jaar waarin de ziekte alleen
voorkomt bij een beperkt aantal personen dan zijn deze waarnemingen sta-
tistische gezien veel moeilijker te interpreteren dan wanneer de proef in een
jaar uitgevoerd zou worden waarin de ziekte veel vaker voorkomt. Het kunnen
voorspellen wanneer de volgende knokkelkoorts epidemie optreed en hoe groot
die is, is dus van groot praktisch belang.

Ofschoon de overdracht van ziektes een inherent stochastisch fenomeen is
zijn knokkelkoorts modellen meestal geformuleerd met deterministische diffe-
rentiaalvergelijkingen. De gemiddelde veldbeschrijving (“mean field approxi-
mation”) geeft vaak een goede benadering en kan voor bepaalde situaties ge-
bruikt worden om een beter begrip te krijgen van het gedrag van stochastische
systemen. Daarbij worden de gemiddelde hoeveelheden benaderd door corre-
laties te verwaarlozen. Echter, in andere gevallen kunnen alleen stochastische
modellen de waargenomen fluctuatie beschrijven.

In Hoofdstuk 5 wordt een stochastische versie van het multi-varianten mo-
del beschreven. Deze formulering houdt rekening met essentiéle verschillen
tussen de eerste en de tweede besmettingen in knokkelkoorts epidemiologie.
De interactie tussen stochasticiteit, seizoenen en import wordt onderzocht.
Het introduceren van stochasticiteit is noodzakelijk om waargenomen fluctu-
aties in beschikbare gegevens bestanden laat een scenario zien waarbij ruis
en de complexe deterministisch gedrag elkaar sterk beinvloeden. Wanneer de
populatie groot genoeg is kan het stochastisch systeem goed benaderd worden
met een deterministisch model met behoud van de essentiéle dynamiek. Daar-
mee krijgt men inzicht in de relevante parameterwaarden op grond van enkel
topologische informatie over de dynamiek.

Het twee-varianten knokkelkoorts model is een 9 dimensionaal systeem
(d.w.z. dat er 9 toestandsvariabelen zijn) en daarmee lijken toekomstige pa-
rameterschattingen haalbaar waarbij alle beginvoorwaarden (hier 9) naast een
beperkt aantal parameters vastgelegd kunnen worden. Lange termijn epi-
demiologische waarnemingen van maandelijkse ziekenhuisopnamen met DHF
zijn beschikbaar. Om dit soort gegevens te kunnen analyseren zijn model-
len noodzakelijk die zowel eerste als tweede besmettingen met verschillende
varianten kunnen voorspellen. Deze modellen waarbij ADE en tijdelijke cross-
immuniteit gemodelleerd zijn maar de verschillen in het dynamisch gedrag van
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verschillende samen voorkomende knokkelziekte serotypes genegeerd worden,
hebben goede kwalitatieve overeenkomst tussen empirisch waarnemingen en
model voorspellingen laten zien (zie Hoofdstuk 4 en Hoofdstuk 5).

Het vier-varianten model is een 25 dimensionaal systeem in plaats van 9 di-
mensionaal bij het twee-varianten model. In dit model vormen de verschillende
epidemiologische klassen (zoals vatbaar, besmettelijk en genezen) van de vier
verschillende varianten, DENV 1, DENV 2, DENV 3 en DENV 4 de SIR waar-
bij ook nu weer geen epidemiologische asymmetrie tussen de varianten wordt
aangenomen. Parameters van een systeem met veel dimensies zijn moeilijk te
schatten ondermeer omdat een groot aantal beginwaarden meegeschat moe-
ten worden. Verder zijn waarnemingen over het serotype alleen van recente
gevallen beschikbaar en daarmee zijn de waargenomen tijdsreeksen te kort om
realistische informatie te verkrijgen over verschillen in biologische parameters
zoals infectiekracht en genezingssnelheid van alle varianten. In Hoofdstuk 6
worden bifurcatie diagrammen voor het twee-varianten en het vier-varianten
model met elkaar vergeleken waarbij de bijdrage aan de infectiekracht van de
tweede infectie kleiner is dan die van de eerste infectie. Knokkelkoorts pa-
tiénten met een tweede besmetting door een andere variant worden vanwege
het ADE fenomeen ernstig ziek en opgenomen in het ziekenhuis. Daardoor
dragen ze minder bij aan de infectickracht (dus ¢ < 1). Daarom zijn de bifur-
caties die optreden bij parameterwaarden met ¢ < 1 erg interessant en niet
alleen voor ¢ > 1 zoals eerdere modellen suggereerden.

We concluderen dat het twee-varianten model ondanks zijn eenvoud (rela-
tief lage aantal toestandsvariabelen en aantal parameters) een goed model is
dat complexe dynamisch gedrag voorspelt, en dat de waargenomen empirische
waarnemingen kan verklaren. Momenteel wordt dan ook het twee-varianten
model gebruikt om, inclusief de beginwaarden, parameters te schatten.
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Resumo

Ao longo da histéria, as doencas infecciosas vé causado o enfraquecimento e
a morte prematura de grandes parte da populagao humana, gerando sérias
preocupacoes nos ambitos social e econémico. Muitos sao os fatores que tém
contribuido para a persisténcia e o aumento na ocorréncia de doengas infeccio-
sas, tais como fatores demogréficos, mudancas politicas, sociais e economicas,
mudancas ambientais, adaptagdo microbiana, etc. Segundo a Organizagao
Mundial de Satide (OMS), as doencas infecciosas s@o a segunda principal cau-
sa de morte no mundo, depois das doencas cardiovasculares (WHO, 2010).
Dentre as doencgas transmissiveis mais preocupantes, a dengue é, de acordo
com a OMS, um problema de saide piblica internacional, com mais de 55%
da populagao mundial vivendo em areas com risco de transmissao da infeccao.
A dengue, uma infecgao viral transmitida por mosquitos, é uma das principais
causas de doenca e morte nos trépicos e subtréopicos. A infeccao pelo virus
da dengue pode ser causada por qualquer uma das quatro cepas existentes,
designadas por serotipos DEN;, DENs, DEN3 e DEN,. Estes serotipos sao
distintos, porém, sao antigenicamente relacionados. A infecgdo gerada por de-
terminado serotipo confere imunidade total e permanente (ao longo da vida)
para apenas aquele serotipo e imunidade cruzada temporaria para os outros
serotipos. A imunidade cruzada tempordria tem uma duracgao, estimada que
varia de trés a nove meses, e estd relacionada com os niveis de anticorpos ger-
ados durante a resposta imune a uma primeira infecgao pelo virus da dengue.
Afirma-se que o alto nivel desses anticorpos seria suficiente para a protegao
contra outras infec¢Ges causadas por patogenos antigenicamente relacionados.
A dengue pode se manifestar em duas formas clinicas: dengue clédssica
(DC), uma forma nao fatal da doenca, e dengue hemorrdgica (DH), que pode
evoluir para uma forma muito grave conhecida como sindrome do choque da
dengue (DSS). Estudos epidemiolégicos associam os casos graves da doenga
(DH) com a segunda infecgao da dengue. Existem boas evidéncias relacionan-
do as infeccOes sequenciais pelos virus da dengue e o aumento para os riscos
do desenvolvimento da dengue hemorragica. KEsta associacao se deve a um
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processo imunolégico chamado de antibody-dependent enhancemet (ADE). O
antibody-dependent enhancement ocorre quando os anticorpos preexistentes,
provenientes de uma primeira infecdo da dengue, ndo neutralizam, mas sim
realcam a nova infeccao pelo virus da dengue.

Nao existe uma medicacao especifica para a infecgdo da dengue. O tra-
tamento dos casos de dengue clédssica é apenas de suporte e para os casos
de dengue hemorrégica a hospitalizacao é frequentemente necessaria para ob-
tengdo de um tratamento adequado. A vacina contra a dengue ainda nao
esta disponivel, uma vez que tera de simular protecao para todos os quatro
serotipos existentes. Atualmente, algumas vacinas candidatas encontram-se
em diversos estdgios de desenvolvimento. Até o presente momento, a pre-
vengao na exposicao e o controle dos vetores sao as Unicas possibilidades para
a prevencao da transmissao da dengue.

A modelacdo matemdtica tornou-se uma ferramenta importante para a
compreensao da epidemiologia e da dindmica das doencas infecciosas. Uma
série de modelos deterministicos, tais como o modelo Susceptivel-Infectado
(SI) e 0 modelo Susceptivel-Infectado-Recuperado (SIR), por exemplo, tem si-
do proposta com base nos padroes de fluxo para cada um dos compartimentos
que representam os estagios da doenga. O modelo epidemiolégico SIR divide
a populac@o de individuos em trés classes: Susceptiveis (5), Infectados (I) e
Recuperados (R). Esse tipo de modelo pode ser utilizado para representar,
por exemplo, as doencas infecciosas que nao conferem imunidade permanente,
possibilitando a reinfeccdo. Assumindo que a transmissdo da doenca se faz
de pessoa para pessoa, os individuos susceptiveis tornam-se infectados e in-
fecciosos (capazes de transmitir a doenca), curam-se e se tornam recuperados
(com imunidade tempordria ao patégeno causador da doenga). Depois de
determinado periodo, ocorre a perda dessa imunidade e o individuo torna-se
novamente susceptivel, podendo se reinfectar. A dindmica multiestirpe é geral-
mente modelada utilizando extensoes dos modelos do tipo SIR. Para capturar
as diferencas entre a primeira e a segunda infeccao, é preciso considerar pelo
menos dois serotipos diferentes na composicao do modelo do tipo SIR.

A dinamica da epidemiologia da dengue é particularmente complexa, com
grandes flutuacoes (variagoes em quantidade ao longo do tempo) na incidéncia
da doenga. Modelos matematicos recentes para a transmissao do virus da den-
gue se concentram no efeito ADE e na imunidade cruzada temporaria. Esses
modelos apresentam resultados de flutuacGes criticas com distribuicao em lei
de poténcia para os casos da doenca, caos deterministico e dessincronizacao
cadtica, devido a sua estrutura multiestirpe. O comportamento caético é ob-
tido quando se assume infectividade muito alta para a segunda infeccao da
dengue, isto é, assumindo que os individuos, na segunda infecgdo pelo virus
da dengue, transmitem a doenca com uma taxa muita mais elevada do que
os individuos na primeira infeccao. Consideracoes da imunidade cruzada tem-
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poréria associada ao efeito ADE geram uma nova janela cadtica inesperada e
biologicamente mais realista, em que a infectividade dos individuos na segun-
da infeccao da dengue é reduzida devido a severidade da doenca e & provavel
hospitalizacao causada pelo processo imunolégico do ADE.

Nesta tese, apresentamos a andlise e os resultados obtidos em diferentes
extensoes do modelo classico SIR. Esses modelos foram motivados pela epide-
miologia da dengue e a sua peculiar caracteristica imunoldgica causada pelo
antibody-dependent enhancement. Nosso estudo concentra-se em um modelo
minimalistico, em que pelo menos dois serotipos diferentes sao necessarios pa-
ra descrever as diferencas entre as infecgoes primarias e secundarias causadas
pelas differentes cepas do virus da dengue. Os modelos dividem a populagao
humana em susceptiveis, infectados e recuperados, e utiliza indices para di-
ferenciar cada um dos serotipos. Os individuos podem ser: (1) susceptiveis
sem nenhuma infecgdo prévia pelo virus da dengue, (2) infectados e recupe-
rados pela primeira vez, (3) susceptiveis com um histérico de infeccao prévia e
(4) infectados pela segunda vez (por uma cepa diferente da primeira infecgao)
e provavelmente hospitalizados devido ao processo de ADE. O modelo mini-
malistico apresenta uma dinamica estrutural rica ao incorporar aos modelos
ja existentes para a transmissao da dengue, o periodo de imunidade cruzada
temporaria associada ao processo de antibody-dependent enhancement capaz
de gerar diferencas nas taxas de transmissao para as infecgoes primédrias e
secundéarias da doenca.

No Capitulo 1, apresentamos as propriedades do modelo basico SIR, aplica-
do ao estudo das doencas transmissiveis. A analise da dinamica é apresentada
identificando os limites e os pontos de equilibrio. O objetivo é introduzir a
notagao e a terminologia utilizada. Esses resultados sao posteriormente ge-
neralizados para os modelos motivados pela epidemiologia da dengue. No
Capitulo 2, o modelo bésico do tipo SIR para dois serotipos diferentes é apre-
sentado e analisado. Este capitulo enfatiza o aspecto multiestirpe e seus efeitos
sobre a populagao humana. Os efeitos da dindmica dos vetores e/ou da sazona-
lidade nao sao modelados explicitamente, sendo levados em conta apenas pelos
parametros efetivos do modelo. No Capitulo 3, apresentamos uma andlise de-
talhada dos pontos de bifurcacées encontrados para os parametros de ADE
(¢) e de imunidade cruzada temporéria ().

No Capitulo 4, o modelo sazonal da dengue é apresentado. Com base
nos dados disponiveis de monitoramento da dengue, o papel da for¢a sazonal
e os casos importados da doenca foram considerados efeitos biologicamente
relevantes para a determinacao do comportamento dinamico do sistema. O
comparativo entre trés cendrios distintos (néo sazonal, sazonal e sazonal com
casos importados da doenga) é apresentado neste capitulo. A adicao da sa-
zonalidade e de possiveis casos importados da doencga institui complexidade a
dinamica e apresenta boa concordancia qualitativa entre os dados empiricos
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dos casos graves da doenca (DH) e o output do modelo.

Até o momento, apenas esses modelos minimalisticos tém a possibilidade
de ser qualitativamente bem compreendidos e, eventualmente, testados contra
os dados existentes. A simplicidade do modelo (poucos parametros e poucas
variaveis de estado) oferece uma perspectiva promissora na inferéncia dos va-
lores dos parametros, utilizando os dados referentes ao nimero de casos de
dengue hemorragica. A estimagao de parémetros em séries temporais cadticas
é notoriamente dificil devido a imprevisibilidade a longo prazo versus previsi-
bilidade a curto prazo. Recentemente, essa previsibilidade a curto prazo tem
sido usada em inferéncia estatistica para para abordagens temporalmente lo-
calizadas, o que dificulta a obtencao de uma resposta final definitiva para a
melhor estimativa dos parametros.

A capacidade de prever os futuros surtos da dengue na auséncia de in-
terven¢ao humana tem como objetivo compreender o efeitos das medidas de
controle da doenca, incluindo a implementagao de programas de vacinacao,
quando esta estiver disponivel e acessivel. Os ensaios com essa vacina deverao
ser realizados em um ano em que o nimero de casos da doenca seja suficien-
temente alto (e ndo em um ano em que o nimero de casos da doenca seja
naturalmente baixo) a fim de facilitar os testes estatisticos para a compro-
vagao da eficdcia da vacina. Desta maneira, a previsao do nimero de casos da
doenca com base no balanco deterministico do nimero de individuos infectados
e individuos susceptiveis seria de grande utilidade pratica.

A propagacao de doengas é um fenémeno inerentemente estocdstico, mas
os modelos para a propagacao da dengue sao em sua maioria expressos ma-
tematicamente por um conjunto de equacoes diferenciais deterministicas, que
sdo mais faceis de analisar. A aproximagéao do campo médio, utilizada em
processos estocdsticos para a obtencao de dindmicas deterministicas, é uma
boa técnica para ser utilizada a fim de compreender melhor o comportamento
dos sistemas estocdsticos em determinadas regioes de parametro. No entan-
to, apenas os modelos estocésticos, ao contrario dos modelos deterministicos,
podem captar as flutuacoes observadas em algumas das séries temporais de
dados empiricos.

No Capitulo 5, a versao estocédstica do modelo multiestirpe minimalistico
¢é apresentado. Nesse capitulo, investigamos a interagao entre estocasticidade,
sazonalidade e casos importados da doenca. A introducao de estocasticidade
é capaz de explicar as flutuactes observadas em algumas séries temporais de
dados para os casos graves da dengue, revelando um cendrio no qual o ruido
e o esqueleto deterministico interagem fortemente. Para uma populagao sufi-
cientemente grande, o modelo estocastico é bem descrito pelo esqueleto deter-
ministico, capturando a dinamica essencial da doenca. O modelo estocéastico
gera, com base nas informacoes topolégicas da dinamica, a percepgao sobre os
valores relevantes dos parametros do modelo.
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O modelo minimalistico da dengue é um sistema com nove dimensoes, tem
boas chances de ser se utilizado em uma futura inferéncia estatistica, para
estimar todas as condicOes iniciais e os poucos parametros do modelo. Os da-
dos empiricos disponiveis para os casos de dengue hemorrdgica consistem na
incidéncia mensal de casos hospitalizados. Para esse tipo de dados, o modelo
capaz de gerar infecgoes primadrias e secundarias causadas por diferentes sero-
tipos da dengue (sem a necessidade de se considerar diferengas nas dinamicas
para cada um dos serotipos existentes) apresenta uma boa concordancia qua-
litativa entre os dados empiricos e o output do modelo (ver Capitulos 4 e 5).
Diferentemente do modelo minimalistico multiestirpe para a transmissao da
dengue, o modelo incluindo os quatro serotipos é matematicamente represen-
tado por um sistema com 26 equagoes diferenciais. Esse sistema apresenta
uma dimensao elevada (25 dimensoes) e dificilmente poderd ser utilizado em
inferéncia estatistica, devido ao elevado nimero de variaveis e condigoes inici-
ais.

No Capitulo 6, o modelo para a transmissao da dengue, incluindo todos os
serotipos existentes, é apresentado. Com os quatro serotipos, DEN1, DE N,
DEN3 e DENy, as classes SIR sao identificadas por indices para cada um
dos serotipos. A assimetria epidemiolégica entre as cepas continua a nédo ser
considerada. Os dados seroldgicos existentes para cada um dos serotipos em
separado sao recentes e escassos, nao sendo capazes de fornecer informacoes fi-
dedignas as possiveis diferengas existentes entre os parametros biolégicos (tais
como as taxas de infecgao e taxas de recuperagao) para cada uma das quatro
cepas do virus da dengue. Nesse capitulo apresentamos a comparacao entre
os diagramas de bifurcag@o para os dois modelos multiestirpe, assumindo res-
pectivamente 2 e 4 serotipos diferentes na transmissao da doenca. Para a
regiao de interesse biolégico (onde os individuos infectados pela segunda vez
transmitem menos do que os individuos infectados pela primeira vez, devido a
severidade da doenga) os pontos de bifurcacao acontecem em regices similares
para o parametro do efeito ADE.

A lei da parcimoénia favorece o mais simples dos dois modelos concorrentes
e, desta forma, concluimos que o modelo minimalistico para a transmissao da
dengue (dois serotipos), na sua simplicidade, é um bom modelo para ser ana-
lisado. O modelo minimalistico da dengue é capaz de produzir a complexidade
esperada para explicar as flutuagoes observadas nos dados empiricos da doenca
e apresenta, dentro da possibilidade, baixa dimensionalidade. A inferéncia es-
tatistica que utiliza os dados empiricos para estimar os parametros basicos de
transmissao, infectividade, gravidade da doenga (parametro ADE) e periodo
de imunidade cruzada temporaria é de extrema importancia e definitivamente
necessaria para identificar os eventuais desvios do caso mais simples de si-
metria, que foram investigados aqui. O estudo da estimacao dos parametros
utilizando o modelo minimalistico da dengue esta em andamento.
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A dinamica vetorial também pode desempenhar um papel importante na
compreencao da epidemiologia da dengue. As investigacoes descritas nesta te-
se sugerem uma série de possiveis diregoes para a continuidade desta pesquisa
e, em termos de trabalho futuro, a investigacao de extensées do modelo mini-
malistico poderd abordar as seguintes questoes e problemas: (1) Qual é a real
contribuicao das infeccOes primadrias e secundarias para a forca de infeccao?
Individuos na segunda infecgao transmitem mais ou menos do que individuos
na primeira infecgdo? (2) Existem diferengas significativas entre as taxas de
infeccao para cada um dos serotipos existentes? Até que ponto a estrutura de
bifurcagao pode explicar a real contribui¢do da diversidade viral? (3) Formu-
lar hipéteses usando o mecanismo adequado de imunidade cruzada temporaria
e a protegao gerada em infecgoes recorrentes. (4) Modelar ensaios de vacinas,
com base na previsibilidade a curto prazo em sistemas caéticos, para futura
implementacao de programas de imunizacao, quando a vacina tetravalente es-
tiver disponiveil e acessivel. E finalmente (5) propor alvos para a intervengao
e para o planejamento de medidas controle, baseando-se no impacto esperado
da doenga. O Meu interesse especial concentra-se na possivel parametrizagao
do modelo com base nos dados referentes a incidéncia da doenga grave e na
prevaléncia de infeccao. Esta ferramenta epidemiolégica ajudaria a compreen-
der os efeitos das medidas de controle e poderia ser utilizada para orientar as
politicas de prevencao e controle da transmissao do virus da dengue, gerando
uma percepcao sobre a previsao dos surtos futuros da dengue.
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Chapter 1

Introduction

Throughout human history, infectious diseases have caused debilitation and
premature death to large portions of the human population, leading to serious
socio-economic concerns. Many factors have contributed to the persistence
and increase in the occurrence of infectious disease (demographic factors, po-
litical, social and economic changes, environmental change, public health care
and infrastructure, microbial adaptation, etc.), which according to the World
Health Organization (WHO), are the second leading cause of death globally
after cardiovascular diseases (WHO, 2010).

Research on basic and applied aspects of host, pathogen, and environ-
mental factors that influence disease emergence, transmission and spread have
been supported so far, and the development of diagnostics, vaccines, and ther-
apeutics has been greatly increased. In recent years, mathematical modeling
became an interesting tool for the understanding of infectious diseases epidemi-
ology and dynamics, leading to great advances in providing tools for identi-
fying possible approaches to control, including vaccination programs, and for
assessing the potential impact of different intervention measures.

Epidemiological models are a formal framework to convey ideas about the
components of a host-parasite interaction and can act as a tool to predict,
understand and develop strategies to control the spread of infectious diseases
by helping to understand the behaviour of the system under various conditions.
They can also aid data collection and parameter estimation. The purpose of
epidemiological models is to take different aspects of the disease as inputs and
to make predictions about the numbers of infected and susceptible people over
time as output.

In the early 20"" century, mathematical models were introduced into in-
fectious disease epidemiology, and a series of deterministic compartment mod-
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els such as Susceptible-Infected (SI), Susceptible-Infected-Susceptible (SIS),
Susceptible-Infected-Recovered (SIR), and e.g Susceptible-Exposed-Infected-
Recovered (SEIR) have been proposed based on the flow patterns between
compartments of hosts. In our days, most of the models developed try to
incorporate other factors focusing on several different aspects of the disease,
which can imply rich dynamic behaviour even in the most basic dynamical
models. Factors that can go into the models include the duration of disease,
the duration of infectivity, the infection rate, the waning immunity, and so
forth. In such a way, differential equation models are a simplified representa-
tion of reality, which are designed to facilitate prediction and calculation of
rates of change as functions of the conditions or the components of the system.

There are two common approaches in modeling, the deterministic and the
stochastic one. In the first case, the model is one in which the variable states
are uniquely determined by parameters in the model and by sets of previous
states of these variables. In mathematics, a deterministic system is a system in
which no randomness is involved in the development of future states of the sys-
tem. In a stochastic model, randomness is present, and variable states are not
described by unique values, but rather by probability distributions. Stochas-
tic epidemic models are appropriate stochastic processes that can be used to
model disease propagation. Disease propagation is an inherently stochastic
phenomenon and there are a number of reasons why one should use stochastic
models to capture the transmission process. Real life epidemics, in the absence
of intervention from outside, can either go extinct with a limited number of
individuals getting ultimately infected, or end up with a significant proportion
of the population having contracted the disease in question. It is only stochas-
tic, as opposed to deterministic, models that can capture this behaviour and
the probability of each event taking place.

Only few stochastic processes can be solved explicitly. The simplest and
most thoroughly studied stochastic model of epidemics are based on the as-
sumption of homogeneous mixing, i.e. individuals interact randomly at a cer-
tain rate. The mean field approximation is a good approximation to be used in
order to understand better the behaviour of the stochastic systems in certain
parameter regions, where the dynamics of the mean quantities are approxi-
mated by neglecting correlations, giving closed ordinary differential equations
(ODE) systems, hence mathematically deterministic systems which are easier
to analyse.

In the following section of this chapter we present the properties of the basic
SIR epidemic model for infectious diseases with a summary of the analysis of
the dynamics, identifying the thresholds and equilibrium points. The goal is
to introduce notation, terminology, and results that will be generalized in later
sections on more advanced models motivated by dengue fever epidemiology as
an example of multi-strain systems.
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1.1 The SIR Epidemic Model

The SIR epidemic model divides the population into three classes: susceptible
(5), Infected (I) and Recovered (R). It can be applied to infectious diseases
where waning immunity can happen, and assuming that the transmission of the
disease is contagious from person to person, the susceptibles become infected
and infectious, are cured and become recovered. After a waning immunity
period, the recovered individual can become susceptible again. This model
was for the first time proposed by William Ogilvy Kermack and Anderson
Gray McKendrick in 1927 (Weisstein, 2010). The model was brought back to
prominence after decades of neglect by Anderson and May (Anderson & May,
1979).

In the simple SIR epidemics without strain structure of the pathogens we
have the following reaction scheme for the possible transitions from one to
another disease related state, susceptibles S, infected I and recovered R,

B

S+1 — I+1
7 L
R % S

for a host population of N individuals, with contact and infection rate (3,
recovery rate v and waning immunity rate «. The dynamic model in terms of
ordinary differential equations (ODE) reads,

. P
. B

where we use the time derivative S = dS /dt with time t for a constant pop-
ulation size of N = S + I + R individuals. The solution of R(t) is given by
R(t) = N—1(t)—S(t) which can be calculated using the solution of the ODEs.
The susceptible individuals become infected with infection rate 3, recover from
the infection with recovery rate v and become susceptible again after waning
immunity rate a.

In Fig. 1.1 we show the dynamical behaviour of the susceptible, infected
and recovered individuals in a given population N, when solving the above
ODE system.

The basic SIR model has only fixed points as possible stationary solutions,
that can be calculated setting the rates of change S and I to zero. For the
disease free equilibrium state, the solution is given by
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Figure 1.1: Time dependent solution simulation for the SIR epidemic model.
With a population N = 100, and starting values I = 40, S = 60 and R = 0, we
fixed B = 2.5, « = 0.1, and v = 1. In green the dynamics for the susceptibles
S(t), in pink the dynamics for the infected I(¢) and in blue the dynamics of
the recovered R(t). Note that N = 100 allows for the interpretation for the
class abundances in percentages.

I =0 (1.3)
ST = N
and for the disease endemic equilibrium state, the solution is
* g —
I5 = N|1l—-=|—— 1.5
= v (-3) et (9
* i
S5, = N-= . 1.6
5 3 (1.6)

The epidemic dynamic as a function of the infection rate parameter § and
the recovery rate parameter v shows the spread of the epidemic when § >
(see Fig. 1.2a)), and its extinction when 3 < v (see Fig. 1.2b)).

In order to analyse the stability of the equilibrium states, we look at the
Jacobian matrix and its eigenvalues.

Let the dynamics for the state  := (S, I) be f(z), hence 4z = f(z) which
explicitly gives Az := z(t) — 2* as a small perturbation around the fixed
point z*. We linearize the dynamic £Az = 4 (z(t) — z*) applying Taylor’s
expansion

* * di 2
f@+Az) = fla)+ g0 - (Az)+O((A2)7) (L.7)

xr*
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Figure 1.2: Epidemic dynamics as a function of 5. With the same initial values
as used in Fig. 1.1, we plot time dependent solutions I(t) for several 3 values.
In a)p € [1.5,2.5], with a resolution A = 0.1 and in b) # € [0,0.9] where
ApB =0.2. In c) the stable stationary states as function of .

with f(z*) = 0 for the fixed point and neglecting higher order terms. For our
system we have the following linear differential equation system

of of
_ gx as oI _ g
d(Sm-5Y _ (55 s
dt \ I(t)—1 9 g I—1

as ol SN[ 5°
1 I*
where f := (f,g) and the Jacobian matrix is explicitly given by

—%I* -« —%S* -
= A (1.9)

B rs 8

where we have to insert for S* and I*, the respective steady states. In order
to decoupled the linear differential equation system, we diagonalize the matrix
A, (1.9), with the eigenvalue decomposition A u = A u, u is an eigenvector
of A, and A is an eigenvalue of A corresponding to the eigenvector w.

The eigenvalues can be calculated setting the determinant of [A — A ]
equal zero. For the disease free equilibrium state (I; and S7), Eq. (1.3) and
Eq. (1.4), the eigenvalues are given by

Moo= By (1.10)
Ao = —« (1.11)

and for the disease endemic equilibrium state (I3 and S3), Eq. (1.5) and
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Eq. (1.6), the eigenvalues are giving by

A = —2‘<1+§;’Y>+\/B‘<1+§;§)]2_(5_7)a (1.12)

"
Ao = —;‘<1+§;7y>— \B<1+§;7y>r—(ﬁ—7)a . (1.13)

Note that if b > 0 the eigenvalues are real numbers, giving the contraction or
expansion of the trajectories near to the considered fixed point. If b < 0, the
eigenvalues become complex, where the real part a gives the contraction or
expansion, and the imaginary part 2\/m gives the frequency of oscillations of
the trajectories spiralling into the fixed point as is shown in Fig. 1.2b).

The fixed point I} is stable when 3 < <, where both eigenvalues are neg-
ative. For 3 > ~ the fixed point I5 is now stable. Here, the real part of the
eigenvalues are negative and the imaginary part of the eigenvalues gives the
oscillations towards the fixed point. The stability of the system changes when
one of the eigenvalues of the system becomes zero. At this critical point, I
becomes unstable and I3 stable. Figure 1.2c) shows the eigenvalues for the
disease free equilibrium state as functions of 8. For detailed information on the
solution of a linear two dimensional ODE system, see (Mattheij & Molenaar,
1996).

The stochastic SIR epidemic is modelled as a time-continuous Markov
process to capture population noise. The dynamics of the probability of integer
infected and integer susceptibles, while the recovered follow from this due to
constant population size, can be given as a master equation (van Kampen,
1992) in the following form

dp(fl’f’t) - %(SH)(I—D p(S+1,1-1,1) (1.14)
+y(I+1) p(S,I+1,t)
+a(N—-(S—=1)—-1) p(S—1,1,t)
- <J€* +yl+a(N—-S-— I)> p(S,1,t)

This process can be simulated, e.g., by the Gillespie algorithm giving
stochastic realizations of infected and susceptibles in time (Gillespie, 1976,
1978).

For mean values of infected (I) and susceptibles (5), defined as e.g.

N N
(D) :=Y_> Ip(S1t) . (1.15)

S=0I1=0
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Figure 1.3: Stochastic simulations for the basic SIR epidemic model. Here
10 realizations are plotted. We fixed a = 0.1, v = 1 and 8 = 2.5. The
deterministic trajectory is shown (pink line) top of the stochastic realizations
for different population size N. In a) N = 100, in b) N = 1000 and in c)
N = 100000.

one can calculate the dynamics by inserting the master equation into the
definition of the mean values obtaining

d g
S4S) = al®) - L (SD)
(1.16)
d o
S = s -

with (R) = N — (S) — (I). For more details on the calculations see e.g. (Stol-
lenwerk & Jansen, 2011). These equations for the mean dynamics include
now due to the non-linear transition rates in the master equation also higher
moments (S - I). The simplest approximation to obtain a closed ODE system
is to neglect cross-correlations (S - I) — (S) - (I) ~ 0, the so-called mean field
approximation (originally introduced for spatially extended systems in statisti-
cal physics (Stollenwerk et al., 2010)). Hence, the equation system Eq. (1.16),
with identifying the higher moment (S - I) = (S) - (I) by a product of simple
moments, gives again the ODE system for SIR system as it was just presented
above. For certain parameter regions the mean field approximation describes
the system well in terms of its mean dynamics and only small fluctuations
around it. Then the previously shown analysis of the system is appropriate.
However, noise can stabilize transients, a feature which becomes important
in parameter regions where in the deterministic description a fixed point is
reached via decreasing oscillations, as we have observed them in the SIR sys-
tem. The noisy system would show here continued oscillations (Alonso et al.,
2006).

In Fig. 1.3 we compare the deterministic and stochastic dynamics and we
see that the magnitude of stochastic fluctuations decreases when the popula-
tion size increases. However, the good approximation (see Fig. 1.3c)) is only
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achieved when the population size is large enough. For small population size,
most simulation die out very quickly (see Fig. 1.3a)). Almost all mathemati-
cal models of diseases start from the same basic premise, that the population
can be subdivided into a set of distinct classes. The most commonly used
framework for epidemiological systems, is still the SIR type model, a good
and simple model for many infectious diseases. Different extensions of the
classical single-strain SIR model show rich dynamic behaviour in measles, e.g.
(Stone et al., 2007), or in generalized multi-strain SIR type models to describe
the epidemiology of dengue fever, e.g. (Aguiar & Stollenwerk, 2007; Aguiar et
al., 2008).

1.2 Dengue fever Epidemiology

Dengue is a viral mosquito-borne infection which in recent years has become
a major international public health concern. According to the estimates given
by (PDVI, 2011), 3.6 billion (55% of world population) are at risk of acquiring
dengue infection (see Fig. 1.4)). It is estimated that every year, there are
70 — 500 million dengue infections, 36 million cases of dengue fever (DF) and
2.1 million cases of dengue hemorrhagic fever (DHF), with more than 20.000
deaths per year (WHO, 2009; PDVI, 2011; CDC, 2011). In many countries in
Asia and South America DF and DHF has become a substantial public health
concern leading to serious social-economic costs.

Figure 1.4: Worldwide Dengue distribution 2010. In red Countries and areas
where dengue has been reported. Data source: World Health Organization
(WHO) & Centers for Disease Control and Prevention (CDC). Adapted from
(Gubler, 2002; Mackenzie et al., 2004).

Dengue fever is transmitted by the female domestic mosquito Aedes ae-
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gypti, although Ae. albopictus and Ae. polynesiensis can also act as trans-
mission vector (Favier et al., 2005). Virus transmission in its simplest form
involves the ingestion of viremic blood by mosquitoes and passage to a second
susceptible human host. The mosquito becomes infected when taking a blood
meal from a viremic person. After an extrinsic incubation period, the mosquito
becomes infective and remains so during its entire life span (Rigau-Pérez et
al., 1998). As the blood meal stimulates ovoposition, which undergoes at least
one, often more, reproductive cycles there is an opportunity of vertical trans-
mission to the eggs, passing the virus to the next generation of mosquitoes
(Rosen et al., 1983; Monath, 1994; CDC, 2011).

k. SRy
_‘-ﬁ‘.‘;ﬁ DEN-1

A DEN-1 W' DEN.2

b)

Figure 1.5: Global distribution of dengue virus serotypes. In a) 1970 and in b)
2010. Data source: World Health Organization (WHO) & Centers for Disease
Control and Prevention (CDC). Adapted from (Gubler, 2002).

There are four antigenically distinct dengue viruses, distributed around
the world, designated DEN-1, DEN-2, DEN-3, and DEN-4 (see Fig. 1.5). The
co-circulation of all four dengue serotypes and their capacity to produce severe
dengue disease was demonstrated as early as 1960 in Bangkok, Thailand (Hal-
stead et al., 1969). DHF occurred first only in Bangkok, but was disseminated
to the whole region during the 1970s (Gubler, 2002; Halstead et al., 1969;
Chareonsook et al., 1999). Physicians in Thailand are trained to recognize
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and treat dengue fever and practically all cases of DHF and DSS are hospi-
talized. A system for reporting communicable diseases including DHF /DSS
was considered fully installed in 1974 and the data bank of DHF and DSS
is available at the Ministry of Public Health, Bangkok (Chareonsook et al.,
1999).

Infection by one serotype confers life-long immunity to only that serotype
and temporary cross-immunity to other serotypes exists. It lasts from three
to nine months, when the antibody levels created during the response to that
infection would be enough to protect against infection by a different but re-
lated serotype (Halstead, 1994; Matheus et al., 2005; WHO, 2009; SES, 2010;
Dejnirattisai et al., 2010). Two variants of the disease exist: dengue fever
(DF), a non-fatal form of illness, and dengue hemorrhagic fever (DHF), which
may evolve toward a severe form known as dengue shock syndrome (DSS).

Primaryinfectionresponse Secondaryinfectionresponse
Enhancedimmuneresponse

a = B | lendtcheraogic
5 © o 1
H‘, - 3‘ “\ g
b~ - 0. i"_ =1
\_ - 19G ’- ’- %
AN LA
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ATy r et r

infection : 3-9months Secondary
infection

Figure 1.6: Scheme of the immunological response on recurrent dengue infec-
tions. In (a.) the first infection with a given dengue virus serotype, in (b.)
production of antibodies (Immunoglobulin M (IgM)), in (c.) inactivation of
the virus and in (d.) production of antibodies (IgG class, the so called memory
antibodies). In (e.) the temporary cross-immunity period, that lasts between
3-9 months. After that period, the individual can get infected again with an-
other dengue virus serotype, different from the first one (f.). In (g.) the IgG
from the previous dengue infection binds to the new virus but do not inac-
tivate them. In (h.) the complex antibody-virus enhances the new infection
(i.). In (j.) the late production of antibodies (IgM class) which is then able
to inactivate the new viruses, leading to (1.), an enhanced immune response,
such that hemorrhagic symptoms are observed. In (m.) production of IgG
antibodies.
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Epidemiological studies support the association of DHF with secondary
dengue infection (Halstead, 1982, 2003; Nisalak et al., 2003), and there is
good evidence that sequential infection increases the risk of developing DHF,
due to a process described as antibody-dependent enhancement (ADE), where
the pre-existing antibodies to previous dengue infection cannot neutralize but
rather enhance the new infection.

In the first dengue infection virus particles will be captured and processed
by so-called antigen presenting cells. These viruses will be presented to T-cells
causing them to become activated. Likewise, B-cells will encounter their anti-
gen free floating and become activated. The B-cells produce antibodies that
are used to tag the viruses to encourage their uptake by macrophages and
inactivate them. In a second infection, with a different strain, the antibodies
from the first infection will attach to the new virus particles but will not inacti-
vate them. The antibody-virus complex suppresses innate immune responses,
increasing intracellular infection and generating inflammatory citokines and
chemokines resulting in enhanced disease (Halstead, 1982, 1994; Dejnirattisai
et al., 2010; Guzman et al., 2010). Fig. 1.6 is an scheme to illustrate the
immunological response on recurrent dengue infections.

DF is characterized by headache, retro-orbital pain, myalgia, arthralgia,
rash, leukopenia, and mild thrombocytopenia. The symptoms resolve after
2 — 7 days. DHF is a potentially deadly complication that is characterized by
high fever and hemorrhagic phenomena. DHF develops rapidly, usually over a
period of hours, and resolves within 1 — 2 days in patients who receive appro-
priate fluid resuscitation. Otherwise, it can quickly progress to shock (WHO,
2009; CDC, 2011). Treatment of uncomplicated dengue cases is only support-
ive, and severe dengue cases requires careful attention to fluid management
and proactive treatment of hemorrhagic symptoms (CDC, 2011; WHO, 2009).
A vaccine against dengue is not yet available, since it would have to simulate a
protective immune response to all four serotypes (Stephenson, 2005), although
several candidates of tetravalent vaccines are at various stages of development
(WHO, 2011).

Mathematical models describing the transmission of dengue viruses ap-
peared in the literature early as 1970 (Fischer & Halstead, 1970). More re-
cently, mathematical models describing the transmission of dengue viruses
have focused on the ADE effect and temporary cross-immunity trying to ex-
plain the irregular behaviour of dengue epidemics. Such models ultimately
aim to be used as a predictive tool with the objective to guide the policies of
prevention and control of the dengue virus transmission, including the imple-
mentation of vaccination programs when the candidate dengue fever vaccines
will be accessible.

In the literature, multi-strain interaction leading to deterministic chaos
via antibody-dependent enhancement effect has been described previously e.g.
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(Ferguson et al., 1999; Schwartz et al, 2005; Billings et al., 2007) but neglect-
ing temporary cross-immunity. Consideration of temporary cross-immunity is
rather complicated and up to now not in detail analysed. Models formulated
in e.g. (Wearing & Rohani, 2006; Nagao & Koelle, 2008; Recker et al., 2009;
Lourego & Recker, 2010), did not investigate closer the possible dynamical
structures. In (Aguiar et al., 2008, 2009, 2011 a), by including temporary
cross-immunity into dengue models with ADE, a rich dynamic structure in-
cluding deterministic chaos was found in wider and more biologically realistic
parameter regions. In the following section of this chapter we present a short
review on recent multi-strain models motivated by dengue fever epidemiology.

1.3 Multi-strain models motivated by dengue fever
epidemiology: a review

Multi-strain dynamics are generally modelled with extended SIR-type models
and have demonstrated to show critical fluctuations with power law distribu-
tions of disease cases, exemplified in meningitis (Stollenwerk & Jansen, 2003
a; Stollenwerk et al., 2004) and in dengue fever (Massad et al., 2008). Dengue
models including multi-strain interactions via ADE but without temporary
cross-immunity period have shown deterministic chaos when strong infectiv-
ity on secondary infection was assumed (Ferguson et al., 1999). The addition
of the temporary cross-immunity period in such models brings a new chaotic
attractor in an unexpected and more biologically realistic parameter region of
reduced infectivity on secondary infection (Aguiar & Stollenwerk, 2007; Aguiar
et al., 2008, 2009, 2011 a), i.e. deterministic chaos was found in a wider param-
eter regions. This indicates that deterministic chaos is much more important
in multi-strain models than previously thought, and opens new ways to data
analysis of existing dengue time series, as will be shown below. It offers a
promising perspective on parameter values inference from dengue cases noti-
fications.

To capture differences in primary infection by one strain and secondary
infection by another strain we consider a basic two-strain SIR-type model for
the host population, which is only slightly refined as opposed to previously
suggested models for dengue fever (Ferguson et al., 1999; Schwartz et al, 2005;
Billings et al., 2007). The stochastic version of the multi-strain dengue model
is now given in complete analogy to the previously described SIR model, and
the mean field ODE system for the multi-strain dengue model can be read from
the following reaction scheme (1.17), describing the transitions. It describes
for first infection with strain 1 and secondary infection with strain 2, and for
the reverse process, where the first infection is caused by strain 2 and the
secondary infection is caused by strain 1. The same reaction scheme can be
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used to describe the transitions by just changing labels.

The basic multi-strain model divides the population into ten classes: sus-
ceptible to both strains, 1 and 2 (5), primarily infected with strain one (I;)
or strain two (I3), recovered from the first infection with strain one (R;) or
strain two (Rz), susceptible with a previous infection with strain one (S7) or
strain two (S2), secondarily infected with strain one when the first infection
was caused by strain two (I21) or for second time infected with strain two when
the first infection was caused by strain one ([;2). Notice that infection by one
serotype confers life-long immunity to that serotype. Then the individuals
recover from the secondary infection (R).

S+ 1 i) L+ S+1 i} I+ I,
2]

S+In 22 L+1y Sthe 7% Lt h

L, - R I, — Ry

R % S Ry - S (1.17)
Sl +12 i) 112+IQ SQ+I1 i’ I21+I1
Si+1o L I+ 1 Syt Iy 2 Iy 4 Iy

L. - R Iy — R

The complete system of ordinary differential equations for the two strain
epidemiological system is given by system Eq. (1.18) and the dynamics are
described as follows. Susceptibles to both strains can get the first infection
with strain one or strain two with infection rate @ when the infection is ac-
quired via an individual in his first infection or infection rate ¢, when the
infection is acquired via an individual in his second infection. They recover
from the first infection with a recovery rate v, conferring full and life-long im-
munity against the strain that they were exposed to, and also a short period
of temporary cross-immunity « against the other strain, becoming susceptible
to a second infection with a different strain. The susceptible with a previous
infection gets the secondary infection, again with two possible infection rates,
B or ¢ depending on whom (individual on his primary or secondary infection)
is transmitting the infection. Then, with recovery rate -, the individuals re-
cover and become immune against all strains. No epidemiological asymmetry
between strains is assumed, i.e. infections with strain one followed by strain
two or vice versa contribute in the same way to the force of infection. Here,
the only relevant difference concerning disease transmissibility is that the force
of infection varies accordingly to the number of previous infections the hosts
have experienced. In a primary infection the individuals transmit the disease

with a force of infection ’% whereas in a secondary infection the transmission

is given with a force of infection %ﬁf where ¢ can be larger or smaller than 1,
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i.e. increasing or decreasing the transmission rate. The parameter values are
given in Table 1.1, if not otherwise explicitly stated. For more information
on parametrization of the basic two-strain model, see (Aguiar & Stollenwerk,
2007; Aguiar et al., 2008).

§ = DSt ob) ~ Sl + 61o) + (N - )
L = %5(11+¢121)—(7+,u)11
L = %S(IQ-HMH) — (v 4wl

Ry = L —(a+p)Ry

Ry = Al (ot )R (118)
Sy = 5 S1(Iy + oI
1= N 1(I2 + ¢I12) + aRy — St
. B
Sy = _NS2(11 + ¢I21) + aRg — puS:
- B
Iy = N51(12+¢112) — (v + p) 12
- B
Iy = st(fl + ¢lar) — (v + p) 12

R = ~y(ha+1In)—uR

The time series for ¢ < 1 shows that the total number of infected I :=
I1+1s+ 119+ 151 stays quite away from zero, avoiding the chance of extinction in
stochastic systems with reasonable system size (see Fig. 1.7a)). The parameter
region previously considered to model ADE effects on dengue epidemiology,
i.e. ¢ > 1, leads to rather low troughs for the total number of infected giving
unrealistically low numbers of infected (see Fig. 1.7b)). The logarithm of total
number of infected goes as low as —70 for ¢ = 2.7 in the chaotic region of
¢ > 1, and the population fluctuations would, in this case, drive almost surely
the system to extinction.

The state space plots in terms of the variables S and the logarithm of
the total number of infected I show a rich dynamical behaviour with increas-
ing ¢ from fixed point to limit cycles, till completely irregular behaviour (see
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Table 1.1: Parameter set, rates given in units per year, ratio without unit

Par. Description Values  Ref

N population size 100 (Aguiar et al., 2008)
1 new born susceptible rate 1/65y (UNWPP, 2011)

~ recovery rate 52y~ (WHO, 2009)

B infection rate 2y (Ferguson et al., 1999)
Q temporary cross-immunity rate 2y~! (Matheus et al., 2005)
10} ratio of contribution

to force of infection €10,3] (Aguiar et al., 2008)

Fig. 1.8). Looking for higher values of ¢, the chaotic attractor becomes unsta-
ble, just leaving simple limit cycles as attractors for large parameter regions
beyond ¢ = 1. Only for much higher values of ¢ > 1, another chaotic at-
tractor appears, the classical chaotic attractor found first by (Ferguson et al.,
1999), and then by (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008).
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Figure 1.7: Time series of the logarithm of the overall infected (In(/)) com-
parison: a) simulation for ¢ = 2.7 and b) simulation for ¢ = 0.6 for the same
time interval.

Bifurcation diagrams (see Fig. 1.9) were obtained plotting the local ex-
trema of the logarithm of total number of infected (In(I)) over the varying
ratio of secondary infection contribution to the force of infection ¢. Fixed
points appear as one dot per parameter value, limit cycles appear as two dots,
double-limit cycles as four dots, more complicated limit cycles as more dots,
and chaotic attractors as continuously distributed dots for a single ¢ value
(Ruelle, 1989). Figure 1.9a) shows two chaotic windows, one for ¢ < 1, where
this dynamical behaviour has never been described before, and also another
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Figure 1.8: Attractors for various values of ¢ < 1: a) fixed point for ¢ = 0.1,
in b) limit cycle for ¢ = 0.4, and in ¢) chaotic attractor for ¢ = 0.6. In d)
limit cycle for ¢ = 1.5, in e) a complicated limit cycle for ¢ = 1.9 and in f)
another chaotic attractor for ¢ = 2.7

one for ¢ > 1 where the minimal values go to very low numbers of infected,
already described in previous publications (Ferguson et al., 1999; Schwartz et
al, 2005; Billings et al., 2007). When neglecting the temporary cross-immunity
period, i.e. by putting a — oo, the new chaotic window disappears and the
complex dynamics is now restricted in a parameter region of ¢ > 1, as it
is shown in Fig. 1.9b). Here, the recovered individuals can be immediately
infected with another strain, and consideration of temporary cross-immunity
brings a new chaotic attractor found first in (Aguiar & Stollenwerk, 2007;
Aguiar et al., 2008).

This finding encouraged us to look closer to the parameter region of ¢ <
1, when dengue patients in a secondary infection evolving to severe disease
because of the ADE phenomenon contribute less to the force of infection, and
not more, as previous models suggested. This assumption is likely to be more
realistic for dengue fever since the possible severity of a secondary infection
may hospitalize people, not contributing to the force of infections as much as
people with first infection.

The attractor structure, fixed point, limit cycle or chaotic attractor can be
quantified by calculating the Lyapunov exponents, (Ruelle, 1989; Ott, 1993),
using an iterated technique along a trajectory using the QR decomposition
algorithm via Householder matrices (see e.g. (Holzfuss & Lauterborn, 1989;
Holzfuss & Parlitz, 1991)). Lyapunov exponents are essentially a generaliza-
tion of eigenvalues determining stability versus instability along trajectories.
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Figure 1.9: Bifurcation diagram for the local extrema of the overall infected
with changing parameter ¢. In a) o = 2y~! (six month) and in b) a = 52y~!
(one week).

A negative largest Lyapunov exponent indicates a stable fixed point as at-
tractor, a zero largest Lyapunov exponent indicates a stable limit cycle and a
positive largest Lyapunov exponent indicates a chaotic attractor. The largest
four Lyapunov exponents as a function of the parameter ¢, the ratio of sec-
ondary infection contribution to the force of infection, are shown in Fig. 1.10a).

We observe that for small ¢ up to ¢ = 0.1 all four Lyapunov exponents are
negative, indicating the stable fixed point solution. Then follows a region up to
¢ = 0.5 where the largest Lyapunov exponent is zero, characteristic for stable
limit cycles. Above ¢ = 0.5 a positive Lyapunov exponent, clearly separated
from the second largest Lyapunov exponent being zero, indicates deterministic
chaos. In the chaotic window between ¢ = 0.5 and ¢ = 1 also periodic windows
appear, giving a zero largest Lyapunov exponent. These findings are in good
agreement with the numerical bifurcation diagram shown in Fig. 1.10b). A fur-
ther analysis of the bifurcation structure, in the region of interest of ¢ < 1, was
performed using the numerical software AUTO (Doedel & Oldeman, 2009).
Various bifurcations were found: Hopf bifurcation H(¢ = 0.11326), pitch-
fork bifurcations P(¢ = 0.41145,0.99214), torus bifurcation T'R(¢ = 0.55069)
and tangent bifurcations T(¢ = 0.49406,0.53874,0.93103,0.97825,1.05242).
In addition to this main bifurcation pattern we found two isolas, consisting of
isolated limit cycles existing between two tangent bifurcations (see Fig. 1.10b).
For more information on the isolas see (Aguiar et al., 2009).

Dengue fever epidemiology is characterized as a yearly cycle of incidences
(see Fig. 1.11 e.g., the time series of DHF incidence in Thailand), therefore,
to reproduce the yearly cycle in dengue incidence, seasonal forcing and a low
import of infected had to be included in the models.

The previously described non-seasonal model was extended by adding sea-
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Figure 1.10: In a) spectrum of the four largest Lyapunov exponents with
changing the ratio of secondary infection contribution to the force of infection,
parameter ¢, and fixed temporary cross-immunity o = 2y~!. In b) we show the
one-parameter bifurcation diagram with temporary cross-immunity rate of six
months (a = 2y~!) and varying the ratio of secondary infection contribution
to the force of infection ¢. Solid lines denote stable equilibria or limit cycles,
and dashed lines unstable equilibria or limit cycles.
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Figure 1.11: Time series of DHF incidence in Thailand.
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sonal forcing, mimicking the vectorial dynamics, and also allowing a low im-
port of infected individuals, giving a more realistic pattern of dengue fever
epidemics, with irregular, yearly and smooth outbreaks (see Fig. 1.13b)). The
seasonal multi-strain model, is represented in Fig. 1.12 by using a state flow
diagram where the boxes represent the disease related stages and the arrows
indicate the transition rates. Likewise described for the non-seasonal model,
the population is divided into ten classes, with constant size N = S+ 11 + 1o+
Ry + Ro+ 51+ S2+4 112+ I21 + R. The transition rate p coming out of the class
R represents the death rates of all classes, S, I1, Iy, R1, R, S1, 59, 112, Io1, R,
getting into the class S as a birth rate.

The complete system of ordinary differential equations for the seasonal
multi-strain epidemiological model with import of infected can be written as
it was shown in system Eq. (1.18), with the difference that now the parameter
(0 takes the seasonal forcing into account as a cosine function given explicitly
by

B(t) = Bo- (1+n-cos(w 1), (1.19)

where (y is the infection rate, and 7 is the degree of seasonality. In the
seasonal model with import of infected, the susceptible individual can become
infected also by meeting an infected individual from an external population,
the so-called imported infection which is realistic in the dynamics of infectious
diseases, (hence (G/N - S -I) goes to (B/N-S-(I+ p-N))) contributing to
the force of infection with an import parameter p.

The time series simulation for non-seasonal model show an irregular pat-
tern of outbreaks that happens every 5 years, the non-seasonal system and its
time series are not able to represent dengue fever epidemiology that is char-
acterized as a yearly cycle of incidences (see Fig. 1.13a)). By adding only low
seasonality into this system, the epidemic outbreaks appear every year (see
(Aguiar et al., 2011 a)), however, between two large outbreaks there is a very
low number of cases in subsequent years, which is also not data alike. The
addition of import factor into the seasonal system gives a much more realistic
pattern of dengue fever epidemics, with irregular, yearly and smooth outbreaks
(see Fig. 1.13b)). The system has a reasonable size, avoiding the chance of
extinction in stochastic systems. For detailed analysis on the attractors in
state space for the seasonal models, see (Aguiar et al., 2011 a).

For the seasonal model with import AUTO predicted a torus bifurcation
TR at ¢ = 0.13, and at ¢ = 0.522 which are also predicted very well when
comparing with the results given by the Lyapunov exponent calculation. In
the limiting case where the amplitude of the seasonal forcing is zero, the torus
bifurcation T'R of the seasonally forced system coincides with the Hopf bifur-
cation H of the non-seasonal system. For more information on the bifurcation
points comparison, see (Aguiar et al., 2011 a).
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Figure 1.12: The state flow diagram for the seasonal multi-strain model.

The Lyapunov spectrum for both non-seasonal model and the seasonal
model with import are compared concerning the prediction horizon of the
monthly peaks in the multi-strain dengue model time series (see Fig. 1.14).

In order to get a qualitative insight into the predictability in the monthly
sampled time series, i.e. to show how the original system behaves under a small
perturbation we plot two different trajectories of the same system, where the
perturbed system (black line) is compared with the original model simulation
(red line). To get the trajectory of the perturbed system, we keep the last
point of the transient of the original system and use those values as starting
values to compute the new and perturbed trajectory. The perturbation is
given by S =S+ R-eand R= R- (1.0 — €), where ¢ = 0.001. For details on
the perturbed system see (Aguiar et al., 2011 a).

We take as an example the Dominant Lyapunov Exponent (DLE) for ¢ =
0.9 in the region where the system is chaotic (positive DLE). For the non-
seasonal system, the DLE = 0.04 giving around 25 years of prediction horizon
in the monthly time series (see Fig. 1.14b)), whereas for the seasonal system
with import, the DLE= 0.118 giving around 8.5 years of prediction horizon in
the monthly time series (see Fig. 1.14d)).

The inspection of the available DHF incidence data in Thailand shows a
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Figure 1.13: Time series simulations. In a) time series simulation for the non-
seasonal model (7 = 0). In b) time series simulation for the seasonal model
with a low import of infected. Here, the degree of seasonality is n = 0.35 and
the import factor p = 10710,
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Figure 1.15: Empirical DHF incidence data (in black) matched with the model
simulation (in red).
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smooth behaviour with a well defined maximum each year of irregular height
for the Northern Provinces. We take the Province of Chiang Mai as a case
study where the empirical DHF incidence data and the time series simulation
for the seasonal model with import are compared (see Fig. 1.15)). The seasonal
model with import shows qualitatively a very good result when comparing
empirical DHF and simulations. However, it is important to mention that the
extended model would need to be parametrized on data referring to incidence
of severe disease.

Although the fact that disease propagation is an inherently stochastic phe-
nomenon and it is only stochastic, as opposed to deterministic, models that
can capture the fluctuations observed in some of the available time series data,
dengue models are often expressed mathematically as a set of deterministic
differential equations which are easier to analyse.

For small population sizes, most simulation die out very quickly (see Fig. 1.3),
and since the demographic events often occur at a much slower rate than the
infection, the disease has to be necessarily maintained by the import of ex-
ternal infections to avoid the repeated stochastic disease extinction and re-
introduction.

For the minimalistic multi-strain dengue model, the individuals can be
susceptibles without a previous dengue infection, infected and recovered for the
first time, susceptible with an experienced previous infection and infected for
the second time, now with a different strain, and more likely been hospitalized
due to the ADE effect leading to severe disease. The stochastic realizations of
infected in time, shown in Fig. 1.16, were obtained by the Gillespie algorithm
(Gillespie, 1976, 1978). The stochastic approach is able to describe both types
of the dynamics, the smooth data with a well defined maximum each year of
irregular height, found in the high endemic regions of Thailand, e.g. in the
Chiang Mai Province (see Fig. 1.16a)) and also the noisy data found mainly
in low endemic regions of Thailand, e.g. in Bangkok (see Fig. 1.16b)).

Comparison between the deterministic and the stochastic dynamics show
that the magnitude of stochastic fluctuations decreases when the population
size increases, see Fig. 1.17, and for large enough population size, the stochastic
system can be well described by the deterministic skeleton, where the essential
dynamics are captured, gaining insight into the relevant parameter values
purely on topological information of the dynamics. For more information on
the stochastic dengue model see (Aguiar et al., 2011 c).

The two-strain dengue model is minimalistic in the sense that it can cap-
ture the essential differences of primary versus secondary infection but is not
too high dimensional, it is a 9 dimensional system, so that future parameter
estimation can still attempt to estimate all initial conditions as well as the few
model parameters. Concerning data availability, long term epidemiological
information come from the Ministry of Public Health in Thailand and consist
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Figure 1.16: Empirical DHF incidence data (in black) matched with one
stochastic realization for the seasonal multi-strain dengue model with import
(in red). In a) we show the incidences for Chaing Mai. For the stochastic sim-
ulation the infection rate is Sy = 27, the degree of seasonality n = 0.2 and the
import factor In(p) = —15.7. In b) we show the incidences for Bangkok. For
the stochastic simulation the infection rate is Gyp = 1.1 - 7y, the degree of sea-
sonality 7 = 0.06 and the import factor In(p) = —16.9. The other parameter
values are listed Table 1.1
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Figure 1.17: Stochastic and deterministic system’s interaction. For the same
parameter values used in Fig. 1.16, we show the bifurcation diagram for the
import parameter for different population sizes N. In red the deterministic
model and in black the stochastic model. In a) the Chiang Mai population
size N = 1.65-10% and in b) a much larger system size, where the population
of some countries surrounding Thailand, for instance Burma, Laos, Vietnam
and Cambodia, were counted together giving a system where the population
size is N = 230 - 10°.

on monthly incidences of hospitalized DHF cases.

The four-strain model is a 25 dimensional system, dividing the constant
population IV into twenty six classes. For four different strains, 1, 2, 3 and 4,
we now label the SIR classes, in a similar way to the two-strain model, for the
hosts that have seen the individual strains, again without epidemiological

asymmetry between strains, once the serotype data are recent and very
short to give any realistic information concerning difference in biological pa-
rameters such as infection and recovery rates for a given strain.

The bifurcation diagram comparison, for both two-strain and four-strain
model, in the relevant parameter region of ¢ < 1, when dengue patients in a
secondary infection evolving to severe disease because of the ADE phenomenon
contribute less to the force of infection, and not more, as previous models
suggested is shown in figure 1.18. Qualitatively, the bifurcation points appear
to happen at similar parameter regions, well below the region of interest ¢ ~
1, and for both models the chaotic dynamics which are able to explain the
fluctuations observed in empirical data were found at the same parameter
region of interest, when the ratio of secondary infection contribution to the
force of infection could be slightly smaller or larger than 1 (see, e.g. (Aguiar
et al., 2011 a,d)) and not only when assuming strong infectivity on secondary
infection.

The effective dimension of the two-strain model is 9 while of the four-strain
model 25. The law of parsimony that recommends selecting the hypothesis
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the four-strain model. The local extrema of the overall infected with changing
parameter ¢ are plotted.

that makes the fewest assumptions, implies that the 9 dimensional two-strain
model would be the better candidate than the 25 dimensional four strain model
to be analyzed, capturing the essential differences of primary versus secondary
infection without needing to restrict the ADE effect to one or another region in
parameter space. Moreover, for future parameter estimation which is notori-
ously difficult for chaotic time series, only the two-strain model could attempt
to estimate all initial conditions as well as the few model parameters, as op-
posed of the four-strain model in the near future. For more information on
the four-strain dengue model see (Aguiar et al., 2011 d).

1.4 Discussion and conclusions

In this chapter we presented the properties of the basic SIR epidemic model for
infectious diseases with a summary of the analysis of the dynamics, identifying
the thresholds and equilibrium points in order to introduce notation, termi-
nology. These results were generalized to more advanced models motivated by
dengue fever epidemiology.

The epidemiology of dengue fever was described presenting the relevant bi-
ological features that are taken into the modeling process. Then, multi-strain
models previously described in the literature were presented. We focused in
a minimal model motivated by dengue fever epidemiology, formulated first by
Aguiar et al. (see (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008)), where
the notion of at least two different strains is needed to describe differences
between primary infections, often asymptomatic, and secondary infection, as-
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sociated with the severe form of the disease. We discussed the role of seasonal
forcing and the import of infected individuals in such systems, the biological
relevance and its implications for the analysis of the available dengue data.
The extended model (Aguiar et al., 2011 a) shows complex dynamics and
qualitatively a good agreement between empirical DHF monitoring data and
the model simulation results obtained by trail and error parameter choice, not
by a numerical parameter estimation technique. This suggests that the used
parameter set can be the starting set for a more detailed parameter estimation
procedure. Such a technical parameter estimation is notoriously difficult for
chaotic time series but temporally local approaches are possible (Ionides et
al., 2006; He et al., 2010). At the moment only such minimalistic models have
a chance to be qualitatively understood well and eventually tested against
existing data.

The combination of biological aspects such as temporary cross-immunity
and ADE have been studied by several authors (Wearing & Rohani, 2006;
Nagao & Koelle, 2008; Recker et al., 2009) where four strains are involved, but
again limiting the effect of ADE to increase the contribution of secondary cases
to the force of infection. Aguiar et al. (2008) have investigated a two-strain
dengue model, initially suggested and preliminarily analyzed in (Ferguson et
al., 1999), where deterministic chaos was found in a wider parameter regions
when including temporary cross-immunity (Aguiar et al., 2008, 2009, 2011 a),
not needing to restrict the infectivity on secondary infection to one or another
region in parameter space.

The comparison between the two-strain dengue model, which already cap-
tures differences between primary and secondary infections, with the four-
strain dengue model, that introduces the idea of competition of multiple strains
in dengue epidemics, shows that the difference between first and secondary in-
fections and temporary cross-immunity drives the rich dynam- ics more than
the detailed number of strains. Qualitatively, the bifurcation points appear to
happen at similar parameter regions, well below the region of interest ¢ ~ 1
(Aguiar et al., 2011 d). We therefore conclude that the two-strain model in
its simplicity is a good model to be analysed giving the expected complex
behaviour to explain the fluctuations observed in empirical data. For future
parameter estimation, the two-strain model can still attempt to estimate all
initial conditions as well the few model parameters.

The introduction of stochasticity is needed to explain the fluctuations ob-
served in some of the available data sets, revealing a scenario where noise
and complex deterministic skeleton strongly interact (Aguiar et al., 2011 c).
Understanding the dynamics of stochastic populations, and how they interact
with the deterministic components of epidemiological models have maximum
benefit on the practical predictability of the dynamical system by analysing
the available epidemiological data via mathematical models, since the classi-
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cal parameter estimation and its application are generally restricted to fairly
simple dynamical scenarios. For more information on parameter estimation,
see (Aguiar et al., 2011 b; Stollenwerk et al., 2012).

Being able to predict future outbreaks of dengue in the absence of human
interventions is a major goal if one wants to understand the effects of con-
trol measures. Even after a dengue virus vaccine has become accessible, this
holds true for the implementation of a vaccination program. For example, to
perform a vaccine trial in a year with normally low numbers of cases would
make statistical tests of vaccine efficacy much more difficult than when it was
performed in a year with naturally high numbers of cases. Thus predictability
of the next season’s height of the dengue peak on the basis of deterministic
balance of infected and susceptible would be of major practical use.
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Chapter 2

Epidemiology of dengue fever:
A model with temporary
cross-immunity and possible
secondary infection shows
bifurcations and chaotic
behavior in wide parameter
regions

Maira Aguiar, Bob Kooi and Nico Stollenwerk
Math. Model. Nat. Phenom., 3(4): 48-70, 2008.

Basic models suitable to explain the epidemiology of dengue fever have
previously shown the possibility of deterministically chaotic attractors, which
might explain the observed fluctuations found in empiric outbreak data. How-
ever, the region of bifurcations and chaos require strong enhanced infectiv-
ity on secondary infection, motivated by experimental findings of antibody-
dependent enhancement.

Including temporary cross-immunity in such models, which is common
knowledge among field researchers in dengue, we find bifurcations up to chaotic
attractors in much wider and also unexpected parameter regions of reduced
infectivity on secondary infection, realistically describing more likely hospi-
talization on secondary infection when the viral load becomes high and the
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hemorrhagic phenomena is more likely to happen.

The model shows Hopf bifurcations, symmetry braking bifurcations of limit
cycles, coexisting isolas, and two different possible routes to chaos, via the
Feigenbaum period doubling and via torus bifurcations.

2.1 Introduction

Dengue fever is caused by four antigenically distinct viruses, designated dengue
types 1, 2, 3, and 4 (WHO, 2009). Infection by one serotype confers life-
long immunity to only that serotype and temporary cross-immunity to other
serotypes exists. It lasts from three to nine months, when the antibody lev-
els created during the response to that infection would be enough to pro-
tect against infection by a different but related serotype (see (Halstead, 1994;
Matheus et al., 2005; WHO, 2009; SES, 2010; Dejnirattisai et al., 2010)). The
empiric time of temporary cross-immunity is mainly based on detectable anti-
body levels, however, the epidemiological period of temporary cross-immunity
can be much larger (Welsh & Selin, 2002; SES, 2010).

Among symptomatic cases dengue fever (DF) is often benign. But a severe
form known as dengue hemorrhagic fever (DHF), which may evolve towards
dengue shock syndrome (DSS), can also occur. Without proper treatment
DHF /DSS case fatality rates can exceed 20% (WHO, 2009). There are in-
deed pre-existing antibodies to previous dengue virus that cannot neutral-
ize but rather enhance infection in vitro, a process described as antibody-
dependent enhancement (ADE). The ADE theory states that cross-reactive,
non-neutralizing antibodies from a previous heterologous dengue virus infec-
tion bind to the new infecting serotype and facilitate virus entry via Fec-
receptor-bearing cells such as monocytes and macrophages. Increased virus
replication and antigen presentation lead to an exaggerated immune response
increasing disease manifestation with plasma leakage and hemorrhagic phe-
nomena (Halstead & Rourke, 1977; Kliks et al., 1989; Vaughn et al., 2000).
Epidemiological studies support the association of DHF with secondary dengue
infection (Halstead, 1982; Guzman et al., 2000; Halstead, 2003; WHO, 2009).
However, there is no animal model of DHF /DSS.

Mathematical models describing the transmission of dengue viruses ap-
peared in the literature as early as 1970 (Fischer & Halstead, 1970). More
recently, modeling attention has focused on higher viral load of hosts on sec-
ondary infection than on the first infection, due to ADE, hence a higher
contribution to the force of infection of each strain, reporting deterministi-
cally chaotic attractors (Ferguson et al., 1999) and chaos de-synchronization
(Schwartz et al, 2005; Billings et al., 2007) to explain the irregular behavior of
dengue epidemics and the co-existence of the known four dengue viral strains.
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Temporary cross-immunity against all strains after a first infection has been in-
cluded in mathematical models as well, but again limiting the effect of ADE to
increase the contribution of secondary cases to the force of infection (Wearing
& Rohani, 2006). To our knowledge, no systematic investigation of the attrac-
tor structures of simple multi-strain models with dengue-realistic temporary
cross-immunity and decreased contribution of secondary infection to the force
of infection, due to severity of infection with a second strain caused by higher
viral load and eventual hospitalization, has been performed so far. Temporary
cross-immunity also has to be distinguished from partial cross-immunity as
also modeled for dengue (Adams & Boots, 2006, 2007).

We investigate a basic two-strain model, initially suggested and prelim-
inarily analyzed in (Aguiar & Stollenwerk, 2007), to capture primary and
secondary infection, with main attention to differences in the force of in-
fection in primary versus secondary infection (parametrized by ¢) and the
effect of temporary cross-immunity between the first and second infection
with distinct strains (parametrized by «). Neglecting the effect of temporary
cross-immunity or considering a very short period of one week (transition rate
a = 52y~ ) we find the first Hopf bifurcation from a steady state to a limit
cycle, hence non-equilibrium dynamic behavior, for a more that one and a half
times higher infectivity on secondary infection versus primary (ratio ¢ > 1.5).
Whereas including a realistic value for the temporary cross-immunity of e.g.
half a year (o = 2y~!), we find the first Hopf bifurcation for the infectivity
ratio as low a one tenth (¢ = 0.1) and a positive Lyapunov exponent as sign
of a deterministically chaotic attractor around ¢ = 0.5.

An extremely rich bifurcation structure is observed for ¢ < 1 when taking
the temporary cross-immunity in a dengue realistic parameter regime for o €
[1,3]y~!. Improving earlier presented results (Aguiar & Stollenwerk, 2007)
here we explore and describe in more detail the rich bifurcation structure
around such low a values, especially a = 2y~ ! and ¢ < 1. In this parameter
region the model shows Hopf bifurcations, symmetry breaking bifurcations of
limit cycles, coexisting isolas, and two different possible routes to chaos, via
the Feigenbaum period doubling and via torus bifurcations. Whereas previous
modeling efforts have concentrated on ¢ > 1 we find this rich dynamics when
in the secondary infection people are less infectious, i.e. transmitting less
the infection, than people in first dengue infection, hence for ¢ < 1. This
assumption is likely to be more realistic for dengue fever since the possible
severity of a secondary infection may hospitalize people, not contributing to
the force of infections as much as people with first infection. Nevertheless, the
relatively restrictive assumption of much higher contribution to the force of
infection of secondary infectivity previously necessary for complex dynamics
can be relaxed significantly when taking the temporary cross-immunity into
account.
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Hence observed fluctuations in dengue outbreak data could now be un-
derstood better considering multi-strain dynamics as significant factor. The
more detailed understanding of possible state space scenarios through bifurca-
tion analysis will help in future understanding of dengue epidemiological data
and its multi-strain aspects. The basic model structure allows to generalize
our findings to other multi-strain epidemiological systems expecting the same
complexity.

2.2 Basic two-strain epidemic model

The present model is a basic two-strain SIR-type model dividing the host
population into susceptible (S), infected (I) and recovered individuals (R). It
can be understood as a mean field approximation of a stochastic system. The
simple SIR epidemics without strain structure of the pathogens reads

_ _ﬁ B

§ = aR—-1-S+u(N - 9)

i= Sors oo (2.1)
N

R = vl —aR — puR

for a host population of N individuals, with contact and infection rate (3,
recovery rate v and temporary immunity rate . Demography is denoted as
exits from all classes S, I and R with rate p to the new born susceptibles.
The system has only equilibria steady solutions as attractors. Transients under
certain parameter values oscillate into the equilibrium, hence can be already
more complex than the final attractor. Stochastic versions of such models with
only fixed points possible as attractors but oscillating transients are reported
to also show stabilization of the oscillations due to population noise (McKane
& Newman, 2005; Alonso et al., 2006).

To capture differences in primary infection by one strain and secondary
infection by another strain we consider a basic two-strain SIR-type model
for the host population, which is only slightly refined as opposed to previously
suggested models for dengue fever (Ferguson et al., 1999; Schwartz et al, 2005).
It is capturing the effective dynamics of the human host population for the
dengue virus, taking effects of the vector dynamics or seasonality only into
account by the effective parameters in the SIR-type model, but not modeling
these mechanisms explicitly. Instead we focus on the multi-strain aspect and
its effects on the host population. The complete system of ordinary differential
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equations for the two-strain epidemiological system is given by

S = —%5(114-@[21)— %5(12+¢2112)+M(N—S)
L = %S(Il+¢1121)—(7+u)11

L = Pg

2 = (I2 + pal12) — (v + p) 12

Ry = ~L —(a+pRy

RQ = ~l— (Oé + M)RQ (2.2)
. [
S1 = _ﬁsl(IZ + ¢ol12) + aRy — pSy
. B
Sy = _ﬁsb(ll + ¢1121) + aRe — pSo
- B
Ly = NSl(IQ + ¢ali2) — (v + p) 112
- B
Iy = NSQ(Il +¢1lo1) — (v + p)ln

R = ~A(Iip+ ) —puR

For two different strains, 1 and 2, we label the SIR classes for the hosts that
have seen the individual strains. Susceptibles to both strains (S) get infected
with strain 1 (1) or strain 2 (I3), with force of infection 3; and (s respectively.
They recover from infection with strain 1 (becoming R;) or from strain 2
(becoming Rp), with recovery rate . In this recovered class, people have
full and life-long immunity against the strain that they were exposed to and
infected, and also a short period of temporary cross-immunity against the
other strain. After this, with rate «, they become again susceptible, now with
a previous infection (S7 respectively S2), where the index represents the first
infection strain. Now, S7 can be infected with strain 2 (becoming I13), meeting
I with infection rate (B2 or meeting I1o with infection rate ¢o02. Note that
secondary infected individuals contribute differently to the force of infection
than primary infected individuals. In the same manner, the Sy class can be
infected with strain 1 (becoming I2;) meeting I; or [z; with infections rates
B1 and ¢101 respectively.
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The parameter ¢ in our model, as opposed to the previous dengue models,
acts decreasing the infectivity of secondary infection, once people with higher
viral load and hemorrhagic symptoms are more likely to be hospitalized be-
cause of the severity of the disease (DHF /DSS), and do not contributed to the
force of infection as much as people with first infection do. Finally, 15 and Is;
become recovered (R), immune against all strains. We include demography
of the host population denoting the birth and death rate by p. For constant
population size N we have R = N —(S+ 11+ 1o+ Ri+ Ra+S1+So+ 12+ 121)
and therefore we only need to consider the first 9 equations of system Eq. (2.2).
In our numerical studies we take the population size equals N = 100 so that
numbers of susceptibles, infected etc., are given in percentage.

To take biological information from experiences in dengue into account we
fix the transition rates of the model as far as is known, and only will vary the
most unknown parameter ¢. For simplicity, we consider ¢1 = ¢po = ¢, B1 =
B = (3, i.e, no epidemiological asymmetry between strains. The parameter
values are given in Table 2.1, if not otherwise explicitly stated.

Table 2.1: Parameter set, rates given in units per year, ratio without unit

Par. Description Values
N population size 100 (Aguiar & Stollenwerk, 2007)
7 new born
susceptible
rate 1/65y (UNWPP, 2011)
~ recovery rate 52y~ 1 (WHO, 2009)
(1 = P2 = (B infection rate 2 (Ferguson et al., 1999)
a temporary cross
immunity rate = 2y~! (Matheus et al., 2005)

¢1 = ¢o = ¢ ratio of contrib.
to force of inf. variable (Aguiar & Stollenwerk, 2007)

2.3 Time series analysis

In this section we investigate time series simulations of the present model,
system Eq. (2.2). We performed a detailed analysis of the attractor structure,
investigating state space plots for various values of ¢. Besides the previously
analyzed region of ¢ > 1 we also observe a rich dynamical behavior from fixed
points to bifurcating limit cycles and chaotic attractors for ¢ < 1. Maxima
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return maps are evaluated from extremely long time serie, and Lyapunov ex-
ponents are calculated. This rich dynamic structure will be analyzed in the
next section in more detail via bifurcation analysis by continuation.

2.3.1 Time series simulations

In order to classify the dynamic pattern of the model for various parameters,
we discard long transients which would carry information about the initial
conditions. In the following simulations we discarded the first 2000 years (see
Fig. 2.1). However, also the transients reflect the dynamic behavior of the
system under the present parameter values.
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Figure 2.1: For temporary cross-immunity period of six months (a = 2y~1)
and ratio of secondary infection contribution to the force of infection ¢ = 0.6,
we present in a) time series simulations for the susceptibles S, and in b) time
series simulations for the total number of infected I.

The time series for ¢ < 1, as would be realistic for dengue fever due to more
severe disease upon reinfection and larger chance of people being hospitalized,
shows that the total number of infected

I:=11+ 1)+ o+ Iy (23)

stays quite away from zero, avoiding the chance of extinction in stochastic
systems with reasonable system size (see Fig. 2.1b)).

The parameter region previously considered to model ADE effects on
dengue epidemiology, i.e. ¢ > 1, leads to rather low troughs for the total
number of infected giving unrealistically low numbers of infected. In Fig. 2.2a)
the logarithm of total number of infected goes as low as —70 for ¢ = 2.7 in
the chaotic region of ¢ > 1. Population fluctuations would in this case drive
almost surely the system to extinction.

For ¢ = 0.6, hence the chaotic dynamics in the region of ¢ < 1, see
Fig. 2.2b), the logarithm of total infected does not pass below —7. This
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Figure 2.2: Time series of the logarithm of the overall infected (In(I)) com-
parison: In a) simulation for ratio of secondary infection contribution to the
force of infection ¢ = 2.7 and in b) simulation for ratio of secondary infection
contribution to the force of infection ¢ = 0.6 for the same time interval.

encourages us to look closer to the parameter region of ¢ < 1, when dengue
patients with severe disease because of the ADE phenomenon contribute less to
the force of infection due to possible hospitalization, and not more, as previous
models suggested.

2.3.2 State space plots

Next, we investigate the state space plots in terms of the variables S and the
logarithm of the total number of infected I, since dengue notification data often
do not distinguish between the circulating strains, whereas the susceptible class
S is N minus every host who ever has experienced an infection, an information
which eventually can be obtained from serological studies. In eventual data
analysis the method of delay coordinates even allows to only work with one
time series of I, and analyzing I(t), I(t+7) etc., with a time delay 7 obtaining
full topological information of the attractor structure (Packard et al., 1980;
Farmer & Sidorowich, 1987).

Varying ¢, the state space plots show a rich dynamical behavior with bi-
furcations from fixed point to limit cycles, until completely irregular behavior,
which is the fingerprint of deterministic chaos (see Fig. 2.3).

Looking for higher values of ¢, the chaotic attractor becomes unstable, just
leaving simple limit cycles as attractors for large parameter regions beyond
¢ = 1 (Aguiar & Stollenwerk, 2007). Only for much higher values of ¢ >
1, another chaotic attractor appears, the classical “ADE chaotic attractor”
(Ferguson et al., 1999; Schwartz et al, 2005; Aguiar & Stollenwerk, 2007).
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Figure 2.3: Attractors for various values of ¢ < 1: a) fixed point for ¢ = 0.1,
and b) limit cycle for ¢ = 0.4, and c) chaotic attractor for ¢ = 0.6.

2.3.3 Maxima return map of / from state space plot

We investigate maxima return maps in order to classify the dynamics for
various parameter values from extremely long time series. For the time t,,44,
at which the total number of infected I(t) has a local maximum, we plot the
logarithm of the number of infected at that time In(Z(¢,4,)) and at the next
local maximum In((¢yeturnmaz)) (see Fig. 2.4).

IN(trerurnma))
IN(trerurnmax))

-4 -3.5 -3 -2.5 -2 -15 45 4 35 -3 25 -2 15 -1

a) ) b) )

Figure 2.4: Maxima return maps for o = 2y~! and 200000 years of transient
discarded. Deterministically chaotic attractors for a) ¢ = 0.6 and b) ¢ = 0.99
are observed.

We discarded long transients and plotted 200000 years of simulation. A de-
terministically chaotic attractor was obtained from our basic two-strain model
with temporary cross-immunity in the region of ¢ < 1, where the secondary
infection contributes less than the first infection to the overall force of infec-
tion. We observed that even after 400000 years, the dots never come back to
the same point, so the fingerprint of chaotic attractors is clearly visible now.
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2.3.4 Numerical bifurcation diagram

The bifurcation diagram was obtained plotting the local extrema of In(I) over
the varying parameter ¢ (see Fig. 2.5). Fixed points appear as one dot per
parameter value, limit cycles appear as two dots, double-limit cycles as four
dots, more complicated limit cycles as more dots, and chaotic attractors as
continuously distributed dots for a single ¢ value (Ruelle, 1989).
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0 0.5 1 15 2 25 3

Figure 2.5: Bifurcation diagram for the local extrema of the logarithm of
overall infected (In(I)) with changing parameter ¢ and fixed o = 2y~! . Here,
2000 years of transients were discarded.

We observe a chaotic window for ¢ < 1 where this dynamical behaviour has
never been described before, and also another chaotic window for ¢ > 1, where
the minimal values go to very low numbers of infected, the classical “ADE
chaotic region”, which already has been described in previous publications
(Ferguson et al., 1999; Schwartz et al, 2005; Billings et al., 2007).

However, to be sure that this unexpected behavior for ¢ < 1 not just ap-
pears because of this specific a value, i.e. assuming temporary cross-immunity
period of 6 months, we look at the robustness of the findings by varying the
temporary cross-immunity parameter values. For a = 1y~! e.g (temporary
cross-immunity of 12 months, which is also acceptable for dengue when we
realize that because of seasonality of the disease, people generally do not get
sick more than once per year) , both chaotic windows appear, and surprisingly
in the region of ¢ < 1 this window is even larger (see Fig. 2.6a)). The bifurca-
tion diagram appears to be quite robust against changes of parameters around
the region under investigation, in the sense that it shows chaotic windows for
¢ <1 and for ¢ > 1.

For very large values of a — oo , we get close to the models found in the
literature, where temporary cross-immunity becomes shorter or unimportant
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Figure 2.6: Bifurcation diagram for the local extrema of the logarithm of
overall infected (In(I)) with changing parameter ¢. In a) a = 1y~! (temporary
cross-immunity period of 1 year) and in b) a = 52y~! (temporary cross-
immunity period of 1 week) . Only the upper part of the bifurcation diagram
is shown. The minima in In(I) go down as low as -400 in logarithmic scale.
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Figure 2.7: Line of the Hopf bifurcation from stable fixed point to limit cycle
in the ¢ — a plane. Here we clearly see that in the region of ¢ < 1 the
Hopf bifurcation happens when the temporary cross-immunity is considerable
(a < 20y~! or ~ 2.5 weeks). When the temporary cross-immunity is less
significant (a > 30y~! or ~ 1.5 weeks), the Hopf bifurcation point appears
only in the region of ¢ > 1.
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due to the low resident times in the classes R; and R,. In this case the
chaotic window for ¢ < 1 disappears, and then ADE as increasing infectivity
on a secondary infection condition seems to be the only mechanism to observe
deterministic chaos (see Fig. 2.6b)). We observed again that for ¢ > 1 the
number of infected goes to very low troughs, whereas in the chaotic region for
¢ <1and a =2y~!, the overall number of infected stays always sustainably
high, i.e. never goes lower than —15 in logarithmic scale (see Fig. 2.5).

In Fig. 2.6 it becomes clear that for larger « (for vanishing temporary cross-
immunity), there is no other dynamics in the region for ¢ < 1, than equilibria
or limit cycles, the reason why chaos for ¢ < 1 has not been observed before.

This observation is further confirmed by a two-parameter bifurcation di-
agram where ¢ and « are the free parameters, see Fig. 2.7. The Hopf bifur-
cation line in the ¢ — « plane only shows Hopf bifurcation to limit cycles in
the region of ¢ < 1 until o ~ 20y~!, i.e. ~ 2.5 weeks, where the temporary
cross-immunity period is still considerable. For o > 20y~!, i.e. less signifi-
cant temporary cross-immunity period, the Hopf bifurcation exists only in the
¢ > 1 region which was described in the literature before. There is also a sharp
bend of the Hopf bifurcation line for very small a values close to the origin
and the bifurcation curve continues close to the horizontal axis for increasing
¢. However this region is of no biological importance since here the parameter
« is even smaller than the birth and death rate u.

2.3.5 Quantifying unpredictability: Lyapunov exponents

We now quantify the attractor structure, fixed point, limit cycle or chaotic
attractor etc., by calculating Lyapunov exponents (Ruelle, 1989; Ott, 1993). A
negative largest Lyapunov exponent indicates a stable fixed point as attractor,
a zero largest Lyapunov exponent indicates a stable limit cycle and a positive
largest Lyapunov exponent indicates a chaotic attractor.

As short hand notation for system Eq. (2.2), let the dynamics for the state

T = (S, 11,12, ,R) (24)
be f(z), hence
%gzi@) (2.5)

which explicitly gives the dynamics as written down above. Then we analyze
the stability in all 9 directions of the state space of this ODE system by
calculating deviations Az along a numerically integrated solution of Eq. (2.5)
in the attractor with attractor trajectory x*(t), hence

—Azx = = Az (2.6)



Here, any attractor is notified by z*(t), be it a fixed point, periodic orbit

or chaotic attractor. In this ODE system the linearized dynamics is given

with the Jacobian matrix % of the ODE system Eq. (2.5) evaluated at the

. . . . . d
trajectory points z*(t) given in notation of d%
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Figure 2.8: Lyapunov exponents measuring chaoticity of the attractor a) along
short trajectory fast converging to qualitatively right behavior, b) along longer
trajectory for higher numerical precision. The five largest Lyapunov exponents
are shown. Parameters are temporary cross-immunity rate o = 2y~! and ratio
of secondary infection contribution to the force of infection ¢ = 0.6.
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Figure 2.9: Spectrum of the four largest Lyapunov exponents with changing
parameter ¢ and fixed o = 2y~ ! .

The Lyapunov exponents then are the logarithms of the eigenvalues of
the integrated Eq. (2.6) in the limit of large integration times. Besides for
very simple iterated maps no analytic expressions for chaotic systems can be
given for the Lyapunov exponents. For the calculation of the iterated Jacobian

65



matrix and its eigenvalues, we use the QR decomposition algorithm (Farmer &
Sidorowich, 1986; Parlitz, 1992) With the matrix A(z*(t)) := [+ At % "

L la*(t
Q(z*(t)) - R(z*(t)), where I is the unit (9 x 9)-matrix, we have

Az(to + (n+ 1)AE) = Ap-Ap_1- .- Ay - Az(to)
2.7)
= Qn : Rn : Rn—l teee RO ' A&(tO)

for A, = A(z(to+n At)). From Ry,-Rp—1-...-Ro = [[,,_, R, with the diagonal
elements 7 (v) of the right diagonal matrix R, the Lyapunov exponents are
given for large t = nAt by

Ai(t) =

1 n
g (g\rﬁ(un) : (2.8)

Plots with A; as function of time ¢t = nAt are given in Fig. 2.8. For small
integration times, see Fig. 2.8a), the Lyapunov exponents change a lot along
the attractor, but soon settle towards their final size, still showing small os-
cillations. For long integration times, see Fig. 2.8b), these oscillations also
disappear, giving reliable values for the infinity time limit of the Lyapunov
exponents \; = limy_,oo Ai(t).

Fig. 2.9 shows the largest four Lyapunov exponents as a function of ¢. We
observe that for small ¢ up to 0.1 all four Lyapunov exponents are negative,
indicating the stable fixed point solution. Then follows a region up to ¢ = 0.5
where the largest Lyapunov exponent is zero, characteristic for stable limit
cycles. Above ¢ = 0.5 a positive Lyapunov exponent, clearly separated from
the second largest Lyapunov exponent being zero, indicates deterministically
chaotic attractors. In the chaotic window between ¢ = 0.5 and ¢ = 1 also
periodic windows appear, giving a zero largest Lyapunov exponent. These
findings are in good agreement with the numerical bifurcation diagram, and
we will now further investigate this bifurcation structure in the next section.

2.4 Bifurcation analysis by continuation

In this section we give the analytic solution for the equilibria and describe
the further analysis of the bifurcation structure, using numerical software like
AUTO (Doedel & Oldeman, 2009). In this case the bifurcation analysis is
done by continuation techniques, i.e. starting from the equilibrium solution
for small ¢ by following the solution for increasing ¢ and simultaneously the
eigenvalue spectrum, until the eigenvalues show a loss of stability. At this
point a Hopf bifurcation gives rise to a stable limit cycle, which subsequently is
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followed in parameter space, until it becomes unstable at the next bifurcation
point etc. up to bifurcations which do not give limit cycles any more, like
a torus bifurcation. Also accumulated period doubling bifurcations become
increasingly difficult to follow. But first we can give an analytical solution for
the equilibria which also serves as a cross check for the numerical programs.

2.4.1 Stationary states for the symmetric case

The stationary states can be calculated analytically by setting the time deriva-
tives in system Eq. (2.2) to zero. For the symmetric case, i.e., f1 = 2 =
and ¢1 = ¢2 = ¢ the stationary states are given by

pN — (v + p)(If + I3)

S* =
I
1/ N
I = — ) —1)IF
21 o1 (615*(7 M) > 1
1/ N
I, = — ) —1) I
12 b2 <ﬁ25*(7 1) )2
. (v+mliy, N
gF = LTI T 2.9
LT G el b 29
¢ _ +pl N
2 (I + ¢115,) B
* f)/ *
RY = I
1 a+p!
* F)/ *
R, = o,
2 a+p?

where still the stationary values of I} and I3 have to be determined.
The solution of coexistence of both strains for I; = Iy = I* is given by the
following expression

oy (v+p) _
st + (75 -3) N

(v+u) _ ay
4 © <1 (a+u)(7+u)¢>

=5 = -

(2.10)

N2 (a+u6;?7+u)¢ T ((W;H) B 3> 2 N (# B 1)
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and the solution of the extinction of one of the strains is as follows

pN(B — (v +p))

o=
! (y+p)B

(2.11)
I = 0

Finally, the stationary value of R*, when host have been recovered from both
strains, is given by the balance equation for the total population size N, ex-
plicitly

R = N—-(S*++L+R{+Ry+St+S5+Th+13) .(2.12)

These analytic results agree well with the numerical results from the time
series analysis for small ¢ values, where the fixed point solution is stable. We
will now continue with the bifurcation analysis beyond this fixed point solution
using the continuation method.

2.4.2 Bifurcations analysis beyond equilibria

We investigate in detail the region of interest of ¢ < 1 for a = 2y~ . All
other parameter values are fixed and given in Table 2.1. In Figure 2.10a) the
bifurcation diagram by continuation, obtained with the numerical software
AUTO (Doedel & Oldeman, 2009), is shown for the interval of 0 < ¢ < 1.1 for
the logarithm of the total number of infected I. As opposed to the previous
bifurcation diagrams (Figs. 2.5 and 2.6), where all local extrema where shown,
AUTO only gives the global extrema for the limit cycles.

In Fig. 2.10a) we see that the fixed equilibrium becomes unstable at a
super-critical Hopf bifurcation H where a stable fixed limit cycle originates.
The Hopf bifurcation appears at ¢ = 0.1133. This stable limit cycle becomes
unstable at a pitchfork bifurcation point P~ for a limit cycle at ¢ = 0.4114.
Solid lines denote stable equilibria or limit cycles, dashed lines unstable equi-
libria or periodic-one limit cycles. Thin lines are the secondary limit cycles:
long-dashed stable and dotted unstable.

This point marks the origin of a pair of S-conjugate stable limit cycles
besides the now unstable fixed limit cycle in the following sense: The system
Eq. (2.2) in the symmetric case, hence for 51 = B2 = § and ¢1 = ¢ = ¢ is
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Figure 2.10: a) Equilibria or maximum and minimum values for limit cycles
of the logarithm for the total number of infected (In(I)). We find a Hopf
bifurcation H at ¢ = 0.1133, pitchfork (multiplier 1) bifurcations P~ at ¢ =
0.4114 and PT* at ¢ = 0.9921, torus bifurcation TR at ¢ = 0.5507 and tangent
bifurcation T" at ¢ = 1.0524. b) Equilibria or maximum and minimum values
for limit cycles for I; and I. On the primary branch we have I1(t) = I»(t),
Ri(t) = Ry(t), Si(t) = Sa(t) and I15(t) = I (t), for times ¢ up to the period
length of the limit cycle. On the secondary branch two stable limit cycles
coexist because of the symmetry.

Z2-symmetric (Kuznetsov, 2004). With a symmetry transformation matrix S

(2.13)

=N elaoleolBeoBeolNoNeoNel S
[N elelBeoNeoNBeNel =]
sl elalaolBalBeloNel =
[N elNeNoNel e lNelolNo]
OO oo oo+, O oo
OO O+ OO o oo
SO OO +HrH OO o oo
O H OO OO oo oo
OO OO O oo oo
_ O OO0 OO oo oo

for an equilibrium point Sz* = z* holds, the state being defined by Eq. (2.4).
Then this equilibrium is called fized (see (Kuznetsov, 2004)). For limit cycles a
similar terminology holds. A periodic solution is called fized (see (Kuznetsov,
2004)) when Sz(t) = Z(t) and the associated limit cycles are also called fized.
There is another type of periodic solution that is not fixed but called symmetric
when

Si(t) =& <t + Z) (2.14)

where T is the period, hence the limit cycle is shifted by half a period length.
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Again the associated limit cycles are also called symmetric. Both type of limit
cycles L are S-invariant as curves : SL = L. An S-invariant cycle is either
fixed or symmetric. Two non-invariant limit cycles (SL # L) are called S-
conjugate if their corresponding periodic solutions satisfy §(t) = Sz(t) for all
times t.

Table 2.2: List of bifurcations.

Bifurcation Description

H Hopf bifurcation
equilibrium becomes unstable
origin of stable limit cycle
T Tangent bifurcation
bifurcation of limit cycle
one multiplier = 1
collision of two limit cycles
P Pitchfork bifurcation
bifurcation of limit cycle
one Floquet multiplier = 1
origin of two secondary stable limit cycle branches
F Flip bifurcation or period doubling bifurcation
bifurcation of limit cycle
one Floquet multiplier = -1
origin of a limit cycle with double period length
TR Torus bifurcation
bifurcation of limit cycle
pair of complex conjugate multipliers with magnitude 1
origin of an invariant torus

Figure 2.10b) gives the results for the infected with a single strain I; and
I5. Because these two variables are interchangeable this can also be inter-
preted as the stable limit cycles for the single variable say I;. The fixed stable
equilibrium below the Hopf bifurcation, where we have I7 = I;, R} = Rj,
ST =55 and I}, = I3, is a fixed equilibrium. At the Hopf bifurcation H the
stable fixed equilibrium point becomes an unstable fixed equilibrium point.
The originating stable limit cycle in the parameter interval between the Hopf
bifurcation and the pitchfork bifurcation is symmetric.

In the parameter interval between the two pitchfork bifurcations, two sta-
ble limit cycles coexist and these limit cycles are S-conjugate. At the pitchfork
bifurcation points the fixed limit cycle becomes unstable and remains fixed,
and two stable S-conjugate limit cycles originate (see (Kuznetsov, 2004, The-
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Figure 2.11: Comparison between bifurcation analysis by continuation from
Fig. 2.10a) (colored lines) and the numerical bifurcation diagram (green dots)
as part for ¢ < 1.1 from Fig. 2.5. The overall bifurcation structure agrees well
between both methods.

orem 7.7)).

The invariant plane I; = Iy, Ry = Ry, 51 = S9, [19 = I forms the sepa-
ratrix between the pair of stable S-conjugate limit cycles Z(¢) and Sz(t) for
all times ¢. The initial values of the two state variables S(0) and R(0) to-
gether with the point on the invariant plane, determine to which limit cycle
the system converges.

Continuation of the two stable S-conjugate limit cycles gives a torus bi-
furcation or Neimark-Sacker bifurcation at the parameter point denoted by
TR at ¢ = 0.5507. At his point the limit cycles become unstable because a
pair of complex-conjugate Floquet multipliers crosses the unit cycle. Floquet
multipliers replace in the stability analysis of limit cycles (Floquet theory) of-
ten the eigenvalues used to analyze fixed point stability (Kuznetsov, 2004). In
(Albers & Sprott, 2006) a sequence of Neimark-Sacker bifurcations into chaos
is mentioned as one possible route to chaos.

Increasing the bifurcation parameter ¢ along the now unstable pair of S-
conjugate limit cycles leads to a tangent bifurcation T' where a pair of two
unstable limit cycles collide. This branch terminates at the second pitchfork
bifurcation point denoted by PT at ¢ = 0.9921. Because the first fold point
gave rise to a stable limit cycle and this fold point to an unstable limit cycle
we call the first pitchfork bifurcation super-critical and the latter pitchfork
bifurcation subcritical.

These results agree very well with the simulation results shown in the
bifurcation diagram for the maxima and minima of the overall infected in
Figure 2.11. Notice that AUTO calculates only the global extrema during a
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cycle, not the local extrema.
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Figure 2.12: Detailed bifurcation diagram with high resolution in integration,
transients and bifurcation parameter ¢, here for o = 2y~' and for ¢ between
0.4 and 0.6. Besides chaotic attractors respectively long chaotic transients also
complicated limit cycles appear already for ¢ values around 0.50, long before
the torus bifurcation for ¢ around 0.55.

The previous results have been obtained by continuation starting from the
fixed point solutions, system Eq. (2.9), tracking after the first Hopf bifurca-
tion the limit cycles and their bifurcations, until new dynamical structures like
toruses appear. The main bifurcation structures can be understood in com-
parison between the numerical bifurcation diagram and the present results in
Figure 2.11. However, with the time series analysis shown in the previous sec-
tion, more is observed, especially positive Lyapunov exponents appear around
or even before the torus bifurcation.

We investigate in detail a region for temporary cross-immunity rate o =
2y~! and ratio of secondary infection contribution to the force of infection
¢ around 0.55 where AUTO found limit cycles and torus bifurcations via
continuation methods from earlier detected limit cycles, but where also more
complicated attractors appear as a more detailed bifurcation diagram with
arbitrary initial conditions reveals in Fig. 2.12.

We then search for the respective state space structures, see Fig. 2.13. In
Fig. 2.13a) the state space plot for ¢ = 0.5504 shows a limit cycle, as predicted
by the continuation method. This is the region where the bifurcation diagram
by continuation initially gives different results, limit cycles and torus bifurca-
tion, from the bifurcation analysis by time series methods and the analysis of
Lyapunov exponents, where already a positive Lyapunov exponent appears.
For the limit cycle in Fig. 2.13a) and c) special initial conditions were taken, as
obtained from the analysis with AUTO. For this limit cycle given in Fig. 2.13a)
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Figure 2.13: a) State space plot for ¢ = 0.5504, in the region of previously
unexplained co-existences of limit cycles, torus bifurcations and attractors
with positive Lyapunov exponents. Special initial conditions were taken, to
obtain the simple limit cycle found in numeric bifurcation analysis. b) Same
parameter values, but arbitrarily different initial conditions. The attractor
¢) Calculation of Lyapunov exponent along the limit cycle
shown in a). The largest Lyapunov goes to zero, as do the next two due
to closeness to a bifurcation. d) Same as in ¢), but with arbitrary initial
conditions. The largest Lyapunov exponent converges to a value significantly
larger than zero, the second towards zero. Hence the attractor in b) is chaotic.

looks chaotic.
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we find a zero largest Lyapunov exponent, see Fig. 2.13c). The next two Lya-
punov exponents also around zero indicate that we are close to a bifurcation
point of this limit cycle, the soon coming torus bifurcation.

H TT TT T FTF FTRTFTR
L L1 L1 L

In(1)

T T T T T T T T T T T
0 0.2 0.4 0.6 0.8 1 04 05 06 07 08 09 1 11

a) ° b) °

Figure 2.14: a) Equilibria or maximum and minimum values for limit cycles
for the logarithm of the total infected (In(I)), now including the new isolas
between tangent bifurcations T at ¢ = 0.4941, 0.5387, 0.9310, 0.9783 and
1.0524. These new isolas are found starting at ¢ values smaller than the torus
bifurcation. b) Isola bifurcations in more detail: tangent bifurcations 7" at
¢ = 0.5245 and 0.9491, torus bifurcations TR at ¢ = 0.9310 and 0.9773 and
flip bifurcations F' at ¢ = 0.5009, 0.5479, 0.9120 and 0.9691. Some of the
tangent bifurcations are not indicated in the plot (namely 7" at ¢ = 0.4941,
0.5387, 0.9310, 0.9783, 1.0524).

However, when taking arbitrarily different initial conditions we find for
the same parameter values of the model as used in Fig. 2.13a), especially
the same ¢ value, the attractor shown in 2.13b). This attractor shows a
largest Lyapunov exponent significantly larger than zero, see Fig. 2.13d). The
second largest Lyapunov exponent converges to zero, as expected for a non-
equilibrium attractor.

For values of ¢ slightly smaller than 0.5504, the same analysis shows co-
existing limit cycles (from which the attractor in Fig. 2.13b) originates).
Tracing such a limit cycle by AUTO finally gives new isola solutions in the
analysis performed by AUTO, which previously have been missed by continua-
tion starting at the equilibria and via the first Hopf-bifurcation. An isola is an
isolated solution branch of limit cycles (Golubitsky & Schaeffer, 1985). These
isola cycles L are not S-invariant, that is SL # L. The new isolas are shown
relatively to the previously obtained bifurcation diagram by continuation in
Fig. 2.14a).

In Fig. 2.14b) we investigate in more detail these isolas, obtaining flip or
period doubling bifurcations and further torus bifurcations. These period dou-
bling bifurcation sequences indicate another route to chaos than the previously
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found torus bifurcation. These results suggest that for these isolas two classi-
cal routes to chaos exist, namely via the torus or Neimark-Sacker bifurcation
where the dynamics on the originating torus is chaotic, and the cascade of
period doubling route to chaos. Two windows with period solutions within
the chaotic windows, see Fig. 2.11, are filled by the two stable limit cycles of
the isola’s shown in Fig. 2.14. The study of the two windows with zero largest
Lyapunov exponent shown in Fig. 2.9 is beyond the scope of this paper.

In order to obtain further insight into the possible bifurcation structures
for the model under investigation we also looked at other parameter values
in the symmetric, and also briefly, the asymmetric case. For other values of
temporary cross-immunity rate (o € [1,3]y~!) we found a period doubling
route to chaos as well as the torus bifurcation already mentioned for o = 2y~

The bifurcation analysis presented here was only possible in close compar-
ison between the bifurcation analysis by continuation, giving accurate bifur-
cation points and classifications due to the analysis of the stability changes
via Floquet multipliers, and direct numerical bifurcation plots, revealing co-
existing dynamic structures which continuation easily misses, and Lyapunov
exponent calculations. The analysis even for the symmetric case with o = 2y !
is not exhaustive, more co-existing structures might appear when zooming fur-
ther into the parameter space. But we obtained a good agreement between
the different methods for the overall sketch of the dynamic complexity in the
region of interest of ¢ < 1 in the symmetric case.

We also looked at numerical bifurcation diagrams for some asymmetric
cases ¢1 # ¢9 and (1 # [, which already indicated similarly if not more
complicated bifurcation structures (not shown here). Future work on the rel-
evant parameters for dengue epidemiology will be needed to identify eventual
deviations from the simplest symmetric case investigated here.

2.5 Conclusion

Our analysis showed deterministically chaotic attractors for a multi-strain
model in an unexpected parameter region just by adding temporary cross-
immunity to previously existing dengue models.

Our model is a basic two-strain SIR-type model for the host population and
was motivated by modeling dengue fever epidemiology with its peculiar ADE
phenomenology. The simple structure of the model allows to generalize our
findings to other multi-strain epidemiological systems, capturing the effective
dynamics of the human host population. We could find deterministic chaos
in a very basic model with only two strains and one reinfection possible, not
needing the strong ADE mechanism, but rather stating that upon second
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infection hosts spread a disease less likely, since it might be more harmful ,
leading to hospitalization.

In this work, we focused on the multi-strain aspect and its effects on the
host population, taking effects of the vector dynamics or seasonality only in
account by the effective parameters in the SIR-type model, but not modeling
these mechanisms explicitly. Since seasonally forced SIR systems can show
already deterministic chaos (Stone et al., 2007), we expect that rather more
complex dynamics will appear.

For such scenarios new tools of non-linear data analysis like Takens’ em-
bedding are available (Packard et al., 1980; Takens, 1980), and allow to obtain
topological information (fixed points, periodic orbits and the nature of chaotic
attractors) about the whole multi-strain epidemiological system from time se-
ries of overall infecteds only, not needing any single strain data sets.

This indicates that deterministic chaos is much more important in multi-
strain models than previously thought, and opens new ways to data analysis
of existing dengue time series.
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Chapter 3

Torus bifurcations, isolas and
chaotic attractors in a simple
dengue fever model with
ADE and temporary
cross-immunity

Maira Aguiar, Nico Stollenwerk and Bob W. Kooi
International Journal of Computer Mathematics, 86(10-11):1867-1877, 2009.

We analyze an epidemiological model of competing strains of pathogens
and hence differences in transmission for first versus secondary infection due to
interaction of the strains with previously acquired immunities, as has been de-
scribed for dengue fever, known as antibody-dependent enhancement (ADE).
These models show a rich variety of dynamics through bifurcations up to
deterministic chaos. Including temporary cross-immunity even enlarges the
parameter range of such chaotic attractors, and also gives rise to various co-
existing attractors, which are difficult to identify by standard numerical bifur-
cation programs using continuation methods. A combination of techniques,
including classical bifurcation plots and Lyapunov exponent spectra has to be
applied in comparison to get further insight into such dynamical structures.
Here we present for the first time multi-parameter studies in a range of bi-
ologically plausible values for dengue. The multi-strain interaction with the
immune system is expected to also have implications for the epidemiology of
other diseases.
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3.1 Introduction

Epidemic models are classically phrased in ordinary differential equation (ODE)
systems for the host population divided in classes of susceptible individuals
and infected ones (SIS system), or in addition, a class of recovered individuals
due to immunity after an infection to the respective pathogen (SIR epidemics).
The infection term includes a product of two variables, hence a non-linearity
which in extended systems can cause complicated dynamics. Though these
simple SIS and SIR models only show equilibria as stationary solutions, they
already show non-trivial equilibria arising from bifurcations, and in stochastic
versions of the system critical fluctuations at the critical point. Further refine-
ments of the SIR model in terms of external forcing or distinction of infections
with different strains of a pathogen, hence classes of infected with one or an-
other strain recovered from one or another strain, infected with more than
one strain etc., can induce more complicated dynamical attractors including
equilibria, limit cycles, tori and chaotic attractors.

Classical examples of chaos in epidemiological models are childhood dis-
eases with extremely high infection rates, so that a moderate seasonal forc-
ing can generate Feigenbaum sequences of period doubling bifurcations into
chaos. The success in analyzing childhood diseases in terms of modeling and
data comparison lies in the fact that they are just childhood diseases with
such high infectivity. Otherwise host populations cannot sustain the respec-
tive pathogens. In other infectious diseases much lower forces of infection have
to be considered leading to further conceptual problems with noise affecting
the system more than the deterministic part. This shows even critical fluc-
tuations with power law behavior, when considering evolutionary processes of
harmless strains of pathogens versus occasional accidents of pathogenic mu-
tants (Stollenwerk & Jansen, 2003 b). In these circumstances only explicitly
stochastic models, of which the classical ODE models are mean field versions,
can capture the fluctuations observed in time series data (Stollenwerk et al.,
2004).

The situation is again different in multi-strain models, which have attracted
attention recently. It has been demonstrated that the interaction of various
strains on the infection of the host with eventual cross-immunities or other
interactions between host immune system and multiple strains can generate
complicated dynamic attractors. A prime example is dengue fever. A first
infection is often mild or even asymptomatic and leads to life long immunity
against this strain. However, a subsequent infection with another strain of the
virus often causes clinical complications up to life threatening conditions and
hospitalization, due to antibody-dependent enhancement effect (ADE). More
on the biology of dengue and its consequences for the detailed epidemiological
model structure can be found in Aguiar & Stollenwerk (Aguiar & Stollenwerk,
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2007; Aguiar et al., 2008) including literature on previous modeling attempts.
For additional literature on dengue models see also (Massad et al., 2008).
On the biological evidence for ADE see e.g. (Halstead, 2003). Besides the
difference in the force of infection between primary and secondary infection,
parametrized by a so called ADE parameter ¢ or ratio of secondary infec-
tion contribution to the force of infection, which has been demonstrated to
show chaotic attractors in a certain parameter region, another effect, the tem-
porary cross-immunity after a first infection against all dengue virus strains,
parametrized by the temporary cross-immunity rate «, shows bifurcations up
to chaotic attractors in a much wider and biologically more realistic parameter
region.

The model presented in Appendix 3.A has been described in detail in
(Aguiar & Stollenwerk, 2007) and has recently been analyzed for a parameter
value of o = 2y~ ! corresponding to on average half a year of temporary cross-
immunity which is biologically plausible (Aguiar et al., 2008). At low ratio
of secondary infection contribution to the force of infection (ADE parameter
¢) there is a stable equilibrium. Increasing ¢ this equilibrium bifurcates via a
Hopf bifurcation into a stable limit cycle and then after further continuation
the limit cycle becomes unstable in a torus bifurcation. This torus bifurcation
can be located using numerical bifurcation software based on continuation
methods tracking known equilibria or limit cycles up to bifurcation points
(Doedel & Oldeman, 2009). The continuation techniques and the theory be-
hind it are described e.g. in (Kuznetsov, 2004). Complementary methods like
Lyapunov exponent spectra can also characterize chaotic attractors (Ruelle,
1989; Ott, 1993), and led ultimately to the detection of coexisting attractors
to the main limit cycles and tori originated from the analytically accessible
equilibrium for small ¢. Such coexisting structures are often missed in bifurca-
tion analysis of higher dimensional dynamical systems but are demonstrated
to be crucial at times in understanding qualitatively the real world data, as for
example demonstrated previously in a childhood disease study (Drepper et al.,
1994). In such a study first the understanding of the deterministic system’s
attractor structure is needed, and then eventually the interplay between at-
tractors mediated by population noise in the stochastic version of the system
gives the full understanding of the data.

Here we present for the first time extended results of the bifurcation struc-
ture for various parameter values of the temporary cross-immunity « in the
region of biological relevance and multi-parameter bifurcation analysis. This
reveals besides the torus bifurcation route to chaos also the classical Feigen-
baum period doubling sequence and the origin of so called isola solutions. The
symmetry of the different strains leads to symmetry breaking bifurcations of
limit cycles, which are rarely described in the epidemiological literature but
well known in the biochemical literature, e.g for coupled identical cells. The
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interplay between different numerical procedures and basic analytic insight in
terms of symmetries help to understand the attractor structure of multi-strain
interactions in the present case of dengue fever, and will contribute to the fi-
nal understanding of dengue epidemiology including the observed fluctuations
in real world data. In the literature the multi-strain interaction leading to
deterministic chaos via ADE has been described previously, e.g. (Ferguson et
al., 1999; Schwartz et al, 2005; Billings et al., 2007) but neglecting temporary
cross-immunity and hence getting stuck in rather biologically unrealistic pa-
rameter regions, whereas more recently the first considerations of temporary
cross-immunity in rather complicated and up to now not in detail analyzed
models including all kinds of interactions have appeared (Wearing & Rohani,
2006; Nagao & Koelle, 2008), in this case failing to investigate the possible
dynamical structures in more detail.

3.2 Dynamical system

The multistrain model under investigation can be given as an ODE system

—z = f(z,a) (3.1)

for the state vector of the epidemiological host classes x := (S, I1, I, ..., R)'"
and besides other fixed parameters which are biologically undisputed the pa-
rameter vector of varied parameters a = («, ¢)", with ¢r for transposed of
a vector or matrix. For a detailed description of the biological content of
state variables and parameters see (Aguiar & Stollenwerk, 2007; Aguiar et al.,
2008). The ODE equations and fixed parameter values are given in the ap-
pendix 3.A. The equilibrium values z* are given by the equilibrium condition
f(z*,a) = 0, respectively for limit cycles z*(t+71") = z*(t) with period T". For
chaotic attractors the trajectory of the dynamical system reaches in the time
limit of infinity the attractor trajectory z*(t), equally for tori with irrational
winding ratios. In all cases the stability can be analyzed considering small
perturbations Az(t) around the attractor trajectories
d df

ahe= 4 o Az . (32)

Here, any attractor is notified by x*(¢), be it an equilibrium, periodic orbit
or chaotic attractor. In this ODE system the linearized dynamics is given
with the Jacobian matrix (df/dz) of the ODE system Eq. (3.1) evaluated at
) The Jacobian
matrix is analyzed for equilibria in terms of eigenvalues to determine stability
and the loss of it at bifurcation points, where a negative real part indicate

the trajectory points z*(t) given in notation of (df/dzx)
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stability. For the stability and loss of it for limit cycles, Floquet multipliers
are more common (essentially the exponentials of eigenvalues), multipliers
inside the unit circle indicating stability, and where they leave eventually the
unit circle determining the type of limit cycle bifurcations. And for chaotic
systems, Lyapunov exponents are determined from the Jacobian around the
trajectory, where positive largest exponents show deterministic chaos, zero
largest exponent shows limit cycles, including tori (at least 2 zero largest
exponents), and largest smaller zero indicate fixed points.

3.2.1 Symmetries

To investigate the bifurcation structure of the system under investigation we
first observe the symmetries due to the multi-strain structure of the model.
This becomes important for the time being for equilibria' and limit cycles. We
introduce the following notation: With a symmetry transformation matrix S

1 0 0 OO0 0 0 0O0
001 0 0 0 0 O0O00O0
01 00 0 0 O0OO0O0TO
0O 0 0 01 0 0 O0O0O0
0O 0 01 0 0 0 O0O0O0
S:= 0O 0 0 0 0 01T 0 O0O0 (3-3)
00 0 0 01T 0 0 00
00 0 0 0 O0O0OO0OT1T°0
00 0 0 0 O0 O0OT1TO0oO0
0O 0 0 0 0 0 O0O0O0 1
we have the following symmetry:
If
Q*:(S*vlf%@v T?R;ST:S;IT%I;DR*)W (34)
is equilibrium or limit cycle, then also
Sa*=(S* I3, I, Ry, R, S5, St, I3y, Iy, R¥)'" (3.5)

with z* equilibrium values or z* = z*(¢) limit cycle for all times t € [0,T].
For the right hand side f of the ODE system Eq. (3.1) the kind of symmetry
found above is called Zo-symmetry when the following equivariance condition
holds

f(Sz,a) =Sf(z,a) (3.6)

with S a matrix that obeys S # I and S? = I, where I is the unit matrix.
Observe that besides S also I satisfies Eq. (3.6). The symmetry transformation

Equilibria are often called fixed points in dynamical systems theory, here we try to avoid
this term, since in symmetry the term fized is used in a more specific way, see below.
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matrix S in Eq. (3.3) fulfills these requirements. It is easy to verify that the
Zs-equivariance conditions (Eq. (3.6)) and the properties of S are satisfied
for our ODE system. In Seydel (Seydel, 1994) a simplified version of the
famous Brusselator that shows this type of symmetry is discussed. There, an
equilibrium and also a limit cycle show a pitchfork bifurcation with symmetry
breaking.

An equilibrium z* is called fized when Sz* = z* (see (Kuznetsov, 2004)).
Two equilibria z*,y* where Sz* # x*, are called S-conjugate if their corre-
sponding solutions satisfy

y* = Sz* (and because S? = I also z* = Sy*). For limit cycles a similar
terminology is introduced. A periodic solution is called fized when Sz*(t) =
z*(t) and the associated limit cycles are also called fized (Kuznetsov, 2004).
There is another type of periodic solution that is not fixed but called symmetric
when

* * T

Sz*(t) =z <t + 2> (3.7)
where T is the period. Again the associated limit cycles are also called sym-
metric. Both types of limit cycles L are S-invariant as curves : SL = L. That
is, in the phase-plane where time parametrizes the orbit, the cycle and the
transformed cycle are equal. A S-invariant cycle is either fixed or symmetric.
Two non-invariant limit cycles (SL # L) are called S-conjugate if their corre-
sponding periodic solutions satisfy y*(t) = Sz*(t), Vt € R. The properties of
the symmetric systems and the introduced terminology are used below with
the interpretation of the numerical bifurcation analysis results. We refer to
(Kuznetsov, 2004) for an overview of the possible bifurcations of equilibria and
limit cycles of Zs-equivariant systems.

3.3 Bifurcation diagrams for various a values

We show the results of the bifurcation analysis in bifurcation diagrams for
several « values, varying ¢ continuously. Besides the previously investigated
case of & = 2y~ !, we show also a case of smaller and a case of larger a value,
obtaining more information on the bifurcations possible in the model as a
whole. The above mentioned symmetries help in understanding the present
bifurcation structure.

3.3.1 Bifurcation diagram for o = 3y—!

For o = 3y~! the one-parameter bifurcation diagram is shown in Fig. 3.1a).
Starting with ¢ = 0 there is a stable fixed equilibrium, fixed in the above
mentioned notion for symmetric systems. This equilibrium becomes unstable
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at a Hopf bifurcation H at ¢ = 0.16445. A stable symmetric limit cycle
originates at this Hopf bifurcation. This limit cycle shows a super-critical
pitch-fork bifurcation P~, i.e. a bifurcation of a limit cycle with Floquet
multiplier 1, splitting the original limit cycle into two new ones. Besides the
now unstable branch two new branches originate for the pair of conjugated
limit cycles. The branches merge again at another supercritical pitch-fork
bifurcation P~, after which the limit cycle is stable again for higher ¢-values.
The pair of S-conjugate limit cycles become unstable at a torus bifurcation
TR at ¢ = 0.89539.

H P T T TRTPT
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0010203040506070809 1 1.11.213 0 010203040506070809 1 111213
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Figure 3.1: a) a = 3y~!: Equilibria or extremum values for limit cycles for

logarithm of total infected (In(ly + I + I12 + I21)). Solid lines denote stable
equilibria or limit cycles, dashed lines unstable equilibria or periodic-one limit
cycles. Hopf bifurcation H around ¢ = 0.16 two pitchfork bifurcations P~
and a torus bifurcation T'R. Besides this main bifurcation structure we found
coexisting tangent bifurcations T' between which some of the isolas live, see
especially the one between ¢ = 0.71 and ¢ = 0.79. Additionally found flip
bifurcations are not marked here, see text. b) a = 2y~!: In this case we have
a Hopf bifurcation H at ¢ = 0.11, and besides the similar structure as found
in a) also more separated tangent bifurcations 17" at ¢ = 0.494, 0.539, 0.931,
0.978 and 1.052 ¢) a = 1y~ !: Here we have the Hopf bifurcation at ¢ = 0.0598
and thereafter many tangent bifurcations T, again with coexisting limit cycles.

Besides this main bifurcation pattern we found two isolas, that is an iso-
lated solution branch of limit cycles (Golubitsky & Schaeffer, 1985). These
isola cycles L are not S-invariant, that is SL # L. Isolas consisting of isolated
limit cycles exist between two tangent bifurcations. One isola consists of a
stable and an unstable branch. The other shows more complex bifurcation
patterns. There is no full stable branch. For ¢ = 0.60809 at the tangent
bifurcation T" a stable and an unstable limit cycle collide. The stable branch
becomes unstable via a flip bifurcation or periodic doubling bifurcation F,
with Floquet multiplier (—1), at ¢ = 0.61918 which is also pitchfork bifurca-
tion for the period-two limit cycles. At the other end of that branch at the
tangent bifurcation 7" at ¢ = 0.89768 both colliding limit cycles are unsta-
ble. Close to this point at one branch there is a torus bifurcation TR, also
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called Neimark-Sacker bifurcation, at ¢ = 0.89539 and a flip bifurcation F' at
¢ = 0.87897 which is again a pitchfork bifurcation P for the period-two limit
cycles. Continuation of the stable branch originating for the flip bifurcation F’
at ¢ = 0.61918 gives another flip bifurcation F' at ¢ = 0.62070 and one closed
to the other end at ¢ = 0.87897, namely at ¢ = 0.87734. These results suggest
that for this isola two classical routes to chaos can exist, namely via the torus
or Neimark-Sacker bifurcation where the dynamics on the originating torus is
chaotic, and the cascade of period doubling route to chaos.

3.3.2 Bifurcation diagram for a = 2y~!

For o = 2y~! the one-parameter bifurcation diagram is shown in Fig. 3.1b).
The stable fixed equilibrium becomes unstable at a super-critical Hopf bifur-
cation H at ¢ = 0.11329 where a stable fixed limit cycle originates. This
stable limit cycle becomes unstable at a super-critical pitchfork bifurcation
point P~ at ¢ = 0.41145 for a limit cycle. This point marks the origin of
a pair of S-conjugate stable limit cycles besides the now unstable fixed limit
cycle. Here one has to consider the two infected subpopulations I; and I to
distinguish the conjugate limit cycles. Because the two variables I; and I3 are
interchangeable this can also be interpreted as the stable limit cycles for the
single variable say I;. The fixed stable equilibrium below the Hopf bifurcation
where we have IT = I3, R} = R3, S = S5 and I}, = I3, is a fixed equilib-
rium. At the Hopf bifurcation H the stable fixed equilibrium point becomes
an unstable fixed equilibrium point. The originating stable limit cycle in the
parameter interval between the Hopf bifurcation and the pitchfork bifurcation
is symmetric. In the parameter interval between the two pitchfork bifurcations
P~ at ¢ = 0.41145 and subcritical P+ at ¢ = 0.99214, two stable limit cycles
coexist and these limit cycles are S-conjugate. At the pitchfork bifurcation
points the fixed limit cycle becomes unstable and remains fixed, and two sta-
ble S-conjugate limit cycles originate (see (Kuznetsov, 2004, Theorem 7.7)).
The invariant plane Iy = Is, Ry = Ro,S1 = S2, 112 = I51 forms the separatrix
between the pair of stable S-conjugate limit cycles z*(t) and Sz*(t), Vt € R.
The initial values of the two state variables S(typ) and R(ty) together with
the point on the invariant plane, determine to which limit cycle the system
converges. Continuation of the stable symmetric limit cycle gives a torus or
Neimark-Sacker bifurcation at point denoted by TR at ¢ = 0.55069. At his
point the limit cycles become unstable because a pair of complex-conjugate
multipliers crosses the unit circle. Observe that at this point in the bifurca-
tion diagram plot (Aguiar & Stollenwerk, 2007, there Fig. 12) and (Aguiar et
al., 2008, there Fig. 5) the chaotic region starts. In (Albers & Sprott, 2006)
the following route to chaos, namely the sequence of Neimark-Sacker bifurca-
tions into chaos, is mentioned. Increasing the bifurcation parameter ¢ along
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the now unstable pair of S-conjugate limit cycles leads to a tangent bifurca-
tion T at ¢ = 1.0524 where a pair of two unstable limit cycles collide. This
branch terminates at the second pitchfork bifurcation point denoted by PT at
¢ = 0.99214. Because the first fold point gave rise to a stable limit cycle and
this fold point to an unstable limit cycle we call the first pitchfork bifurcation
super-critical and the latter pitchfork bifurcation subcritical. These results
agree very well with the simulation results shown in the bifurcation diagram
for the maxima and minima of the overall infected (Aguiar & Stollenwerk,
2007, there Fig. 15) and (Aguiar et al., 2008, there Fig. 5). Notice that
AUTO (Doedel & Oldeman, 2009) calculates only the global extrema during a
cycle, not the local extrema. Fig. 3.1b) shows also two isolas similar to those
for o = 3y~! in Fig. 3.1 a).

3.3.3 Bifurcation diagram for a = 1y~!

For o = 1y~! the bifurcation diagram is shown in Fig 3.1c). In the lower ¢
parameter range there is bistability of two limit cycles in an interval bounded
by two tangent bifurcations T'. The stable manifold of the intermediate saddle
limit cycle acts as a separatrix. Increasing ¢ the stable limit cycles become
unstable at the pitchfork bifurcation P at ¢ = 0.23907. Following the unstable
primary branch, for larger values of ¢ we observe an open loop bounded by
two tangent bifurcations T'. The extreme value for ¢ is at ¢ = 0.62790. Then
lowering ¢ there is a pitchfork bifurcation P at ¢ = 0.50161. Later we will
return to the description of this point. Lowering ¢ further the limit cycle
becomes stable again at the tangent bifurcations T" at ¢ = 0.30863. Increasing
¢ this limit cycle becomes unstable again at the pitchfork bifurcation P at
¢ = 0.32532.

Continuation of the secondary branch of the two S-conjugated limit cycles
from this point reveals that the stable limit cycle becomes unstable at a torus
bifurcation TR at ¢ = 0.42573. The simulation results depicted in (Aguiar
& Stollenwerk, 2007, Fig. 13) and (Aguiar et al., 2008, there Fig. 6a)) show
that there is chaos beyond this point. The secondary pair of S-conjugate
limit cycles that originate from pitchfork bifurcation P at ¢ = 0.23907 be-
comes unstable at a flip bifurcation F'. Increasing ¢ further it becomes stable
again at a flip bifurcation F'. Below we return to the interval between these
two flip bifurcations. The stable part becomes unstable at a tangent bifurca-
tion 7', then continuing, after a tangent bifurcation 7" and a Neimark-Sacker
bifurcation T'R. This bifurcation can lead to a sequence of Neimark-Sacker
bifurcations into chaos. The unstable limit cycles terminates via a tangent bi-
furcation F' where the primary limit cycle possesses a pitchfork bifurcation P
at ¢ = 0.50161. At the flip bifurcation F the cycle becomes unstable and a new
stable limit cycle with double period emanates. The stable branch becomes
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Figure 3.2: a) Detail of Fig. 3.1c), @ = 1y~!. We find pitchfork bifurcations
P at ¢ = 0.239 and 0.325, flip bifurcations F' at ¢ = 0.298, 0.328,0.344,0.346,
0.406, 0.407, 0.411 and 0.422, further tangent bifurcations T at ¢ = 0.292,
0.346 and 0.422. Four almost coexisting bifurcations, namely F’s at ¢ =
0.4112590. b) and c) state-space plots of susceptibles (S) and logarithm of
total infected (In(Iy + I + I1o + I21)) for @ = 1y~! and ¢ = 0.294 where two
coexisting stable limit cycles appear.

unstable at a flip bifurcation again. We conclude that there is a cascade of pe-
riod doubling route to chaos. Similarly this happens in reversed order ending
at the flip bifurcation where the secondary branch becomes stable again.

Fig. 3.2a) gives the results for the interval 0.28 < ¢ < 0.44 where only the
minima are show. In this plot also a “period three” limit cycle is shown. In
a small region it is stable and coexists together with the “period one” limit
cycle. The cycles are shown in Fig. 3.2b) and c) for ¢ = 0.294. The one
in c) looks like a period-3 limit cycle. In Fig. 3.2 continuation of the limit
cycle gives a closed graph bounded at the two ends by tangent bifurcations
T where a stable and an unstable limit cycle collide. The intervals where
the limit cycle is stable, are on the other end bounded by flip bifurcations F'.
One unstable part intersects the higher period cycles that originate via the
cascade of period doubling between the period-1 limit cycle flip bifurcations
F at ¢ = 0.32816 and ¢ = 0.41126. This suggest that the period-3 limit
cycle is associated with a “period-3 window” of the chaotic attractor. We
conjecture that this interval is bounded by two homoclinic bifurcations for a
period-3 limit cycle (see (Boer et al., 1999, 2001; Kooi & Boer, 2002; Kooi et
al., 2004)). The bifurcation diagrams shown in (Aguiar & Stollenwerk, 2007,
there Fig. 13) and in (Aguiar et al., 2008, there Fig. 6a)) show the point
where the chaotic attractor disappears abruptly, possible at one of the two
homoclinic bifurcations. In that region the two conjugated limit cycles that
originate at the pitchfork bifurcation P at ¢ = 0.32532 are the attractors.
These results suggest that there are chaotic attractors associated with the
period-1 limit cycle, one occurs via a cascade of flip bifurcations originating
from the two ends at ¢ = 0.32816 and ¢ = 0.41126 and one via a Neimark-
Sacker bifurcation TR at ¢ = 0.42573.
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3.4 Two-parameter diagram

We will now link the three studies of the different « values by investigating a
two-parameter diagram for ¢ and «, concentrating especially on the creation
of isolated limit cycles, which sometimes lead to further bifurcations inside the
isola region. Fig. 3.3 gives a two-parameter bifurcation diagram where ¢ and
« are the free parameters. For low ¢-values there is the Hopf bifurcation H
and all other curves are tangent bifurcation curves.
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Figure 3.3: Two-dimensional parameter bifurcation diagram with ¢ and «
as parameters. Only one Hopf bifurcation (dotted line) and many tangent
bifurcation curves for limit cycles (dashed lines) are shown in the range o €
[1,3.8]y~!. The isolated limit cycles originate above o = 3y~!'. For lower

values of a periodic doubling routes to chaos originate.

Isolas appear or disappears upon crossing an isola variety. At an elliptic
isola point an isolated solution branch is born, while at a hyperbolic isola
point an isolated solution branch vanishes by coalescence with another branch
(Golubitsky & Schaeffer, 1985). From Fig. 3.3 we see that at two values of
a > 3y~ ! isolas are born. Furthermore, period doubling bifurcations appear
for lower « values, indicating the Feigenbaum route to chaos. However, only
the calculation of Lyapunov exponents, which are discussed in the next section,
can clearly indicate chaos.

3.5 Lyapunov spectra for various a values

The Lyapunov exponents are the logarithms of the eigenvalues of the Jacobian
matrix along the integrated trajectories, Eq. (dynamicsdeltaf), in the limit of
large integration times. Besides for very simple iterated maps no analytic
expressions for chaotic systems can be given for the Lyapunov exponents. For
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the calculation of the iterated Jacobian matrix and its eigenvalues, we use the
QR decomposition algorithm (Farmer & Sidorowich, 1986; Parlitz, 1992).
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Figure 3.4: Spectrum of the four largest Lyapunov exponents with changing
parameter ¢ and (a) fixed @ = 4y~!, (b) a =2y~ and (c) a = 1y~ L.

In Fig. 3.4 we show, for various « values, the four largest Lyapunov ex-
ponents in the ¢ range between zero and one. For a = 4y~! in Fig. 3.4a)
we see for small ¢ values fixed point behavior indicated by a negative largest
Lyapunov exponent up to around ¢ = 0.2. There, at the Hopf bifurcation
point, the largest Lyapunov exponent becomes zero, indicating limit cycle be-
havior for the whole range of ¢, apart from the final bit before ¢ = 1, where
a small spike with positive Lyapunov exponent might be present, but difficult
to distinguish from the noisy numerical background.

For a = 2y~ ! in Fig. 3.4b) however, we see a large window with positive
largest Lyapunov exponent, well separated from the second largest being zero.
This is s clear sign of deterministically chaotic attractors present for this ¢
range. Just a few windows with periodic attractors, indicated by the zero
largest Lyapunov exponent are visible in the region of 0.5 < ¢ < 1. For
smaller ¢ values we observe qualitatively the same behavior as already seen
for & = 4y~!. For the smaller value of & = 1y~!, in Fig. 3.4c), the chaotic
window is even larger than for a = 2y~!. Hence deterministic chaos is present
for temporary cross-immunity in the range around a = 2y~! in the range of

¢ between zero and one.

3.6 Conclusions

We have presented a detailed bifurcation analysis for a multi-strain dengue
fever model in terms of the different ratios of secondary infections contribution
to the force of infection (ADE parameter ¢), in the previously not well inves-
tigated region between zero and one, and for the temporary cross-immunity
parameter a. The symmetries implied by the strain structure, are taken into
account in the analysis. Many of the possible bifurcations of equilibria and
limit cycles of Zs-equivariant systems can be distinguished. Using AUTO
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(Doedel & Oldeman, 2009) the different dynamical structures were calculated.
Future time series analysis of epidemiological data has good chances to give
insight into the relevant parameter values purely on topological information of
the dynamics, rather than classical parameter estimation of which application
is in general restricted to fairly simple dynamical scenarios (Stollenwerk et al.,
2012).

3.A Epidemic model equations
The complete system of ordinary differential equations for a two-strain epi-

demiological system allowing for differences in primary versus secondary in-
fection and temporary cross-immunity is given by

d
95 = LS+ 6~ S+ ohs) + (N~ 9)
d
gh = %5(11-1-(25]21)—(7"'#)]1
d
gfz = %5(12 + olio) — (v + p) 1z
d
%Rl = v — (a4 p)Ry
d
aRz = vl — (a+p)Ry (3.8)
151 = —ﬁsl(b + ¢lha) + aRy — 1S
dt N
d
asz = —%52(11 + ¢lo1) + aRy — pSo
d
%112 = %51(12 + ¢lia) — (v + )12
d
%121 = %52(11 + @Ir) — (v + )l
d
SR = AL+ Ton) —
dtR v(Lhig + I21) — pR

For two different strains, named 1 and 2, we label the SIR classes for the
hosts that have seen the individual strains. Susceptibles to both strains (.5)
get infected with strain 1 (I;) or strain 2 (I), with infection rate 5. They
recover from infection with strain 1 (becoming R;) or from strain 2 (becoming
Ry), with recovery rate v, and so on.

With temporary cross-immunity rate «, the Ry and R become again sus-
ceptible with a previous infection (S being immune against strain 1 but sus-
ceptible to 2, respectively S3), where the index represents the first infection
strain. Now, S can be reinfected, now with strain 2 (becoming I12), meeting
I, with infection rate 8 or meeting I;5 with infection rate ¢3, secondary in-
fected contributing differently to the force of infection than primary infected,
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and so on.

We include demography of the host population denoting the birth and
death rate by u. For constant population size N we have for the immune to
all strains R=N —(S+ 11+ Io+ Ry + Ro + S1+ S2 + I12 + I21) and therefore
we only need to consider the first 9 equations of system Eq. (3.8), giving 9
Lyapunov exponents.

In our numerical studies we take the population size equal to N = 100 so
that mean proportions of susceptibles, infected etc. are given in percentage.
As fixed parameter values we take y = 1/65y, v = 52y~ !, 3 = 2-~. The
parameters ¢ and « are varied. For more information on the parametrization
of the basic two-strain model, see (Aguiar & Stollenwerk, 2007; Aguiar et al.,
2008).
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Chapter 4

The role of seasonality and
import in a minimalistic
multi-strain dengue model
capturing differences between
primary and secondary
infections: complex dynamics
and its implications for data
analysis

Maira Aguiar, Sebastien Ballesteros, Bob W. Kooi and Nico Stollenwerk
Journal of Theoretical Biology, 289:181-196, 2011.

In many countries in Asia and South-America dengue fever (DF) and
dengue hemorrhagic fever (DHF) has become a substantial public health con-
cern leading to serious social-economic costs. Mathematical models describing
the transmission of dengue viruses have focused on the so called antibody-
dependent enhancement (ADE) effect and temporary cross-immunity trying
to explain the irregular behavior of dengue epidemics by analyzing available
data. However, no systematic investigation of the possible dynamical struc-
tures has been performed so far. Our study focuses on a seasonally forced
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(non-autonomous) model with temporary cross-immunity and possible sec-
ondary infection, motivated by dengue fever epidemiology. The notion of at
least two different strains is needed in a minimalistic model to describe differ-
ences between primary infections, often asymptomatic, and secondary infec-
tion, associated with the severe form of the disease. We extend the previously
studied non-seasonal (autonomous) model by adding seasonal forcing, mim-
icking the vectorial dynamics, and a low import of infected individuals, which
is realistic in the dynamics of dengue fever epidemics. A comparative study
between three different scenarios (non-seasonal, low seasonal and high seasonal
with a low import of infected individuals) is performed. The extended models
show complex dynamics and qualitatively a good agreement between empiri-
cal DHF monitoring data and the obtained model simulation. We discuss the
role of seasonal forcing and the import of infected individuals in such systems,
the biological relevance and its implications for the analysis of the available
dengue data. At the moment only such minimalistic models have a chance to
be qualitatively understood well and eventually tested against existing data.
The simplicity of the model (low number of parameters and state variables)
offer a promising perspective on parameter values inference from the DHF case
notifications.

4.1 Introduction

Dengue is a viral mosquito-borne infection which in recent years has become
a major international public health concern, a leading cause of illness and
death in the tropics and subtropics. It is estimated that every year, there are
70 — 500 million dengue infections, 36 million cases of dengue fever (DF) and
2.1 million cases of dengue hemorrhagic fever (DHF), with more than 20.000
deaths per year (WHO, 2009; PDVI, 2011). Dengue is caused by four anti-
genically distinct but closely related viruses, designated by dengue types 1,2,3,
and 4, where infection by one serotype confers life-long immunity to only that
serotype and a short period of temporary cross-immunity to other serotypes
(WHO, 2009; Alcon et al., 2002; Matheus et al., 2005; SES, 2010; Wearing
& Rohani, 2006; Halstead, 2004; Dejnirattisai et al., 2010). Two variants of
the disease exist: dengue fever (DF), a non-fatal form of illness, and dengue
hemorrhagic fever (DHF), which may evolve towards a severe form known as
dengue shock syndrome (DSS). Epidemiological studies support the associa-
tion of DHF with secondary dengue infection (Guzmaén et al., 2000; Vaughn
et al., 2000; Halstead, 1982, 2003; Nisalak et al., 2003), and there is good evi-
dence that sequential infection increases the risk of developing DHF, due to a
process described as antibody-dependent enhancement (ADE) (WHO, 2009;
Halstead, 2004; Dejnirattisai et al., 2010). The risk for DHF with a third or

92



fourth dengue infection relative to a first or second exposure is not known. An
analysis of a database of admitted cases to the Queen Sirikit National Insti-
tute of Child Health and Kamphaeng Phet Provincial Hospital with suspected
dengue illness revealed that the number of dengue admissions caused by a third
or fourth dengue virus infection was extremely low and once admitted, the risk
for DHF relative to DF was not different for those experiencing third or fourth
dengue virus infections over those experiencing a second dengue virus infection
(Endy et al., 2002; Gibbons et al., 2007; Halstead, 2008). It is suggested that
the majority of secondary dengue infections occur at a spacing of more than
6 months (SES, 2010), and from cohort studies and prospective seroepidemio-
logical studies of defined populations, the hospitalization rates for individuals
experiencing secondary dengue infections are in the range of 2 — 3% of all in-
fected individuals (Halstead, 2003; Rothman et al., 2004). There is no specific
treatment for dengue, and a vaccine is not yet available. So far, prevention
of exposure and vector control remain the only alternatives to prevent dengue
transmission.

Mathematical models describing the transmission of dengue viruses ap-
peared in the literature as early as 1970 (Fischer & Halstead, 1970). More
recently, mathematical models describing the transmission of dengue viruses
have focused on the ADE effect and temporary cross-immunity trying to ex-
plain the irregular behavior of dengue epidemics. In the literature the multi-
strain interaction leading to deterministic chaos via ADE has been described
previously, e.g. (Ferguson et al., 1999; Schwartz et al, 2005; Billings et al.,
2007) but neglecting temporary cross-immunity. Consideration of temporary
cross immunity is rather complicated and up to now not in detail analyzed.
Models formulated in (Wearing & Rohani, 2006; Nagao & Koelle, 2008; Recker
et al., 2009; Lourego & Recker, 2010), did not investigate closer the possible
dynamical structures. In (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008,
2009) by including temporary cross-immunity into dengue models with ADE,
a rich dynamic structure including deterministic chaos was found in wider
and more biologically realistic parameter regions. However, in order to be
able to reproduce the yearly cycle in dengue incidence seasonal forcing and a
low import of infected have to be included in the models.

In addition to ab-initio simulation techniques to solve the mathematical
model numerically, we use bifurcation analysis to study the dependence of the
dynamics on parameter values. This separates the parameter space in regions
with qualitatively different long-term dynamics: steady-state solution (equi-
librium), periodic solution (limit cycle) and non-periodic solution (aperiodic
or chaotic attractors). For non-periodic solutions the dynamics is classified
further based on Lyapunov exponents. In the case of sinusoidal forcing the
non-autonomous system is, for analysis purposes, replace by an equivalent au-
tonomous system whereby the original model is augmented with the so called

93



Hopf oscillator producing the sinusoidal forcing.

In this paper, we investigate the extended multi-strain model with tem-
porary cross-immunity and possible secondary infection, motivated by dengue
fever epidemiology presented first in (Aguiar & Stollenwerk, 2007; Aguiar et
al., 2008) and (Aguiar et al., 2009). We add seasonal forcing into the previ-
ous multi-strain dengue model, mimicking the vectorial dynamics, and a low
import of infected individuals, which is realistic in the dynamics of dengue
fever epidemics. The complete analysis of the extended models shows com-
plex dynamics and qualitatively a very good result when comparing empirical
DHF data and model simulation. The effects of the vector dynamics are only
taken into account by the force of infection parameters in the SIR-type model,
but not modeling this mechanisms explicitly ( see also (Wearing & Rohani,
2006)). Since vector models without multi-strain aspects only shows station-
ary dynamics (Esteva & Vargas, 1998, 2000) and seasonally forced SIR systems
can show already deterministic chaos (Stone et al., 2007), the presented model
is minimalistic in the sense that it can capture the essential differences of pri-
mary versus secondary infection under periodic forcing but is not too high
dimensional so that future parameter estimation can still attempt to estimate
all initial conditions as well as the few model parameters.

4.2 The seasonal multi-strain epidemic model

The seasonal multi-strain model is represented in Fig. 6.1 by using a state
flow diagram, dividing the population into ten classes: susceptible to both
strains, 1 and 2 (.9), primarily infected with strain one (I7) or strain two (I2),
recovered from the first infection with strain one (Rj) or strain two (R2),
susceptible with a previous infection with strain one (S7) or strain two (Ss),
secondarily infected with strain one when the first infection was caused by
strain two (Iz1) or for second time infected with strain two when the first
infection was caused by strain one (I12). Notice that infection by one serotype
confers life-long immunity to that serotype. Then the recovered individuals
from the secondary infection (R). To give more reality to the dynamics of
the disease, we also add a low import factor of infected individuals into the
system.

The complete system of ordinary differential equations for the seasonal
multi-strain epidemiological model is shown in system Eq. (6.11), and the
dynamics are described as follows. Susceptibles to both strains can get the
first infection with strain one or strain two with force of infection % when
the infection is acquired via an individual in his first infection or %ﬂ[ when
the infection is acquired via an individual in his second infection (for more
information on the parametrization of ADE and secondary dengue infection by
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Figure 4.1: The state flow diagram for the seasonal two-strain model. The
boxes represent the disease related stages and the arrows indicate the tran-
sition rates. The transition rate p coming out of the class R represents the
death rates of all classes, S, 11, I2, R1, Ro, S1, 59, [12, Io1, R, getting into the
class S as a birth rate.

95



¢, see (Ferguson et al., 1999; Aguiar et al., 2008)). They recover form the first
infection with a recovery rate «y, conferring full and life-long immunity against
the strain that they were exposed to, and also a short period of temporary
cross-immunity « against the other strain, becoming susceptible to a second
infection with a different strain. The susceptible with a previous infection
gets the secondary infection with force of infection % or %ﬁ] depending on
whom (individual on his primary or secondary infection) is transmitting the
infection. Then, with recovery rate -, the individuals recover and become

immune against all strains.

S = —ﬂ](vt)s(h +p- N+ ¢la)
(0 4 p- N+ o1)
+u(N = 5)

L = ﬂ](\?s(flﬂLP'NJrﬁﬂm)(VJrﬂ)Il

Iy = 6;\715)5([2 +p- N+ ola) — (v + p) 1z

Rl = 'yIl—(oH—,u)Rl

Ry = ~lh— (a4 p)Ry (4.1)
g = g N
1= TN 1(Ia+p- N+ ¢la) + aRy — pSh
. ()
Sy = _752(11+P'N+¢121)+CYR2_NSQ
- B
Ly = 751(12+,0'N+¢—712)—(74'#)[12
- B
Iy = 752(11 +p- N+ ¢lo) — (v + p)lan

R = ~y(Iip+Is) — pR
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We assume no epidemiological asymmetry between strains (5 = 2 = [,
¢1 = ¢o = @), i.e. infections with strain one or strain two contribute in the
same way to the force of infection. Here, the only relevant difference con-
cerning disease transmissibility is that the force of infection varies accordingly
to the number of previous infections the hosts have experienced. In a pri-
mary infection the individuals transmit the disease with a force of infection
% whereas in a secondary infection the transmission is given with a force of
infection % where ¢ can be larger or smaller than unit, i.e. increasing or
decreasing the transmission rate.

The parameter (3 takes the seasonal forcing into account as a cosine func-
tion and is given explicitly by

B(t) = fo - (141 -cos(w - (t +¢))) (4.2)

where (3 is the infection rate, i is the degree of seasonality and ¢ the phase
which becomes important only when considering empirical time series.

Table 4.1: Parameter set, rates given in units per year, ratio without unit

Par. Description Values Ref

N population size 100 —

4 birth and death rate 1/65y (UNWPP, 2011)

v recovery rate 52y~ 1 (WHO, 2009)

Bo infection rate 2. (Ferguson et al., 1999)
n degree of seasonality 0.1 to 0.35 (Nagao & Koelle, 2008)
%) phase 0 —

p import parameter 0 to 10719 (Nagao & Koelle, 2008)
« temporary cross-immunity rate 2y~ 1 (Matheus et al., 2005)
10) ratio of secondary infections

contributing to force of infection variable (< 1) (Halstead, 2004)

In this model, a susceptible individual can become infected also by meeting
an infected individual from an external population (hence (/N -S - I) goes
to (B/N-S-(I+p-N))) contributing to the force of infection with an import
parameter p. The parameter ¢ in our model, is the ratio of secondary infection
contribution to the force of infection. For instance, we study the region of
the parameter ¢ < 1, which acts as decreasing the infectivity of secondary
dengue infection, where the hospitalization is more likely due to the ADE
effect associated with the severity of the disease. The secondary infected
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individuals do not contribute to the force of infection as much as people with
first infection do.

The deterministic model formulation is based on the large number assump-
tion. As a consequence the number of individuals can be used to scale all state
variables of the model. The constant population N = 100 is used for clarity so
that all epidemiological proportions (susceptibles, infected and recovered) are
given in percentage. The demography rate is denoted by p and the parameter
values are given in Table 4.1.

4.3 Analysis techniques

The previous analysis of the non-seasonal multi-strain dengue model has shown
a rich variety of dynamics through bifurcations up to deterministically chaotic
attractors in an unexpected parameter region of ¢ < 1, where secondary in-
fected individual (due to the likely hospitalization) contribute less to overall
force of infection than an individual that is for the first time infected, just
by adding temporary cross-immunity to a previously existing dengue model.
In (Aguiar et al., 2008) a time series analysis (simulations and calculation of
Lyapunov exponents) and a numerical bifurcation analysis were performed.
In this manuscript, we extend the analysis of the non-seasonal model with
a two-parameter bifurcation analysis where both, the ratio of secondary in-
fection contribution to the force of infection (parameter ¢) and temporary
cross-immunity rate (parameter «) vary simultaneously (see Fig. 6.2¢). Two
scenarios of seasonally forced systems are also analyzed. We used the software
AUTO (Doedel & Oldeman, 2009) to calculate the bifurcation curves presented,
and the Lyapunov exponents were calculated using an iterated technique using
the QR decomposition algorithm via Householder matrices (see (Aguiar et al.,
2008; Ruelle, 1986; Holzfuss & Lauterborn, 1989; Holzfuss & Parlitz, 1991)).

The equilibrium values of the state variables are calculated by solving the
non-linear system Eq. (6.11) equal to zero. Often multiple equilibria coexist.
The stability of each equilibrium is found by linearization, that is calculating
the eigenvalues of the Jacobian matrix evaluated at that point. When all
eigenvalues have negative real parts the equilibrium is stable, otherwise it is
unstable.

A bifurcation point is defined as a parameter value where the long-term
dynamics of the system changes qualitatively at points where one eigenvalue
is zero (or its real part). One important bifurcation is the Hopf bifurcation
point where the real parts of a pair of conjugated eigenvalues are zero. At
that point the equilibrium looses stability and the system starts to oscillate,
that is, where a periodic solution or limit cycle originates when a parameter
is varied crossing that point.
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A limit cycle can be found numerically by solving a boundary value prob-
lem, whereby the boundary conditions are cyclic. Observe that the period of
this solution is an additional parameter calculated along with the solution.
The stability of limit cycles is determined by so-called Floquet multipliers. A
limit cycle is stable when all multiplier are inside the unit circle of the complex
plane, and unstable when at least one is outside. At a bifurcation point, the
bifurcation parameter value is such that one multiplier lies on the unit circle of
the complex plane. When this multiplier equals 1, it is a tangent bifurcation
while when this multiplier equals —1, a period-doubling (or flip) bifurcation
occurs. Changing a parameter can give a cascade of period-doubling bifurca-
tion leading to chaotic dynamics.

Another important bifurcation point is the torus or Neimark-Sacker bi-
furcation of the limit cycle where two complex conjugate multipliers are on
the unit circle. At such a point, limit cycles or quasi-periodic dynamics on
the torus or chaotic dynamics originate when the bifurcation parameter is
varied. For an introduction into bifurcation analysis we refer the reader to
(Guckenheimer & Holmes, 1985; Kuznetsov, 2004), and for applications in
eco-epidemiological models (Malchow et al., 2008; Stiefs et at., 2009; Kooi et
al., 2011).

The Lyapunov exponent is a generalization of both an eigenvalue and a
Floquet multiplier. While for a fixed point the contraction and expansion rates
are given by the eigenvalues and for a limit cycle by Floquet multipliers, for
more complex geometrical objects (torus, chaotic attractors) the contraction
and expansion rates are given by the Lyapunov exponents (Ott, 1993). For
instance, the dynamics on or beyond a torus is classified as periodic, when one
Lyapunov exponent zero, aperiodic when two Lyapunov exponents zero, and
chaotic when one Lyapunov exponent zero and at least one positive. Lyapunov
exponents can be calculated along the trajectory as

M) = -1Atln (H ym(u)y> (4.3)
v=1

where At is the time-step, n the (large) number of time steps and r; are
the diagonal elements of the upper triangular matrix R of the v-th QR-
decomposition at the v-th time-step.

Just as with the eigenvalues of the Jacobian matrix, the number of Lya-
punov exponents equals the dimension of the system (9 for system Eq. (6.11)
and 11 for the augmented system described in Appendix 4.A). The so called
Dominant Lyapunov Exponent (DLE) is the exponent with the largest magni-
tude. The set of Lyapunov exponents is called the Lyapunov spectrum which
can be calculated for all parameter values. The situation when all Lyapunov
exponents are negative gives a stable equilibrium, one dominant zero Lya-
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punov exponent indicates a stable limit cycle, two dominant zero Lyapunov
exponents quasi-periodicity (for instance on a torus), a positive Lyapunov ex-
ponent chaotic behavior and multiple positive Lyapunov exponent hyperchaos.
Both the bifurcation analysis (for equilibria and limit cycles) and the
Lyapunov spectrum calculation (for chaotic dynamics), can be done for au-
tonomous and non-autonomous (e.g. seasonally forced) systems. With sinu-
soidal forcing, the non-autonomous system (system Eq. (6.11)) can be coupled
with the Hopf oscillator (a set of two ODE’S), to get an equivalent autonomous
system of dimension 11. Notice that the period of the forcing is fixed: equal
to 1, and that a steady-state solution does not exist. The basal dynamics is
now a periodic solution with period equal to the forcing period, which is a
limit cycle of the equivalent autonomous system. Hence the dynamics can be
analyzed in the same way as described above and shown in Appendix 4.A.

4.4 Bifurcation analysis

In this section we start with a bifurcation analysis of the non-seasonal model
and then continue with two scenarios of seasonally forced systems, namely the
low seasonal model and the high seasonal model with a low import of infected
individuals.

4.4.1 Bifurcation analysis of the non-seasonal model

In this section we show briefly the results for the non-seasonal system pub-
lished in (Aguiar et al., 2008, 2009) on which the further results of the present
article are based. First we show in Fig. 6.2a) the Lyapunov exponents in the
parameter range ¢ € [0,0.2]. The DLE is negative below and becomes zero
at ¢ = 0.108, the Hopf bifurcation point which is also predicted by AUTO
(Doedel & Oldeman, 2009).

Secondly, we show the one-parameter bifurcation diagram for ¢ € [0, 1.3]
(see Fig. 6.2b)). At fine grid in this parameter range, system Eq. (6.11) was
solved numerically. We discarded 2000 years of transients and plot the varying
ratio of the secondary infection contribution to the force of infection (¢) over
the steady state or local maxima of logarithm of total number of infected
(In(I), where I := I; + Is+ I12+ I21), obtaining the one-parameter bifurcation
diagram.

The one-parameter diagram is shown in Fig. 6.2b). Here the logarithm of
total number of infected are shown, where solid lines denote stable equilibria
or limit cycles, and dashed lines unstable equilibria or limit cycles. Vari-
ous bifurcations are: Hopf bifurcation H(¢ = 0.11326), pitchfork bifurcations
P(¢ = 0.41145,0.99214), torus bifurcation TR(¢ = 0.55069) and tangent bi-
furcations T'(¢ = 0.4.9406, 0.53874,0.93103,0.97825,1.05242).

100



0.04 4 r

0.02 + r

In(l)

0.02 AM»

-0.04 +

C) °

Figure 4.2: Bifurcation diagram of the non-seasonal model. With temporary
cross-immunity rate o = 2y~ and varying the ratio of secondary infection
contribution to the force of infection ¢, in a) we show the Lyapunov spectrum
in the parameter range of ¢ € [0,0.2]. In b) we show the one-parameter
bifurcation diagram calculated using AUTO, where solid lines denote stable
equilibria or limit cycles, and dashed lines unstable equilibria or limit cycles, on
top of the numerical bifurcation diagram (in green). In ¢) we show the two-
dimensional parameter bifurcation diagram with temporary cross-immunity
rate a and the ratio of secondary infection contribution to the force of infection
¢ varying simultaneously in the range ¢ € [0,1.3] and « € [1, 7]y~ !, calculated
using AUTO. In addition to the Hopf bifurcation H (dotted lines) and many
tangent bifurcation T curves (dashed lines), the torus TR and pitchfork P
bifurcations are shown. At the codim-two points P — T the pitchfork and
tangent bifurcations for limit cycles meet and at point TR — T the pitchfork
and torus bifurcations.
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In addition to this main bifurcation pattern we found two isolas, consist-
ing of isolated limit cycles existing between two tangent bifurcations (for more
information on the isolas see (Aguiar et al., 2009)). At the Hopf bifurcation
H (¢ = 0.1133) the stable fixed equilibrium becomes an unstable fixed equi-
librium and in the parameter interval between the Hopf bifurcation and the
pitchfork bifurcation P (¢ = 0.4114) there is a symmetric stable limit cy-
cle (for more information on the bifurcation analysis by continuation for the
non-seasonal multi-strain model see (Aguiar et al., 2008, 2009), however, in
these articles it is wrongly stated that it is a fixed limit cycle instead of the
symmetric limit cycle). At a pitchfork bifurcation point, the symmetric limit
cycle becomes unstable and remains symmetric, while two stable S-conjugate
limit cycles originate (see (Kuznetsov, 2004), Theorem 7.7). These S-conjugate
limit cycles become unstable at a torus bifurcation TR (¢ = 0.5507). At this
torus or Neimark-Sacker bifurcation the dynamics becomes chaotic (positive
Lyapunov exponent). Increasing the ratio of secondary infection contribution
to the force of infection (¢) further, this chaotic behavior disappears at a sec-
ond pitchfork bifurcation P (¢ = 0.9921). At this pitchfork bifurcation the
branch of limit cycles, that was originated at the first pitchfork bifurcation,
terminates after going through a region where two limit cycles coexist and dis-
appear at a tangent bifurcation. In the small ¢ interval between the pitchfork
bifurcation and the tangent bifurcation T' (¢ = 0.931) two stable limit cycles
coexist. This means that the stable manifold of the unstable intermediate
limit cycle forms the separatrix for the two basins of attraction in the state
space. We remark that the sudden disappearance of the chaotic attractor at
the pitchfork bifurcation is similar to the classical intermittency route to chaos
occurring at for instance a tangent bifurcation.

Fig. 6.2¢) gives the most important bifurcation curves where both ¢ and «
vary simultaneously: for an equilibrium the Hopf bifurcation H, and for limit
cycles the torus-bifurcation T'R and the pitchfork bifurcation P and a tangent
bifurcation T. At the two codim-two points, P — T and TR — T, the tangent
bifurcation for a limit cycle splits off a pitchfork and a torus bifurcation.
This diagram shows for which ¢ and « parameter values chaotic behavior can
occur, namely below the torus-bifurcation TR and on the left hand side of
the pitchfork bifurcation P that originates from the P — T point. However,
within this region there are periodic windows such as shown in Fig. 6.2b). We
found isolas coexisting with the attractors of this main bifurcation structure.
A stable limit cycle was calculated by simulation starting from initial values
in the state space obviously outside the basin of attraction of the attractors
of the main bifurcation structure. Continuation starting from this limit cycle
gave rise to bifurcations into chaos. For a detailed analysis of the attractors in
state space for the non-seasonal model, see also Appendix 4.B.1 and (Aguiar
et al., 2008, 2009).
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Note that by adding a low import factor into the non-seasonal model the
classical ADE chaotic region for ¢ > 1 found in (Ferguson et al., 1999; Aguiar
et al., 2008) disappears (see Appendix 4.C, Fig. 4.15)

4.4.2 Bifurcation analysis of the seasonal models

In this section we relate and compare the results for the seasonally forced
systems to that of the non-seasonal system discussed in the previous section.
First we compare the bifurcation diagrams obtained for the non-seasonal and
seasonal models. In the special case where n = 0, the seasonal system is
decoupled in the original non-seasonal system studied in (Aguiar et al., 2008,
2009) with 8 = fp and the augmented oscillator described in Appendix 4.A,
by system Eq. (4.4). It is easy to show that the augmented system with
system Eq. (4.4) is Zo-symmetric just as the original seasonal model (system
Eq. (6.11)). This has consequences for the type of bifurcations to be expected.
If the non-seasonal system possesses a Hopf bifurcation, the seasonally forced
system has a torus bifurcation.

In(ly
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Figure 4.3: Bifurcation diagram comparison between seasonal models.We plot
the varying ratio of the secondary infection contribution to the force of infec-
tion (¢) over the steady state or local maxima of logarithm of total number of
infected (In(7)). In a) bifurcation diagram for the low seasonal model without
import of infected, where the degree of seasonality n = 0.1 and in b) bifurca-
tion diagram for the high seasonal model with a low import of infected. Here,
the degree of seasonality n = 0.35 and the import factor p = 1070, These
bifurcation diagrams can be compared with Fig. 6.2b) for the non-seasonal
model (n = 0). The other parameter values are listed in Table 4.1. Notice
that for low seasonality without import factor, the infected go to very low
numbers, unrealistically low for any empirical epidemiological system.

The bifurcation diagrams for the seasonal models are shown in Fig. 6.4a)
and Fig. 6.4b). In Fig. 6.4a) the bifurcation diagram for the system with
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low seasonality (n = 0.1) is not very informative since we have many local
extrema, even for the most simple case of the torus. When increasing the
ratio of secondary infection contribution to the force of infection (¢ values),
the troughs become very low, with the logarithm of total infected going as low
as —160. By adding a low import of infected (p = 10719) into the seasonal
model, the logarithm of total infected does not pass below —16 (see Fig. 6.4b)),
avoiding the chance of extinction in stochastic systems with reasonable system
size.

In order to get more insight about the disappearance of the chaotic behav-
ior we study a two-parameter diagram (see Fig. 6.5) for each one of the models,
(non-seasonal, low seasonal and high seasonal with import of infected), where
the ratio of the secondary infection contribution to the force of infection ¢ and
the temporary cross-immunity rate « are varied simultaneously. The time se-
ries simulations (section 4.5) and state space plots (Appendix 4.B) are also
analyzed and the results are compared for the different case scenarios.

Bifurcation analysis of the low seasonal model

For the non-seasonal system, with 6 months of temporary cross-immunity
(o = 2y~ 1), there is a stable equilibrium that becomes unstable at a super-
critical Hopf bifurcation H at (¢ = 0.1133) leading to a stable limit cycle for
higher ¢ values (see Fig. 6.5a)). By adding low seasonal forcing (n = 0.1)
into the system, a torus bifurcation T'R appears at ¢ = 0.1145, slightly above
the Hopf bifurcation of the non-seasonal system (see Fig. 6.5b)). When a low
import factor (p = 10719) of infected is included into the high seasonal system
(n = 0.35), the torus bifurcation T'R is predicted by AUTO at ¢ = 0.13 (see
Fig. 6.5Db)).

These results show that on the right-hand side of the torus bifurcation T'R
possibly chaotic dynamics can occur. Therefore we continue our analysis with
the calculation of the Lyapunov exponent spectrum in Fig. 4.5.

Figure 4.5a) shows the Lyapunov spectrum in the parameter rage ¢ €
[0,1.2] for the low seasonal model where n = 0.1. The DLE in the chaotic
area goes up to A = 2 where the prediction horizon of the monthly peaks in
the time series is in the range of half a year. In Figure 4.5b) the Lyapunov
exponents are depicted in the parameter range ¢ € [0,0.2]. There is a stable
periodic solution which becomes unstable at a torus bifurcation. Using AUTO
we calculated a torus bifurcation TR at ¢ = 0.1145, slightly above the Hopf
bifurcation of the non-seasonal system at (¢ = 0.1133). Observe that the torus
bifurcation T'R in the seasonally forced system is close to the Hopf bifurcation
for the non-seasonal system. This is reasonable since seasonal forcing adds
complexity to the dynamics behavior, i.e. an equilibrium becomes a periodic
solution and a limit cycle becomes a solution on a torus, whether periodic

104



Figure 4.4: Two-dimensional parameter bifurcation diagram with the ratio
of secondary infection contribution to the force of infection ¢ and temporary
cross-immunity rate a as bifurcation parameters. In a) the Hopf bifurcation
line for the non-seasonal model, i.e. 7 = 0, in b) the torus bifurcation line
for the low seasonal model, i.e. n = 0.1, is close to the Hopf bifurcation line
for the non-seasonal model (n = 0) and in c) the torus bifurcation line for the
high seasonal model with low import factor, i.e. n = 0.35 and p = 107!, in
comparison with the Hopf bifurcation line for the non-seasonal model (n = 0).
The other parameter values are listed in Table 4.1
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Figure 4.5: For the low seasonal system, where temporary cross-immunity
rate o = 2y~ ', the recovery rate v = 52y~!, the infection rate fy = 2 - v,
the degree of seasonality n = 0.1 and birth and death rate u = 1/65y, in
a) the Lyapunov spectrum for the ratio of secondary infection contribution
to the force of infection ¢ € [0,1.2], the whole parameter region of interest,
in b) Lyapunov exponents for small values of the ratio of secondary infection
contribution to the force of infection ¢ € [0, 0.2], and in ¢) Lyapunov exponents
for the ratio of secondary infection contribution to the force of infection ¢ €
[0.3,0.5], the parameter region of onset of complexity.
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(one Lyapunov exponent zero), aperiodic (two Lyapunov exponents zero) or
chaotic (one Lyapunov exponent zero and at least one positive). For higher ¢
values the solution is restricted to the torus or a chaotic attractor.

In Figure 4.5¢) the Lyapunov exponents are depicted in the parameter
range ¢ € [0.3,0.5] for the same low seasonal case of n = 0.1. There is a
window in the chaotic region for ¢-values above the torus bifurcation TR
around ¢ = 0.44 where there is a single Lyapunov exponent equal to zero,
suggesting the existence of a stable limit cycle, which implies phase-locking.
Continuation of this solution with ¢ as free parameter reveals that this cycle,
that is a period-13 cycle, possesses a tangent bifurcation at ¢ = 0.431 and a
torus bifurcation at ¢ = 0.471. These two critical points enclose the period-13
window of stable periodic solutions. For detailed analysis on the attractors in
state space for the low seasonal seasonal, see Appendix 4.B.2.

Bifurcation analysis of the high seasonal model with import

In the analysis of the high seasonal model (n = 0.35) with low import of
infected individuals (p = 107!%), AUTO predicted a torus bifurcation TR at
¢ = 0.13. In Figure 4.6a) a little below that point the DLEs become positive,
indicating chaos. The discrepancies between the continuation versus Lya-
punov exponents calculation techniques happen due to long transients and
consequently long sampling times in the Lyapunov exponents calculation near
bifurcation points where one exponent becomes close to zero.
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Figure 4.6: For the high seasonal system (n = 0.35) with a low import of
infected (p = 1071Y), in a) Lyapunov exponents for the ratio of secondary
infection contribution to the force of infection ¢ € [0,0.4]. The second zero
Lyapunov exponent is at ¢ = 0.128, just before the torus bifurcation point
calculated by AUTO at ¢ = 0.13. In b) Lyapunov exponents for the ratio of
secondary infection contribution to the force of infection ¢ € [0.4,0.6]. In this
region a tangent bifurcation at ¢ = 0.406 and a torus bifurcation at ¢ = 0.522
is predicted by AUTO.
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Another interesting range of ¢ is a window in the chaotic region around
¢ = 0.44 where a stable limit cycle with period 12 exists. Hence in this
region phase-locking occurs. With AUTO we calculated a tangent bifurcation
at ¢ = 0.406 and a torus bifurcation at ¢ = 0.522 . The torus bifurcation
is also predicted very well comparing the results given in Figure 4.6b), where
the second zero Lyapunov exponent appears at ¢ = 0.522. The position of
the tangent bifurcation at ¢ = 0.406 is less clear from this figure obviously
due to numerical inaccuracies prone to the detection of bifurcation points via
integration in time instead of the calculation of the limit cycle by using a
boundary value problem and the calculation of the Floquet multipliers.

In the limiting case where the amplitude of the seasonal forcing is zero,
the torus bifurcation TR of the seasonally forced system coincides with the
Hopf bifurcation H of the non-seasonal system. The larger the amplitude of
the seasonal forcing 7 the higher the effects where the torus bifurcation occurs
at higher ¢ values. The same effect is found when adding the import factor of
infected p into the seasonal system. For detailed analysis on the attractors in
state space for the high seasonal seasonal model with import, see Appendix
4.B.3.

4.5 Time series

This study is completed with a time series analysis where the results are shown,
leading to a discussion on its implications for data analysis. For the seasonal
forcing to be inserted into system Eq. (6.11) we use Eq. (6.5) with w = 27 - %
and T = 1 year as monitoring data of dengue suggest. For the moment we
assume perfect sinusoidal forcing without any phase shift, hence ¢ = 0.

In this section, we compare the time series simulations and respective state
space plots for the number of susceptible versus logarithm of the overall in-
fected for the non-seasonal and seasonal scenarios. For a population N = 100,
where the initial conditions are given by S = 70, I; = 20, I, = 10, and
Ry, Ry, 51,59, 112, 121, R = 0, fulfilling the condition of constant population
sizte N=S+ 1L+ 1+ R+ Ro+ 51+ S50+ s + 151 + R, we discarded 5000
years of transients. The following parameters are fixed as shown in Table 4.1,
temporary cross-immunity rate o = 2y~ !, recovery rate v = 52y !, infection
rate 3y = 2 -7, seasonality n = 0.35, import factor p = 10719, birth and death
rate u = 1/65y and the ratio of secondary infection contribution to the force
of infection ¢ = 0.9, as initial attempt for the parameter estimation (Aguiar
et al., 2011 b; Stollenwerk et al., 2012).

In Fig. 4.7a) the time series simulation results for the total number of
infected (I; + Iz + I12 + I21) in the non-seasonal system (n = 0), previously
studied in (Aguiar et al., 2008), is shown. Besides showing an irregular pattern
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Figure 4.7: Time series simulations. In a) time series simulation for the non-
seasonal model (n = 0). In b) time series simulation for the low seasonal
model, with seasonality 7 = 0.1. In c¢) time series simulation for the seasonal
model with a low import of infected. Here, the degree of seasonality n = 0.35
and the import of infected p = 1071, The absolute numbers on the y-axes
indicate percentage of the total population.
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of outbreaks that happens every 5 years, the non-seasonal system and its time
series are not able to represent dengue fever epidemiology that is characterized
as a yearly cycle of incidences. By adding low seasonality (n = 0.1) into the
system, the epidemic outbreaks appear every year (see Fig. 4.7b)). However,
between two large outbreaks there is a very low number of cases in subsequent
years, which is also not data alike (see Fig. 4.9a), for example).

In Fig. 4.7c), the time series simulation in the high seasonal (n = 0.35)
system with a low import (p = 107!0) of infected contributing to the force of
infection is shown. The addition of import into the seasonal system gives a
much more realistic pattern of dengue fever epidemics, with irregular, yearly
and smooth outbreaks. The system has a reasonable size (the number of
infected stays quite away from zero), avoiding the chance of extinction in
stochastic systems. Observe that very high import of infected only leads to
periodic solution, whereas for import of In(p) ~ —18 and below, complex
behavior is observed (see Appendix 4.D, Fig. 4.16).

4.5.1 Lyapunov exponents and predictability:

In this section, the Lyapunov spectrum for both the non-seasonal model and
the seasonal model with import are shown and compared concerning the pre-
diction horizon of the monthly peaks in the multi-strain dengue model time
series. We take as an example the DLE for ¢ = 0.9 in the region where the
system is chaotic (positive DLE). Figure 4.8a) shows the Lyapunov spectrum
for the non-seasonal system previously studied in (Aguiar et al., 2008, 2009).
There are only negative exponents where the ratio of secondary infection con-
tribution to the force of infection is in the interval ¢ € [0,0.106] indicating
a steady state point dynamic. At ¢ = 0.108 the DLE is zero (up to certain
numerical accuracy of order 107?), indicating a periodic solution (period one
or limit cycle dynamic). At ¢ = 0.516 the DLE becomes consistently positive,
indicating chaotic behavior up to ¢ = 0.994. The low noisy level of the second
largest Lyapunov exponent around its theoretical value of zero, indicates that
the DLE is really positive. For ¢ in the interval ¢ € [0.994, 1.2] the system gets
stabilized again, showing only periodic solutions (zero DLE). For the chaotic
region of ¢ = 0.9, the DLE = 0.04 giving approximately 25 years of predic-
tion horizon in the monthly time series (see Fig. 4.8b)). In order to get a
qualitative insight into the predictability in the monthly sampled time series,
i.e. to show how the original system behaves under a small perturbation, we
plot two different trajectories of the same system (for the non-seasonal model
in Fig. 4.8b), and for the high seasonal model with a low import of infected
in Fig. 4.8d)), where the perturbed system (black line) is compared with the
original model simulation (red line). To get the trajectory of the perturbed
system, we kept the last point of the transient of the original system and use
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Figure 4.8: Qualitative insight into the predictability in the monthly time
series. In a) we show the Lyapunov spectrum for the non-seasonally forced
dengue model where the first 5 Lyapunov exponents are given. The DLE in
the chaotic region of the ratio of secondary infection contribution to the force
of infection ¢ = 0.9 is A = 0.04 giving ~ 25 years of prediction horizon in the
monthly time series. In b) the monthly time series simulation for ¢ = 0.9 is
shown where the original trajectory (red line) is compared with the perturbed
trajectory (black line). In ¢) we show the Lyapunov spectrum for the high
seasonal model (1 = 0.35) with low import factor (p = 10719) where the first
5 Lyapunov exponents are given. Here, the DLE in the chaotic region of the
ratio of secondary infection contribution to the force of infection ¢ = 0.9 is
A = 0.118 giving = 8.5 years of prediction horizon in the monthly time series.
In d) we show the monthly time series simulation for ¢ = 0.9 where the original
trajectory (red line) is compared with the perturbed trajectory (black line).
For the other parameter values used here see Table 4.1.
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those values as starting values to compute the new and perturbed trajectory.
The perturbation is given by S, = S+ R-€ and R, = R - (1.0 — €), where
e = 0.001.

The same exercise was done for the seasonal model with low import of
infected (see Fig. 4.8c) and Fig. 4.8d)). For the seasonal system with import,
the zero Lyapunov exponent is visible indicating a period one dynamic from
¢ between 0 to 0.122 where another slightly positive exponent appears (A =
0.000145). From ¢ between 0.122 to 1.2 we have complex dynamics with torus
bifurcations (2 zero exponents) up to hyperchaos (2 positive exponents). The
chaotic region of ¢ = 0.9, shows the DLE= 0.118 giving approximately 8.5
years of prediction horizon in the monthly time series. It is clear that the
addition of seasonal forcing into the system by itself decreases the practical
predictability (see Fig. 4.5a)), however, the addition of a low import into the
seasonally forced system helps to get a more complex dynamics and a better
prediction horizon in the monthly time series.

4.5.2 Implications for data analysis:

Physicians in Thailand are trained to recognize and treat dengue fever and
practically all cases of DHF and DSS are hospitalized. A system for reporting
communicable diseases including DHF /DSS was considered fully installed in
1974 and the data bank of DHF and DSS is available at the Ministry of Public
Health, Bangkok (Chareonsook et al., 1999). Thailand is the world’s 50th
largest country in terms of total area, and the 20th most-populous country,
with approximately 66 million people. Thailand is divided into 75 provinces
(changwat) plus the capital Bangkok which is a special administrative area.
The provinces are geographically grouped into 6 regions, North, North-East,
West, Central, East, and South (Wikipedia, 2011). The inspection of the
available DHF incidence data in Thailand shows a smooth behavior with a
well defined maximum each year of irregular height, for the North, North-
East, and West Provinces (see Fig. 4.9a) for example, the DHF incidence data
for Chiang Mai Province) whereas for the Central, East, and South Provinces
the data is very noisy linked with a low endemicity of DHF cases. We take the
Province of Chiang Mai as a case study where the empirical DHF incidence
data and the time series simulation for the seasonal model with import (see
Fig. 4.9b)) are compared (see Fig. 4.10).

The seasonal model with import shows complex dynamics and qualitatively
a very good result when comparing empirical DHF data and simulation results
(see Fig. 4.10). However, the extended model needs to be parametrized on data
referring to incidence of severe disease (Aguiar et al., 2011 b; Stollenwerk et al.,
2012). The ability to predict the future of the dengue outbreaks by analyzing
the available epidemiological data via mathematical models ultimately aims to
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Figure 4.9: In a) we show the time series of DHF incidence in the Province
of Chiang Mai in the North of Thailand. The population size is 1649457
(Chareonsook et al., 1999). In b) we show a simulation for the seasonal dengue
model with import. We plot the secondary infections (Ij2 + I1) over time.
The initial conditions and parameters were fixed as it follows. N = 1650000,
S = 1.250.000, I; = 250000. 5000 years of transients were discarded. The
temporary cross-immunity rate is o = 2y~!, the recovery rate v = 52y~ 1, the
infection rate By = 2 - =y, the ratio of secondary infection contribution to the
force of infection ¢ = 0.9, the birth and death rate y = 1/65y, seasonality
n = 0.35, the phase ¢ = 0, and the import factor p = 10719.
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Figure 4.10: Empirical DHF incidence data are matched with the seasonal
two-strain model with import simulation.

112



provide a tool to guide policies of prevention and control of the dengue virus
transmission, including the implementation of vaccination programs when the
dengue fever vaccine will be accessible.

4.6 Discussion and conclusions

In this manuscript a comparative study between three different scenarios (non-
seasonal, low seasonal and high seasonal with a low import of infected individ-
uals) was performed. The role of seasonality and import of infected individuals
in such systems were considered as biologically relevant effects determining the
dynamical behavior of the system.

We integrated the use of numerical bifurcation analysis and time series
analysis techniques for the study of the long term dynamics of the non-
autonomous system. Then the Lyapunov exponent, which is a generalization
of both an eigenvalue and a Floquet multiplier being used for the stability
analysis of respectively equilibria and limit cycles, were used directly for the
determination of aperiodic or chaotic attractors.

Different extensions of the classical single-strain SIR model show a rich
dynamic behavior. Multi-strain dynamics has previously been demonstrated
to show critical fluctuations with power law distributions of disease cases,
exemplified in meningitis epidemiology (Stollenwerk & Jansen, 2003 a; Stol-
lenwerk et al., 2004). Dengue models including multi-strain interactions via
ADE but without temporary cross-immunity period e.g. (Ferguson et al.,
1999; Schwartz et al, 2005; Billings et al., 2007) have also shown deterministic
chaos when strong infectivity on secondary infection was assumed (¢ > 1).
The addition of temporary cross-immunity period in such models, shows also
a new deterministically chaotic attractor in an unexpected parameter region
of reduced infectivity on secondary infection (¢ < 1) (Aguiar & Stollenwerk,
2007; Aguiar et al., 2008, 2009), i.e. deterministic chaos was found in a wider
parameter regions. When a low import of infected individuals is introduced
into this system, the chaotic dynamics for ¢ > 1 disappears, whereas for the
parameter region of ¢ < 1 the chaotic dynamics remains (see Appendix 4.C,
Fig. 4.15).

In (Stone et al., 2007) the seasonally forced SIR system can show already
deterministic chaos. Similarly, the introduction of seasonally forcing widens
the parameter range of ¢ where chaotic dynamics occurs, again also for ¢ > 1.
Therefore, it is clear that the addition of seasonal forcing into the system
decreases the practical predictability of the dynamical system (see subsection
4.5.1). However, in order to be able to reproduce signals of a yearly cycle in
dengue incidence, the addition of seasonal forcing is essential. Using the same
parameter set as in (Aguiar et al., 2008) and including a seasonal forcing and
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a low import of infected individuals into our previous model (Aguiar et al.,
2008) we get already a qualitatively very good result when comparing empirical
DHF data and simulation results. Together with an import of In(p) ~ —18
and below, the system shows the expected complex dynamics (see Appendix
4.D, Fig. 4.16) to explain the fluctuations observed in the available empirical
data (see Fig. 4.10).

This suggests that this parameter set can be the starting set for a more de-
tailed parameter estimation procedure. Such a technical parameter estimation
is notoriously difficult for chaotic time series but temporally local approaches
are possible (Ionides et al., 2006; He et al., 2010).

Being able to predict future outbreaks of dengue in the absence of human
interventions is a major goal if one wants to understand the effects of con-
trol measures. Even after a dengue virus vaccine has become accessible, this
holds true for the implementation of a vaccination program. For example, to
perform a vaccine trial in a year with normally low numbers of cases would
make statistical tests of vaccine efficacy much more difficult than when it was
performed in a year with naturally high numbers of cases. Thus predictability
of the next season’s height of the dengue peak on the basis of deterministic
balance of infected and susceptible would be of major practical use.

4.A Seasonal forcing

In order to be able to use computer packages for autonomous systems such as
AUTO (Doedel & Oldeman, 2009), the ODE equation system (6.11) can be
augmented with the following two equations

i = —wy+c-x(n2—($2+y2))
(4.4)
g = wr+c yn®— (2 +y?)

hence, a Hopf oscillator. The stable periodic solution of system Eq. (4.4) reads
x(t) =mn-cos(wt) , y(t) =n-sin(wt) (4.5)
and is without shift (¢ = 0) when choosing appropriate initial conditions

(z(to) = n, y(to) = 0). This sinusoidal signal x(¢) is fed into the epidemic
model (system Eq. (6.11)) as

pt) = o (L+=(t) - (4.6)

The system Eq. 6.11) augmented with system Eq. (4.4) is Zg-symmetric
just as the original non-seasonal and seasonal system.
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The constant ¢ > 0 in the Hopf oscillator does not influence the solution
(z(t),y(t)) in stationarity, but only the convergence toward it, hence con-
trols the stability of the Hopf oscillation and leaves the system Eq. (6.11)
unchanged. The Hopf oscillator can be solved explicitly in polar coordi-
nates, hence x = r - cos(d) and y = r - sin(d), or inverted r = /22 + y?
and ¥ = arctan(y/x).

The ODE system is in polar coordinates given by

Fo= c-r(n®—=r? (4.7)

and solutions are

r(t) = 7 <1 - <1 - Z;) e—2’720<t—t0>> : (4.9)

9(t) = Po+uwlt—tg) . (4.10)

N|=

From this we can get the solution in Cartesian coordinates

Ft) =n-cos(W(t) §(t) = n-sin(d(1)) (4.11)

with 0 < t < T where T = 2w. This periodic solution is stable because we
have limy_, o, r(t) = 1, independent of rg > 0.

In AUTO (Doedel & Oldeman, 2009) the stability of the periodic solu-
tion Z(t),9(t), 0 # t < T, may be analyzed within the framework of Floquet
theory by calculation of the multipliers, the eigenvalues of the so called mon-
odromy matrix. For a detailed discussion the interested reader is referred to
(Kuznetsov, 2004). We continue with the analysis of the so called Poincaré
map. Since the system is periodically forced this map is also called a strobo-
scopic map. The analytical expression reads

_1
Tnel =1 (1 — (1 — Z—z) 6_47”720) : (4.12)

n

where n € N and initially for n = 0 we have ¢y > 0. Asymptotically we get for
large n: 7, ~ n and therefore the multiplier equals the derivative evaluated at

r=mn
A =npedm’e (4.13)

This single multiplier is less than 1 and therefore the periodic solution is stable.
Since this Hopf-system is decoupled from the system (6.11)
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and therefore the Lyapunov exponents of the augmented system are those
of the original system (6.11) together with zero (Haken, 1983) and expression
(4.13). For the Lyapunov spectrum of the seasonal dengue models with pa-
rameter ¢ between ¢ = 0 and ¢ = 1.2, we plot the first 6 exponents coupled
with the Hopf oscillator where the parameters are 7 = 0.1, w = 2 - 7 and con-
traction rate ¢ = 5000, hence from the Hopf oscillator the Lyapunov exponent
are \1 = —20772 = —100 and Xy = 0.

4.B Attractors in state space

In this section we show the transitions between different attractors in state
space plot for the three studied scenarios, the non-seasonal model (see 4.B.1),
the low seasonal model (see Appendix 4.B.2) and the seasonal model with im-
port of infected (see Appendix 4.B.3). The parameters are given in Table 4.1.
We plot the susceptibles S over the logarithm of total number of infected
In(l; + Io + Lio + I21).

4.B.1 Attractors in state space for the non-seasonal multi-
strain dengue model
Figures 4.11 and 4.12 show the attractors in state space plot for the non-

seasonal model.

4.B.2 Attractors in state space for the low seasonal multi-
strain dengue model

Figure 4.13 shows the attractors in state space plot for the low seasonal model.
4.B.3 Attractors in state space for the seasonal multi-strain
dengue model with import of infected

Figure 4.14 shows the attractors in state space plot for the the seasonal model
with import of infected.
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Figure 4.11: In a) the state space plot for ¢ = 0.1133, the Hopf bifurcation
point calculated by AUTO. 2000 years of transients were discarded, insufficient
to obtain the expected simple limit cycle. In b) the attractor for ¢ = 0.1133.
It is really a limit cycle after discarding a sufficiently long transient of 40000
years. In c) the attractor for ¢ = 0.4115 with 2000 years of transients dis-
carded, the pitchfork bifurcation point calculated by AUTO. In d) a chaotic
attractor, and in e) a torus attractor both found for ¢ = 0.5507. Those attrac-
tors were stable for very long transients of 10000 years suggesting a coexistence
of attractors.
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Figure 4.12: In a) the chaotic attractor from the main bifurcation branch,
and in b) a coexisting attractor for in the isola region, both when ¢ = 0.71.
The coexistence of attractors was found when changing the initial conditions.
In ¢) the chaotic attractor, in d) the coexisting attractor at ¢ = 0.934. The
coexistence of attractors was found when changing the initial conditions. In
e) attractor with two limit cycles coexisting in ¢ = 0.9921, the pitchfork
bifurcation point calculated by AUTO.
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Figure 4.13: Attractors in state space plot for the low seasonal model. In a)
the period one attractor for ¢ = 0.1, in b) the torus attractor for ¢ = 0.114535,
the torus bifurcation point calculated by AUTO. In c) the torus attractor for
¢ = 0.3. In d) the attractor for ¢ = 0.431, in e) the period 13 attractor
for ¢ = 0.44 and in f) the torus attractor for ¢ = 0.471. In g) the chaotic
attractor for ¢ = 0.5, in h) the chaotic attractor for ¢ = 0.8 and in i) the
chaotic attractor for ¢ = 1.
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Figure 4.14: Attractors in state space plot for the the seasonal model with
import of infected. In a) the torus attractor for ¢ = 0.13, the torus bifurcation
point calculated by AUTO. In b) and in ¢) the torus attractor for ¢ = 0.3 and
¢ = 0.4 respectively. For those ¢ values, the Lyapunov spectrum shows a
slightly positive exponent indicating chaos in the torus. In d) the attractor for
¢ = 0.5, in e) torus attractor for ¢ = 0.522165, the torus bifurcation calculated
by AUTO, and in f) the chaotic attractor found in the region of ¢ between
0.5 to 1. Here for ¢ = 0.6.
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4.C The non-seasonal model with import factor ver-
sus the low seasonal model with import factor

In this section we show the bifurcation diagram comparison between the orig-
inal non-seasonal model Aguiar et al. (2008), the non-seasonal model with
import and the low seasonal model with import. The addition of a low im-
port factor into the original non-seasonal system gives a stable limit cycle
as the unique attractor (see Fig. 4.15b)), in contrast with the results for the
original non-seasonal models analyzed in (Ferguson et al., 1999; Aguiar et al.,
2008, 2009), where two chaotic windows were found (see Fig. 4.15a)) just by
assuming temporary cross-immunity period between recurrent dengue infec-
tions. Adding low seasonality to this system brings the chaotic attractors back
for even larger parameter regions (see Fig. 4.15c)). These results are impor-
tant since we expect complex dynamics to explain the fluctuations observed
in empirical data, when the ratio of secondary infection contribution to the
force of infection could be slightly smaller or larger 1, not needing to restrict
the ADE effect to one or another region in parameter space.
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Figure 4.15: Bifurcation diagram comparison between the non-seasonal model,
the non-seasonal model with import and the low seasonal model with import.
In a) we show the bifurcation diagram for the original non-seasonal model
previously studied in (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008, 2009),
where two chaotic windows were found. A new chaotic window in a ¢ region
where the ratio of secondary infection contribution to the force of infection is
smaller than 1 and also the classical chaotic window found previously in (Fer-
guson et al., 1999; Aguiar et al., 2008), where the ratio of secondary infection
contribution to the force of infection is much larger than 1, actually ~ 3. In
b) we show the bifurcation diagram for the non-seasonal model described in
(Aguiar et al., 2008) with addition of a low import of infected. Here we see
that the import removes the complex dynamics in the region of ¢ lager 1 where
the stable limit cycle (crossing the right boundary of Fig. 6.2b) is the unique
attractor. In c¢) we show the bifurcation diagram for the extended multi-strain
model, the low seasonal (7 = 0.1) model with import (p = 10719), where the
chaotic attractors are back for even larger parameter regions.
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4.D Lyapunov exponents and import factor

In this section we extend the analysis of the seasonal model with import of
infected by presenting a bifurcation analysis where the import parameter p
is varying. The Lyapunov spectrum together with the bifurcation diagram
confirm the importance of adding import into the dynamical model. An im-
port factor In(p) = —18 or less leads to complex behavior while with a very
high import factor of infected periodic solutions are observed (see Fig. 4.16).
The understanding of such complex scenario opens possibilities to analyze the
available data.
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Figure 4.16: Bifurcation diagram for the import parameter and its Lyapunov
spectrum. Here we vary the import factor p (in log scale). The other parame-
ters are fixed as it follows: temporary cross-immunity o = 2y~!, recovery rate
v = 52y~ !, secondary infection contribution to the force of infection ¢ = 0.9,
the infection rate By = 2 - v, degree of seasonality n = 0.35, and birth and
death rate pu = 1/65y.
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Chapter 5

Scaling of stochasticity in
dengue hemorrhagic fever
epidemics

Maira Aguiar, Bob W. Kooi and Nico Stollenwerk (2012)
Accepted to be published in Math. Model. Nat. Phenom.

In this paper we analyze the stochastic version of a minimalistic multi-
strain model, which captures essential differences between primary and sec-
ondary infections in dengue fever epidemiology, and investigate the interplay
between stochasticity, seasonality and import. The introduction of stochas-
ticity is needed to explain the fluctuations observed in some of the available
data sets, revealing a scenario where noise and complex deterministic skele-
ton strongly interact. For large enough population size, the stochastic system
can be well described by the deterministic skeleton gaining insight on the rel-
evant parameter values purely on topological information of the dynamics,
rather than classical parameter estimation of which application is in general
restricted to fairly simple dynamical scenarios.

5.1 Introduction

Recently, we have investigated an epidemic multi-strain model motivated by
dengue fever epidemiology, which shows deterministic chaos in wide parameter
regions (Aguiar et al., 2008, 2009). The addition of seasonal forcing, mimick-
ing the vectorial dynamics, and a low import of infected individuals, which is
realistic in the dynamics of infectious diseases epidemics, showed complex dy-
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namics and qualitatively a good agreement between empirical DHF monitoring
data and the obtained model simulation (Aguiar et al., 2011 a).

Classical examples of chaos in epidemiological models are childhood dis-
eases with extremely high infection rates so that a moderate seasonal forc-
ing can generate Feigenbaum sequences of period doubling bifurcations into
chaos. In other infectious diseases, much lower forces of infection have to
be considered leading to further conceptual problems with noise affecting the
system more than the deterministic part, leading even to critical fluctuations
with power law behavior, when considering evolutionary processes of harmless
strains of pathogens versus occasional accidents of pathogenic mutants (Stol-
lenwerk & Jansen, 2003 b). Only explicitly stochastic models, of which the
classical ODE models are mean field versions, can capture the fluctuations
observed in time series data (Stollenwerk et al., 2004).

In this paper, we investigate the role of dynamic noise in understanding epi-
demiological systems, such as dengue fever, by deriving a stochastic version of
ordinary differential equations from Markov processes for discrete populations.
Our model has the minimal degree of complexity to generate both primary and
secondary dengue infections. The introduction of stochasticity is needed to ex-
plain the fluctuations observed in some of the available data sets, revealing a
scenario where noise and complex deterministic skeleton strongly interact. For
large enough population size, the stochastic system gives rise to the observed
time series incidences. The classical parameter estimation and its application
are generally restricted to fairly simple dynamical scenarios and therefore a
qualitative analysis of epidemiological data would have good chances to give
insights into the relevant parameter values purely on topological information
of the dynamics.

5.2 Modeling dengue fever epidemiology

According to the estimates giving by (CDC, 2011), dengue infection is a leading
cause of illness and death in the tropics and subtropics. More than one-third of
the world’s population are living in areas at risk of acquiring dengue infection
and it is estimated that every year, there are 70—500 million dengue infections,
generating 36 million cases of dengue fever (DF) and 2.1 million cases of dengue
hemorrhagic fever (DHF) that without proper medical care the fatality rates
can exceed 20% (PDVI, 2011; WHO, 2009). There are four antigenically dis-
tinct but closely related dengue viruses, belonging to the family Flaviviridae,
designated by DEN-1, DEN-2, DEN-3, and DEN-4. Infection by one serotype
confers life-long immunity to only that serotype and a short period of tempo-
rary cross-immunity to a subsequent infection with other serotypes (Halstead,
1994; Matheus et al., 2005; WHO, 2009). Field researchers in dengue have
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found that severe disease is 15 — 80 times more likely in secondary then in
primary infections and was positively associated with antibody-dependent en-
hancement (ADE) of infection of mononuclear phagocytes. Infection by an
antibody-virus complex suppresses innate immune responses, increasing intra-
cellular infection and generating inflammatory citokines and chemokines that,
collectively, result in enhanced disease (Halstead, 1982, 1994, 2003; Mackenzie
et al., 2004; WHO, 2009; Dejnirattisai et al., 2010; Guzman et al., 2010). Treat-
ment of uncomplicated dengue cases is only supportive, and severe dengue
cases require hospitalization and careful attention to fluid management and
proactive treatment of hemorrhagic symptoms (CDC, 2011; WHO, 2009). At
present, there is no vaccine for dengue viruses, although several candidates are
at various stages of development.

Dengue epidemiology dynamics is well known to be particularly complex
with large fluctuations of disease incidences. Mathematical models describ-
ing the transmission of dengue viruses have focused on the ADE effect and
temporary cross-immunity trying to explain the irregular behavior of dengue
epidemics. Besides the fact that disease propagation is an inherently stochastic
phenomenon, dengue models are mainly expressed mathematically as a set of
deterministic differential equations which are easier to analyze. The mean field
approximation is a good approximation to be used in order to understand bet-
ter the behavior of the stochastic systems in certain parameter regions, where
the dynamics of the mean quantities are approximated by neglecting correla-
tions. However, it is only stochastic, as opposed to deterministic, models that
can capture the fluctuations observed in some of the available time series data.

5.3 The stochastic model

The various multi-strain models currently investigated are essentially of SIR-
type. In the simple SIR epidemics without strain structure of the pathogens
we have the following reaction scheme for the possible transitions from one to
another disease related state, susceptibles S, infected I and recovered R,

S+1 14
I % R (5.1)
R % S



for a host population of N individuals, with contact and infection rate (3,
recovery rate v and temporary immunity rate a. The determinstic ODE model

p

$ = aR-5-1-8
I = ﬁ.I.S—fﬂ (5.2)
N

R = ~vI — aR

describes in mean field approximation (S - I) ~ (S) - (I) the dynamics of the
mean values, e.g. (I) := Zgzo 2?7:0 I p(S,1,t), where the initial values
determine the time course of the system for all times. For more details on the
calculations see e.g. (Stollenwerk & Jansen, 2011).

For the SIR model, the dynamics of probabilities in the form of a master
equation (van Kampen, 1992) reads

dp(S,1,t)

gt = %(SH)(I—U p(S+1,1—1,t) (5.3)
+ (I +1) p(S,I+1,t)
+ a(N=(S-1)-1I) p(S—111)

]€S]+ryj+a(N—S—I)) p(S,1,1)

|
A/~

This process can be simulated by e.g. the Gillespie algorithm (Gillespie, 1976,
1978) giving stochastic realizations. Only few stochastic processes can be
solved explicitly, however, the mean field approximation is a good approxima-
tion to be used in order to understand the behavior of the stochastic systems
in certain parameter regions.

Multi-strain dynamics are generally modeled with more extended with SIR-
type models, dividing the host population into susceptible, infected and re-
covered individuals with subscripts for the respective strains. The stochastic
version of the multi-strain dengue model is now in complete analogy to the
previously described SIR model, and the mean field ODE system for the multi-
strain dengue model can be read from the following reaction scheme
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S+, — L+

¢
S+ I ) I + Iy
n - R
Rl — 5 (5.4)
S1+ Iy pe) Iis + Io
Sy + Io ) Iio + 119
I, L

describing the transitions for first infection with strain 1 and secondary infec-
tion with strain 2. For the reverse process, where the first infection is caused
by strain 2 and the secondary infection is caused by strain 1, the same reaction
scheme can be used to describe the transitions by just changing labels. The
demographic transitions are S, I, Is, R1, Ro, S1, 52, I12, 121, R .8 defining
the system of two strains completely (for more information on the determin-
istic ODE system and its parametrization, see (Aguiar et al., 2008, 2011 a)).
The parameter § takes the seasonal forcing into account as a cosine function,
B(t) = Po(1 4 ncos(wt)), where [y is the basic infection rate and 7 is the de-
gree of seasonality. The parameter ~y is the recovery rate, « is the temporary
cross-immunity rate and ¢ is the ratio of secondary infection contribution to
the force of infection. A low import factor is also included (S - I) where
S can be any susceptible like 5,57 or So and I respectively Iy, Io, I19 or Io.
In the simple SIR system, system Eq. (5.2), this gives S = aR — %S(I + pN)
etc.

We assume no epidemiological asymmetry between strains, i.e. infections
with strain one followed by strain two or vice versa contribute in the same way
to the force of infection. Here, the only relevant difference concerning disease
transmissibility is that the force of infection varies accordingly to the number
of previous infections the hosts have experienced. In a primary infection the

individuals transmit the disease with a force of infection % whereas in a

secondary infection the transmission is given with a force of infection %ﬁl
where ¢ can be larger or smaller than unit, i.e. increasing or decreasing the
transmission rate. For the stochastic simulations the parameter values are
given in Table 5.1, if not otherwise explicitly stated.

The first recorded epidemic of DHF in Thailand (population of approxi-
mately 66 million people (Wikipedia, 2011)) was in 1958 (WHO, 2009). The
co-circulation of all four dengue serotypes and their capacity to produce severe
dengue disease was demonstrated as early as 1960 in Bangkok, Thailand (Hal-
stead et al., 1969). DHF occurred first only in Bangkok, but was disseminated
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Table 5.1: Parameter set, rates given in units per year, ratio without unit

Par.  Description Values Ref

] new born susceptible rate 1/65y (UNWPP, 2011)

¥ recovery rate 52y~ (WHO, 2009)

Bo infection rate € [v,27] (Ferguson et al., 1999)

« temporary cross-immunity rate 2y~! (Matheus et al., 2005)

) ratio of contrib. to force of inf. 0.9 (Aguiar et al., 2011 a)
degree of seasonality €10,0.2] (Aguiar et al., 2011 a)

In(p) import factor € [-17,—15.5] (Aguiar et al., 2011 a)

to the whole region during the 1970s (Gubler, 2002; Halstead et al., 1969;
Chareonsook et al., 1999). Physicians in Thailand are trained to recognize
and treat dengue fever and practically all cases of DHF and DSS are hospi-
talized. A system for reporting communicable diseases including DHF /DSS
was considered fully installed in 1974 and the data bank of DHF and DSS
is available at the Ministry of Public Health, Bangkok (Chareonsook et al.,
1999).

The inspection of the available DHF incidence data in Thailand shows a
smooth behavior with a well defined maximum each year of irregular height
for the Northern Provinces as opposed to the Central and Southern Provinces
where the data is very noisy linked with a low endemicity of DHF cases.
In (Aguiar et al., 2011 a) the Province of Chiang Mai was taken as a case
study and the empirical DHF incidence data was compared with the time
series simulation obtained from the seasonal multi-strain model with import
giving qualitatively a very good result, suggesting that the used parameter set
could be the starting set for a more detailed parameter estimation procedure.
However, in order to describe the noisy dynamics in Bangkok for example the
introduction of stochasticity is even more important.

In Fig. 5.1a) we show the DHF incidences for Chaing Mai (in black), one
of the Northen Provinces of Thailand, with population size N = 1650000
(UNWPP, 2011) compared with one stochastic realization for the multi-strain
dengue model (in red) where the infection rate Sy = 27, the degree of sea-
sonality 7 = 0.2 and the import In(p) = —15.7. In Fig. 5.1b) the DHF inci-
dences for Bangkok (in black), the capital of Thailand, with population size
N = 6600000 (UNWPP, 2011) is compared with one stochastic realization for
the multi-strain dengue model (in red) where the infection rate Gy = 1.1, the
degree of seasonality n = 0.06 and the import In(p) = —16.9. The stochastic
approach is able to describe both types of the dynamics, the smooth data
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Figure 5.1: Empirical DHF incidence data (in black) matched with one
stochastic realization (in red) for the seasonal multi-strain dengue model with
import. In a) we show the incidences for Chaing Mai. For the stochastic
simulation the infection rate is Gy = 2+, the degree of seasonality n = 0.2 and
the import In(p) = —15.7. In b) we show the incidences for Bangkok. For the
stochastic simulation the infection rate is 8y = 1.1+, the degree of seasonality
1 = 0.06 and the import In(p) = —16.9. The other parameter values are listed
in Table 5.1
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with a well defined maximum each year of irregular height, found in the high
endemic regions of Thailand, e.g. in the Chiang Mai Province (see Fig. 5.1a))
and also the noisy data found mainly in low endemic regions of Thailand, e.g.
in Bangkok (see Fig. 5.1b)).

Using the same values for the biological parameters given in (Aguiar et
al., 2008, 2011 a), the fluctuations observed in the empirical data were qual-
itatively well described in the stochastic model. Under population noise low
seasonal forcing was needed to represent the DHF incidences in the Province
of Chiang Mai as opposed to the deterministic approach where the combina-
tion seasonality and import showed complex dynamics. For the representation
of the DHF incidences in Bangkok, only the stochastic model could capture
the noisy behavior where even lower seasonal forcing was needed as well a low
infection rate. A value of Gy = 1.1 - v is qualitatively in good agreement with
the data (see Fig. 5.1b)) and hence the import factor p is here, more than the
direct infectivity (3, the driving force of the epidemic pattern in such a low
endemic region.

5.4 The role of import

In our model, the parameter p is the import factor, related with the possibility
of an individual to get infected outside the studied population and then bring
the infection into the population that this individual belongs to, mimicking
the imported cases of the disease in a defined population. Equivalently an
infected visitor to the region under consideration who passes the infection to a
susceptible in the population of size N has the same effect on the studied pop-
ulation. Hence, we do not need to distinguish this two scenarios of susceptibles
traveling outside or infected traveling inside the region under consideration.
In total, this captures the imported infection that comes from an external
source.

In Figure 5.2 we present the bifurcation diagram comparison between the
non-seasonal model, the non-seasonal model with import and the seasonal
model with import. The bifurcation diagram for the original non-seasonal
model previously studied in (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008,
2009), shows two chaotic windows, a new chaotic window in a ¢ region where
the ratio of secondary infection contribution to the force of infection is smaller
than 1 and also the classical chaotic window found previously in (Ferguson et
al., 1999; Aguiar et al., 2008), where the ratio of secondary infection contribu-
tion to the force of infection is much larger than 1, actually around ¢ = 3 (see
Fig. 5.2a)). The bifurcation diagram for the non-seasonal model described
in (Aguiar et al., 2008) with addition of a low import of infected shows that
the addition of import in such a system removes the complex dynamics in
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the region of ¢ larger 1 where the stable limit cycle is the unique attractor
(see Fig. 5.2b)). The bifurcation diagram for the seasonal model with import
described in (Aguiar et al., 2011 a), shows that the combination of seasonal-
ity and import brings back the chaotic attractors for even larger parameter
regions (see Fig. 5.2b)).

These results are important since we expect complex dynamics to explain
the fluctuations observed in empirical data, when the ratio of secondary infec-
tion contribution to the force of infection could be slightly smaller or larger 1,
not needing to restrict the ADE effect to one or another region in parameter

R

’!'
Figure 5.2: Bifurcation diagram comparison between the non-seasonal model,
the non-seasonal model with import and the seasonal model with import.
Here, the local maxima of the logarithm of the total number of infected In(/) =
In(I; + Iy + I1a + I21) are plotted against the ratio of the contribution of the
secondary infections ¢ to the force of infection. In a) we show the bifurcation
diagram for the original non-seasonal model previously studied in (Aguiar et
al., 2008, 2009), in b) we show the bifurcation diagram for the non-seasonal
model described in (Aguiar et al., 2008) with addition of a low import of
infected and in c¢) we show the bifurcation diagram for the seasonal model
with import described in (Aguiar et al., 2011 a).
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In the multi-strain dengue model the susceptible individuals without a pre-
vious dengue infection can get infected with two different infection rates, due
to the ADE effect leading to severe disease requiring hospitalization. Individ-
uals in the first infection would then transmit more than individuals in the
secondary infection. For more information on the parametrization of the two-
strain dengue model, see (Aguiar et al., 2008, 2011 a). Individuals infected
for the first time become recovered and life long immune to that strain and,
after a period of temporary cross-immunity, are again susceptible, however
with an experienced previous infection. The second infection can only happen
with a different strain. Individuals infected for the second time would more
likely need to be hospitalized due to the severity of the disease. They recover
and then become life long immune to the other strain. There is no epidemio-
logical asymmetry between strains, i.e. infections with strain one followed by
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strain two or vice versa contribute in the same way to the force of infection,
so the notion of two different strains is enough to describe differences between
primary infections, often asymptomatic, and secondary infection, associated
with the severe form of the disease. The death rates coming out of all classes
go into the class of susceptible without experiencing previous dengue infection
as a birth rate. Since the demographic events often occur at a much slower
rate than the infection, the disease has to be necessarily maintained by con-
stant external infections to avoid the repeated stochastic disease extinction
and re-introduction (Alonso et al., 2006; Keeling & Ross, 2008)).
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Figure 5.3: Numerical simulations for the province of Chiang Mai with popula-
tion size N = 1650000. The parameter values are fixed as follows: Temporary
cross-immunity o = 2y~!, infection rate 3y = 27, recovery rate v = 52y~ 1,
ratio of the contribution of the secondary infections to the force of infection
¢ = 0.9, seasonal forcing 7 = 0.2 and import In(p) = —15.85. In a) the bifur-
cation diagram varying the import parameter is shown. In b) the Lyapunov
spectrum varying the import parameter, in ¢) the time series simulation and
in d) the state space plot are shown. The torus attractor is visible here.

For the deterministic system a torus bifurcation T'R was the first bifurca-
tion happening for a region of import factor In(p) = —15.85 (see Fig. 5.3a)).
Lyapunov exponents were calculated along the trajectory and the Lyapunov
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spectrum is shown in Fig. 5.3b), where two dominant zero Lyapunov expo-
nents at In(p) = —15.85 shows a quasi-periodicity (for instance on a torus).
The appearance of this bifurcation for In(p) = —15.84 is also predicted by
AUTO (Doedel & Oldeman, 2009). In order to illustrate the infected dynam-
ics on the deterministic approach we show the time series and its state space
plot in Fig. 5.3c) and Fig. 5.3d).

Using the same parameter values as used for the deterministic simulations,
the quasi-periodicity becomes more irregular resembling a chaotic behavior
in the stochastic modeling approach. Figure 5.4a) shows one stochastic real-
ization for the multi-strain dengue model which could describe very well the
dynamics of the DHF incidences in Chiang Mai Province, North of Thailand
(see Fig. 5.1a)). Such pattern would be most likely be described as being
the chaotic transients towards the quasi-periodic torus of the deterministic
skeleton (see 5.4b)) that got stabilized due to the noise.
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Figure 5.4: Stochastic and deterministic system’s comparison. In a) One
stochastic realization for a population size N = 1650000, temporary cross-
immunity o = 2y~ !, infection rate Sy = 27, recovery rate v = 52y~ !, ratio of
the contribution of the secondary infections to the force of infection ¢ = 0.9,
seasonal forcing n = 0.2 and import In(p) = —15.85. In b) the determin-
istic time series simulation as shown in Fig. 5.3c), scaled up to be properly
compared with the stochastic time series simulation in Fig. 5.4a).

5.5 Scaling of stochasticity

It is known that stochastic simulations, using a finite size population, involve
extinction phenomena operating through demographic stochasticity which acts
drastically on small populations, as opposed for the deterministic models that
do not handle extinction through population noise, leading to populations
with very few individuals or even fractions of individuals. In Fig. 5.5 we
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Figure 5.5: Stochastic and deterministic system’s interaction. For the same
parameter values used in Fig. 5.4, we show the bifurcation diagram for the
import parameter for different population sizes N. In red the deterministic
model and in black the stochastic model. In a) the Chiang Mai population
size N = 1.65 - 10°, in b) North of Thailand population size N = 6 - 105, in c)
Thailand population size N = 66 - 10° and in d) a larger system size, where
the population of some countries surrounding Thailand, for instance Burma,
Laos, Vietnam and Cambodia, were counted together giving a system where
the population size is N = 230 - 10°.
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compare the deterministic and stochastic dynamics and we see that the mag-
nitude of stochastic fluctuations decreases when the population size increases.
We compare the interplay between the stochastic model and the determinis-
tic skeleton in 4 different systems sizes. In Fig. 5.5a) we show the stochastic
and deterministic system’s interaction for a system where the population size
N = 1.65-10%, mimicking the Province of Chiang Mai. The system with small
population size shows very large fluctuations around the deterministic skele-
ton, hence an extreme noise amplification. In Fig. 5.5b) we show the stochastic
and deterministic system’s interaction for a system where the population size
N = 6-10%, as it would be for the North of Thailand. In Fig. 5.5¢) the system
has the population size of Thailand, N = 66 - 105 and in Fig. 5.5d) a larger
system size, where the population of some countries surrounding Thailand, for
instance Burma, Laos, Vietnam and Cambodia, were counted together giving
a system where the population size is N = 230 - 105. For such large system,
the stochastic fluctuations follow quite well the deterministic approach, where
the noise is not much amplified anymore.

We see that the magnitude of the stochastic fluctuations decreases when
the population size increases and more importantly, that for large enough pop-
ulation size, the stochastic system can be well described by the deterministic
skeleton, where the essential dynamics are captured.

5.6 Conclusions

Multi-strain dynamics are generally modeled with SIR-type models, dividing
the host population into susceptible, infected and recovered individuals with
subscripts for the respective strains. We have considered the stochastic ver-
sion of a multi-strain model with a minimal degree of complexity to generate
both primary and secondary infections, motivated by dengue fever epidemi-
ology. Besides the fact that disease propagation is an inherently stochastic
phenomenon, dengue models are mainly expressed mathematically as a set
of deterministic differential equations which are easier to analyze, however, it
is only stochastic, as opposed to deterministic, models that can capture the
fluctuations observed in some of the available time series data.

For the minimalistic multi-strain dengue model, the individuals can be sus-
ceptibles without a previous dengue infection, infected and recovered for the
first time, susceptible with an experienced previous infection and infected for
the second time, now with a different strain, and more likely been hospital-
ized due to the ADE effect leading to severe disease. Since the demographic
events often occur at a much slower rate than the infection, the disease has
to be necessarily maintained by the import of external infections to avoid the
repeated stochastic disease extinction and re-introduction.
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The stochastic realizations of infected in time were obtained by the Gille-
spie algorithm. By considering stochasticity and external infections, we have
shown that the introduction of stochasticity was needed to explain the fluctu-
ations observed in some of the available data sets, revealing a scenario where
noise and complex deterministic skeleton strongly interact. For large enough
population size, the stochastic system could be well described by the deter-
ministic skeleton, where the essential dynamics are captured, gaining insight
into the relevant parameter values purely on topological information of the
dynamics.

Understanding the dynamics of stochastic populations, and how they in-
teract with the deterministic components of epidemiological models have max-
imum benefit on the practical predictability of the dynamical system by ana-
lyzing the available epidemiological data via mathematical models, since the
classical parameter estimation and its application are generally restricted to
fairly simple dynamical scenarios. The ability to predict the future dengue
outbreaks via mathematical models would provide a tool to guide policies of
prevention and control of the dengue virus transmission, including the im-
plementation of vaccination programs when the dengue fever vaccine will be
accessible.
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Chapter 6

How much complexity is
needed to describe the
fluctuations observed in
dengue hemorrhagic fever
incidence data?”

Maira Aguiar, Bob W. Kooi, Filipe Rocha, Peyman Ghaffari and Nico
Stollenwerk (2012)
Submitted.

Different extensions of the classical single-strain SIR model for the host
population, motivated by modelling dengue fever epidemiology, have reported
a rich dynamic structure including deterministic chaos which was able to ex-
plain the large fluctuations of disease incidences. A comparison between the
basic two-strain dengue model, which already captures differences between
primary and secondary infections including temporary cross-immunity, with
the four-strain dengue model, that introduces the idea of competition of mul-
tiple strains in dengue epidemics shows that the difference between first and
secondary infections drives the rich dynamics more than the detailed num-
ber of strains to be considered in the model structure. Chaotic dynamics
were found to happen in the same parameter region of interest, for both the
two and the four-strain models, able to describe the fluctuations observed in
empirical data and shows a qualitatively good agreement between empirical
data and model simulation. The predictability of the system does not change
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significantly when considering two or four strains, i.e, both models present a
positive dominant Lyapunov exponent giving approximately the same predic-
tion horizon in time series. Since the law of parsimony favours the simplest
of two competing models, the two-strain model would be the better candidate
to be analysed, as well the best option for estimating all initial conditions and
the few model parameters based on the available incidence data.

6.1 Introduction

Dengue is a viral mosquito-borne infection, a leading cause of illness and death
in the tropics and subtropics. There are four antigenically distinct but closely
related dengue viruses, designated DEN-1, DEN-2, DEN-3, and DEN-4. In-
fection by one serotype confers life-long immunity to that serotype and a short
period of temporary cross-immunity to other serotypes. Two forms of the dis-
ease exist: dengue fever (DF), and dengue hemorrhagic fever (DHF) which
has been associated with secondary dengue infection due to the antibody-
dependent enhancement (ADE) process, where the pre-existing antibodies to
previous dengue infection cannot neutralize but rather enhance the new infec-
tion. In the first dengue infection virus particles are captured and processed
by so-called antigen presenting cells. T-cells become activated, likewise B-
cells that produce antibodies used to inactivate the viruses. In a secondary
infection the antibodies from the first infection attach to the virus particles
but do not inactivate them. The antibody-virus complex suppresses innate
immune responses, increasing intracellular infection and generating inflamma-
tory citokines and chemokines that, collectively, result in enhanced disease
(Halstead, 1982; Guzman et al., 2010; Dejnirattisai et al., 2010).

Dengue fever dynamics is well known to be particularly complex with large
fluctuations of disease incidences. Several mathematical models found in the
literature have been formulated to describe the transmission of dengue fever.
Multi-strain dynamics are generally modeled with extended SIR-type models,
and have demonstrated to show critical fluctuations with power law distribu-
tions of disease cases exemplified in meningitis Stollenwerk & Jansen (2003
b) and in dengue Massad et al. (2008). Dengue models including multi-strain
interactions via ADE but without a temporary cross immunity period have
shown deterministic chaos when strong infectivity on secondary infection was
assumed Ferguson et al. (1999); Schwartz et al (2005); Billings et al. (2007).
In these models, the recovered individuals could be immediately infected with
another strain.

The combination of biological aspects such as temporary cross-immunity
and ADE have been studied by several authors Wearing & Rohani (2006);
Nagao & Koelle (2008); Recker et al. (2009) where four strains are involved, but
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again limiting the effect of ADE to increase the contribution of secondary cases
to the force of infection. Aguiar et al. (2008) have investigated a two-strain
dengue model, initially suggested and preliminarily analyzed in Ferguson et
al. (1999), where deterministic chaos was found in a wider parameter regions
when including temporary cross-immunity Aguiar et al. (2008), not needing
to restrict the infectivity on secondary infection to one or another region in
parameter space.

The two-strain model captures the essential differences between primary
and secondary infections where the notion of two different strains is enough to
describe primary infections, a mostly harmless form of illness, and secondary
infection, associated with the severe form of the disease. It is a lower dimen-
sional model as opposed to the multiple strain models, easier to be analyzed
and still can attempt to estimate all initial conditions as well as the few model
parameters.

In this manuscript we compare the basic two-strain dengue model, which
already captures differences between primary and secondary infections, with
the four-strain dengue model, that introduces the idea of competition of mul-
tiple strains in dengue epidemics. We perform a qualitative study in order to
show how much complexity we really need to add into epidemiological models
to be able to describe the fluctuations observed in empirical dengue hemor-
rhagic fever incidence data.

6.2 Multi-strain models: a dimensional problem

A basic n-strain epidemiological model with primary and secondary infections
can be written as follows:

. n /6 n
S = M(N—S)—ZNS Ii+p-N+¢ AZ'Iﬂ (6.1)
i=1 J=1,j#1
and fori=1,...,n
i = 2 Ii+p-N+¢ zn: Li| | —(v+w) L (6.2)
N L
J=L1j#i
R = vli—(a+p R (6.3)
Si = aR;— Zn: ES Ii+p-N+¢ Zn: Iy — uS; (6.4)
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and fori=1,...,nand j=1,...,n with j # i

. & n
Ly = <Si|Li+p-N+o| Y Iy||-(+ml;  (65)

N .
k=1,k#j

and finally

R = 7 Z Z Iij —,uR . (6.6)

i=1j=1,j#i

The parameter p is the import factor, related to the possibility of an individual
to get infected outside the studied population and then bring the infection into
the population to which this individual belongs to, mimicking the imported
cases of the disease in a defined population. Equivalently, an infected visitor to
the region under consideration who passes the infection to a susceptible in the
population of size N has the same effect on the studied population. Hence,
we do not need to distinguish these two scenarios of susceptibles traveling
outside or infected traveling inside the region under consideration. In total,
this captures the imported infection that comes from an external source.

For constant population size, the susceptibles individuals without a previ-
ous experienced dengue infection (S) become infected for the first time with a
given dengue strain (I;) with two possible infection rates, depending on who
(individual on his primary or secondary infection) is transmitting the infection.
The relevant difference concerning disease transmissibility is that the force of
infection varies accordingly to the number of previous infections which the
hosts have experienced. Note that the number of dengue cases caused by a
third or fourth dengue virus infection is extremely low and once confirmed, the
risk for DHF relative to DF was not different for those experiencing third or
fourth dengue virus infections over those experiencing a second dengue virus
infection Endy et al. (2002); Gibbons et al. (2007); Halstead (2008). Therefore,
individuals in a primary infection transmit the disease with a force of infection
(BI/N whereas in a secondary infection the transmission is given with a force of
infection ¢B1/N where ¢ can be larger or smaller than unit, i.e. increasing or
decreasing the transmission rate, due to the ADE effect. Individuals infected
for the first time become recovered and life long immune to that given strain
(R;), with a recovery rate  and after a period of temporary cross-immunity «,
are again susceptible with a previous experienced infection (S;). Individuals
only get infected for the second time with a different strain than the one ac-
quired during the first infection (/;;), again with two possible infection rates,
depending on who (individual on his primary or secondary infection) is trans-
mitting the infection. Finally, they recover from the secondary infection (R)
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with recovery rate . The death rates u coming out of all classes go into the
class of susceptible without experiencing previous dengue infection as a birth
rate.

6.2.1 The two-strain model versus the four-strain model

Concerning data availability, long term epidemiological information come from
the Ministry of Public Health in Thailand and consist on monthly incidences
of hospitalized DHF cases. For such a data scenario, models that are able to
generate both primary and secondary infection cases (with a different strain),
without the need of considering differences on the dynamics of different co-
circulating dengue serotypes, have show a good qualitative agreement between
empirical data and model output Aguiar et al. (2011 a), just by comsidering
ADE and temporary cross-immunity.

The two-strain model with temporary cross-immunity is a 9 dimensional
system where the population N is divided into ten classes. For two different
strains, named strain 1 and strain 2, we label the SIR classes for the hosts that
have seen the individual strains, without epidemiological asymmetry between
strains, i.e. infections with strain one followed by strain two or vice versa
contribute in the same way to the force of infection. The complete system
of ordinary differential equations (ODEs) for the two-strain epidemiological
model can be written as follows.

S = ,u(N—S)—ﬂ](Vt)S(h—i-P‘N—i—gbIgl)
51y 4 - N 4 01) (6.7
L = /6](\,15)5(11+P'N+¢121)—(’Y+M)—71 (6.8)
Iy = 6](\:)5(124-p-]\7+¢[12) — (v +p)ls (6.9)
Ry = yL—(a+p)kR (6.10)
Ry = ~I— (a4 )Ry (6.11)
51 = aR; — ﬁ](vt)sl(IQ +p- N+ (;3[12) — S (6.12)
SQ = aRy— 6](\;)52([1 +p-N+ ¢I21) — /,[/SQ (6.13)
e = W64 0o N+ 61o) — (4 e (6.14)
Iy = ﬁ](vt)sz(fl +p- N+ ¢lor) — (v + p)la (6.15)
R = ~y(Iiz+1In)—uR . (6.16)
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The basic two-strain model shows a rich variety of dynamics through bifur-
cations up to deterministically chaotic behavior in wider and more biologically
realistic parameter regions (see Fig. 6.1a)) than previously anticipated when
neglecting temporary cross-immunity. Two chaotic windows appear, one for
¢ < 1, where this dynamical behavior has been described first in Aguiar et al.
(2008), and also the one for ¢ > 1, see e.g. Ferguson et al. (1999). There is
good evidence that sequential infection increases the risk of developing DHF
associated with ADE and since practically all cases of DHF are hospitalized
Chareonsook et al. (1999), the irregular behavior in the parameter region of
¢ < 1, where people in a secondary dengue infection do not contribute to the
force of infections as much as people with first infection, was found to be more
realistic for dengue fever epidemiology. The new chaotic window for ¢ < 1
disappears when neglecting the temporary cross-immunity, i.e. by putting
a — oo (see Fig. 1b)). For detailed information on the basic two-strain
dengue model, see Aguiar et al. (2008, 2011 a, 2009).

Differently from the minimalistic dengue model, the four-strain model is
a 25 dimensional system, dividing the constant population N into twenty six
classes. For four different strains, 1, 2, 3 and 4, we now label the SIR classes for
the hosts that have seen the individual strains, again without epidemiological
asymmetry between strains, once the serotype data are recent and very short
to give any realistic information concerning difference in biological parameters
such as infection and recovery rates for a given strain.

The four-strain model dynamics is described in a similar way to the two-
strain model, where the relevant difference concerning disease transmissibility
is that the force of infection varies accordingly to the number of previous
infections the hosts have experienced. Since the secondary infection can only
happen with a different strain from the first infection, here the individuals can
get infected for the second time with strain one when the first infection was
caused by strain two, three or four (Io1, I31, I41). Individuals can get infected
for the second time with strain two when the first infection was caused by
strain one, three or four ([12, I32, I42). Individuals can get infected for the
second time with strain three when the first infection was caused by strain
one, two or four (113, I23, I43) and individuals can get infected for the second
time with strain four when the first infection was caused by strain one, two
or three (I14, Io4, I34). The four-strains model also captures the differences
between primary and secondary infections, however, it is high dimensional so
that the investigation of the possible dynamical structures cannot be easily
performed.

The four-strain epidemiological model can be written as an Eq. system of
26 ODEs (for the complete ODE system, see 6.A). It can be simplified to a
three or two-strain model just by neglecting the existence of specific strains.
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A three-strain model can be obtained by putting Iy, = 0 at ¢y and initially no
secondary infected for example, where the complete system of ODEs would
be reduced to a system of 17 ODEs, and by putting Is = 0,14 = 0 at tg
and initially no secondary infected, we get back the original two-strain model
without any loss of generality, a system of 10 ODEs, once the respective import
terms are set to zero.

6.3 Numerical analysis

In this section we start with a numerical bifurcation analysis were we compare
the results for the basic (non-seasonal) two-strain model to that of the basic
four-strain model. First we compare the bifurcation diagrams obtained for
both models when assuming the temporary cross-immunity (parametrized by
a) and also when neglecting the temporary cross-immunity. The Lyapunov
exponents are calculated to be used for the stability analysis of respectively
equilibria and limit cycles, together with the results given by the software
AUTO Doedel & Oldeman (2009), and also for the determination of aperiodic
or chaotic attractors. This study is completed with a time series analysis in
which we compare the qualitative agreement between the models simulations
and empirical DHF data. The parameter description and respective values for
dengue fever epidemiology are given in Table 6.1.

Table 6.1: Parameter set for the basic multi-strain models.

Par. Description Values Ref.
N population size 1.6 x 106
] birth and death rate 1/65y UNWPP (2011)
y recovery rate 52y~ 1 WHO (2009); CDC (2011)
g infection rate 2.y Ferguson et al. (1999)
n degree of seasonality €10,0.35]  Aguiar et al. (2011 a)
p import parameter €[0,1071°]  Aguiar et al. (2011 a)
o temporary cross-
immunity rate € 2,52y~ (Matheus et al., 2005)
) ratio of secondary

infections contributing
to force of infection € [0, 3] (Aguiar et al., 2008)
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6.3.1 Bifurcation analysis

The bifurcation diagrams were obtained plotting the local maxima of the loga-
rithm of the total number of infected in(I) against the ratio of the contribution
of the secondary infections ¢ to the force of infection (see Fig. 6.1 for exem-
ple). Fixed points appear as one dot per parameter value, limit cycles appear
as two dots, double-limit cycles as four dots, more complicated limit cycles as
more dots, and chaotic attractors as continuously distributed dots for a single
¢ value Ruelle (1989).
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Figure 6.1: Bifurcation diagram comparison between multi-strain models. In
red the non-seasonal two-strain model and in green the non-seasonal four-
strain model. For neglecting temporary cross-immunity period (o = 52y~ or
one week) we show in a) the two-strain model and in b) the four-strain model.
For assuming temporary cross-immunity period (o = 2y~! or six months) we
show in c) the two-strain model and in d) the four-strain model.

For both models, only one chaotic window is observed when neglecting
the temporary cross-immunity period (see Fig. 6.1a) and Fig. 6.1b)). Here,
the complex dynamics are restricted to the parameter region ¢ > 1, where
individuals in the secondary dengue infection would contribute much more to
the force of infection than individuals in the first infection. Consideration of
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temporary cross-immunity (see Fig. 6.1c) and Fig 6.1d)) brings a new chaotic
window with a rich dynamical behavior from fixed point to limit cycles until
completely irregular behavior for a more biologically realistic parameter region
¢ < 1, in addition to the previously found chaotic window for ¢ > 1. Note
that the addition of seasonal forcing and/or population noise brings complex
behavior also for the region where only periodic dynamics are observed. For
more information on the seasonal two-strain model, see Aguiar et al. (2011 a).

In Fig. 6.2 we present the bifurcation diagram comparison, for both two-
strain and four-strain model, in the relevant parameter region of ¢ < 1, when
dengue patients in its secondary infection may evolve to a severe disease due
the Antibody-dependent Enhancement phenomenon. The hospitalized indi-
viduals (DHF cases) contribute less to the force of infection, and not more,
as previous models suggested. For the two-strains model a Hopf bifurcation
was found to occur at ¢ = 0.1133 and a torus bifurcation, as a route to the
chaotic behavior, was found to occur at ¢ = 0.551 whereas for the four-strain
model, the Hopf bifurcation was predicted by AUTO to occur at ¢ = 0.267
followed by a torus bifurcation that occurs at ¢ = 0.311. Qualitatively, the
bifurcation points appear to happen at similar parameter regions, well below
the region of interest of ¢ ~ 1. In both cases the chaotic dynamics which
are able to describe the fluctuations observed in empirical data are found to
happen at the same parameter region of interest and not only when assuming
strong infectivity on secondary infection.

We continue our analysis with the calculation of the Lyapunov exponent
spectrum, where the dynamics on or beyond a torus is classified as periodic,
when one Lyapunov exponent is zero, aperiodic when two Lyapunov exponents
are zero, and chaotic when one Lyapunov exponent is zero and at least one
positive Ott (1993).

6.3.2 Lyapunov exponents and predictability

In this section, the Lyapunov spectrum for both multi-strain models are shown
and compared concerning the prediction horizon of the monthly peaks in the
time series. The so called Dominant Lyapunov Exponent (DLE) is the ex-
ponent with the largest magnitude. The set of Lyapunov exponents is called
the Lyapunov spectrum which can be calculated for all parameter values (see
Fig. 6.3). The Lyapunov exponents were calculated using an iteration tech-
nique using the QR decomposition algorithm via Householder matrices (see
Aguiar et al. (2008, 2011 a); Ruelle (1989); Holzfuss & Lauterborn (1989);
Holzfuss & Parlitz (1991)).

Figure 6.3a) shows the Lyapunov spectrum in the parameter range ¢ €
[0,1.2] for the basic two-strain model previously studied in Aguiar et al.
(2008). The DLE in the chaotic area (positive DLE) of ¢ = 0.6 for exam-
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Figure 6.2: Numerical bifurcation diagram comparison. In a) the bifurcation
diagram for the two-strains dengue model and in b) the bifurcation diagram for
the four-strain model. The Hopf bifurcation and the torus bifurcation points
were predicted very well by AUTO when comparing the results given by the
Lyapunov exponents in Figure 6.3c). In ¢) we show the bifurcation diagram
comparison between multi-strain models for the parameter region of interest
¢ < 1. In red the two-strain model and in green the four-strain model.
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ple, is A = 0.035, where the prediction horizon in a time series is in the range
of thirty years (28.5 years approximately). In Fig. 6.3b) we show the Lya-
punov spectrum for the basic four-strain model. Here, the DLE at ¢ = 0.6
goes up to A = 0.036 giving ~ 28 years of prediction horizon in a time series.

In Fig. 6.3c) we show the Lyapunov spectrum comparison where the DLE
trajectories for each one of the models, the two and the four-strain, are plotted
together. For both models we observe the same order of magnitude of the
maxima and also similar structures.
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Figure 6.3: Lyapunov spectrum for the ratio of secondary infection contribu-
tion to the force of infection ¢ € [0,1.2]. For the chaotic region of ¢ = 0.6, in
a) the Lyapunov spectrum for the two-strain dengue model, where the DLE is
A = 0.035 and in b) the Lyapunov spectrum for the four-strain dengue model,
where the DLE is A = 0.036. For both models the prediction horizon in a
times series is approximately 28 years. In ¢) we plot the Lyapunov spectrum
for the four-strain model on top of the Lyapunov spectrum for the two-strain
model.

This study confirms that the practical predictability of the system do not
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change significantly when considering two or four strains in the model as-
sumptions. The prediction horizon in a time series is in the same range for
both models, where the difference between first and secondary infection com-
bined with the temporary cross-immunity period is more important then the
addition of a detailed number of strains.

In order to illustrate the similarities on the dynamical behavior of basic
multi-strain models better, we show in Fig. 6.4 the bifurcation diagram where
the temporary cross-immunity period « is the varying parameter, and also
the time series and its state space plot for ¢ = 0.6, where chaotic behavior
was confirmed to happen in the non-seasonal models with two, three and four-
strains. For more information on the quantification of unpredictability via
Lyapunov exponents, see Aguiar et al. (2008, 2011 a).

In Figure 6.4 we present a qualitative study on the similarities between
the basic multi-strain models. We discuss the role of the temporary cross-
immunity combined with the ADE affect in respect of the detailed number
of strains to be included in the model structure. The numerical bifurcation
diagram for the temporary cross-immunity parameter shows that complex dy-
namics appears only when assuming the biological relevant temporary cross-
immunity period (between 3 — 9 months) and it is confirmed for all of the
possible non-seasonal multi-strain models, the two, three and four-strain mod-
els (see Fig. 6.4a), Fig. 6.4b) and Fig. 6.4c)). The time series and its state
space plots (see Fig. 6.4d)-6.4f)) show the similarities between the multi-strain
models where the combination of temporary cross-immunity and ADE effect
is a essential feature to be considered in the structure of the model in order
to understand the dynamics of dengue fever epidemiology. In fact, the differ-
ences between first and secondary infection (different forces of infections due
to the hospitalization of the severe cases of the disease), combined with tempo-
rary cross-immunity aspect (to be assumed between recurrent infections) are
driving the complex dynamics in multi-strain models more than the specific
number of strains to be considered in the model assumptions.

6.3.3 Time series analysis

This study is completed with a time series analysis where we compare the
matching between time series simulations (for the two-strain model as well
for the four-strain model) and empirical DHF data. The addition of seasonal
forcing and import of infected are needed to be included in order to describe
the fluctuations observed in the available DHF incidence data Aguiar et al.
(2011 a). For both models, a qualitatively very good result when comparing
empirical DHF data and simulation results (see Fig. 6.5a) for the two-strain
model and Fig. 6.5b) for the four-strain model), where patterns of the chaotic
data were similarly found in the models simulations.
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Figure 6.4: Similarities between the basic multi-strain models. For ¢ = 0.6, in
a) we show the bifurcation diagram for the two-strain model, in b) the bifur-
cation diagram for the three-strain model and in ¢) the bifurcation diagram
for the four-strain model. Here, the local maxima of the logarithm of the total
number of infected In(I) is plotted against the temporary cross-immunity pe-
riod parameter a.. By fixing the temporary cross-immunity period o = 2y~ 1,
in d) we show the state space plot for the two-strain model, in e) the state
space plot for the three-strain model and in f) the state space plot for the
four-strain model. In g) the time series for the two-strain model is shown, in
h) the time series for the three-strain model and in i) the time series for the

four-strain model.
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Figure 6.5: Using the same parameter set, empirical DHF incidence data (in
black) for the Province of Chiang Mai in the North of Thailand are matched
with simulations (in red) for the seasonal multi-strain models with import
of infected. In a) two-strain model and in b) the four-strain model. The
parameter 3 is given explicitly by 5(t) = By - (1 +n-cos(w -t)) where Jy is the
infection rate and 7 is the degree of seasonality. Here, the degree of seasonality
is n = 0.35 and the import factor p = 107!, The other parameter values are
given in Table 6.1.
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The effective dimension of the two strain model is 9 while of the four strain
model 25. The law of parsimony that recommends selecting the hypothesis
that makes the fewest assumptions, implies that the 9 dimensional two-strain
model would be the better candidate than the 25 dimensional four-strain model
to be analyzed, capturing the essential differences of primary versus secondary
infection without needing to restrict the ADE effect to one or another region
in parameter space.

The two-strain model in its simplicity is a good model to be analyzed,
giving the expected complex behavior to explain the fluctuations observed in
empirical data, and would be indeed the best option to be used for parameter
estimation, which is notoriously difficult for chaotic time series, based on the
available incidence data. Only the two-strain model could attempt to estimate
all initial conditions as well as the few model parameters, as opposed of the
four-strain model.

6.4 Discussion and Remarks

In this manuscript we presented the results obtained from a qualitative anal-
ysis of multi-strain dynamical system motivated by dengue fever epidemiol-
ogy. The comparison between the basic two-strain dengue model, which al-
ready captures differences between primary and secondary infections, with the
four-strain dengue model, that introduces the idea of competition of multiple
strains in dengue epidemics have shown that the difference between first and
secondary infection combined with the temporary cross-immunity period is
driving more the complex dynamics, which is able to explain the large fluctua-
tions observed in the empirical DHF incidence data, than the detailed number
of strains to be considered in the model assumptions.

The numerical bifurcation analysis has shown that chaotic dynamics ap-
pear to happen at the same parameter region of interest, i.e. when assuming
temporary cross-immunity period between 3 — 9 months, for all of the consid-
ered multi-strain models, and the addition of seasonal forcing and import of
infected have shown a qualitatively very good result when comparing empirical
DHF data and simulation results, where patterns of the data behavior were
similarly found to happen, for both models, in the time series simulations.

Frequently the time series of empirical data are used as a qualitative check
on model output, however, fitting every detail of the chaotic model to that of
the empirical data is not possible. Parameter estimation based on empirical
data to estimate initial conditions and model parameters have received great
attention and is notoriously difficult for chaotic time series. Temporally local
approaches are possible using iterated filtering algorithms Ionides et al. (2006);
He et al. (2010); Stollenwerk et al. (2012), and at the moment only minimalistic
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models would have a chance to be qualitatively understood well and eventually
tested against existing data.

The two-strain model in its simplicity is a good model to be analyzed,
giving the expected complex behavior to explain the fluctuations observed
in empirical data. It is minimalistic in the sense that it can capture the
essential differences of primary versus secondary infection without needing to
restrict the ADE effect to one or another region in parameter space. For future
parameter estimation only the two-strain model could attempt to estimate all
initial conditions as well as the few model parameters. The two-strain model
showed a qualitatively good result when comparing empirical DHF data and
model simulations, giving insights into the relevant parameter values purely on
topological information of the dynamics, and these relevant parameter values
can be used for further refinement in formal parameter estimation based on
the available data.

6.A Unpacking the n-strain model into a four-strain
model

The basic n-strain epidemiological model motivated by dengue fever epidemi-
ology, capturing difference between primary and secondary infections is shown
in system Eq. (6.17-6.42), giving for n = 4 a system with 26 ODEs in to-
tal. The complete system of ordinary differential equations for the four-strain
epidemiological model can be written as follows.

§ = uN-9) (647
_ %5(11+p.N+¢(121+131+I41))
_ %S(IQ+p-N+¢(I12+I32+I42))
- %S(Ig,+p-N+¢(Il3+123+I43)>

— %5(14 +p- N+ ¢(I1a+ Ios + I34))

I = % (Ii+p-N+o¢(la1 + Is1 + In1)) — (v +p) [y (6.18)
I = %S(IQH-N+¢>(112+132+I42)) —(y+mwly  (6.19)
Iy = %5(13 +p N+ ¢(Liz+ s+ Luz)) — (v +p)ls (6.20)

I, = %S(I4+p~N+¢(I14+124+I34)) —(y+wls  (6.21)
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(Is+p- N+ ¢(I12 + I3z + I42))
(Is+p- N+ ¢(Liz + L2z + 143))

(Is+p- N+ ¢(I1g + Ipq + I34))

(I1 +p- N+ ¢(Ia1 + I31 + 141))
(Is+p- N+ ¢(I13 + Io3 + 143))

(Is+p- N+ ¢(I14 + Loy + I34))

(I1+p- N+ ¢(I21 + I31 + I11))
(Is+p- N+ ¢(Li2 + Is2 + 142))

(In+p- N+ ¢(L14 + Ioa + I34))

(It + p- N + ¢(Ia1 + Is1 + I11))
(Is+p- N+ ¢(L12 + Iso + I412))

(Is+p- N+ ¢(I13 + Ioz + 143))
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Ly = =Si(la+p-

@ 2|

Ly = Nsl(fzs +p-

Ly = %51(14 +p-

Iy = %52(11 +p-
Iy = ﬁSz(I:a +p-
N
Ly = ﬁSz(Lx +p-
N
I3 = %53(—71 +p-
B

Ly = NSZS(IZ +p-

Ly = %53(14 +p-

Iy = %54(11 +p-
Iy = ﬁ54(f2 +p-
N
Iis = ﬁ54(f3 +p-
N

N + ¢(Ig + Iso + L)) — (v + p) 12
N+ ¢(Iig + Iog + 143)) — (v + )13

N+ ¢(Lig + Iog + I34)) — (v + )14

N + ¢(Ia1 + I31 + 141)) — (v + p) o1
N+ ¢(Iiz + Iag + 143)) — (v + p) o3

N+ ¢(Ia + Iog + I34)) — (v + p) Ioa

N+ ¢(Io1 + I31 + 1a1)) — (v + ) I3
N + ¢(Lig + Isg + 142)) — (v + p)I32

N + ¢(l14 + Iog + I34)) — (v + ) I34

N+ ¢(Io1 + Iz1 + 1)) — (v + p) I
N + ¢(Io + Iso + L)) — (v + p) 42

N+ ¢(I1z + Ioz + Iu3)) — (v + p) a3

R = ~y(ho+ Iz + Ly + Ioy + Ipg + Ing + I3y
+ Iso+ Isq + Iuy + Luo + Is3) — pR

(6.30)
(6.31)

(6.32)

(6.33)
(6.34)

(6.35)

(6.36)
(6.37)

(6.38)

(6.39)
(6.40)

(6.41)

(6.42)

It divides the population N into twenty six classes, a 25 dimensional dynam-
ical system due to the constant population size. The dynamics are described
in a similar way as the two-strain model. Susceptible individuals without a
previous dengue infection S can possibly get the primary infection with strain
one (1), strain two (Iz), strain three (I3) or strain four (1), with two different
infection rates, depending on whom (individual on his primary or secondary
infection) is transmitting the infection. Remember that the relevant difference
concerning disease transmissibility is that the force of infection varies accord-
ingly to the number of previous infections the hosts have experienced. In a
primary infection, individuals transmit the disease with a force of infection
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BI/N whereas in a secondary infection the transmission is given with a force
of infection ¢3I/N, where ¢ can be larger or smaller than 1, i.e. increasing
or decreasing the transmission rate, due to the ADE effect. Note that the
number of dengue cases caused by a third or fourth dengue virus infection is
extremely low and once confirmed, the risk for DHF relative to DF was not dif-
ferent for those experiencing third or fourth dengue virus infections over those
experiencing a second dengue virus infection Endy et al. (2002); Gibbons et
al. (2007); Halstead (2008).

Individuals infected for the first time become recovered, with strain one
(Ry1), strain two (Rg), strain three (R3) or strain four (R4), and life long
immune to the given strain, with a recovery rate y. After a period of temporary
cross-immunity «, the first recovered individuals are again susceptible, however
with an experienced previous infection with strain one (S7), strain two (S2),
strain three (S3) or strain four (S4). The secondary infection can only happen
with a different strain, and therefore, individuals can get infected for the
second time with strain one when the first infection was caused by strain
two, three or four (Ia1, I31, I41). Individuals can get infected for the second
time with strain two when the first infection was caused by strain one, three
or four ([j2, Is2, I42). Individuals can get infected for the second time with
strain three when the first infection was caused by strain one, two or four
(I13, I23, I43) and individuals can get infected for the second time with strain
four when the first infection was caused by strain one, two or three (I14,
Iy, I34). Finally, the individuals recover from the second infection (R) with
recovery rate y. The death rates pu coming out of all classes go into the
class of susceptible without experiencing previous dengue infection as a birth
rate. The model also captures the differences between primary and secondary
infections, however, it is high dimensional so that the investigation of the
possible dynamical structures cannot be easily performed.
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