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When I wake up in the morning, love
and the sun light hurts my eyes
And something without warning, love
bears heavy on my mind

Then I look at you
and the world’s alright with me
Just one look at you
and I know it’s gonna be –

A lovely day - lovely day

Bill Withers – A Lovely Day
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Chapter 1

General introduction

1.1 Introduction

Aquatic ecosystems are complex systems consisting of nutrients, biotic pelagic
and benthic communities, pools of detritus and the bulk of both water and sed-
iment. Anthropogenic activities can lead to multiple types of stresses including
emissions of toxicants and nutrients into the environment. These toxicants af-
fect species in the aquatic ecosystems and nutrients can cause eutrophication.
Our aim is to describe the long-term effects of a toxicant in low concentra-
tions on an aquatic ecosystem given various nutrient levels. To that end we
formulate a mathematical model which can be used to run simulations and
make predictions. This mathematical model describes the relevant biological,
chemical and physical processes acting in the aquatic ecosystem. Eventually,
these predictions can be used as input for risk assessment.

It has been recognized for many years that in risk assessment the extrap-
olation of toxicity bioassay results to potential toxicant effects on ecosystems
is complicated [8, 9, 10]. The use of population or even ecosystem data is
relatively scarce in ecotoxicological risk assessment as data on these scales is
scarce. In practice, mostly a reductionist approach is taken. Experiments are
performed at lower levels of biological organization, the individual or popu-
lation (for microorganisms) level, and then these results are extrapolated to
predict effects on the higher levels: populations and ecosystems [28]. De-
tailed models for populations in aquatic ecosystems have been formulated and
analysed [1, 2, 14, 23]. By simulating various toxic loading levels the time-
evolution of both the populations and toxicant concentrations are calculated.
Although this gives insight into the short-term effects on populations, it is
cumbersome to draw clear conclusions in a risk assessment for the long-term
sublethal effects on ecosystem functioning and structure.

Emissions of toxicants lead to accumulation in the environmental compart-
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ments of water and the complex matrix that forms the sediment. Simultane-
ously, the toxicants bioaccumulation into organic material such as biota and
detritus. Various toxicokinetic models describe these type of accumulations
[4, 5, 11, 17, 19, 25, 27]. The models proposed in these papers are in many
cases based on the ecosystem equilibrium assumption and on the equilibrium
partitioning principle for the chemicals [5]. This allows for a strictly indepen-
dent modelling of the ecological and toxicological processes, whereby classical
models from both disciplines are used: ecosystem models and toxicokinetic
models. Bioconcentration factors, bcf, baf and bsaf, are parameters in tox-
icokinetic models and a fixed dietary preference matrix based on some data
entries is in most cases the only information about the ecological status used
for the calculation of the distribution of the toxicant over the different com-
partments.

By independently modelling the ecology and toxicology processes there is
no interaction between the two and non-linear feedback loops between the
two are per definition excluded. We claim that an exposed ecosystem is a
perturbation of the non-exposed system or reference system. Also we think
toxicants should be modelled to work on the level of the individual. Therefore
the assumptions on which the toxicant effect model are based should be in
agreement with the assumptions on which the reference model is based. When
they are in agreement we expect that non-linear feedback loops will emerge
from the formulated ecosystem model.

We will study a process-based and generic aquatic model whereby no equi-
librium assumptions are made a priori. This means that nutrient loading,
species densities and toxicant concentrations vary over time. Toxicants affect
the individual behaviour while consequences on the ecosystem level are asked
for. Therefore in our integrated, holistic modelling approach, the model com-
bines descriptions of chemical (toxicant fate including individual uptake) and
biological processes (feeding, predation, competition). Models of these pro-
cesses at the individual level are lifted up to the population level and finally
ecosystem level whereby besides interactions between populations also inter-
actions with the environment are taken into account. Indirect effects arise as
emergent property of the system due to the use of coupled ordinary differential
equations. The complexity of the resulting models ranges from one trophic
level in an Erlenmeyer to multi-trophic systems which resemble a riverine sys-
tem with sediment. The least complex models were calibrated on experimental
data and the model for the riverine system was based on our own previous
results and literature values.

This process based mathematical modelling approach is combined with bi-
furcation analysis to assess the direct and indirect effects of both toxicological
and ecological stress on the functioning and structure of generic aquatic ecosys-
tems. The bifurcation analysis yields the dependency of ecosystem structures
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(species presence) and ecosystem dynamics (cyclic or constant densities) on
combinations of nutrient and toxicant stress.

1.2 Example of model construction and analysis

For readers less familiar with modelling and bifurcation analysis Sections 1.2.1–
1.2.7 provide a short introduction into the methods used in this Thesis. This
includes the construction of a computer model from a conceptual framework
via a mathematical model.

1.2.1 From conceptual framework to model construction

The conceptual framework and extrapolation

Extrapolation is stating ”what if” questions. These questions can only be
answered when we understand the system. Understanding comes from previ-
ous work, literature and a bit of intuition. This understanding is internally
consistent and usable to construct hypotheses which can be tested against
(new) experimental data and (new) literature. From this understanding we
can build conceptual frameworks from which we can derive mathematical equa-
tions. These equations then can be used to make computer codes from which
we can build a computer model. Then this computer model can be used to
answer the ”what if” questions, or alternatively named scenarios, by calcu-
lating endpoint values. With endpoints being for example species densities or
the degree of inhibition of a physiological process such as photosynthesis.

We stress that the ability to do an extrapolation is but just one of the re-
sults of a conceptual framework. More importantly, the conceptual framework
is a simple picture of reality, it will always be incomplete by definition. The
challenge is to find the minimal number of relevant processes in the studied
problem which together still explain most of the observed behaviour of the
system.

It is a success when the conceptual framework generates a quantifiable
model which has the proper dynamics of the system behaviour and predicts
species densities in the right order of magnitude.

Also, complex ecosystem models are high dimensional and non-linear,
meaning they can only be investigated with the aid of a computer. There-
fore the conceptual framework must be presented in the form of a computer
model. Later in this introduction, the usefulness of bifurcation analysis will
be shown for analysing the behaviour of an exposed multi-trophic ecosystem.

The quantifiable models that are build are not the research goals but the re-
search tools that can be used for testing the realism of a conceptual framework
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and to analyse the behaviour of the ecological model based on that conceptual
framework.

Below, the steps that lead to the formation of a conceptual framework
up to model validation are discussed. After these paragraphs Section 1.2.3
and further explain the bifurcation theory which we use to analyse models
for multi-trophic ecosystems and to analyse the effect of toxicants on these
systems.

Conceptual framework leads to mathematical model

The conceptual framework should summarize reality with a minimal number of
relevant processes and still be able to explain most of the observed behaviour of
the exposed ecosystem. Thereby the framework consist of an idea of who eats
what and how, how will the individuals grow, reproduce and die, what happens
to dead biomass, where does the nutrient for the phototrophs come from and
are there one or more growth limiting factors, etcetera. This framework can
be sketchy or very detailed, but eventually it should look like a flow chart of
species interactions and species-environment dependencies.

However, this conceptual framework says nothing on the value of densities
and fluxes within this framework. Additional assumptions need to be made
on how the interactions can be approximated with equations, leading to a
mathematical model. The equations in the mathematical model describe the
change of the variables over time and simultaneously the size of the fluxes at
given time points depending on chosen parameter values.

For spatially homogenous ecosystem models, one can use ordinary differ-
ential equations (odes). These odes consist of variables and parameters.
Parameters are always constant in value and often describe a species property
such as death rate or maximum feeding rate, while variables vary over time
and often denote biomass densities or environmental factors such as tempera-
ture or light intensity. Variables are for example prey and predator densities,
and fluxes are for example the total number of prey eaten by all predators
together. Fluxes are often expressed in numbers or mass per time, densities
often in numbers or mass per area or volume.

Mathematical model leads to computer model and simulations

Now we can transform the mathematical model into computer code and make a
computer model. By using experimental values, literature values and common
sense, values can be assigned to parameters and the initial values of the vari-
ables can be chosen. Combining these values with the computer model makes
it possible to run simulations. These simulations are a direct consequence of
the conceptual framework mentioned earlier. Changing the framework means
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repeating all steps leading to the computer model.

Parameter estimation

Values for the parameters used in the computer model can also be obtained by
fitting the model to data. Then the units of the model output should match
the units in which the data is measured, conversion factors might be needed.
Preferably, there are endpoint measurements that quantify the fluxes and there
are endpoint measurements that quantify the variables. This would give the
most certainty that the computer model can be parametrized on the data set.
If for example a conceptual framework for an ecosystem in a contaminated
lake was made and used to produce a computer model, then this computer
model could now be fitted on measurements from that lake and parameter
values are obtained.

Extrapolation with the computer model

Different scenarios can now be executed and evaluated as parameter values
are known. For example, testing the consequence of changing the toxicant
influx into the lake of the earlier example can now be simulated with the com-
puter model. The resulting extrapolations will include non-linear responses
as an indirect result of the constructed odes in the mathematical model that
underlies the computer model.

Validation

Assumptions were made to formulate the conceptual framework: these might
be wrong. By using different scenarios as falsifiable hypothesises one can test
the underlying assumptions of the conceptual framework. This requires that
first the predictions are made and are then tested against experimental data.
Validation is rarely done with complex ecosystem models. Often all available
data was already used to estimate parameter values. The production or col-
lection of new experimental data for validation can easily become extremely
expensive. The activities leading to the validation of an ecosystem model can
take longer then the careers of the scientists involved.

1.2.2 Example of mathematical model construction from con-

ceptual framework

The previous sections emphasized the importance of the conceptual frame-
work. This section will show how different ‘building blocks’ in a conceptual
framework can be combined to obtain a mathematical model for a small artifi-
cial ecosystem in a confined volume, e.g. an ecosystem in an Erlenmeyer flask.
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Then this ecosystem will be analysed using bifurcation theory to illustrate the
application of this theory.

Mass balance model

Let us assume this flask contains one limiting nutrient for an algal species,
one algal species and one algivorous organism such as a ciliate and optionally
one toxicant either a herbicide that only affects the algae or an insecticide
which we model to only affect the ciliates. This will allow us to study the
reference system and the effect of each toxicant on that system. This setup is
very similar to what is used in Chapter 2 and 4.

Algae need mass and energy to produce new biomass and to maintain their
current biomass. Let us assume that in this laboratory setup the amount of
light is in surplus, thus we do not need to model the light. Let us also assume
that all nutrients, including micro-nutrients such as vitamins, needed by the
algae are in surplus except for one nutrient: nitrogen. This nitrogen can be
available in the form of salts, detritus or small organic compounds. We also
assume the limiting nutrient is not bio-transformed into a volatile compound
as evaporation would complicate the calculation of a mass balance.

Let us measure the algal density in amount of nitrogen incorporated into
its biomass, mol N/L and the amount of N available in the medium also in
mol N/L. The variable denoting the algal biomass we take to be P (t) (P
for producer) and N(t) for the density of the nutrient. Z(t) is the variable
that denotes the density of the predator, a ciliate species, also in mol N/L.
All variables are functions of time, t. The variable NT (t) denotes the total
amount of nitrogen in the closed system and is given by the equation below

NT (t) = N(t) + P (t) + Z(t) .

As the system is closed for nitrogen, the total amount of nitrogen in the flask
is constant and given by its value at the start of the experiment (t = 0):

NT = N(0) + P (0) + Z(0) . (1.1)

The first equation has no number while the second does. It is customary to
either number all equations or only the ones which are referred to in the text.
We use the latter style.

Algal growth and death model

As stated, algae need mass to produce new biomass. Let us assume the algae
need a certain time to process a unit of N , known as the nutrient handling time
hN . This leads to a maximum feeding rate of P on N as the amount of time
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is limited per day. Also, the rate at which a new unit of N is encountered
depends on intensity of searching for N by P , the searching rate vN . The
above set of hN and vN together form a Holling type-II functional response
[13, 22] as denoted by f(N).

f(N) =
vNN

1 + vNhNN

The maintenance and mortality rates add to a single loss term, denoted by
the per capita death rate dP . This combination of a Holling type-II functional
response and a constant death rate for the algae is known as a Marr-Pirt model
formulation [16, 20, 24].

Predator growth and death model

We use the same Marr-Pirt formulation for the ciliate population Z. Therefore
the ciliates die with the constant death rate dZ and f(P ) denotes the feeding
of the predator Z on the algae P . Also, we take the predator to be less than
100 percent efficient in converting algal biomass into ciliate biomass, denoted
by the yield coefficient yPZ .

Detritus and nutrient recycling model

Per unit of time, there are three fluxes of dead biomass produced, namely
dP P and dZZ and a flux related to inefficient feeding of Z on P , namely
Z(1− yPZ)f(P ). If we assume that unidentified and uncharacterized bacteria
feed on this dead biomass (detritus) and turn it into small nitrogen-containing
compounds then a closed nutrient loop is formed. Therefore, we obtained a
nutrient cycle.

If we assume that the growth, death and detritus degradation rates of the
bacteria are much higher then the rate at which detritus is produced then
the bacteria are always in a steady-state with the detritus density. Due to
the assumed high detritus degradation rate and slow detritus production rates
both the bacteria and detritus densities will be low. This means there are
negligible amounts of nitrogen in the detritus pool and bacterial population.
Therefore we can ignore the detritus and bacteria in the mass-balancing of
the model formulation. Therefore, albeit indirectly, we assume the detritus
is instantaneously converted into nitrogen-containing compounds. This type
of reasoning with fast and slow rates is known as making a quasi steady-state
assumption.
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Coupled ODEs for this ecosystem

The above variables and mass fluxes together form the set of ordinary differ-
ential equations (odes) shown below,

dN

dt
= −P

vNN

1 + vNhNN
+ (1 − yPZ)Z

vP P

1 + vP hP P
+ dP P + dZZ ,

dP

dt
= P (

vNN

1 + vNhNN
− dP ) − Z

vP P

1 + vP hP P
,

dZ

dt
= Z(yPZ

vP P

1 + vP hP P
− dZ) .

In order to obtain the more familiar notation of the Holling Type-II func-
tional response parameters with a maximum ingestion rate and a nutrient
half-saturation constant we take INP = 1/hN and KNP = 1/(vNhN ), similar
for IPZ and KP . This results in

dN

dt
= −PINP

N

KN + N
+ (1 − yPZ)ZIPZ

P

KP + P
+ dP P + dZZ ,

dP

dt
= P (INP

N

KN + N
− dP ) − ZIPZ

P

KP + P
,

dZ

dt
= Z(yPZIPZ

P

KP + P
− dZ) .

Using Eq. (1.1) and mass-conservation gives an ode-set reduced with one less
dimension

dP

dt
= P (INP

NT − P − Z

KN + NT − P − Z
− dP ) − ZIPZ

P

KP + P
,

dZ

dt
= Z(yPZIPZ

P

KP + P
− dZ) .

For later use in Eq. 1.3 it is convenient to write the system as below

dP

dt
= f1(P, Z) = P (INP

(NT − P − Z)

KN + (NT − P − Z)
− dP ) − ZIPZ

P

KP + P
,

(1.2a)

dZ

dt
= f2(P, Z) = Z(yPZIPZ

P

KP + P
− dZ) . (1.2b)

1.2.3 Model analysis using bifurcation theory

Model analysis

By coding the above ode-system into software using a programming environ-
ment we can run simulations, for this we used Matlab [21]. These simulations
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require initial values for the variables P and Z and values for the biologi-
cal parameters such as the death rates, maximum feeding rates and nutrient
half-saturation constants and feeding efficiency. We can perform short-term
simulations and long-term simulations, plot the results and then describe the
behaviour of the system. This numerical approach is informative but not very
precise.

The long-term behaviour of the system at each equilibrium can also be
analysed analytically. First one solves dP

dt
= 0 and dZ

dt
= 0, either by hand or

with special software such as Maple [18]. Then the resulting expressions can
be used to calculate the equilibria. Finally, the stability of the equilibria can
be determined and the behaviour of the system at that specific equilibrium can
be determined. This approach fails with many higher dimensional systems.

The Jacobian matrix J contains information on the local behaviour of the
system given a specific equilibrium Ei. The Jacobian matrix consist of the
partial derivatives of the ode-system evaluated at Ei as exemplified below

J =

[

∂f1

∂P
∂f1

∂Z
∂f2

∂P
∂f2

∂Z

]

(1.3)

The so called eigenvectors v and eigenvalues λ are solutions of the equation set
Jv = vλ. In the two dimensional case, the eigenvalues are conjugated complex
numbers and the solutions of a quadratic formula det(J − λI) = 0, where I is
the unit matrix. For three and higher dimensional systems the Routh-Hurwitz
criteria can be applied [7].

The calculated eigenvalues are either real or complex, meaning having real
and imaginary parts. This resuls in the following equilibrium characteristics:
(1) When the real parts are negative, the equilibrium is stable. (2) When at
least one real part is positive, the equilibrium is unstable.

Bifurcation analysis deals with the study of the dependencies of the long-
term dynamics on a parameter. From the classification of the stability given
above, we conclude that by varying the parameter, the stability of the equilib-
rium changes when one real eigenvalue or the real parts of a pair of complex
conjugated eigenvalues equals zero. The parameter value where this occurs is
called a bifurcation point, given all other parameters remain constant.

For two dimensional systems there are three important types of bifurcation
points. When both eigenvalues are real, for parameter values close to the
bifurcation point, we distinguish two types namely the tangent bifurcation
and the transcritical bifurcation.

When the eigenvalues are complex (and the equilibrium is close to the
bifurcation point), a Hopf bifurcation occurs when the real parts of the pair
of conjugated eigenvalues are zero.

There are also other special cases. One option is that not just one, but
both eigenvalues are zero. Such a point is known as a bifurcation point of
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higher codimension. We do not consider these points here. The special case
where both eigenvalues are zero, that is a Hopf and a tangent bifurcation occur
simultaneously, this point is called Bogdanov-Takens point.

Bifurcation points can be followed by changing one or more parameters
simultaneously. Software that has been specifically designed to do this is e.g.
auto [6]. When after simulation an equilibrium is found (usually a positive
and stable one), this equilibrium can be followed as a function of one parameter
by means of continuation rather than simulation, by making use of a corrector-
predictor method that estimates how the equilibrium changes as function of
a change in the parameter used. Special test functions are implemented in
auto that indicate when a bifurcation point is encountered while following
this equilibrium, and what type of bifurcation it is (a Hopf or otherwise).
Also, the software has utilities to further track this equilibrium as a function
of two parameters, that allows us to determine if there are regions in the two-
parameter space where for instance the Hopf-bifurcation does exist. When
changing two parameters a collection of similar bifurcation points form a 2D
bifurcation curve

In the following examples we will show how the ode-system for P and
Z will respond to increasing values of NT . We will follow both changes in
biomass densities and long-term dynamics. Three possible equilibria are pos-
sible: no species present, only producer present, both producer and predator
are present.

For very low nutrient values both producer and predator can not exist.
Increasing NT above a threshold value allows for the existence of P . This
threshold value is a bifurcation point, namely a transcritical bifurcation point
where an eigenvalue is. Let us denote this threshold value of NT with Pinv.
In other words, if NT ≥ Pinv then an algae population can exist stably in this
system.

Given NT ≥ Pinv ‘no algae present’ is an unstable equilibrium and ‘algae
present’ is a stable equilibrium. From this we learn that if NT < Pinv there is
only one non-negative solution and for NT ≥ Pinv there are two non-negative
solutions. Generally, given the same parameter values but different initial
conditions, a system can have multiple solutions and thus multiple equilibria.

In mathematical terms, by increasing NT from below to above Pinv the
system goes from having one non-negative stable point to having one non-
negative stable point and one non-negative unstable point. At the exact value
NT = Pinv the eigenvalue of the equilibrium is zero and the one equilibrium
splits in two. Thus a zero eigenvalue means in a biological sense species inva-
sion and is known as a transcritical bifurcation.

By further increasing the value of NT the density of P increases until Z
can invade into the system at Zinv; this is also a transcritical bifurcation point.

At even higher values of NT the prey-predator system shows cyclic be-
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Figure 1.1: The biomasses of P (top) and Z (bottom) depend on the total nutrient
load NT . The algal invasion occurs at NT = Pinv > 0 and the predator invasion
at NT = Zinv. Before the Hopf at NT = NT,H , the solid line denotes the stable
equilibrium values, after the Hopf, the minima and maxima are denoted by the solid
line and the unstable equilibrium values by the dotted line.

haviour, in this case stable limit cycles. Let us denote this value of NT with
NT,H . The transition of a non-cyclic stable equilibrium to an unstable equilib-
rium with a stable limit cycle occurs when the eigenvalues of the equilibrium
gain a complex part and the real parts are zero. This transition point is known
as a Hopf-bifurcation. For NT > NT,H , increasing NT will cause the ampli-
tudes of the oscillations to increase. Eventually the minima of an oscillation
will approach a low value. As a result the prey population can become very low
and extinction due to stochastic fluctuations becomes likely. This phenomena
of unexpected species extinction when an increase of biomass was expected
after nutrient enrichment is called the paradox of enrichment.

To illustrate the use of bifurcation theory Fig. 1.1 was constructed with
auto. The horizontal axis denotes the nutrient loading of the system (NT ),
the vertical axes either represents algal biomass P or the predator biomass
Z. The algae can invade at NT = Pinv, then their biomass increases with
increasing values of NT . When NT = Zinv, the ciliates can invade. Increasing
NT will no longer increase P but Z. This continues until NT = NT,H , at
that nutrient loading the Hopf is located. Right of the Hopf the system shows
cyclic behaviour with increasing amplitudes of the oscillations when increasing
NT . Note that the very low densities of P further after the Hopf might lead
to extinction via stochastic events.
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In the next section we will incorporate a module to include the effects of
a toxicant on the reference system. Then the model analysis will continue.

1.2.4 Incorporation of toxicant effect with DEBtox module

Bedaux and Kooijman developed an approach to quantify the effect of a toxi-
cant on the biological rates used in Dynamic Energy Budget (deb) modelling
[3, 15]. With this approach, named debtox, two parameters are needed per
affected rate that is related to a biological process. One of the toxicity para-
meters is the no-effect concentration (nec). Below this threshold the toxicant
has no effect on the rate and thus no effect on a biological process and thus no
effect on an individual. The other is the tolerance concentration (TC) which
represents the strength of the toxic effect. Together these parameters describe
the response of a process to a low internal toxicant concentration, for example,
the value of the parameter that stands for the rate of photosynthesis becomes
a function of the internal toxicant concentration.

The output of the ecosystem model depends on the parameter values used,
the effect of a toxicant on the level of physiological processes is elevated to the
level of a complete system via the affected parameter. Thus the effect of the
toxicant on a process over time is integrated via the odes which model the
affected organisms and its interaction with its environment and other species.

To include the effect of a herbicide on the growth rate of the algae, the
model of Eq. (1.2) is extended with the nec and tc parameters. See [15] for an
application of this threshold method on algal growth inhibition. It is assumed
that the internal toxicant concentration in unicellulars is in equilibrium with
the constant external concentration, i.e., the internal toxicant concentration is
proportional to the toxicant concentration in the medium, see also [26, 12, 11].
The large surface-area-to-volume ratio of unicellulars justifies this assumption.

Under unexposed situations the maximum growth rate has a constant
value denoted by INP (0). When the medium toxicant concentration (c) is
below the threshold value the toxicant does not affect the growth rate and
thus INP (c) = INP (0). This threshold value is called the no-effect concen-
tration (nec); denoted by c0,INP

for the producers growth rate. Increasing
the toxicant concentration from the nec-value with the value of the tolerance
concentration (cT ) results in a halving of the maximum growth rate. The
tolerance concentration for the maximum growth rate is denoted with cT,INP

The expressions below describe the effect of the herbicide on the producers
growth rate:

INP (c) = INP (0)

(

1 +
max(0, (c − c0,INP

))

cT,INP

)−1

(1.4)
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If we want to model the effect of an insecticide on the death rate of the
predator we use the same approach. The effect of the insecticide on the death
rate (dZ) is described in a similar manner as for the effect on the death rate
with a tolerance concentration (cT,dZ

) and nec (c0,dZ
). The expressions below

describe the effect of an insecticide on the death rate of the predator:

dZ(c) = dZ(0)

(

1 +
max(0, (c − c0,dZ

))

cT,dZ

)

(1.5)

1.2.5 Bifurcation analysis of exposed ecosystem

The effect of changing the nutrient load of the system on the biomass of
the producer and predator was illustrated with Fig. 1.1. In that figure the
continuation parameter was NT . In Figure 1.2 the continuation parameter is
cW , the water concentration of the toxicant. As only cW is continued the other
parameters are constant.

The left panel of Figure 1.2 illustrates the effect of only a herbicide on the
biomass density of the producer and predator. The herbicide does not affect
Z but only the producers growth rate. Below the no-effect concentration of
5 µg/L both biomass densities are constant and equal to the reference state.
Without the predator present the producer density would have been higher,
but the ‘surplus’ biomass is used to sustain the predator.

While the toxicant affects the producer directly it is the predator which
suffers as first the consequences. As primary production of the producers goes
down, the producers make less new biomass and thus less new prey for the
predator, leading to the extinction of Z. Around a herbicide concentration
of 13.5 µg/L the predator goes extinct (Zext) as the producer generates no
longer ‘surplus’ biomass. Then with the predator being extinct the effect of
high toxicant concentrations on the producer becomes visible. Slowly the P
reduces in density until it goes extinct (Pext).

Although the toxicant is a herbicide the first observable effect is on the
predator biomass, followed by a decline in producer biomass and finally at a
high toxicant concentration extinction of the producer follows.

The right panel of Fig. 1.2 illustrates the effect of the insecticide on the
biomass density of the producer and predator. P is insensitive to the insecti-
cide. The insecticide increases the death rate of the predator, this causes the
predator biomass to become lower until at toxicant concentrations Zext the
predator goes extinct. Lower densities of Z reduce the predation pressure on
P , therefore P increases in density until it reaches the maximum attainable
density given this specific nutrient load. Thus the increase of the producer
densities is an indirect effect of the toxicant.
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Figure 1.2: Left panel: the biomasses of P and Z depend on a constant total nutrient
load NT and an increasing concentration of a herbicide with a no-effect concentra-
tion of 5 µg/L. Right panel: the biomasses of P and Z depend on a constant total
nutrient load NT and an increasing concentration of an insecticide with a no-effect
concentration of 5 µg/L.

1.2.6 2D-bifurcation analysis of exposed ecosystem

The effect of continuation parameter NT on the biomass densities of the pro-
ducer and predator was shown in Fig. 1.1. Similarly, the effect on the biomass
densities of continuing parameter cW was shown in Fig. 1.2. In both analyses
the species composition of the ecosystem was: no species present, only pro-
ducer present or producer and predator present. Possible ecosystem behaviour
was stable equilibria and cyclic. It is also possible to continue two parameters
at the same time, as illustrated with Fig. 1.3. Now, not biomasses are shown
but the species composition of the ecosystem and the behaviour of the sys-
tem given the combination nutrient loading and toxicant concentration. We
devised a method to find areas in the parameter-space where the ecosystem
is quantitatively not affected. These areas we defined to be no-effect regions
(in analogy to the no-effect concentration). These areas are formed by combi-
nations of values for nutrient loading and toxicant loading were the biomass
densities are not affected. The bifurcation analysis also resulted in areas where
the quantities are changed but not the ecosystem structure. Finally we deter-
mined where quantitative changes in biomasses occurred and simultaneously
the behaviour of the ecosystem was changed. Thus in this system toxicant
stress is just one stress beside nutrient stress.

In the left panel of Fig. 1.3 the producer invasion threshold curve, or trans-
critical bifurcation (tc) curve, is perpendicular to the horizontal axis when
the toxicant concentration is below the nec. At higher toxicant concentra-
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Figure 1.3: Left panel: 2D-bifurcation diagram with continuation parameters the
nutrient load NT and the herbicide concentration cW . Right panel: 2D-bifurcation
diagram with continuation parameters the nutrient load NT and the insecticide con-
centration cW . The legend applies for both panels. 1 stands for only producer present.
2 stands for both producer and predator present. Areas with stable equilibria are de-
noted with subscripted e and areas with cyclic behaviour are denoted with c. The
grey area is the no-effect region (ner).

tions the tc curve moves to the right as higher nutrient loadings are needed
to compensate for the toxicant presence. The predators tc curve is first also
perpendicular to the horizontal axis and follows the producers tc. The Hopf-
curve is also affected by the presence of the toxicant above the nec. Gray
denotes the no-effect region (ner) where presence of the toxicant has no effect
on the quantitative behaviour of the system. When the toxicant has effect,
the ner boundary (solid black line) is crossed.

It can be observed that the area where both species can occur simultane-
ously is limited, even at the reference state. This area is only reduced with
increasing toxicant concentrations.

In the right panel of Fig. 1.3 the effect of different nutrient loadings and an
insecticide on the species composition of the system is shown. The producer
invasion threshold (tc) remains parallel to the toxicant axis as the producer is
unaffected by the toxicant. The predator invasion threshold is shifted to higher
nutrient loadings if the toxicant concentration increases. The Hopf-curve is
shifted similarly. The area where both species occur together and provide the
highest species diversity possible in this system is confined by the predator tc,
the Hopf and part of the horizontal axis. This illustrates how the ecosystem
composition depends on both nutrient load and insecticide presence.
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1.2.7 Bifurcation analyses as input for hazard and risk assess-

ment

So far we analysed the effects of one toxicant at a time on a deterministic
ecosystem. Given a set of parameter values for the ecology, species proper-
ties and toxicant concentration we can calculate the long-term behaviour and
composition of the ecosystem. For example, the right panel of Fig. 1.2 can be
used to determine the densities of prey and predator at NT = 2 depending
on the insecticide concentration cW . Therefore we can assess for each possible
cW the negative consequence or hazard to the ecological system, for example
the extinction of the predator.

If we take cW to be normally distributed with a known mean and variance
instead of being deterministic then the resulting biomass densities become
uncertain, including the presence or absence of the predator. We can calculate
the chance of predator extinction if the distribution of cW is well characterized
as we know at which deterministic cW the predator goes extinct. Thus we can
read from Fig. 1.4 that Z has a 88.5 percent chance of not going extinct for
the presented distribution of cW .

However, if the type of distribution of cW and the values of its characteriz-
ing parameters are unknown then an extinction chance can not be calculated.
If we do know an upper confidence value as a worst case scenario of the toxi-
cant concentration then we can do the following. If we want a high likelihood
that Z will persist and we know the 95% upper boundary of cW , then the right
panel of Fig. 1.4 shows that for NT = 2.1 there is this a 95% certainty that
cW will have that value or lower and therefore Z can be near its extinction
threshold but not over it.

The above result is a specific example of an approach which can be gener-
alized for more complex ecosystems with more species as described below.

Bifurcation analysis makes it possible to determine areas of species com-
position and behaviour of the ecosystem given deterministic nutrient and tox-
icant loading. The bifurcation curves in these analyses are deterministic. If
the continued parameter on the 2D bifurcation has a stochastic distribution
then the locations of the bifurcation curves become uncertain, leading to un-
certain boundaries of areas with certain species composition. Thus the precise
locations of invasion, extinction or occurrence of cyclic behaviour become lost.

There where the upper boundary of the uncertainty area ends, one can
read with a degree of certainty the species composition of the ecosystem and
determine persistence of extinction of the species of interest. Therefore the
upper boundary forms a collection of worst case scenarios for the continued
parameter and sets the ecological ’safe’ parameter ranges under which the
toxicant may occur without species loss compared to the reference state.
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Figure 1.4: The left panel is identical to the right panel of Fig. 1.3 but now the
uncertainty in the toxicant concentration is depicted by the horizontal 95%-confidence
interval. There where the uncertainty interval overlaps a deterministic extinction
threshold there is a risk of extinction. At higher nutrient levels there is no overlap
and the the predator is unlikely to go extinct given the toxicant distribution. The
right panel is a vertical cross-section of the left panel at NT = 2 and identical to the
right panel of Fig. 1.2 when zooming on the lower toxicant concentrations. Added
to this close-up in the upper panel is the distribution of the toxicant concentration
and its mean and 95%-confidence interval. The second upper y-axis denotes the
toxicant concentration probability density function. In the lower left the likelihood
of the persistence of Z can be read on the second y-axis. Given the distribution for
cW there is an 88.5 percent change that the predator will persist, albeit at lowered
densities.
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Chapter 2

Modelling long-term

ecotoxicological effects on an

algal population under

dynamic nutrient stress

D. Bontje, B.W. Kooi, M. Liebig and S.A.L.M. Kooijman
Water Research, 43:3292–3300, 2009.

We study the effects of toxicants on the functioning of a phototrophic
unicellular organism (an algae) in a simple aquatic microcosm by applying a
parameter-sparse model. The model allows us to study the interaction be-
tween ecological and toxicological effects. Nutrient stress and toxicant stress,
together or alone, can cause extinction of the algal population. The modelled
algae consume dissolved inorganic nitrogen (DIN) under surplus light and use
it for growth and maintenance. Dead algal biomass is mineralized by bacterial
activity, leading to nutrient recycling. The ecological model is coupled with a
toxicity-module that describes the dependency of the algal growth and death
rate on the toxicant concentration. Model parameter fitting is performed on
experimental data from Liebig et al. [27]. These experiments were especially
designed to include nutrient limitation, nutrient recycling and long-term ex-
posure to toxicants. The flagellate species Cryptomonas sp. was exposed to
the herbicide prometryn and insecticide methyl parathion in semi-closed Er-
lenmeyers. Given the total limiting amount of nitrogen in the system, the
estimated toxicant concentration at which a long-term steady population of
algae goes extinct will be derived. We intend to use the results of this study to
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investigate the effects of ecological (environmental) and toxicological stresses
on more realistic ecosystem structure and functioning.

2.1 Introduction

When assessing the ecological status of a river, the effects of both toxicant and
environmental stresses on multiple species have to be accounted for [6]. Lab-
oratory toxicity tests, on the other hand, generally concern a single stress and
a single species. The use of population models for extrapolation from single
species ecotoxicological observations to the relevant effects on an ecosystem
is discussed in Forbes et al. [11] and in Forbes and Callow [12]. Here for
modelling purposes, an aquatic ecosystem contains a limiting nutrient and
functional groups: producers, predators and decomposers to ensure nutrient
recycling.

In order to study direct and indirect effects of toxicants, the bottom trophic
levels of this system have been exposed and studied by Liebig et al. [27]. In
these Erlenmeyer experiments the flagellate Cryptomonas sp. represents the
producers, the ciliate U. furcata represents the predators and undetermined
bacteria are the decomposers. The system is exposed to either a herbicide or
a pesticide for 14 days. The nutrient level is maximum at the onset and is
reduced by the algae. Therefore, the nutrient concentration declines dynami-
cally during the batch experiments and becomes limiting after the first days.
In Liebig et al. [27], the data sets were analysed using the traditional toxicity
test procedures [33]. These procedures may only be applied under exponen-
tial growth conditions, which holds true for the first days of the algal data
sets when nutrients are abundant and thus no interactive effects of nutrient
limitation and toxic stress occur.

In this paper, we perform an analysis of the limiting nutrient-Cryptomonas
sp. subsystem using the full duration of the experiment. Consequently, the
analysis is extended outside the exponential growth phase and includes nutri-
ent limitation. To perform this extended analysis, we apply a process-based
ecotoxicological model in which the growth and death of the species is simu-
lated using a deterministic Marr-Pirt model [23, 19]. Dead algal biomass is
mineralized by bacterial activity. The model considers recycling of the limiting
nutrient. To incorporate the toxicant effect the DEBtox approach [4, 24] is
applied where two parameters are needed per affected process such as growth
or mortality. One of the toxicity parameters is the no-effect concentration
(NEC). Below this threshold the toxicant has no effect on an individual. The
other is the tolerance concentration (TC) which represents the strength of the
toxic effect. Parameter values, standard deviations and their covariance are
estimated by fitting the resulting model on the experimental data from Liebig
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et al. [27] with a least-sum-of-squares method. This provides simultaneously
the toxicological parameters, NEC and TC, and the biological parameters,
such as growth rate, hazard rate and nutrient half-saturation constant.

The algal growth dynamics, including steady-state biomass, depend on
these biological parameters. Toxicants affect biological processes and thus
the dynamics. Dynamic behaviour is also affected by nutrient availability.
Hence, the effects of a toxicant and a nutrient on the dynamics, which are
difficult to separate in nature, are taken into account in the model formulation
simultaneously.

Hallam et al. [17] introduced the population extinction threshold (PET)
being defined as the highest ambient chemical concentration at which the
population could persist during long-term exposure. Extinction of a popu-
lation can be caused by a too low nutrient availability (starvation) but also
because of toxic effects causing increased death rate or reduced growth effi-
ciency. From the deterministic model the expressions for the PET are derived.
In the Appendix, the stochastic formulation of the PET which respects covari-
ance between parameters is given. The estimated toxicological and biological
parameters are used to study the dependence of both extinction and persis-
tence of the algae on toxicant concentration and nutrient load.

2.2 Material and Methods

2.2.1 Experimental data of system with nitrogen,

Cryptomonas sp. and toxicant

Liebig et al. [27] performed in Erlenmeyers 14-day exposure experiments with
the flagellated algae Cryptomonas sp. and the herbicide prometryn (CAS
7287-19-6), which inhibits photosystem II, and the insecticide methyl para-
thion (CAS 298-00-0) which is an acetylcholinesterase inhibitor. In these ex-
periments chemical stress and nutrient limitation occur simultaneously. Fig-
ure 2.1 [27, Fig 1A therein] shows the growth curves for cell numbers affected
by each toxicant. The measured number of cells (V (t)) is converted into algal
biomass (A) expressed in mol N L−1 by using a fitted constant amount of
nitrogen per cell (Ncell). Chemical analysis indicated a recovery of close to
100% of the nominal concentrations of the toxicants [27].

2.2.2 Formulation of the model

Algae harvest energy from sunlight which they store in carbohydrates. Car-
bohydrates provide both energy and mass which are combined with other
assimilated nutrients from the medium, such as dissolved inorganic nitrogen
(DIN), which includes ammonium and nitrite, to synthesize algal biomass [5].
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Figure 2.1: Calculated and measured algal densities are affected by prometryn and
methyl parathion. See Table 2.2 for parameter values of the fit for each dataset.
Averages and variances are based on four replicates. A: Prometryn was modelled
to affect the growth rate. B: Methyl parathion was modelled to affect the hazard
rate. The NEC is above the first three exposure concentrations. Therefore only the
simulations with the highest two exposure concentrations differ from the control.

This new biomass is used by the algae for growth while energy is used for
maintenance (including basal respiration and turn-over of macro-molecules).
Products of the maintenance process, such as ammonium and carbon dioxide,
are excreted into the environment [47]. The ammonium is utilized again by
the phytoplankton [26].

Bacteria feed on dead algal biomass and dead bacteria. Bacteria have to
maintain themselves and thus excrete metabolic products such as ammonium
and carbon dioxide, similar for metabolic products of the growth process.
Excrements that contain the element nitrogen are considered nutrients for the
algae. This closes the recycling circle of the limiting nutrient to algae, to
bacteria and back to the limiting nutrient.

In the following model, the growth-limiting nutrient for the algae is dis-
solved inorganic nitrogen (DIN). DIN includes all nitrogen containing simple
compounds such as the salts dissolved in the medium e.g. NaNO3. Carbon
dioxide can enter and leave the Erlenmeyer, allowing the algae to fix carbon.
Carbon is assumed to be present in non-limiting amounts as the algae are
aerated. All nutrients except DIN, are assumed to be present in abundance
and are not modelled. DIN is converted into algal biomass, dead algal biomass
results in detritus which is re-mineralized.
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Figure 2.2: The scheme shows how the nitrogen cycles through the semi-closed sys-
tem turning from nutrient into algal biomass, and eventually into to small compounds
that together form the nutrients for the algae. Light enters and heat leaves, while the
limiting nutrient (nitrogen) remains inside. Toxicants can affect the growth rate or
hazard rate or both.

Table 2.1: List of Variables, Parameters and Constants

Symbol Name Units

A(t) Amount of nitrogen present in the biomass of the producer mol N L−1

c Concentration of the toxicant in the medium gram L−1

c0 No-effect concentration (NEC) of the toxicant in the medium gram L−1

cT Measure of tolerance of organism to toxicant gram L−1

D Amount of nitrogen present in detritus mol N L−1

dA Intrinsic death rate of the producer day−1

h Hazard rate of the producer day−1

kD Detritus degradation rate day−1

kM Maintenance rate for producer day−1

kNm Maximum nitrogen uptake rate day−1

KN Half-saturation constant for nitrogen assimilation mol N L−1

µ Algal growth rate day−1

N(t) Nitrogen concentration in medium mol N L−1

Ncell Amount of nitrogen per algal cell mol N cell−1

NT Total bioavailable amount of nitrogen in the system mol N L−1

t Time days

V (t) Measured cell density # cells L−1
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A mass balance model formulation leads to a set of ordinary differential
equations (ODEs) which describes the change over time of dissolved inorganic
nitrogen DIN (N), total algal biomass (A) and detritus density (D) in the
medium. The three state variables N , A, and D are expressed in mol nitrogen
per litre. Modelling population growth with ODEs is appropriate for divid-
ing algae [22]. Table 2.1 gives the symbol and units of each used variables,
parameters and constants.

fN (N) =
N

KN + N
(2.1a)

dN

dt
= kDD + A

(

kM + (1 − yNA)kNmfN (N) − kNmfN (N)
)

(2.1b)

dA

dt
= A

(

yNAkNmfN (N) − kM − dA

)

(2.1c)

dD

dt
= dAA − kDD (2.1d)

Nutrient assimilation fN (N) is modelled with a Holling type II functional
response, where the maximum nutrient uptake rate is kNm , KN is the nutrient
half-saturation constant. The yield of algal biomass on DIN is denoted by yNA.
kM denotes the maintenance rate of the algae. The first two terms in Eq. (2.1b)
between the brackets model the labile (maintenance and assimilation) prod-
ucts excreted by the algae. The term AkNm(1 − yNA)fN (N) describes the
flux of DIN which is not synthesized into algal biomass. Abundant bacterial
activity degrades all nitrogen containing compounds into a form that can be
assimilated by the algae. dA is the intrinsic death rate of the algae, dead algae
become detritus. The degradation rate of detritus by bacteria is denoted by
kD.

The effective nutrient uptake and assimilation rate are identical to the
maximum growth rate µ, with µ = yNAkNm which is substituted into the
above set of equations.

Bacteria have relatively high growth rates and thus high assimilation rates
and therefore high substrate degradation rates compared to algal growth. Al-
gae have relatively low death rates and therefore kD ≫ dA. This allows for
the assumption that the rate of change of the detritus biomass is much faster
than the rate of change of the nutrient in the medium and algal biomass, i.e.
dD/dt = 0. From Eq. (2.1d) the quasi-steady-state equilibrium value of the
detritus D∗ = AdA/kD is found.

As a last step, taking h = kM + dA yields what we call a hazard rate.
Above substitutions result in:
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dN

dt
= A

(

h − µ
N

KN + N

)

(2.2a)

dA

dt
= A

(

µ
N

KN + N
− h
)

(2.2b)

In Figure 2.2 the mass fluxes of this system are shown. This formulation
shows that nitrogen is recycled between nutrient (N) and algae (A). Conse-
quently, the total amount of nitrogen in the system (NT ) is constant, yielding:

NT = N(t) + A(t) = N(0) + A(0) (2.3)

Eliminating variable N from system Eq. (2.2) using Eq. (2.3) gives the
following algal growth equation:

dA

dt
= A

( µ
KN

NT−A
+ 1

− h
)

(2.4)

The equilibrium density of the algae A∗ can be found by solving dA/dt = 0,
this yields:

A∗ = NT − KN
h

µ − h
(2.5)

Thus the equilibrium density depends on the total amount of limiting nu-
trient in the system (NT ). Furthermore, it depends on the species specific
growth rate (µ), hazard rate (h) and the nutrient half-saturation constant
(KN ).

2.2.3 Toxicant concentration-effect relationships

To include the effect of toxicants on the growth and death of the algae, the
model of Eq. (2.4) is extend with a threshold method developed by Bedaux
and Kooijman [4]. See Kooijman et al. [24] for an application of this threshold
method to algal growth inhibition tests.

It is assumed that the internal toxicant concentration in a unicellular is in
equilibrium with the constant external concentration, i.e., the internal toxicant
concentration is proportional to the toxicant concentration in the medium, see
also [43, 16, 15]. The large surface-area-to-volume ratio of unicellulars justifies
this assumption.

Under unexposed situations the hazard rate has a constant value denoted
by h(0). When the medium toxicant concentration (c) is below the threshold
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value the toxicant does not affect the hazard rate and thus h(c) = h(0). This
threshold value is called the no-effect concentration (NEC); denoted by c0,h

for the hazard rate. Increasing the toxicant concentration from the NEC-value
with the value of the tolerance concentration (cT ) results in a doubling of the
hazard rate. The tolerance concentration for the hazard rate is denoted with
cT,h

The expressions below describe the effect of the toxicant on the hazard
rate and the growth rate:

h(c) = h(0)
(

1 +
max(0, (c − c0,h))

cT,h

)

(2.6a)

µ(c) = µ(0)
(

1 +
max(0, (c − c0,µ))

cT,µ

)−1
(2.6b)

The effect of a toxicant on the growth rate (µ) is described in similar
manner as for the effect on the hazard rate with a tolerance concentration
(cT,µ) and NEC (c0,µ).

2.2.4 Equilibrium density and the PET

For each combination of nutrient load (NT ) and toxicant concentration (c),
the expected long-term final cell density, or equilibrium density (A∗), can be
calculated. For each fixed nutrient load, there is one toxicant concentration,
denoted by cx, above which the algal density is zero; that is algal extinction.
cx can be derived by substitution of A∗ = 0 into Eq. (2.5) and Eq. (2.6b),
leading to:

cx = c0,µ + cT,µ

(µ(0)

h

( NT

KN + NT

)

− 1
)

(2.7)

The value of cx depends on the values of the parameters c0,µ, cT,µ, µ, h and
KN .

If these values are deterministic variables, then cx has no standard devia-
tion. In this paper, however, the parameters are treated as estimated values
fitted from experimental data. Due to measurements errors, differences in ini-
tial conditions, bio-variability, etc., data points are random. Therefore, these
parameters are treated as stochastic variables and consequently cx is also a
stochastic variable with a mean and standard deviation. See the Appendix for
a detailed derivation of cx. Together, all extinction concentrations with their
corresponding nutrient load form a population extinction threshold, or PET.
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2.2.5 Data fitting method

A weighted least-sum-of-squares method with weights equal to the inverse of
the variance in the measurements was used. A low sum-of-squares indicates
a good fit. The data points values are assumed to be normally distributed.
This makes this method identical to a maximum-likelihood method [31]. The
additional assumption that the number of data points is large leads to the
conclusion that the fitted parameters are multi-nominal distributed. The sum-
of-squares (SSQ) is minimized with a Nelder Mead’s simplex method. The
mean and covariance matrix (inverse of the Hessian matrix of the SSQ with
respect to the parameters) of the estimated parameters are evaluated at the
minimum SSQ-point [39].

2.3 Results

2.3.1 Data fitting results

The model curve fits together with the experimental measurements are shown
in Figure 2.1. Each experiment had a control case and five toxicant concen-
trations. For toxicant concentrations less than the NEC value, the curves
coincide with the control curve. In Table 2.2, the estimated parameter values
and standard deviations are listed.

The effect of the toxicant is modelled assuming that the compound affects
the growth rate, the hazard rate or both. Three different scenarios were fitted:

• Scenario I: the toxicant only affects the growth rate.

• Scenario II: the toxicant only affects the hazard rate.

• Scenario III: the toxicant affects both rates.

The sum-of-squares (SSQ) was used to assess the goodness of fit for each
scenario. The scenario with the lowest SSQ is assumed to give the modelled
mode of action of the toxicant.
Prometryn: Scenarios I, II and III respectively fitted with a SSQ of 37.8,
53.0 and 37.6. This means that scenarios I and III fit nearly equally well.
The toxicity parameters (NEC and tolerance concentration) that describe the
influence of prometryn on the hazard rate have a very large standard deviation
in scenario III. Also the tolerance concentration for the hazard rate was very
high. This means that the effect of prometryn on the hazard rate is negligible.
Furthermore, scenario I in which prometryn influences the rate of synthesis
of new biomass via the growth rate has two parameters less than scenario
III. Thus, prometryn scenario I is most likely. This is in agreement with the
fact that the herbicide prometryn is known to influence photosystem II and
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this reduces carbohydrate production and thus reduces the energy and mass
available to incorporate nitrogen into new biomass.
Methyl parathion: Scenarios I, II and III respectively fitted with a SSQ of
40.7, 29.1 and 29.1. This means that for methyl parathion scenarios II and III
fit equally well. The toxicity parameters (NEC and tolerance concentration)
that describe the influence of methyl parathion on the assimilation and incor-
poration of nitrogen via the growth rate have a very large standard deviation
in scenario III. Also the tolerance concentration for the growth rate was very
high. This means that the effect of the pesticide methyl parathion on the
growth rate is almost negligible. Furthermore, scenario II in which methyl
parathion influences the hazard rate uses two parameters less than scenario
III. Hence, methyl parathion affects the growth rate only slightly and scenario
II is most likely.

2.3.2 Algal population extinction threshold

Using Eq. (2.5) and Eq. (2.6b) and the mean values from Table 2.2, we calcu-
lated the deterministic equilibrium cell densities depending on nutrient load
and prometryn concentration, see Figure 2.3. The grey area represents equi-
librium cell densities. When no toxicant is present, the algal biomass (A∗) is
proportional to the nutrient load (NT ). At low nutrient concentrations the
algae can not persist. On the other hand, there is a maximum toxicant con-
centration at which the algae can not persist even when there is a very high
nutrient load (not shown in this graph). Between these extremes the algae
suffer from nutrient stress and toxicant stress simultaneously. A line is formed
where the grey surface of the algal densities crosses the bottom plane. This
curve is the PET. It separates regions in the bottom plane where the algae
can persist from where they go extinct.

Figure 2.4 shows the dependency of the extinction probability of the algae
on the prometryn concentration at nutrient load of 200 µmol N L−1. The
parameter values and standard deviations from Table 2.2 were used to con-
struct the estimated extinction concentration from Eq. (2.7) and its variance
using a Taylor series expansion as explained in the Appendix. For the sake of
simplicity, we assumed a normal distribution of cx.

Figure 2.5 shows how the extinction concentration is influenced by nutri-
ent stress. As each nutrient concentration has its corresponding extinction
concentration with attached uncertainty, the total set of extinction concen-
trations together forms the population extinction threshold. The grey area
indicates the uncertainty of the PET. Below the grey area, the algae are likely
to survive. The open circles indicate the measured combination of toxicant
concentrations and nutrient concentration in which the algae persisted [27].
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Table 2.2: Estimated parameter values based on exposure experiments to
prometryn and methyl parathion as shown in Figure 2.1A and B, respectively.

prometryn (CAS 7287-19-6) methyl parathion (CAS 298-00-0)
Affected parameter: µ Affected parameter: h

Parameter Value SD Value SD units

V (0) 3.00·107 3.83·105 2.99·107 3.39·105 #cells L−1

Ncell 7.26·10−1 1.32·10−1 8.05·10−1 2.75·10−1 pmol N cell−1

N(0) 2.01·10−4 0 2.01·10−4 0 mol N L−1

µ 1.27·100 1.59·10−1 8.05·10−1 3.24·10−1 day−1

h 7.20·10−2 5.19·10−2 8.97·10−2 1.81·10−1 day−1

KN 2.27·10−4 2.19·10−4 9.12·10−5 2.90·10−4 mol N L−1

c0,µ 4.57·100 1.68·100 > 0 - µg L−1

cT,µ 3.16·101 8.71·100 ∞ - µg L−1

c0,h > 0 - 9.66·10−1 3.76·10−1 mg L−1

cT,h ∞ - 1.07·100 4.11·100 mg L−1

If the standard deviation (SD) of a parameter is zero, then the value was not estimated

but fixed. Note, A(t) = NcellV (t).
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Figure 2.3: Algal densities depending on the total limiting nutrient and prometryn
concentration which affect the growth rate. The bold line in the bottom plane is the
Population Extinction Threshold, or PET.
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2.4 Discussion

2.4.1 Comparing results with literature

Freshwater and marine unicellular algal growth rates range from 0.3 to 8 day−1

with clustering around a growth rate of 1 day−1 [32]. In [25] growth rates of six
species of phytoplankton ranged from 0.5 to 1.3 day−1. For the ‘exponential’
growth phase in the experimental control group, we estimate a growth rate
(µ− h) of 0.7 and 1.2 day−1 for the freshwater flagellated algae Cryptomonas
sp., see Table 2.2.

The hazard rate of light-starved salt water mixotrophic Ochromonas sp. is
0.66 day−1 [2]. The flagellated growth form of the marine Phaeocystis globosa
has a hazard rate of 0.07 day−1 and the non-flagellated growth form 0.52
day−1 [37]. In [49] structural decay rates of 0.43 to 8.93 day−1 were measured.
Using dissolved esterase activity as a tracer of phytoplankton lysis, lysis rates
ranging from 0.026 day−1 to 1.9 day−1 were found [1]. An averaged dark
respiration rate ranging from 0.01 to 0.4 day−1 was found for microalgae [14].
In a nitrogen starvation batch experiment with the marine diatom Ditylum
brightwellii, the algal death rate of the diatom reduced from 0.1 to 0.04 day−1

when bacteria were added, likely due to remineralization of biomass [7]. We
fitted from our data sets a hazard rate equal to maintenance rate plus the
intrinsic death rate (h = kM + dA) of 0.07 to 0.09 day−1 for the freshwater
algae Cryptomonas sp. with undetermined bacteria present, see Table 2.2.

A lumped half-saturation concentration of 0.2-15 µmol NO−
3 L−1 was re-

ported for an uncharacterized population of lake algae [38]. Berman et al.
[5] reports for freshwater algae half-saturation concentrations for ammonium
ranging from 0.004 µmol L−1 to 0.51 µmol L−1 and half-saturation concen-
trations for nitrate ranging from 0.007 µmol L−1 to 11 µmol L−1. We found
values for the nitrogen half-saturation concentration (KN ) of 227 (± 219) and
91 (± 290) µmol N L−1 range, see Table 2.2.

DeBiase et al. [9] found 0.06 pmol N cell−1 under various nutrient con-
ditions for Cryptomonas sp. In our prometryn and methyl parathion exper-
iments with Cryptomonas sp. the measured average cellular content ranged
from 0.21 to 0.39 pmol N cell−1 [27]. We estimated for respectively the prom-
etryn and methyl parathion experiments 0.73 (±0.13) and 0.81(±0.28) pmol
N cell−1. These values are in the same order of magnitude.

We conclude that the estimated growth rate (µ−h), hazard rate (kM +dA),
saturation constant (KN ) and nitrogen per cell (Ncell) are in the same range
as reported in the literature.

By applying classical statistics to the same data set of algae exposed to
prometryn, Liebig et al. [27] found a 50% growth inhibition at day 7 (EC50,7d)
of 39.3 µg L−1. Further, the no-observed effect concentration (NOEC) at day
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7 is 23.2 µg L−1. These effect concentrations are in close accordance with
literature values for other green algae like the EC50 of 12 µg L−1 determined
for Selenastrum cornutum [35], the EC50,96h of 21 µg L−1 for S. cornutum and
the EC50,96h of 53 µg L−1 for Dunaliella tertiolecta [13].

The algal growth inhibition test with methyl parathion using Cryptomonas
sp. resulted in growth rate based NOEC values of 0.73 mg L−1 at day 14 and
EC50,14d of 77.7 mg L−1 [27]. These results are in close accordance with the
NOEC values determined for the green algae Chlamydomonas reinhardi of
0.22 to 1.45 mg L−1 and a EC50,10d of 5.2 mg L−1[42].

Using our process-based model, we derived a time-independent no-effect
concentration (NEC) for prometryn of 4.6 µg L−1 and tolerance concentration
(cT ) of 31.6 µg L−1, and for methyl parathion a NEC of 1.0 mg L−1 and a
tolerance concentration of 1.1 mg L−1.

Classical effect concentrations, NOEC and EC50, are time-dependent which
can not be compared directly with the time-independent NEC [18]. See Kooi-
jman et al. [24] for a discussion on NOEC and NEC.

The data fit results show that prometryn inhibits growth. This result
was obtained without making prior assumptions on the simulated mode of
action. In fact, it is known from molecular/physiological studies [34, 10, 40]
that triazines, like prometryn, inhibit photosynthesis and thus inhibits the
generation of energy available for biomass production, i.e. growth. The sec-
ond compound, methyl parathion, is a cholinesterase-inhibiting organophos-
phorous compound. As algae lack cholinesterase, there is no specific site of
action identifiable although at high concentrations methyl parathion affects
photosynthesis [41]. In general, organophosphorous insecticides can reduce
membrane integrity, cause leakage of cellular metabolites [29, 30] and can af-
fect mitochondrial ATPases [44, 3]. Our model captured the effects of methyl
parathion by increasing the hazard rate.

2.4.2 Assumption justification

To derive our parameter-sparse model, we made various assumptions. One
is that the amount of biologically available nitrogen in the system remains
constant, i.e. NT (t) = NT (0). From day 10 until day 14, there is a constant
algal density for the control and low toxicant concentrations, see Figure 2.1.
This indicates a steady-state in which dead algae and maintenance products
are re-mineralized, see also[7]. Remineralization during the whole experiment
implies no substantial loss of nitrogen.

Another assumption was that bacterial degradation of detritus was not af-
fected by the toxicants. No aquatic bacteria without a photosystem were found
to be sensitive for prometryn [46]. Terrestrial micro-algae and cyanobacteria
can even potentially benefit from organophosphates like methyl parathion by
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hydrolysing the compound and liberating the phosphate [28]. From this we
conclude that it is justified to make this assumption.

We also assumed that the toxicant concentration was constant; that is the
organisms do not affect the toxicant concentration via degradation or accumu-
lation. Based on an algal single cell bio-volume of 280 µm3 [48], 3.5·105 cells
(Figure 2.1A) occupy a volume of 1·108 µm3 while 100 ml medium has a vol-
ume of 1·1014 µm3. Therefore, even with high BCF values, the influence of the
algae on medium toxicant concentrations would be negligible. This is in accor-
dance with a recovery close to 100% [27]. The estimated TC and NEC values
are based on external toxicant concentrations. If measured concentrations or
predictions from a toxicant-fate model are available then these (time-varying)
concentrations can be used instead of (constant) nominal values.

2.5 Conclusions

In our process-based modelling approach, the ecological status is affected by
both nutrient stress and toxicant stress. Thus the interactive effects of a
toxicant and nutrient load on the status, which are difficult to separate in na-
ture, are taken into account. Beside estimations of the average and standard
deviation of the parameters, our model yields the covariance matrix, which
includes the covariances between the toxicity parameters and biological para-
meters. These covariances are neglected when the analysis is based on separate
ecological and toxicological single species data sets.

Our final goal is to predict the effects of toxicants on the behaviour and
functioning of ecosystems [21], for this we need parameters which describe the
biology of the species involved, toxicity parameters for effect modelling, and a
model for the environment.

Without prior assumptions we found that the herbicide prometryn inhibits
algal growth, in accordance with it being a photosynthesis inhibitor. The
insecticide methyl parathion was found to increase the hazard rate, which can
be explained by the fact that this insecticide is known to reduce membrane
integrity and causes leakage of cellular metabolites.

Liebig et al. [27] present exposure experiments with algae and ciliates: the
ciliates themselves are insensitive to the herbicide prometryn, however their
growth is reduced when prometryn affects the ciliates’ prey. We will use the
estimated algal parameter values in an extended model with predatory ciliates
to study this indirect effect. This is a first step towards understanding sub-
lethal toxic effects in simple aquatic food chains and eventually more complex
ecosystems, see for instance [45, 20, 21, 36, 8].
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2.6 Appendix

Derivation of cx and approximation of its average and variance

The algae population persists when 0 < A∗ < NT , (see Eq. (2.5)). This
provides the persistence criterion for the chemical unstressed algae: NT >
KNh/(µ − h). To include a chemical stress that affects nutrient assimilation
indirectly via the growth rate (µ), take µ to depend on the toxicant concentra-
tion (c) in the environment as in Eq. (2.6b). This yields a toxicant dependent
equilibrium density for the algae (A(c)∗), see Eq. (2.5):

A(c)∗ = NT −
KNh

µ(c) − h
= NT − KN

( µ(0)

h(1 +
max(0,(c−c0,µ))

cT,µ
)
− 1
)−1

(2.8)

Let cx be the toxicant concentration at which the algae population goes ex-
tinct, then A(cx)∗ = 0. Given that the toxicant has effect, we have max(0, (cx−
c0,µ)) = cx−c0,µ. This yields after some algebraic manipulation Eq. (2.7). The
equation below is identical to Eq. (2.7) for the calculation of the extinction
concentration. The results of the SSQ fit for the parameter estimates and co-
variance matrix are used to estimate the expected value of cx and its variance.

cx(NT ) = g(c0, cT , µ, h, KN , NT ) (2.9)

g(X1, X2, X3, X4, X5, NT ) = X1 + X2

(

X3

X4

(

NT

X5 + NT

)

− 1

)

(2.10)

where Xi, with i ∈ {1, 2, 3, 4, 5}, are the stochastic variables with mean, µXi
,

and variance, (var[Xi]). Using a second order Taylor series expansion [31,
p181] to approximated g around µXi

gives:

g(X1, X2, X3, X4, X5, NT ) ≈ g(µX1
, µX2

, µX3
, µX4

, µX5
, NT )+ (2.11)

n=5
∑

i=1

(

∂1g

∂Xi
|µXi

(Xi − µXi
)

)

+
1

2

n=5
∑

i=1

n=5
∑

j=1

(

∂2g

∂Xi∂Xj
|µXi

(Xi − µXi
)(Xj − µXj

)

)

with E [(Xi − µXi
)] = 0, the expected value around µXi

of g(X1, X2, X3, X4,
X5, NT ) is:

E [g(X1, X2, X3, X4, X5, NT )] ≈ (2.12)

µX1
+

µX2
µX3

NT

µX4
(µX5

+ NT )
− µX2

+
1

2

n=5
∑

i=1

n=5
∑

j=1

(

∂2g

∂Xi∂Xj
|µXi

cov[Xi, Xj ]

)

The variance of g is:

var[g(X1, X2, X3, X4, X5, NT)] ≈
n=5
∑

i=1

n=5
∑

j=1

(

∂g

∂Xi
|µXi

∂g

∂Xj
|µXi

cov[Xi, Xj ]

)

(2.13)
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Chapter 3

Feeding threshold for

predators stabilises

predator-prey systems

D. Bontje, B.W. Kooi, G.A.K. van Voorn and S.A.L.M. Kooijman
Math. Model. Nat. Phenom., 4(6):91–108, 2009.

Since Rosenzweig showed the destabilisation of exploited ecosystems, the so
called Paradox of enrichment, several mechanisms have been proposed to re-
solve this paradox. In this paper we will show that a feeding threshold in
the functional response for predators feeding on a prey population stabilizes
the system and that there exists a minimum threshold value above which the
predator-prey system is unconditionally stable with respect to enrichment.
Two models are analysed, the first being the classical Rosenzweig-MacArthur
(RM) model with an adapted Holling type-II functional response to include
a feeding threshold. This mathematical model can be studied using analyt-
ical tools, which gives insight into the mathematical properties of the two
dimensional ordinary differential equation (ODE) system and reveals under-
lying stabilisation mechanisms. The second model is a mass-balance (MB)
model for a predator-prey-nutrient system with complete recycling of the nu-
trient in a closed environment. In this model a feeding threshold is also taken
into account for the predator-prey trophic interaction. Numerical bifurcation
analysis is performed on both models. Analysis results are compared between
models and are discussed in relation to the analytical analysis of the classical
RM model. Experimental data from the literature of a closed system with
ciliates, algae and a limiting nutrient are used to estimate parameters for the
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MB model. This microbial system forms the bottom trophic level of aquatic
ecosystems and therefore a complete overview of its dynamics is essential for
understanding aquatic ecosystem dynamics.

3.1 Introduction

In the classical Rosenzweig-MacArthur (RM) model a bifurcation occurs when
the carrying capacity of the prey reaches high values [27]. Then the steady-
state becomes unstable and a stable periodic solution originates. This tran-
sition is the Hopf bifurcation point. For carrying capacity values above the
Hopf bifurcation point, the amplitude of the oscillatory dynamics increases.
As a result the minimum value for the prey population becomes very low and
extinction due to stochastic fluctuations becomes likely. This phenomenon is
called the “paradox of enrichment”.

Kirk [12] suggested that the solution to the paradox of enrichment lies in
the fact that many biological models show a lack of biological detail. Indeed,
many biological models that include more detail than the RM model seem to
resolve the paradox by preventing destabilisation under nutrient enrichment.
Among the underlying mechanisms are the division of the prey-population
into two subpopulations: one accessible, vulnerable or edible and one inacces-
sible, invulnerable or inedible [15, 2], self-limitation of the prey [12], predator-
induced defence mechanisms in the prey population [32], dormancy of the
predators [16] and spatial heterogeneity [11, 29, 25]. Whether these mecha-
nisms do cause stability depends on model specifics, as for example, adaptive
defence of the prey can be both stabilizing [32] and destabilizing [1].

The stability of ecological systems is extremely sensitive to the exact form
of the functional response that models the trophic interactions [10]. In [31] it
is shown that the paradox of enrichment can indeed be avoided by using the
functional response proposed by Beddington [3] and DeAngelis et al. [8] that
takes intraspecific interference between predators into account.

In this paper we evaluate the effects of a feeding threshold on ecosystem
stability and/or persistence. In light of the comments made in [9], we define
stability in the mathematical sense as the stability of steady states with respect
to small perturbations. We use the definitions for stability as provided in [31],
where weak stability is defined as the delayed occurrence of a Hopf bifurcation
and strong stability as the disappearance of the Hopf bifurcation for all states
of enrichment.

Here the Holling type-II functional response is adapted by the introduction
of a fixed threshold for the prey population below which all prey individuals
are not at risk of predation, e.g. at low food densities the predator stops
searching [22, 28] or the prey hides in spatial separated areas called refuges.
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Different types and causes of refuges are discussed in [4]. This type of func-
tional response is used in aquatic ecosystem modelling, for instance in the
aquatox program that predicts the fate of various pollutants, such as nutri-
ents and organic chemicals, and their effects on the ecosystem, including fish,
invertebrates, and aquatic plants [23, 24].

The main goal of this paper is to study how the inclusion of a feeding
threshold in the Holling type-II functional response for predator-prey inter-
action affects the behaviour of two different models which each simulate a
nutrient-algae-ciliate microbial ecosystem in a spatial homogeneous and closed
environment. One model is based on a mass-balance (MB) formulation which
is derived from first principles and includes complete nutrient recycling [7, 14]
and the Holling type-II functional responses are used for the nutrient-algae
interaction and the algae-ciliate interaction, only the latter includes a feed-
ing threshold. The other model is the classical RM model [27] which only
implicitly includes a nutrient and does not include a mass-balance.

Before starting the analysis of the effect of a feeding threshold on stability
in our MB model, we first study the simpler RM model [27] as symbolic algebra
programs allow for a complete analysis of the model. Then we continue with
a numerical bifurcation analysis of the MB model. For both models we study
the effect of the feeding threshold on the paradox of enrichment by bifurcating
both the threshold value and the nutrient load of the system. Important is the
minimal nutrient load of the system at which the algae can invade the system,
then a transcritical bifurcation (TC) occurs. The second TC bifurcation occurs
when the nutrient load is high enough to support a producer population that
is sufficiently dense enough to allow predator invasion. This last TC marks the
region where the prey and predator can coexist. At even higher nutrient loads
a Hopf bifurcation marks regions where the system shows oscillatory dynamics
[13]. We will show that the long-term dynamic behaviour of the RM and MB
systems appear to be similar and are qualitatively even the same.

To illustrate the existence of a feeding threshold, we apply the MB model
on experimental data consisting of dynamic growth curves of prey and preda-
tor from [33]. During batch experiments the flagellated algal species Cryp-
tomonas sp. was preyed upon by one of three ciliate species, either Balanion
planctonicum, Urotricha furcata or Urotricha farcta. All species are fresh wa-
ter micro-organisms.

3.2 Formulation of the model

We study a spatial homogeneous and closed system with a predator, Z and
a prey population, P , consuming a limiting nutrient, N . Other nutrients,
including sunlight, are not limiting. The mortality rate of each population is
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denoted by dP for the prey and dZ for the predator. Table 3.1 lists all used
variables and parameters together with a short description and units.

The interactions between the trophic levels are modelled with a Holling
type-II functional response. Parameters for the prey-nutrient interaction are
the searching rate vN and the nutrient handling time hN and similar for the
predator-prey interaction are the searching rate vP and the prey handling time
hP . We implement a numerical feeding threshold, τ , by using a maximum-
function denoted with (P − τ)

+
= max(P − τ, 0), which either yields zero or

a positive value when P > τ .
The predator population digests its prey only partly. The conversion ef-

ficiency of prey biomass into predator biomass is denoted by the yield factor
yPZ . The unusable part of the food is ejected into the environment as faeces.
This excreted material together with dead material forms detritus and is de-
composed instantaneously and this gives complete recycling of the nutrient.
The above leads to the following ode system

dN

dt
= −P

vNN

1 + vNhNN
+ (1 − yPZ)Z

vP (P − τ)
+

1 + vP hP (P − τ)
+

+ dP P + dZZ .

(3.1a)

dP

dt
= P (

vNN

1 + vNhNN
− dP ) − Z

vP (P − τ)
+

1 + vP hP (P − τ)
+

, (3.1b)

dZ

dt
= Z(yPZ

vP (P − τ)
+

1 + vP hP (P − τ)
+

− dZ) (3.1c)

INP = 1/hN ; KNP = 1/(vNhN ) ; IPZ = 1/hP ; KPZ = 1/(vP hP ) .

The Michaelis-Menten parameters, being the maximum ingestion rates
(INP and IPZ) and the nutrient half-saturation concentrations (KNP and
KPZ), are compound parameters of the searching rate v and the handling
time h. The last three terms of Eq. (3.1a) are the terms for instantaneous and
complete degradation of faeces and dead organisms. In the Appendix we show
how a system of limiting nutrient, producer, predator, bacteria and detritus
can be reduced to the system above while obeying mass-conservation.

Because of this recycling and mass-conservation, we can reduce the three
dimensional system to an equivalent two dimensional system. Let NT denote
the nutrient load or more precise the total amount of limiting nutrient in the
closed system formed by the biota P , Z and the abiotic environment N defined
as

NT = N(t) + P (t) + Z(t) . (3.2)
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Adding the three equations of Eq. (3.1) shows that

dNT

dt
= 0 and NT = N(0) + P (0) + Z(0) ,

that is, NT is a constant. The resulting two dimensional system becomes

dP

dt
= P (f(N) − dP ) − Zf(P ) ,

dZ

dt
= Z(yPZf(P ) − dZ) ,

f(N) =
vN (NT − P − Z)

1 + vNhN (NT − P − Z)
; f(P ) = IPZ

(P − τ)
+

KPZ + (P − τ)
+

.

To have a mathematically well-posed problem we require for the initial value
conditions that N(0) = NT − P (0) − Z(0) > 0.

When taking hN = 0, f(N) becomes a linear functional response, this
yields:

dP

dt
= rP

(

1 −
P + αZ

K

)

− Zf(P ) , (3.3a)

dZ

dt
= Z

(

yPZf(P ) − dZ

)

, (3.3b)

where

K = NT −
dP

vN
; r = vNK = vNNT − dP ; α ∈ {0, 1} . (3.3c)

In absence of the predator the prey population grows logistically. Note that
the intrinsic growth rate r and carrying capacity K are both expressed as a
function of NT using parameters from Eq. (3.1).

With α = 1 in Eq. (3.3a) we obtain a mass-balance model for both P and
Z. Posteriorly the nutrient density N(t) can be calculated using Eq. (3.2). The
above ode system with α = 0 is identical to the RM model, which in its usual
form has r and K as independent constants. Due to our formulation, r ∝ K.
As will be shown in the next section, for τ = 0 the paradox of enrichment
can still occur. When α = 0, then the term Z/K is removed from Eq. (3.3a),
leading to an ode-system without mass-conservation. Consequently, Eq. (3.2)
for NT no longer holds and the value for variable N can not be calculated.

We briefly repeat the main differences between the RM and MB model:
the first has a nutrient handling time of zero and no mass-conservation, the
latter has a non-zero nutrient handling time and respects mass-conservation.
By setting α = 0 and hN = 0 one obtains the RM model from the MB model.
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Table 3.1: List of Symbols

Symbol Description Units

α Eq. (3.3) with α = 0 forms the RM model. With α = 1 -/-
a model with a correct mass-balance would be formed

C ciliate (predator) density #cells L−1

dP death rate prey d−1

dZ death rate predator d−1

F flagellate (prey) density #cells L−1

f(P ) Holling type-II functional response of Z on P d−1

F0(0) initial flagellate density without ciliates present #cells L−1

FC(0) initial flagellate density with ciliates present #cells L−1

g(P ) prey zero-growth isocline for RM model mol N L−1

hN nutrient handling time d

h(P ) prey zero-growth isocline for MB model mol N L−1

hP prey handling time d

IFC maximum specific ingestion rate of prey biomass prey predator−1 h−1

IPZ maximum specific ingestion rate of prey biomass mol N mol N−1 d−1

INP maximum specific ingestion rate of limiting nutrient mol N mol N−1 d−1

K prey’s carrying capacity mol N L−1

KNP nutrient half-saturation concentration for P on N mol N L−1

KPZ nutrient half-saturation concentration for Z on P mol N L−1

N limiting nutrient concentration mol N L−1

nC predator limiting nutrient content pmol N /cell
nF prey limiting nutrient content pmol N /cell

NT total amount of limiting nutrient mol N L−1

in the system (nutrient load)

P prey biomass density mol N L−1

r prey percapita growth rate d−1

τ feeding threshold in units of prey biomass mol N L−1

τF feeding threshold expressed in flagellate density #cells L−1

τ∗
H lower threshold limit where a Hopf mol N L−1

bifurcation will never occur

VC ciliate (predator) biovolume µm3

VF flagellate (prey) biovolume µm3

vN nutrient searching rate mol N L−1 d−1

vP prey searching rate mol N L−1 d−1

yPZ yield of predator biomass on mol N mol N−1

prey biomass, with 0 ≤ yPZ ≤ 1

Z predator biomass density mol N L−1
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3.3 Analysis of the models

The two dimensional systems can be analysed with a stability analysis and by
studying the zero-growth isoclines. The stability properties of the resulting
equilibria are derived using nonlinear dynamic system theory. When J de-
notes the Jacobian matrix evaluated at the equilibrium, its stability is directly
determined by the sign of the eigenvalue of the real parts. For systems with
two variables, the transcritical bifurcation, τTC(NT ), and the Hopf bifurcation
curve, τH(NT ), are determined by detJ = 0 and trace J = 0, respectively.

3.3.1 The Rosenzweig-MacArthur model

For the RM model Eqs. (3.3) and depending on the parameter values, there is
one equilibrium with no species, denoted by E0, one with only the producer,
E1, and one with coexistence of the producer and predator, E2. Using symbolic
calculation software, such as Maple [18], we obtain algebraic expressions for the
isoclines, the transcritical bifurcations and Hopf bifurcation codim-1 curves.
These lengthy expressions are not given here. However, the curves are shown
in the left panels of Figure 3.1.

These panels show the long-term dynamic behaviour of the two popula-
tions without and with a feeding threshold, respectively τ = 0 and τ = 0.1.
For low values of NT only the prey population exists. For larger NT both pop-
ulations coexist stably. The transition is at the transcritical bifurcation point.
Increasing NT further, the steady-state becomes unstable and a stable peri-
odic solution originates. This transition is at the Hopf bifurcation point. For
NT values above the Hopf bifurcation point, the amplitude of the oscillatory
dynamics increases. As a result the minimum value for the prey population
becomes very low and extinction due to stochastic fluctuations becomes likely.
This phenomenon is called the “paradox of enrichment”.

The results in Figure 3.1 show that the Hopf bifurcation occurs at higher
NT levels for higher threshold levels τH . This suggests a stabilising effect of
the feeding threshold. In order to study this effect further we calculated the
two-parameter diagram where besides NT also τ varies. In the left panel of
Figure 3.2 this diagram is shown. Note the logarithmic scale of the horizontal
axis, which was needed to illustrate the asymptotic approach of the Hopf-curve
towards a single threshold value at high nutrient loading. There appears to
be an upper limit for the τH values when limNT → ∞. The simple expression
for this limiting threshold with abundant enrichment, reads

τ∗
H = lim

NT→∞
τH = KPZ

(

yPZIPZ

dZ
− 1

)−2

. (3.4)
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Observe that the value of τ∗
H solely depends on predator parameters. From

Eq. (3.4) it can be observed that there is a lower threshold limit where a
Hopf bifurcation will never occur for any nutrient enrichment. Therefore, the
feeding threshold has a strong stabilising effect on nutrient enrichment, as
defined in [31].

In order to get more insight into the disappearance of the Hopf bifurcation
with feeding threshold values above τ∗

H , we perform a phase-plane analysis of
Z vs. P . We zoom in on the Hopf bifurcation diagram of the RM model in
Figure 3.1, this yields the left panel of Figure 3.3 in which the two-parameter
bifurcation diagram is partially repeated. Next to this panel for two points on
the Hopf-curve the prey and predator zero-growth isoclines are drawn in the
Z vs. P phase-space.

Taking dP/dt = 0 in Eq. (3.3a) with α = 0 and solving Z and substituting
Z = g(P ), we obtain g(P ) as the function for the prey zero-growth isocline
(P -isocline) given P > 0

Z = g(P ) =
rP
(

1 − P
K

)

f(P )
. (3.5)

To study the stability of the equilibrium (E2) formed at the intersection
of the prey and predator isocline we derive the Jacobian and its trace and
determinant. We obtain J11 = f(P )dg/dt and J22 = 0, from which we derive
the eigenvalues λ1,2

Re λ1,2 =
1

2
f(P )

dg

dP
.

Hence for a Hopf bifurcation we require dg/dP evaluated at the equilibrium
equals to zero. Furthermore we have a stable equilibrium point when dg/dP <
0 and an unstable equilibrium when dg/dP > 0.

With τ = 0, we have the classical RM model, then the P -isocline is a
parabola and the Z-isocline is a vertical line through the equilibrium value of
prey population biomass. When dg/dP = 0, then a Hopf-bifurcation occurs.
This specific equilibrium is denoted by point I in Figure 3.3. Decreasing NT

shifts the g-graph to the left and we have a new, stable equilibrium as dg/dP <
0. An increase in NT shifts the g-graph to the right where dg/dP > 0 and the
equilibrium becomes unstable. Observe that the place of the vertical Z-isocline
does not depend on NT .

For τ > 0 the shape of the P -isocline is not a parabola. Then g has an
asymptote at P = τ and crosses the P -axis at P = NT − dP /vN . For the
range of τ < P < NT − dP /vN the slope of g is (mostly) negative. For points
II, III and IV on the Hopf bifurcation curve we have three different positive
τ -values and we also have dg/dP = 0. For low τ -values the equilibrium at the
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Hopf bifurcation point is on a maximum of the P -isocline function (Point II),
but when increasing τ it becomes an inflection point (Point III) and then a
minimum of the P -isocline function (Point IV). When the τ -value approaches
τ∗
H (see Eq. (3.4)) the minimum of function g disappears via an inflection point,

then dg/dP is always negative. Thus for τ > τ∗
H , the equilibrium formed by

the intersection of the vertical Z-isocline and the monotonously decreasing
P -isocline is stable. This explains the occurrence of strong stability.

3.3.2 The mass-balance model

We performed a numerical bifurcation analyses of the mass-balance model
Eq. (3.1). The results are shown in the right panels of Figure 3.1. Since the
parameters have the same biological meaning in both the RM and MB model,
we can directly compare the results for both models.

Figure 3.1 shows how the size of the limit cycles around the Hopf depends
on the total nutrient load, NT . In both models the feeding threshold delays
the occurrence of the Hopf. Large amplitudes, occurring for τ = 0.1, mean
potentially very low densities with an higher associated risk of extinction.

In Figure 3.2 the bifurcation diagrams of τ vs NT can be seen for both
models, which contain: the invasion threshold of the algae, which is indepen-
dent of τ ; the ciliate invasion threshold which is linearly proportional to NT ;
and the Hopf-curve. These two-parameter diagrams show that there is an
upper limit for the threshold for the occurrence of the Hopf bifurcation when
NT is varied. We found for the MB model the same expression for τ∗

H as for
the RM model, as given by Eq. (3.4).

In the previous section we defined g from Eq. (3.5) as being the P -isocline
of the RM model, here we define similarly h as the P -isocline of the MB model
(for P > 0). For the following reasons we conclude that the behaviour of h and
g is very similar. For τ = 0, both functions first increase and then decrease
and cross the P -axis at the maximal attainable prey density in absence of
predator. For τ > 0, both functions have an asymptote at P = τ and cross
the P -axis at the same location as when τ = 0. As with the RM model, when
τ > τ∗

H the P -isocline is monotonously decreasing, which combined with the
vertical Z-isocline causes strong stability.
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Eq. (3.3)
hN = 0
τ = 0
α = 0

Eq. (3.1)
hN = 1
τ = 0

Eq. (3.3)
hN = 0
τ = 0.1
α = 0

Eq. (3.1)
hN = 1
τ = 0.1

Rosenzweig-MacArthur model Mass-balance model

Figure 3.1: The biomasses of P and Z depend on the total nutrient load and the
model used. Before the Hopf, the solid line denotes the equilibrium values, after
the Hopf, the minima and maxima are denoted by the solid line and the equilibrium
values by the dotted line. For the RM model, in the left hand panels, equilibrium
densities were calculated with Eq. (3.3) with α set to zero. The simulations in the
top-left panel are not continued due to very low densities of P after NT = 13.7. For
the mass-balance model, in the right side panels, equilibrium densities were based on
Eq. (3.1) with a non-zero algal nutrient handling time. Note that the two models
differ in scaling of the Z-axis. For both models the following parameters values were
used: dZ = 0.05, KPZ = 5.00, IPZ = 0.50, yPZ = 0.50, dP = 0.10, vN = 0.50.
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Figure 3.2: For each model the bifurcation diagram of τ vs. NT is shown. Each
diagram contains the algal invasion threshold (P ), ciliate invasion threshold (Z) and
a Hopf-curve. For both models the following parameters values were used: dZ = 0.05,
KPZ = 5.00, IPZ = 0.50, yPZ = 0.50, dP = 0.10, vN = 0.50.
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Figure 3.3: Different parameter values for nutrient load, NT , and feeding threshold,
τ , affect the shape and location of the isoclines of the RM model (Eq. (3.3), α = 0,
hN = 0). The left panel shows where in the bifurcation diagram the points I till IV are
located on the Hopf-curve in respect to the values of NT and τ . Point II and III are
discussed in the text. Used parameter values: KPZ = 5.00, IPZ = 0.50, yPZ = 0.50,
dP = 0.10, vN = 0.50, dZ = 0.05. P -isoclines for P = 0 are omitted.
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3.4 Applying the MB model on experimental data

To illustrate the existence of a feeding threshold, we apply the MB model on
experimental data consisting of dynamic growth curves of prey and predators
from [33].

3.4.1 Experimental setup and data description

Prior to the feeding experiments, the predatory ciliate species Balanion planc-
tonicum, Urotricha furcata and Urotricha farcta were maintained on the prey
species Cryptomonas sp, a flagellated algae. All species are fresh water micro-
organisms. The body-volumes of the predators are approximately 7 to 12 times
larger than their prey. In each batch experiment the algal species is preyed
upon by one ciliate species. In these closed systems, there is only gas-exchange
while the medium is not refreshed.

The left panels of Figure 3.4, show the experimental data and the simulated
growth curves (solid lines). The top-left panel shows B. planctonicum feeding
on Cryptomonas sp. and the centrer-left panel shows U. furcata, also feeding
on Cryptomonas sp. (vertical lines denote standard deviations, of which some
are hidden by data markers.) In the control experiments, the algae were al-
lowed to grow in 250 ml culture flasks until they reach a steady-state density.
Thereafter density measurements were performed over time. In duplicates of
the controls a single predatory ciliate species was added. This resulted di-
rectly in a decline of the algal population and in an increase of the predator
population. Consequently, in these experiments the algae were reduced in
density or went (nearly) extinct. A difference in feeding behaviour between
B. planctonicum and U. furcata can be seen. The first predator exploits its
resource completely, then it dies, while the latter predator does not totally
consume the prey population and settles for several months into a stable equi-
librium (data not shown) [33]. The bottom-left panel shows U. farcta feeding
on Cryptomonas sp. No data is available for the control algal growth experi-
ment. After 19 days the prey and predator seem to reach a stable equilibrium
density.

Weisse et al. [33] used additional separate feeding experiments (semi-conti-
nuous cultures) in order to obtain the parameters for the Holling type-II func-
tional response. Only for U. furcata the maximum ingestion rate, nutrient
half-saturation constant and feeding threshold could be determined signifi-
cantly.

3.4.2 Fitting method

A weighted least-sum-of-squares method with weights equal to the inverse of
the variance in the measurements was used. The sum of squares (SSQ) of prey
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and predator are summed into a dimensionless total SSQ, which is allowed as
each measurement is weighted by its reciprocal standard deviation. A low
sum-of-squares indicates a good fit. The data point values are assumed to
be normally distributed. This makes this method identical to a maximum-
likelihood method [20]. The SSQ is minimized with a Nelder-Mead’s simplex
method. The mean and covariance matrix (inverse of the Hessian matrix of the
SSQ with respect to the parameters) of the estimated parameters are evaluated
at the minimum SSQ-point [26]. Model fitting was done simultaneously on
three data sets. Therefore, prey parameter values are identical for each data
set.

3.4.3 Fitting results

The left panels of Figure 3.4 show the time evolution of the prey and predator
populations. The right panels show the Z vs. P phase-space diagrams. In
each panel experimental data is shown with its associated standard deviations
and the solid line represents the fitted trajectory. The upper-right panel shows
that the equilibrium for B. planctionicum is unstable as the trajectory of prey
and predator converges to a periodic solution. The trajectory runs close to
the Z and P -axis, this indicates a risk of extinction for B. planctionicum. In
the centrer-right and lower-right panels, for the two Urotricha species there
exist a stable equilibrium to which the long-term trajectory converges.

Table 3.2 presents for each modelled species the estimated parameter-
values and their uncertainties. Parameters included are initial densities, half-
saturation constants, maximum feeding rates, feeding thresholds, yield factors
and death rates.

We derived for U. furcata a feeding threshold value with τF = 10 500±923
cells/ml. Furthermore, we found that the feeding threshold for U. farcta is a
factor three lower compared to U. furcata. B. planctionicum was not found to
have a feeding threshold.
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Figure 3.4: The mass-balance model based on Eq. (3.1) was fitted to experimental
data from [33]. Each left panel shows a different predatory ciliate species feeding on
the algal prey. △ denotes cell densities of the prey species Cryptomonas sp. without
predators present, ▽ represents preyed Cryptomonas sp., • denotes cell densities of
each ciliate species. Parameter values from Table 3.2 were used to construct simulated
trajectories (solid lines in all panels) and the P and Z-isoclines in the phase-spaces
of Z vs. P (right panels). P -isoclines for P = 0 are omitted. Prey-predator data-
point combinations in the phase-space diagrams are represented by open circles with
associated standard deviations represented by the extending lines.



3.4. Applying the MB model on experimental data 57

Table 3.2: Mass-balance model (Eq. 3.1) fitted to data from Weisse et al. [33].
Fitted parameter values

Prey species Cryptomonas sp.

Symbol Value SD∗ Units

INP 4.38·10−1 ¶ 3.90·10−2 day−1

dP 1.00·10−1 0 day−1

KNP 1.00·10−6 0 mol N L−1

Constants and conversion factors

VF 280 £1 0 µm3

nF 7.50·10−1 £2 0 pmol N cell−1

Ciliate model parameters
Predator B. planctonicum U. furcata U. farcta

Symbol Value SD Value SD Value SD Units

yPZ 2.18·10−1 1.40·10−2 1.82·10−1 1.51·10−2 2.00·10−1 0 -

IPZ 6.98·100 † 7.89·10−1 1.56·101 ‡ 4.78·100 2.26·101 § 1.05·101 d−1

dZ 5.12·10−1 2.94·10−2 3.93·10−1 2.53·10−2 1.85·10−1 4.74·10−3 d−1

KFC 1.16·107 4.30·106 7.49·107 3.76·107 9.46·107 5.47·107 #cells L−1

τF 0 0 1.05·107 9.23·105 3.12·106 2.29·105 #cells L−1

Constants and conversion factors∗∗

VC 2015 £3 0 3150 £3 0 3350 £3 0 µm3

nC 5.40·100 0 8.44·100 0 1.37·100 1.01·10−1 pmol N cell−1

Initial conditions

N(0) 0 0 0 0 1.00·10−3 0 mol N L−1

F0(0) 5.20·107 2.27·105 1.13·108 2.76·105 n.a. n.a. #cells L−1

FC(0) 4.99·107 5.10·105 1.05·108 2.31·106 3.19·107 1.15·106 #cells L−1

C(0) 3.95·104 6.78·103 3.29·105 4.98·104 2.13·105 4.76·104 #cells L−1

Compound parameter values
µPZ = yPZIPZ − dZ

µPZ 1.01·100 - 2.45·100 - 4.34·100 - d−1

∗: A standard deviation (SD) of 0 means the variable or constant has an assumed nominal
value. A dash means the value is based on the fitted parameter values. ∗∗: For conversion
from cells/L to biomass N/L take P (0) = nF F (0), Z(0) = nCC(0), KPZ = nF KFC and
τ = nF τF . We assumed nC = nF VC/VF , i.e. an identical amount of fmol N µm−3 for both
prey and predator. This relation was not used for U. farcta. ¶: Corresponds to 13.4 fmol N
per cell per hour. £1 : Based on [34]. £2 : Based on [17]. £3 : Based on [33]. †: Corresponds
to IFC = 2.09 · 100 ± 2.37 ·10−1 prey/ predator/ h. ‡: Corresponds to IFC = 7.31 · 100 ±

2.24 ·100 prey/ predator/ h. §: Corresponds to IFC = 1.72 · 100 ± 8.13 ·10−1 prey/
predator/ h (propagation of errors included).
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3.5 Discussion and conclusions

A property of the RM model is logistic growth of the prey in absence of the
predator. To obtain the same property in the MB model we had to assume
perfect and instantaneous nutrient recycling. We think this is warranted as
Weisse et al. [33] maintained for several months U. furcata cultures with Cryp-
tomonas sp. even without exchanging the medium.

Aquatic ecosystem modelling with a feeding threshold for the trophic in-
teractions is controversial. For instance in [30], the indiscriminate use of (con-
stant) threshold values in models is criticized. In [19] it is claimed that their
results suggest that any such thresholds should vary with prey quality. Nev-
ertheless, in (some) ecotoxicological effect models feeding thresholds are taken
into account, including aquatox [23, 24].

As part of the eu modelkey-project for assessing impact of pollutants on
ecosystems [6], we designed a closed system with a single producer in order to
measure the simultaneous effects of toxicant exposure and nutrient stress. A
description of the experimental setup and obtained data can be found in [17].
We analysed these data successfully using a mass-balance model in [5]. The
same experimental setup was used to investigate chemical stress and nutri-
ent stress on a community with a producer and predator, respectively Cryp-
tomonas sp. and U. furcata, with resulting data also presented in [17]. To
analysing these results, we used a model with a Holling type-II functional
response for predator-prey interaction. Without the inclusion of a feeding
threshold the model would not fit the data and the prey population will in-
correctly be driven to extinction.

The aim of the research presented in this article was twofold. Firstly to
find out whether a feeding threshold for U. furcata (or a similar ciliate species)
can be found in other data sets than [17] and secondly what its effect would
be on the long term behaviour of these modelled systems.

The absence of a feeding threshold for both B. planctonicum and S. la-
custris and the presence of a threshold for Histiobalantium bodamicum was
reported in [21]. Using batch experiment data and the MB model, we found
non-zero feeding thresholds for U. furcata and U. farcta but an absence of
a feeding threshold for B. planctonicum. More specifically for U. furcata, we
found a maximum ingestion rate of IFC = 7.3±2.2 cells/cell/h, a nutrient half-
saturation constant of KFC = 74 900±37 600 cells/ml and a feeding threshold
of τF = 10 500±923 cells/ml. Weisse et al. [33] obtained from additional sep-
arate feeding experiments the Holling type-II functional response parameters
for U. furcata, namely a maximum ingestion rate of IFC = 5.3±0.7 cells/cell/h,
a nutrient half-saturation constant of KFC = 28 200 ± 8740 cells/ml and a
feeding threshold of τF = 13 350 ± 740 cells/ml.

In the centrer-left and bottom-left panels of Figure 3.4, the maximum de-
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crease of the measured prey densities does not occur at the same moment in
time as the maximum increase of the measured predator densities, i.e. for
U. furcata and U. farcta, respectively. The MB model and the RM model
both effectively have two variables, P and Z, with dZ/dt and −dP/dt being
mostly determined by the trophic interaction. Therefore, the simulated maxi-
mum decrease of the prey-curve is at the same time moment as the simulated
maximum increase of the predator-curve. Thus, both models will never fit
exactly on experimental data in which the maximum decline of the prey and
the maximum increase of the predator do not coincide in time. This explains
why the MB model does not capture the peaks of the ciliate densities at either
the right moment or at the right density perfectly. Nevertheless, the fit is
reasonable and justifies the use of a feeding threshold. We used the MB model
as it contains as few parameters and variables as possible while the biological
meaning of the used parameters is retained.

We analysed the effect of a feeding threshold and enrichment on the sta-
bility of the MB and RM model. Both models are two dimensional systems
in which the sole prey population suffers from intraspecific competition and
a fixed part of that prey population is invulnerable to predation. The prop-
erties of the RM model have been analysed earlier, mostly with the carrying
capacity, K, as bifurcation parameter where increasing K means enrichment.
Here we analysed how stability depends on the two bifurcation parameters NT

and τ . Continuing NT affects both r and K indirectly, see Eq. (3.3c), while
normally r and K are treated as separate bifurcation parameters.

Previous studies of alternative models for the RM model implicate many
potential mechanisms that can give stabilisation. These include predator-
induced defence mechanisms, spatial heterogeneity and dormancy of the preda-
tors. The first two stabilizing effects work via predation-free prey populations
that donate individuals to preyed populations which subsequently sustain the
predators, this is classified as “donor-controlled” dynamics [2]. Dormancy is
an adaptive response by the predator to a harsh environment, e.g. low prey
density [16]. For copepods a feeding threshold was already known [22]. There
the existence of a threshold was explained by assuming that the energy gained
from captured food is too little compared to the energy spend on searching
and capturing food. Therefore, not searching and not feeding is energetically
more advantageous when food is limited.

When plotting f(P ) vs. P , the threshold shifts the intersection of the
predator-prey functional response and the P -axis to the right of the origin.
The centrer-right and bottom-right panels of Figure 3.4 show how this shift in
f(P ) cause the existence of an asymptote for the P -isocline in the phase-space
of Z vs. P . The presence of an asymptote makes the P -isocline a (mostly)
decreasing function, with a decreasing function being an requirement for sta-
bility given a vertical Z-isocline. This sets the circumstances in which strong
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stability can occur when the threshold value becomes high enough.
Eq. (2.4b) always yields a vertical isocline for the predator for both the

RM and MB model, with and without a feeding threshold. For both models
the prey-isocline is a function of P , g(P ) and h(P ) respectively, forming a
curve in the positive quadrant of the PZ-phase-space where for P > τ there
is an unique Z. Therefore, the P -isocline will always intersect the Z-isocline
only once. Consequently, in our MB model and the RM model formulation, a
stable equilibrium is the global stable equilibrium.

We conclude that the bifurcation diagram for the RM and MB models with
the same parameter values, are qualitatively identical, even when the feeding
threshold was included, but they differ quantitatively. The feeding threshold
has a strong stabilising effect in both model formulations.

The dynamics of low trophic levels will affect the dynamics of higher
trophic levels and consequently a complete ecosystem. Therefore the inclu-
sion (or exclusion) of feeding thresholds in models for the lowest trophic levels
should carefully be contemplated.
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ropean Commission (Contract No 511237-GOCE). The authors would like to
thank Peter Abrams and one anonymous reviewer for useful comments and
Markus Liebig for valuable discussions.

3.6 Appendix

Assume a closed ecosystem contains one species of producers, P , which capture
energy from light but is effectively only limited in its growth by one type of
nutrient, N , in the medium, e.g. phosphor or nitrogen containing compounds.
These producers are preyed upon by predators, Z, via Holling type-II trophic
interaction. The conversion of prey biomass into predator biomass is not 100%
efficient, thus feaces and organic waste are produced and form together a pool
of detritus, M . Biomass from deceased producers, predators and bacteria also
add to this detritus. The bacteria, B, grow on detritus via Holling type-II with
handling time hM and search rate vM . Metabolic activities of the bacteria con-
vert detritus into new bacterial biomass and freely available nutrients for the
producers. This closes the nutrient loop. Detritus is converted with efficiency
yMB. The bacteria die with rate dB, remaining parameters are explained in
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the text near Eq. (3.1). The above leads to the following ode-system

dN

dt
= −P

vNN

1 + vNhNN
+ (1 − yBM )B

vMM

1 + vMhMM
,

dP

dt
= P (

vNN

1 + vNhNN
− dP ) − Z

vP P

1 + vP hP P
,

dZ

dt
= Z(yPZ

vP P

1 + vP hP P
− dZ) ,

dB

dt
= B(yBM

vMM

1 + vMhMM
− dB) ,

dM

dt
= (1 − yPZ)Z

vP P

1 + vP hP P
+ dP P + dZZ + dBB − B

vMM

1 + vMhMM
.

Adding the masses of the degrading organisms and the dead organic ma-
terial gives

dN

dt
= − P

vNN

1 + vNhNN
+ (1 − yBM )B

vMM

1 + vMhMM
,

dP

dt
=P (

vNN

1 + vNhNN
− dP ) − Z

vP P

1 + vP hP P
,

dZ

dt
=Z(yPZ

vP P

1 + vP hP P
− dZ) ,

d(B + M)

dt
=(1 − yPZ)Z

vP P

1 + vP hP P
+ dP P + dZZ

− (1 − yBM )B
vMM

1 + vMhMM
.

The rate of change of d(B +M)/dt depends on the biological rates related
to feeding and death. Lets assume these rates are fast. This then allows for a
quasi-steady state assumption with d(B + M)/dt = 0, that yields Eq. (3.1).
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Chapter 4

Modelling direct and indirect

ecotoxicological effects on an

algivorous ciliate population

under dynamic nutrient stress

D. Bontje, B.W. Kooi, M. Liebig and S.A.L.M. Kooijman

In Chapter 2 we studied the effects of toxicants on the functioning of pho-
totrophic unicellulars (algae) in a simple aquatic microcosm with a parameter-
sparse model. Now we extend this model to include algivorous ciliates. The
modelled algae consume dissolved inorganic nitrogen (DIN) under surplus light
and use it for growth and maintenance. The ciliates feed on the algae for
growth and maintenance. Dead bacteria, feeding waste-products and dead
ciliates add to a detritus pool. Detritus is mineralized by bacterial activity,
leading to nutrient recycling. The ecological model is coupled with a toxicity-
module that describes the dependency of each species biological rates on the
toxicant concentration. Model parameter fitting is performed on experimental
data from Liebig et al. [9]. The flagellated algal species Cryptomonas sp. was
exposed to the herbicide prometryn and insecticide methyl parathion in semi-
closed Erlenmeyers while being preyed upon by either the ciliate Urotricha
furcata or Coleps spetai with the autotrophic endosymbiont Chlorella sp. The
effects of methyl parathion on Urotricha furcata are directly as an increased
death rate and indirectly via a reduced prey availability as algal growth was
reduced.Coleps sp. with its endosymbiont with chlorophyll was found to be
insensitive to prometryn and only suffered from food shortage.
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4.1 Introduction

Direct and indirect effects of contaminants in experimentally altered aquatic
ecosystems have been investigated, an overview is provided by Fleeger et al.
[6]. It is possible to model these ecosystems using logistic growth equations
while also incorporating trophic interactions such as predation. In these mod-
els, toxicants can change the parameter values being used in the equations. An
example of this type of modelling can be found in Traas et al. [15] who simu-
lated the dynamics of the biomass of multiple functional groups in a freshwater
microcosm. Adding nutrients and chlorpyrifos (insecticide) resulted in both
direct and indirect effects. The effects found were non-permanent; when the
toxicant concentration was reduced the total biomass of the affected organisms
recovered and consequently the next trophic level regained biomass. Preston
and Snell [13] derived parameter values from studies with the same compounds
and organisms and then performed a simulation study in which effects of a
toxicant on both the prey-predator interaction and the carrying capacity were
studied. When the toxicant decreased the growth rate of a species this affected
populations densities and indirectly species interactions. For example, a re-
duced reproductive efficiency of the predator decreases the predator density
and indirectly lowers the predation pressure and consequently increases the
prey density.

Organisms can suffer from multiple stresses such as nutrient shortage, tox-
icity and predation. All of these stresses can act simultaneously. We aim to
describe and predict the effect of one or multiple toxicants on a small ecosys-
tem that includes the following three features: primary production, predation
and nutrient recycling via degradation. These attributes are all properties
which are also present in complex ecosystems or communities. Our modelled
community consists of bacteria, algae and algae eating ciliates. This mini-
mal community has all the properties mentioned for a complex ecosystem and
hence we name it a canonical community. By describing and predicting the
events in this canonical community we will gain knowledge that can be used for
setting a few steps closer to describing and predicting the effects of toxicants
on more complex (natural) ecosystems.

Therefore, we need to test our models against data and against exist-
ing models. One existing model is called the Marr-Pirt model for describing
growth and death of a population of organisms. We found that this model
is not adequate in all situations for the ciliate’s behaviour, therefore we used
DEB theory to construct a more adequate model for the growth of these algal
eating ciliates. Although the DEB model is more flexible in behaviour, its has
a higher data demand. In a more complex situation with a toxicant-predator-
prey system the Marr-Pirt model does not suffices and the DEB model does.
We therefore conclude that to be able to predict the behaviour of a system
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with algae, bacteria and algae eating ciliates with multiple stresses included
we need a DEB modelling based approach, but only for the predator. This
implies that for ecosystem modelling at least the predators should be modelled
using the DEB theory.

4.2 Material and Methods

Section 4.2.2 presents the ordinary differential equation ode-system that gov-
erns the growth of the algae and the ciliates feeding on them. The resulting
ode for algal growth is similar as used in Chapter 2 [3] and identical as used
in Chapter 3 [4]. The growth model for the ciliates is a 1-reserve deb model
from [7] with shrinkage added from [5]. The effect of toxicants is included
via a debtox-module [1]. Section 4.5 shows how the 1-reserve deb model can
be simplified into the model formulation as used in Chapter 3. First we will
introduce the experimental data used in this Chapter, which originates from
Liebig et al. [9].

4.2.1 Data description

Liebig et al. [9] present the effect of prometryn on an algae-ciliate system in an
Erlenmeyer. The species of algae is Cryptomonas sp., the species of ciliate is
Coleps spetai. Coleps spetai contains an autotrophic endosymbiont (Chlorella
sp.), which helps Coleps spetai in collecting energy via photosynthesis. It was
observed that Coleps spetai is not able to sustain itself in absence of prey which
indicates that the endosymbiont does not cover all metabolic requirements of
its host. The measurements of the time evolution of the species densities are
shown in Fig. 4.2. Panel A shows how algae with predators absent grew from
a low density to a ’carrying capacity’ after a few days. This level is maintained
for 12 days, then the density decreases indicating a less than perfect recycling
of dead algae into nutrients available for uptake. Panel B contains the growth
curves of the algae while being preyed upon by the ciliates. After 4 days
most of the prey is eaten while the ciliates reach their peak density at day 8.
Indicating that they collect nutrient much faster then they can convert the
stored nutrient into offspring. From day 8 till day 10 the ciliates decay slowly
in density, after day 10 this decline increases. Observe that the algae did not
go extinct completely. In panel C and D the species are exposed to 20 and 40
µg per litre of the herbicide prometryn. In both panels the algal peak density
decreases, as does the peak density of the predator. Day 8 remains the day
of maximum height. In panel B and C the standard deviation of the predator
densities are larger than in D.

A similar exposure experiment was done with Urotricha furcata feeding
on Cryptomonas sp. while both species are exposed to the insecticide methyl
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parathion in concentration of 0.00, 0.40, 1.26 and 4.00 mg per litre. Measured
cell densities are shown in Fig. 4.3. In panel A the algal density increases at
day 3 till 5 after which it reduced and increases again after day 8. Also after
day 8 the ciliate density decreases but might reach a long-term simultaneous
existence with its prey. In all panels during the first few days ciliate densi-
ties are low while the algal densities first increase slightly and then decrease
sharply. This indicates a high maximum feeding rate for the ciliates. However,
at the highest predator density the algal population is not depleted. With in-
creasing toxicant concentration the maximum of the ciliate density decreased
and also becomes uncertain due to increasing standard deviation. Co-existence
of prey and predator seems to exist although at decreasing densities with in-
creasing toxicant concentration. With increasing toxicant concentrations the
fluctuations in densities of prey and predator dampen.

In both experiments the species were grown on standard medium but with
reduced amounts of nitrogen containing salts, making nitrogen the limiting
nutrient.

4.2.2 Formulation of the model

Algae harvest energy from sunlight and store it as carbohydrates. For biomass
synthesis, algae combine carbohydrates with other assimilated nutrients, such
as dissolved inorganic nitrogen (DIN) which includes ammonium and nitrite,
[2]. This new biomass is used for growth while energy from the carbohydrates is
used for maintenance which includes basal respiration and turn-over of macro-
molecules. Products of the maintenance process, such as ammonium and
carbon dioxide, are excreted into the environment [16]. The ammonium is
re-utilized again by the phytoplankton [8].

Organotrophic bacteria feed on dead biomass, in our experimental setup
this material is derived from perished algal, ciliates and bacteria. Bacte-
ria have to maintain themselves and consequently excrete metabolic products
which include ammonium and carbon dioxide. Similarly, the growth process
leads to metabolic products. Excrements containing the element nitrogen are
considered nutrients for the algae. In our experimental setup the limiting nu-
trient is nitrogen from dissolved compounds. The limiting nutrient cycles from
algae to bacteria via detritus and back to the nitrogen containing dissolved
compounds leading to a recycling circle.

In the following model formulation, DIN is the growth limiting nutrient
for the algae. DIN includes all simple compounds containing nitrogen, such
as the salts dissolved in the medium, e.g. NaNO3. Non-limiting nutrients
are assumed to be present in abundance and are not modelled. Algae con-
vert DIN into biomass, which eventually becomes detritus. A mass balance
model formulation leads to a set of ordinary differential equations (ODEs)
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for describing the change over time of dissolved inorganic nitrogen DIN (N),
total algal biomass (A) and detritus density (D) in the medium. The three
state variables N , A, and D are expressed in mol nitrogen per litre. Bacterial
degradation activity of converting detritus into DIN is considered to be a non-
limiting factor and is not modelled. Table 4.1 provides a list of used symbols,
variables, parameters, constants and units.

Nutrient, Algae and Detritus

A Marr-Pirt like model is used for nutrient consumption, algal growth and
death with the variable A denoting algal biomass (mol N/L) and N denotes
the limiting nutrient concentration (mol N/L). Parameters used are kA for
algal growth rate, KN for algal nutrient half saturation constant, and hA for
algal hazard rate. Nutrient assimilation is modelled with a Holling type-II
functional response. The maximum algal growth rate has units of time−1.
This results in the below ODE for the change of algal biomass density over
time:

dA

dt
= A(kAf(N) − hA) ; f(N) =

N

KN + N
(4.1)

To compare simulated algal biomass (A) with measured algal cell densities
(F ) the relation of F = A/nA is used with nA denoting the amount of nitrogen
per algal cell.

The amount of nitrogen collected from the environment by the algae on
population scale is AkAf(N) and is denoted with JAN ,A. The nitrogen lost
from the population through death is AhA and is denoted by JAA,h. Dead
biomass becomes detritus D, like A the density of detritus is expressed in
mol N/L. Therefore, the flux of newly generated detritus from algal death
(JAD,h) is identical to the algal loss flux JAA,h. Bacterial density is assumed
to be in steady-state with the detritus density. Taking detritus degradation
to be density dependent on both the bacteria and detritus leads to a constant
detritus degradation rate rB. The flux of degraded detritus is denoted by
JBD,M . The degradation of detritus produces a flux of freely available limiting
nutrient (JBN ,M ). This yields the below ODE system for nutrient (N), algal
biomass (A) and detritus (D):

JAN ,A = JAA,G = kAf(N)A ; f(N) =
N

KN + N
(4.2a)

JAA,h = JAD,h = hAA ; JBD,M = JBN ,M = rBD (4.2b)

dN

dt
= JBD,M − JAN ,A (4.2c)



70 Chapter 4

dA

dt
= JAN ,G − JAA,h (4.2d)

dD

dt
= JAD,h − JBD,M (4.2e)

1-reserve model with shrinkage for ciliate growth

The ciliates consist of structure and reserve, which are described in Kooijman
[7]. Reserve consists of different and unspecified chemical compounds, these
compounds form an energy and mass containing pool. This pool is taken to
have a constant stoichiometry, thus elemental ratios such as the C:N ratio
in this pool are constant. Reserve is converted into structure which, like
reserve, consists of a pool of unspecified chemical compounds with a constant
elemental ratio. Thus the stoichiometry of reserve is constant but differs from
the constant stoichiometry of structure. Therefore, an organism with a high
reserve density has a different total elemental composition then an organism
with a low reserve density. As structure has a fixed ratio of elemental nitrogen
(N), elemental phosphate (P) and other elements per mole of elemental carbon
(C) the amount of structure can be expressed in C-moles with a C-mole being
one mole of carbon with its associated moles of other elements. The same can
be done for reserve.

A Holling type-II functional response models the feeding of ciliates on the
algae. Caught algae are collected (JCA,A) and split into material targeted for
assimilation into the reserves (JCE ,A) and material not assimilated and dis-
carded as detritus (JCD,A). Reserve is mobilised for catabolic work (JCE ,C)
such as growth (JCE ,G) and maintenance (JCE ,M ). Growth results in newly
synthesised structure (JCV ,G) and mineralized products (JCM ,G). The main-
tenance process results only in mineralized products (JCE ,M ). When there
is not enough reserve to pay maintenance costs, structure is metabolised for
its energy and material to compensate for the reserve shortage, consequently
resulting in both a mineral flux (JCV ,M ) and shrinkage of the organism. Even-
tually, the mineral fluxes JCM ,M and JCM ,G are targeted for excretion (JCM ,X).

The ciliate population dies with a constant rate, which translates into a
per capita death rate dC , resulting in fluxes of dead material (JCE ,d and JCV ,d)
from reserve and structure. Both fluxes together form a flux of newly formed
detritus (JCD,d). Due to this death rate, populations with relatively high
specific reserve density have a constant decline of structural biomass, which
can be compensated by synthesising new biomass from reserve. Populations
under severe nutrient stress have a low specific reserve density, they have
to pay their maintenance from both reserve and structure. Consequently,
the constant decline of structural biomass can not be compensated for by
synthesising fresh biomass as maintenance takes precedence of growth. See
Figure 4.1 for an overview of all mass fluxes.
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Assimilation associated mass fluxes

The effective rate of algal assimilation per ciliate is kCf(A) in units of algae
per ciliate per time. This must be translated into acquired limiting nutrient
per mol structure of ciliate per time via the amount of nutrient per algae
and the amount of structure per ciliate (nA/nV C) and cEA. cEA denotes the
efficiency of transferring the limiting nutrient in algal biomass into reserve,
with 0 < cEA < 1. yEA denotes the yield of reserve on algal biomass, with
yEA = cEAnA/nNE and 0 < yEA < ∞.

JCA,A = f(A)kC
MV

nV C
; f(A) =

(F − thA)
+

KA + (F − thA)
+

(4.3a)

JCE ,A = yEAJCA,A ; JCA,D = (1 − cEA)JCA,A (4.3b)

with thA being a feeding threshold expressed in algal cell density (F ) not in
total algal biomass (A). The value of (F−thA)+ is either zero or positive which
is denoted by the + notation. This means the ciliate effectively perceives a
lower prey density than there actually is. No matter how high the predation
pressure a minimal density is not available for consumption resulting in a
persistent minimal algal population. This might be due to refuge, too small
a size, or it is more work to find and catch the prey compared to the yield in
energy and mass.

Growth and maintenance of the ciliate

Reserve is used to pay for growth and maintenance. The specific ciliate reserve
density is mE = ME/MV . nNV is the amount of element N build in a unit
of structure. nNE is the amount of element N in a unit of reserve. The yield
of structure on reserve is yV E , with yV E = cV EnNE/nNV . cV E denotes the
efficiency of converting reserve into structure, the fraction 1−cV E is lost during
the conversion. The specific ciliate growth rate is denoted by r. Each reserve
unit has the same chance to be mobilized per day. This results in a flux of
mobilized reserves, jE,C . When the organism changes its amount of structure,
r 6= 0, this changes the specific reserve density and consequently the intensity
of the mobilized reserve flux.

jE,M is the required amount of reserve to be spend per unit of structure on
maintenance. jM

E is the available amount of reserve which can be spend per
unit of structure on maintenance. When there is not enough reserve to pay for
maintenance, then structure is used to compensate for the reserve shortage.
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Figure 4.1: Schematic representation of the multi-species model. The limiting nutri-
ent cycles through the system, as mineral the nutrient is assimilated into the algae,
which is preyed upon by the ciliates which turns the assimilated biomass into re-
serve. The reserve is used for the synthesis of new biomass and for maintenance. The
maintenance process yields minerals which are excreted into the medium. Eventually,
biomass dies and becomes detritus. Detritus degrades into freely available minerals.
Dashed lines indicate mineral fluxes, solid lines indicate biomass fluxes. Table 4.1
explains the notation for each flux.

When jM
E ≤ jE,M , then structure is sacrificed to pay for maintenance to

compensate for the discrepancy between jM
E and jE,M . jV,M is the amount

of structure per unit of structure that must be mineralized to pay for all
maintenance requirements, i.e, when jM

E = 0. jM
V is the amount of structure

mineralized per unit of structure when 0 < jM
E ≤ jE,M with jM

V = jV,M (1 −
jM
E /jE,M ). When the specific catabolic flux mEke is larger than the specific

maintenance flux jE,M , then the organism will grow and there will be no
usage of structure for maintenance. See Eq. (4.4) for the derivation of the
growth rate (r) and the growth related fluxes of reserves and structure. r
is a hyperbolic function of mE with an asymptotic maximum value of kE .
Therefore the maximum doubling time of the ciliates is ln(2)/kE .
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Table 4.1: Mass fluxes in the system as presented in Fig. 4.1.

Flux Organism Type of mass Process

Jij ,k i =organism j =mass k =process
JAN ,A algae nutrient assimilations
JAA,h algae biomass death
JAD,h algae detritus death
JCA,A ciliate alga assimilation
JCE ,A ciliate reserve storage
JCD,A ciliate detritus assimilation
JCE ,M ciliate reserve maintenance
JCV ,M ciliate structure maintenance
JCM ,M ciliate mineralized reserves and structure maintenance
JCE ,G ciliate reserve growth
JCV ,G ciliate structure growth
JCM ,G ciliate mineralized reserves growth
JCM ,X ciliate mineralized reserves and structure excretion
JCV ,d ciliate structure death
JCE ,d ciliate reserve death
JCD,d ciliate detritus death
JBD,M bacteria detritus remineralization
JBN ,M bacteria nutrient remineralization

jE,C = mE (kE − r)

r = yV E (jE,C − jE,M )

}

r =
mEkE − jE,M

mE + 1
yV E

(4.4)

jM
E = jE,M , jM

V = 0 , jV,G = r

When the specific catabolic flux mEke is less than the maintenance require-
ments jE,M , then the organism will starve and loose structure. The conversion
of structure into reserve occurs with efficiency cEV . cEV leads to the yield fac-
tor yEV , with yEV = cEV nNV /nNE . The back conversion of structure into
reserve is less efficient than the conversion of reserve into structure, therefore
yEV ≤ nEV ≤ 1/yV E when following a limiting element:
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jE,C = mE (kE − r)

jE,C = jM
E

jM
V = jV,M

(

1 −
jM
E

jE,M

)

jM
V = jV,M

(

1 −
mE (kE − r)

jE,M

)

r = yV E

(

jE,C − jM
E

)

− jM
V = −jM

V



















































r = −jV,M

(

1 −
mE (kE − r)

jE,M

)

r = −
jV,M (jE,M − mEkE)

jE,M + jV,MmE

(4.5)

jM
E = mE (kE − r) , jM

V = −r , jV,G = 0

If jE,C exactly matches the maintenance requirements, i.e. jE,C = jM
E = jE,M ,

then Eq. (4.5) collapses into r = −jM
V = jV,G = 0

Bookkeeping of mass fluxes leads to ODE-system

The specific fluxes denoted with the small letter j are converted into popula-
tion scale fluxes denoted with the capital J . Some bookkeeping of the fluxes
of the metabolites yields the mineral excretion flux (JCM ,X):

JCV ,M = MV jM
V ; JCE ,M = MV jM

E (4.6a)

JCV ,G = MV jV,G ; JCE ,G =
JCV ,G

yV E
(4.6b)

JCE ,C = MV jE,C (4.6c)

JCM ,G = nNEJCE ,G − nNV JCV ,G (4.6d)

JCM ,M = nNEJCE ,M + nNV JCV ,M (4.6e)

JCM ,X = JCM ,G + JCM ,M (4.6f)

The ciliates die with a constant death rate dC , resulting in loss of both
structure and the reserves contained therein. The total amount of limiting
nutrient added to the pool of detritus is JCD,d. Degradation of structure and
reserve is assumed to occur only after addition to the detritus pool.

JCE ,d = dCME ; JCV ,d = dCMV (4.7a)

JCD,d = nNEJCE ,d + nNV JCV ,d (4.7b)

For the above described system with nutrient, algae, ciliates and detritus
the following ode-system is used. See Figure 4.1 for an overview of all fluxes.
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dN

dt
= JBD,M + JCM ,X − JAN ,A (4.8a)

dA

dt
= JAN ,A − JAA,h − JCA,A (4.8b)

dME

dt
= JCE ,A − JCE ,C − JCE ,d (4.8c)

dMV

dt
= JCV ,G − JCV ,M − JCV ,d (4.8d)

dD

dt
= JAD,h + JCD,A + JCD,d − JBD,M (4.8e)

4.2.3 Data fitting method

A weighted least-sum-of-squares method with weights equal to the inverse
of the variance in the measurements was used. The sum of squares (SSQ)
of prey and predator are summed into a dimensionless total SSQ, which is
allowed as each measurement is weighted by its reciprocal standard deviation.
A low sum-of-squares indicates a good fit. The data points are assumed to
be normally distributed. This makes this method identical to a maximum-
likelihood method [10]. The SSQ is minimized with a Nelder-Mead’s simplex
method. The mean and covariance matrix (inverse of the Hessian matrix of the
SSQ with respect to the parameters) of the estimated parameters are evaluated
at the minimum SSQ-point [12]. Model fitting was done to the experimental
data from [9] with each experiment being treated as a separate dataset.

As will be noted where relevant, some values for species properties do not
result from fits on the data presented in this Chapter and are measured values
from [9, 17] or are fitted values from [3, 4] which are Chapter 2 and 3.

4.3 Results

The model of ode-system (4.8) was fitted on the experimental data resulting
in parameter values presented in Table 4.3. During the fitting procedure the
initial reserve densities of the ciliates were set at a value corresponding with
half of their maximal attainable density and the initial densities of both algae
and ciliates were set to the value of the measured densities at the start of each
experiment. Detritus recycling was taken to be instantaneous and perfect.
Based on the fitted values trajectories of the densities of the prey and predator
were calculated as presented in Fig. 4.2 and Fig. 4.3.
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Figure 4.2: Measured time evolutions of the densities of the flagellated algal species
Cryptomonas sp. (▽) and the ciliate Coleps spetai (•) with PSII inhibitor prometryn
present. In panel A Cryptomonas sp. is not preyed upon by the ciliate Coleps spetai
and reaches a constant level after a few days. The scale for the algal density in panel
A differs from panels B, C and D. The dashed lines are simulated trajectories for
the prey and the solid lines are for the predator based on the fitted parameter values
presented in Table 4.3.
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Figure 4.3: Measured time evolutions of the densities of the flagellate Cryptomonas
sp. (▽) and the ciliate Urotricha furcata (•) with methyl parathion present. The
dashed lines are simulated trajectories for the prey and the solid lines are for the
predator based on the fitted parameter values presented in Table 4.3.
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Table 4.2: Description of model parameters and variables
Sym. Description Units

cEA conversion eff. of algal biomass into reserve -/-
cEV conversion efficiency of structure into reserve -/-
cV E conversion efficiency of reserve into structure -/-
dC death rate ciliates 1/d
hC hazard rate ciliates 1/d
hA hazard rate algae 1/d
jE,M spec. maintenance requirement in mol res. mol res./mol struc./d

jM
E actual paid spec. maintenance in mol res. mol res./mol struc./d

jV,M spec. maintenance requirement in mol struc. 1/d

jM
V actual paid specific maintenance in mol struc. 1/d

kA max. growth rate algae 1/d
kC max. specific assim. rate of algae for ciliates # algae/cil/d
kE reserve mobilization rate 1/d
KA prey half saturation constant cells/L
KN nutrient half saturation constant mol N/L
nNE mol limiting nutrient in one mol reserve mol N/mol res.
nNV mol limiting nutrient in one mol structure mol N/mol struc.
nV C mol structure per ciliate cell mol struc./cell
NA mol N per Cryptomonas sp. cell mol N/cell
NC mol N per ciliate cell mol N/ cell
NCc mol N per Coleps spetai cell mol N/cell
NCu mol N per Urotricha furcata cell mol N/cell
NECi no-effect concentration for process i µgr/L or mg/L

i ∈ (kA, hA, kC , dC , jE,M , kE)
vA biovolume Cryptomonas sp. (µm)3

vC biovolume of predatory ciliate (µm)3

vCc biovolume Coleps spetai (µm)3

vCu biovolume Urotricha furcata (µm)3

yEA yield of reserve on algal biomass mol res./mol N
yEV yield of reserve on structure mol res./mol struc.
yV E yield of structure on reserve mol struc./mol res.
rB degradation rate detritus 1/d
sf biovol. nitrogen content stoichiometry factor -/-

DIM[sf ]= DIM[(NC/vC)/(NA/ vA)]
thA feeding threshold of ciliates on flagellates cell/L
TCi tolerance concentration for process i µgr/L or mg/L

i ∈ (kA, hA, kC , dC , jE,M , kE)

A algal density expressed in limiting nutrient mol N/L
N limiting nutrient concentration mol N/L
D detritus density expressed in limiting nutrient mol N/L
mE specific reserve density mol res./mol struc.
ME reserve density mol res./L
MV structure density mol struc./L
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Table 4.3: Fitted parameter values used for time evolutions in Fig. 4.2 and 4.3
Prey Cryptomonas sp. Cryptomonas sp.
Predator Urotricha furcata Coleps spetai
Compound methyl parathion prometryn
Figure 4.3 4.2
Parameter (fitted) value # (fitted) value # units

vA 2.80·102 [18] 2.80·102 [18] µm3

NA 7.26·10−13 [3] 1.80·10−12 1 mol N/cell
kA 1.27·100 [3] 1.71·100 1 1/d
KN 2.38·10−4 1 9.69·10−4 1 mol N/L
hA 7.20·10−2 [3] 7.20·10−2 [3] 1/d

vC 3.15·103 [17] 2.00·104 [17] µm3

nNE 1 0 1 0 mol N/mol E
nNV 1 0 1 0 mol N/mol V
sf 1.89·10−1 1 2.80·100 1 -/-
kC 6.30·102 1 2.03·104 1 algae/cil./d
KA 7.49·107 [4] 2.43·108 1 flag/L
thA 4x1.05·107 [4] 0 0 alg. cells/L
cEA 2.63·10−1 1 3.15·10−1 1 -/-
cV E 7.35·10−1 1 1.96·10−1 1 -/-
cEV 4.77·10−1 1 9.50·10−1 0 -/-
kE 1.04·100 1 6.40·10−1 1 mol E/mol E/d
jEM 1.02·100 1 4.88·10−1 1 mol E/mol V/d
dC 4.67·10−2 1 1.08·10−1 1 1/d

NECkA
- 0 4.57·100 [3] µgr/L or mgr/L

TCkA
- 0 3.16·101 [3] µgr/L or mgr/L

NEChA
4.88·10−1 1 - 0 µgr/L or mgr/L

TChA
3.25·10−1 1 - 0 µgr/L or mgr/L

NECkC
- 0 - 0 µgr/L or mgr/L

TCkC
- 0 - 0 µgr/L or mgr/L

NECdC
0 0 - 0 µgr/L or mgr/L

TCdC
2.55·10−1 1 - 0 µgr/L or mgr/L

NECjE,M
- 0 - 0 µgr/L or mgr/L

TCjE,M
- 0 - 0 µgr/L or mgr/L

NECkE
- 0 - 0 µgr/L or mgr/L

TCkE
- 0 - 0 µgr/L or mgr/L

rB ∞ 0 ∞ 0 1/d

Compound parameters
yEA 1.91·10−13 2 5.68·10−13 2 mol E/algal cell
yV E 7.35·10−1 2 1.96·10−1 2 mol V/mol E
yEV 4.77·10−1 2 9.50·10−1 2 mol E/mol V
jV M 2.14·100 2 5.13·10−1 2 1/d
nV C 7.35·10−13 2 1.22·10−10 2 mol V/cil. cell
NC 1.54·10−12 2 3.61·10−10 2 mol N/cil. cell
mEr=dC

1.10·100 2 1.95·100 2 mol E/mol V
yV A 1.40·10−13 2 1.12·10−13 2 mol V/algal cell

# : 0 parameter not fitted; 1 parameter fitted; 2 compound parameter;
[i] reference to the source of the parameter value.
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In Fig. 4.2 Coleps spetai feeds on Cryptomonas spetai while both species
are exposed to prometryn. Prometryn marginally affected the parameter val-
ues of Coleps spetai, therefore we chose to let prometryn not affect the ciliate
at all. This indirectly can mean that the autotrophic endosymbiont (Chlorella
sp.) within this ciliate species is not affected adversely in its photosynthesis
capacity. As only the flagellates are affected the effect of prometryn on the
ciliate population is an indirect effect via reduced food availability. The dy-
namics in the experimental data is reproduced in the trajectories based on the
data fit, including the extinction of the prey and slow decline of the predator
population.

In Fig. 4.3 Urotricha furcata feeds on Cryptomonas spetai while both
species are exposed to methyl parathion. In the shown data fit, methyl para-
thion affects the flagellates hazard rate and the ciliates death rate directly. An
affected flagellate population causes reduced food availability for the ciliates,
therefore methyl parathion causes an indirect effect besides its direct effects.
There is seemingly a recovery of the flagellates after day 6 at the highest con-
centration or this is the same type of density increase as found in the control.
In the control data around day 5 there is a peak in the flagellate population
density which is not reproduced with the model. Long-term simulations (not
shown) predict that the predator and the prey both do not go extinct, except
at the highest toxicant concentration. This does not disagree with 10 days of
experimental observations.

4.4 Discussion and conclusions

Originally, we first fitted to the data a model similar to what was used in
Chapter 3. However that model formulation, also known as a Marr-Pirt model,
failed to capture the dynamics present in both of the data sets presented in this
Chapter. In both cases, this is due to the late peak of the ciliates compared to
the period of decline of the flagellates. In the Marr-Pirt model, the biomass
of flagellates would have been instantaneously converted into ciliate biomass
and thus instantly increase ciliates cell densities. Due to the 1-reserve model
with shrinkage it was possible to capture the delay of the increase of the ciliate
populations.

As mentioned we chose to let prometryn not affect Coleps spetai at all as its
adverse effect was marginal. However allowing prometryn to affect the ciliate
would mean there are more parameters to be fitted leading to an increase
in the degrees of freedom for the fitting procedure. This again would make
it likely that a different local optimum could be found resulting in different
parameter values. Reversely, excluding a simulated mode of action means that
the degrees of freedom are reduced, meaning that some local minima become
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unreachable.
The ode-system of (4.8) is parameter rich, if all parameter values are fitted

then the number of degrees of freedom is high during the fitting procedure.
Then the amount of information in the experimental data must be high to fix
all parameters. Therefore we used literature data of similar experiments to set
values to some parameters thereby forcing the fitting procedure to work with
less degrees of freedom. A lowered degree of freedom increases the ratio of data
points per free parameter, making it easier for the fitting routine to converge
to a local minimum. To find multiple local minima the fitting procedure must
be repeated with different initial estimates for the parameter values and even
if a global minimum is found one does not know that for certain.

The value for the feeding threshold for Urotricha furcata feeding on Cryp-
tomonas sp. could not be retrieved from the data in Fig. 4.3 as the feeding
rate and nutrient half-saturation concentration co-varied to a large degree. We
found in Chapter 3 a feeding threshold of 1.05 ·107 flagellates per litre, for the
fitting exercise in this Chapter we used a fourfold of that value.

The literature is not conclusive on biovolumes of Coleps spetai, 5.0 · 104

±1.0 · 104 in [11] and detailed measurements show a biovolume of 2.0 · 104 in
[14] with the latter value being used during the fitting procedure. The average
cell volume of Cryptomonas sp. was measured to be around 180 µm3 [19],
while a value of 280 µm3 is reported in [18]. We used this latter value as we
also used it in Chapter 3. Using different biovolume values would result in
different parameter values.

As the number of fitted parameter values compared to the amount of data
points is high when using the DEB reserve model for the ciliates and the bio-
volumes of both the ciliates and flagellates differ per article it was not deemed
appropriate to calculate standard deviations as using different biovolume val-
ues will change the estimated value of the fitted parameters. Providing stan-
dard deviations would imply an unjustifiable certainty as many parameters
strongly co-vary.

Despite the above discussed uncertainties, we conclude that our mass-
balanced ode based model for a multi-trophic ecosystem in an Erlenmeyer
with toxicants present works. The advantage of having such a model and hav-
ing the values for the parameter lies in the fact that it is now possible to run
short-term simulations and to a certain extend long-term simulations in or-
der to interpolate between concentrations, predict effects of different exposure
regimes or to predict the effect of both toxicants simultaneously present.
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4.5 Appendix

Equilibrium density of reserve

When V is a stable density then dMV /dt = 0 and MV = MV
∗.

dMV

dt
= JCV ,G − JCV ,M − JCV ,d = 0 (4.9a)

JCV ,G > 0|JCV ,M = 0 ; JCV ,G = JCV ,d (4.9b)

JCV ,G = rMV ; JCV ,d = dCMV ; r = dC (4.9c)

JCV ,G = 0|JCV ,M > 0 ; −JCV ,M = JCV ,d (4.9d)

JCV ,M = jM
V MV ; JCV ,d = dCMV ; −jM

V = dC (4.9e)

To have a non-zero solution for MV
∗ then JCV ,G = JCV ,d and thus r = dC . To

calculate the specific reserve density when r = dC and dMV /dt = 0:

jE,C = mE (kE − r)

r = yV E (jCE ,C − jE,M )

}

r =
mEkE − jE,M

mE + 1
yV E

r = dC

r =
mEkE − jE,M

mE + 1
yV E











mE =
jE,M + dC

yV E

kE − dC
(4.10)

jM
E = jE,M , jM

V = 0 , jV,G = r = dC

Given r = dC , then mE = (jE,M + dC/yV E)/(kE − dC).

Dilution by growth

dME

dt
= JE,A − JE,d − JE,C (4.11a)

dmE

dt
=
[ME

MV

]′
=

dME

dt

MV
−

ME
dMV

dt

MV
2 =

dME

dt

MV
−

ME

MV

dMV

dt

MV
(4.11b)

dmE

dt
=

dME

dt

MV
− mE ṙ = jE,A − jE,C − mE ṙ (4.11c)

dmE

dt
= jE,A − mE

(

k̇e − ṙ
)

− mE ṙ = jE,A − mE k̇e (4.11d)

Observation: by defining jE,C as mE

(

k̇e − ṙ
)

the mobilization of reserves is
linear dependent on both kE and mE .
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Amount of structure per ciliate

When for the ciliates growth and death are in balance, r = dC , then the
reserve density (mE) is in equilibrium. As the amount of structure per single
ciliate is taken to be constant then the amount of nitrogen in the reserve plus
the amount of nitrogen in the structure is constant at equilibrium. Thus at
equilibrium the nitrogen content per ciliate is constant. From this the relative
contribution of structure to the total nitrogen content of ciliate at equilibrium
can be derived. As the nitrogen per unit of structure is constant (nNV ) and
the amount of structure per ciliate (nV C) is always constant then the values
for nNV and nV C can be used outside equilibrium conditions when the reserve
density fluctuates.

C =
V nNV

NC
= dim(

mol V/L mol N/ mol V

mol N /cell
) = dim(cells / L)

(4.12a)

NC =
V

C
(nNV + mEnNE) (4.12b)

dim(NC) = dim(
molV/L

cells/L
[(molN/molV ) + (molE/molV )(molN/molE)])

(4.12c)

dim(NC) = dim(molN/cell) (4.12d)

mE |r=dC
=

jE,M + dC

yV E

kE − dC
(4.12e)

NC |r=dC
=

V

C

(

nNV + nNE

jE,M + dC

yV E

kE − dC

)

(4.12f)

NC |r=dC
≈

vC

vA
NAsf (4.12g)

nV C =
V

C
≈ sfNA

vC

vA

(

nNV + nNE

jE,M + dC

yV E

kE − dC

)−1

(4.12h)

V and mE are time dependent variables, thus NC is variable.
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Simplifying the 1-reserve model into a Marr-Pirt model

By taking the reserve mobilisation rate (kE) very high compared to all other
biological rates of the ciliate, the 1-reserve model for ciliate growth can be
simplified into a model without reserve. A high kE value means, results that
all reserve is directly converted into structure or maintenance products. Con-
ceptually, this can be seen as if the reserve is filled normally from feeding, then
directly the reserve is emptied and spend first on maintenance and if there is
surplus it is spend on growth. By setting kE → ∞, simplifies the equation of
Eq. (4.4) for r into:

r
+

= yV E

(

yEA

nNE
kCf(A) − jE,M

)

(4.13)

If the collected amount of nutrition is not enough to pay for all maintenance,
then growth stops and part of the maintenance is paid from with structure as
in Eq. (4.5):

r− = −jV,M

(

1 −

yEA

nNE
kCf(A)

jE,M

)

(4.14)

When maintenance is always paid from structure, then r− = −jV,M and
r
+

= kCf(A)yV EyEA/nNE which leads to the the equation below:

r = r
+

+ r− = yV E
yEA

nNE
kCf(A) − jV,M (4.15a)

dMV

dt
=MV

(

yV E
yEA

nNE
kCf(A) − jV,M − dC

)

(4.15b)

The Marr-Pirt model for growth was as used in Chapter 3 for modelling
both the ciliates and algae. The above ODE equation can be rewritten into
the Marr-Pirt model formulation below, by taking hc = jV,M + dC and yV A =
yV EyEA/nNE . Then yV A denotes the yield of ciliate biomass on algal biomass
and hc is the ciliate hazard rate.

dMV

dt
= MV

(

yV AkCf(A) − hC

)

; yV A =
yV EyEA

nNE
(4.16a)

hC = dC + jV,M ; f(A) =
( A

NA
− thA)

+

KA + ( A
NA

− thA)
+

(4.16b)

In equations (4.13), (4.14), (4.15a), and (4.16), the used parameters are
the same as for the reserve model described in section 4.2.2.
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ichgräber. Niche separation in common prostome freshwater ciliates: the
effect of food and temperature. Aquat. Microb. Ecol., 26:167–179, 2001.

[18] T. Weisse and B Kirchhoff. Feeding of the heterotrophic freshwater di-
noflagellate Peridiniopsis berolinense on cryptophytes: analysis by flow
cytometry and electronic particle counting. Aquat. Microb. Ecol., 12:153–
164, 1997.

[19] T. Weisse and P. Stadler. Effect of pH on growth, cell volume, and
production of freshwater ciliates, and implications for their distribution.
Limnol. Oceanogr., 51(4):1708–1715, 2006.



Chapter 5

Sublethal toxic effects in a

simple aquatic food chain

B.W. Kooi, D. Bontje, G.A.K. van Voorn and S.A.L.M. Kooijman
Ecological Modelling, 212:304–318, 2008.

In this Chapter we study the sublethal effect of toxicants on the functioning
(biomass production, nutrient recycling) and structure (species composition
and complexity) of a simple aquatic ecosystem in a well-mixed environment
(chemostat system). The modelled ecosystem consists of a nutrient consumed
by a prey (e.g. bacteria, alga) which, in turn, is consumed by a predator
(e.g. ciliates, Daphnia) population. The dynamic behaviour of this ecosystem
is described by a set of ordinary differential equations (odes): one for the
nutrient and one for each population. The system is stressed by a toxicant
dissolved in the in-flowing water. The transport of the toxicant is modelled
using a mass balance formulation leading to an ode. Bio-accumulation in the
prey and predator populations is via uptake from the water phase, in case
of the predator also via consumption of contaminated prey. Mathematically
this process is described by a one-compartment model for the kinetics of the
toxicant: uptake (from water and food) and elimination. The toxicant affects
the development of individuals which make up populations. In the model the
physiological parameters depend on the internal concentration of the toxicant
in individuals. Examples of physiological parameters are cost for growth, as-
similation efficiency and maintenance rate. In this Chapter we use bifurcation
theory. In this way the parameter space is divided into regions with qualita-
tively different asymptotic dynamic behaviour of the system. A logical choice
for bifurcation parameters are the strength of the forcing on the system deter-
mined by the input rate of nutrient and toxicant. Our analysis reveals that the
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relationship between the population biomass and the amount of toxicant in the
system is of paramount importance. The dynamic behaviour of the stressed
ecosystem can be much more complicated than that of the unstressed system.
For instance the nutrient-prey-contaminant system can show bi-stability and
oscillatory dynamics. Due to the toxic effects a total collapse of the nutrient-
prey-predator-contaminant system can occur after invasion of a predator, in
which case both prey and predator population go extinct.

5.1 Introduction

With the theoretical assessment of consequences of toxicants on the function-
ing of aquatic ecosystems, five steps can be distinguished (Calow et al., 1997):

1. Ecological theory : Modelling of the biological functioning of the system.
For an ecosystem we need

• a model for individual life-cycle

• a model of each population using a model of individual behaviour

• a model for the ecosystem using models of populations, including
their mutual interactions and interactions with the physical envi-
ronment, such as transport of nutrients.

2. Environmental chemical theory : Modelling of the environmental chem-
istry and geochemistry to describe the fate of the toxicant in terms of
transport, distribution and exposure of toxicants.

3. Toxicological theory : Modelling the relationship between exposure to a
toxicant, toxicokinetics and behaviour of an individual.

4. Ecotoxicological theory : Modelling the effect of toxic stress on the in-
dividual, population and ecosystem level via bio-concentration (exclu-
sively from water), bio-magnification (exclusively via food), and bio-
accumulation (from water and food).

5. Risk assessment : Using the ecosystem, exposure and effect models to as-
sess community/ecosystem consequences, e.g., extinction of one or more
populations.

In this Chapter we focus on point (4), where we use existing models for a
simple ecosystem (1), for the fate of the toxicant (2), and an exposure model
(3). It is also briefly discussed how the obtained results can be used for risk
assessment (5).

The dynamical behaviour of small-scale microbial food chains or aquatic
ecosystems, such as a system of nutrient, detritus, phytoplankton, zooplankton
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and fish, have been studied intensively in the literature (for instance DeAngelis,
1992). Generally each population is modelled by one or a few ode’s. Two
ingredients of these systems are state variables, such as nutrient, detritus,
biomass or energy content, and parameters, such as maximum ingestion rate,
assimilation efficiency, immigration or emigration rates, reproduction rate,
searching rate for food, handling time of prey, maintenance rate and mortality
rate. For the long-term dynamics important features of the ecosystem are
persistence of the structural composition of the ecosystem, and the dynamical
behaviour of the ecosystem, i.e., the occurrence of steady states, oscillations,
or chaos.

In an elementary ecological setting these parameters are species-specific
constants or, in the case of diurnal or seasonal forcing (for instance, light
intensity), also depending explicitly on time. In a stressed system these para-
meters may, in turn, depend on external parameters, such as pH, temperature,
or rainfall. In the case of toxic stress, the subject of this Chapter, the popula-
tion parameters depend on the concentration of a toxicant in the water, which
is a state variable.

Toxicants are emitted and distributed into the ambient water. The trans-
port of the toxicant is modelled by mass-balanced odes. Exposure of the or-
ganisms is by absorption from the water or via consumption of contaminated
food. The kinetics of the toxicant in the organism is modelled with a first or-
der one-compartment model where two processes are involved, namely uptake
(from water and/or food) and elimination. The rates of these processes depend
on the internal and water concentration of the toxicant or contaminated food
availability (Kooijman and Bedaux, 1996). For each species-toxicant combi-
nation a concentration-effect relationship describes how the toxicant changes
the population parameters that determine the rate of physiological processes.
These parameter changes in turn affect the functioning of the ecosystem (ex-
tinction of a population, or system destabilisation).

In this Chapter we analyse the lowest level of an aquatic ecosystem. The
model for the populations (e.g., bacteria or algae consumed by ciliates) that
compose the ecosystem is a simplified version of the deb model (Kooijman,
2000). The toxic effects on the population level are described by the debtox
approach for uni-cellular organisms with a simple life-history, namely propa-
gation by binary fission (Kooijman and Bedaux, 1996). The effect module is
not based on parameters estimated from descriptive models, but on process-
based models where physiological parameters depend on the internal toxicant
concentration. The possibly affected physiological processes (modes of action)
are assimilation, maintenance, growth and mortality, i.e., these processes can
be the targets of the toxicant. Here we describe the consequences on the
ecosystem behaviour, where nutrients and toxicant are supplied and removed
at a constant rate in a spatially homogeneous chemostat (Smith and Waltman,



90 Chapter 5

1994).
Bio-accumulation in food webs has also been studied by other authors

(Thomann and Connolly, 1984; Thomann and Mueller, 1987; Thomann, 1989;
Clark et al. 1990; Gobas, 1993; Calow et al. 1997; Traas et al. 2004a; Traas et
al. 2004b). In these papers the transfer of the toxicant through the ecosystem
is decoupled from dynamics of the ecosystem, by assuming the ecosystem
to be in an equilibrium. For the populations, the internal concentration is
assumed to be in equilibrium with the ambient concentration, that is, the
concentration ratio is constant. For the prey, where uptake is only from the
ambient water, this ratio is called the Bio-Concentration Factor (bcf). For the
predator, where intake of the toxicant is also via contaminated prey, it is named
Bio-Accumulation Factor (baf; Thomann, 1989). Hence, for each trophic
level there is an expression that links the two concentrations algebraically,
and no extra ode for the internal toxicant concentration is needed, while the
two exchange rates are replaced by a single bcf parameter. This simplifies
the analysis considerably. Besides the bcf, bmf and baf values, additional
information is needed on the dietary preference matrix, that fixes the feeding
relationships between the prey and predator populations in the ecosystem.
In this way, ecosystem dynamics and the fate of the toxicant are modelled
separately.

This Chapter is organised as follows. In Section 5.2, the modelling and
analysis approaches are introduced. Here we use an approach where ecolog-
ical processes and the fate of the toxicant, as well as their interactions, are
modelled integratedly (Koelmans et al., 2001). The model for the nutrient-
prey system in the chemostat is formulated in Section 5.3. The model for
the unstressed system predicts simple dynamical behaviour, which is a stable
equilibrium under sufficient nutrient supply. In Section 5.4 we show, that un-
der toxic stress, the model predicts bi-stability under certain environmental
conditions. In Section 5.5 the model for the nutrient-prey-predator system is
formulated. Expressions for the bcf, bmf and baf are derived. Two situa-
tions are analysed in Section 5.6. In the first case, both the prey (via water)
and the predator (via water and food) population are affected by the toxi-
cant, for instance when the toxicant is a pesticide. In the second case only
the prey population is affected, for example when the toxicant is a bactericide
(antibiotical) or algicide (herbicide). In the latter case, the model predicts
that, after inoculation of the predator in the nutrient-prey system, a complete
system collapse is possible, whereby both predator and prey species go extinct.
In Section 5.7 we conclude that, due to the dynamics of the toxicant, there is
an extra removal mechanism from the system. Presence of the toxicant influ-
ences the growth of the populations, which in turn changes the uptake rate
of the toxicant by these populations. This feedback mechanism appears to be
crucial for the occurrence of more complex dynamics in stressed as compared
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Table 5.1: State variables and control parameter set for nutrient–prey–
predator chemostat model. The environmental parameters, which can be
experimentally manipulated, are D ∈ (0, 0.5) h−1, Nr ∈ (0, 150) mg dm−3

and cr ∈ (0, 9) µg dm−3: m mass of toxicant, t time, v is dimension of the
volume of the system and V biovolume or biomass of organism.

Var. Description Dimension

N Nutrient mass density V v−1

R Prey biomass density V v−1

P Predator biomass density V v−1

cW Toxicant concentration in the water m v−1

cR Prey internal toxicant concentration m V−1

cP Predator internal toxicant concentration m V−1

Par. Description Dimension

D Dilution rate t−1

Nr Nutrient mass density V v−1

cr Toxicant concentration in influent m v−1

to unstressed ecosystems. Finally, in Section 5.8 a short summary is given of
the results in this Chapter.

5.2 Model formulations and analysis

Here, we consider a simple food chain model, consisting of a nutrient consumed
by a prey population, which in turn is consumed by a predator population.
This two-trophic level ecosystem exists in a chemostat. The resulting model
can also describe a simple ecosystem in a section of a river that is kept at
constant volume. Water with nutrients flows into the system at a given rate,
while water carrying organisms and nutrients flow out at the same rate. The
system is stressed by a toxicant that enters the system besides the nutrient.
We use the simplest possible formulation, where the state of each population
is described by its biomass only. The Marr-Pirt model (Pirt, 1965) is used,
which is appropriate for uni-cellular micro-organisms that propagate by binary
fission. A fixed portion of the ingested food is assimilated and the assimilates
are used for maintenance and growth. In this model the temporal changes of
these variables are mathematically given as a system of odes.

One can get insight into the dynamics of a system and subsequently the
sublethal effects (e.g., extinction of a population or system destabilising) by
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running simulations. The initial value problem is solved with various initial
conditions or parameter settings. Plotting the time-courses for the population
biomasses is possible, but also trajectories in the state-space where one pop-
ulation biomass is plotted against another. This yields direct insight into the
long-term dynamics. Especially when there are multiple stable equilibria this
method is, however, cumbersome and time-consuming.

When the environmental conditions are constant or periodic in time, we
can apply a different and more sophisticated analysis method, namely bifur-
cation analysis. Based on principles from non-linear dynamic system theory,
bifurcation analysis focuses on the dependency of the long-term dynamical
behaviour on model parameters (Wiggins, 1990; Guckenheimer and Holmes,
1985; Kuznetsov, 2004). At least three different kinds of asymptotic behaviour
can occur: constant (equilibrium), periodic (limit cycle) and chaotic (sensitiv-
ity to initial conditions).

The results of a bifurcation diagram are generally presented in bifurcation
diagrams. In bifurcation diagrams the parameter space is divided into regions
with the same long-term dynamical behaviour. The chosen parameters are
called free or bifurcation parameters. In our case especially the chemostat
control parameters, the nutrient and toxicant input and dilution rate, are ap-
propriate. In each point in the parameter space the same species composition
is considered, and only the interaction with the ambient water is changed.
Also toxicological parameters can be used as bifurcation parameters in order
to assess their consequences.

There is a class of bifurcations, called global bifurcations, that cannot
be deduced from local information (e.g., eigenvalues of the Jacobian matrix)
around the stationary solution. Examples are homoclinic and heterocline
point-to-point, point-to-cycle or cycle-to-cycle connections. We found ho-
moclinic point-to-point bifurcation points for the toxic stressed nutrient-prey
system, and heteroclinic point-to-point bifurcation points in the nutrient-prey-
predator system.

Table 5.1 shows a list of the state variables and the control parameters. In
Table 5.2, we give the parameter values used in this study. The physiological
parameters are those for a bacterium-ciliate system and were also used for
various food web studies, see Kooi (2003) and reference therein.

5.3 Model for nutrient-prey system

In this Section we discuss the nutrient-prey chemostat model with and without
a toxicant.
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Table 5.2: Parameter set for bacterium-ciliate model. Ecological parameters
after Cunningham and Nisbet (1983): m mass of toxicant, t time, v is dimen-
sion of the volume of the system and V biovolume or biomass of organism.

Nutrient–Prey

µNR Max. growth rate t−1 0.5 h−1

INR Max. ingestion rate t−1 1.25 h−1

kNR Saturation constant V v−1 8.0 mg dm−3

kRu Uptake rate v m−1 t−1 —

kRa Elimination rate t−1 —

mR0 Maintenance rate coefficient t−1 0.025 h−1

cRM0 NoEffect Concentration (nec) m V−1 0.1 µ g mg−1

cRM Tolerance concentration (ec50 − nec) m V−1 0.5 µg mg−1

bcfWR Bio-Concentration Factor v V−1 1.0 dm3 mg−1

Prey–Predator

µRP Max. growth rate t−1 0.2 h−1

IRP Max. ingestion rate t−1 0.333 h−1

kRP Saturation constant V v−1 9.0 mg dm−3

kPu Uptake rate v V−1 t−1 10
dm3mg−1h−1

kPa Elimination rate t−1 10
dm3mg−1h−1

mP0 Maintenance rate coefficient t−1 0.01 h−1

cPM0 No-Effect Concentration (nec) m V−1 0.1 µg mg−1

cPM Tolerance concentration (ec50 − nec) m V−1 0.5 µg mg−1

bcfWP Bio-Concentration Factor v V−1 1.0 dm3 mg−1

bafWP Bio-Accumulation Factor v V−1 —
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5.3.1 Unstressed nutrient-population system

Let N(t) be the nutrient density and R(t) the biomass density of the popula-
tion. Then the governing equations for the simple ecosystem are

dN

dt
= (Nr − N)D − INR

N

kNR + N
R , (5.1a)

dR

dt
=
(

µNR
N

kNR + N
− D − mR0

)

R , (5.1b)

identical to Kooi (2003). The two control parameters that can be experimen-
tally manipulated are the dilution (flow-through) rate D, the fraction of the
volume replaced per unit of time, and the nutrient density Nr in the inflow.
The influx of nutrient, DNr, the outflow of nutrient, DN , and the outflow of
the population, DR, are the terms that model the interaction of the population
with the environment.

The consumption of the nutrient by the population is modelled with a
Holling type II functional response (Holling, 1959), that includes the maximum
ingestion rate INR, the maximum growth rate µNR (the ratio of the growth
rate and ingestion rate is called the assimilation efficiency in ecology or yield
in microbiology), and the saturation constant kNR. These three parameters
are fixed for a specific prey-nutrient combination, indicated by the double
subscript of the variables. The parameter mR0 is the maintenance rate and
models a reduction of the growth rate due to overhead costs, related to keeping
the organism alive. These costs are assumed to be proportional to the biomass
density of the prey R.

5.3.2 Stressed nutrient-population system

Let cW (t) be the ambient water concentration of the toxicant in the system,
and cr the constant concentration of the toxicant in the inflow. The dynamics
of the toxicant are described by the following mass-balance equation

d(cW + cRR)

dt
=
(

cr − (cW + cRR)
)

D , (5.2)

where we make the reasonable assumption that the volume of the system
is constant. The toxicant enters the system via the inlet with a concentration
cr, in a similar way as the nutrients (the term NrD in (5.1a)). The internal
concentration of the toxicant is denoted by cR (concentration with respect to
the biomass R). The rate at which the toxicant leaves the system consists of
two terms, namely transport of the dissolved toxicant in the system, cW D,
and the toxicant absorbed by the population, cRRD.
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The one-compartment model for the internal toxicant concentration reads

dcR

dt
= kRucW − kRacR −

(

(INR − µNR)
N

kNR + N
+ D + mR(cR) +

1

R

dR

dt

)

cR ,

(5.3)

where the last term is due to dilution by growth.
Equivalently, the dynamics of the exchange of the toxicant between the

prey and its ambient water are described by a mass balance model for the total
toxicant content in the population as the product of internal concentration cR,
and the biomass density R. Using the product rule we obtain

dcRR

dt
= (kRucW − kRacR)R −

(

(INR − µNR)
N

kNR + N
+ D + mR(cR)

)

cRR ,

(5.4)

where the first term on the right-hand side is the exchange between the wa-
ter and the organisms, and the second term is the flux of the toxicant into
the organisms that leave the system and the flux egested by the organisms
as assimilation and maintenance products. The diffusion transport fluxes are
proportional to the area of the surfaces summed over all organisms. We as-
sume that the surface (e.g., outer membrane) of the organisms is proportional
to their volume. The same holds at the population level. For organisms that
propagate by division this is justified. This means that the surface area to vol-
ume ratio is included in the uptake and elimination rate constants. Further-
more, the toxicant is absorbed into the assimilation and maintenance products
and egested into the system as dissolved toxicant.

The exchange of the toxicant between the water and the organisms is as-
sumed to be much faster than the other biological processes, including dilution,
assimilation, growth and maintenance. Due to the small size and large area to
volume ratio for phyto- and zooplankton, it is assumed that the uptake and
elimination of toxicants predominate the exchange between the organism and
the water (Gobas, 1993). As in Hallam et al. (1993), for a Daphnia popula-
tion it is assumed that the characteristic time for the internal distribution is
short compared to the characteristic time for exchange with the water. We
rewrite the system as a singular perturbation problem, where κa = εkRa and
κu = εkRu, with τ = t/ε
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dcRR

dt
= (κucW − κacR)R − ε

(

(INR − µNR)
N

kNR + N
+ D + mR(cR)

)

cRR ,

(5.5a)

dcW

dτ
= −(κucW − κacR)R + ε

(

(cr − cW )D + mR(cR)cRR
)

, (5.5b)

where time scale separation occurs when ε ≪ 1.
At the fast time scale we have the sub-model where ε → 0

dcRR

dτ
= (κucW − κacR)R , (5.6a)

dcW

dτ
= −(κucW − κacR)R , (5.6b)

where we used (5.2) and (5.4). In equilibrium we obtain

0 = κuc∗W − κac
∗
R , (5.7)

which gives in turn the quasi-steady state

kRu

kRa
=

κu

κa
=

c∗R
c∗W

= bcfWR , (5.8)

where the Bio-Concentration Factor for the population (bcfWR) is the ra-
tio of the internal toxicant concentration (with respect to the biomass density
of the population) and the external toxicant concentration (with respect to
the system volume). This relationship is now also used in non-equilibrium
situations on the slow time scale.

We can now introduce the total toxicant concentration in the system cT .
The set of governing equations then becomes

dN

dt
= (Nr − N)D − INR

N

kNR + N
R , (5.9a)

dR

dt
=
(

µNR(cR)
N

kNR + N
− (D − mR(cR))

)

R , (5.9b)

dcT

dt
= (cr − cT )D , (5.9c)

where cT = cW + cR R = cW (1 + bcfWRR).
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The effect of the toxicant on the physiology of the populations is modelled
as a dependency of physiological parameters, such as growth rate and main-
tenance rate, on the toxicant concentration. In Kooijman and Bedaux (1996)
the following expressions are proposed

mR(cR) = mR0

(

1 +
(cR − cRM0)+

cRM

)

, (5.10a)

µNR(cR) = µNR0

(

1 +
(cR − cRG0)+

cRG

)−1

, (5.10b)

where the subscript + operator is defined as x+ = max(0, x), which is a
non-smooth switch function. The parameter mR0 is the maintenance rate
coefficient of the unstressed system (cr = 0). The toxicological parameters are
the no-effect concentration (nec), a threshold concentration for the onset of
effects, and cRM , the tolerance concentration for maintenance. Observe that
Kooijman and Bedaux (1996) based these two parameters on the external
concentrations (per volume of the system), and not the internal concentration
(per biomass density), as is done here. Similarly, when the growth process is
the mode of action, we have the equivalent parameters cRG0 and cRG.

To calculate cR(t), we use

cW =
cT

1 + bcfWR R
, (5.11a)

cR =
bcfWR cT

1 + bcfWR R
, (5.11b)

where t ≥ 0 depends on the two state variables cT (t) and R(t). The expression
(5.11) is substituted into(5.10a) which, in turn, is substituted into (5.9b).

5.4 Analysis of the nutrient-prey system

To apply bifurcation analysis, we first need the system’s equilibria. Equilibria
of a system are fixed by the requirement that the time derivatives of the
state variable are zero. Let equilibrium values N∗ and R∗ denote a possible
solution. The equation for the dynamics of the toxicant concentration (5.11)
gives in equilibrium situation c∗T = c∗R (1+bcfWRR∗)/bcfWR. Depending on
the environmental conditions, there will be one equilibrium E1, or multiple
positive equilibria E1, E2, where N∗ < Nr, R∗ > 0, c∗W < cr. Besides these
equilibria there is a trivial solution E0 = (Nr, 0, cr).

For the following analyses the relevant bifurcation types and their descrip-
tions are characterised in Table 5.3.
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Table 5.3: List of bifurcations, codim-one curves and codim-two points (for
two-parameter bifurcation diagrams). The eigenvalues are of the Jacobian ma-
trix evaluated at the equilibrium. The Floquet multipliers of the Monodromy
matrix evaluated at a point on the limit cycle. See also Kuznetsov (2004) for
theoretical consideration.

Bif. Description

Codim-one curves

TC±
a,i Transcritical bifurcation: − supercritical, + subcritical;

a = e or empty equilibrium : zero eigenvalue
a = c limit cycle: Floquet multiplier equal one
i = 1: invasion by population prey, i = 2: invasion by predator

H±
i Hopf bifurcation: − supercritical, + subcritical ;

zero real parts of pair of conjugate eigenvalues
i = 1: nutrient–prey system becomes unstable,
i = 2: nutrient–prey–predator system becomes unstable,
origin of stable (supercritical) or unstable (subcritical) limit
cycle

T1 Tangent bifurcation for equilibrium: zero eigenvalue
G= Homoclinic bifurcation;

global bifurcation for connection of equilibrium with itself
of nutrient–prey system

G 6= Heteroclinic bifurcation;
global bifurcation for connection between two saddle equilibria
of nutrient–prey–predator system

Codim-two points

BT± Bogdanov-Takens bifurcation point;
global homoclinic cycle originates form this point

B Bautin bifurcation point;
transition from sub- to supercritical Hopf bifurcation
origin of tangent limit cycle

N Transition from sub- to supercritical transcritical bifurcation
tangent bifurcation curve originates
on boundary of region of bi-stability

M Intersection of Hopf and transcritical bifurcation curves for
equilibria
origin transcritical bifurcation for limit cycle curve
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Figure 5.1: A two-parameter bifurcation diagram with nutrient inflow Nr and dilu-

tion rate D as free parameters for the population without toxicity stress (cr = 0) in

the chemostat system, Eqn. (5.1). The dashed curve is the transcritical bifurcation

curve TC−
1 . For dilution rates above this curve there is wash-out. Below the trans-

critical bifurcation curve the population can invade a nutrient system and establish

at a stable positive equilibrium. A description of the parameters and their units is

provided in Table 5.2.

5.4.1 Unstressed nutrient-prey system

For the unstressed system (5.1) the two-parameter bifurcation diagram is
shown in Fig. 5.1, where the environmental parameters Nr and D are the
bifurcation parameters. Two regions can be distinguished in the bifurcation
diagram, that are separated by a transcritical bifurcation TC−

1 . In the upper
region the population cannot establish itself (equilibrium E0, where R∗ = 0),
for instance because the dilution rate is larger than the maximum growth rate
of the population (D > µNR). In the lower region the population establishes
itself (equilibrium E1, where R∗ > 0).
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Figure 5.2: A two-parameter bifurcation diagram with nutrient inflow Nr and dilu-

tion rate D as free parameters for the population with toxicity stress in the chemostat

system Eqn. (5.9), where cr = 1. The thin curve labelled cr = 1 was already shown in

Fig. 5.1 and is plotted here for reference. Dashed curves are transcritical bifurcation

curves TC±
1 , and the dot-dashed curve is the tangent bifurcation T1. At point N the

tangent curve T1 originates, and the transcritical bifurcation changes from supercrit-

ical TC−
1 to subcritical TC+

1 . Wash-out occurs for dilution rates above the tangent

curve T1. Below the transcritical bifurcation curve the population can invade a virgin

system and establish at a stable positive equilibrium. Between the two curves T1 and

TC−
1 there is bi-stability (see text).
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Local stability analysis of the positive equilibrium gives the long-term dy-
namics when the initial values for the state variables, N(0) and R(0), are in
the vicinity of the equilibrium. Calculations show that it is also globally stable
(Smith and Waltman, 1994), that is, for all positive initial values, N(0) > 0,
R(0) > 0, there is convergence to the stable equilibrium. This property makes
the chemostat a popular experimental apparatus for growth of populations of
uni-cellular organisms.

5.4.2 Stressed nutrient-prey-toxicant system

The stressed case, where the toxicant concentrations are considered, is repre-
sented by Eqn. (5.9), with

cT (t) = (cT (0) − cr) exp(−Dt) + cr , (5.12)

which is the analytical solution of Equation (5.9c) with cr > 0.
Substitution of this expression into the two-dimensional ecosystem with

state variables N(t) (5.9a) and R(t) (5.9b) yields a non-autonomous system.
For the asymptotic dynamics it suffices to study the autonomous system, where
in Eqn. (5.9a)-(5.9b) cT = cr is substituted (see Smith and Waltman, 1994).

The bifurcation diagram for cr = 1 is shown in Fig. 5.2. In a toxicant
stressed system there is a point N on the transcritical bifurcation curve, where
a so-called tangent bifurcation curve T1 emanates from. Below point N at the
curve TC−

1 the situation is the same as in the unstressed system. However,
above point N , in the parameter region enclosed by T1 and TC+

1 , there is a dif-
ferent kind of behaviour, namely bistability. There are the trivial equilibrium
E0 and equilibrium E1, which are both stable and are both attractors, while
the stable manifold of a third saddle equilibrium E2 functions as a separatrix
of the two basins of attraction for the two equilibria, respectively. The initial
values of the variables determine to which of the two attractors the system
converges.

The bistability disappears at one side at the transcritical bifurcation TC+
1 ,

because one of the attracting equilibria disappears. The system then always
converges to the positive attractor. At the other side, at the tangent bifur-
cation T1, the bistability is lost together with the non-trivial attractor, since
the positive equilibrium E1 collides with the saddle equilibrium E2, and they
both disappear. Only the trivial equilibrium E0 remains, which means that in
the region of the diagram above the tangent curve the population always goes
extinct. This is illustrated in Fig. 5.3, a one-parameter bifurcation diagram
for Nr = 150 and cr = 1, with D the free parameter.

We conclude that the transcritical bifurcation curve in Fig. 5.2 changes
character at point N , from supercritical (TC−

1 ) below N to subcritical (TC+
1 )
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above N , while N is the origin for the tangent bifurcation T1. Furthermore,
the reduction of the dimension of the system by taking CT = cr holds for
the analysis of the stability of the equilibria, but not when global aspects are
involved, for instance, when one wants to determine to which equilibrium the
system will converge when there are multiple equilibria.

Now we discuss the effect for higher toxicological loading (cr > 1). The
region in the parameter space where bi-stability occurs grows with increasing
cr. For higher toxicant stress-levels more complex bifurcation patterns occur
(see Fig. 5.4, where cr = 9). There is a supercritical Hopf bifurcation, de-
noted by H−

1 . We saw already that the system is essentially two-dimensional.
With systems of dimension higher than one, oscillatory dynamics can occur,
that is, the equilibrium is stable, but it can be a so-called spiral-node, where
convergence to the equilibrium points is oscillatory instead of monotonous.
More importantly, the equilibrium point can become unstable, where the or-
bit spirals away from the equilibrium point after a small perturbation. In this
situation there can be a stable limit cycle, where the solution is periodic, and
the orbit in the state-space converges to a closed orbit, called a limit cycle.

On the tangent bifurcation curve T1 there are two Bogdanov-Takens points,
denoted by BT+ and BT−. For a more detailed discussion of the Bogdanov-
Takens bifurcation point in ecological models, we refer to Bazykin (1998) and
Baer et al. (2006). Here we discuss only phenomena important for the under-
standing of the effects of toxic stress on the functioning of an ecosystem.

From the BT+ point, a subcritical Hopf bifurcation curve H+
1 emanates.

This Hopf bifurcation becomes supercritical at the Bautin bifurcation curve
B. In the two-parameter diagram Fig. 5.4 also a curve G= originates from
the point BT+. HomCont (Doedel et al., 1997, Chapter 16), part of the
computer package auto, can be used to continue this homoclinic cycle global
bifurcation curve. The global bifurcation curve, which emanates from the
BT−-point, is shown in Fig. 5.4, bottom panel.

Figs. 5.5 and 5.6 are one-parameter diagrams for cr = 9 and Nr = 150.
With higher dilution rates there is bi-stability, with two stable equilibria and
one saddle equilibrium, similar to the situation in Fig. 5.3, where cr = 1. For
low dilution rates, below the Hopf bifurcation curve H−

1 , the equilibrium E1 is
unstable, and a stable limit cycle exists, of which the extrema are depicted in
Fig. 5.6. The amplitude of the limit cycle increases very fast when decreasing
D. Simultaneously, the period of the stable limit cycle increases, while the
orbit stays close to the saddle equilibrium E2 for long episodes. At the critical
point G= the cycle, now called a homoclinic cycle, touches the intermediate
equilibrium E2, breaks up, and disappears suddenly. For D values below this
point the stable manifold of the saddle equilibrium E2 loses its separation
function, and the stable trivial equilibrium E0 becomes the global attractor.
Hence, below G= there is always extinction.
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Figure 5.3: A one-parameter bifurcation diagram with dilution rate D as free pa-

rameter, for the population with toxicity stress in the chemostat system Eqn. (5.9),

where Nr = 150 and cr = 1. Solid curves are stable equilibria E0, E1 and dashed

curves E2. Point T1 is the tangent bifurcation, TC+
1 the subcritical transcritical

bifurcation. Between the two points T1 and TC+
1 there is bi-stability.
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Figure 5.4: Top: a two-parameter bifurcation diagram with nutrient inflow Nr and

dilution rate D as free parameters for the population with toxicity stress in the chemo-

stat system Eqn. (5.9) where cr = 9. Dashed lines indicate a transcritical bifurcation

TC+
1 and dot-dashed lines indicate the tangent bifurcation T1. Bottom: detail of top

panel for low D values.
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Decreasing the dilution rate further, the zero stable E0 and the saddle
positive equilibrium E2 change stability at the subcritical transcritical bifur-
cation TC+

1 . For dilution rates in the range below G= there is a stable limit
cycle, associated with the Hopf bifurcation and the homoclinic point-to-point
bifurcation, both emanating from the BT−-point. A detailed discussion of
this long-term behaviour is given by Baer et al. (2006).

5.5 Model for nutrient-prey-predator system

We formulate two models for the stressed nutrient–prey–predator system,
where toxicant uptake by prey and predator is from water (bio-concentration),
and for the predator from water and food (bio-accumulation). The state vari-
ables are again the nutrient density N(t), the biomass density of the prey
R(t), the total toxicant content cT (t), and additionally the biomass density
of the predator P (t), which consumes the prey population. In one scenario
the toxicant affects both populations, while in the other scenario it affects the
prey population, but is has no effect on the predator population.

The motivation to study these two cases comes from the experimental
results obtained by Liebig et al. (2008) . In a closed system, single species
tests with the mixotrophic phytoflagellate Cryptomonas sp. and the planktonic
ciliate Urotricha furcata and multi-species, where ciliates consume flagellates,
were performed. Two toxicants were used: methyl parathion (an insecticide)
and prometryn (a herbicide). Methyl parathion had an effect on both the
flagellate and the ciliate population at the low mg/L concentration range,
independently whether the organisms were exposed in the single-species or
multi-species test system (first scenario). Prometryn had an effect on the
flagellate population in the single- and multi-species test at the low mg/L
concentration range. Ciliates were affected only in the single-species test at
the mg/L range (second scenario).

5.5.1 Stressed system: both populations affected by toxicant

The maintenance processes of the prey and predator populations are both
affected by the toxicant. The maintenance rate now depends on the toxicant
concentration cP as

mP (cP ) = mP0

(

1 +
(cP − cPM0)+

cPM

)

, (5.13)

while for the prey population it is given by Eqn. (5.10a).
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Figure 5.5: A one-parameter bifurcation diagram with dilution rate D as free pa-

rameter, for the population with toxicity stress in the chemostat system Eqn. (5.9),

where Nr = 150 and cr = 9. Solid curves are stable equilibria E0, E1 or extreme

values of the limit cycles, and dashed curves are unstable equilibria E2. Point T1

is the tangent bifurcation, TC+
1 the subcritical transcritical bifurcation and H−

1 the

supercritical Hopf bifurcation. A detail for small dilution rates D is given in Fig.5.6.
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Figure 5.6: Detail of Fig. 5.5 in the neighbourhood of the global bifurcation G=, a

homoclinic cycle. Solid curves are stable equilibria E0, E1 or extreme values of limit

cycles, and dashed curves are unstable equilibria E1, E2 (thick dashed curve is E2

which is hardly distinguishable from E0). A stable limit cycle originates at the Hopf

bifurcation H−
1 , of which the extrema are shown. The period of this limit cycle goes

to infinity when D approached G=. Below G= the trivial equilibrium E0 is the unique

global attractor.
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The governing set of equations with state variables N , R, P and cP , be-
comes

dN

dt
= (Nr − N)D − INR

N

kNR + N
R , (5.14a)

dR

dt
=
(

µNR
N

kNR + N
− (D + mR(cR))

)

R − IRP
R

kRP + R
P , (5.14b)

dP

dt
=
(

µRP
R

kRP + R
− (D + mP (cP ))

)

P , (5.14c)

dcP P

dt
=
(

kPucW − kPacP

)

P + cRµRP
R

kRP + R
P

−

(

(IRP − µRP )
R

kRP + R
+ D + mP (cP )

)

cP P , (5.14d)

dcT

dt
= (cr − cT )D , (5.14e)

where cT = cW + cRR + cP P . The ode (5.14c) describes the dynamics of
the predator population. Compared to the model for the nutrient-prey sys-
tem (5.9) there is an additional predation term in (5.14b). Uptake of toxicants
by the predator is from the water and the consumed contaminated prey.

Equation (5.14d) has three terms. The first term on the right-hand side
models the exchange rate of the toxicant from the water. The second term
models the uptake rate from the contaminated prey. It is the product of the in-
ternal toxicant concentration in the prey cR and the assimilated prey per unit
of time. Here we assume that the efficiency for intake of the toxicant equals
the assimilation efficiency for the prey (µRP /INR), and that no biotransforma-
tion takes place. The third term is the internal toxicant concentration in the
predator cP times the removal rate of the toxicant, absorbed in the washed-out
predator biomass, plus the egested rate of assimilation and by-products into
the system.

The one-compartment model for the internal toxicant concentration for
the prey and predator populations are, using (5.3) and (5.14)

dcR

dt
=kRucW − kRacR

−
(

(INR − µNR)
N

kNR + N
+ D + mR(cR) + IRP

P

kRP + R
+

1

R

dR

dt

)

cR ,

(5.15a)
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dcP

dt
=kPucW − kPacP + µRP

R

kRP + R
cR−

(

(IRP − µRP )
R

kRP + R
+ D + mP (cP ) +

1

P

dP

dt

)

cP . (5.15b)

At equilibrium and using (5.14b) and (5.14c) we get

kRuc∗W = kRac
∗
R+

(

(INR − µNR)
N∗

kNR + N∗
+ D + mR(cR) + IRP

P ∗

kRP + R∗

)

c∗R ,

(5.16a)

kPuc∗W + µRP
R∗

kRP + R∗
c∗R = kPac

∗
P +

(

(IRP − µRP )
R∗

kRP + R∗
+ D + mP (cP )

)

c∗P . (5.16b)

We define the following BioConcentration and BioMagnification Factors
for both populations

BCFWR =
kRu

kRa + INRN∗/(kNR + N∗)
, (5.17a)

BCFWP =
kPu

kPa + IRP R∗/(kRP + R∗)
, (5.17b)

BMFRP =
µRP R∗/(kRP + R∗)

kPa + IRP R∗/(kRP + R∗)
. (5.17c)

The bio-accumulation factor for the predator population is defined as

BAFWP = BCFWP + BCFWRBMFRP , (5.18)

which yields

c∗R = BCFWRc∗W , (5.19a)

c∗P = BAFWP c∗W , (5.19b)

where we also assume for the predator population that the uptake and elim-
ination rates are much faster than other conversion rates. Then the bio-
concentration factor (bcf), as given in (5.8), BCFWR = kRu/kRa, and a
similar expression for the predator, BCFWP = kPu/kPa, apply. The total
toxicant concentration cT (t) becomes
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cT (t) = cW (t)(1 + BCFWRR(t) + BCFWP P (t)) . (5.20)

In summary, the food chain model where both prey and predator popu-
lations are affected by the toxicant consists of Eqn. (5.14a), (5.14b), (5.14c),
and (5.20).

5.5.2 Stressed system: predator unaffected by toxicant

We assume now that the toxicant in the prey population is not taken up by
the predator population. Then the mass-balance equations read

dN

dt
= (Nr − N)D − INR

N

kNR + N
R , (5.21a)

dR

dt
=
(

µNR
N

kNR + N
− (D + mR(cR))

)

R − IRP
R

kRP + R
P , (5.21b)

dP

dt
=
(

µRP
R

kRP + R
− (D + mP0)

)

P , (5.21c)

dcT

dt
= (cr − cT )D , (5.21d)

where cT = cW (1 + BCFWRR).
This set of odes reduces to the unstressed system, without the ode that

describes the dynamics of the total toxicant concentration in the system cT ,
and the toxicant does not affect the maintenance rate of the prey popula-
tion, mR(cR) = mR0. Note that for the predator population we have always
mP (cP ) = mP0, which is a species-specific parameter. When P = 0, it reduces
to the stressed nutrient-prey system (5.9).

5.6 Analysis of nutrient-prey-predator system

First we analyse the unstressed predator-prey system. Thereafter, the two
stressed systems are analysed. In the first system both prey (via water) and
predator (via water and food) populations are affected by the toxicant (herbi-
cide or pesticide). In the second system, the toxicant (bactericide or algicide)
only affects the prey population.

5.6.1 Unstressed nutrient-prey-predator system

For the unstressed nutrient-prey-predator system, Eqn. (5.21) but without
toxicant and substituting mR(cR) = mR0, the bifurcation diagram has been
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Figure 5.7: A two-parameter bifurcation diagram with nutrient inflow Nr and dilu-

tion rate D as free parameters for the unstressed ecosystem Eqn. (5.21a, 5.21b, 5.21c),

with mR(cR) = mR0, consisting of nutrient, prey and predator. Dashed curves TC−
1

and TC−
2 are transcritical bifurcations, the dotted curve is the Hopf bifurcation curve

H−
2 .

discussed in an earlier paper by Kooi et al. (1998) as part of a food chain with
a top-predator. Figure 5.7 shows the bifurcation diagram with Nr and D as
bifurcation parameters.

The transcritical bifurcation curve TC−
1 is the same curve shown in dia-

gram Fig. 5.1 for the nutrient-prey system. Bifurcation curves of the nutrient-
prey system are also relevant for the nutrient-prey-predator ecosystem, when
after a predator population is inoculated in the nutrient-prey system, the
predator is not able to invade. On the other hand, when the predator can
invade, the nutrient-prey bifurcation curve loses its relevance. This is the case
for the region on the right-hand side of the transcritical bifurcation curve TC−

2

in Fig. 5.7, where the subscript 2 indicates that the predator population is in-
volved. At this curve both the biomass and the growth rate of the predator
population equal zero, that is, both factors on the right-hand side of (5.21c)
are zero, resulting in a zero eigenvalue of the Jacobian matrix evaluated at
that equilibrium point. Fig. 5.8 shows the one-parameter diagram where the
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Figure 5.8: A one-parameter bifurcation diagram with nutrient level Nr as free pa-

rameter, for a predator-prey system Eqn. (5.21a, 5.21b, 5.21c), consisting of nutrient,

prey and predator. The stationary biomasses of the nutrient N , prey R and predator

P are depicted as a function of the nutrient level Nr. For high nutrient levels above

H−
2 the system oscillates with extrema indicated. Only stable stationary states are

shown.

equilibrium values for the four state variables cW , N , C and P are depicted
with bifurcation parameter Nr, where D is kept constant at D = 0.02. For
low values of the nutrient input Nr only the nutrient is present. Between the
points TC−

1 and TC−
2 the prey population can persist, R∗ > 0, but the preda-

tor cannot invade and its equilibrium biomass is zero. For Nr-values above
TC−

2 an interior equilibrium with P ∗ > 0 exists.
When Nr is increased further (an event often referred to as nutrient en-

richment) the system becomes unstable at a Hopf bifurcation, denoted by H−
2 .

Above the H−
2 there is a stable limit cycle, and in Fig. 5.8 the extreme values

during such a cycle are depicted. The phenomenon that under nutrient en-
richment a system starts to oscillate is known as the “paradox of enrichment”
(Rosenzweig, 1971 , Chapters 3 and see Voorn and Stiefs et al. 2008).
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5.6.2 Stressed system: both populations affected by toxicant

In this subsection the toxicant affects the prey and predator maintenance
processes. The dynamics are described by ode system (5.14). The calculated
two-parameter bifurcation diagram, with Nr and D as bifurcation parameters,
is shown in Fig. 5.9, where cr = 9. Compared to the unstressed system, the
transcritical bifurcation TC−

1 of Fig. 5.1 is replaced by the tangent bifurcation
curve T and those bifurcation curves emanating from the Bogdanov-Takens
bifurcation point BT+, for instance the Hopf bifurcation curve H−

1 (Fig. 5.4
for the stressed nutrient-prey system).

The pattern of the bifurcations associated with stationary solutions with
positive predator biomasses resembles that of the unstressed system Fig. 5.7.
With enrichment, first the predator can invade, and for higher nutrient input
concentrations above the Hopf bifurcation curve H−

2 the system oscillates.

5.6.3 Stressed system: predator unaffected by toxicant

The Hopf bifurcation curve H−
2 now intersects the Hopf bifurcation curve

H−
1 and the transcritical bifurcation TC−

e,2 in a codim-two point M . The
extra subscript e indicates that it is related to an equilibrium. On the right-
hand side of the Hopf bifurcation curve H−

2 the nutrient-prey-predator system
oscillates. Below curve H−

1 also the nutrient-prey system oscillates. Therefore
invasion of the predator occurs via a limit cycle, which is stable considered
as part of a nutrient-prey system, but unstable when a predator can invade.
The point where the invadability changes is a transcritical bifurcation, but
now for a cycle, and is indicated in Fig. 5.10 by TC−

c,2. Below this curve the
nutrient–prey–predator system cannot exist, and in that region of the diagram
the curves and points shown in Fig. 5.4 for the nutrient–prey system apply.

In Fig. 5.10, a global bifurcation curve G 6=, continued with HomCont
(Doedel et al., 1997, one can also use the techniques developed in Van Voorn
et al., 2007, forms the boundary of the region where the system possesses a
stable limit cycle. This is a so-called heteroclinic cycle, which connects two
saddle equilibria where the predator is absent.
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Figure 5.9: A two-parameter bifurcation diagram with nutrient inflow Nr and di-

lution rate D as free parameters for the ecosystem Eqn. (5.14) with cr = 9 where

both population suffer from the toxicant. Dashed lines are transcritical bifurcations

and dotted-dashed lines the tangent bifurcation. The predator is involved in bifur-

cation points on the following curves: Hopf bifurcation curve H−
2 and transcritical

bifurcation TC−
e,2. The bifurcation diagram for the nutrient–prey system are shown

in Fig. 5.4.
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Figure 5.10: A two-parameter bifurcation diagram with nutrient inflow Nr and di-

lution rate D as free parameters for the stressed ecosystem Eqn. (5.21), with cr = 9,

where only the prey population suffers from the toxicant. Dashed curves are transcrit-

ical bifurcations, and dotted-dashed curves are the tangent bifurcations. The predator

is involved in bifurcation points on the following curves: Hopf bifurcation curve H−
2 ,

transcritical bifurcation for invasion via equilibrium TC−
e,2, transcritical bifurcation

for invasion via a limit cycle TC−
c,2, and heteroclinic connection: global bifurcation

curve G6=. The bifurcation diagram for the nutrient-prey system is shown in Fig. 5.4.
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or extreme values of stable limit cycles, and dashed curves unstable ones. Observe

that TC+
e2 is irrelevant, since just below H−

1 the prey population goes extinct and no

invasion of the predator is possible.
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With Nr = 150, and starting from the Hopf bifurcation curve H−
2 and

lowering the dilution rate D, the period of the stable limit cycle goes to infinity,
and the cycle tends to the heteroclinic cycle. This is illustrated in Fig. 5.11.
At this global bifurcation point the limit cycle breaks. As a result, it becomes
possible that a stable nutrient-prey system becomes unstable by invasion of
a predator, and eventually the predator goes extinct together with the prey
population, that is, the complete ecosystem is destroyed. This is a form of
over over-exploitation as discussed in Van Voorn et al. (2007). This holds for
the parameter range between G 6= and the transcritical bifurcation TC−

2,e.

5.7 Discussion

For an overview of different mathematical model formulations of unstressed
ecosystems and their analyses, the reader may consult Kooi (2003), and refer-
ences therein. In this Chapter we focus on the sublethal effects of a toxicant on
the ecosystem structure and functioning. Important effects are extinction of
species, invadability by a species from a neighbourhood, the different popula-
tion abundances, and the long-term dynamics (stable equilibrium, oscillatory
or chaotic behaviour).

We can compare the bcf, bmf and baf formulations (5.17) and (5.18) with
formulations in the literature, used for bio-accumulation in food web studies
(Thomann, 1989; Gobas, 1993; Campfens and MacKay, 1997; Traas et al,
2004b). In most classical approaches, ecological and toxicological stressors are
treated separately. The expression for the BCFWR in 5.17a resembles Eq. (11)
in Thomann (1989) or Eq. (4) in Gobas (1993), the derived expression for
bafWP in (5.18) resembles Eq. (15a) in Thomann (1989), and the expression
for the equilibrium of the internal toxicant concentrations c∗R and c∗P in (5.19)
resembles Eq. (8) in Traas et al. (2004b) in the case of a food chain. For the
analysis of food webs, besides the bmf and baf-values, the dietary preference
matrix, that fixes the feeding relationships, is needed to model the transport
of the toxicant in the contaminated food through the system (see for instance
Campfens and MacKay, 1997; Traas et al., 2004b).

The formulation of the exchange of the toxicant with the water is equivalent
to that in Hallam et al. (1993), Barber et al. (1988), and Barber (2003). In
these papers, a mass-balance equation for the total amount of toxicant in an
individual fish is the starting point. The model for the conductance of the
toxicant through the exposed membrane is based on physiological processes,
employing fluid flow characteristic parameters as well as diffusion. For the
application of that model for Daphnia only diffusion through the carapace is
assumed. Later, in Barber et al. (1988), the concentration-based equation is
derived, whereby a dilution term appears naturally. Here the starting point
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is diffusion, and toxicant concentrations are the state variables to model this
process, including the dilution term (the last term of Eq. (5.3)). Then the
mass-balanced equation is derived in (5.4).

The formulation of the dilution-by-growth term in Eq. (5.3) resembles that
of Eq. (24) in Clark et al. (1990), but observe that their formulation is for
the individual fish, while here it is formulated on the population level. In our
unstructured population model formulation we cannot distinguish between the
individuals, only entities of the total number of individuals that compose the
population numbers. Individuals that propagate by binary fission never reach
equilibrium, instead they grow and divide at a threshold size into two new-
borns, but the population can reach an equilibrium. On the other hand, the
population parameters entail individual characteristics. In our formulation the
population-based removal term from the system, D, appears together with the
individual-based egestion rates for the products formed in physiological pro-
cesses. In deriving Eqn. (5.17) from (5.15) the equilibrium conditions are used,
and this results in an ingestion term in the denominator of the expressions be-
sides the elimination rate. When food is abundant the functional response is
almost 1, and bio-factors become independent of the equilibrium abundances.
This often applies for single-species experiments, but generally not for pop-
ulations. In many papers, for instance Gobas (1993), dilution by growth is
taken as a positive constant. In Clark et al. (1990), the notion pseudo-steady
state is introduced to describe that no true equilibrium can be achieved while
growth occurs.

For the simple ecosystems studied here, we found that toxicants can have
large consequences for the long-term dynamical behaviour. When the main-
tenance process is the mode of action, the per capita maintenance rate co-
efficient is not constant anymore, but increases with the internal toxicant
concentration. The concentration of the internal toxicant depends on the tox-
icant concentration in the water, which is in turn linked to the dynamics of
the biomass of the population, since removal of the toxicant is partly via the
biomass that leaves the system with the dilution. This is a feedback mecha-
nism, due to which the repertoire of the dynamical behaviour of the stressed
system is much more diverse, for instance, bi-stability, cyclic behaviour and
global bifurcations can occur.

Bi-stability of the nutrient-prey system can be the result of various mecha-
nisms, for instance the Allee-effect (Allee, 1931; Van Voorn et al. 2007). When
a population is subject to an Allee effect, an predator invasion can lead to the
collapse of the complete system under certain circumstances (see for instance
Bazykin, 1998; Kent et al., 2003). Here we show that mathematically a hetero-
clinic bifurcation is associated with this biological phenomenon. Similarly, we
found this phenomenon for the stressed nutrient-prey-predator system when
the toxicant affects only the population. When the toxicant affects both pop-
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ulations, toxic effects on the predator retard its growth, and this prevents
over-exploitation of the nutrient-prey system. As a result, the size of the re-
gion in the diagram 5.9 with a stable equilibrium is much larger than when
only the prey population is affected (see Fig. 5.10).

When the toxicant is a reactant in a chemical reaction within the organism,
the compartment model for the uptake and elimination of the toxicant has
to be adapted. As an example we mention the possibility that the kinetics
of the reaction itself have to be taken into account, or the concentration of
an enzyme that controls the reaction has to be considered. This can occur
in biotransformation, the processes by which chemicals are altered by the
organism, usually with the intention to increase their elimination rate. As a
side-effect bio-activation, the production of reactive metabolites that are more
toxic than the parent compound, can occur.

In Hallam et al. (1993), the step from individual to a Daphnia population
is formulated and analysed. For the age- and size-structured population the
so-called McKendrick-Von Foerster model is used. This is a partial differential
equation (pde) where food is kept constant. The use of this model for popula-
tions at different trophic levels of an ecosystem is problematic due to trophic
interactions. Also in Hallam et al. (1993), an alternative relationship and its
effect on the growth rate is formulated, which is a hyperbolic function of the
internal concentration with three parameters. For a Daphnia population these
parameters are based on quantitative structure-activity relationships (qsar’s).
Similar to (5.10b), there is a threshold concentration for the onset of effects,
which is calculated from the no-observed-effect-level (noec). The remaining
two parameters are computed from the ec50 for growth, and the mortality
concentration lc50. Thus, these parameter values are based on descriptive
parameters. For estimation of the debtox toxic effect parameters (5.10), time
series of experimental data for aquatic bioassays are used, where a range of
toxic stress levels and food availability levels are applied. The toxic effect pa-
rameters are estimated simultaneously with the ecological model parameters.

Comparison of the calculated bifurcation diagrams for different toxic stress
levels yield important information about the toxic effects on the functioning
of the ecosystem. Consider the unstressed system, whereby the environmen-
tal conditions are given (fixed Nr and D). Let us assume that this point
in the parameter space belongs to a region where the equilibrium is stable
and positive. Increasing the input toxicant level cr will change the position
of the bifurcation curves, including the transcritical and tangent bifurcation
curves. When at a certain level of stress a transcritical or tangent bifurca-
tion curve passes through the point we are evaluating, we have the level of
stress at which at least one population goes extinct. Such a threshold value
is called the population extinct threshold (pet; Hallam et al., 1993). In the
case of a Hopf bifurcation passing through the given point the ecosystem be-
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comes unstable, leading to oscillatory behaviour. Increasing the stress further
generally leads to oscillations of enlarged amplitude, increasing the chance
of demographic or stochastic extinction occurring. Hence, the crossing of a
bifurcation marks a structural change of the ecosystem. Also, given a toxic
stress level cr, it is possible to identify environmental conditions Nr and D,
under which the toxic stress has no effect on the population abundances. This
threshold concentration value is determined by the requirement that it equals
the nec value related to a sensitive processes within the organism that form a
population. (The modelled mode of action should potentially be able to affect
the population.)

The above-mentioned results can be applied in a risk assessment analysis.
Here all parameters, which describe the physiological processes, and the en-
vironmental status are determined. In a natural setting these parameters are
in general stochastic or random, either naturally or anthropogenically induced
(Lindenschmidt, 2006; Lindenschmidt et al., 2007). In the case that the input
level of the toxicant is uncertain, this translates directly into uncertainties for
the occurrence of the structural changes and functioning of the ecosystem.

For the sake of simplicity, we have studied a short food chain, representing
only the lowest trophic levels of an aquatic ecosystem, where several impor-
tant ecological and toxicological factors (e.g., nutrient recycling, varying envi-
ronmental conditions, spatial mixing, assimilation efficiency of contaminants)
have been left out. Furthermore, the population model is unstructured for
the prey and the predator, simplifying the step from individual to popula-
tion. The hypothesis, that the toxicant uptake and elimination predominate
the exchange between the organisms and the water, is not valid for species
of higher trophic levels, but only for those on the lowest trophic level here.
Admitting that the analysed food chain is only a simplified representation of a
real ecosystem, we point out that our analysis is a first step in understanding
more realistic and more complex aquatic systems, such as rivers and estuar-
ies. Also, although simplified models will not provide precise forecasts for real
ecosystems, due to uncertainties in the parameter values and environmental
fluctuations, as mentioned above, the simulation of extreme situations (bi-
furcation analysis) can lead to understanding a range of potential outcomes.
Furthermore, the model can easily be extended in many directions, while the
analysis method remains applicable.

5.8 Conclusions

Despite high toxicant concentrations in the influent, the ambient toxicant con-
centrations in the system needs not to be high. This is the result of the follow-
ing. The supplied toxicant-free (uncontaminated) nutrient is converted in the
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system into biomass. This new biomass absorbs the toxicant. Together with
the removed individuals it is removed from the system. Because the ambient
toxicant concentration is generally low, the concentration of dissolved toxicant
in the effluent is low, even when the concentration is high in the influent. Ob-
serve that there is no contradiction with mass conservation, because there is
also transport of the toxicant via the contaminated organisms. When these
organisms are removed from the effluent, it is purified.

There three different levels of modelling detail for the toxicant dynamics
in the organisms can be distinguished:

• (1) The exchange of the toxicant between the water and the organisms
is assumed to be much faster than the biological processes.

• (2) The ecosystem model is in equilibrium and the equilibrium abun-
dances are used in the bio-accumulation model (bcf, bmf and baf).

• (3) The dynamics of the internal toxicant is modelled explicitly and
forms and integrated model together with the ecosystem model.

In large regions of the bifurcation diagrams (great variety of environmental
conditions) the ecosystem does not possess a stable equilibrium, but instead
there is a stable limit cycle. Hence, the equilibrium assumption generally
made in models for bio-accumulation in aquatic ecosystems (Thomann and
Connolly, 1984; Thomann and Mueller, 1987; Thomann, 1989; Clark et al.,
1990; Gobas, 1993; Campfens and MacKay, 1997; Traas et al., 2004b) are valid
only under restricted environmental circumstances.

The feedback mechanism between toxicant uptake/consumption and re-
moval from the system is an important phenomenon, possibly leading to bi-
stability in the nutrient-prey-contaminant system and collapse of the nutrient-
prey-predator-contaminant system. Hence, the effects of both types of stres-
sors, the biotic (competition, predation) and the abiotic (chemical or physical),
on the ecosystem have to be analysed together.
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Chapter 6

Sublethal toxicological effects

in a generic aquatic ecosystem

D. Bontje, B.W. Kooi, B. van Hattum and P. Leonards

The dynamical behaviour of an aquatic ecosystem stressed by limiting nu-
trients and exposure to a toxicant is analysed. The ecosystem is a defined
stretch of river consisting of nutrients, pelagic and a benthic communities,
detritus pools in the water body and sediment. We analyse the downstream
river reach adjacent to the point of emission of a toxicant. The toxicant is
taken up by the organisms and can affect their biological functioning (assimi-
lation, growth, maintenance, reproduction, survival). This induces effects on
the functioning of the populations formed by the organisms, and further on the
biological status of the ecosystem, that is their structure e.g. extinction or inva-
sion of species, and functioning. Sublethal, long-term effects due to biological
and toxicological stressors will be studied together. The dynamic behaviour of
all biotic and abiotic components as well as the toxicant concentration therein
is mathematically described by a set of ordinary differential equations (odes).
The long-term dynamic behaviour of this system is analysed using bifurcation
theory. A reference state is defined and our aim is to quantify the effects of
toxicological (toxic exposure), ecological (feeding, predation, competition) and
environmental stressors (nutrient supply, dilution rate). To that end we cal-
culate the boundaries of the range of parameters that quantify these stressors
where the long-term dynamics (equilibrium, oscillatory or chaotic behaviour)
is qualitatively the same. In this way we obtain levels of toxicant loading
where the abundances of all populations are the same as in the reference case,
the no-effect region (ner). We will also calculate the minimum toxic exposure
levels that do not lead to a change in the composition of the ecosystem and
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therefore its structure with respect to the reference unexposed situation, but
where population abundances and internal toxicant concentrations may have
been changed quantitatively. The model predicts that due to indirect effects
even low sublethal toxic exposure can lead to catastrophic changes in the func-
tioning and structure of the ecosystem, and that the long-term sensitivities of
oligotrophic and eutrophic systems to toxic stress differ.

6.1 Introduction

The importance of the extrapolation of the results of toxicity bioassays to po-
tential effects on the ecosystem has already been recognized for many years
[17]. Since then detailed models for aquatic ecosystems have been formu-
lated and analysed to perform such an extrapolation by running simulations
whereby the time evolution of the populations and toxicant was calculated
under different levels of toxicant loading. Although this gives insight on the
short-term effects, it is cumbersome to draw clear conclusions for long-term
sublethal effects on the ecosystem functioning and structure.

Here we combine process based mathematical modelling and bifurcation
analysis to assess the effects of both toxicological and ecological stress on
the functioning and structure of a generic aquatic ecosystem. We consider
a stretch of a river with two abiotic compartments, the water and sediment
bodies, and a food web consisting of interacting pelagic and benthic organisms.
This system is stressed by a limiting nutrient and by exposure to a toxicant.
We analyse the downstream river stretch adjacent to the point of emission of
a single toxicant.

With the theoretical assessment of effects the following steps can be dis-
tinguished:

1. Ecological theory Biological functioning of the ecosystem. For an ecosys-
tem we need:

• a model for the individual life-cycle,

• a model of each population using models of individual behaviour,

• a model for the ecosystem, using models of populations including
their mutual interactions and interaction with the physical environ-
ment.

2. Environmental chemical theory Fate of the toxicant. Environmental
chemistry and geochemistry related models to describe emission, trans-
port and distribution. Further a model for the exposure of the individ-
uals by bioaccumulation and biomagnification.
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3. Toxicological theory Effect module on individual level. The relationship
between the internal concentration of the toxicant and the behaviour of
an individual.

4. Ecotoxicological theory Lethal and sublethal effects on the ecosystem
level. The relationship between the toxicological effects on the indi-
vidual level and their effects on population level and finally ecosystem
behaviour.

5. Risk assessment Using the exposure and effect models to assess ecosys-
tem consequences (e.g. probability of extinction of one or more popula-
tions).

A Predicted Environmental Concentration (pec) is obtained by the eval-
uation of the emissions, distribution and bioavailability of the toxicant in the
different compartments (water, sediment) or from actually measured environ-
mental concentrations of the toxicant (points 1 and 2). Various toxicokinetic
models describe the accumulation of toxicants from the environment (water,
sediment) into organic material (detritus, biota) [38, 15, 35, 50, 21, 5, 49].
The models proposed in these papers are based on the ecosystem equilibrium
assumption and the equilibrium partitioning principle [15] for the chemicals.
This allows for a strictly independent modelling of the ecological and toxi-
cological processes, whereby classical models from both disciplines are used:
ecosystem models and toxicokinetic models. The calculation of the distribu-
tion of the toxicant over the biotic and abiotic components (bafs and bsafs)
requires for each population the lipid fraction and body weight, and for the
ecosystem the dietary preference matrix (see for instance [51]).

In lower-tier ecosystem risk assessment, effect parameters are converted
to generic Predicted No-Effect Concentrations (pnecs) (points 3 and 4). In
a controlled environment tests are performed with single species each repre-
senting one of the three trophic levels of a pelagic food chain consisting of:
primary producers (algae species), primary consumers (daphnids) and a sec-
ondary consumer (fish). These standard tests on lethality and effects yield
LC50 and no-observed effect concentration (noec) values depending on the
toxicant and the organism. The use of population or even ecosystem testing
is relatively scarce in ecotoxicological risk assessment. In practice, mostly a
reductionist approach is taken. Then these results are extrapolated to predict
effects on the higher levels: populations and ecosystems. So-called assessment
or application factors account for the uncertainties in extrapolation from lab-
oratory to field, from single laboratory species to multiple field species, or
from acute (short-term) to chronic (long-term) exposures, or from mortality
as endpoint to reproduction or growth as endpoint. Factors used for the risk
assessment required by national and international regulatory bodies, are sum-
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marized in [19, 20]. No ecotoxicological hazard or risk is anticipated when the
ratio pec/pnec is less than one.

Here we study a higher-tier process-based and generic aquatic model where-
by no equilibrium assumptions are made a priori. Toxicants affect the individ-
ual behaviour while consequences on the ecosystem level are required. There-
fore in the integrated, holistic modelling approach, the model has to combine
descriptions of chemical (fate of the toxicant including uptake by the individ-
uals) and biological processes (feeding, predation, competition). Models of
these processes at the individual level are lifted up to the population level and
finally ecosystem level whereby besides interactions between populations also
interactions with the environment are taken into account.

The populations that make-up the ecosystem are modelled by a simplified
version of the deb model [32]. By assuming that all individuals within one
population are identical we can use a simple unstructured population model
formulation, which allows us to model the population dynamics with ordinary
differential equations (odes). Physiological processes such as assimilation,
maintenance, growth, reproduction and mortality are possibly the targets of
the toxic effects depending on the mode of actions of the toxicant. A one-
compartment model formulation is used for the uptake and elimination of the
toxicant by the organisms, the detritus pools and also the detritus. As in the
critical body residue approach [40], toxicants consistently produce a defined
toxic effect depending on a dynamic internal concentration, regardless of the
actual environmental variables. The toxicological effects on the population
level are described by the debtox [33] methodology. In this concentration–
effect model below a toxicant concentration threshold, called the nec (No
Effect Concentration), there is no effect. Above this threshold the intensity of
the effect is a linear dependence on the internal toxicant concentration.

We also introduce a model aggregation technique whereby the full dynamic
ecological model component is retained but the bioaccumulation model is re-
duced to the classical model based on the ecosystem equilibrium assumption
and the equilibrium partitioning principle. Instead of uptake and elimination
rates, easily available literature bioconcentration factor values can be used.

We focus on sublethal effects of a single toxicant on the ecosystem in
a river. The toxicant enters the river from upstream emissions, tributaries
and run-off and is taken to be homogeneously distributed at the modelled
river section. The spatial structure of the species distribution is taken to be
uniform in both the water and/or the sediment. The system consists of the
following biota: pelagic phytoplankton (producer: algae), pelagic zooplankton
(consumer: ciliates, Daphnia), benthic invertebrate (consumer: small animals,
such as clams, worms, and crustaceans) that live on or in the bottom substrate
of a water body and the sediment and one territorial fish (predator). We take
nutrient recycling into account. Important environmental parameters are the
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nutrient inflow concentration (e.g. phosphate, ammonium, total nitrogen) and
the dilution rate. The latter being the amount of water per unit of time flowing
in divided by the overlying water volume of the stretch of river.

The river ecosystem is modelled using a chemostat environment. The
influent containing nutrients and toxicants, enters the well-mixed system with
constant volume. From this system all pelagic biota, detritus and the dissolved
toxicant in the overlying water leave the system with the effluent. Pore water is
not modelled explicitly. No transport of the sediment is assumed by the outlet
or influent. The ecological status of the ecosystem, or qualitative composition,
is expressed as its species composition which can be effected. For example
extinction of a species can occur due to starvation or a predatory species
can invade from upstream or downstream. Also, the quantity of each species
presence, namely the species abundance of the various populations can change
due to toxic stress. The long-term dynamics of the ecosystem, including stable
equilibrium, oscillatory or chaotic behaviour, can also be affected.

The dynamic behaviour of each population is described by one ode which
describes the time-dependent population biomass. Via trophic interactions
and/or competition each ode is coupled to other odes forming an ode-system.

Trophic interactions are feeding relationships among ecosystem popula-
tions and are described with functional responses in which the ingestion rate
per predator as a function of the abundance of the resources (prey or nutrients)
saturates as the resource density increases. Competition is here considered as
an indirect interaction between two or more populations, all feeding on a com-
mon prey population. In food chains, populations may consume a single prey
population by direct trophic interactions. On the other hand in food webs,
populations may feed also on multiple resources and/or are consumed by mul-
tiple predators whereby also indirect interactions occur. In line with related
studies [2, 12, 13] we model a food web with detritus and nutrient recycling.
The models that describe the various interactions between the populations are
based on those derived in [31, 32, 42].

Less complex ecosystem models, which were also build with coupled odes,
were studied in [4, 29, 30, 37]. Here we show that this approach of coupled
odes also works for studying more realistic ecosystems.

In a number of recent papers [7, 8, 9, 10, 45] similar models are proposed
and analysed with simulations. In [44], analysing multiple scenarios, many
simulations in time were performed yielding information on short-term and
long-term toxic effects. With respect to the long-term effects, simulations are
rather cumbersome and analysing the output to find effects on the ecosystem
functioning and structure is difficult and time-consuming.

We perform a bifurcation analysis. A bifurcation analysis focuses on the
dependency of the long-term dynamic behaviour on model parameters. This
technique gives directly under which conditions, for instance toxic exposure
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and/or nutrient enrichment, the structure of the ecosystem changes because of
invasion or extension of a population. The model parameters that are changed
during an analysis are called control parameters. In a bifurcation analysis first
steady states for the complete systems are calculated followed by a stability
analysis. Then parameters are varied whereby in each point this procedure
is repeated. Parameter values where the stability of the equilibrium changes
are called bifurcation points. These points mark regions where the long-term
dynamics change and in an ecotoxicological setting that means the functioning
or structure of the ecosystem has changed.

For an introduction to bifurcation analysis we refer the reader to [22, 53,
34], and for applications in ecology to [3, 28]. Recently this technique has also
been used in [24, 23, 1, 54] for applications in ecotoxicology. The aim is to
show the power of bifurcation analysis techniques for the study of long-term
sublethal effects on aquatic ecosystems to ecotoxicologist.

The integrated approach taken in this paper permits the study of indirect
effects of the toxicant. Varying the toxicant load gives insight into the effects
whereby all indirect effects are taken into account. We call the dilution rate
and nutrient supply concentration control parameters since in our model for-
mulation they determine the environment of the unexposed ecosystem. For
the exposed system the toxicant inflow concentration is also a control para-
meter. We can use these control parameters as bifurcation parameters and
this implies that the biological and toxicological components of the ecosystem
are unchanged while only environmental components are altered.

We present analysis results for the case where the growth of the producer
is affected by a herbicide. Measured parameter values from [37, 4] are used for
the parameterization of the toxicant-effect module. The ecological parameter
values are obtained from [45, 8, 10, 7, 9].

Analysis results are presented in diagrams which can not be further sum-
marized into a generally valid single risk characterization ratio value, such
as pec/pnec. Instead, for an ecosystem No Effect Regions (ners) are pre-
dicted. At these levels of toxicant loading, the abundances of all populations
are the same as in the control case. We will also calculate the boundary of
the Resistance Regions (rrs). In these regimes toxic exposure levels do not
lead to a change in the composition or dynamic behaviour of the ecosystem
and therefore its structure, but population abundances and internal toxicant
concentrations may change quantitatively.

6.2 Formulation of the ecological model

The amount of overlying water, VW , in the river stretch/system and the
amount of sediment, VS , are assumed to be constant. The densities of the
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Figure 6.1: The positions of the biota in the generic aquatic ecosystem. The envi-

ronmental parameters are the dilution rate D and the density of the nutrient in the

incoming water Nr. Solid arrows denote trophic interactions between organisms and

their respective food-source(s) and consequent ingestion (I), faeces (f), death (h) or

sinking (v). Dashed lines denote the conversion of biomass into smaller compounds

as a result of maintenance processes (m). Bacterial degradation fluxes are annotated

by (d). For the explanation of the state variables, see Tables 6.1 and 6.2.

nutrient and pelagic biota are expressed in units of mass per volume of the
overlying water and the density of the biota in the sediment is expressed in
units of mass per volume of sediment. It is advantageous to introduce as a
measure for the sediment mass S = VS/VW . The dilution rate D is defined as
the amount of water flowing through the system per unit of time divided by
the volume overlying water VW .

In Fig. 6.1 the composition of the aquatic ecosystem is shown. The state
variables of the system are listed in Table 6.1. The ecosystem consists of the
water body, sediment bulk and the nutrient with density, N(t), primary pro-
ducer population with biomass density denoted by R(t), the benthic consumer
with biomass density denoted by B(t), the pelagic consumer with biomass
density denoted by P (t), the predator with biomass density, F (t) and three
variants of detritus with densities denoted by DL(t) (labile), DR(t) (refrac-
tory) and DS(t) (sediment) which is as degradable as DR. The pelagic system
is a subset of the aquatic system without the benthic consumer B(t). The
benthic system is a subset of the aquatic system without the pelagic consumer
P (t). All abiotic and biotic densities are expressed, using S, with respect to
the volume of the water body. This is possible since both the volume of the
water body and the sediment body are kept constant.
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Table 6.1: State variables for the ecological model: l length of environment [dm] (l3

is dimension of the volume of the overlying water in the system), m mass of organism

[mgdw] or mass of nutrient (inorganic nitrogen) density [mg N] and t time [d].

Variable Description Dimension Unit

N Nutrient mass density m l−3 kg N/L
R Producer biomass density m l−3 kgdw/L
B Benthic consumer biomass density m l−3 kgdw/dm3

P Consumer biomass density m l−3 kgdw/L
F Predator biomass density m l−3 kgdw/L
DL Labile detritus biomass density m l−3 kgdw/L
DR Refractory detritus biomass density m l−3 kgdw/L
DS Detritus biomass density in sediment m l−3 kgdw/dm3

S sediment-water volume ratio l−3 l−3 dm3/L

Table 6.2: List of ecological parameters for the ecological model p ∈ {R,B, P} and

q ∈ {R,B, P, F,DS}: l length of environment [dm] (l3 is dimension of the volume of

the overlying water in the system), m mass of organism in the water [mgdw] or mass

of nutrient density [mg N] and t time [d].

Parameter Description Dimension Unit

D Dilution rate t−1 d−1

Nr Nutrient mass density m l−3 kg N/L
αR Labile detritus decay rate t−1 d−1

αL Refractory detritus decay rate t−1 d−1

vs Sedimentation rate t−1 d−1

µpq max. growth rate t−1 d−1

Ipq max. ingestion rate t−1 d−1

kNR saturation constant m l−3 kg N/L
kpq saturation constant m l−3 kgdw/L
kBq saturation constant m l−3 kgdw/dm3

mq maintenance rate coefficient t−1 d−1

hq hazard rate t−1 d−1
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We assume that the growth rate of the primary producer is limited by the
nutrient and is not light-limited. The functional responses, being the intake
rate of a consumer as a function of the food density, that model the predator-
prey trophic interactions for each population read:

fNR =
N

kNR + N
, fRP =

R

kRP + R
,

fRB =
R/kRB

1 + R/kRB + SDS/kDSB
, fDSB =

SDS/kDSB

1 + R/kRB + SDS/kDSB
,

fPF =
P/kPF

1 + SB/kBF + P/kPF
, fBF =

SB/kBF

1 + SB/kBF + P/kPF
. (6.1)

When a population consumes a single other population, for instance the con-
sumer population P feeds on the producer population R the Holling type II
functional response is used to model the trophic interaction where kpq is the
saturation constant, p, q ∈ {R, B, P, F}. The predator F feeds on the pelagic
consumer P , part of the pelagic subsystem, and also on the benthic consumer
B, part of the benthic subsystem. These food sources are both non-essential
and this trophic interaction is modelled as substitutable food sources (see [42]).
In a similar way the benthic consumers B consume the sediment detritus DS

and the producer population R in the overlying water. Note that in these
cases the factor S converts all benthic densities into densities based on the
volume of the overlying water.

The mass-balance equations for the aquatic ecosystem read:

dN

dt
= D(Nr − N) + ρNO(−INRfNRR + αLDL + αRDR + SαRDS) (6.2a)

dR

dt
= R(µNRfNR − mR − hR − D − vs) − SIRBfRBB − IRP fRP P (6.2b)

dB

dt
= B

(

µDSBfDSB + µRBfRB − mB − hB

)

− S−1IBF fBF F (6.2c)

dP

dt
= P (µRP fRP − mP − hP − D) − IPF fPF F (6.2d)

dF

dt
= F

(

µBF fBF + µPF fPF − mF − hF

)

(6.2e)

dDL

dt
= mRR + mP P + mF F + SmBB − DDL − αLDL (6.2f)

dDR

dt
= hRR + hP P + hF F − DR(D + αR + vs) (6.2g)

dDS

dt
= (hB − µDSBfDSB + (IRB − µRB)fRB)B − αRDS

+ S−1
(

(INR − µNR)fNRR + (IRP − µRP )fRP P

+ ((IPF − µPF )fPF + (IBF − µBF )fBF )F + vsDR + vsR
)

(6.2h)
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The left-hand side of each equation is the temporal change of the biomass
density of the nutrient N , populations R, B, P, F and the detritus pools DR,
DL and DS . The first term on the right-hand side of Eqn. (6.2a) models the
in-flowing (NrD) and out-flowing nutrient (ND) into and from the system.
The second term is the ingestion rate of the producer population R. The
latter three terms are due to recycling of the labile and refractory detritus.
The detrivores involved with the nutrient mineralisation are not modelled
explicitly but are assumed to be abundant. Therefore the mineralisation rates
are linear in the densities of the two detritus pools DR and DL in the overlying
water and one DS in the sediment.

For the populations p ∈ {R, B, P, F} the terms on the right-hand side
are those for growth, maintenance with rate mpp and natural mortality hpp
and finally, except for the predator, the consumption rate. The term Dp,
p ∈ {R, B, P} models removal from the system by the outflow. Observe that
the fish population is territorial and stays in the system.

The right-hand side of the equations describing the detritus pools DR, DL,
model the input of the excreted maintenance products and dead material, re-
spectively, from the pelagic populations. Those terms for the sediment detritus
pool DS model input of assimilation products of all populations together with
sinking material.

The producer population R sinks to the bottom of the water body into
the sediment with rate vs. The equations for the detritus pools model their
formation by the assimilation, maintenance and mortality processes. For the
sediment detritus we assume that the refractory detritus in the overlying water
sinks to the bottom of the water body and settles on the sediment with rate
vs, similar to the producer population.

We assume that all parameter values are known in the reference state of
the ecosystem which represents the unexposed (control) situation. Later some
of these parameters will depend on the internal concentration when the system
becomes exposed by a toxicant.

6.3 Analysis of the unexposed aquatic system

This section presents the model predictions for the unexposed aquatic ecosys-
tem (see Fig. 6.1). In Table 6.3 the reference values of the ecosystem para-
meters are given. These values are based on [43, 8, 10]. In these articles the
trophic interactions are modelled by the preferences matrix formulations given
in [41] while here they are modelled using the formulations with a mechanis-
tic underpinning given in [42]. Therefore the half-saturation constants from
[8, 10] are multiplied by a factor two. This is because with the derivation of
the preferences model the values of the half-saturation constants for prey can
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differ and are only equal in the restricting equilibrium situations [41]. Follow-
ing [8, 10] the preference of the predator for each prey population, the pelagic
and benthic consumers, equals 0.5. To ensure co-existence of the pelagic and
benthic consumer the fish (F ) has a lower consumption rate and growth rate
on P (0.6) than on B (0.85). Values are after [8, 10].

The results are presented in so-called bifurcation or operating diagrams,
that show how the long-term dynamics of the systems depend on changes in
one or two parameters. The parameter space shown in these diagrams is di-
vided in regions (and also regimes of the parameters) where the ecosystem pos-
sesses a specific long-term temporal behaviour, for instance: stable/unstable
equilibrium, stable/unstable limit cycles or chaotic behaviour. Boundaries
between these regions indicate changed ecosystem functionality but also the
species composition can be changed. The boundaries of the regions are formed
by bifurcation curves. Most parameter value combinations can have multiple
solutions for the ecosystem’s species composition, unless stated otherwise, we
assume that if invasion can occur that it will occur.

In this paper we show the effects of a toxicant mainly on the ecosystem in
equilibrium. The equilibrium values of the state variables are calculated by
solving the set of non-linear equations formed by the right-hand side of the
system (6.2) equal to zero. The stability of this equilibrium is found by calcu-
lating the eigenvalues of the Jacobian matrix evaluated at that point. These
eigenvalues are often complex numbers. When all eigenvalues have negative
real parts the equilibrium is stable, otherwise it is unstable. Different types of
combinations of the complex eigenvalues signify different system behaviour.

A zero real part of the eigenvalues fixes the location of the bifurcation
curves when more than one parameter is varied in a continuation process.
Similar but more complex procedures are available to calculate bifurcation
points of limit cycles. These curves are calculated using free available computer
packages such as auto [16] and matcont [14] running under Matlab [39].

The most important bifurcations are listed in Table 6.4 and are not further
explained here. The interested reader is referred to [28, 30] and Chapter 5 for
a mathematical description and the ecological significance of these curves.

6.3.1 Results for the unexposed aquatic system

Figure 6.2 shows for an oligotrophic aquatic system the stationary nutrient and
biomass values as a function of the nutrient density in the inflow Nr where the
dilution rate equals D = 0.02. With enrichment, i.e. increasing Nr, first the
producer invades above TC1 giving a stable R-system. For a small range of
Nr between T2,b and TC2,b, the presence or absence of the benthic consumer
depends on the initial conditions of the system.

At the Hopf bifurcation H−
2,b this RB-system starts to oscillate. For en-
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Table 6.3: Reference parameter set for the generic ecosystem model after [8, 10, 43].

Other parameter values are: αR = 0.1 d−1, αL = 0.01 d−1, vs = 0.015 d−1.

Par. Dimension Values

p = N R DS R B P
q = R B B P F F

µpq t−1 3.705 1.03 1.03 1.03 0.85 0.6
Ipq t−1 3.8 1.8 1.8 1.8 1.3 1.3
kpq m l−3 0.05 1.0 1.0 1.0 2 × 5.0 2 × 5.0
mq t−1 0.02 0.035 0.035 0.035 0.053 0.053
hq t−1 0.06 0.04 0.04 0.04 0.0001 0.0001

Table 6.4: List of bifurcations, codim-one curves and codim-two points (for two-
parameter bifurcation diagrams). i = 0: N-system with no population present, i = 1:
R-system: producer, i = 2, b: RB-system: producer and benthic consumer, i = 3, b:
RBF-system: producer, benthic and fish, i = 3, p: RPF-system: producer, pelagic
and fish, i = 4: RBPF-system: producer, benthic and pelagic consumer and fish
predator.

Symbol Description of bifurcation

TCi Transcritical bifurcation: invasion by prey or predator

H±
i Hopf bifurcation: − supercritical, + subcritical;

internal equilibrium of ecosystem becomes unstable, origin
of stable (supercritical) or unstable (subcritical) limit cycle

Ti Tangent bifurcation:
collision of an unstable and stable equilibrium or limit cycle

TR4 Torus bifurcation: only for RBPF-system;
boundary of complex dynamics

Ii ner-isocline: below this curve is the no-effect region
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richment above TC3,b the predator invades and the resulting RBF-system still
oscillates. When increasing Nr further, the RBF-system is stabilized and a
stable equilibrium exists.

Figure 6.3 gives the diagram also for higher enrichment levels, including
eutrophic conditions. The complete RBPF-system only exists in an interme-
diate range of Nr between the transcritical bifurcations TC4,b and TC4,p. At
lower nutrient loads the benthic RBF-system occurs (see Figure 6.2) while for
high nutrient the pelagic RPF-system exist. When the nutrient input is high
the pelagic system starts to oscillate above the Hopf bifurcation H−

3,p. This
effect is related to the paradox of enrichment [47, 46]. For higher Nr values the
oscillations become more and more severe and the system likely goes extinct
when the biomass density of one population becomes extremely low during
these heavy oscillations.

These results are taken as the reference states of the unexposed aquatic
ecosystem which are later compared with the results of the exposed system to
assess the effects of the toxicant on its functioning and structure.

6.4 Formulation of the ecotoxicological model

In this section we formulate the model for the exposure and fate of the toxicant
and the concentration-effect model.

6.4.1 Model for the fate of the toxicant

In the next section the transport, distribution and exposure of the toxicant
is modelled. A mass-balance formulation for the toxicant amounts in the
different abiotic (water and sediment) and biotic (populations) compartments
is used.

The toxicant concentration in the water is denoted by cW (t), sediment
cS(t), and the internal toxicant concentrations by respectively cR(t), cB(t),
cP (t) and cF (t). Toxicant concentrations in detritus are denoted by cDR

(t)
and cDS

(t) and because we assume that the amount of toxicant adsorbed to
DL is negligible we have cDL

= 0. In the final formulation cS(t) is normalized
to the sediments organic carbon denoted by cS,oc(t).

In [30] a mass-balance model formulation is given for the transport, distri-
bution and exposure of toxicant for the pelagic food chain. Here we derive the
equation for toxicant concentration cP (t) in the pelagic consumer P of which
the dynamics is described by Eqn. (6.2d). The equation for the total amount
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Figure 6.2: A one-parameter bifurcation diagram for the generic ecosystem at

low nutrient input levels (oligotrophic). The bifurcation points are described in

Table 6.4. There were cyclic behaviour (oscillations) occurs in the system each value

of Nr has for each species an associated minimum and a maximum biomass density.

See Figure 6.3 for biomass densities when Nr is higher than 0.05.



6.4. Formulation of the ecotoxicological model 141

Nr

N
R

B
P

F

H−
3,pTC4,b TC4,p

1.00.80.60.40.20

10.0
7.5
5.0
2.5

0

3

2

1

0

0.75

0.50

0.25

0

6

3

0

0.075

0.050

0.025

0

Figure 6.3: A one-parameter bifurcation diagram for the generic ecosystem in a

chemostat with dilution rate D = 0.02. The stationary biomass of the nutrient N ,

producer C, benthic consumer B, pelagic consumer P and predator F is depicted

as a function of the nutrient level Nr. Nr ranges from oligotrophic, via mesotrophic

to eutrophic. For high nutrient levels (NR > 0.87) the pelagic system oscillates

with extrema indicated. The bifurcation points are described in Table 6.4. Under

oligotrophic conditions the benthic subsystem, P = 0, oscillates, see Figure 6.2.
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of toxicant in the pelagic consumer cP P reads

dcP P

dt
=(kPucW − kPacP )P + cRIRP fRP P − cP IPF fPF F

− cP P ((IRP − µRP )fRP + mP + hP + D)

The left-hand side of each equation is the density (that is per volume of the
overlying water) of the toxicant absorbed in each population (that is all con-
stituent individuals). The first term on the right-hand side models the toxicant
exchange by passive diffusion from the water. The uptake rate is denoted by
kPu and the elimination rate by kPa. The cRIRP fRP P term models con-
sumption of contaminated prey and the cP IPF fPF F term the predation by
the predator population. These two terms described the transport of the
toxicant by trophic interactions between the populations. The latter term
models a number of excretion transport mechanisms for the whole popula-
tion in the system. These terms are similar to those well-known from the
classical bioaccumulation models that are formulated at the individual level.
Here the formulation is at the population level. We assume that the toxicant
is distributed evenly over the excreted products due to assimilation, mainte-
nance and mortality. The first negative term, cP P (IRP − µRP )fRP , models
the excretion of toxicant bound to products formed by the assimilation process
(faeces). For the sake of simplicity we assume that the toxicant assimilation
efficiencies are all 1. Excreted maintenance products loose their toxicant to
the water when leaving the organism. Dead pelagic biomass adds to Dr and
the toxicant within that biomass affect cDR

. Dead benthic biomass adds to
DS and the toxicant within that biomass affect cDS

. Other negative terms
are due to maintenance cP PmP and mortality cP PhP . The cP PD term is for
instance the amount of toxicant that is transported from the system by the
outflow (there is no inflow of organisms and therefore no inflow of toxicant
by this mechanism). Note that these exchange terms also occur in the mass
balance model for the population system (6.2).

Similar, but more complex, expressions for the dynamics of toxicant con-
centrations in the other biota and detritus compartments can be derived. Us-
ing the product-rule and Eqn. (6.2d) we obtain after some algebraic manipu-
lations

dcP

dt
= kPucW − kPacP + IRP fRP (cR − cP )

Figure 6.4 shows an overview of the modelled toxicant fluxes for each com-
partment. The state variables of the system are listed in Table 6.5. Below the
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equations are given:

dcR

dt
= kRucW − kRacR − INRfNRcR (6.3a)

dcB

dt
= kBucW − kBacB + IDSBfDSB(cDS

− cB) + IRBfRB(cR − cB) ,

(6.3b)

dcP

dt
= kPucW − kPacP + IRP fRP (cR − cP ) (6.3c)

dcF

dt
= kFucW − kFacF + IPF fPF (cP − cF ) + IBF fBF (cB − cF ) , (6.3d)

dcDR

dt
= kDRucW − kDRacDR

+ DR
−1

(

(cR − cDR
)hRR + (cP − cDR

)hP P + (cF − cDR
)hF F

)

,

(6.3e)

dcDS

dt
= kDSucW − kDSacDS

+ (DSS)−1(vs((cR − cDS
)R + (cDR

− cDS
)DR))+

DS
−1

(

(

(hB − (IRB − µRB)fRB − (IDSB − µDSB)fDSB

)

(cB − cDS
)B

+ S−1

(

(cR − cDS
)(INR − µNR)fNRR + (cP − cDS

)(IRP − µRP )fRP P

+ (cF − cDS
)(IPF − µPF )fPF F + (cF − cDS

)(IBF − µBF )fBF F

))

.

(6.3f)

The transport equations for the toxicant concentrations in the water cW

and the sediment cS read respectively for the water and sediment compart-
ments:

dcW

dt
= (cr − cW )D + (kRacR − kRucW )R + (kBacB − kBucW )SB

+ (kPacP − kPucW )P + (kFacF − kFucW )F

+ (kDRa
cDR

− kDRu
cW )DR + (kDSa

cDS
− kDSu

cW )SDS

+ αR(cDR
DR + ScDS

DS) + (kSacS − kSucW )S , (6.4a)

dcSS

dt
= (kSucW − kSacS)S . (6.4b)

The sediment S, biotic benthic organism B and sediment-detritus DS stay
in the system and therefore there is no transport of toxicant associated with
the flow into or from the system by these three substances, see Eqns. (6.3b),
(6.3f) and (6.4b).
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Table 6.5: State variables for the toxicological model: µ mass of toxicant [µg], l

length of environment [dm] (l3 is dimension of the volume of the overlying water in

the system), and t time [d]. The unit of the uptake rate kpu is L/( kgdw d) and of the

elimination rate kpa is 1/d where p ∈ {R,B, P, F,DR,DS} and kSu is L/( dm−3 d).

Variable Description Unit

cr Toxicant concentration in the inflow µg L−1

cW Toxicant concentration in the water µg L−1

cS Toxicant concentration in the sediment µg dm−3

cT Total toxicant concentration in the system µg L−1

cR Producer internal toxicant concentration µg kg−1

dw

cB Benthic consumer internal toxicant concentration µg kg−1

dw

cP Pelagic consumer internal toxicant concentration µg kg−1

dw

cF Predator internal toxicant concentration µg kg−1

dw

cDR
Refractory detritus internal toxicant concentration µg kg−1

dw

cDS
Sediment detritus internal toxicant concentration µg kg−1

dw

We define state variable cT as the total toxicant concentration in all com-
partments together, including biota, detritus, sediment and water. In order to
get this concentration one can multiply the concentration in each compartment
with its volume and sum the results.

cT = cW + ScS +
∑

p

cpp + S
∑

q

cqq . (6.5)

with p ∈ {R, P, DR} and q ∈ {B, DS}. The toxicant transport equation for
the total toxicant concentration reads

dcT

dt
= D

(

cr − cW − (cRR + cP P + cDR
DR)

)

, (6.6)

where we use the fact that the toxicant enters the system via the inflow and
leaves the system dissolved in the water and also absorbed by the pelagic
populations and adsorbed to the refractory detritus.

In Appendix A we reduce the model complexity by assuming that bio-
logical and toxicological processes run at time scales which differ in orders
of magnitude. For all populations the aqueous toxicant exchange route from
the water or pore water, as well as the exchange between water and sediment
compartments is faster than the ecological and physiological processes, such
as assimilation, maintenance and excretion. It is the behaviour of this model
with reduced complexity which we will analyse.
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Figure 6.4: Toxicant fluxes from water to biota, to sediment and abiotic compart-

ments. Black arrows denote toxicant fluxes related to processing of biomass such as

predation, assimilation and degradation. Grey arrows denote toxicant fluxes asso-

ciated with surface transport, gills/membrane uptake and passive diffusion. Labile

detritus is assumed to have adsorbed negligible amounts of the toxicant. For the

explanation of the labels see Tables 6.5 and 6.6.

6.4.2 Simplified bioaccumulation model

As in [25, 21, 30, 29] we assume here that the uptake and elimination rates are
much faster than other physiological population rates. That is, the toxicant
uptake from water (aqueous exposure) dominates that from toxic food (dietary
exposure). For the lowest trophic levels this assumption is reasonable, but not
always for higher trophic levels where the internal concentration can vary in
time. The bioconcentration factors for all pelagic and benthic populations
with p ∈ {R, B, P, F} are defined as follows

bcfWp =
cp

cW
, (6.7a)

Similarly we have the partitioning coefficients for the detritus pools

Kq =
cq

cW
, (6.7b)

where q ∈ {DR, DS}.
We derive in Appendix A an expression for the total toxicant concentration

cT absorbed in the populations and adsorbed by the detritus pools given by
Eqn. (6.5).

dcT

dt
= D

(

cr − cW (1 + bcfRR + bcfP P + KDR
DR)

)

. (6.8)
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This equation together with the ecological model Eqns. (6.2) whereby INR(cR)
and µNR(cR) are given by Eqn. (6.10), forms the set of odes that describes
the dynamics of the exposed ecosystem. In the next section we analyse its
long-term dynamics.

6.4.3 The effect module

Direct adverse toxic effects generally reduce population abundances by in-
creasing mortality, increasing costs for growth or maintenance and decreasing
assimilation efficiency. In the process-based debtox approach the populations
are affected by a parameter alteration depending on the internal toxicant con-
centration: the concentration-effect relationship. In principle all physiological
processes can be affected: assimilation, maintenance, mortality, growth, re-
production and in ecosystems the processes affected may differ for each pop-
ulation.

In previous papers [30, 29] the maintenance rate and the hazard rate de-
pended on the toxicant concentrations for the producer cR, benthic consumers
cB, pelagic consumer cP and predator cF , their dependencies are given by

mp(cp) = mp(0)

(

1 +
max(0, cp − cpM0)

cpM

)

,

hp(cp) = hp(0)

(

1 +
max(0, cp − cpH0)

cpH

)

, p ∈ {R, B, P, F} .

As in [4] we will give the results for the case where the toxicant affects
only the maximum growth rate of the producer R, µNR(cR):

µNR(cR) = µNR(0)

(

1 +
max(0, cR − cRG0)

cRG

)−1

. (6.10)

The toxicant (Prometryn) is a herbicide and therefore we assume that
for the producer the ingestion rate of nutrients and its growth rate are af-
fected such that the yield or assimilation efficiency remains unaffected. This
means that in system (6.2) and (6.3) the maximum ingestion rate INR and
the maximum growth rate µNR are not constant, but depend on the inter-
nal toxicant concentration cR: µNR = µNR(cR). The relationship INR(cR) =
µNR(cR)/yNR still holds true with the yield yNR being constant.

The nec parameter cRG0 is the threshold concentration value. Below this
internal concentration threshold the parameter value equals the control value
and there is no effect. Above the threshold value the change in the affected
parameter value is proportional to the surplus internal toxicant concentration.
Similar expressions hold for other possibly affected physiological process rates,
depending on the mode of action.
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6.5 Analysis of the exposed generic aquatic system

Above we showed how the species diversity and each species biomass depend on
Nr for the unexposed system. In this section we give the model predictions for
the same aquatic ecosystem exposed to a herbicide. The simulated herbicide
only affects the growth of the producer (algae). The toxicological parameters
and values are given in Table 6.6. Now, in addition the bifurcation parameter
Nr, also the toxicant influx concentration (cr) is varied. The effect of the
simultaneous continuation of Nr and cr on the structure and composition of
the system can now be studied. For cr = 0 the results are the same as for
the control case. We assume that all organisms have fast toxicant uptake
and elimination rates. The results will be presented in bifurcation diagrams
for subsystems with increasing complexity starting with the producer-nutrient
system (R-system).

The complete exposed system is described by Eqns. (6.2,6.8) where the
maximum ingestion rate INR(cR) and the maximum growth rate µNR(cR) are
given by Eqn (6.10). Due to the switch in the concentration-effect relationship,
the parameter µNR(cR) in its right-hand side, system 6.2 becomes a so-called
piecewise-smooth continuous system, i.e. a set of differential equations with
a piecewise-smooth continuous right-hand side [36]. The critical point where
this switch occurs when a parameter is varied is called a discontinuity point.
In [30, 29] a technique is proposed to calculate these points and curves when
two parameters are varied simultaneously. In general, at discontinuity curves
such as the nec-isocline curves (denoted by I), the eigenvalues of the Jacobian
matrix evaluated at an equilibrium, are discontinuous. When crossing a dis-
continuity point, the leading eigenvalue can stay in the same half-plane of the
complex plane, can pass the imaginary axis leading to a classical bifurcation
or it can also jump from one side to the other side of the imaginary axis. In
the latter case “new” phenomena can occur (see also [30, 29]).

In the next section we show this for the producer-nutrient system (R-
system) in the water/sediment chemostat which forms the base of the aquatic
ecosystem.

6.5.1 Analysis of the exposed R-system

The producer R grows on the nutrient N and forms labile detritus DL (being
instantaneously converted into nutrients) and refractory detritus DR. Pro-
ducer R and DR sink to the bottom forming sediment detritus DS (also being
instantaneously converted into nutrients). The water transports N , R, DL and
DR with the dilution rate D out of the system. In addition to nutrients with
density Nr a toxicant with herbicidal properties enters this system, with con-
centration cr in the inflow at dilution rate D. The toxicant will distribute itself
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over the producer biomass, causing adverse effects on the producer’s growth,
carbon containing pools, i.e. detritus, and organic carbon in the sediment
matrix. The producer species and these pools together form the R-system.

A two-parameter diagram is shown in Fig. 6.5 where both cr and Nr are
varied. For nutrient input below the transcritical bifurcation TC1 value these
levels are too low to support the existence of the producer. Above the TC1

value and below the nec-isocline I1 the producer is unaffected in the no-effect
region (ner). Above this curve I1 and below the tangent bifurcation curve T1

is the resistance region (rr) where the equilibrium biomasses are affected but
the producer still exists. This tangent bifurcation curve T1 originates at the
indicated so-called codim-two point. Above the curve T1 the producer goes
extinct due the the adverse effects of the toxicants.

In Figure 6.6 the equilibrium values for R and cW as function of cr are
depicted for two different nutrient input conditions panel A: Nr = 0.0017 and
panel B: Nr = 0.002. So, Figure 6.6A applies for Nr values below this point
and Figure 6.6B above a so-called codim-two point in Fig. 6.5.

In Figure 6.6A, increasing cr starting in the unstressed situation, the toxi-
cant concentration in the water cW and consequently also the internal toxicant
concentration in the producer cR increases but is still below the nec, cRG0 and
therefore the equilibrium biomass of R remains unchanged. When cR = cRG0

holds at the point I2,b in Figure 6.6A, the R-system collapses and the extinc-
tion equilibrium becomes globally stable. Point I2,b is a discontinuity point.
Crossing this point the leading eigenvalue jumps from a negative value to a pos-
itive value. At that point the continuation analysis continues with decreasing
cr to locate the unstable equilibrium. This unstable branch terminates with
decreasing cr at a subcritical transcritical bifurcation TC1 where an exchange
of stability occurs between an unstable positive equilibrium (R > 0) and an
stable producer extinction equilibrium (R = 0).

In the region of interest with R > 0 the water concentration cW increases
almost linearly with the inflow concentration cr but is remarkably lower. This
fact is related to the rather large bcf value. Much of the toxicant is in the
biomasses and sediment and this reduces the water concentration.

In Figure 6.6B for Nr = 0.002 with increasing cr when cR = cRG0 at the
point I2,b the equilibrium R value decreases due to the adverse effects of the
toxicant. Increasing cr further a tangent bifurcation denoted by T1 is reached
where the equilibrium becomes unstable. For a higher cr value the extinction
equilibrium is globally stable. The unstable branch terminates again at a
subcritical transcritical bifurcation TC1.

This bifurcation pattern is characteristic for a hysteresis-loop. After the
R-system is exposed to increasingly higher toxicant inflow values of cr the
system crashes catastrophically at I1 or T1. By lowering cr, the producer R
can only invade again when the subcritical branching point TC1 is crossed. In
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Figure 6.5: Two-parameter bifurcation diagram for the R-system, with nutrient

inflow Nr and toxicant inflow concentration cr as bifurcation parameters with dilution

rate D = 0.02. The dot at the intersection of T1 and I1 is the codim-two point

mentioned in Fig. 6.6. See Table 6.4 for a description of the bifurcation curves and

Tables 6.3 and 6.6 for the parameter values.

this system bi-stability occurs between these critical points where the stable
manifold of the unstable equilibrium acts as a separatrix for the two basins of
attraction.
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6.5.2 Results for the exposed aquatic system

In this section we present the results for the exposed complete aquatic system.
The bifurcation analysis is described in Appendix B where the technical details
are given.

Fig. 6.7 is a compilation of the analysis results for the RBF, RPF and
RBPF-systems, in this figure the regions with the same long-term dynamics
are indicated. In each ner-region (darkest grey) the internal toxicant concen-
tration of the producer population R is below the nec, that is cR < cRG0.
The upper boundary of each ner-region increases with increasing nutrient
input concentration Nr. Thus at higher nutrient levels the system can with-
stand more toxicant influx cr without being affected. The boundaries of each
rr are affected in a similar manner. For the RPF-system the upper bound-
ary is formed by the Hopf bifurcation H3,p curve. For nutrient-levels below
TC4,b the pelagic consumer goes extinct (the RBF-system) while above TC4,p

the benthic consumer goes extinct (the RPF-system). The Hopf bifurcation
H3,p curve marks where with nutrient enrichment the RPF-system starts to
oscillate. The top of the grey rr for the RPF-system is formed by a Hopf
bifurcation curve H3,p which also forms the righter boundary. Notice that
there is for the RPF-system another TC3,p bifurcation curve. The rr where
a positive equilibrium exists (left-light grey region for the RBF-system, grey
region for the RBPF-system and right-light grey region for the RPF-system)
also increases in size with nutrient enrichment.

The one parameter diagram Fig. 6.8 has a variable toxicant inflow density
cr and a fixed Nr = 0.3. The biomasses remain stable up to a rather large
toxicant input loading where the equilibrium becomes unstable at a Hopf bi-
furcation point H−

4 . Between this curve and the tangent bifurcation curve for
limit cycles T4 the system oscillates. At the curve T4 the system collapses
when cr is increased beyond this point.

The lowest panel in Fig. 6.8A shows that the equilibrium nutrient den-
sity N increases with increased toxicant inflow concentration. The producer
biomass R and also that of the other biota, remain fairly constant up-to the
Hopf bifurcation point H−

4 . From Fig. 6.8B we conclude that the toxicant
concentration in the water cW also increases with increased toxicant inflow
concentration, just as the nutrient density N . We recall that the toxicant
reduces the producer ingestion and growth rate given by Eqn. (6.10) with
cR = bcfWRcW given by Eqn. (6.16). So, apparently, the increased nutrient
density compensates the reduced maximum ingestion rate. This phenomenon
occurs until the system crashes around cr = 600.
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6.6 Discussion

Models taking indirect effects into account are described in the literature
[27, 18, 45] and references therein. An implementation of the model described
in [45] is available in a computer package aquatox [44]. The aquatox model
is basically a mechanistic model but for the parametrisation many descriptive
models are used with calibrated parameters based on literature data and (lab-
oratory and field) experiments. In [44] the trophic interactions are modelled
after the static approach developed in [41]. In this paper the model formula-
tions for the trophic interactions are based on a dynamic approach and have
a mechanistic underpinning given in [42, 32].
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The dynamics of the pelagic and the benthic community are directly cou-
pled with the fate and transport dynamics of the toxicant. The resulting
model is, however, parameter rich. Therefore reduction techniques are used
to derive a simplified model formulation. The resulting parameters are the
same as those described in the literature where generally the ecosystem is as-
sumed to be in equilibrium (see for instance [38, 15, 35, 50, 21, 5, 49]). In
the reduced model the bioconcentration factors bcf, baf, bsaf can easily be
used as literature values can be found from standard toxicity bioassay studies.
Because the ecosystem equilibrium assumption is not explicitly made for the
ecological model and a time-scale separation argument is applied, the dynamic
behaviour of the ecosystem is retained and therefore indirect effects can still
be studied.

Assuming a time scale separation argument, the expressions for the biocon-
centration factors that link the internal concentrations to the environmental
toxicant concentration in the water and the sediment, are derived from our
modelling approach. In this way the classical models become special cases
of the generic model formulation. This time scale separation argument holds
when the uptake of the toxicant by the water and sediment are much faster
than the food intake rates and ecological physiological processes such as assi-
milation rate and maintenance rate. This is often true for highly hydrophobic
toxicants. As a result the toxicant aqueous uptake route becomes dominant.

In the DEBtox concentration-effect relationship, the rates of the affected
physiological population processes depend on the internal toxicant concentra-
tion: here the maximum ingestion and maximum growth rate of the producer.
Which parameters are affected by the toxicant depends on the mode of action
of the toxicant for the particular species. The parameters in the concentration-
effect model: the no-effect concentration (nec) and the tolerance concentra-
tion (tc), are unfortunately not measured in standard toxicity testing. These
two parameters are specific for the DEBtox approach and therefore they have
still to be estimated for instance using test-procedures developed in [37, 4].
Although toxic effects are studied using the DEBtox effect module, the in-
tegrated approach and the analysis technique based on non-linear dynamical
theory can also be used when other effect modules are implemented.

When the uptake route from the water (aqueous exposure) for the pelagic
and the pore water for the benthic organism dominates the food uptake route
(dietary exposure), the effects caused by the interaction of the biological and
toxicological processes can still be studied simultaneous in our approach. This
is a direct consequence of the fact that the ecological model remains essentially
unchanged, as well as the effect module. The calculation of the distribution of
the toxicant over the various compartments is simplified, yielding fixed parti-
tioning factors such as the bcfs and water-sediment partition coefficient (K).
The time dependence of the toxicant concentration in the water and sediment
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compartments is then described by the transport equations Eqn. (6.4) together
with Eqn. (6.6). This couples the dynamics of the populations to their internal
toxicant concentrations using the constant bioconcentration factors.

Alternatively a model reduction is obtained when only the uptake rate is
large and the elimination rate is of the same order as the physiological popula-
tion rates. Then the dietary exposure route and the excretion routes matter.
In this case the equilibrium values for the biomasses {R, B, P, F}, the solution
of the equilibrium equations (6.2) are substituted into system (6.3). When
the equilibrium condition for this system (6.14) is met this leads to alterna-
tive definitions of bcf, baf and bsaf [30]. These expressions are similar to
those in [6, 21, 51] where they were formulated at the individual level but here
they are formulated on the level of the population. We do not elaborate on
this specific model reduction approach, since the assumption of equilibrium
biomasses in system (6.3) and non-equilibrium ecological model system (6.2)
is inconsistent when these systems operate at the same time scale.

From the results presented in Figs. 6.5, 6.9 and 6.10 the interaction of
the toxicant loading and nutrient enrichment is very important. Co-existence
of the pelagic and benthic communities in the intermediate nutrient input can
be classified as a predator mediated co-existence where the fish population is
the predator.

Generally the no-effect region increases with nutrient enrichment. More
available nutrients support more biomass in the system. More biomass means
more mass over which the toxicant can partition, leading to overall lower
internal concentrations for all species and thus making the whole system less
vulnerable to the adverse effects of the toxicant.

Fig. 6.10 shows that in addition to a rather large no-effect region that on
top of that the resistance region can also be larger. There is almost no effect up
to high toxicant load at which point the system collapses. That phenomenon is
discussed in [48]. In the case of the tangent bifurcation there are early-warning
signals, as exemplified with Fig. 6.8 which is a cross-section of Fig. 6.10 at
Nr = 0.3. However, when making a cross-section at Nr = 0.2 in Fig. 6.10 just
below point Mb the system collapses at a subcritical Hopf bifurcation instead
of a tangent bifurcation with warning signals. When the Hopf bifurcation is
approached, the equilibrium values to not change dramatically only the return
time to the equilibrium (often related to resilience) goes to zero. Passing
the Hopf bifurcation means that suddenly the equilibrium becomes unstable
leading to the collapse, this is is shown in Fig. 6.6.

For lower nutrient levels for the R-system the producer population goes
extinct without any warning signals when the internal toxicant concentration
exceeds the no-effect concentration, see Figure 6.6A.

In the process based approach it is crucial to have a “validated” model for
the ecosystem in the “reference state”. One issue is the choice of an adequate
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mathematical formulation. Here we use ordinary differential equations, odes,
but sometimes better alternatives are partial differential equations pde (see
for instance [11]). The choice of the model formulation is directly related
to the life-history of the species. Ordinary differential equations are most
appropriate for species that possess a simple life-cycle such as microorganisms
that propagate by binary fission, e.g. algae and ciliates. For species with
multiple life-stages (egg, larvae, juvenile, adult) the use of partial or delay
differential equations may be more appropriate.

6.7 Conclusions

We started with the process based approach where ecological and toxicological
processes are modelled together. The resulting model, although already quite
simplistic, requires knowledge about a lot of parameters of which many are
not directly related to toxicity. Thereafter we derived expressions for the
bioconcentration factors assuming time-scale arguments or dominance of one
specific uptake route for the toxicant. This reduces the number of model
parameters drastically.

Our approach is holistic in the sense that models for the ecosystem and
the fate of the toxicant are fully integrated. This makes the evaluation of po-
tential risks of long-term sublethal toxic stress on ecosystems functioning and
structure possible. The expressions for the classical bioconcentration factors in
the bioaccumulation models have been derived from our process-based ecosys-
tem model using the time-scale separation techniques yielding toxicological
equilibrium partitioning. However, no equilibrium assumption regarding the
ecosystem was made and this allows for the study of direct as well as indirect
effects of toxicological, ecological and environmental stresses simultaneously.
Due to indirect effects toxic stress effects can be amplified or diminished.

Although we took the step from individual to population level model for-
mulation as simple as possible, the integrated bioaccumulation model formu-
lation showed emergence properties. As an example we mention “dilution by
growth”. Individuals grow when there is a sufficient amount of food to support
the existence of the population (as part of the ecosystem). However, at the
population level the population biomass is constant when the ecosystem is in
equilibrium, even when the individuals are born, grow and die.

The results indicate that the dynamic behaviour of the aquatic ecosystem is
already complicated, due to the nonlinear interaction between the populations
and between the populations and their environment. As a consequence, no
single index can be given that would be equivalent with some kind of risk index.
The effect depends very much on the abiotic environmental conditions fixed
by the toxic exposure, but also the nutrient availability and the throughput



158 Chapter 6

rate of the water. Here we analysed the effects of the toxic stress solely for the
producer (algae) by a herbicide but the same approach can be used for other
modes of stressing.

Bifurcation analysis deals with the dependency of the long-term dynamic
behaviour of dynamics systems on parameters. Therefore this technique can be
used for the assessment of toxic-effects related to a sensitivity analysis whereby
parameters related to the exposure of the toxicant are altered focusing on the
long-term sublethal effects. When the exposure concentration of the toxicant
is taken as a continuation parameter, these plots show directly at which toxic
level the structure, and hence the biodiversity, of the ecosystem changes.

The bifurcation analysis performed in this paper and the results obtained
show the power of this technique for the study of long-term sublethal effects
to ecotoxicologist. Short-term lethal effects can be analysed by simulation as
is done for instance in [45].

One notable result is that, up to a high toxicant load, the equilibrium
biomasses of all biota remain close to that of the control case but the ambient
nutrient density increases with increasing toxicant load. Above this toxic stress
the system collapses catastrophically. This shows that indirect population-
dynamic phenomena can diminish toxicological effects.

In [17] it is stated that there is a general agreement on the need to extend
toxicological assessments from the individual level of biological organization
to higher levels (populations, communities and ecosystems), but no agreement
on how to accomplish this task. Here we showed that for sublethal long-term
effects the combination of process-based modelling and bifurcation analysis is
a next step to the assessment of long-term toxic effects on aquatic ecosystems.
The quality of the ecological reference model is crucial. It is well-known that
the validation of ecosystem models for field predictions is problematic because
of many uncertainties. Nevertheless this approach gives the relative effects of
toxic and other environmental stresses simultaneously and reveals the mecha-
nisms that cause indirect effects observed in the laboratory [37] and predicted
for the field. Hence, nutrient enrichment allows for longer food chains and
gives more resistance of the ecosystem against toxic exposure.
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6.8 Appendix A

Model reduction approaches

In this Appendix we derive the classical bioaccumulation models. The starting
point is the dynamic model for the whole stressed ecosystem consisting of the
ecological community including the nutrients and the toxicant.

Assuming equilibrium of all odes of the set of governing equations Eqns.
(6.2), (6.3) and (6.4) leads to a large system of nonlinear equations and no
simplification nor reduction of the system is obtained. Therefore additional
assumptions are necessary. Compound parameters associated with these as-
sumptions are given in Table 6.6. In this Appendix a time-scale separation
technique is applied to obtain a reduced model. This approach is similar to
the classical equilibrium partitioning approach.

We assume that the toxicant concentration in the pore water equals the
concentration in the overlying water cW . The toxicant concentration in the
sediment organic carbon will be used as the reference toxicant concentration
for the sediment compartment (see also [15]). The sediment toxicant concen-
tration cS,oc is expressed as mass toxicant per mass of organic carbon in the
sediment bulk whereby

cS = ρSfoccS,oc .

The organic carbon is assumed to be well mixed with the sediment matrix and
does not increase or decrease in quantity and is not affected by organisms. We
take sediment organic carbon to be only in contact with pore water which is
instantaneously in equilibrium with the surface water.

We introduce for the diffusion transfer rates in Eqns. (6.4a) and (6.4b):

kW,oc = kSu ,

Koc =
kSu

ρSfockSa
,

Then Eqn. (6.4b) reads

dcS,oc

dt
=

kW,oc

ρSfoc
(cW −

cS,oc

Koc
) . (6.11a)
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Eqn. (6.4a) becomes

dcW

dt
= (cr − cW )D + (kRacR − kRucW )R + (kBacB − kBucW )SB

+ (kFacF − kFucW )F + (kPacP − kPucW )P

+ (kDRacDR
− kDRucW )DR + (kDSacDS

− kDSucW )SDS

+
kW,oc

VW
(
cS,oc

Koc
− cW ) (6.12a)

dcS,oc

dt
=

kW,oc

ρSfoc
(cW −

cS,oc

Koc
) (6.12b)

In our model the sediment detritus DS is formed due to settling of both re-
fractory detritus and algae from the overlying water and from faeces from the
biota. We assume that this settled material only affects the top layer of the
sediment and can be modelled as a separate chemical absorbing compartment
in parallel to the organic carbon. The sediment detritus is organic material
which is still degradable. In this model formulation, the sediment detritus
does not increase or decrease the organic carbon density in the sediment bulk,
these two absorbing compartments do not mix but interact indirectly via the
surface water.

We assume that biological and toxicological processes run at time scales
which differ in orders of magnitude. For all populations the toxicant exchange
route from the water for the aquatic organisms, and from pore water for the
benthic organisms, as well as the exchange between water and sediment com-
partments is faster than the ecological and physiological processes, such as
assimilation, maintenance and excretion.

Then Eqns. (6.3e) and (6.3f) become

dcDR

dt
= kDRucW − kDRacDR

dcDS

dt
= kDSucW − kDSacDS

,

and for the populations Eqns. (6.3a,6.3b, 6.3c,6.3d) into:

dcR

dt
= kRucW − kRacR (6.14a)

dcB

dt
= kBucW − kBacB (6.14b)

dcP

dt
= kPucW − kPacP (6.14c)

dcF

dt
= kFucW − kFacF (6.14d)
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Equation (6.14b) shows that the dominant toxicant uptake route from the
water for the benthic organisms living in the sediment is in agreement with
the equilibrium partitioning principle [15].

A further reduction can be obtained when the dynamics of the toxicant
is assumed to be in equilibrium, as is generally done in the classical bioac-
cumulation models. As in the equilibrium partitioning approach [15] it is
assumed that sediment organic carbon can readily adsorb toxicants. Here we
assume that the transfer rate kW,oc in Eqn. (6.11a) is large with respect to the
dilution rate D in Eqn. (6.4a) and physiological population rates in ode- sys-
tem (6.3). Then the quasi-steady state assumption is that we set dcS,oc/dt = 0
in Eqn. (6.4b) and this yields

Koc =
cS,oc

cW
. (6.15)

That is the toxicant concentration in the sediment cSoc is proportional to the
overlying water toxicant concentration cW and the partition coefficient equals
Koc equivalent to the equilibrium partitioning assumption [15].

As in [25, 21, 30, 29] we assume here that the uptake and elimination rates
are much faster than other physiological population rates. That is, the toxicant
uptake from water (aqueous exposure) dominates that from toxic food (dietary
exposure). For the lowest trophic levels this assumption is reasonable, but not
always for higher trophic levels where the internal concentration can vary in
time. The bioconcentration factors for all populations p ∈ {R, B, P, F} and
the partitioning coefficients for the abiotic pools q ∈ {DR, DS} are defined as
follows

bcfWp =
cp

cW
, Kq =

cq

cW

Then assuming a dominant toxicant uptake from the water and sediment we
get by using the equilibria values of Eqns. (6.3) where (dcp/dt = 0) for the
populations and the two detritus pools o ∈ {R, B, P, F, DR, DS}

koucW = koaco ,

This implies that for the populations p ∈ {R, B, P, F}

bcfWp =
cp

cW
=

kpu

kpa
, (6.16)

that is each bioconcentration factor equals the ratio between the uptake rate
and elimination rate. Similarly we have the partitioning coefficients for the
abiotic pools

Kq =
cq

cW
=

kqu

kqa
,
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where q ∈ {DR, DS}.
For the total toxicant concentration absorbed in the populations and ad-

sorbed in the abiota cT given by Eqn. (6.5) we obtain directly the following
equation

cT = cW (1 + SρSfocKoc +
∑

p

BCFpp + BCFBSB + KDR
DR + KDS

SDS) ,

(6.17)

with for the pelagic biota p ∈ {R, P, F}.
We recall that using these bioaccumulation expressions do not imply that

it is assumed that the biomasses in the ecological model system (6.2) are in
equilibrium. The dynamics of the internal toxicant concentrations in all biotic
and abiotic compartments is fully fixed by the single ode Eqn. (6.8) and the
algebraic Eqn. (6.17) for both cT (t) and cW (t). Together with the ecologi-
cal model system (6.2), the resulting system is a set of differential algebraic
equations (daes) where the biomasses are the differential variables p, alge-
braic variables are used for the internal toxicant (effects) concentrations cp(t),
p ∈ {R, B, P, F}. This shows that using the equilibrium partitioning princi-
ple [15], the expression for the internal toxicant concentrations in the benthic
compartments and also the expression for the toxicant adsorbed to the sedi-
ment organic carbon are used in Eqn. (6.17) but they do not occur in the mass
balance equation (6.8). Hence the the internal toxicant concentrations cB(t)
is possibly effected directly, and cS(t) causes only indirect effects.

6.9 Appendix B

Analysis of the exposed aquatic ecosystem

In this Appendix a bifurcation analysis is described for the complete exposed
aquatic ecosystem. We continue the analysis performed for the R-system in
Section6.5.1.

Analysis of the RB- and RBF-system

We continue with the results for higher nutrient levels where the nutrient-
producer system is invaded by the benthic consumer B and the fish F . The
diagram is shown in Fig. 6.9. Above the point T2,b the nutrient input is
sufficiently high to support the consumer B, i.e., the producer density exceeds
the minimal requirements of the consumers. For a fixed Nr value just below
point H−

2,b, there is no effect when increasing the toxicant input concentration
cr up-to curve I2,b where the internal toxicant concentration equals the nec
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Figure 6.9: Two-parameter bifurcation diagram for the RBF-system, with nutrient

inflow Nr and toxicant inflow concentration cr as bifurcation parameters with dilution

rate D = 0.02. See Table 6.4 for a description of the bifurcation curves and Tables 6.3

and 6.6 for the parameter values.

value. But when this value is passed the system starts to oscillate without
passing a Hopf bifurcation point. This phenomenon is again due to the non-
smoothness of the concentration-effect relationship at the nec.

In the region between H−
2,b and TC3,b the unstressed system oscillates and

this remains the case after toxicant loading. The limit cycle stays stable up-to
the curve T2,b which is a tangent bifurcation of the limit cycle. Increasing
the toxicant load further leads to a catastrophic collapse of the RB-system.
In the region between TC3,b and H−

3,b enrichment is high enough to support
co-existence with the fish but the system still oscillates. However when the
toxicant load is increased for this RBF-system, the fish goes extinct at rather
low toxicant loading when crossing the TC3,b curve as shown in Fig. 6.10. This
curve transforms into a tangent bifurcation curve T3,b which becomes a Hopf
bifurcation curve H+

3,b. For larger nutrient input levels this curve marks the
point where the fish population goes extinct when the toxicant load increases.
The curve I3,b is also increasing with Nr and this means that the ner region
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Figure 6.10: Two-parameter bifurcation diagram for the RBPF-system, with nutri-

ent inflow Nr and toxicant inflow concentration cr as bifurcation parameters with

dilution rate D = 0.02. See Table 6.4 for a description of the bifurcation curves and

Tables 6.3 and 6.6 for the parameter values.

also increases.

Analysis of the RBPF-system

In Fig. 6.10 the two parameter bifurcation diagram is shown for the RBPF-
system. Again Nr and cr are the free parameters. The region of co-existence
of all biota is between the curves TC4,p and TC4,b. The curve labelled I4 is
the nec-isocline curve now for the RBPF-system. Below this curve there is
the no-effect region (ner).

The transcritical bifurcation curves TC4,b and TC4,p terminate in codim-
two points denoted by Mb and Mp respectively. These two points are also
connected by the supercritical Hopf bifurcation curve H−

4 and supercritical
Hopf bifurcation curve H+

4 . The region between these two curves and the
nec-isocline curve I4 is the resistance region (rr).

Above the curve H−
4 the equilibrium is unstable and a stable limit cycle

exists. In the so-called Bautin point Bf the Hopf bifurcation curve changes
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from subcritical into supercritical and vice versa. From this point a tangent
bifurcation curve for the limit cycle denoted by T4 emerges. At T4 the stable
limit cycle collides with an unstable limit cycle.

From point Mp a so called torus or Neimark-Sacker bifurcation curve TR4

originates. At this bifurcation a limit cycle becomes unstable with two con-
jugated complex multipliers cross the unit circle. It is similar to the Hopf
bifurcation of an equilibrium where the eigenvalues cross the imaginary axis.
Between this torus bifurcation curve TR4 and the transcritical curve for the
limit cycle of the full system TC4,p the dynamics can be chaotic.

The one parameter diagram Fig. 6.8 has variable toxicant inflow density cr

and a fixed Nr = 0.3. The biomasses remain stable up to a rather large toxicant
input loading where the equilibrium becomes unstable at a Hopf bifurcation
point H−

4 . Between this curve and the tangent bifurcation curve for limit
cycles T4 the system oscillates. At the curve T4 the system collapses when cr

is increased beyond this point.
The lowest panel in Fig. 6.8A shows that the equilibrium nutrient den-

sity N increases with increased toxicant inflow concentration. The producer
biomass R and also that of the other biota, remain fairly constant up-to the
Hopf bifurcation point H−

4 . From Fig. 6.8B we conclude that the toxicant
concentration in the water cW also increase with increased toxicant inflow
concentration, just as the nutrient density N . We recall that the toxicant
reduces the producer ingestion and growth rate given by Eqn. (6.10) with
cR = bcfWRcW given by Eqn. (6.16). So, apparently, the increased nutrient
density compensates the reduced maximum ingestion rate. This phenomenon
occurs until the system crashes around cr = 600.

For nutrient-levels below TC4,b the pelagic consumer goes extinct (the
RBF-system) while above TC4,p the benthic consumer goes extinct (the RPF-
system). The Hopf bifurcation H3,p curve marks where with nutrient enrich-
ment the RPF-system starts to oscillate. The curve I3,p is an extension of the
I4 curve. It terminates at the Hopf bifurcation H3,p where it looses meaning.
Notice that there is for the RPF-system another TC3,p bifurcation curve and
also a Hopf bifurcation H3,p curve, which are not shown in the figure because
they play no essential role in the dynamics of the complete system.

In Fig. 6.7 the regions with the same long-term dynamics are indicated. In
the ner-region the internal toxicant concentration of the producer population
R is below the nec, that is cR < cRG0. The maximum toxicant influx cr

value for this regions as function of the nutrient input concentration Nr is
increasing. This means that the ner increases. Also the rr increases. For
the RPF-system the upper boundary is formed by the Hopf bifurcation H3,p

curve (not labelled).
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Chapter 7

Discussion

We want a comfortable life style which includes housing, transport, healthcare
and food and if possible some entertainment. This all requires building mate-
rials, energy, medicines, consumer goods and much more. For this we require
resources such as arable land, mining for metals and salts, fresh water and
mineral oils such as petroleum for energy. These resources are then processed
on an industrial scale leading to the wanted products. In every step from
extracting the resource from the environment, via production and transport,
to usage and burning or burying the waste products chemicals enter the en-
vironment. This eventually leads to pollution of fresh water and the marine
environment, air, arable land and contamination of food products. In the long
run this adversely affects human health, food production and the re-usability
of resources, including fresh water, agricultural land and air.

In order to protect human health and resources and to simultaneously
minimize the impact of chemical emissions to the environment rules and reg-
ulations have been issued by governments. Regulations which are too strict
will make products and goods too expensive, regulations which are too lenient
will not protect human health and resources on the long run. The perception
of what is strict and what is lenient depends to which stake holder group you
would ask this.

The rules and regulations have grown, or evolved, as insight changed
and protection aims expanded. Now, in the European Union, governments
have largely harmonised their guidelines and same risk assessment procedures.
These guidelines have evolved by listening to the industry, scientists, environ-
mental protection agencies, and other interest groups such as nature conserva-
tionists. The resulting guidelines are a mix of common sense, science, worst-
case assumptions and compromises. A major side effect of all these compro-
mises is that although the European Union legislation for existing chemicals
has been in place for a few decades, risk assessment has been performed for
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137 compounds [3] of the 143,000 chemicals [2] that are registered to be used
by the industry. Not all chemicals need to be assessed due to low production
volumes or expected absence of toxicological properties.

Even if scientific insight changes or other guidelines would be more prag-
matic, changing the rules of the game would inconvenient the players and
would affect the continuity of the whole system. Therefore to prevent arbi-
trariness, existing legislation can and will only change slowly. On the one
hand continuity and predictability are good. On the other hand, this makes
the system of guidelines slow to absorb new insights and even adverse to new
ways of looking at risk assessment and its procedures.

More specifically, classical descriptive statistics (NOECs, LC50s, EC5, etc.)
form the heart of current risk assessment approach as they are used to predict
at what environmental concentrations a chemical might affect organisms. A
Predicted Environmental Concentration (PEC) is obtained by the evaluation
of the emissions, distribution and bioavailability of the toxicant in the differ-
ent compartments (water, sediment) or from actually measured environmental
concentrations of the toxicant. In ecosystem risk assessment, descriptive statis-
tics are converted to generic Predicted No-Effect Concentrations (PNEC). If
an environmental toxicant concentration is at this value then no organism
should be at risk. Thus no ecotoxicological hazard or risk is anticipated when
the ratio PEC/PNEC is less than one. Therefore highly standardized toxic-
ity laboratory tests are preformed to obtain descriptive statistics as input for
the risk assessment leading to the PEC/PNEC ratio. At the same time the
guidelines have evolved to only use this type of input. As a result, laboratory
tests which do not produce data to derive descriptive statistics are worthless
from a risk assessment point of view. This discourages the development and
execution of more complex and dynamic toxicological experiments. With no
complex data to learn from the growth of knowledge on how to describe and
analyse this complex data is stunted. This is a deadlock from which it is hard
to escape and progress.

It is more and more realized that humans depend on the ecosystem around
them for what nowadays is called ecosystem goods and services. Also protec-
tion of biodiversity is now a goal on itself. This requires methods to predict
the effect of toxicants on ecosystems. Unfortunately ecosystems are complex
and dynamic, thus classical descriptive statistics are a dead end, while the
whole system of risk assessment is build around those statistics.

Mechanistic modelling can handle complex and dynamic data but does
not produce output to which the risk assessment is accustomed and can work
with. A mechanistic model (or biology based model) uses equations to model
biological processes in an organism and the used parameters have a mean-
ing full interpretation, such as growth rate, death rate, nutrient assimila-
tion rate, etc. Fortunately, the use of mechanistic modelling (including the
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DEBtox-approach) instead of descriptive statistics has slowly gained accep-
tance. Mechanistic modelling is now even acknowledged as a standard method
by the OECD in the section on biology-based methods in [8]. This indicates
that authorities do absorb new insights and approaches as they become avail-
able, albeit slowly as the DEBtox approach has been around since 1996 [7].
In [5] and [6] the differences between mechanistic ecotoxicology modelling and
the statistical approach are discussed in more detail.

Downstream river stretches suffer from upstream chemical emissions. When
looking at the Rhine for example one sees that pollution ignores and crosses
borders on its way to the sea. The EU acknowledge this problem and imple-
mented the Water Framework Directive (WFD) in which a legal framework
was establishes that protects and restores clean water across Europe and en-
sures its long-term, sustainable use. The WFD forces EU Member States to
work together to improve the ecological status of water bodies that are shared
with other Member states.

By taking a clean surface water body as a benchmark, one can identify
which species are missing, are reduced in density or are opportunistically
present in a polluted or stressed water body that is otherwise similar in all
characteristics to the clean reference water body. The ecological status of the
unaffected water body is defined as high status and the more affect the body
is the lower the status is defined to be, with good status being an acceptable
status.

The WFD sets the goal of achieving a good status for all of Europe’s
surface waters and groundwater by 2015. This is a major challenge, as recent
assessments estimate that at least 40 percent of the EU’s surface water bodies
are at risk of not meeting the 2015 objective. In the Netherlands, over 95
percent of surface water bodies are considered at to be at risk of not having a
good ecological status [4].

To date severe gaps of knowledge impede the evaluation and mitigation
of the causes for an insufficient ecological status in many aquatic ecosystems.
The EU Modelkey project is designed to bridge these knowledge gaps. Two
goals, amongst many, of the Modelkey project are, one: to developing predic-
tive modelling tools and methods for effect-assessment, and two: to provide a
better understanding of cause-effect-relationships between environmental pol-
lution and changes in biodiversity, as biodiversity affects the the ecological
status of the water bodies.

The work presented in this dissertation allows to take a few step closers
to understand the cause-effect-relationships between environmental pollution
and changes in biodiversity and to use this understanding to make a new tool
for in the tool kit of the risk assessor.

Roughly stated, to model the effects of toxicants on the ecosystems one
needs a model for the unexposed system, or reference system, and a toxicant-
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effect module to describe the effect of the toxicant on the organisms within
the reference system. As an indication on how extensive the literature is on
ecological modelling: since 1975, 4,500 articles on ecological modelling with
roughly a fifth related to chemical stress or toxicants have been published in
only just the journal Ecological Modelling. Thus there is ample literature to
learn how to build a reference model. However, most articles on modelling
chemical stress or toxicant effects have effect-modules based on descriptive
statistics, making them less useful.

We showed how a biology based model can be used to quantify the effect of
toxicants on algae which simultaneously suffer from nutrient stress. Note that
this experimental setup is as simple as current standardized toxicity laboratory
tests for deriving descriptive statistics. As we have a biology based model for
the reference system and a quantification of the effects of the toxicants on the
algae, now we can do extrapolations between measured concentrations and
between time-points and between nutrient conditions. These extrapolations
would not have been possible with the descriptive approach.

Modelling the ecology of algae and ciliates on a laboratory scale, led to
an ecological reference model in which feeding behaviour differences between
ciliates were incorporated. Bifurcation analysis was used to investigate the
long-term behaviour of the different laboratory scale ecosystems.

A biology based model for the reference system together with an effect
module for the toxicant effect can be used to analyse dynamic and complex
multi-trophic toxicity data, which lead to parameter values for biological rates
and a quantification of the toxicant effect. Again, analysis of dynamic data is
not been possible with descriptive statistics.

Often in ecological models the toxicant water concentration is not affected
by the presence of biota, detritus and sediment. We retained dynamic toxi-
cant concentration in the modelled environmental compartments of water and
sediment, while feedback remained possible with the dynamic internal concen-
tration for the organism and dynamic concentrations in detritus.

We analysed and presented the effects of toxicant on a simplified multi-
trophic aquatic ecosystem. This was an opportunity to develop approaches for
finding no-effect regions (NERs) and resistance regions (RRs) as a manner to
graphically represent the toxicant effects on species densities and ecosystem
composition. In parallel with our efforts, recently other groups have performed
bifurcation analysis in relation to aquatic ecotoxicology [1].

Increasing the complexity of the aquatic ecosystem model led to a now not-
so-simple generic multi-trophic aquatic reference model. We found the NERs
and RRs when exposing the modelled organisms to an ab- and adsorbing
herbicide. The 2D-bifurcation graph of toxicant influx versus nutrient loading
revealed that eutrophic systems are more toxicant resistant than oligotrophic
systems.
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The results presented in this dissertation might persuade experimental-
ists to create more datasets with dynamic multi-trophic interactions under
exposed conditions and, importantly, publish the complete datasets without
summarizing the results into descriptive statistics. The resulting datasets
could then provide modellers with input to produce more ecological reference
models. This all should lead to more parameter values for biological rates and
parametrized effects of toxicants.

These parameter values are needed to run generic multi-trophic aquatic
reference models, which are needed to find the NERs and RRs as exemplified
in Chapter 6. Eventually, it should be possible to supplement the current
approach of using a PEC/NEC-ratio for ecological risk assessment with eco-
logical risk bifurcation diagrams. Thereby adding a new tool into the tool box
of ecological risk assessors.
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Chapter 8

English summary

Toxicant effects on algae

Practically all life on earth indirectly depends on energy from sunlight. This
energy is harvested with photosynthesis by ‘green’ organisms. Beside macro-
phytes, in the aquatic environment algae play the role of being the primary
producers of stored energy. All other organism depend directly or indirectly
on them. If the primary producers are hampered in their activities, effects
will cascade down the whole ecosystem. To be able to predict the long-term
effects of toxicants on ecosystems, the first puzzle is to solve how the primary
producer responds to toxicant stress.

The very short-term effects of toxicants on algae are already known and
are well documented using classical descriptive statistics. However, for ecosys-
tem modelling there are additional requirements that are not covered by these
short-term statistical procedures. First, the classical approach gives results
that are difficult to extrapolate to other time points or other exposure con-
centrations. Furthermore, the effects are often measured and described on
the population level and not on the level of the individual. Therefore its is
not possible see which process within an individual was affected, e.g. nutrient
assimilation, growth, reproduction or death.

When one models an ecosystem these processes have to be considered sepa-
rately and included separately. Also the modelled toxicant effect should prefer-
ably affect only the correct biological processes. Thus, the classical descriptive
statistics based on oecd guidelines [13, 14] are of limited use for long-term
effect modelling, see for explanation [7, 8].

To obtain useful long-term dose-effect relationships for algae we designed,
in collaboration with ect Oekotoxikologie GmbH, an experiment in which
there would be long-term exposure (as in multiple algal generations), nutrient
limitation and toxicant stress.

The model for the algal growth should be able to extrapolate between
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time points, between toxicant doses and should incorporate mass-balance and
explicitly describe nutrient uptake, growth and death of the algae.

We made a conceptual model with all relevant biological processes and
derived a mathematical model for the algal growth, similarly as done in Section
1.2 of the General introduction. In short, the mathematical model consist of
coupled odes, resulting in a Marr-Pirt model for the algae and book keeping of
the limiting nutrient. The debtox module [1, 10] was used to approximate the
effect of the toxicant on the biological processes, yielding a time-independent
continuous dose-response model. The mathematical model was coded into a
computer model.

The experimental setup was designed with the conceptual model in mind,
thus the output of the experiments was usable as input for the computer model.
As the mass-balance of a closed system is easier to model than that of an open
system, the experiments were done in a closed glass flask: an Erlenmeyer.
The experiment generated two data sets: one in which the toxicant was a
herbicide and a second in which the toxic stressor was an insecticide. The
results were analysed using the classical descriptive statistical approach of the
oecd [13, 14] and published in Aquatic Toxicology [12].

The computer model was also applied on the two data sets. The data
fit produced a quantification of rates that determine the growth and death
of the algae under reference conditions and a quantified dose-effect relation
for each toxicant and its affected process. To describe the normal growth
of the algae only three parameters were needed and two for each toxicant
effect-relation. Without using a priori knowledge the data fits reveal that
the herbicide affected the growth-process of the algae and the insecticide the
death-process.

Hallam et al. discussed in 1993 [6] the concept of a minimal toxicant concen-
tration at at which a population will go extinct given a specific food availabil-
ity. Using the fitted parameter values and the equations we calculate the tox-
icant concentration at which the algal population will go extinct given known
nutrient loads. This yields a deterministic continuous function of extinction
concentrations depending on the nutrient load, in other words, a deterministic
population extinction threshold. Using standard data fitting techniques we
obtained the co-variance matrix which contains the interdependency of the
parameters values. Combining this covariance matrix with a second order
Taylor approximation leads to a confidence interval around this deterministic
population extinction threshold.

This would not have been possible with the oecd approach of descriptive
statistics. With the deterministic mechanistic modelling approach, it is pos-
sible to do predictions between concentrations, between time points and even
outside the original experimental conditions. The above mechanistic analysis
and discussion were published in Water Research [2] and form Chapter 2.
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Effects of toxicants on algal-predator system

Now that we could model and determine long-term effects on a small single
species system, could we do the same for a real but very simple multi-trophic
ecosystem? This would help extend the conceptual framework and resulting
mathematical model should help us to answer the ultimate question on how
toxicants affect ‘natural’ and therefore big and complex ecosystems.

An algal-predator-toxicant system was designed, again together with ect,
consisting of the same algal species and the predator was taken to be an
algivorous ciliate. This data and the statistical analysis are also published in
[12].

In this model the default Marr-Pirt building block, as used to describe
the algal growth, could not also be used to satisfactorily reproduce the growth
dynamics of the ciliates. The more sophisticated dynamic energy budget model
(deb) with reserves [11] did improve the data fit to the measurements of the
ciliate population size but not enough.

A key factor in the ciliate population dynamics, that is not covered in both
the default Marr-Pirt and deb models, is the existence of a feeding threshold
for ciliates [16]. The feeding threshold is implemented in the standard Holling
type II functional response as an additional term which lowers the perceived
prey density for the predator.

The analysis of the small multi-trophic ecosystem in by Weisse et al. in
[16] resulted in an article in which we model the observed, but still unex-
plained, effect of a feeding threshold in the Holling type-II functional response
on the time evolutions of ciliate and algae densities inside a confided volume.
Also, the long-term effects of the feeding thresholds on the dynamics of these
algal-ciliate ecosystems were analysed with bifurcation theory. Above findings
are published in Mathematical Modelling of Natural Phenomena [3] and form
Chapter 3.

The above work helped us to realize that the ciliate species used by ect
could also have a feeding threshold and that this property should be included
in the conceptual framework.

Effects of toxicants on an algal-predator system

with feeding threshold

The analysis continued, but now the idea of a ‘feeding threshold’ was added to
the conceptual framework. So far, this conceptual framework contains: mass-
balancing, odes (identical individuals), Marr-Pirt model for algal growth, deb
reserve-model for the ciliates, feeding threshold for predation on the algae by
ciliates and debtox concentration-effect relationships. Even with the inclusion
of the feeding threshold the dynamics from the model did not match the
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dynamics in the experimental data.
Work published by Eichinger in 2009 [5] put us on the way to include

starvation in the deb growth model for the ciliates. Starvation leads to struc-
ture mobilization which again gives shrinkage and leads to less rapid predator
population decline. Therefore, we added ‘shrinkage’ to our conceptual frame-
work and the data fits improved. The model captures most but not all of the
behaviour of the affected system. Results are presented in Chapter 4.

Incorporation into the conceptual framework of a reserve, shrinkage and a
feeding threshold leads to more dynamics in the computed time evolution of the
ciliate biomass. However, each new addition to the conceptual framework leads
to an increase in the number of equations and parameters in the mathematical
model. Still the predicted dynamics do not match the experimentally observed
dynamics to full satisfaction. Likely, not all the relevant behaviour of the
ciliates is captured in enough detail but adding more detail to the conceptual
framework is not warranted given the size of the data sets. Independent of the
above modelling efforts, it can be concluded that the data sets do show that it
is experimentally possible to demonstrate indirect toxicant effects (occurring
as reduced densities) on the trophic level directly above the affected producer.

Toxicant effects on a simple riverine ecosystem

Parallel to the above mentioned work, we investigated whether it was feasible
at all to analyse a mathematical high dimensional ode-system that represents
a more complex but still simplified riverine ecosystem which is under nutrient
and toxicant stress. We found it is feasible to analyse such an exposed high
dimensional ecological systems, thus in theory an up scaling from Erlenmeyer
to river is possible.

To be more specific, the aquatic ecosystem consists of a limiting nutrient,
primary producers, consumer and a predator. Other components are two
types of detritus and bacterial degradation of the detritus for the closure of
the food circle. This work has been published in Ecological Modelling [9].
There we describe how species biomass densities responded to gradual changes
in the rate of water flow, toxicant inflow concentration and nutrient inflow
concentration.

The species together form the ecosystem, presence or absence of species
determine the ecosystem structure. The activities of the species determine
the ecosystem processes. We devised a method to find areas in the parameter-
space where the ecosystem is quantitatively not affected. These areas we de-
fined to be no-effect regions. These areas are formed by combinations of values
for nutrient loading and toxicant loading where the biomass densities are not
affected. The bifurcation analysis also resulted in areas where the quantities
are changed but not the ecosystem structure. Finally we determined where
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quantitative changes in biomasses occurred and simultaneously the behaviour
of the ecosystem was changed. Thus in this system toxicant stress was just
one stress besides nutrient stress and removal from the system due to flow
rate. Results are presented in Chapter 5.

Toxicant effects on a simple riverine ecosystem with sediment

Organisms within an aquatic ecosystem suffer simultaneously from multiple
stresses from abiotic factors, trophic interactions and from anthropogenic
sources such as habitat changes and chemical stress. Natural systems are
complex. We summarize the processes, attributes and composition into one
simplification. This simplification still has many behavioural characteristics of
the natural system but is vastly reduced in complexity. The resulting model is
still high in dimensions. The resulting system consists of a limiting nutrient,
a primary producer, a benthic consumer, pelagic consumer, predator, three
pools of detritus and sediment. We call this system the reference system as it
is not affected by toxicants. This system is a simplification of a natural aquatic
ecosystem but the major relevant processes that occur within an natural sys-
tem are present. These processes being photosynthesis, nutrient limitation,
competition for food, predation, detritus formation from death, faeces and al-
gal sinking and finally degradation of detritus into the limiting nutrient. Note
that this system is a food circle not a food web or chain. All biota can absorb
and release the toxicant and the toxicant can adsorb to the sediment.

As a representative for the primary producer we took one algal species, with
species property values from [2] to parameterize the algae and their response to
the toxicant. Benthic invertebrates such as clams and worms were modelled
with only one species which is to summarize all the characteristics of these
species. The predator is taken to be an aquatic vertebrate such as a fish,
its parameters are from [4]. The predator fish is stationary, which is more
appropriate for large aquatic vertebrates. Other parameter values are from
e.g. Aquatox [15], which is an ecotoxicological model that predicts short and
middle long-term effects of toxicant on fresh water ecosystems.

The behaviour of our simplified ecosystem was analysed with bifurcation
theory. We found in the case that we modelled the direct effects of a herbicide
on the algae that the biomasses of the other species responds rather gradually
to the increased concentration of the toxicant. However, often the gradually
changed biomasses remained at an intermediate density and then suddenly all
species went extinct, a catastrophic collapse occurred. Recovery of the system
would only occur if the toxicant influx was severely reduced.

We also found that eutrophic systems can postpone their collapse due
to higher initial biomasses and therefore higher toxicant binding capacity,
consequently reducing bioavailability of the toxicant for the algae.
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In general we found that before a system-collapse or loss of species occurs,
the system is not behaving much differently than at a slightly lower toxicant
influx rate. Therefore, there are no or difficult to see warnings before the
system collapses due to one drop of toxicant too many. This means, that
potentially devastating effects can result from a slight increase in the toxicant
influx rate, without any type of warning.

An additional effect is that the recovery of the system is potentially also
very difficult. The existence of a tangent bifurcation should be interpreted as
a threshold for species to successfully re-invade the system, making it more
difficult to restore the ecosystem. Results are presented in Chapter 6.

We like to stress that although long-term predictions are made, the pre-
dicted short-term dynamics could still be validated using multi-species models
as proposed in [12], Chapter 2, 3 and 4.
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Nederlandse samenvatting

Een analyse van de gevolgen van gif- en nutriëntstress

in aquatische ecosystemen

Aquatische organismen van verschillende soorten leven in een complexe samen-
leving, aangeduid met het begrip aquatisch ecosysteem. Wanneer gifstoffen in
het milieu komen, leidt dit tot minder goed functionerende aquatische ecosys-
temen. Individuen in dit systeem worden direct bëınvloed door gifstoffen, wat
kan leiden tot een verlaagde biodiversiteit en verlaagde primaire productie.
Gifstoffen kunnen echter ook indirect effecten veroorzaken. In mijn onder-
zoek wil ik de directe en indirecte gevolgen van gifstoffen op grote aquatische
ecosystemen voorspellen.

Traditioneel wordt beschrijvende statistiek gebruikt om het effect van gif
op kleine kunstmatige ecosystemen samen te vatten door middel van een aan-
tal kengetallen. De extrapolatie van dit soort kengetallen van een klein naar
een groter en ingewikkelder systeem is onmogelijk omdat kennis van de on-
derliggende processen ontbreekt. Verder blijkt de beschrijvende statistiek niet
in staat bruikbare kengetallen af te leiden uit resultaten van complexere proef-
opzetten waarin de dichtheiden van meerdere soorten variëren in de tijd.

Het is ook mogelijk voorspellingen te doen op basis van computersimu-
laties. Deze simulaties zijn gebaseerd op wiskundige modellen: versimpelde
weergaven van de werkelijkheid, die nog wel de essentie moeten vangen van
de processen in een ecosysteem. Ecosystemen zijn complex, waardoor een
wiskundig model voor een dergelijk systeem al snel veel vergelijkingen kan
hebben waardoor analyse tijdrovend en moeilijk wordt.

In veel bestaande ecosysteemmodellen worden de korte termijn gevolgen
van gifstoffen bestudeerd en minder vaak de lange termijn gevolgen. Indien
de lange termijn gevolgen bestudeerd worden, dan wordt vaak aangenomen
dat het ecosysteem in een constante toestand of evenwicht is. Onze eigen
modellen zijn voor zowel de korte als de lange termijn bruikbaar en de aanname
van ecosysteem evenwicht is niet toegepast. Dit zorgt er ook voor dat kleine
verandering in het systeem over de tijd kunnen culmineren tot grote effecten.
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De interacties van de componenten van een ecosysteem kan men beschrij-
ven met een wiskundig model. Samen met collega’s uit Frankfurt in Duitsland
ontwikkelden ik en collega’s een serie van experimenten om te testen of de door
ons gehanteerde vergelijkingen wel gebruikt kunnen worden om deze interacties
te benaderen.

Eerst stelden we onder laboratoriumcondities een algenpopulatie langdurig
bloot aan gifstof- en nutriëntstress. Ons wiskundig model simuleerde de dy-
namische groei van deze algen goed, en kon de interacties van het gif en nu-
triënten goed verklaren. Dat zou niet mogelijk zijn op basis van extrapolatie
met klassieke beschrijvende statistiek.

Vervolgens breidden we het wiskundige model uit met een consument
waarna we onze modelaanpak hebben getest met literatuurdata van prooi-
predator experimenten. Vervolgens testten we onze aanpak met data van
experimenten met prooi, predator en gifstof. Uiteindelijk formuleerden we een
generiek riviermodel op basis van onze modelaanpak aangevuld met litera-
tuurwaardes.

In veel bestaande ecosysteemmodellen wordt aangenomen dat de interne
gifstof concentratie in een gemodelleerd organisme synchroon fluctueert met de
externe waterconcentratie. In andere woorden: de verhouding van de interne
en externe concentratie wordt constant genomen. Dit principe staat bekend
als evenwichtspartitie. In de door ons ontworpen modellen hoeft dit principe
niet toegepast te worden, maar als compensatie zijn dan veel aanvullende
parameterwaardes nodig.

We lieten zien hoe onze modellen versimpeld kunnen worden tot een vorm
waarin evenwichtspartitie is toegepast, en dus minder parameters nodig zijn,
zonder dat we het doorwerken van kleine veranderingen tot grote gevolgen
verliezen tijdens deze versimpeling. Vanwege deze voordelen hebben we dit
principe toegepast voor een generiek riviermodel. Wat we niet uit het oog
verloren was de massabalans van het gif en het feit dat de gifconcentraties
kunnen fluctueren in de tijd.

We besloten om geen complex model voor een specifiek gestresst ecosys-
teem te bouwen en te bestuderen, maar om een generiek aquatisch ecosysteem
te nemen en te bestuderen. In dat generieke riviermodel wordt elk trofisch
niveau vertegenwoordigd door één soort. Dit generieke riviermodel bestaat
uit één limiterende nutriënt, een producent, een vrij zwemmende consument,
een op de bodem levende consument, een vrij zwemmende predator, dood or-
ganisch materiaal, sediment en water. Het resulterende model analyseerden
we met een techniek genaamd bifurcatie analyse.

Met deze techniek analyseerden we de indirecte gevolgen van simultaan
optredende gifstofstress en nutriëntenstress op het gemodelleerde ecosysteem,
terwijl de stressoren direct inwerken op het niveau van het individu. We keken
hoe het generieke aquatische systeem reageert op een gifinstroom variërend
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van afwezig tot veel, terwijl de nutriëntbeperking varieerde van oligotroof tot
eutroof. De waarden van de stressparameters varieerden langs een continue
schaal. Elke combinatie van gifstofinstroom en nutriëntbeperking leidde tot
andere dichtheden van de aanwezige soorten, inclusief dichtheid nul oftewel
uitsterving. Ook waren er situaties aan te geven waarin de soortsamenstelling
en het gedrag van het ecosysteem identiek zijn terwijl de dichtheden variëren.

Voor een generiek riviersysteem, met evenwichtspartitie toegepast, bestu-
deerden we de directe en indirecte lange termijn gevolgen van een herbicide
dat zich ophoopt in organisch materiaal. We wisten al dat eutrofiëring een
systeem kan destabiliseren, ook bekend als de paradox van verrijking. Wij
concluderen dat verrijking de gevolgen van een toenemende gifinstroom kan
vertragen, maar uiteindelijk zal het systeem zonder waarschuwing in elkaar
storten. Voordat de soorten zich weer kunnen vestigen en herstellen, zal zowel
de nutriënteninstroom als de gifstofinstroom drastisch omlaag moeten.

De benodigde parameterwaardes zijn verkregen door gegevens van kleine
experimentele ecosystemen te analyseren met ecosysteemmodellen. Door de
verkregen parameterwaardes (aangevuld met literatuurwaardes) te combineren
met een model voor een generiek aquatisch ecosysteem, kunnen we voorspel-
lingen doen voor gecombineerde gif- en nutriëntstress. Dit alles zonder be-
schrijvende statistiek of de aanname van ecosysteem evenwicht toe te passen.

De gedane stappen die leidden tot de voorspellingen van dichtheden van
soorten en uitsterving kunnen herhaald worden voor andere gifstoffen. De re-
sulterende voorspelde gevolgen kunnen dus dienen om de gevolgen van gifstof-
emissies in te kunnen schatten. Dit laatste is in potentie nuttig voor mensen
die milieunormen afleiden voor gifstoffen of moeten beslissen of een nieuwe
stof op de markt mag komen.
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variabelenarm model voor de beestjes i.v.m. bifurcatie-analyses. Een compleet
deb-model was voor mij nog een brug te ver. Misschien de volgende aio?

Een aio-project van meerdere jaren heeft zo zijn eigen dynamiek van voor-
en tegenspoed. Het heeft wat voeten in aarde voordat je eindelijk een geac-
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