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Preface

Humankind has produced over 70.000 chemicals that are all sooner or later
released into the environment. In the sixties resistant pesticides and persistent
detergents caused environmental pollution. Later the first tests on biodegrad-
ability were conceived and the Environmental Protection Agency formed the
Office of Pollution Prevention and Toxics (OPPT) in 1977. Nowadays, new
chemicals are tested for toxicity and biodegradability before they are admitted
to the consumer market. These tests are carried out world-wide according to
the guidelines established by the Organization for Economic Co-operation and
Development, the European Union, the International Organization for Stan-
dardization, and the Environmental Protection Agency.

Task forces on biodegradation tests of, for example, the Society of Tox-
icity and Environmental Chemistry (SETAC) and of the industry recognize
shortcomings in the protocols and in the interpretation of standardized biodeg-
radation tests, in particular with the analysis of the test results. This thesis
finds its basis in such problems. Three areas have been selected to work on: (i)
mass-transfer limitation and growth of microbial flocs, (ii) multiple-substrate
utilization and co-metabolism, and (iii) slow microbial adaptation to changing
substrate availability.

This thesis is organized as follows. The first chapter introduces biodegra-
dation tests and models. The growth of microorganisms during biodegradation
is described by the Dynamic Energy Budget (DEB) theory as well as by the
well-known Monod model. After a brief overview of the DEB model, the
chapters on mass-transfer limitation, co-metabolism, and adaptation follow.

ix





1

Tests and models in
biodegradation

1.1 Introduction

In the 1960s, several chemicals such as polychlorinated biphenyls (PCBs),
halogenated solvents, and synthetic detergents have caused environmental
problems. It became clear that chemicals should be tested for their degra-
dation and their toxicity before governments approve their production. Since
then a large number of chemicals is tested each year. For instance, the US
Environmental Protection Agency alone has reviewed 30.000 substances since
1979.

Before going into the tests, the main concepts should be defined. Degra-
dation of a compound refers to its breakdown into smaller molecules. It can
be a physical, chemical, or biological process. Biodegradation is mainly due
to microorganisms and has been defined as “the biologically catalyzed reduc-
tion in complexity of chemicals [2].” Biodegradation can be divided into three
categories:

• mineralization: the organic chemical is broken down into inorganic com-
pounds. It is also known as ‘ultimate biodegradation.’ Typical products
of aerobic mineralization are carbon dioxide, water, and ammonia.

• biotransformation: the organic chemical only undergoes small structural
changes.

• co-metabolism: “the transformation of a non-growth substrate in the
obligate presence of a growth substrate or another transformable com-
pound [7].”

1



2 Chapter 1

Biodegradation, in addition to chemical and physical degradation, plays an
important role in the removal of substances from the environment and in-
fluences the environmental concentration of released chemicals. Therefore,
biodegradability of chemicals in sewer systems, wastewater treatment plants,
and natural waters constitutes a crucial factor in deciding their production ap-
proval [12, 16, 27]. This chapter introduces tests and models used to evaluate
biodegradability.

1.2 Biodegradability tests

The OECD and EEC1 regulations require the biodegradability of new chem-
icals to be tested. The strategy for testing adopted by the OECD consists of
three levels [23], which are summarized in the next subsections:

1. ready biodegradability tests or screening tests

2. inherent biodegradability tests

3. simulation tests

Depending on the test results, three levels of degradability are distinguished:
readily biodegradable, inherently biodegradable, and persistent. Due to the
variety of experimental methods available, the biodegradability quantification
can significantly vary among tests.

The tests are batch or (semi-)continuous and they differ in the amount of
biomass and substrate concentration used. Furthermore, the degradation may
depend on the type of test used. Biodegradation is first assessed in screen-
ing tests, which are defined as “Biodegradation screening tests comprise all
those tests that do not attempt to simulate an environmental compartment” [9].
These tests are carried out worldwide and their results should be reproducible.
Furthermore, these tests should be easy to carry out and have been designed
“without any intent for deriving kinetic constants” [9].

Biodegradability tests generally ignore kinetics, because biodegradation
rates are currently not required for the admission of new chemicals [9]. How-
ever, the rate of biodegradation is crucial in estimating the environmental con-
centration of a chemical and, thus, in risk assessment [12]. As biodegradation
rates in different environmental compartments can vary considerably, accurate
estimation and calculation methods of such rates are needed to predict environ-
mental concentrations. Models of, for example, waste water treatment plants

1See Abbreviation section on page 13.
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are often very sensitive to variations in the assumed biodegradation rate [17].
If it is possible to determine and extrapolate a rate (and kinetics) obtained
from a test to the environment, it might be possible to come to risk assessment
schemes based on sound models.

The range of currently used biodegradability tests are briefly reviewed be-
low. The differences among them that influence the degradation kinetics are
discussed. Thereafter some models for biodegradation kinetics are introduced.
For further details on biodegradability testing, the reader is referred to reviews
by, for example, Blok and Balk [5], and Painter [23].

1.2.1 Ready biodegradability tests

All chemicals are at least be subjected to a ready biodegradability test. It is
assumed that chemicals passing the ready test will “rapidly and completely
biodegrade in aquatic environments under aerobic conditions” [9, 21, Annex I].
The degradation of such chemicals is assumed to exceed 90% in a wastewater
treatment plant (WWTP) [27].

Although a chemical is degraded in a test, it may not be degraded in the
environment. The reverse is also true: a chemical which does not meet the
test criterium may be degraded in the environment. This is due to differences
in substrate concentrations and in the composition of the inoculum. The per-
centage of chemicals not released into the environment yet, so-called ‘new’
chemicals, failing a ready tests is high [23]. Probably this is because inocula
are used that are not yet exposed or adapted to the chemical.

A test for ready biodegradability is stringent. Incubation time is limited,
seed density is low (compared with the density in inherent tests), and the seed
is unadapted to the chemical being tested [5].

The source of the inoculum of the tests is the environment (activated
sludge, sewage effluents, surface waters and soils or a mixture of these [21])
and the synthetic medium is inoculated to about 106 cells/ml. The inoculum for
a MITI(I) test differs from that for other tests: it is collected from at least ten
different locations and kept on a medium containing 0.1 g/l glucose, peptone,
and potassium orthophosphate for one month before it is used in the MITI(I)
test [21]. During this period the inoculum will change and loose diversity,
since the medium does not mimic wastewater.

Tests for ready biodegradability are batch incubations with a maximum
duration of 28 days. A chemical is called readily biodegradable if the extent
of degradation exceeds the ‘pass’ level. This level must be reached within 10
days (10-day window) after the end of the lag phase, which is the time when
degradation reaches 10%. The value for the pass level depends on the method
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used for analyzing the amount of residual chemical: 80% for specific analysis,
70% DOC and 60% ThOD or ThCO2 [23].

In a OECD ready test, pretreatment or preconditioning of the inoculum is
allowed, but should not include exposure to the test chemical. It only involves
exposing the inoculum to the test conditions [23]. To reduce blank respira-
tion, the sludge may be starved by aerating in absence of a carbon source.
Test guidelines do not specify the length of this aeration period. However, the
biodegradation capacities of the sludge have not changed noticeably after one
week starvation, according to J. Blok (pers. comm.).

The tests are initiated by adding the test chemical as the sole carbon source
to a mineral medium. The percentage removal, the final removal, and the 10-
day window have to be reported [21]. The different OECD tests for assessing
ready biodegradability are summarized in Table 1.1.

If a chemical does not pass the ready test, either degradation starts too
late or the substance is not degraded fast enough. Thus, both the duration
of the lag phase and the biodegradation rate are crucial to pass a test. The
lag time is highly variable [23, p179]. However, the results from screening
tests have proven to be good predictors of the behavior of the chemical in a
WWTP [23, p167, B.1].

The result of a ready test may vary according to the protocol used. For
instance, a chemical may pass a certain test on the basis of DOC, but fail on
the basis of ThCO2 [23, p86]. The pass level on DOC base (70%) is higher
than on ThCO2 base (60%), because the carbon from the test substance will
partly be incorporated into the biomass. It seems that the ThCO2 pass level
may have to be lowered to solve the problem [23, p86].
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Table 1.2: OECD inherent biodegradability tests (from [19, 20, 23]).

Test Zahn-Wellens/EMPAa SCAS MITI(II)

Concentrations of test substance
mg DOC/l 50-400 20
mg ThOD/l 30

Concentration of inoculum
mg dry SS/l 200-1000 (washed) 100
ml effluent/l b

a The Zahn-Wellens test has an inoculum to substrate-concentration
ratio of 2.5:1 to 4:1. b Mixed liquor from suitable WWTP.

1.2.2 Inherent biodegradability tests

To test inherent biodegradability, a higher concentration of inoculum and sub-
strate is used than in the ready tests. This results in a more diverse microbial
community, enhancing adaptation possibilities. The inherent tests are summa-
rized in Table 1.2.

The Zahn-Wellens test lasts for up to 28 days. The semi-continuous ac-
tivated sludge test (SCAS) has a maximal duration of 12 to 26 weeks. Once
a day aeration is stopped for one hour and two thirds of the total volume2 is
discarded, giving a retention time of 36 hours, after which new sewage or syn-
thetic waste is added. When the COD or DOC of the discarded waste reaches
a steady state, the test chemical is added with the feed [23]. The modified
MITI(II) uses an inoculum collected from at least ten different places as with
the MITI(I) test. The test lasts 14 to 28 days and continuously measures the
biochemical oxygen demand during the degradation of the test chemical.

1.2.3 Simulation tests

To assess biodegradability potentials that are relevant in the environment, it is
important not to deviate too much from environmental conditions in lab tests.
When a chemical has not passed a ready test, but passed a test for inherent
biodegradability, a simulation test may be started. The OECD simulation test
is based on the OECD confirmatory test for surfactant biodegradation and uses

2According to the OECD guidelines, 2/3 of the volume is discarded after settling of the
sludge, giving a very large retention time of the deposited material [19].
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the Husmann apparatus [22]. Basically, a WWTP is simulated with represen-
tative hydraulic and sludge retention times.

1.2.4 Biodegradability prediction

As stated above, a variety of test parameters may influence the test results,
such as:

• Source and size of the inoculum and, thus, also the inoculum viability
and species diversity.

• The adaptation period of the inoculum. Adaptation of bacteria to the
chemical and the initial amount of specific degraders significantly influ-
ences the test result.

• Concentration of the test chemical.

• The analytic method to determine the extent of degradation (DOC,
ThOD, ThCO2, specific analysis).

The analytic method is only important because the pass levels depend on them.
As such this is more a test protocol issue. The other items always are important
in assessing biodegradability.

1.3 Kinetic Models

This section discusses models that have been widely used to describe or fit
biodegradation data. For ease of reference, the symbols used in the model
equations below are the same as those in the original articles. Often models are
mainly chosen according to their goodness of fit. Simply to improve the fits,
sometimes an alternative model is chosen or a model is extended to incorporate
additional parameters.

1.3.1 Monod and Michaelis-Menten kinetics

Different kinetic models have been used to study biodegradation processes.
However, all the models for growth and substrate consumption are mainly
based on the Monod (1.1) or Michaelis-Menten (1.2) equations [1, 4, 5, 23, 26].

µ = µmax
S

Ks + S

d X

dt
= µ X and

d S

dt
= −

1

Y

d X

dt
(1.1)
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v = vmax
S

Ks + S
with vmax = k Et (1.2)

Michaelis-Menten kinetics applies when a compound is transformed by
non-growing biomass or by biomass growing on another substrate than the
test compound [26]. In the latter situation, the maximum reaction rate vmax

varies and is equal to k Et(t), where Et is the total amount of enzyme/biomass
and k the rate constant. Degradation by growing cells and by non-growing
cells is obtained by the summation of the Monod and Michaelis-Menten equa-
tions [28]. Growing biomass degrade the compound according to the Monod
equations, and non-growing cells according to the Michaelis-Menten equation.
Michaelis-Menten and Monod kinetics result in the same kinetics when bio-
mass growth is negligible.

Monod originally devised his equation to describe the growth of a sin-
gle species with a constant yield on a single growth-limiting substrate [14].
The Monod model assumes negligible maintenance and a constant yield fac-
tor. Moreover, it also presupposes a constant biomass composition. The use
of Monod kinetics may be criticized, because degradation is usually carried
out by a consortium consuming a variety of substrates [18]. However, Simkins
and Alexander [25] have shown by curve fitting that the model describes mixed
culture growth in a number of cases.

Biodegradation rates are calculated from the test results by using Monod
kinetics or simplifications of Monod kinetics, resulting in first or zero-order
kinetics. First order kinetics ( d S

dt = −kS) results if biomass formation is negli-
gible and S � Ks ; zero order kinetics ( d S

dt = −k) results if biomass formation
is negligible and S � Ks . Thus, first order kinetics should only be used if the
growth is negligible and adaptation is absent, which implies low (test)substrate
concentrations and a short incubation time.

Simkins and Alexander [25] formulate different kinetic expressions that
can be applied in biodegradation (see also [1, 2]):

• logarithmic or exponential (small inoculum, S � K s).

• zero-order (no significant growth, S � Ks).

• first order (constant biomass concentration, substrate limitation: thus,
S � Ks).

• Monod kinetics (with or without growth).

• logistic growth (low biomass and substrate concentration: rate falls with
diminishing and always limiting substrate).
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Basically, Monod (or logistic degradation) is assumed, which changes to a first
order process at low substrate concentration.

1.3.2 Other types of kinetics

Haldane kinetics

For Monod growth on inhibitory substrates, Haldane’s equation [8] has been
used [10]. The Haldane expression originally added an inhibition term to the
Michaelis-Menten expression. Later, Andrews [3] used the expression to de-
scribe the consumption of inhibitory substrates as phenol by bacteria.

µ = µmax
S

S + Ks + S2/Ki

The curve of the specific growth rate µ as a function of the substrate con-
centration S has a maximum, from which µ decreases with increasing substrate
concentration. If the inhibition constant K i is very large, the model reduces to
the Monod model.

First order kinetics

First order kinetics is used when the test chemical concentration is low com-
pared to initial biomass concentration. When ThCO2 is measured, the first
order equation can be used to describe the carbon dioxide production [11, 13]

P(t) = P∞
(

1 − e−k1(t−tlag)
)

for t ≥ tlag

P = CO2 production

P∞ = asymptote of CO2 production

tlag = lag time

k1 = first order degradation constant

It has been argued that the use of first order kinetics may be validated
by using a range of substrate concentrations [17]. If the rate constant does
not vary over a 10-fold concentration range (e.g., 5–50 µg/l), the chemical
is believed to be degraded according to a first order process [17]. Indeed,
the rate of mineralization of a number of organic compounds in samples of
fresh water is directly proportional to their concentration over a wide range of
concentrations [1].
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Logistic kinetics

Larson [11, 13] used a logistic function to fit CO2 production data. The logistic
function has been extended with an empirical constant n, converting the stan-
dard logistic function into a more flexible logist. This improves the fits, but the
introduction of n is not based any biological mechanism. The inflection point
of the curve is no longer located at a/2, but may be at a smaller or larger value
depending on the value of n. The intrinsic growth rate has become a function
of n (intrinsic growth rate = k1/n).

y(t) = a(1 − b e−k1t)−1/n

y = cumulative % ThCO2

a = asymptote of curve % ThCO2

k1 = rate constant (day−1)

n = ‘empirical constant’

b = ‘coordinate scaling factor’

This function is known as the generalized logist or the n-logist. It can also be
written as:

d

dt
y = k1

n
y
(

1 −
( y

a

)n)

with y(0) = y0

y(t) = a

(

1 −
{

1 −
(

a

y0

)n}

e−k1 t

)−1/n

Thus, b equals 1− (a/y0)
n . However, the meaning of b is unclear. Larson [13]

states that this coordinate scaling factor equals unity in singe-dose batch ex-
periments. However, in that case y(t) becomes undefined at time zero (for
n > 0).

3/2 order kinetics

The 3/2 order model is a combination of zero and first order elements to de-
scribe linear and exponential degradation (in time). It has been used by, for
example, Shimp and Larson [24]:

P(t) = P0(1 − e−k1t) + k0t

P = % 14C-labeled material mineralized

P0 = % 14C-labeled material converted to 14CO2 during first order
degradation

k1 = first order degradation rate constant (day−1)

k0 = zero order rate constant (% 14C day−1)
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These authors claimed that “this model consistently provided the best fits to
the experimental data [24].” The zero order rate constant may represent either
the liberation of incorporated label from biomass or “the rate at which sorbed
chemicals are desorbed and become available for degradation [24].”

1.4 Relevant processes in biodegradation

Pollution problems have occurred with, for example, pesticides and detergents
that are not biodegradable and consequently accumulated in the environment.
Therefore, we currently test a number of properties of a chemical. However,
biodegradability is not an intrinsic feature of the chemical, as it also depends
on specific environmental conditions, such as the pH and the chemical com-
position of the soil. Availability of the chemical to microbes, biomass concen-
tration, and microbial diversity are also key factors determining the extent of
degradation.

As pointed out by Alexander [1], the occurrence, kinetics, and products of
microbial transformation observed at the high substrate concentrations used in
tests, cannot simply be extrapolated to the low substrate concentrations found
in nature. At low substrate concentrations, non-growing eutrophic or grow-
ing oligotrophic species may be responsible for biodegradation of the chem-
ical. Some chemicals may be mineralized at trace level concentration, but
co-metabolized at higher concentrations. Furthermore, high substrate concen-
trations as used in the ready biodegradability test can be toxic to microorgan-
isms. This is exemplified by triclosan, a bacteriostatic compound used in tooth-
paste. It does not pass a ready test and therefore does not classify as readily
biodegradable, but it is degraded rapidly at environmentally relevant concen-
trations (µg/l, pers. comm. T. Federle, P&G). However, low concentrations
do not guarantee biodegradation either. A threshold concentration may exist
below which certain molecules are not converted to CO2 [1]. The existence
of such threshold concentrations may be the reason for the persistence of low
levels of biodegradable organic substances in natural environments. To under-
stand threshold concentrations, maintenance requirements for growth, enzyme
induction and enzyme activity, and the use of substrate mixtures have to be
understood [1].

The length of the lag period and the rate of degradation are influenced by
various processes, such as mass-transfer, co-metabolism, and adaptation. The
adaptation of activated sludge to the test chemical can often be explained by
the growth of competent degrading microorganisms. It can also be explained
by the induction of enzymes, transfer of genetic material or development of
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tolerance to toxicity [18].

1.5 Modeling biodegradation

At the moment biodegradation modeling tends to be a bit ad hoc, as exempli-
fied by the number of models in the section on kinetic models above. After the
test results are known a model is chosen; alternatively a model is selected that
provides the best fit. For a thorough analysis of biodegradation tests, a number
of complete data sets are needed. However, due to the pass/fail nature of the
ready tests, these data sets generally contain a small number of measurements.
Two or three measurements may be enough to determine a pass or fail, but are
not enough for kinetic modeling. In addition, most data sets on chemicals are
publicly available.

The need for kinetic modeling has been acknowledged, however. The
1997 SETAC report on biodegradation kinetics [9] stated that more ‘kinetic
data’ is needed to assess biodegradability. A problem with modeling biodeg-
radation from a process point of view is the lack of biomass data. Generally,
only the substrate concentration is measured as a function of time, whereas lit-
tle is known about the microorganisms responsible for substrate consumption
and about the mass balances, for instance. However, knowledge on biomass
and mass balances is required to figure out what the bacteria do with the test
chemicals. The size and viability of the inoculum, the percentage of specific
degraders and their specific growth rate have a significant influence on the bio-
degradation rate. Nowadays, biomass itself is receiving more attention [6].
The concentration of specific degraders in activated sludge or in a biodegrada-
tion test can be measured with quantitative PCR (AstraZeneca, data classified),
microautoradiography [15], or flow cytometry [29].

As stated before, various processes are believed to be important in bio-
degradation modeling: mass-transfer limitation, adaptation, co-metabolism,
maintenance and decay, toxicity, and sorption-desorption kinetics. Within this
project a number of these processes were chosen for further study because of
their importance in biodegradation tests: mass-transfer limitation (Chapter 3),
multiple substrate utilization and co-metabolism (Chapter 4), and adaptation
(Chapter 5). In the context of the complex nature of biodegradation testing
these models must be seen as a development towards understanding some of
the processes that take place. Understanding these processes is a step towards
understanding what is going on in a biodegradation test.
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1.6 Abbreviations

COD Chemical Oxygen Demand
DOC Dissolved Organic Carbon
EEC European Economic Community
EMPA Eidgenössische Materialprüfungs- und Forschungsanstalt
EPA Environmental Protection Agency, USA
MITI Ministry of International Trade and Industry, Japan
OECD Organization for Economic Co-operation and Development
P&G Procter & Gamble
PCR Polymerase Chain Reaction
SCAS Semi-Continuous Activated Sludge Test
SRT Sludge Retention Time
SS Suspended Solids
ThCO2 Theoretical CO2 production
ThOD Theoretical Oxygen Demand
WWTP Waste Water Treatment Plant
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2

The Dynamic Energy Budget
theory

2.1 Introduction

The Dynamic Energy Budget (DEB) theory provides rules for uptake and use
of energy by organisms. It exploits conservation laws and stoichiometric con-
straints. Energy and mass fluxes through the organisms and their surroundings
are central in the DEB framework. As this theory focuses on the similarities
between organisms rather than on the differences, it applies to a wide variety
of organisms, including animals, plants, and microorganisms. In the following
chapters, the DEB model is used to describe the growth of microorganisms.
Below the DEB theory is briefly introduced.

2.2 The DEB theory

Individuals are the starting point in the DEB theory. They can consume nu-
trients, grow, and reproduce. To introduce the main issues of the DEB model,
I explain the processes of substrate uptake and use. Substrate is conceived as
material that bears energy. Generally substrate refers to one growth-limiting
nutrient. Clearly, the substrate uptake rate is dependent on the size or volume
of an individual. In relation to nutrient uptake, we can make the following
observations:

• Nutrient uptake does not always result in growth, because of the exis-
tence of maintenance. Moreover, organisms can survive short periods
without nutrients.

• Individuals react slowly to changes in their feeding conditions.

17
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• Well-fed individuals show a different chemical composition than poor-
fed individuals. Thus, the chemical composition is a function of nutrient
consumption.

The DEB theory incorporates these observations by decomposing an individual
into ‘structural biomass’ and ‘reserve materials.’ The structural materials are
continuously degraded and reconstructed, whereas the reserves are used and
replenished. Three processes are central: assimilation, growth, and mainte-
nance. A microorganism takes up substrate at a rate proportional to its surface
area and assimilates it into reserves.

From the reserves an individual pays maintenance costs and growth costs.
The former are paid to maintain the integrity of a cell and to maintain gradients
across the cell membrane. These costs are assumed to be proportional to the
amount of structural biomass. The specific costs for growth are assumed to
be constant during an organism’s life. This implies that the structural biomass
has a constant chemical composition (‘strong homeostasis’). Strong home-
ostasis is also assumed for the reserves and, consequently, the specific weight
of the reserves (amount of reserves per volume of reserve) is constant. The
macro-chemical composition of the whole organism can vary, since the ratio
of structure and reserves can change.

Substrate uptake is proportional to a surface area and maintenance costs
are proportional to a volume. To facilitate surface-volume relationships, the
DEB theory deals with isomorphic organisms, which retain their shape during
growth. A population of isomorphic organisms can be modeled using struc-
tured population dynamics, where the state of each individual in the popula-
tion is a function of its reserves and structure. Often a microorganism can be
regarded as a filament: the surface area increases proportionally to the increase
in volume. The main advantage of modeling microorganisms as filaments is
that a population of filaments behaves in the same way as an individual. This
is a useful approximation for dividing organisms, which reset their volume
after a two-fold increase [6], even in the case where they change differently
in shape during growth. Thus, the theory of structured population dynamics
is not required to describe a population of microorganisms, which simplifies
the mathematics considerably. Indeed, it results in a population dynamics that
is unstructured (total structure and total reserves), rather than structured and
clearly gives an attractive simplicity at the population level.
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2.3 The DEB theory for microorganisms

Although the DEB theory applies to a wide range of organisms, the equa-
tions presented in this section are valid for microorganisms and filamentous
organisms only, since the simplification for unstructured population dynamics
explained above is used.

The symbols used in the DEB theory differ from those a microbiologist
or process engineer is used to. This is because the DEB theory encompasses
much more than growth of (micro)organisms. In addition to the growth pro-
cess, also life cycles, body-size scaling relationships, ageing, and food webs
are described within the DEB theory. This calls for a uniform and consistent
notation. For example in the literature, D denotes a diffusion coefficient or a
dilution rate and µ denotes a growth rate or a chemical potential. To prevent
misunderstandings, Kooijman [7] has chosen an alternative notation. This no-
tation is defined as follows: the symbol set contains a number of root symbols,
where each root symbol corresponds to a specific dimension. Subscripts pro-
vide additional information about the processes and the compounds involved.
The following examples illustrate the use of the symbols:

• J represents a flux (or rate) in mol/time. For organic compounds the di-
mension is C-mol/time. A subscript, generally consisting of two letters,
specifies J : the first letter in the subscript refers to a compound; the sec-
ond indicates the process associated with the flux. For example, S refers
to a certain substrate and A refers to the assimilation process. Thus JS A

is the assimilation flux of substrate (or the substrate consumption rate).
In engineering JS A is often known as rs .

• j represents a specific flux with dimension C-mol/(C-mol time). In en-
gineering, the specific substrate consumption rate, jS A, is generally de-
noted by qs .
The symbol jE M is the specific flux ( j ) of reserves (E) involved in the
maintenance (M) process.

• y denotes a stoichiometric constant or mass-mass coupler. The effi-
ciency of a transformation of A into B is given by yB A in C-mol B per
C-mol A. The transformation of B into A then has an efficiency y AB ,
where yAB is equal to y−1

B A. In contrast to the biomass yield factor, the
parameters yik are real constants.

Below the DEB model equations are given. I start with the uptake of nutrients
and, then, describe the assimilation process and reserve dynamics, leading to
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the growth equation. The equation for the uptake of a growth limiting nutrient
is equivalent to the equation for nutrient consumption in the Monod and Pirt
models. The consumption rate is a hyperbolic function of the nutrient concen-
tration (S), of the specific maximum consumption rate ( jS Am), and of the the
amount of structural biomass (X ):

JS A = jS Am f X with f
def=

S

S + K
(2.1)

where f is the scaled functional response. The substrate is converted into re-
serves during the assimilation process with a fixed conversion efficiency y E S .
Thus, the specific production flux of reserves jE A equals yE S jS A. The change
in the amount of reserves is a function of the input and of the energy require-
ments of the different cellular processes. The dynamics of the reserve density
(C-mol reserves per C-mol structure, m E ) are first order for a number of rea-
sons, which are explained in detail elsewhere [7]. This results in:

d

dt
mE = jE A − kE mE (2.2)

where kE denotes the reserve turnover rate. The first term of the equation above
corresponds to the assimilation of substrate into reserves. Remember that j E A

equals yE S jS A. The equation for reserve dynamics may be scaled with the
maximum reserve density m Em , which equals jE Am/kE . This scaling yields:

d

dt
e = kE( f − e)

where kE equals jS Am yE S/mEm and e = mE/mEm .
The reserves are used to carry out cellular processes (Figure 2.1). The

catabolic flux (or reserve utilization rate) is denoted by JEC . The change in
the amount of reserves is the difference between the assimilation flux and the
catabolic flux. In mathematical terms this means:

d

dt
ME = JE A − JEC

or

JEC = JE A −
d

dt
(mE X) = JE A − X

d

dt
mE − mE

d

dt
X (2.3)

The catabolic flux is allocated to growth and maintenance. The costs for
growth are proportional to the change in structural biomass and, as explained
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Substrate

Reserves

Structural Biomass Growth
Maintenance

assimilation, jE A

utilization, jEG + jE M

Figure 2.1: Overview of the fluxes in the DEB model for microorganisms.
Substrates are converted into reserves and added to the reserve pool (as-
similation, jE A). The reserves are used for maintenance ( jE M ) and growth
( jEG).

in the previous section, the costs for maintenance are proportional to structural
biomass. Thus, the catabolic flux can be written as:

JEC = yEV
d

dt
X + jE M X (2.4)

where yEV is the specific cost for growth and jE M the specific maintenance flux
(dimensions C-mol reserve/C-mol structure and C-mol reserve/(C-mol struc-
ture time), respectively). The specific catabolic flux is jEC = yEV r + jE M ,
with r the specific growth rate. Using equations (2.2), (2.3), and (2.4), we
deduce the expression for the specific growth rate:

r =
1

X

d

dt
X =

kE mE − jE M

mE + yEV
(2.5)

The specific maintenance flux (or maintenance-associated specific reserve con-
sumption jE M ) has dimension C-mol reserve per C-mol structural biomass per
time. Within the DEB theory, maintenance requirements are often expressed
as the maintenance rate coefficient kM with dimension t−1, while jE M equals
kM yEV .

The basic unstructured DEB model for microbial growth is now complete.
Equations (2.1), (2.2), and (2.5) define substrate uptake, reserve dynamics,
and change in structural biomass. However, in experiments only total-biomass
weight, the sum of structure and reserves, is measured. The total weight
equals:

W = wV X + wE mE X

The conversion from C-moles to grams is made with molar weights wV (g/C-
mol structure) and wE (g/C-mol reserve).
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2.4 Comparison of the DEB model with the Monod
and Pirt models

2.4.1 Comparison of the model frameworks

In microbiology and process engineering, biomass growth is often described
with the Monod model. If a constant yield factor cannot be assumed and main-
tenance is important, the Pirt model is used instead. Sometimes reserves are
important and are, therefore, included in a growth model. This may result in
models where reserve dynamics is not fully integrated into the dynamics of the
whole system. There may be several reasons to use the DEB model instead
of the Monod or Pirt model. However, microorganisms are not the only or-
ganisms, and one may wonder if there is a fundamental difference in substrate
uptake and use between microorganisms and other organisms that justifies the
utilization of different models in different situations. A positive answer to this
question implies that a boundary between microorganisms and other organisms
must and can be defined. Within the DEB theory, there is no such fundamental
difference among organisms, since all organisms share a lot of their metabolic
features. All organisms take up a limiting nutrient and posses some sort of re-
serves. It is easily accepted that animals (or higher organisms) posses reserves,
but why would microorganisms not posses reserves. The contribution of the
DEB theory is that it is able to describe growth of a population of microor-
ganisms, but also to describe the growth of an animal. In a way, this does not
come as a surprise since microorganisms as a group are much more versatile
than animals.

A microbiologist may wonder why to use the DEB model, since it looks
somewhat more complex than, for instance, the Monod model. A few remarks
can be made. First, organisms are not really different, focusing on energetics.
However, for modeling batch growth of microorganisms the Monod model is
used, for modeling chemostats with different dilution rates the Pirt model is
used and for modeling growth of animals the Von Bertalanffy model is used.
Clearly, also microorganisms have maintenance requirements. They consume
substrate and maintain their cellular structure by rebuilding proteins. Thus any
growth model should include maintenance. Reserves seem more complicated.
However, when reserves are needed, for example in describing growth of algal
or phosphate accumulating microorganisms, they are incorporated. Further-
more, a modeler should notice that cellular composition changes, for example,
in function of the available nutrients or the growth rate. Although the Monod
and Pirt models implicitly assume that the biomass composition is constant and
do not allow (significant) changes in cellular composition they are often used in
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situations where the composition changes (pers. comm. S.A.L.M. Kooijman).

As explained in the previous section, the DEB theory starts with a frame-
work where reserves play a central role (Figure 2.1). This means that biomass
composition is a function of the amount of reserves and that the change of
composition can be described. Furthermore, maintenance has a more natural
role than in other models. According to the Pirt model, lack of substrate di-
rectly results in death of biomass. In the DEB model the reserves are drawn
on during a short interruption in assimilation, which has a more direct link
with biochemical processes. The presence of reserves is indeed the main dif-
ference between DEB and other microbiological growth models, such as the
Monod [9], Herbert [5], Marr [8], and Pirt [11] models.

Sometimes there may be a reason to use, for example, the Monod model to
describe growth of bacteria instead of the DEB model. Lack of data generally
is such a reason. However, it makes sense to keep using the DEB framework
and make assumptions on parameter values to arrive at the Monod equations.
Furthermore, within the DEB framework additional reserve pools can be added
straightforwardly, preventing ad hoc modeling of reserve pools. For example,
at low growth rates microorganisms can generate reserves from non-limiting
nutrients. An increase in the limiting reserve density results in an increase in
the growth rate. The non-limiting reserve density decreases with increasing
growth rate, however.

The DEB framework account for both maintenance and reserves, and em-
braces the Monod and Pirt models. If reserve dynamics is excluded from equa-
tion (2.3), the Pirt model appears. Alternatively, if reserve turnover is very fast
or if the maximum reserve density is very small, reserves are virtually ab-
sent and the change in reserve density remains zero. This can be seen from
d
dt mE = jE A − kE m∗

E , which gives a steady state for m∗
E = jS Am yE S f /kE and

m∗
E approaches zero. Substituting this expression into equation (2.5) yields the

Pirt growth equation:

d

dt
X = ( jS Am yV S f − kM) X

where yV S = yE S/yEV is the so-called true or maximum yield and jS Am yV S

is the maximum specific growth rate, when maintenance is zero. As with the
Pirt model, this growth rate can be rewritten to really represent the maximum
observable specific growth rate. The specific maintenance is represented by
the maintenance rate coefficient kM , which equals jE M/yEV . If maintenance is
negligible, the Monod growth equation results.
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Figure 2.2: The importance of reserves in the potassium limited growth of
E. coli (data from [10]). Growth (•) continues for about five hours after the
depletion of potassium ( � ).

2.4.2 The influence of reserves

Within the DEB framework reserves are important and for higher organisms
the importance of reserves is generally clear. However, reserves of limiting nu-
trients can also significantly affect growth dynamics of microorganisms. Potas-
sium limited growth of Escherichia coli (Figure 2.2) exemplifies the influence
of reserves well. Growth continues after the depletion of the growth-limiting
substrate and most of the biomass is even produced from the reserves.

As explained above, the DEB model assumes first order dynamics on the
basis of densities. Beun [1] obtained empirical support for this. The poly-β-
hydroxybutyrate density in aerobic activated sludge decays exponentially, as
shown in Figure 2.3.

Algae are known for their carbohydrate or phosphate reserves. Growth
of algae can be modeled with the Droop model [3], in which the growth rate
depends on the intracellular ‘cell quota.’ Button [2] found that “for phosphate-
limited continuous culture of Rhodotorula rubra there was a monotonic in-
crease in the concentration of cytoplasmic phosphate with both a net rate of
phosphate uptake and a unidirectional inward flux of phosphate.” He used this
finding to construct whole cell uptake kinetics, combining kinetics of trans-
port into cytoplasm and kinetics of use from the cytoplasmic pool [2], and ap-
plied it to oligotrophic bacteria. Since in this model both uptake and use obey
Michaelis-Menten kinetics, the existence of a steady-state depends highly on
the parameter values (vmax and K ). The DEB reserve dynamics does not suffer
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Figure 2.3: Exponential decay of poly-β-hydroxybutyrate density in aero-
bic activated sludge at 20◦C as a function of time. The rate constant equals
0.15 h−1 (data and fit from [1]).

from this and predicts the behavior observed by Button. Figure 2.4 illustrates a
monotonic relationship between the (total) uptake rate and the reserve density
according to the DEB model. In steady state, the reserve density, m E equals
jS Am yE S f /kE (equation 2.2). The use of the reserves (inward flux) is propor-
tional to the amount of reserves (see equation 2.2).

2.4.3 Comparison of the model parameters

Most people are familiar with the Monod and Pirt models and their parameters.
The equations of these models can be written in the new symbol set as shown
above. The maximum specific growth rate (rmax ) is equal to the product of the
biomass yield and the specific substrate consumption rate. The DEB model
does not use the yield factor itself because it never is constant, but rather a ratio
of two fluxes ( d X/dt

d S/dt = r
jS Am f ). However, the Monod or Pirt yield expression

can be given.

• The Monod yield factor (or true yield) Y equals yV S = yE S
yEV

.

• The yield expression for the Pirt model is Y = jS Am yV S f −kM
jS Am f , which can

be rewritten to obtain 1
Y = kM

yV Sr − 1
yV S

. The true yield is denoted by

yV S , the specific maintenance by kM
yV S

(C-mol substrate / (C-mol biomass
time)), and the growth rate by r . The expression above is often written
as 1

Y = m
µ

+ 1
Ymax

, where m is equal to kM
yV S

.
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Figure 2.4: The reserve density is proportional to the uptake rate in a steady
state chemostat. Parameter values: K = 0.01 C-mol/l, kE = 1 h−1, kM =
0.01 h−1, yEV = 0.8 C-mol/C-mol, yE S = 0.8 C-mol/C-mol, Sfeed = 2
C-mol/h; jS Am = 2 C-mol/(C-mol h).

• For the DEB model two yields can be defined: the yield of structural bio-
mass and the yield of total biomass, which includes the reserves (yield
in gram/C-mol substrate). The yield of total biomass is given by:

(mEwE + wV ) (kE mE − kM yEV )

jS Am f (mE + yEV )

If reserves and maintenance or reserves only are neglected, this expres-
sion reduces to the Monod or Pirt yields, respectively.

As illustrated above, the classic Monod and Pirt parameters can be expressed
in terms of DEB parameters. The DEB model has more parameters than the
Pirt model since it includes reserve dynamics. As stated in the previous sub-
sections, this allows for several phenomena that the Monod and Pirt model do
not account for.

2.5 Application to anaerobic ammonium oxidation

This section applies the DEB theory to anaerobic ammonium oxidation. First
anaerobic ammonium oxidation is introduced. Then the overall stoichiometry
of this process is taken apart into different DEB reactions. These reactions have
a constant reaction stoichiometry, whereas the overall stoichiometry depends
on the growth conditions. After the calculation of the stoichiometry of the DEB
reactions, the overall stoichiometry at different growth rates is calculated.
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2.5.1 Anaerobic ammonium oxidation

Anaerobic ammonium oxidation, or anammox, has been discovered in 1985 in
a denitrifying pilot plant at Gist Brocades [12, p28] and involves the oxidation
of ammonium with nitrite as electron acceptor. The reaction is carried out by
a chemolitho-autotrophic planctomycete (Brocadia anammoxidans) [13]. This
microorganism produces the reduction equivalents that it needs for the carbon
dioxide fixation via the oxidation of nitrite to nitrate. In this reaction nitrite is
used as electron donor. The reactions of ammonium oxidation, carbon fixation,
and biomass growth are shown in Table 2.1. Although nitrite is needed as
electron donor and acceptor, it is also a toxic substrate: concentrations higher
than 10 mM are suboptimal and growth is inhibited at concentrations higher
than 20 mM [12].

Below the macroscopic reaction of the anammox process is delineated into
five DEB fluxes and consequences of growth and maintenance rates are an-
alyzed. Although the degree of enrichment of the anammox population sta-
bilized at 74% [12], the example below treats the anammox culture as pure,
which is in growing in a steady state. It is unclear why the culture stabilized
at 74% and what the function of the other 26% is [12]. The presence of other
biomass is probably due to cryptic growth and the entrance of small quanti-
ties of organic carbon and sulfide into the reactor (pers. comm. M.C.M. van
Loosdrecht).

2.5.2 Anammox reactions

The macroscopic reaction of overall biomass growth is not an ordinary chem-
ical reaction, since its stoichiometry highly depends on the culture conditions
and substrate availability, for example. The stoichiometric coefficients, or
yields, are therefore not constant. This macroscopic reaction is delineated into
five reactions with constant coefficients below.

The DEB model describes three main fluxes: assimilation, maintenance,
and growth. Both the assimilation process and the growth process can be split
into a catabolic and anabolic part, where the catabolic part can be regarded as
overhead costs. These reactions have constant yield coefficients. It is possible
to delineate the macroscopic stoichiometry with some additional knowledge:
(i) dinitrogen gas is formed from ammonia nitrogen and nitrite nitrogen, and
(ii) nitrogen in biomass comes from ammonium. The chemical coefficients are
denoted as Yi j , which are defined as ratios of fluxes. Thus Yi j is negative if one
of the compounds disappears and the other appears. Table 2.2 gives the five
reactions and chemical indices of the nine involved compounds. The specific
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Table 2.1: Reactions involved in the anaerobic ammonium oxidation.

Energy generation:

NH+
4 + NO−

2 → N2 + 2 H2O

Carbon fixation:

CO2 + 2 NO−
2 + H2O → CH2O + 2 NO−

3

Overall growth:

1 NH+
4 + 1.32 NO−

2 + 0.066 HCO−
3 + 0.13 H+ →

1.02 N2 + 0.26 NO−
3 + 0.066 CH2O0.5N0.15 + 2.03 H2O

rates of each reaction are taken positive. The reactions for maintenance and for
the catabolic part of growth are taken equal, since both processes burn reserves.

If Y denotes the matrix of yield coefficients and n denotes the matrix of
chemical indices of the compounds, then the unknown yield coefficients can
be calculated using the conservation law for the elements and charge: nY = 0.
This gives the yield coefficients as functions of the composition of structure
and reserves. The specific rates of assimilation, maintenance, and growth are
jE A, jE M , and jEG , respectively. The specific substrate uptake rate jS A equals
yS E jE A. The flux of reserves associated with growth is jEG = yV Er . The
catabolic and anabolic assimilation in Table 2.2 contain the composition pa-
rameter n N E . This parameter appears in these fluxes because the stoichiom-
etry of the corresponding reactions has been normalized with respect to the
substrate NH3 (i.e., the value of the stoichiometric coefficient of NH3 has been
set to 1).

While the yield matrix Y is now known, the specific rates are not, because
they depend on the DEB parameter values. When k denotes the vector of
specific rates given in Table 2.2, the specific fluxes of the nine compounds are
given by Yk. With additional data about these fluxes, the DEB parameters can
be estimated.

Strous [12] determined the macroscopic stoichiometry of the anammox
process in a sequencing batch reactor under nitrite limitation in the presence
of 5 mM ammonium and nitrate as well as the biomass composition. This
information can be used to calculate some of the DEB fluxes. The vector of
the compound-specific fluxes is denoted j (see Table 2.2):

j = ( jC , jH1, jH , jS, jN , jN3, jN5, jE , jV )T
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The production flux of reserves, jE , equals jW jE A/( jE A + kE) and the produc-
tion flux of structural biomass, jV , is jW kE/( jE A + kE), where jW represents
the production flux of total biomass. For solving the system Yk = j, it is easier
to change k and replace (1 − yV E) jEG with jEG − r and yV E jEG with r . Fur-
thermore, the following relations are useful: jEC = jEG + jE M , r = yV E jEG ,
jE M = yEV kM . The system is solved using mass balances for the macroscopic
reaction:

0 = jC + jW C balance

0 = jC + jH1 + 2 jH + 3 jS + jW n H W H balance

0 = 3 jC + jH + 2 jN3 + 3 jN5 + jW nOW O balance

0 = jS + 2 jN + jN3 + jN5 + jW nN W N balance

0 = − jC + jH1 − jN3 − jN5 charge balance

niW = niV + mE ni E

1 + mE
for i ∈ {C, H, O, N}

where mE equals jE A/kE . The chemical composition of the biomass is a func-
tion of the constant composition of both reserves and structure and can be
written as n iW = niV +mE niE

1+mE
for chemical element i . The system above pro-

vides yS E , n H V , nOV , nN V , nO E , jE A, and jEG as functions of kE , jW , and the
composition of reserves, structure, and total biomass.

Measurements of the total-biomass composition and the macroscopic re-
action give information on the amount of reserves and on the composition of
reserves and structure. Here, measurements at one growth rate are used and,
therefore, some parameter values cannot be obtained. The following exact sto-
ichiometry was constructed from the overall growth stoichiometry above:

1 NH+
4 + 1.32 NO−

2 + 0.0676 HCO−
3 + 0.128 H+ →

1.02513 N2 + 0.2596 NO−
3 + 0.0676 CH2O0.5N0.15 + 2.0302 H2O

The substrate consumption rate is approximately 0.021 mol NH3 per C-mol
biomass per hour and the growth rate approximately 1.4 10−3 h−1. The fol-
lowing parameters have been assigned a value: k E = 0.0127 h−1, yV E = 0.8
C-mol/C-mol, n H E = 2, nN E = 0.25. Indeed, the limiting (DEB) reserves are
proteinaceous and often the N content of the reserves is higher than that of
the structural biomass (cf. [4]). The other parameters, including those relating
to the composition of reserves and structure, are known from the overall stoi-
chiometry and the five DEB reactions. With the fixed and estimated parameter
values, the fluxes of the compounds, j, involved in the macroscopic growth
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reaction are expressed as a function of the growth rate. Figure 2.5 shows all
fluxes as functions of the growth rate.

The macroscopic reaction of the anammox process with non-constant co-
efficients was delineated into five DEB reactions with constant coefficients.
The use of catabolic and anabolic reactions for the assimilation and growth
is possible because the energy generating reaction is known and the catabolic
growth reaction equals the maintenance reaction. The stoichiometry of the
overall growth reaction consists of the five DEB reactions. As can be seen
in Table 2.2, ammonium is used in energy generation but also produced from
nitrite in the growth and maintenance processes. This means that in transient
situations, where the rate of ammonium oxidation is reduced, a nett production
of ammonium can take place.

The estimation of parameter values above assumes that steady-state growth
is possible and that the assimilation, maintenance, and growth reactions do not
change as a function of the nutrient concentrations or the growth rate. Given
these assumptions, the stoichiometry of the reactions at different growth rates
is known, as shown in Table 2.3. Furthermore, this table shows the differences
in total-biomass composition for different growth rates.
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Figure 2.5: The specific fluxes of the compounds as a function of the scaled
specific growth rate of the anammox bacteria. The maximum specific growth
rate is 0.003 h−1. Parameters: kE = 0.0127 h−1, kM = 0.000811 h−1,
yS E = 8.80, yV E = 0.8 C-mol/C-mol reserve. Composition parameters:
nH E = 2, nO E = 0.46, nN E = 0.25, nH V = 2, nOV = 0.51, nN V = 0.125.
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2.5.3 Alternative anammox reactions

Nitrite is used as electron acceptor in all five reactions above. During the
growth and maintenance processes described in Table 2.2 nitrite is reduced to
ammonium. Bacteria transform or burn reserve material, which results in a ni-
trogen waste flux. Most bacteria and animals produce ammonium during this
process and the oxidation of biomass itself also produces ammonium. Fur-
thermore, anammox produces one molecule dinitrogen gas from one molecule
ammonium and one molecule nitrite. The production of dinitrogen gas in other
reactions would bias the stoichiometry of N2 production, depending on the
relative values of the the five fluxes. The reasoning above underlies the stoi-
chiometry as presented in Table 2.2.

Discussions with Marc van Loosdrecht resulted in two different pathways
for these reactions. In this section extra knowledge on denitrifying bacteria is
used. Reduction of nitrite to ammonium seems unlikely, because the presence
of ammonium in the medium probably inhibits it. This leaves two alternative
reactions, which both (slightly) change the stoichiometry of dinitrogen forma-
tion. For the maintenance process all three possible reactions are:

CHnH E OnOE NnN E + a NO−
2 + b H2O → (a + nN E ) NH3 + HCO−

3 + c H+

CHnH E OnOE NnN E + a NO−
2 + b H2O → (a + nN E ) N2 + HCO−

3 + c H+

CHnH E OnOE NnN E + a NO−
2 + b H2O → a

2 N2 + nN E NH3 + HCO−
3 + c H+

The first reaction was used in the subsection above. The second reaction in-
volves the formation of dinitrogen gas from the reserve-nitrogen and nitrite.
Only anammox bacteria can carry out this transformation. Other denitrifyers
cannot produce dinitrogen from ammonium and nitrite, but reduce nitrite to
dinitrogen and reserve-nitrogen to ammonium.

With the alternative transformation, illustrated by the second reaction
above, a matrix similar to Table 2.2 was constructed (see Table 2.4). The
influences on the DEB fluxes were evaluated as before. Again, the overall sto-
ichiometry in combination with the five DEB fluxes provides information on
the composition of reserves and structure. In this case n H E and nO E had to
be fixed. These parameters have the same values as in the previous example.
This implies that the overall stoichiometry and the biomass composition hardly
change. Table 2.5 shows the results for the alternative reaction. The plots of
the fluxes as functions of the growth rate are very similar to Figure 2.5.
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Nomenclature

The following symbols are used for the dimensions: –, no dimension; t , time;
l , length; #, amount (number or mol).

Symbol Description Dimension
e scaled reserve density (m E/mEm) –
Jik flux of compound i in process k #t−1

JS A flux of substrate associated with assimilation #t−1

JE A flux of reserves associated with assimilation #t−1

JEC flux of reserves associated with catabolism #t−1

jik specific flux of compound i associated with process k ##−1t−1

jE structure-specific production flux of reserves ##−1t−1

jE A specific flux of reserves associated with assimilation ##−1t−1

jEG specific flux of reserves associated with growth ##−1t−1

jE M specific flux of reserves associated with maintenance ##−1t−1

jS A specific flux of substrate associated with assimilation ##−1t−1

jS Am maximum specific substrate assimilation flux (max. spe-
cific substrate consumption rate)

##−1t−1

jV structure-specific production flux of structure ##−1t−1

jW structure-specific production flux of total biomass ##−1t−1

kE reserve turnover rate t−1

kM maintenance rate coefficient t−1

mE molar reserve density ##−1

mEm maximum molar reserve density ##−1

ME amount of reserves #
nik number of atoms of element i present in compound k ##−1

r specific growth rate t−1

S substrate concentration #l−3

wV molar weight of structure m#−1

wE molar weight of reserves m#−1

X biomass concentration #l−3

yik stoichiometric coefficient (coupler): compound i needed
per compound k formed

##−1

yS E substrate needed per reserves formed ##−1

yEV reserves needed per structure formed ##−1

ySV substrate needed per structure formed ##−1
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Two parameters account for the
flocculated growth of microbes in
biodegradation assays

Abstract

Microbes in activated sludge tanks mostly occur in flocs rather than in
cell suspensions. Flocculation results in a limited supply of substrate to
the bacteria inside the flocs, which reduces the biodegradation rate of or-
ganic compounds by several orders of magnitude. This chapter presents
a simple two-parameter extension of growth models for cell suspensions
to account for the ensuing reduction of the degradation rate. The addi-
tional parameters represent floc size at division and diffusion length. The
biomass of small flocs initially increases exponentially at a rate equal to
that of cell suspensions. After this first phase, the growth rate gradually
decreases and finally the radius becomes a linear function of time. At
this time flocs are large and have a kernel of dead biomass. This kernel
arises when the substrate concentration decreases below the threshold
level at which cells are just able to pay their maintenance costs. We
deduce an explicit approximative expression for the interdivision time
of flocs, and thereby for the growth of flocculated microbial biomass at
constant substrate concentrations. The model reveals that the effect of
stirring on degradation rates occurs through a reduction of the floc size
at division. The results can be applied in realistic biodegradation quan-
tifications in activated sludge tanks as long as substrate concentrations
change slowly.
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3.1 Introduction

Biodegradation of household chemicals primarily takes place by activated
sludge in wastewater treatment plants (WWTPs). The quantification of this
biodegradation process is important in judging and developing household
chemicals.

A lot of data on biodegradation rates relate to free cell suspensions. How-
ever, it would not be realistic to use these rates for WWTPs, because most
biomass present in these systems is coagulated and only a thin outer layer of
the aggregates is metabolically active. This substantially reduces degradation
rates.

Microorganisms in activated sludge mainly exist in floccules (flocs). Floc-
culation depends on the ability of cells themselves to form flocs, on cell den-
sity, and on favorable hydrodynamic shear forces. Mixing regime and cell
density determine the collision frequency of cells and fragments, which, in
combination with a sticking probability, determines the rate of floc formation.

Floc sizes have a wide range in continuous activated sludge processes. For
instance, Knudson et al. (1982) observed flocs with sizes from 0.5 to 1000 µm,
with most of the flocs being smaller than 100 µm. In contrast, Zhang et al.
(1997) found that 77% of the flocs were larger than 100 µm. Sizes ranging
from 400 µm to 4 mm were also reported [10]. Flocs of brewers’ yeast during
fermentation were found ranging in size from 60 µm to 400 µm [18].

The average mass-transfer rate from the bulk fluid to individual bacteria
reduces with floc size. This results in a decrease in the biodegradation rate of
organic compounds of several orders of magnitude compared with that by cell
suspensions. Growth rates of cell suspensions cannot easily be used to predict
growth rates of flocs. However, such a prediction may help to link degradation
rates by flocs to those by cell suspensions.

In this chapter, we present a mathematical model for the growth of floc
suspensions in terms of that of free cell suspensions. In order to describe mass-
transfer and microbial activity, we assume a simple spherical floc geometry.
We use this floc growth model to analyze the biodegradation of compounds in
activated sludge, and show how the maximum floc size affects the degradation
rates.

The combination of diffusion-limited degradation and microbial floc
growth is new, to our knowledge, although rather complex models exist for
some of the underlying processes. Winkler (1981) and Du et al. (1996), for
instance, described the degradation by flocs, but did not account for growth.
Logan and Wilkinson (1991) used fractal geometry to describe the floc struc-
ture accurately; the fractal dimension of flocs has been found to be around
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2.5 [10, 16, 18, 21]. Zartarian et al. (1997) modeled the three-dimensional ac-
tivated sludge floc structure using ‘discrete smooth interpolation’ of digitized
microtome sections. Their method makes it possible to quantify size, surface
area, and volume of the floc. These rather detailed models of floc geometry
are too complex to be useful for implementation in a dynamic context, where
substrate concentration and biomass densities change simultaneously. The few
useful and scattered data on degradation do not contain information enough to
extract the large amount of required parameter values.

The combination of diffusion-limited uptake and growth also occurs in
tumor biology. Detailed quantitative and potentially useful descriptions have
been formulated in this field of related interest [3, 13, 19]. These models,
however, are too complex to be applied in degradation studies.

Substrate availability, advective, and diffusive transport are important fac-
tors influencing the induction of biodegradative pathways as well as the bio-
degradation of chemicals themselves [5]. An incorporation of these factors in
degradation studies would improve their realism.

Our aim is to study the reduction of mass-transfer rates due to the coagu-
lation of bacteria and its implications for both biodegradation rates and growth
rates. We clearly distinguish the different levels of organization: the individual
cells in a floc, the floc as a ‘super individual,’ and the population of flocs in a
reactor. The population model includes ‘birth and death’ of flocs. After dis-
integration of a floc, the fragments will start to form new aggregates or serve
as substrate for other microbes. Ciliates, for example, could attack individual
bacteria.

In the following sections we present a simplified model for diffusion-
limited growth of individual flocs. Thereafter, we evaluate the growth of floc-
culated microbial biomass in a reactor and the degradation of substrate accord-
ing to this model.

3.2 Approximative growth of flocs

The irregular floc structure is approximated by a sphere. This geometry de-
fines the relationship between the growth of active microbial biomass in the
outer shell of the floc and the generation of dead mass in the kernel. Although
the detailed growth of this idealized floc must be evaluated numerically (par-
tial differential equations), approximations can be given when a steady-state
substrate concentration profile builds up in the floc. Such a steady state can
be expected if growth is slow enough with respect to diffusive transport. We
take the volume-specific amount of biomass (mass/volume) within the floc to
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be constant, which entails that the floc expands if biomass increases.
Cells are assumed to die when they cannot pay their maintenance costs.

Hence, our approach to the growth of flocs involves a growth model for indi-
vidual cells that accounts for maintenance costs. The well-known Marr-Pirt
model [11, 14] provides the simplest way to take these costs into account. A
more realistic but also a somewhat more complex one is given by the Dynamic
Energy Budget theory, which is based on mechanistic rules for the uptake and
use of substrates by organisms [4, 9].

A spherical floc of radius L T (t) has a volume of VT (t) = 4
3π LT (t)3. Let

L M denote the maximum thickness of the living layer (Figure 3.1). Index M
relates to the fact that living mass requires maintenance. For a floc without
a dead kernel LT ≤ L M holds. In this case we assume that a floc grows
exponentially at rate r , thus:

dVT

dt
= r VT (3.1)

However, when the floc consists of a dead core and an outer living layer, the
following equation gives the change in total volume:

d

dt
VT (t) =

d

dt
[VM(t) + V†(t)] = r VM(t) (3.2)

where VM and V† denote the volume of living and dead biomass, respectively.
Living volume relates to total floc radius as:

VM(t)=
4

3
π
[

LT (t)3 − (LT (t) − L M)3] = 4π
[

LT (t)2L M − LT (t)L2
M +

L3
M

3

]

Furthermore, from the fact that the dead kernel has a radius L T − L M , it is easy
to deduce:

dV†

dt
= 4π(LT − L M)2 d LT

dt

Substitution of the expressions for VT (t) and VM(t) in the differential equa-
tions (3.1) and (3.2) leads to the equation describing the change in floc radius:

d

dt
LT =







r
3 LT for LT ≤ L M

r L M

(

1 − L M
LT

+ L2
M

3L2
T

)

for LT > L M
(3.3)

For a floc without a dead kernel, we have L T ≤ L M . The thickness of
the living layer increases up to its maximum value, L M , which is associated
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L M

LT L†

Figure 3.1: Length indications of a floc. LT : total radius. L M : maximum
thickness of the living layer. L†: radius of the dead kernel.

with a given substrate concentration in the environment. The floc continues
to grow; thus, LT still increases and a dead kernel appears. For L T � L M ,
the growth rate of floc radius becomes constant, that is, the cube root of floc
volume increases linearly with time. This has been known for a long time [2],
and also applies to tumors [12, 17], and mammalian fetuses [7, 9], for the same
reason: mass exchange between a (living) structure and its environment occurs
across its surface area.

When a floc develops an increasing dead kernel, it eventually becomes
mechanically unstable and falls apart. This event depends on turbulent shear
forces and on the size and porosity of the floc [15, 18]. The porosity generally
changes with size and thus with age of the floc. However, we refrain from
modeling these details and assume that the floc falls apart at a given volume Vd ,
which depends on environmental conditions. We denote the radius at division
as Ld .

At fragmentation of the floc, the dead material becomes suspended and
the living shell falls apart into n small flocs without a dead kernel (Figure 3.2).
We suppose that the living shell partitions into daughter flocs without changing
thickness, which implies that these newly formed flocs have a radius of L b =
1
2 L M for Ld ≥ L M (if Ld < L M , Lb = 1

2 Ld). The number of daughter flocs
per mother floc is thus:

n =







L3
d

L3
b

for L† = 0

8
L3

d−L3
†

L3
M

= 8
3L2

d−3Ld L M +L2
M

L2
M

for L† > 0.

The growth equation (3.3) can be solved explicitly for the interdivision
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Figure 3.2: Life cycle of a floc. The floc starts to grow with a diameter
equal to the maximum thickness of the living layer (Lb = 1

2 L M ), develops a
dead kernel (indicated in black) and disintegrates. The biomass in the living
layer is redistributed to new flocs.

time td of flocs. For l∗
d = Ld

L M
we obtain:

r td =















3 ln 2 for l∗
d ≤ 1

3 ln 2 − 1 + l∗
d − π

3
√

3
+ 1√

3
arctan

(√
3(2l∗

d − 1)

)

+ 1
2 ln

(

1 − 3l∗
d + 3l∗ 2

d

)

for l∗
d > 1

(3.4)

The values of r , L M (thus also of n, l∗
d and td ) depend on the substrate concen-

tration S. The specific growth rate of the floc population, r F , is given by:

rF(S) =
ln n(S)

td(S)
(3.5)

The equations above quantify the relationship between the specific growth
rate of flocs and that of free cells via the interdivision time:

rF(S)

r
=

ln n(S)

r td(S)
(3.6)
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Figure 3.3: The scaled specific growth rate of flocs ( rF
r ) as a function of its

scaled radius at division (l∗d = Ld
L M

). The specific growth rate of small flocs
equals the specific growth rate of suspended cells.

Figure 3.3 shows the ratio of rF to r as a function of the size at division l ∗
d .

Figure 3.4 shows the specific population growth rate r F as a function of the
scaled substrate concentration. The specific growth rate of suspended cells,
r , required to calculate rF , is given by the assumed cell growth model. In
the Appendix an expression for the growth rate of a floc is derived, using the
Dynamic Energy Budget theory to describe cell dynamics.

The maximum thickness of the living layer, which is needed to calculate
n, follows from a closer analysis of the substrate concentration profile in the
floc. This subject is addressed in the next section.

3.3 Steady-state substrate profiles

In this section we analyze the steady-state substrate profiles in a floc. We start
with introducing a number of parameters and equations. The analysis results
in an equation to calculate the maximum thickness of the living layer, L M .

A large floc of radius L T consists of a living layer of thickness L M around
a dead kernel of radius L†, that is, LT = L M + L†. Let S(L) denote the
substrate concentration along the radius of a sphere, where L = 0 corresponds
with the surface and L = L T (t) corresponds with the center of the sphere. Let
f (L) = S(L)

K+S(L)
be the scaled functional response, with saturation coefficient

K . The term functional response was originally conceived in ecology and
relates consumption rate to food density (e.g., Holling, 1959). We obtain a
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Figure 3.4: The specific growth rate of flocs as a function of the scaled bulk
substrate concentration. The numbers next to the curves indicate the length
at division as fraction of diffusion length. The specific growth rate of cells
according to the DEB theory is r = kE f −kM g

f +g (Appendix). The minimum

scaled substrate concentration s†, found by solving r = 0, equals kM
kE /g−kM

(with kE = 0.8 h−1, kM = 0.05 h−1, g = 1).

scaled functional response by dividing a functional response by its maximum
value. The function f defined above also appears in the Monod equations.
Within the floc, f (L) decreases from a relative high value at L = 0 to some
threshold value at the edge of the dead kernel. Inside the (increasing) dead
kernel the substrate concentration, and consequently the functional response,
is uniform.

The scaled functional response at the edge of the dead kernel is f† =
f (L M). At this position, the biomass can just pay its maintenance costs and
therefore the growth rate is zero. This means that the substrate assimilation
rate equals the maintenance rate. The scaled functional response multiplied
by the maximum assimilation rate yields the amount of energy which is taken
up. Thus, f† [pAm ] − [pM ] = 0, where [pAm ] is the volume-specific maximum
assimilation rate and [pM ] the volume-specific maintenance rate [9]. Hence,
the value of f† follows from solving r = 0, where r is the specific growth
rate of cells. The substrate concentration at the edge of the dead kernel is
S† = S(L M) = s† K , where s† = f†

1− f†
.

Now we are able to calculate the minimum substrate concentration that
is needed to support life. The position L M , where this concentration S† is
reached, is calculated from the substrate concentration profile. This is the
solution of equation (3.7), which describes the diffusion in a sphere. Since
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biomass takes up substrate, a consumption term ( f (L , t) jS Am X F ) is present in
this equation. The factor (L T − L)2 appears because the coordinate origin is
located on the surface of the sphere.

∂

∂t
S(L , t) =

D

(LT − L)2

∂

∂L

{

(LT − L)2 ∂

∂L
S(L , t)

}

− f (L , t) jS Am X F

(3.7)

X F denotes the biomass density in the floc (C-mol/volume), jS Am the max-
imum mass-specific substrate uptake rate for biomass, and D the substrate
diffusion coefficient. The initial condition S(L , 0) and the boundary condition
S(0, t) are assumed to be given. The derivative of the substrate concentration
with respect to L in the center of the floc or at the edge of the dead kernel is
zero; that is, ∂

∂L S(LT , t) = 0 or ∂
∂L S(L M, t) = 0.

Let the substrate concentration in the environment be constant and let
growth be slow with respect to the change in the substrate profile. Let L D

denote the ‘diffusion length,’

L D =

√

DK

jS Am X F
.

At steady state ∂
∂t S = 0 and S(L , t) is constant in time. In this case, sub-

stitution of the dimensionless scaled length l = L
L D

and the scaled functional

response f (l) = s(l)
s(l)+1 in equation (3.7) yields:

0 =
1

(lT − l)2

d

dl

{

(lT − l)2 ds

dl

}

− f (l) (3.8)

with boundary conditions s(0) = s0 and d
dl s(lM) = 0. The latter condition

results in s(lM ) = s† if lT > lM .
The steady-state substrate profile can be further simplified if (lT − l) �

2 d
dl s. This occurs, for instance, if the curvature of the floc surface is negligibly

small. Equation (3.8) then reduces to:

0 =
d2s

dl2
− f (l)

The implicit solutions for the profiles of the scaled substrate concentration (s)
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Figure 3.5: The profiles of scaled substrate concentration (s = S
K ) and

scaled functional response ( f = s
1+s ) in the floc for various choices of sub-

strate concentrations in the environment (with s† = 0).

and the scaled functional response ( f ) are:

l(s) =
1

√
2

∫ s0

s

dy
√

y − s† + ln 1+s†
1+y

l( f ) =
1

√
2

∫ f0

f

dz

(1 − z)2
√

z
1−z − f†

1− f†
+ ln 1−z

1− f†

This directly leads to the scaled maximum thickness of the living layer:

lM(s†) = 2−1/2
∫ s0

s†

{

y − s† + ln
1 + s†

1 + y

}−1/2

dy (3.9)

Figure 3.5 illustrates the s- and f -profiles. Figure 3.6 shows the scaled thick-
ness of the living layer lM as a function of the scaled substrate concentration.

In the present section we carried out a study of the concentration profile
inside the floc and obtained an expression for the maximum thickness of the
living layer, equation (3.9). The value of L M (= lM L D) is required in the pre-
vious section to calculate the interdivision time of flocs, equation (3.4), given
that r is the specific growth rate of cells. Nevertheless, a direct substitution of
L M into equation (3.4) gives an overestimation of the floc population growth
rate. This overestimation is due to the gradual decrease in the specific growth
rate of individual cells from the surface of the floc to the edge of the dead ker-
nel. The derivation of lM does not account for the decreasing curvature of the
growing floc, which gives rise to an error in the opposite direction.
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Figure 3.6: The relation between the scaled thickness of the living layer
and the scaled bulk substrate concentration. The minimum scaled substrate
concentration for support (s†) equals 0.1.

3.4 Reactor dynamics

The specific growth rate of flocculated microbial mass at substrate concen-
tration S, as given by equation (3.5), depends on the following parameters:
length at division Ld , diffusion length L D, and the parameters included in the
specific growth rate of cell suspensions (for the Marr-Pirt model: the substrate
to biomass conversion factor, ySV , the maintenance rate coefficient, kM , the
maximum mass-specific uptake rate, jS Am, and the saturation coefficient, K ).
This means that steady-state growth of flocs has two extra parameters com-
pared to that of cell suspensions. If we use the Marr-Pirt model for cellular
growth, the floc dynamics of a batch reactor amounts to:

d

dt
S = −ySV

(

d

dt
XV +

d

dt
XV †

)

− jS M XV

d

dt
XV = XV rF(S) (3.10)

d

dt
XV † = V†(td) − V†(tb)

VM(td) − VM(tb)

d

dt
XV =







(

Ld
L M

)3
− 2−3

( Ld
L M

− 1)3
− 1







−1

XV rF(S)

with XV and XV † the density of living and dead biomass, ySV the ratio of sub-
strate uptake to biomass production, and jS M the mass-specific maintenance
rate of biomass. The first equation in (3.10) represents the use of substrate.
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Substrate is going to the growth of biomass (first term) and to the maintenance
of living biomass (second term). The second equation represents the growth
of living biomass. The third equation describes the increase in dead biomass.
The production rate of dead biomass is proportional to the growth rate of living
biomass. The proportionality constant is the change in dead volume 1V† rela-
tive to the change in living volume 1VM during the floc life cycle. Remember
that the value of V†(tb) is zero in the present model.

The derivation of the relationship between the specific growth rate r F and
the substrate concentration only applies at steady state. We expect, however,
that the approximations are satisfactory as long as the medium-concentration
changes slowly. If the substrate concentration rises fast, and the thickness of
the living layer increases faster than the growth of the radius, a formal problem
of resurrection occurs. We expect this to be of minor quantitative significance
and the problem disappears if the kernel is dormant, rather than dead. The
situation of a rapidly rising substrate concentration can only occur at the start
of the experiment.

The present formulation includes neither the further degradation of dead
biomass nor the process of co-metabolism. The extension to a CSTR is
straightforward.

3.5 Discussion

Mass transfer into an organism takes place across its surface area. Organisms
can be classified on the basis of how surface areas that are involved in the up-
take of substrate change relative to volumes during growth. Surface area grows
proportional to volume0 in V0-morphs (such as biofilms), and proportional to
volume1 in V1-morphs (such as filaments). For V0-morphs this means that
surface area remains constant. Spherical flocs with a dead kernel represent a
dynamic mixture between a V1-morph and a V0-morph, with an increasing
weight on the latter during the division interval [9].

We illustrated floc dynamics with the simplest possible model for cellular
growth that takes maintenance into account. The Appendix shows how this
dynamics combines with more realistic models based on cellular physiology.

The gist of our contribution is that we use simple diffusion arguments to
reveal the relationship between substrate concentration and the thickness of
the living layer, and a simple geometry of flocs to quantify the deactivation of
microbial metabolism. Only two parameters appear to dominate the growth
process: the floc volume at fragmentation and the diffusion length. The first
parameter is affected by turbulence, thus by stirring. The latter parameter com-
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bines a number of properties of the microbes and the compound: the maximum
specific uptake rate, the saturation coefficient, the density of biomass in the
floc, and the diffusion rate of the compound through the floc, which depends
on the porosity of the living biomass. The set of equations (3.10) show how
one can account for growth of microbes in flocs and the occurrence of inactive
biomass in a very simple and yet mechanistically inspired way.

Although we are fully aware of the limitations of our idealizations, we
believe that this relatively simple model does capture the main features of the
effect of flocculation on microbial degradation of compounds. Our formulation
can be used to link degradation rates by cell suspensions to that by flocs, and
to quantify the effects of increased stirring (via a reduction of the floc size at
division).

Nomenclature

Quantities which are expressed per unit of biovolume have square brackets,
[ ]. The following symbols are used for the dimensions: –, no dimension; e,
energy; l , length; t , time; #, amount.

Symbol Description Dimension
D diffusion coefficient l2t−1

[E] energy density el−3

[EG] volume-specific costs of growth el−3

[Em] maximum energy density el−3

f (L) scaled functional response: S(L)
K+S(L)

–
f† scaled functional response at L = L M –
f average scaled functional response –
g energy investment ratio: [EG ]

[Em ] –

kE specific energy conductance: [pAm ]
[Em ] t−1

kM maintenance rate coefficient: [pM ]
[EG ] t−1

jS Am maximum mass-specific substrate uptake rate ##−1t−1

jS M mass-specific maintenance rate ##−1t−1

K saturation coefficient of scaled functional response #l−3

l∗d scaled radius at division: Ld
L M

–

lM scaled maximum thickness of living layer: L M
L D

–

lT scaled total radius of floc: LT
L D

–

Table continues on the next page.
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L D diffusion length:
√

DK
jS Am XF

l

Lb radius at birth l
Ld radius at division l
L M maximum thickness of living layer of floc l
LT total radius of floc l
L† radius of dead kernel of floc l
ME amount of reserves in living biomass #
ME† amount of reserves in dead biomass #
MV amount of living biomass in floc #
MV † amount of dead biomass in floc #
n number of daughters from a floc #
[pAm] volume-specific maximum assimilation rate el−3t−1

[pM] volume-specific maintenance rate el−3t−1

r specific (population) growth rate of cells t−1

rF specific (population) growth rate of flocs t−1

s scaled substrate concentration: S/K –
s† minimum substrate concentration for support –
S(L) substrate concentration at L #l−3

t time t
tb time at birth t
td interdivision time t
Vd volume at division l3

VM volume of living biomass l3

VT total volume of biomass l3

V† volume of dead biomass l3

X F amount of biomass / volume floc #l−3

XV structural biomass / volume #l−3

XV † dead biomass / volume #l−3

ySV substrate (S) needed per biomass (V ) formed ##−1

yS E substrate (S) needed per reserve (E) formed ##−1
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Appendix: Floc growth on the basis of Dynamic
Energy Budgets

The Marr-Pirt model for growth is attractively simple, but not very realistic.
A substantial increase in realism can be obtain on the basis of the Dynamic
Energy Budget (DEB) theory [9]. Here we derive the steady-state growth of
the floc radius, given that the growth of bacterial cells follows the DEB theory.

This theory delineates structural mass and reserves (mixtures of carbo-
hydrates, lipids, and proteins) as state variables; maintenance and growth of
structural mass are at the expense of reserves. The volume-specific main-
tenance rate [pM ] and volume-specific energy costs of growth [EG ] are as-
sumed to be constant. The reserve energy density (i.e., the ratio of reserve
energy to structural volume) follows first order dynamics, thus d

dt [E] =
[pAm ]

(

f − [E]
[Em ]

)

, where f is the scaled functional response and [p Am ] is the

volume-specific maximum assimilation rate of substrate into reserves.
The reserve dynamics implies that the reserve density of cells at steady

state is proportional to the functional response. The local substrate concentra-
tion and, therefore, the functional response decreases with increasing distance
from the edge of the floc. The distance between a non-moving cell and the edge
of the floc increases in a growing floc, thus the local substrate concentration
around a typical cell decreases with time, and so do the functional response
and reserve density. Maintenance has priority over growth, thus the growth
rate of cells decreases to zero at the edge of the dead kernel.

If the conversion from living to dead biovolume (biovolume: volume of
biomass) does not affect the total volume, the growth of the floc is determined
by the living outer shell, and is given by:

d

dt
LT =

∫ L M

0

[pAm ] f (L) − [Em]( d
d L f )( d

dt LT ) − [pM ]

[Em] f (L) + [EG ]

(

1 −
L

LT

)2

d L

(3.11)

=
{

∫ L M

0

kE f (L) − kM g

f (L) + g

(

1 −
L

LT

)2

d L

}(

1 −
∫ f0

f†

(1 − L( f )

LT
)2

f + g
d f

)−1

'
LT

3
r

{

1 −
(

1 −
L M

LT

)3
}

= r L M

{

1 −
L M

LT
+

L2
M

3L2
T

}

(3.12)

with r =
kE f − kM g

f + g

(

1 − ln
f0 + g

f† + g

)−1
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with g = [EG ]
[Em ] , kM = [pM ]

[EG ] , kE = [pAm ]
[Em ] , and f = L−1

M

∫ L M

0 f (L) d L , and
f0 is the functional response at the surface of the floc. The energy investment
ratio, g, is defined as the quotient of the volume-specific costs of growth, [E G],
and the maximum energy density [Em]. The maintenance rate coefficient, kM ,
stands for the costs of maintenance with volume-specific maintenance rate,
[pM ], and cost of biovolume synthesis, [EG ]; the specific-energy conductance
kE is the quotient of the volume-specific maximum assimilation rate, [p Am ],
and [Em]. The specific growth rate of suspended cells at steady state, according
to the DEB theory, is r = kE f −kM g

f +g [9, p108; p315].
The denominator of the integrand in equation (3.11) stands for the local

costs of growth, which consist of a contribution to the reserves, [Em ] f (L),
and to the structural biomass, [EG ]. The first term of the numerator represents
the assimilative input. The last term is the maintenance flux. The middle term
stands for extra energy available from the reserves. As explained above, the
functional response and reserve density of a typical cell decreases with time.
The change in f is caused by the outward movement of the profile relative to
the cell and equals d

d L f d
dt LT ; multiplied by [Em] this gives the small amount

of extra energy available for growth. The second factor, (1 − L
LT

)2, weighs
the contribution of the different shells in the floc as a function of the radius.
This is necessary because more biomass is present in the outer shells, if the
shells have a constant thickness d L . The reserve density of the dead biomass
equals f† = [E†]

[Em ] . The approximation (equation 3.12) is obtained by replacing

the profile of the functional response f (L) by its mean value f .
The floc sizes for which this derivation holds are VT ≥ VM . If the floc is

small enough, the inner cells can pay their maintenance costs and keep living,
and VT = VM , while V† = 0. We simply replace L M , the upper boundary of
the integral, by LT and f† by fT = f (LT ) in equation (3.11) to obtain the
description of the growth of flocs without a dead kernel.

The expression for the interdivision time (equation 3.4) still applies, but
the specific growth rate of the cells differs from the Marr-Pirt model. For
the Marr-Pirt model, the specific growth rate of cells is k E f/g − kM . When
the maintenance rate coefficient (kM ) is zero, kE/g represents the maximum
specific growth rate.

Equations for batch reactor dynamics should account for reserves in living
and dead biomass (ME and ME†, respectively). The terms d

dt XV † and d
dt X E†

appear because living biomass is transformed into dead biomass.
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d

dt
S = −ySV

(

d

dt
XV + d

dt
XV †

)

− yS E

(

d

dt
X E + d

dt
X E†

)

− jS M XV

d

dt
XV = XV rF(S)

d

dt
X E = XV rF(S)

ME(td) − ME(tb)

MV (td) − MV (tb)
d

dt
XV † = XV rF(S)

MV †(td) − MV †(tb)

MV (td) − MV (tb)
d

dt
X E† =

d

dt
XV †

ME†

MV †
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4

Microbial multiple substrate
utilization and co-metabolism

Abstract

The availability of multiple carbon/energy sources, as is common in
wastewater treatment plants, often enhances the biodegradation of re-
calcitrant compounds. In this paper, we classify and model different
modes of multiple substrate utilization in a systematic way, using the
concept of Synthesizing Unit. According to this concept, substrates can
be substitutable or complementary; their uptake (or processing) can be
sequential or parallel. We show how the different modes of multiple
substrate interaction can be described by a single general model. From
the general model, we derive simple expressions for co-metabolism of
substrates that are not structurally analogous. Both the general and the
co-metabolism model have the advantage that they can be used in com-
bination with any microbial growth model. To test the co-metabolism
model’s realism, we confront it with experimental data. The results at-
tained with the co-metabolism model support that the general model
constitutes a useful framework for modeling aspects of multiple sub-
strate utilization.

57



58 Chapter 4

4.1 Introduction

For microbial growth, the relevant features of an ecosystem include its
physico-chemical conditions and the type and concentration of the available
resources. Although the availability of one primary resource often suffices to
ensure growth of a microbial population, many species are able to use more
than one carbon source simultaneously. This phenomenon is known as co-
utilization. Microorganisms can attain a considerable growth rate by using
multiple carbon sources simultaneously, even when each of them is present in
a very low concentration [10]. As it is the amount of biomass that determines
nutrient requirements, co-utilization influences the biodegradation rates of the
involved substrates. Co-utilization can thus enhance biodegradation simply by
increasing the biomass of the degraders.

Simultaneous biodegradation of substrates is not only important for mi-
croorganisms, but also for bioremediation of polluted ecosystems. Our en-
vironment is polluted with many ‘man-made’ chemicals, but fortunately mi-
croorganisms are able to transform or even degrade many of them. Sometimes
a contaminant is degraded because it serves as an (additional) energy source.
We then deal with proper co-utilization of the contaminant. Yet, a contaminant
can also be fortuitously degraded.

The presence of easily degradable carbon sources can enhance the biodeg-
radation of more persistent chemicals. This is best illustrated by the process
of co-metabolism. Such a variation on biodegradation has been defined as for-
tuitous transformation of a contaminant that cannot serve as primary energy
source for the microorganisms [6, 7]. Although co-metabolized compounds
can be a burden to the cell, the process is important as it determines the fate
of chemicals in the environment [28, 33]. For instance, co-metabolic trans-
formations can produce compounds which are readily degraded by other envi-
ronmental microorganisms. Such a commensal relationship between microor-
ganisms has been observed in the degradation of cyclohexane. Mycobacterium
vaccae, growing on propane, transforms cyclohexane to cyclohexanone, which
serves as a growth substrate for another species [3]. Quantitative knowledge
of co-metabolism plays an important role in, for instance, bioremediation of
chemically polluted soils by addition of readily metabolizable substrates.

The aim of this paper is to develop a general framework for modeling si-
multaneous substrate degradation. In the next section, we formulate the gen-
eral model that accounts for the various modes of interaction between simul-
taneously degraded substrates. Thereafter, we use the general model to obtain
a model for the co-metabolism of substrates that differ in structure. We show
model fits against experimental data [25, 31] and compare the model with other
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approaches. In the final section, we remark some features that distinguish our
co-metabolism model from others and discuss its advantages and realism.

4.2 Model framework

As already emphasized above, the relationship between biodegradation and
biomass growth is important. To account for this relationship, we devised a
model for multiple substrate assimilation that is suited to be combined with
any microbial growth model. The simplest microbial growth model takes the
growth rate proportional to the substrate consumption rate: the well-known
Monod model. It is at the basis of a series of models of increasing complexity
and realism. This series includes models that account for maintenance only
(Herbert [16], Marr [26], Pirt [27]), for reserves only (Droop [9]), and for both
maintenance and reserves (DEB [21]). The latter has been recently extended
to include growth of microbial flocculles [4]. The chemical composition of the
biomass is constant in the Monod and Marr-Pirt models, whereas it depends on
growth conditions in the Droop and DEB models. In the section ‘Experimental
data analysis’ we exemplify how the Monod model can be used in combination
with our biodegradation model.

We seek to quantitatively characterize the degradation of compounds in
situations in which multiple substrate biodegradation takes place. In this pa-
per, we focus on microorganisms degrading two substrates, A and B. The
resulting mathematical model can be analogously formulated for an arbitrary
number of substrates, however. We view a microorganism as a ‘generalized
enzyme’ that transforms substrates A and B into a product C . The kinetics of
the generalized enzyme then determines the expressions for the sought (bio-
mass) specific biodegradation rates of substrates A and B, denoted by j +

A and
j+
B . The interpretation of the product C as well as the relation between the

biodegradation rates and the microbial growth rate depend on what the mi-
croorganisms actually do with the degraded compounds. Firstly, they do not
necessarily transform both compounds into new biomass. For instance, sub-
strate B could be a fortuitously degraded no energy supplying contaminant.
As long as B has no effect on growth, the microbial growth rate only depends
on the A consumption rate. Secondly, as said above, the fate of assimilated
substrates varies from one microbial growth model to another. According to
the Monod model, any assimilated substrate molecule results in new biomass.
The production rate ( jC) is then equal to the growth rate. Alternatively, ac-
cording to the DEB model [21], assimilated substrates are first transformed
into reserves.
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To characterize the transformation of multiple substrates into a product
C , the concept of Synthesizing Unit (SU) is particularly suited. Indeed, the
SU-kinetics can be analytically generalized for an arbitrary number of sub-
strates [20]. An SU can be defined as a generalized enzyme that follows classic
association-dissociation kinetics with two modifications [20, 21]: (i) produc-
tion rates relate to arrival rates of substrates at the SU, and (ii) the dissociation
rate between substrate and SU is negligibly small. The translation of SU-
kinetics into equations leads to an attractively simple mathematical model that
can be applied in rather complex situations, such as multiple nutrient limita-
tion of algal growth [21], photo-synthesis and photo-respiration [21], mixotro-
phy [23], and co-metabolism (this chapter). The versatility of the concept of
SU becomes evident in spatially structured environments, like the interior of
a cell, where the concept of concentration is difficult to apply [22]. In well-
mixed environments, where the concept of concentration does apply, the ar-
rival rates are proportional to concentrations on the basis of the law of mass
action. The SU-based expression for single substrate uptake then simplifies to
the well-known Michaelis-Menten kinetics.

During the transformation of one substrate molecule A into product C by
an SU it is possible to define the following stages:

1. a substrate molecule arrives at the SU;

2. if the SU has already a bound substrate, the arriving molecule is rejected,
whereas if the SU is not occupied, the arriving molecule has a certain
probability 0 ≤ ρ ≤ 1 to bind the SU;

3. the SU transforms the substrate molecule into product;

4. the product is released and the SU can bind substrate again.

When an SU transforms two substrates into product, this scheme complicates
somewhat because interaction between the substrates can occur. For instance,
substrate A could inhibit the biodegradation of substrate B. This means that
B has a larger binding probability when it arrives at a free SU than when it
arrives at an SU-A complex. Substrate interaction in multiple substrate uptake
is the subject of the next section. Thereafter, we will show how the different
modes of interaction can be systematically modeled using SU-kinetics.

4.2.1 Four types of dual substrate degradation

Degradation processes can be classified according to the relative role of sub-
strates in product formation and to their interaction during processing. With
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regard to their relative role in product formation, simultaneously degraded
substrates can be substitutable or complementary. Substrates are called sub-
stitutable when they can be separately transformed into product C , that is
yAC A → C and yBC B → C . The symbol y denotes a coupler or stoichio-
metric coefficient. So, yC A represents the amount of C formed per amount of
A and yAC the amount of A degraded per amount of C formed (y AC = y−1

C A).
Simultaneously degraded substrates are called complementary when both are
required to produce C , that is yAC A+yBC B → C . The absence of one comple-
mentary substrate prevents the degradation of the other, since both substrates
must bind to the SU before any product is released. Complementary degrada-
tion occurs, for example, if both oxygen and a carbon/energy source are growth
limiting.

Both substitutable and complementary substrates can be classified accord-
ing to the presence or absence of interaction at the substrate binding/processing
level. For two substrates, this results in four possible modes of inter-
action, which we refer to as substitutable-sequential, substitutable-parallel,
complementary-sequential, and complementary-parallel. The reaction dia-
grams for these possible modes of degradation are shown in Figure 4.1.

For complementary substrates, interaction in the binding process means
that one of the substrates can only bind to an SU if it is already bound to the
other substrate. In diagram II (Figure 4.1), for example, substrate B only binds
to the SU-A complex. This is called complementary-sequential degradation.
If no interaction between the complementary substrates occurs in the binding
process, we deal with complementary-parallel degradation. Occurrence or ab-
sence of interaction between complementary substrates can be characterized
in terms of binding orders. If the binding order of the substrates is relevant,
complementary-sequential degradation results. In diagram II (Figure 4.1), for
example, we assumed that substrate A must first bind to the SU. The mathe-
matical expression for this mechanism is simple and has interesting mathemat-
ical properties [21, p45]. Its practical interest is limited as the binding order
is usually not important and, thus, complementary-parallel degradation takes
place. The corresponding model has been satisfactorily used to describe dual
substrate limited growth of the haptophyte Pavlova lutheri [21, p170], where
phosphorus and vitamin B12 were the limiting nutrients.

For substitutable substrates, interaction in the binding process means that
a substrate of one type cannot bind to the SU while it is processing a sub-
strate of the other type. An increase in the abundance of only one substrate
decreases the biodegradation rate of the other. We refer to this situation as
substitutable-sequential degradation. Indeed, it is equivalent to competitive
interaction, which is often due to competition of structurally analogous sub-
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strates for the same binding site [32].

substitutable complementary
yAC A → C; yBC B → C yAC A + yBC B → C
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Figure 4.1: Modes of transformation of two substrates A and B into prod-
uct C . The coefficient yC A represents the amount of C formed per amount
A consumed and, likewise, yBC represents the amount of C produced per
amount B consumed. The symbol θ∗∗ represent the fraction of SUs in a par-
ticular binding-state. So, for instance, θAB represents the fraction of SUs
with both substrates bound. A dot means absence of substrate, so θ.. repre-
sents the fraction of free SUs. According to the concept of SU, substrates
are either substitutable or complementary; binding can be either sequential
or parallel.

If two substitutable substrates do not interfere with each other in the bind-
ing process, we deal with substitutable-parallel degradation. Substitutable-
parallel degradation occurs, for instance, when two substrates that support
growth have a negligible interaction in the cell’s metabolism. This results
in additive uptake/growth models. Hanegraaf [15] modeled the simultaneous
maltose and glucose utilization by Saccharomyces cerevisiae in this parallel
way. The uptake of one substrate does not affect the uptake of the other sub-
stitutable substrate as long as their binding probabilities are independent. Al-
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though the uptake processes hardly interact directly due to the use of different
carriers, the subsequent processing shares common machinery. This can intro-
duce some properties of sequential processing. We will deal with this kind of
‘mixed degradation’ in the next section.

4.2.2 Modeling mixed degradation

In this section, we deduce a general model that accounts for the four types of
dual substrate degradation explained above. The reaction diagram described
by this model is depicted in Figure 4.2. It is this general type of degradation
that we above referred to as mixed degradation. To introduce this concept, let
us consider a microorganism that assimilates both a carbon source (A) and a
nitrogen source, for example an amino acid (B). If the microorganism is able
to synthesize the amino acid de novo, a mixed type of assimilation results.
When the amino acid is available from the medium, the microorganism uses
this source, which results in an enhanced yield. The yield on A and B together
exceeds the yield on A or B.
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Figure 4.2: Mixed degradation. Notation
as in Figure 4.1. This mixed diagram can
be reduced to any of the diagrams shown in
Figure 4.1 by deleting one or more arrows.
In mathematical terms, this implies that once
expressions describing mixed degradation are
known, expressions for any of the four types of
degradation can be obtained by choosing ap-
propriate conditions on the model parameters.

Kooijman [20] has obtained a formulation for SU-kinetics that involves ex-
plicit stoichiometry (where the stoichiometric coefficients y are rational num-
bers of reacting molecules) in a stochastic setting. Because the formation of
biomass cannot be specified at the molecular level, we use a simple determinis-
tic approximation with implicit stoichiometry. Like in classic enzyme kinetics,
this leads to expressions for the change in the fraction of free SUs and in the
fractions of SUs that are bound to substrate A only, to substrate B only, or to
both substrates. As can be seen from Figure 4.2, in mixed assimilation we deal
with an SU that carries out three transformations y AC A → C , yBC B → C ,
and y ′

AC A + y ′
BC B → yC+C . When a substrate molecule arrives at the SU,

it has a probability ρ to bind to the SU. As explained in the previous section,
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this probability depends on the state of the SU. For substrate A, we have






ρA if A and B are not bound
ρAB if B is bound, but A is not
0 if A is bound

and for substrate B






ρB if A and B are not bound
ρB A if A is bound, but B is not
0 if B is bound

After binding the substrates, the SU enters the production stage. The han-
dling rates (k∗), and the stoichiometric coefficients (y∗∗) can differ for both
substrates. If only A or only B is used to produce C , we have handling rates
kA and kB , respectively. If both A and B are required, the handling rate of the
SU is denoted by k. Moreover, the handling rate of A can be different when B
is also bound to an SU and vice versa: k AB is the handling rate of A when B
is bound to the SU; similarly kB A is the handling rate of B when A is bound.
When the product has been released, the SU is ready to bind other substrate
molecules and the cycle starts again.

The different SU-fractions change according to the following dynamics:

d

dt
θ·· = −(ρA jA + ρB jB)θ·· + kAθA· + kBθ·B + kθAB

d

dt
θA· = ρA jAθ·· − (kA + ρB A jB)θA· + kB AθAB

d

dt
θ·B = ρB jBθ·· − (kB + ρAB jA)θ·B + kABθAB (4.1)

d

dt
θAB = ρB A jBθA· + ρAB jAθ·B − (kAB + kB A + k)θAB

1 = θ·· + θA· + θ·B + θAB

where jA and jB represent the arrival rates of substrates A and B, respectively.
Each θ∗∗ denotes the fraction of SUs present in a particular binding-state. For
further details on the interpretation of the θ ’s, see Figure 4.1.

In quasi steady-state, we can solve the system above analytically. The ex-
plicit expressions for the quasi steady-state SU-fractions (θ ∗) are shown in the
Appendix. The specific biodegradation rates ( j +

A and j+
B ) and the correspond-

ing specific production rate ( jC ) are then given by:

j+
A = kAθ∗

A· + (kAB + y ′
AC k) θ∗

AB (4.2)

j+
B = kBθ∗

·B + (kB A + y ′
BCk) θ∗

AB (4.3)

jC = yC AkAθ∗
A· + yC BkBθ∗

·B + (yC AkAB + yC BkB A + yC+k)θ∗
AB
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These general equations for mixed kinetics embrace the four modes of deg-
radation shown in (Figure 4.1), since these are characterized by specific sets
of conditions on the SU parameters. Substitution of any set of conditions into
the general equations suffices to obtain an expression for the corresponding
SU-kinetics. The four sets are discussed below.

• In substitutable-sequential degradation (Figure 4.1, diagram I) each sub-
stitutable substrate can only bind to a free SU. As explained above, this
interaction between substrates is equivalent to competitive inhibition. In
terms of SU-kinetics it means ρAB = ρB A = 0 and, thus θAB = 0. Con-
sequently, the handling rates k, k AB , and kB A are not longer relevant.

• In complementary-sequential degradation (Figure 4.1, diagram II) both
substrates are required to produce C and substrate B can only bind to
the SU-A complex. The corresponding kinetics result from the general
mixed kinetics by substituting ρB = ρAB = 0 and kA = kAB = kB =
kB A = 0. The condition ρB = 0 implies θ.B = 0.

• Substitutable-parallel degradation (Figure 4.1, diagram III) takes place
when two substitutable substrates do not interfere during the binding
process. The solution results from the general solution by substituting
ρA 6= 0, ρB 6= 0, ρAB 6= 0, ρB A 6= 0 and k = 0. In addition, for
simplicity, we can assume ρAB = ρA, ρB A = ρB and kAB = kA, kB A =
kB .

• In complementary-parallel degradation (Figure 4.1, diagram IV) the
binding order of the complementary substrates is not relevant. Since
both A and B are needed to produce C , k A = kAB = kB = kB A = 0. In
addition, for simplicity, we can assume ρAB = ρA, ρB A = ρB .

Thus it is possible to distinguish substitutable-sequential from complementary-
sequential degradation on basis of binding probability alone. For the former,
which is also known as cross-competitive inhibition, ρAB = ρB A = 0 holds
whereas for the latter, the condition ρB = ρAB = 0 holds.

4.3 Application: Modeling co-metabolism

As early as 1959, Leadbetter and Foster [24] described the partial oxidation of
certain hydrocarbons by Pseudomonas methanica growing on methane. These
hydrocarbons did not support growth of the bacterium, but were ‘co-oxidized.’
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In 1963 Jensen [19] reported oxalate-utilizing strains of Pseudomonas de-
halogens that liberated chloride from trichloroacetate, while they were unable
to grow on this compound. Since 1959 many examples of similar phenom-
ena have been reported. For instance, the transformation by methane mono-
oxygenase of chlorinated compounds, like trichloroethane, has received con-
siderable attention. In the literature different names have been used to refer to
the findings described above. Among them are co-oxidation [24], gratuitous
or fortuitous metabolism [34], and co-metabolism [18]. In this paper, we use
the term co-metabolism as it has become widely accepted.

The term co-metabolism has been defined to refer to transformations from
which microorganisms do obtain neither energy nor ‘nutritional benefit,’ cf. [1,
13]. The current interpretation is less strict, as defined by Stirling and Dal-
ton [34]: “transformation of a compound, which is unable to support cell
replication, in the requisite presence of another transformable compound.”
The former compound is referred to as co-metabolized or secondary substrate,
whereas the latter is referred to as primary substrate. Further details about the
term co-metabolism can be found in another article by Dalton and Stirling [8].
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Figure 4.3: Co-metabolism of a co-
metabolite B and a primary substrate A. Nota-
tion as in Figures 4.1 and 4.2. Substrate B can
only bind to the SU-A complex and, conse-
quently, the microorganisms can only degrade
substrate B if substrate A is also available.

According to the current definition of co-metabolism, degradation of a sec-
ondary substrate may provide nutritional benefit, but the cell is unable to utilize
it in absence of a primary substrate. The transformation of chlorinated aliphat-
ics by methanotrophs, for example, fits well in this interpretation. For Methy-
lomicrobium album, chloromethane cannot serve as sole growth substrate. But
when co-fed with methanol, it enhances growth and its carbon is incorporated
into the biomass for up to 38% [14]. Obviously, this example does not fit
in the original ‘non nutritional benefit’ definition. Thus, the current view in-
cludes more substrates in the realm of co-metabolism. Furthermore, it seems
to be more practical, since absence of benefits to the cell is not easy to confirm
experimentally.

For different reasons, a primary substrate can be required to degrade a co-
metabolite. First, co-metabolism can occur if the catabolic enzymes are not
induced by the secondary substrate. This is exemplified by chloromethane that
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does not induce methane mono-oxygenase, and by 4-chlorophenol that does
not induce phenol oxidizing enzymes. Second, some co-metabolic transfor-
mations, as oxidations or reductive dehalogenations, require energy or reduc-
tion equivalents (e.g., NAD(P)H). Such transformations drain the cell’s pool
of reduction equivalents. However, the degradation of a primary substrate can
make extensive catabolism of the secondary substrate possible by providing
the necessary reduction equivalents. In this case, co-metabolism can reduce the
biomass yield [17] and/or the maximum growth rate [17, 30] on the primary
substrate. However, the loss of reducing equivalents during co-metabolism
does not always result in a (detectable) decrease in yield [29, 30].

4.3.1 Model development

We can use the general framework above to model co-metabolism. Models
described in literature [2, 5, 11, 12, 14, 17, 29, 30] focus on the co-metabolism
of structurally similar compounds. Here we show how our general framework
can be used to model the co-metabolism of structurally dissimilar substrates.
As can be seen from Figure 4.3, we deal with a microorganism that carries out
two transformations, yAC A → C and yBC B → C . In terms of the conditions
on the SU-parameters, substitutable-parallel implies k B A = kB , kAB = kA,
and k = 0. Consequently, the expressions for the biodegradation rates (equa-
tions 4.2 and 4.3) reduce to:

j+
A = kA(θ∗

A· + θ∗
AB)

j+
B = kB(θ∗

·B + θ∗
AB)

(4.4)

In terms of the specific biodegradation rates, the production rate is given by
jC = yC A j+

A + yC B j+
B . Substitutable-parallel degradation also implies ρA 6=

0, ρAB 6= 0, which means that substrate B does not inhibit the binding prob-
ability of substrate A. If in addition ρB 6= 0, ρB A 6= 0 holds, we deal with
proper substitutable-parallel degradation (Figure 4.1, diagram III). In contrast,
if alternatively the conditions ρB A 6= 0 and ρB = 0 hold, microorganisms can
only degrade B when A is also available. Substrate B is a then (xenobiotic)
substrate that is co-metabolized with a (natural) substrate A as primary sub-
strate. Under the conditions ρA = ρAB 6= 0, ρB A 6= 0, and ρB = 0, the
expressions for the quasi steady-state SU-fractions (θ ∗) become much more
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simple. Hence, the specific degradation rates (equation 4.4) can be written as:

j+
A = kA

ρA jA

ρA jA + kA

j+
B = kB

ρA jA

ρA jA + kA

ρB A jB(ρA jA + kA + kB)

ρB A jB(ρA jA + kB) + kB(ρA jA + kA + kB)

(4.5)

where j+
B is the specific biodegradation rate of the co-metabolized substrate.

The production rate is given by jC = yC A j+
A + yC B j+

B . According to the
definition of co-metabolism above, biodegradation of the co-metabolite may
result in the formation of new biomass. That is, the coefficient yC B is not
necessarily zero. Alternatively, the co-metabolite can exert a toxic effect on
the microorganisms. This typically results in degradation rates that are low as
long as the concentration of the toxic compound is high. The relation between
co-metabolism and toxicity has been modeled in, for instance, [2, 11, 12]. For
the moment, we do not take such toxic effects into account.

4.3.2 Experimental data analysis

In this section, we present two examples that illustrate how the model for co-
metabolism can be applied in combination with the Monod model. The first
example concerns the anaerobic growth of E. coli on citrate, whereas the sec-
ond concerns the co-metabolic degradation of 3-chloroaniline. Before going
into the examples we rewrite equation (4.5) in terms of concentrations. In a
well-mixed environment, the arrival rates of the compounds can be taken pro-
portional to their concentrations. In mathematical terms this means j A = αA SA

and jB = αB SB. Substitution of these expressions into equation (4.5) yields:

jC = yC AkA
SA

SA + K A
+

yC BkB
SA

SA + K A

SB (SA + K A + kB
kA

K A)

SB (SA + kB
kA

K A) + KB (SA + K A + kB
kA

K A)

(4.6)

where the saturation constants are defined as K A = kA
αAρA

, KB = kB
αBρB A

. The
compound parameters yC AkA and yC BkB are the maximum production rates
from substrates A and B, respectively. Finally, to reduce the number of pa-
rameters, we scale the substrate concentrations with respect to their saturation
constants (a = SA/K A, b = SB/KB) and we write:

jC = yC AkA
a

a + 1
+ yC BkB

a

a + 1

b

b + 1 − b/ (a + 1 + kB/kA)
(4.7)
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Figure 4.4: The scaled degradation rate of substrate B ( j +
B ) as a function

of the ratio kB/kA and scaled concentration of substrate A. The scaled rate
has a maximum of 1. The value of b is 10. Especially at low values of a, the
ratio of handling rates kB/kA influences the degradation rate of B.

From this expression it can be seen how the handling rates influence the degra-
dation process. Clearly, the values of a and b are important in determining the
amount of substrate B that is transformed. For high values of b, the amount of
transformed B is proportional to the amount of transformed of A. The ratio of
the handling rates (kB/kA) is also important. This ratio has more influence on
the degradation rate of substrate B at low than at high scaled concentrations of
substrate A (Figure 4.4).

The model implements strict coupling between the co-metabolic degra-
dation of substrate B and the uptake of the primary substrate A. This strict
coupling between the consumption of growth substrate and co-metabolite has
been reported for anaerobic growth of E. coli on citrate [25]. Citrate is almost
completely degraded with glucose, lactose, or L-lactate as primary substrate.
However, citrate breakdown stops when glucose is exhausted, whereas glucose
breakdown continues after depletion of citrate [25]. To test if the new model
is able to describe the co-metabolic consumption of citrate, we confronted it
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with an experiment by Lütgens and Gottschalk [25]. The following equations
were used:

d

dt
SA = −kA

SA

SA + K A
SC

d

dt
SB = −kB

SA

SA + K A

SB (SA + K A + kB
kA

K A)

SB (SA + kB
kA

K A) + KB (SA + K A + kB
kA

K A)
SC

d

dt
SC = yC A

d

dt
SA + yC B

d

dt
SB

where A refers to glucose, B to citrate, and C to biomass. The results are
shown in Figure 4.5. In the experiment, citrate was exhausted first. With
the estimated parameter values, we carried out a model simulation in which
glucose is exhausted first. The model indeed predicts that citrate consumption
stops after the depletion of glucose (Figure 4.5). Unfortunately, [25] did not
include the experimental data.

The degradation of 3-chloroaniline (3CA) provides another example of co-
metabolism [31]. In this case, the extent and rate of 3CA degradation de-
pend on glucose concentration (Figure 4.6), but 3CA also disappears from the
medium when glucose is absent. This means that a ‘background’ degradation
process is taking place, which is not related to the oxidation of primary sub-
strate. However, as illustrated in the previous example, our model predicts
co-metabolic degradation to stop once the primary substrate is exhausted. To
describe the background degradation of 3CA, we extended the model to ac-
count for background degradation. We did so by adding to equation 4.6 the
term kd

SB
SB+K B

, where kd represents the maximum decay rate of 3CA in the
absence of glucose. Figure 4.6 shows the results of fitting this extended model
against data from [31]. We conclude that the fit is quite acceptable.
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Figure 4.5: TOP: Result of fitting our co-metabolism model to data from
Lütgens and Gottschalk [25]. E. coli consumes citrate anaerobically in the
presence of glucose. Parameter values were obtained by fitting all data sets
simultaneously. The Monod model was used to describe biomass growth.
For the model equations, see text.
Parameter values (A represents glucose, B citrate, and C biomass): yC A =
0.028∗ A600/mM; yC B = 0.014 A600/mM; kA = 140 mM/(A600 day); kB =
132 mM/(A600 day); K ∗

A = 6 mM; K ∗
B = 2 mM; SA(0) = 25 mM; SB(0)∗ =

18.6 mM (measured value); SC(0)∗ = 0.01 A600 (initial value); ∗: parameter has
been fixed during minimization.
BOTTOM: Model simulation with the obtained parameter values (except for
the initial conditions). The initial concentration of glucose (SA) is 15 mM
and that of citrate (SB) 20 mM. Here, glucose is consumed completely and
citrate partly remains in the culture. Indeed citrate consumption stops when
the primary substrate (glucose) has been depleted as reported [25].
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Figure 4.6: Result of fitting our co-metabolism model to data from
Schukat et al. [31]. Co-metabolic degradation of 3-chloroaniline (3CA) by
Rhodococcus with glucose as the primary substrate. The culture starting
with 0.60 mM glucose serves as a control: 3CA is absent. The upper curves
for 3CA (×) and for glucose (+) relate to the single substrate case. We fitted
all 14 datasets simultaneously.
Parameter values: (A represents glucose, B 3CA, and C biomass): y∗

C A = 0.08 mg
dry weight/µmol glucose; y∗

C B = 0 mg dry weight/µmol 3CA; kA = 0.42 mM

h−1 (mg dry weight)−1; kB = 0.60 mM h−1 (mg dry weight)−1; K A = 0.06 mM;
K B = 0.008 mM; kd = 0.035 mM h−1 (mg dry weight)−1. The initial biomass con-
centration is 0.60 mg dry weight/ml. The initial glucose concentration are 0, 0.07,
0.15, 0.20, 0.27, 0.40, 0.46, and 0.61 mM. The initial 3CA concentrations from top
to bottom are: 1.04, 1.1, 1.075, 1.075, 1.1, 1.05, 1.03, and 0.0 mM. ∗: parameter has
been fixed during minimization.
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4.4 Discussion

Let us remark four features that illustrate how our co-metabolism model relates
to previous approaches. They are important to keep in mind when applying the
model.

First, most modeling approaches have focused on co-metabolism of struc-
turally analogous compounds. As competitive inhibition is often due to com-
petition of structurally analogous substrates for the same binding site, these
approaches often assume that competitive inhibition takes place. In contrast,
the general framework allows us to describe co-metabolism also in situations
in which no competitive inhibition occurs. We view co-metabolism as a ‘de-
generate’ parallel-substitutable interaction, whereas competitive inhibition is
equivalent to sequential-substitutable interaction. With the examples (previous
section) we showed that our model succeeds in describing the co-metabolic
biodegradation of non structurally analogous substrates well.

Second, co-metabolism concerns the simultaneous metabolism of two
compounds, where the degradation of a secondary substrate depends on the
presence of a primary substrate. We incorporated this dependency into our
model such that it involves the obligate presence of a primary substrate. Con-
sequently, co-metabolic degradation only occurs if the primary substrate is
present. However, degradation of the secondary substrate can continue af-
ter depletion of the primary substrate. In some situations oxidation of dead
biomass provides the necessary energy for background degradation, in other
situations intracellular reserves provide it. The model can be extended to ac-
count for any of these situations, as shown in the previous section. If the rate
of secondary substrate transformation is related to the rate of biomass decay or
oxidation, biomass must be regarded as a substrate that provides energy.

Third, in our model the rate of secondary substrate transformation is a
function of the concentration of both primary substrate and secondary sub-
strate. Thus, as long as the concentration of secondary substrate is not toxic,
its transformation rate increases with increasing concentration. This is in
agreement with models that use cross-competitive inhibition to describe co-
metabolism.

Fourth, we developed a general model for multiple nutrient utilization
without using assumptions on intracellular pools of energy or reduction equiv-
alents. Indeed, the general model connect biodegradation to substrate assimi-
lation. This has the advantage that any microbial growth model can be used in
conjunction with our model. This advantage also holds for our co-metabolism
model being a special case of the general model. If intracellular reserves and
changes in the chemical composition of biomass cannot be ignored, applica-
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tion of the DEB theory [21] might be considered.

In sum, the general model presented in this paper constitutes a useful
framework for modeling aspects of multiple nutrient utilization by microor-
ganisms. The framework has wide applications such as the prediction of bio-
degradation rates and the study of multiple nutrient limitation. As an exam-
ple, we showed how it can be applied to obtain a model that describes co-
metabolism of non structurally analogous substrates. This model inherits the
general model’s flexibility and can, therefore, be combined with any micro-
bial growth model, and can also be easily extended to account for background
degradation or substrate loss due to physical processes.

Nomenclature

The following symbols are used for the dimensions:
–, no dimension; l , length; t , time; #, amount (C-mol or mass).

Symbol Description Dimension

S∗ concentration of compound ∗ #l−3

j∗ specific arrival rate of compound ∗ ##−1t−1

j+
∗ specific biodegradation rate of compound ∗ ##−1t−1

j ′
∗ scaled arrival rate of compound ∗: j ′

∗ = ρ∗ j∗ ##−1t−1

j ′′
∗1

scaled arrival rate of compound ∗: j ′′
∗ = ρ∗1∗2 j∗1 ##−1t−1

k∗ handling rate for compound ∗ t−1

K∗ saturation coefficient of compound * #l−3

y∗1∗2 stoichiometric coefficient (coupler): compound 1 needed
per compound 2 formed

##−1

ρ∗ binding probability of compound ∗ to SU –
ρ∗1∗2 binding probability of compound ∗1 to SU–∗2 complex –
θ∗1∗2 fraction of SUs occupied by substrates ∗1 and ∗2 –

Appendix

Quasi steady-state mixed kinetics

If we assume quasi steady-state, we are able to solve system (4.1). The solution
is most easily expressed in terms of the net arrival rates, which are defined as
j ′
A = jAρA, j ′′

A = jAρAB , j ′
B = jBρB , and j ′′

B = jBρB A. The quasi steady-state
solution is then given by θ ∗

·· = 2··/2+, θ∗
A· = 2A·/2+, θ∗

·B = 2·B/2+ and
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θ∗
AB = 2AB/2+, where 2+ = 2·· + 2A· + 2·B + 2AB and

2·· = j ′′
A j ′′

Bk + j ′′
AkA(k + kB A) + j ′′

BkB(k + kAB) + kAkBk+

2A· = j ′′
A( j ′

+kB A + j ′
Ak) + j ′

AkBk+

2·B = j ′′
B( j ′

+kAB + j ′
Bk) + j ′

BkAk+

2AB = j ′′
A j ′′

B j ′
+ + j ′′

A j ′
BkA + j ′′

B j ′
AkB

with k+ = k + kAB + kB A and j ′
+ = j ′

A + j ′
B. The specific biodegradation rates

and the corresponding specific production rate are then given by:

j+
A = kAθ∗

A· + (kAB + y ′
AC k) θ∗

AB

j+
B = kBθ∗

·B + (kB A + y ′
BCk) θ∗

AB

jC = yC AkAθ∗
A· + yC BkBθ∗

·B + (yC AkAB + yC BkB A + yC+k)θ∗
AB
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5

Modeling microbial adaptation to
changing availability of substrates

Abstract

In their natural environment microorganisms encounter changes in sub-
strate availability, involving either nutrient concentrations or nutrient
types. They have to adapt to the new conditions in order to survive. We
present a model for slow microbial adaptation in response to changes in
the availability of substrates. The model is based on reciprocal (or mu-
tual) inhibition of expression of both the substrate-specific carriers and
the associated assimilatory machinery. The inhibition kinetics is derived
from the kinetics of Synthesizing Units. An interesting property of the
adaptation model is that the presence of a single limiting resource results
in a constant maximum specific substrate consumption rate for fully
adapted microorganisms. Because the maximum specific consumption
rate is not a function of substrate concentration, for growth on one sub-
strate, the Monod and Pirt models for instance are still valid. Other
adaptation models known to us do not fulfill this property. The simplest
version of our model describes adaptation during diauxic growth, using
only one preference parameter and one initial condition. The applica-
bility of the model is exemplified by fitting it to published data from
diauxic growth experiments.

79
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5.1 Introduction

Most microorganisms are able to grow on a wide variety of substrates, the
consumption of the substrates being either sequential or simultaneous. Indeed,
sequential utilization resulting in diauxic growth [13] has often been observed.
During diauxic growth, depletion of the first substrate is followed by a lag
period in which the microorganisms adapt to the second substrate. After this
lag phase, exponential growth on the second substrate starts. The length of the
intermediate lag period depends on pre-culturing conditions and the relative
concentrations of the substrates, as well as on the type of substrates [3].

In growth models, based on the Monod model, microorganisms consume
substrate at a rate that depends hyperbolically on substrate concentration. The
maximum specific consumption rate, however, does not depend on the sub-
strate concentration. The parameters that control the uptake process are con-
stant during fast changes of substrate types and availability, but can be sub-
jected to slow adaptation processes that take several generations.

We modeled the slow microbial adaptation of consumption of various sub-
stitutable substrates (i.e., substrates that can fulfill the same role in metabo-
lism). We assumed that the pathway for each substrate is inducible and that
the presence of one substrate is able to influence the expression of the pathway
of other substrates. The chapter is organized as follows. To start, we introduce
binding inhibition kinetics in a Synthesizing Unit (SU) framework. Then we
use the obtained binding-inhibition equations to describe the expression of a
pathway in response to changes in substrate availability. Finally, we develop
the adaptation model and confront it with experimental data on diauxic growth.

5.2 Substrate availability and signal fluxes

Regulatory mechanisms are responsible for adaptation. It is well known that
the presence of a substrate induces a signal in the microorganisms that can al-
ter their catabolic properties [16]. Mechanisms involved in the glucose-lactose
diauxie in Escherichia coli have been known for a long time [16] and we may
be tempted to model them in detail. However, it has recently been found that
the main reason for the diauxie is inducer exclusion: while glucose is present,
lactose is not taken up [5, 17]. Furthermore, the mechanisms of carbon catabo-
lite repression differ substantially among bacteria [17]. These differences and
changing insights into details of reported mechanisms convinced us to develop
an adaptation model that focuses on the general processes rather than on the
biochemical details. The model is species independent and, in addition, has
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the advantage that it requires less parameters and equations than a model that
describes the biochemical processes in detail. This is important for practical
applications.

We assume that each substrate has a specific regulatory protein that han-
dles the signal fluxes and decides whether to increase or decrease the catabolic
capacity for the substrate. The regulatory protein functions as a Synthesiz-
ing Unit (SU) that controls the synthesis of assimilatory machinery for that
substrate. A SU is a generalized enzyme that follows classic association-
dissociation kinetics with two modifications [8, 9]: (i) production fluxes relate
to arrival fluxes of substrates at the SU, and (ii) the dissociation rate between
substrate and SU is negligibly small. We deal with a metabolic pathway as if
we deal with a single rate-limiting enzyme. In sum, the availability of a certain
substrate produces a signal flux, handled by a SU. For organisms that are able
adapt, this results in adaptation to a substrate in response to the concentrations
of all available substrates.

In this chapter we derive the adaptation model for two substrates, but the
model can easily be extended to account for any number of substrates. When
two substrates are present in the medium, two situations are possible. First, the
presence of one substrate does not affect the consumption of the other. This
situation results from “unilateral binding inhibition.” Second, the presence of
one substrate can influence the consumption of the other. This situation results
from “bilateral binding inhibition.” Both cases of inhibition are treated in detail
below using the Synthesizing Unit concept. The production flux of a certain
SU determines the change in the amount of the corresponding rate-limiting
enzyme. In this section, we explain how unilateral and bilateral binding in-
hibition give rise to changing maximum specific substrate consumption rates
in response to changing substrate availability. In the next section, we deduce
simple equations describing the adaptation process.

5.2.1 Unilateral binding inhibition

In unilateral binding inhibition, one substrate can repress the utilization of an-
other but not vice versa. We obtain an equation for the synthesis of enzyme
that controls the maximum specific uptake rate of a particular substrate. As
explained above, we assume that the presence of two substrates (A and B) in-
duces two fluxes of signal molecules ( Ã and B̃). A signal molecule Ã, induced
by the presence of substrate A, results in the synthesis of a certain number of
enzymes. We deal with the reaction yAC Ã → C that is inhibited by compound
B. The presence of yAC signal molecules Ã gives rise to the production of one
molecule of enzyme C; thus yAC is a stoichiometric constant. The Synthesiz-
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ing Unit can bind both Ã and B̃, but it can bind Ã only if B̃ is not bound. B̃
does not affect the production of C if Ã is already bound; Ã does not affect
the binding or release of B̃. The SU can be in four different states: unoccupied
(θ··), occupied by Ã only (θA·), occupied by B̃ only (θ·B), or occupied by both
Ã and B̃ (θAB ). The equations for the change in the bound fractions of the SU
become:

d

dt
θ·· = kAθA· + kBθ·B − ( j ′

A + j ′
B)θ··

d

dt
θA· = j ′

Aθ·· + kBθAB − kAθA· − j ′
BθA·

d

dt
θ·B = j ′

Bθ·· + kAθAB − kBθ·B

1 = θ·· + θA· + θ·B + θAB

with j ′
i = jiρi , where ρi is the binding probability and ji the arrival rate of

signal molecules induced by substrate i . The steady state fractions of bound
SUs are θ∗

i j = 2i j /2+, with 2+ = 2·· + 2A· + 2·B + 2AB and

2·· = kAkB( j ′
B + kA + kB)

2A· = j ′
AkB(kA + kB)

2·B = kA j ′
B( j ′

A + j ′
B + kA + kB)

2AB = j ′
A j ′

BkB

The C production flux is given by:

jC = yC AkA(θ∗
A· + θ∗

AB) =
yC A j ′

AkAkB

( j ′
B + kB)(kA + j ′

A/(1 + j ′
B/k+))

where k+ = kA + kB . The maximum C production flux for j ′
A → ∞ is

jCm = yC AkAkB (1+ j ′
B/k+)

j ′
B+kB

. If j ′
B = 0, the production reduces to jC = yC A j ′

AkA

kA+ j ′
A

as

expected from the Michaelis-Menten kinetics. If signal molecule B̃ results in
the synthesis of an enzyme D, the D production flux is given by:

jD = yD BkB(θ∗
·B + θ∗

AB) =
yD B j ′

BkB

j ′
B + kB

This formulation of binding inhibition is the simplest. Additional biologi-
cal details can be introduced, such as binding probabilities or dissociation rates
that depend on whether or not the other compound is bound. Although the in-
troduction of such dependencies can allow the description of more complex
inhibition patterns, it also implies an increase in the number of parameters.
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5.2.2 Bilateral binding inhibition

In bilateral binding inhibition, one substrate can repress the use of another and
vice versa. As above, we deal with the reaction y AC Ã → C that is inhibited
by compound B. In addition, we now have the reaction yB D B̃ → D that is
inhibited by compound A. Again, yAC and yB D are stoichiometric constants,
and C and D are the key enzymes involved in processing substrates A and B.
In this case, the inhibition is reciprocal. The SU can bind both Ã and B̃, but
it can bind Ã only if B̃ is not bound, and vice versa. The equations for the
change in the bound fractions of the SU now read:

d

dt
θ·· = kAθA· + kBθ·B − ( j ′

A + j ′
B)θ··

d

dt
θA· = j ′

Aθ·· + kBθAB − kAθA·

d

dt
θ·B = j ′

Bθ·· + kAθAB − kBθ·B

1 = θ·· + θA· + θ·B + θAB

with j ′
i = jiρi , where ρi is the binding probability and ji the arrival rate of

signal molecules induced by substrate i . The steady state fractions of bound
SUs are θ∗

i j = 2i j /2+, with 2+ = 2·· + 2A· + 2·B + 2AB and

2·· = kAkB; 2A· = j ′
AkB; 2·B = j ′

BkA; 2AB = 0

The resulting C production flux is given by:

jC = yC AkAθ∗
A· = yC A j ′

AkAkB

j ′
AkB + j ′

BkA + kAkB
(5.1)

The maximum flux of C for j ′
A → ∞ is jCm = yC AkA. If j ′

B = 0, the

production reduces to jC = yC A j ′
AkA

kA+ j ′
A

as expected. The situation for substrates
A and B and their induced production fluxes are now symmetric.

5.3 Adaptation

5.3.1 Model development

The production of the key enzymes for the processing of substrates is con-
trolled by signals to the synthesis machinery, while the signals are produced
by substrates that are taken up. If enzyme production depends on the magni-
tude of these signals, the production at varying substrate concentrations varies
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even when only one substrate is present. In this single substrate situation, the
maximum specific consumption rate will become a function of substrate con-
centration. However, a constant maximum specific consumption rate is usu-
ally assumed in popular and successful microbial growth models (Monod [13],
Pirt [15], Droop [2], DEB [9]). The empirical success of these models leads to
the conclusion that the production of assimilation machinery does not respond
to the absolute signal size, but to the relative signal size (i.e., the signal value
divided by the maximum signal value).

If substrates A and B are processed in parallel and we have n A assimila-
tory units for substrate A per unit of structural mass, the substrate processing
rate for substrate A is proportional to n A f A, where f A = SA/(SA + K A) with
saturation constant K A and substrate concentration SA. The signal size is pro-
portional to this flux (with proportionality constant p∗

i ), so the relative signal
size is sA = p∗

An A f A/
∑

i p∗
i ni fi . This formulation allows for a substrate-

specific signal amplification via weight coefficients p∗
i , which also accounts

for the binding probability of the signal to the signal processing unit (regula-
tory protein). The signal is actually a flux, so the relative signal flux can be
written as sAk, where k represents the flux proportionality constant as well as
the total signal strength, since sA + sB = 1. In mathematical terms this means
j ′
A = ksA and j ′

B = ksB .

The signals are processed in a reciprocal inhibitory way to allow some
metabolic memory and preferences for particular substrates. The production
rate of assimilatory machinery is proportional to that of the biomass, which has
specific growth rate r (see Biomass growth section below). Thus, we multiply
the production rate by a factor r/r0, with r0 some reference rate. The dilution
of assimilatory machinery by growth then amounts to −rn A for substrate A.
In sum: d

dt n A = jC r
r0

− rn A.

Using bilateral binding inhibition (equation 5.1), the change in the amount
of rate-limiting machinery for substrate A is now given by:

d

dt
n A = r

(

n∗
AsA(1 + k/kA)

sA(1 + k/kA) + sB(1 + k/kB)
− n A

)

where n∗
A = yC Ak/r0

1+k/kA
is the steady-state rate-limiting enzyme concentration for

substrate A for exposure to that substrate only.

The expression fraction is defined as κi = ni/n∗
i . As it represents the ratio

of the expression and the maximum attainable expression (n∗
i ), it has a value

between zero and one. From the equation above the change in these fractions
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is given by:

d

dt
κA = r

(

pAκA f A

pAκA f A + pBκB fB
− κA

)

d

dt
κB = r

(

pBκB f B

pAκA f A + pBκB fB
− κB

) (5.2)

where pi = p∗
i n∗

i (1 + k/ki) are substrate preference coefficients. Without
loss of generality, we can take pA + pB = p+ = 1. Please note that for
κ+ = κA + κB , we have d

dt κ+ = r(1 − κ+), which gives the natural constraint
κA(0) + κB(0) = 1 on the initial conditions. Once κA(t) + κB(t) = 1 for some
value of time t , it remains one at all time points. These constraints reduce
the system above to a single equation with effectively two parameters, p A and
κA(0).

5.3.2 Model analysis

Prolonged exposure to substrate A only ( f B = 0) results in maximum expres-
sion (κA → 1) of the corresponding rate-limiting enzyme, whereas prolonged
absence of substrate A ( f A = 0) results in no expression at all (κA → 0). For
constant substrate concentrations, the expression is either maximum or zero at
steady state, depending on which value for pi fi is the largest. In a steady-state
chemostat, dual substrate consumption can take place, since the microorgan-
ism adapts until pA f A = pB fB .

If the organisms have depleted their own substrates, the final values of the
expression fractions depend on how the substrates were depleted. This is be-
cause the adaptation rate is linked to the growth rate. After complete depletion
of the resources the adaptation equations above become mathematically un-
determined. In the unlikely situation that this behavior poses a problem in a
practical application, it can be avoided by adding a background signal for each
substrate and replacing f i by fi + εi for i = A, B.

When a particular substrate has been absent for a very long period its ex-
pression fraction becomes zero. The microorganism then is not able to initiate
the uptake of that substrate. Since this behavior is asymptotic only, it will
probably not constitute a problem in practice. Moreover, it can be avoided by
adding a small background signal as above or by introducing a background
production flux as rκ◦

i for i = A, B. As a consequence of the addition of
the background production flux, the maximum value of κi will no longer be
one. Substrate uptake now becomes d

dt Si = − κi
κmax

i
fi X , where κmax

i = 1 + κ◦
i

represents the maximum value of the expression fraction κi .
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The assimilation machinery, including the carriers, are part of cells’ struc-
ture. Cells maintain their structure by degrading and reconstructing their func-
tional proteins. Such enzyme-specific maintenance becomes visible in the
adaptation process as a protein decay and an enhanced synthesis via term h. In-
corporation of this enzyme turnover into the adaptation model, for an arbitrary
number of substrates, leads to:

d

dt
κi = (r + h)

(

piκi f A
∑

j p jκ j f j
+ κ◦

i − κi

)

(5.3)

with
∑

i pi = 1. Notice that for κ+ =
∑

i κi and κ◦
+ =

∑

i κ◦
i we have

d

dt
κ+ = (r + h)

(

1 + κ◦
+ − κ+

)

which implies that as soon as κ+(t) = 1 + κ◦
+, it will never leave this value.

This can be used as a constraint on the initial conditions for κi to remove one
degree of freedom from the system.

Our adaptation model spans the full range of nutrient utilization, from si-
multaneous substrate consumption to sequential consumption. For two nutri-
ents, the mode of consumption depends on the value of a single preference
parameter (pA); if it is very small, substrate B will be taken up first. Notice
that we also have initial conditions for the expression fractions, which count as
parameters in fits to experimental data, although their significance vanishes in
time. The model can be extended in several ways, for example by accounting
for sequential processing of the substrates, or for unilateral binding inhibition.

A very important feature of this model for adaptation is that once the cells
are adapted, cell growth and substrate uptake are “normal” again. This means
that the adaptation module can easily be combined with other modules, such
as the Monod model [13], the Herbert-Marr-Pirt models [4, 12, 15], the Droop
model [2] or the DEB model [9]. The crucial property is that the substrate
availability and the growth rate do not influence the number of carriers of fully
adapted organisms. Alternative models that are known to us [6, 7, 11] do not
satisfy this property. This implies that the adaptation process as described by
these models affects the dynamics of fully adapted cells, which seems unreal-
istic to us.

5.3.3 Biomass growth

Although the equations in the previous section fully specify substrate uptake,
they do not yet specify the biomass growth process itself. However, as we
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stated before, the adaptation model has the advantage that it can be combined
with any microbial growth model. Hence, the Monod model [13] can be used.
If, in addition, we know the maintenance requirements of the microorganism,
Pirt’s model [15] can be used. Alternatively, the DEB model [9] can be used.
This is a more elaborate and realistic growth model that accounts for the pres-
ence of reserves. For more information about the DEB model we refer the
reader to the Appendix.

For any of the growth models cited in this chapter, the consumption rate of
substrate i and the biomass growth rate are given by:

d

dt
Si = − jim

κi

κmax
i

Si

Si + Ki
X (5.4)

d

dt
X = r X (5.5)

with maximum specific uptake rate jim and biomass concentration X . The
change in the expression fractions are given by equation 5.3. In case of zero
background expression, κmax

i is equal to one. The expression for the specific
growth rate r varies from one model to another. In the Monod model, for
example, the yield factor Yi relates substrate consumption to biomass growth:
r = 1

X

∑

i Yi
d Si
dt .

5.3.4 Model equations

In the following sections we use the adaptation model, in combination with the
Monod model, in simulations and in data fitting. We assume that background
expression is absent (thus κmax

i = 1). For two substrates, the set of differential
equations describing adaptation is:

d

dt
X = r X

d

dt
SA = −rA max

YA
κA f A X

d

dt
SB = −rB max

YB
κB fB X

d

dt
κA = (r + h)

(

κA f A

κA f A + wκB fB
− κA

)

d

dt
κB = (r + h)

(

κB fB

κA f A/w + κB fB
− κB

)
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where

f A =
SA

SA + K A
, fB =

SB

SB + KB

w = pB/pA

r = κA rA max f A + κB rB max f B

The adaptation module has only three parameters: κA(0), h, and pA/pB . Re-
member that κB(0) = 1 − κA(0). The Monod model for two substrates has
nine parameters: ri max, Yi , Ki , Si(0), for i = A, B, and X (0).

Below we show model simulations in which we assigned values to the pa-
rameters. Thereafter, we apply the model to data. For the parameter estimation
procedure, we assumed constant variance with no covariance for the observa-
tions.

5.4 Model simulation

A model simulation reveals the influence of the preference parameters p i , and
adaptation, on the diauxic lag and on the substrate consumption. We carried
out the simulations below by numerically solving the set of differential equa-
tions above. We assigned the values obtained in [6] (Table 5.1) to the Monod
parameters, whereas we gave representative values to the remaining parame-
ters.

Figure 5.1 illustrates the influence of substrate preference on the lag phase.
In this simulation, the microorganisms have the same preference for both sub-
strates or a ten times higher preference for the first, respectively. A higher
preference for the first substrate results in a longer lag phase before growth on
the second starts. The initial value of the expression fraction κA(0) was set to
0.90, which means that the biomass is 90% adapted to substrate A.

Figure 5.2 shows the result of adaptation for a steady-state continuous cul-

Table 5.1: Monod parameter values of Klebsiella oxytoca obtained in [6]
from single substrate growth data. The maximum growth rate rmax, the sat-
uration constant K , and the yield factor Y are given.

Carbon source rmax (h−1) K (g/L) Y (g dry wt/g)
Glucose (A) 1.08 0.01 0.52
Xylose (B) 0.82 0.2 0.50
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ture. The expression fractions as well as the resulting steady-state biomass and
substrate concentrations are shown as a function of the dilution rate. Exper-
imental results often show that at low dilution rates both substrates are con-
sumed, whereas at high dilution rate only one substrate is consumed. As can
be seen from Figure 5.2, this is also predicted by the adaptation model.
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Figure 5.1: Influence of the preference parameter pA on the length of the
lag phase. The figure shows growth on two carbon sources with different
preference parameter values (pB/pA = 0.1, solid line; pB/pA = 1.0,
dashed line). When the microorganisms prefer the first substrate to the sec-
ond substrate (pB/pA = 0.1), the length of the diauxic lag phase increases
(parameter values from Table 5.1).
Adaptation-model parameters: h = 0.0 h−1, pB/pA = 0.1 or pB/pA = 1.0.
Initial conditions: SA(0) = SB(0) = 1.0 g/L, X (0) = 0.01 g dry wt/L, κA(0) =
0.90.

5.5 Applications

In this section we use the model to describe data from the literature, starting
with the growth of Klebsiella oxytoca on glucose and xylose [6]. A second
example is the diauxic growth of Pseudomonas oxalaticus on acetate and ox-
alate [1]. A third example is the diauxic growth on fructose and succinate [14].

5.5.1 Diauxic growth on glucose and xylose

Kompala et al. [6] have reported the diauxic growth of Klebsiella oxytoca on,
for example, glucose and xylose. We applied our model to their data, using
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Figure 5.2: Influence of the dilution rate on the expression fractions and
substrate concentrations in a steady-state chemostat with input concentra-
tions of 0.5 g/L substrate A (dashed line) and 0.1 g/L substrate B (dotted
line). LEFT: The expression fractions as a function of the dilution rate.
RIGHT: The substrate concentrations and biomass (solid line) concentra-
tion as a function of the dilution rate (parameter values from Table 5.1).
Adaptation-model parameters: h = 0.0 h−1, pB/pA = 0.5.

the Monod model for growth. During the estimation process the Monod pa-
rameters remain fixed on the values given in Table 5.1. We fitted the data on
the diauxic growth on glucose and xylose simultaneously. We show a series of
model validations followed by a model prediction. In the following figures the
dots represent the experimental data and the lines the model calculations.

Figures 5.3 and 5.4 show fits to data on the growth on glucose or xylose
only of an inoculum pre-cultured on glucose. Figure 5.5 and 5.6 show fits
to the data on glucose-xylose diauxie. These data come from an inoculum
pre-cultured on glucose and an inoculum pre-cultured on xylose, respectively.
Figure 5.7 shows a model prediction using the parameter values obtained in
the simultaneous fits (Figures 5.3 to 5.6). Although none of the model pa-
rameters were fitted to the data, the predicted behavior corresponds with the
experimental results.
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Figure 5.3: Model validation of growth of K. oxytoca on glucose after pre-
culturing on glucose. The dots represent experimental data (from [6]), the
line represents the model fit.
Adaptation-model parameter: h = 0.67 h−1, pB/pA = 0.68. Monod parameter
values from Table 5.1.
Initial conditions: SA(0) = 5.8 g glucose/L, X (0) = 0.005 g dry wt/L, κA(0) =
0.89.
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Figure 5.4: Model validation of growth of K. oxytoca on xylose after pre-
culturing on glucose. The dots represent experimental data (from [6]), the
line represents the model fit.
Adaptation-model parameter: h = 0.67 h−1, pB/pA = 0.68. Monod parameter
values from Table 5.1.
Initial conditions: SB(0) = 4.7 g xylose/L, X (0) = 0.0051 g dry wt/L, κB(0) =
0.11.
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Figure 5.5: Model validation of growth of K. oxytoca on glucose and xy-
lose after pre-culturing on glucose. The dots represent experimental data
(from [6]), the line represents the model fit.
Adaptation-model parameters: h = 0.67 h−1, pB/pA = 0.68. Monod parameter
values from Table 5.1.
Initial conditions: SA(0) = 0.5 g glucose/L, SB(0) = 2.5 g xylose/L, X (0) = 0.035
g dry wt/L, κA(0) = 0.89, κB(0) = 0.11.
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Figure 5.6: Model validation of growth of K. oxytoca on glucose and xy-
lose after pre-culturing on xylose. The dots represent experimental data
(from [6]), the line represents the model fit.
Adaptation-model parameters: h = 0.67 h−1, pB/pA = 0.68. Monod parameter
values from Table 5.1.
Initial conditions: SA(0) = 0.33 g glucose/L, SB(0) = 2.0 g xylose/L, X (0) =
0.038 g dry wt/L, κA(0) = 0.23, κB(0) = 0.77.
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Figure 5.7: Model prediction of growth of K. oxytoca on glucose and xy-
lose after pre-culturing on glucose. The dots represent experimental data
(from [6]), the line represents the model fit.
Adaptation-model parameters: h = 0.67 h−1, pB/pA = 0.68. Monod parameter
values from Table 5.1.
Initial conditions: SA(0) = 0.33 g glucose/L, SB(0) = 2.0 g xylose/L, X (0) =
0.035 g dry wt/L.
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5.5.2 Diauxic growth on acetate and oxalate

Dijkhuizen et al. [1] have reported the diauxic growth of Pseudomonas ox-
alaticus OX1 on acetate and oxalate. To fit our model to this dataset, we set the
initial condition of substrate and biomass concentration to the measured values
at time zero. Furthermore we fixed the value of the saturation constants on 0.01
mM, because the data do not contain information to estimate these constants
well. The estimated values for the other parameters are given in Figure 5.8.
The estimated values for the maximum growth rates and yields are within the
range values expected under these conditions. The doubling times on acetate
and oxalate are usually about 1.8 h and 3.6 h, respectively [1]. Figure 5.8 de-
picts a fit of the adaptation model to their data. As can be seen from this figure,
the model fits the data well.
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Figure 5.8: Model fit to data on growth of P. oxalaticus (•) on acetate ( � )
and oxalate (

�
) after pre-culturing on acetate (data from [1]). Under the

experimental conditions, 1 unit optical density (433 nm) is approximately
equivalent to 235 mg dry weight per liter.
Parameter values: rA max = 0.33 h−1, rB max = 0.19 h−1, YA = 0.11 mM acetate
OD−1, YB = 0.022 mM oxalate OD−1, K A = 0.01 mM (fixed), K B = 0.01 mM
(fixed), h = 0.15 h−1, pB/pA = 0.5.
Initial conditions: SA(0) = 4.3 mM acetate, SB(0) = 20 mM oxalate, X (0) = 0.11
OD, κA(0) = 0.99, κB(0) = 0.01.
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5.5.3 Diauxic growth on fructose and succinate

Azospirillum brasilense has shown diauxic growth when incubated with suc-
cinate and fructose [14]. To obtain a model fit of the experimental results, we
use our adaptation model in combination with the Monod model. The sub-
strates have been radioactively labeled and their consumption as well as their
incorporation into biomass have been measured in three experiments. In the
model fit shown below, we used a biomass incorporation percentage of 20%
for succinate [14] and of 50% for fructose.

Since radioactivity has been measured, a background radioactivity signal
exists during the experiment (14CO2, radioactive products). This means that
the substrate concentration based on radioactivity is not zero when all (pri-
mary) substrate has been consumed. The signal of these radioactive products
can be incorporated into the model expression for fructose consumption. The
formation of radioactive products equals d

dt P = −α d
dt SB − kd P . Since we

used an incorporation percentage of fructose of 50%, the parameter α has a
value of 0.50. Figure 5.9 shows the model fit of fructose disappearance without
(solid line) and with (dotted line) the incorporation background radioactivity.
The adaptation model fits quite well when we keep in mind that: (i) the data
comes from three separate experiments and (ii) during fructose metabolism,
an unknown amount of organic acids is produced causing the disappearance of
radioactivity to lag behind the consumption of fructose itself.

We remark that, in the uptake experiment, the total consumption rate of
fructose remained constant for one to two generations after the addition of
succinate to a culture growing on fructose [14]. This can be explained by an
immediate and complete stop of the synthesis of fructose degrading key en-
zymes. At the moment we have not further investigated this immediate change
in enzyme synthesis, since the specific fructose consumption rate in the uptake
experiment was about 8 times lower than in the corresponding growth experi-
ment. This means that the cells behaved differently in the growth and uptake
experiments, possibly due to the harvesting and washing processes.
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Figure 5.9: Model fit of growth of A. brasilense on fructose and succinate
after pre-culturing on succinate. The data come from three separate exper-
iments [14]: one measures [1,4-14C] succinate in supernatant (

�
) and cells

(4), one measures D-[U-14C] fructose in supernatant ( � ) and cells ( � ), and
another measures growth (•). The dotted line indicates the model fit of fruc-
tose consumption when the formation of radioactive products from fructose
is included (α = 0.50, kd = 0.1). One unit of OD590 corresponds to 470 µg
dry weight/ml.
Parameter values: YA = 80.6 g dry wt/mmol succinate, YB = 90.6 g dry wt/mmol
fructose, rA max = 0.38 h−1 [14], rB max = 0.22 h−1 [14], K A = 0.1 mM (fixed), K B
= 10−4 mM (fixed), h = 0.7, pB/pA = 0.8.
Initial conditions: SA(0) = 3.7 mM succinate, SB(0) = 22 mM fructose, X (0) = 16.5
g dry wt/L, κA(0) = 0.80, κB(0) = 0.20.
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5.6 Discussion

The adaptation model presented in this chapter fits and predicts data on diauxic
growth well. The current approach differs from previous approaches, as cyber-
netic modeling (e.g. [6, 7]), on some important aspects, which are discussed
below.

The description of the adaptation process was obtained by assuming a gen-
eral regulatory mechanism where the presence of one nutrient can inhibit the
utilization of another. This approach has the advantage that it is species inde-
pendent and parameter sparse. In its simplest version, it describes the adapta-
tion process during diauxic growth with only two parameters: κA(0) and pA .
A single parameter pA describes substrate preference during diauxic growth.

In the case of adaptation to a single nutrient, our model predicts a constant
maximum key-enzyme level. Thus, the maximum specific consumption rate is
always a constant, irrespective of enzyme decay and substrate concentration.
Our model differs in this aspect from other adaptation models. Such a con-
stant maximum rate is the basis of most growth models (Monod, Pirt, Droop,
DEB [9]). Moreover, it is difficult to know beforehand whether key enzymes
for a certain substrate are inducible. Therefore, the application of models for
adaptation that do not assume this maximum specific consumption rate to be
constant (e.g. [6, 11]) is problematic in the situation where growth on a sin-
gle substrate is quantified. If a Monod model has successfully been applied
to single-substrate situations, but later research reveals that key enzymes are
inducible, this implies that earlier work must be redone. Contrary to other
adaptation models known to us [6, 7, 11], our adaptation model does not suf-
fer from this problem even when enzyme decay occurs. For a single substrate
situation the current adaptation model simplifies exactly to the growth model
for cells in steady state. During steady-state growth on a single substrate, the
influence of the adaptation process on substrate consumption is absent.

Furthermore, we did not introduce optimal control into the adaptation
model a priori; bacteria may optimize total biomass, or growth rate [3, 7],
or possibly something else. No introduction of optimal control implies that we
do not use this method to reduce the number of parameters, as has been done in
the cybernetic approach [6, 7]. However, optimal control can be incorporated
into the model. The binding probabilities (see page 82), for example, can be a
function of an optimal control regime.

We point out that this adaptation model primarily describes slow adaptation
taking several cell cycles. It is based on the regulation of the synthesis of key
enzymes. When a microorganism adapted to substrate A, is transferred to
another substrate, the key enzymes for the use of A can be inhibited. This
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inhibition typically occurs in a time frame of seconds, and can be called fast
adaptation. It can be included in this model with, for example, an expression
for instantaneous inhibition (see Appendix).

We developed a slow adaptation model based on the interaction and inhi-
bition of substrates during enzyme synthesis. The model was applied to data
from diauxic growth experiments, but can be applied to growth on more than
two substrates as well. Moreover, it can be extended to account for differ-
ent processes as enzyme inhibition and can even be used with optimal control
without altering the structure of the model.

More information about the DEB research program can be found at
http://www.bio.vu.nl/thb/deb/. The adaptation model that is discussed in this
chapter is coded in the package DEBtool, which can be downloaded from the
electronic DEB laboratory.

Nomenclature

The following table lists the parameters used in the Monod and adaptation
model. The symbols used for the dimensions are: –, no dimension; l , length;
t , time; #, amount (C-mol or mass).

Symbol Name Dimension

fi
Si

Ki+Si
–

h enzyme turnover rate t−1

jim max. spec. consumption rate of substrate i # #−1 t−1

Ki saturation constant of substrate i # l−3

ni number of carriers i per structural mass # #−1

pi preference parameter for adaptation to substrate i –
r biomass growth rate t−1

rmax maximum biomass growth rate t−1

Si concentration of substrate i # l−3

X biomass concentration # l−3

Yi Monod yield factor # #−1

κi expression fraction of substrate i –
κ◦

i background expression fraction of substrate i –
κmax

i max. expression fraction of substrate i –
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Appendix

Adaptation with the DEB model

Our adaptation model can be combined with different biomass growth mod-
els. In this chapter we showed how our adaptation model can be applied in
combination with the Monod model. Another biomass growth model that can
be used is the dynamic energy budget (DEB) model [9], which accounts for
reserve dynamics. The main feature of this model is that substrates are assim-
ilated into reserves from which growth costs and maintenance costs are paid.
Since in the DEB model, biomass is divided into two compartments, structure
and reserves, the biomass composition becomes a function of the growth rate,
as has been observed in practice. When the maintenance is negligible and re-
serve turnover is very fast, the DEB model simplifies to the Monod model. For
a thorough introduction to the DEB model we refer the reader to [9, 10]. In
batch reactors, the DEB biomass growth model in combination with our adap-
tation model (equation 5.2 or equation 5.3) results in the following equations:

r =
kE mE − kM yEV

mE + yEV
(5.6a)

d

dt
mE =

∑

i

jim
κi

κmax
i

yE Si

Si

Ki + Si
− kE mE (5.6b)

W (t) = wV X + wE mE X (5.6c)

The expression for the substrate consumption (equation 5.4) also applies to
the DEB model; jim is the maximum structural-biomass specific consumption
rate of substrate i (C-mol C-mol−1 h−1). The growth of structural biomass
(X ) is defined by equations 5.5 and 5.6a. Here, the reserve density of lim-
iting nutrient, m E (C-mol/C-mol), comes into play. The higher the reserve
density, the higher the growth rate. kE is the reserve turnover rate (h−1) and
yEV refers to the amount of reserves needed per amount of structural bio-
mass formed (C-mol/C-mol). For simplicity, we assumed the costs for growth
(yEV ) remain constant. This means that the costs for key-enzyme synthesis
for cells fully adapted to one substrate are the same irrespective of the type
of substrate. Maintenance is introduced by the maintenance rate coefficient,
kM (h−1). Reserves are replenished by substrate consumption (equation 5.6b).
The efficiency of this process is defined by yE Si (C-mol/C-mol); the amount
of reserves formed per amount of substrate consumed. The total weight (W )
of the biomass equals the sum of the weight of reserves and structural bio-
mass (equation 5.6c). Please note that the Monod model is a special case of
the DEB model for kE → ∞ and kM = 0.
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Diauxic growth on acetate and oxalate

Dijkhuizen et al. [1] have reported the diauxic growth of Pseudomonas ox-
alaticus OX1 on acetate and oxalate. In this example, we use the DEB model
for microbial growth (see section 5.3.3). The biomass and substrate concen-
trations are expressed on a C-mol basis. We assumed that the biomass struc-
ture and the reserves have the general composition CH1.8O0.5N0.2 (24.6 g/mol).
Biomass concentration was reported in optical density units. Under the exper-
imental conditions, 1 unit optical density (433nm) is equivalent to 235 mg dry
weight per liter (1 C-mole/L × 24.6

235 =OD433).
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Figure 5.10: Model fit to data on growth of P. oxalaticus (•) on acetate ( � )
and oxalate (

�
) after pre-culturing on acetate (data from [1]).

Parameter values: jAm = 0.66 C-mol acetate (C-mol biomass)−1 h−1, jBm = 0.9
C-mol oxalate (C-mol biomass)−1 h−1, yE SA = 0.66, yE SB = 0.28, yEV = 1.3,
K A = 0.01 mM (fixed), K B = 0.01 mM (fixed), kE = 10 h−1, kM = 0 h−1,
h = 0.16 h−1, pB/pA = 0.023.
Initial conditions: SA(0) = 4.3 mM acetate, SB(0) = 20 mM oxalate, X (0) = 1.0
C-mol/L, mE (0) = 0.044, κA(0) = 0.99, κB(0) = 0.01.

Fast adaptation

Fast adaptation, or repression of enzyme activity, can also be modeled with
bilateral binding inhibition (equation 5.1). In this case, not the synthesis ma-
chinery but the enzyme activity is repressed. Substrate consumption with in-
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stantaneous inhibition becomes:

d SA

dt
= − jAm

j ′
AkB

j ′
AkB + j ′

BkA + kAkB
X

= − jAm
K −1

A SA

K −1
A SA + K −1

B A SB + 1
X

The arrival flux j ′
A of substrate A at the carrier (or key enzyme) is proportional

to the substrate concentration and equals αAρA SA, where ρA is the binding
probability. The saturation constant K A is kA/(αAρA). The influence of sub-
strate B on the consumption of A appears in the denominator as K −1

B A SB.
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Samenvatting

Realistische karakteriseringen van biodegradatie

De industrie produceert grote aantallen chemicaliën in soms grote hoeveelhe-
den. Uiteindelijk komen deze stoffen in het milieu en kunnen daar problemen
veroorzaken. Pesticides zoals DDT, maar ook synthetische zepen, hebben door
hun slechte afbreekbaarheid in het verleden tot vervuilingen geleid. Chemi-
caliën die op de markt komen moeten tegenwoordig getest worden op een groot
aantal eigenschappen, waaronder toxiciteit, carcinogeniciteit, en afbreekbaar-
heid. Verschillende internationale organisaties (OESO, ISO, EU) hebben richt-
lijnen opgesteld voor deze tests.

Dit proefschrift gaat over het modelleren van biodegradatie, ofwel het af-
breken van stoffen door (micro)organismen. Deze modellen kunnen worden
toegepast in de analyse van de resultaten van biodegradatietesten. Binnen dit
project zijn een aantal onderwerpen geselecteerd die een rol spelen bij de bio-
degradatie: stof-transportproblemen, co-metabolisme, en adaptatie.

Hoofdstuk 1 introduceert de biodegradatietests en een aantal modellen.
Deze modellen worden in de praktijk gebruikt voor het beschrijven van de
resultaten, waarbij de nauwkeurigheid van de beschrijving vaak belangrijker is
dan de juistheid van het model. De problemen van deze modellen worden kort
besproken.

Voor de oplossing van deze problemen is een raamwerk nodig dat in hoofd-
stuk 2 wordt besproken en in latere hoofdstukken wordt toegepast bij het for-
muleren van andere modellen, die een aantal problemen oplossen.

Hoofdstuk 2 introduceert de Dynamische-Energie-Budget (DEB) theorie.
Micro-organismen breken stoffen af en zij vermenigvuldigen zich vaak gedu-
rende deze afbraak. De DEB-theorie doet uitspraken over de groei van orga-
nismen. Deze algemene theorie, waarbinnen reserves een centrale rol spelen,
wordt hier toegepast om de groei van de biomassa te beschrijven. De relatie
van het DEB-model tot het Monod, het Pirt en het Droop-model wordt aan-
gegeven. De volgende hoofdstukken (3, 4, 5) behandelen de geselecteerde
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onderwerpen (stof-transportproblemen, co-metabolisme, en adaptatie).
Hoofdstuk 3 beschrijft een model voor de afbraak van stoffen door mi-

crobiële vlokken. Micro-organismen in actief slib komen meestal voor in vlok-
ken, wat resulteert in een verminderde beschikbaarheid van substraten voor de
bacteriën in de vlok. Dit kan de biodegradatiesnelheid een orde van grootte
verkleinen. Dit hoofdstuk presenteert een uitbreiding van groeimodellen voor
celsuspensies om de verlaging in de afbraaksnelheid te beschrijven. Hiervoor
zijn twee extra parameters nodig: de vlokgrootte bij deling, en de ‘diffussie-
lengte.’ In het begin groeien kleine vlokken exponentieel, net als celsuspen-
sies. Hierna neemt de groeisnelheid geleidelijk af en uiteindelijk is de radius
van de vlok een lineair stijgende functie van de tijd. In dit hoofdstuk wordt
een expliciete, benaderende expressie afgeleid voor de groei van biomassa in
vlokken. Modelsimulaties laten het effect van vlokgrootte op de biodegrada-
tiesnelheid zien.

Hoofdstuk 4 behandelt simultane opname van verschillende stoffen. De
beschikbaarheid van meerdere koolstof/energie bronnen kan de afbraak van
recalcitrante verbindingen bevorderden. Verschillende manieren van multi-
substraatgebruik komen aan bod en worden binnen een algemeen concept van
‘Synthesizing Units’ geplaatst. Synthesizing Units zijn een soort algemene
enzymen. Een substraat kan substitueerbaar of complementair zijn, de manier
van opname kan sequentieel of parallel zijn. Dit geeft vier verschillende ma-
nieren van substraatinteractie, die alle door een algemeen model omvat wor-
den. Uit het algemene model volgt een expressie voor co-metabolisme van
verbindingen die verschillen van moleculaire structuur. Zowel het algemene
model als het model voor co-metabolisme hebben als voordeel dat ze met elk
microbieel groeimodel gecombineerd kunnen worden. Het model voor co-
metabolisme wordt gevalideerd met experimentele data. De verkregen resulta-
ten ondersteunen het idee dat het algemene model een bruikbaar raamwerk is
voor het modelleren van multisubstraatgebruik.

Hoofdstuk 5 gaat over de aanpassing van bacteriën aan de verschillende
aanwezige substraten. In het milieu komen verschillende substraten voor in
variërende concentraties. Bacteriën zullen zich aan de veranderingen in hun
milieu aan moeten passen om te overleven. Dit hoofdstuk presenteert een mo-
del voor langzame adaptatie als functie van veranderingen in substraatbeschik-
baarheid. Het model is gebaseerd op symmetrische inhibitie van de expressie
van substraatspecifieke afbraakroutes. De Synthesizing Unit kinetica geeft de
inhibitiekinetiek. Indien de bacteriën volledig aangepast zijn aan de opname
van een enkel limiterend substraat is de maximale consumptiesnelheid volgens
dit model constant. Ofwel, deze maximale snelheid is dan niet meer afhanke-
lijk van de substraatconcentratie (voor groei op één substraat), waardoor bij-
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voorbeeld het Monod en het Pirt model nog steeds van toepassing blijven. An-
dere ons bekende adaptatiemodellen hebben deze eigenschap niet. De meest
eenvoudige versie van het hier ontwikkelde adaptatiemodel beschrijft de adap-
tatie gedurende groei op twee substraten (di-auxie) met slechts één preferentie
parameter en één initiële conditie. Om de toepasbaarheid van het model te
illustreren, is het gefit aan data van di-auxische groei-experimenten.

De modellen voor groei van microbiële vlokken, co-metabolisme en adap-
tatie, die in de laatste drie hoofdstukken worden beschreven, kunnen worden
toegepast bij de analyse van de resultaten van biodegradatietests.
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