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Figure I- 1: Reservoirs (Gt C) and flows (Gt C yr

-1
) of the global carbon 

cycle (Siegenthaler & Sarmiento 1993). 

 

 

 

 
 
Figure I- 2: Size continuum spectrum of organic carbon, with the distinction 

between the particulate phase (POC > 0.7 µm) and the dissolved one (DOC < 

0.7 µm). Adapted from Verdugo et al. (2004). 
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I. The carbon cycle and the importance of processes 

of bacterial degradation of dissolved organic 

matter in aquatic systems  

 
1. The role of dissolved organic carbon and of bacteria in the 

global carbon cycle  
 

The global carbon cycle takes place inside and between the 4 spheres at 

the surface of the planet: lithosphere, hydrosphere, biosphere and 

atmosphere. The global stocks and flows of each of these reservoirs are given 

in Figure I-1. The ocean, covering approximatively 70 % of the earth surface, 

plays an important role in the carbon cycle and the global climate system. 

Indeed, at the global scale, seawater is an important component of the carbon 

cycle and constitutes one of the larger carbon reservoirs: the dissolved 

inorganic carbon amounts to 40 000 Gt C, thus approximatively 6 times the 

amount of atmospheric carbon dioxide (CO2). 

 

Carbon is fractionated into 2 categories: inorganic carbon (IC) and 

organic carbon (OC). IC is associated to compounds which are or were not 

living and which do not contain any C-C or C-H link, as for example the 

carbon from CO2 or those from carbonate calcium CaCO3. OC is produced by 

living organisms and is chemically linked to other carbon atoms or to 

elements as hydrogen (H), nitrogen (N) or phosphor (P). OC is subdivided 

into 2 classes: dissolved organic carbon (DOC) and particulate organic 

carbon (POC). Separation between both stocks is based on their size: all 

compounds that pass a filter with a given retention size (generally 0.7 µm) 

are considered as dissolved, the rest as particulate (Figure I-2). However, 

some living organisms, thus particulate, such as bacteria, are in the boundary 

of this separation and may partially be considered as DOC. 

 

From a biological point of view, the carbon cycle typically starts from the 

conversion of CO2 and other inorganic nutrients to OC and O2 by 

photosynthesis (Figure I-3). In pelagic environments, photosynthesis is 

realised by phytoplankton, marine plants and algae but also by other 

autotrophic organisms such as cyanobacteria. This first step requires light and 
constitutes the primary production. OC produced by primary production can 

be consumed by higher trophic levels such as zooplanktonic organisms and 

fishes. DOC and POC are produced all along this trophic chain. DOC 

includes excretion of small molecules and POC includes fecal pellets. POC 

can be transformed into DOC according to several processes such as 

dissolution and enzymatic processes. DOC is used by heterotrophic bacteria 
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which remineralise organic matter, producing CO2 and inorganic nutrients. 

These remineralised compounds can be reused for photosynthesis purposes if 

required conditions are met, and thus heterotrophic bacteria maintain the 

carbon cycle. 

 

 

 

 

 
 

 

Figure I- 3: schematic and simplified representation of the aquatic carbon 

cycle. Green arrows represent photosynthetic requirements and constitute the 

start of the cycle. The full black arrows represent the traditional food chain 

(the last arrow coming from zooplankton being directed to the higher trophic 

levels), and the dashed black arrows the DOC production along this trophic 

chain. The full blue arrows represent the microbial loop, the start point being 

DOC, and all red arrows represent CO2 production at each trophic level. 

Bacteria contribute not only to matter remineralisation by CO2 production but 

also to nutrient regeneration required for photosynthesis. Finally, CO2 is 

permanently exchanged between the ocean and the atmosphere by gas 

transfer (full grey arrow). 
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It is widely recognised that heterotrophic bacteria play a predominantly 

role in the carbon cycle. Indeed, they represent the most important living 

biomass in aquatic ecosystems. They also constitute the major DOC 

consumers (Pomeroy 1974), this latter being the second most important stock 

of bioreactive carbon in ocean (680 – 700 Pg C) (Williams & Druffel 1987, 

Hansell & Carlson 1998) after the very large stock of dissolved IC (38 000 

Pg C) (Hansell 2002). DOC dynamic is thus important for understanding 

global carbon cycle and changes of atmospheric CO2, the most critical 

greenhouse gas on our planet (Siegenthaler & Sarmiento 1993). DOC, after 

being consumed by heterotrophic bacteria, is either incorporated in the food 

chain or respired as CO2. Bacteria represent thus either a sink or a source of 

carbon. DOC may also be photooxidised and remineralised in the surface 

layer (Tedetti 2007 et al. and references therein) or exported into the deep 

ocean by winter convection of the surface water masses (Copinmontegut & 

Avril 1993). 

 

2. The dissolved organic carbon 

i. Composition 
 

DOC has a very heterogeneous nature and has thus been classified into 

different categories, which differ according to the studies. Some authors 

classify DOC pools between material that disappears rapidly to that which 

accumulates (Anderson & Williams 1999, Christian & Anderson 2002). 

Three distinct pools have been determined according to their reactivity 

towards heterotrophic bacteria: labile DOC (L-DOC) that is consumed in 

hours to days, semi-labile DOC (SL-DOC) that has a turnover time of weeks 

to years and refractory DOC (R-DOC) that has a turnover rate of millennia 

(Williams & Druffel 1987, Bauer et al. 1992, Druffel et al. 1992, Carlson & 

Ducklow 1995, Hansell et al. 1995, Carlson & Ducklow 1996, Carlson 

2002). L-DOC represents DOC fraction which may be directly utilised by 

bacteria whereas SL-DOC needs bacterial enzymatic activity to be 

transformed in L-DOC and being consumed. R-DOC can be transformed into 

L-DOC only after photooxydation. When working on natural seawater 

samples, the separation of R-DOC from L-DOC and SL-DOC stocks may be 

performed by subtracting the values of DOC in deep waters (> 1000 m) to 

that of total DOC in surface waters, assuming an uniform distribution of R-

DOC thorough the water column (Carlson & Ducklow 1995) (Figure I- 4). 

However, the separation of L-DOC from SL-DOC is more difficult as only a 

very small fraction of DOC can be chemically identified. Biological assays of 

bacterial degradation must be realised to fractionate these stocks (Wheeler et 

al. 1996, Hansell & Peltzer 1998, Wiebinga & de Baar 1998, Dafner et al. 

2001, Sohrin & Sempéré 2005). 
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Figure I- 4: The distribution of DOC in the water column (Anderson & 

Williams 1999). L-DOC is only present in small concentrations in the surface 

layer. 

 

 

 

 
Figure I- 5: schematic diagram of the size continuum model of the reactivity 

for organic matter (OM) decomposition in aquatic environment. Dot size is 

representative of OM size and arrows indicate the reactivity direction, from 

very reactive HMW compounds to LMW compounds more recalcitrant to 

degradation (Amon & Benner 1996). 
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DOC may also be fractionated with respect to their molecular weight 

(Amon & Benner 1996). Low molecular weight (LMW) compounds, with a 

size less than 1 kDa, can be distinguished from DOC compounds with a high 

molecular weight (HMW), with a size between 1 kDa and 30 kDa, and from 

DOC with a very high molecular weight (VHMW) with a size greater than 30 

kDa. However, the relationship between this latter classification and the 

previous one based on lability is not very clear. Most studies assimilate 

LMW compounds to labile material, and inversely HMW compounds to 

more refractory material (Saunders 1976). In contrast, some studies 

demonstrate that HMW compounds are more reactive (Amon & Benner 

1996) and a new size continuum model has been created, where the 

bioreactivity of DOC decreases with decreasing size (Figure I- 5). Authors 

supposed that freshly produced organic matter (OM) is HMW and that during 

decomposition OM continuously becomes less bioreactive and smaller in 

physical size, giving rise to LMW molecules with a low reactivity (Amon & 

Benner 1996). 

 

DOC may also be classified with respect to its chemical nature 

(carbohydrate, lipid, nucleic acid), but currently only approximatively 30 % 

of the bulk DOC pool have been chemically characterised. In order to try to 

understand which compounds are preferentially utilised by bacteria, and thus 

to determinate the labile nature of these compounds, numerous authors have 

used biodegradation experiments with seawater samples by adding model 

compounds. Inorganic nutrients are also often added in these cultures. The 

observation that added inorganic nutrients do not stimulate bacterial 

production or DOC utilisation indicates that growth is limited by the OC 

availability (Carlson & Ducklow 1996, Carlson et al. 2002). Other 

experiments showed that compounds such as glucose, dissolved free amino 

acids (DFAA) and natural plankton extracts stimulate bacterial production as  
well as OM utilisation with turnover rates of some days (Cherrier et al. 

1996). These compounds may thus be classified as L-DOC. Carlson (2002) 

states that the most biologically reactive organic compounds in seawater 

include dissolved free compounds such as neutral monosaccharides (MCHO) 

and DFAA. Another experiments, where OM addition consists of plankton 

extracts, showed that only 28 % of this extract have been chemically 

characterised and consists of DFAA, dissolved combined amino acids 

(DCAA) and MCHO (Cherrier & Bauer 2004). In addition, only 31 % of this 

added DOC were used by bacteria during short biodegradation experiments, 

and may thus be classified in L-DOC, but only 75 % of the utilised 

compounds have been chemically characterised (Cherrier & Bauer 2004). 

This study proves thus the complexity of associating chemical compounds 

with a labile nature of OC. 



               Chapter I 8 

ii. Production 
 

Numerous mechanisms of DOC production have been highlighted. The 

main source of DOC production seems to come from release by 

phytoplankton (Nagata 2000). However, other processes are involved in 

DOC production, as egestion, excretion and “sloppy feeding” by grazers, and 

cell lysis induced by viruses (Nagata 2000, Carlson 2002). The quantitative 

role of DOC release by phytoplankton is assessed by the percent extracellular 

release (PER). This latter have been extensively studied and present a high 

variability depending on whether it was estimated from phytoplanktonic 

cultures or from natural seawater. PER fluctuates between 2 and 10 % in 

cultures (Nagata 2000) and between 0 and 80 % in the field for a variety of 

coastal and oceanic systems (Carlson 2002). Grazers also participate 

substantially to DOC production. Indeed, the magnitude of potential DOC 

release by protozoa, that feed on small phytoplankton and bacteria, is 

equivalent to or even exceeds that of phytoplankton (Nagata 2000). In 

addition, zooplankton, i.e. grazers that feed on large phytoplankton, could 

release DOC by four main processes: excretory release, egestion, sloppy 

feeding (breakage of large prey during handling and feeding) and release 

from fecal pellets (Carlson 2002). Production rates are highly variable 

according to the considered process (Nagata 2000). Viral lysis plays also an 

important role among these DOC production processes. Finally, even bacteria 

may participate to DOC production. Indeed, structural components of 

bacterial cells including membranes and peptidoglycan can be introduced to 

seawater as DOC during bacterial death due to protozoan grazing and viral 

infection (Nagata & Kirchman 1999). 

 

However, we don’t get any information about DOC lability else than via 

the process by which it is produced. The labile character of a compound is 

very difficult to estimate. Indeed, if DOC consumption is studied in cultures 

including one DOC producer and bacteria, these flows being direct, we 

cannot measure the fraction of DOC that is really assimilated by bacteria. On 

the other hand, studying only DOC production does not allow estimating its 

potential utilisation by bacteria. 

 

iii. Spatial and temporal variability of DOC  

 

From a general point of view, DOC concentration is higher in the surface 

layer than in deep waters. In deep waters, DOC concentration is considered 

constant around 34 µM C but may vary slightly due to marine currents. For 

example, 29 % decrease in DOC concentration has been observed between 

north of the North Atlantic and north of the North Pacific (Hansell & Carlson 



General introduction 

 

9 

1998). Surface concentrations are more variable, due to more pronounced 

spatial and temporal influences. The DOC mean surface concentration may 

be estimated to 90 µM C (Hansell 2002). Its spatial variation may be affected 

by physical phenomenona such as (1) upwelling which will reduce the DOC 

concentration, (2) terrigenous inputs such as the highly concentrated DOC 

inputs by riverines. In this latter case, the DOC concentration may exceed 

200 µM C. The temporal DOC variation is principally due to seasonal 

phytoplankton blooms. However, the magnitude of this variability differs 

with the region. So, strong increases in DOC concentration are characteristic 

of high latitude systems which receive high fresh nutrients inputs during 

winter periods. For example, the DOC concentration in surface waters 

increases from 42 µM C in winter to 65-70 µM C in summer in the Ross Sea 

(Carlson et al. 1998). In oligotrophic zones, with medium latitudes, oceans do 

not exhibit the same seasonality (Hansell 2002). The changes in DOC 

concentration is on average only about 3-6 µM C, that is small amplitudes 

compared to the high latitude systems (Hansell 2002). This phenomenon is 

due to mixing between surface and deep waters, with a small DOC 

concentration, when primary production is high. Consequently, when 

stratification becomes established with the heating of the top layer, the 

phytoplanktonic bloom will cease and the DOC concentration increases again 

to normal levels. Oceanic systems at low latitude do not undergo winter 

refreshment of the surface layer and thus seasonality in DOC concentration 

(Hansell 2002). It is therefore important to be aware that spatial and temporal 

variabilities are tightly coupled, implying that impacts from spatial or 

temporal variability are difficult to discriminate. 

 

3. DOC utilisation by pelagic heterotrophic bacteria 

 

Heterotrophic bacteria are considered as major consumers and 

remineralisers of dissolved organic matter (DOM) in the ocean (Pomeroy 

1974). They also represent a very dynamic compartment in the interaction 

between geosphere, hydrosphere and biosphere and as such has the potential 

to influence the global carbon cycle and climate change (Farrington 1992). 

The interactions between DOM and bacteria play a central role in the aquatic 

carbon cycle; thus, the factors regulating DOM production and consumption 

profoundly influence carbon fluxes (Amon & Benner 1996). Moreover, since 

Azam et al. (1983) have highlighted the ecological role of bacteria in the 

water column, numerous studies have tried to understand how bacteria 

utilised and transformed DOM. 
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The bacterial growth efficiency (BGE) is a factor allowing the 

determination of the DOM utilised by bacteria for their growth, the remaining 

being remineralised. Indeed, at low BGE, more DOM will be remineralised, 

keeping the nutrient cycling within the microbial cycle; at high BGE the OM 

is transferred from the dissolved phase to the particulate phase and with 

increased probability into the larger trophic size fractions (del Giorgio & 

Cole 1998, del Giorgio & Duarte 2002, Cajal-Medrano & Maske 2005). BGE 

allows thus estimating bacterial impact in marine ecosystems as carbon 

source or sink. Numerous environmental factors may affect BGE (del 

Giorgio & Cole 1998): DOC quality in term of molecular weight  (Amon & 

Benner 1996), chemical nature of DOC (Carlson & Ducklow 1996, Cherrier 

et al. 1996, Cherrier & Bauer 2004), substrate C:N ratio (Goldman et al. 

1987), distance of the study site from the shore (del Giorgio & Cole 1998, La 

Ferla et al. 2005), season (Reinthaler & Herndl 2005, Eichinger et al. 2006), 

temperature (Rivkin & Legendre 2001) and depth (Eichinger et al. 2006). 

However, BGE comparison between studies is made difficult due to the 

diversity of methods used and the utilisation of conversion factor. 

 

BGE is estimated from experimental data generally obtained from batch 

cultures. BGE is calculated from bacterial production (BP), bacterial 

respiration (BR) and/or bacterial carbon demand (BCD) according to the 

following formula BGE=BP/BCD where BCD=BP+BR (Carlson & Ducklow 

1996, del Giorgio & Cole 1998, Rivkin & Legendre 2001, Sempéré et al. 

2003, Cherrier & Bauer 2004). BP may be estimated from tritiated leucine or 

thymidine incorporation, but its estimation requires the utilisation of 

conversion factors which are not necessarily constant. BR is estimated from a 

linear regression on the increasing CO2 concentration in incubations that last 

few days, or more generally from a linear regression on the decreasing O2 

concentration. However, the conversion from O2 consumption to CO2 

production which corresponds to BR requires the utilisation of an assumed 

respiratory quotient (RQ). This latter is considered constant and is often 

approximated to 1 for sake of simplicity or to 0.8 as a mean of literature 

values (Sempéré et al. 2003). BCD is calculated either as the sum of BP and 

BR or as the decrease of DOC in cultures. However, BGE values resulting 

from the estimation of BCD as BP+BR or as the rate of decrease of DOC 

concentration may be different (Cherrier et al. 1996). Consequently, the sole 

utilisation of a conversion factor biases BGE estimation. 
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II. Modelling organic matter and bacterial dynamics  

 
This section focuses on the different models which have been used to 

describe bacterial growth utilising DOC as nutritive resource. Since Azam et 

al. (1983) allocated the term microbial loop for the set of interacting 

processes responsible for the recycling of dead OM into particulate biomass, 

there was an increasing number of studies trying to estimate the carbon flow 

through microbial loop. Heterotrophic bacteria represent the major organisms 

that consumed and remineralised DOM (Pomeroy 1974) and are the central 

component of the microbial food web (Legendre & Rassoulzadegan 1995). 

Consequently, an understanding of the relevant aspects of bacterial 

physiology is a prerequisite for any detailed understanding of how 

heterotrophic bacteria interact with DOC and organisms at other trophic 

levels in the microbial loop (Martinussen & Thingstad 1987). Many 

experimental studies were conducted and models proposed to explore the 

bacterial link-sink problem (Touratier et al. 1999). Mathematical models 

provide tools which allow investigation of complex dynamics such as 

microbial food webs. However, the design of a particular model may vary 

greatly and depends on the particular purpose of the modelling exercise, as 

modelling of an ecosystem as a whole and modelling of the physiology of the 

individual physiology are carried out with different objectives and often 

using different approaches (Davidson 1996). We have thus decided to 

describe the various models in relation to their complexity at the level of 

bacterial physiology, and not in relation to the complexity of the global 

model, that is to say if the considered study presents a simple bacterial 

growth model or an ecosystem model dealing with numerous parameters and 

state variables. The bacterial growth formulation may however be the same 

depending on whether the model is a growth model or a trophic chain model. 

Models describing carbon utilisation by bacteria were developed by various 

authors and the system complexity varies (Cajal-Medrano & Maske 1999) 

from simple models with 2 state variables (Monod 1942) to very complex 

bioenergetic models with many state variables (Vallino et al. 1996). 

 

1. Utilisation of models with Michaelis-Menten kinetics  

 

The Monod (Monod 1942) model uses Michaelis-Menten (Michaelis & 

Menten 1913) kinetics and is certainly the most extensively used formulation 

for describing bacterial growth with DOC as nutritive resource. This model 

assumes that substrate (X) is directly and instantaneously assimilated by 

bacteria (B) with a constant growth efficiency (BGE). The substrate 
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utilisation is described by a Michaelis-Menten formulation with a maximum 

specific assimilation rate (Vmax) and a half-saturation constant (K): 

 

max

max

dX X
V B

dt K X

dB X
BGE V B

dt K X

= −

+

=

+

 

 

This model assumes that a proportion BGE of the assimilated substrate is 

utilised for growth, and that the complementary proportion (1-BGE) is thus 

used for respiration. At the bacterial level, this model has been used to 

describe in situ data on growth and L-DOC utilisation (Eichinger et al. 2006), 

as well as in a chemostat-type theoretical study dealing with 2 potentially 

limiting substrates (C and N) (Thingstad & Pengerud 1985). The Monod 

model has been more extensively used in studies at a wider scale, i.e. studies 

describing the microbial loop or global models aiming to represent elemental 

cycles in marine systems. Among these studies, microbial loop models 

including heterotrophic bacteria have been realised, the aim being generally 

to investigate the carbon flow through microbial loop and the interactions 

between bacteria and other organisms constituting the microbial loop. 

However, most of these works investigated models at their steady-state and 

compare model outputs with stock data (Taylor & Joint 1990, Blackburn et 

al. 1996, Anderson & Ducklow 2001) or considered the model only on a 

theoretical point of view without comparison with data (Thingstad & 

Pengerud 1985). In addition, parameter values of the four last cited models 

came from literature or were assumed. This latter fact, in addition to the 

absence of model validation with dynamical data, complicates the evaluation 

of the pertinence of these models in the context of this thesis. Moreover, 

substrate quality was taken into account but the various studies did this in 

different ways: quality may be converted to a lability, which is expressed as a 

fraction of the DOC production by the considered source (phytoplankton 

exudation, bacterial lysis, grazing) (Taylor & Joint 1990, Anderson & 

Ducklow 2001) or taken to be a function of elemental C:N ratios (Thingstad 

& Pengerud 1985, Blackburn et al. 1996). 

Finally, many studies, focusing mainly on cycling of elements in marine 

systems, have used this formulation to describe DOC utilisation by bacteria 

(Davidson 1996, Christian & Anderson 2002). Some studies specifically 

investigated oceanic DOC cycling and have used a Monod-type formulation 

(Connolly & Coffin 1995, Anderson & Williams 1998, 1999), a simplified 

Monod-type formulation (Bendtsen et al. 2002), or a slightly more 

complicated Monod-type formulation by adding for example a temperature-
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dependant relationship (Bissett  et al. 1999) or by taking into account a 

carbon absorption threshold (Tian et al. 2000). All these models, except the 

last one, considered several DOC labilities. However, even if the global 

dynamics of these models match DOC distribution in marine systems well, 

the validity of these models is limited due to (1) the parameter values that 

were assumed or taken from literature and (2) the comparison of model 

outputs with data comprising either only few variables of the model or few 

data points. Other ecosystem models utilised also Monod-type formulations 

for the DOC utilisation by bacteria, but without specific attention for the 

carbon cycle (Billen & Becquevort 1991, Vallino 2000, Spitz et al. 2001, 

Lancelot et al. 2002, Raick et al. 2005). 

 

2. Utilisation of models with reserve 

 
The ability of carbon storage by heterotrophic bacteria has been demonstrated 

for carbon limited systems (Baxter & Sieburth 1984) as well as for systems 

not limited by carbon availability (Kooijman 2000). Production and 

accumulation of carbon products, such as polymeric carbohydrates, has been 

shown to be a survival mechanism to dispose of the excess MCHO taken up 

(Baxter & Sieburth 1984). This storage capacity provides an explanation of 

the continued cell growth after depletion of the substrate (Martinussen & 

Thingstad 1987). This experimental result has thus to be taken into account in 

models simulating bacterial growth and utilisation of carbon substrate. To 

take this storage material into consideration, growth models often used the 

Droop (Droop 1968) model or an adaptation of this latter. This model has 

been originally constructed to describe nutrient-limited growth of a 

monospecific phytoplankton strains. Since then, it has been extensively used 

and extended to study heterotrophic bacteria. Some studies have used an 

adapted form of this model to describe carbon utilisation and bacterial growth 

in chemostat-type theoretical situations (Thingstad & Pengerud 1985, 

Thingstad 1987) or in comparison with batch or chemostat data (Martinussen 

& Thingstad 1987). In these studies, this model has been used to describe 

limitation by nitrogen (N), phosphor (P) or carbon (C). This allows flexibility 

in biomass composition in term of C, N and P, whereas Monod model 

assumes constant composition. In this kind of model, growth depends on a 

surplus pool of nutrients inside the cell, named cell quota, and not on the 

outside concentration of limiting nutrient directly as in Monod model. The 

growth rate is controlled only by the cell quota (C, N or P) which is closest to 

its minimum value. In the works cited previously, model formulation for the 

substrate utilisation and growth of bacterial biomass has evolved in the 

course of years and has been adapted to match experimental results. The 

model considered different formulations for the growth in term of biomass 
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(C, N or P) and the growth in term of cell number which only depends of one 

of the three elements.  

 

Contrary to the Monod model, quota models have been rarely used in 

microbial loop or ecosystem models. Some microbial loop models have used 

cell quota (Baretta-Bekker et al. 1998) to describe element fluxes and to 

allow bacteria using inorganic nutrients, a capability not utilised in their 

previous model; Baretta-Bekker et al. (1994) allowed only OC utilisation. A 

complex biogeochemical model, following from the ERSEM model of 

Baretta-Bekker et al. (1998), used also the notion of cell quota. This was to 

decouple OC assimilation from nitrogenous and phosphorous nutrient 

utilisation rather than to create material storage in the cell. Contrary to the 

studies of Thingstad et al. cited previously where each quota comprises only 

1 element (C, N or P) and where growth depends on the ratio between the 

minimum quota and the current quota value, cell quota correspond here to 

C:N and C:P ratios and permit to determine the limiting element. 

 

Dynamic energy budget (DEB) theory (Kooijman 2000) considers 

storage of nutrients as well as energy substrates. This theory provides laws 

for energy and substrate absorption and their utilisation by organisms. One 

organism is quantified by at least 2 state variables: reserve and structure (see 

chapter IV). Reserve is thus considered as a state variable as well and the 

number of reserves might equal that of nutrients. This theory has been 

extensively applied to the growth of heterotrophic bacteria (Kooijman et al. 

1991, Hanegraaf & Muller 2001, Brandt et al. 2003, Brandt et al. 2004) and 

to the growth of bacteria implied in prey-predator interactions and in small 

trophic chains (Kooi & Kooijman 1994, Kooijman et al. 1999, Hanegraaf & 

Kooi 2002). In all of these studies models have been compared to data and 

match very well. However, DEB theory has currently not been used for 

describing microbial loop or complex ecosystems, certainly because resulting 

models are complex and the calibration of their numerous parameters and 

state variables is complicated. 

 

3. Maintenance implementation 

 

Some of the models cited previously used also the notion of maintenance 

to translate the fact that organisms provide energy not only for biosynthetic 

processes producing growth but also for physiological activity that does not 

produce new biomass but maintain cell integrity (Cajal-Medrano & Maske 

2005). This energy is utilised for the turnover of cell constituents, ionic 

equilibrium and repair processes (Cajal-Medrano & Maske 1999). This 

maintenance activity is decoupled from growth and is necessary for cell 
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survival even if concentration of bioavailable substrate is not sufficient to 

ensure growth. First authors having pointing out maintenance requirements 

were Herbert (1958), Marr et al. (1963) and Pirt (1965). This maintenance 

activity is often represented in models by respiration, accounting for a term 

of basal respiration and one of activity linked to the growth. Cajal-Medrano 

and Maske (1999, 2005) have used a model which links the respiration rate, 

taking into account both terms, and the growth rate together. These studies 

aimed to interpret published data concerning BGE values obtained with 

natural bacterial population from temperate, pelagic systems. However, these 

studies did not compare the model with dynamical data of DOC and bacteria. 

Other studies, based on bacterial growth, have taken the maintenance process 

into account in models. Some of these models assessed the influence of 

substrate quality, in terms of C:N ratio, on growth, respiration and excretion, 

but they described growth according to Michaelis-Menten kinetics (Touratier 

et al. 1999). Other studies have also incorporated maintenance as respiration; 

contrary to most studies, this latter is realised from carbon cell quota and not 

directly from assimilated substrate (Martinussen & Thingstad 1987, 

Thingstad 1987). This model has been calibrated and compared to steady-

state and transient data, coming from batch and chemostat experiments, and 

showed a good match. 

 

Some microbial loop models also take maintenance into account by 

fractioning respiration into a part dedicated to growth and the other one 

linked to maintenance (Baretta-Bekker et al. 1994, Blackburn et al. 1996, 

Baretta-Bekker et al. 1998). The presence of maintenance in bacteria is rare 

in ecosystem models. Connolly and Coffin (1995) took basal respiration into 

account, but not that linked to growth. In most other models, growth is 

realised with a constant fraction BGE, thus considering or assuming that 

respiration is the part of the assimilated carbon not utilised for growth, which 

means that respiration is only linked to growth by a fraction (1-BGE) 

(Anderson & Williams 1998, 1999, Bissett  et al. 1999, Tian et al. 2000, 

Vallino 2000, Spitz et al. 2001, Pahlow & Vézina 2003, Raick et al. 2005). 

 

DEB theory is based on 3 main processes: assimilation, maintenance and 

growth (Kooijman 2000). Consequently, all models constructed from this 

theory account for cell maintenance. Maintenance costs are also paid from 

reserve. Contrary to all models cited previously that include maintenance, 

DEB theory, being based on energy, does not identify maintenance to 

respiration and maintenance costs can be paid in different ways. 

Consequently, maintenance may result in biomass loss and/or in product 

formation that are not necessary CO2 (see chapter IV). 
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III. Objectives and thesis outline 

 
This thesis aims to investigate growth of pelagic heterotrophic bacteria 

that utilise DOC as nutritive resource by using both experimental and 

modelling approaches. Two main axes merge from this work: (1) the study of 

growth models, constructed from experimental results, with a view to 

implement them in ecosystem models, and (2) the investigation of the 

environmental factors influencing the BGE with these models. The main 

objective consists of the study of bacterial growth in different environmental 

contexts and to deduce a suitable mathematical formulation for describing the 

interaction between growth and DOC to include this in a biogeochemical 

model later on. To do that, a strong coupling between experimentation and 

modelling was required. The various growth models described previously, 

with different levels of complexity, have been studied and have been 

confronted to data, these latter coming either from natural seawater or from 

experiments in artificial conditions.  

 

This thesis is divided into 4 parts. 

 

The first chapter concerns the utilisation of the Monod model for 

describing bacterial growth and DOC assimilation in in situ conditions. 36 

biodegradation experiments have been performed during the POMME 

program in Atlantic Ocean, corresponding to several water depths and 

seasons. The various measurements realised during the experiments allowed 

the determination of bacterial biomass and DOC concentration dynamics for 

each experiment. However, the small number of measurements did not allow 

the use of a mechanistic model. We have thus decided to utilise the Monod 

model as it takes only 2 state variables and 3 parameters into account. 

Moreover, this model is the most used to describe the utilisation of carbon 

substrate by heterotrophic bacteria in biogeochemical models, and we were 

thus able to test its pertinence towards in situ data. This model has been 

calibrated for each experiment and we were thus able to estimate BGE and 

the assimilation rate for each of them. The model parameters, including BGE, 

varied according to depth and season and demonstrated that the Monod 

model is not sufficient for describing the DOC utilisation by bacteria in 

biogeochemical models. 

 

The second chapter concerns the investigation of biodegradation in a 

perturbed system, carried out with an artificial medium and a monospecific 

bacterial strain using a single carbon substrate. Previous experiments required 

a lot of assumptions to apply a model, which complicates further analysis and 
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interpretation of results. In addition, the experimental setup did not allow the 

application of a complex model. Utilisation of artificial culture medium 

permitted the control of experimental conditions and thus allowed not only 

numerous measurements and application of less restrictive models, but also 

applying experimental perturbations in order to be close to natural conditions 

from a qualitative point of view. This chapter focuses especially on the 

comparison of 2 experiments carried out under the same experimental 

conditions, the difference being the input regime of the carbon substrate in 

the batch cultures. In the first experiment, whole substrate was loaded as soon 

as the experiment began, as for the experiments realised during the POMME 

program. In the second experiment, substrate was periodically pulsed, the 

total substrate amount being the same as the first experiment. BGE have been 

estimated for both experiments. Its estimation was realised not only directly 

from experimental data, as is done by most authors, but also from 3 models, 

each of them comprising a different complexity level. This study 

demonstrated that the Monod model is unable to fit bacterial dynamics under 

starvation. Starvation occurs regularly in oceanic ecosystem since the DOC 

distribution is spatially and temporally variable. We have also highlighted 

that BGE values were always larger in the pulse experiment, whatever the 

estimation method we used. This result is profoundly important in the current 

marine microbiological context as numerous authors work on the influence of 

environmental factors on the BGE dynamics. Even the isolation of bacteria 

from their environment, which is a prerequisite to study carbon flow through 

bacteria, affects the obtained BGE values. 

 

The third chapter presents a model, formulated from DEB theory, which 

has specifically been constructed for the pulse experiment cited previously. 

This model has been calibrated on experimental data and matched the data 

very well. However, this model was too complex to be introduced in 

biogeochemical models. We thus have simplified it and showed that it may 

reduce to a logistic equation, with a variable carrying capacity. We reduced 

the original set of 4 differential equations to a system of 2 differential 

equations. Moreover, this simplified model did not reduce model 

performance when compared to data as it exhibits exactly the same dynamics. 

This result is very important in the current context of the development of 

biogeochemical models, as more and more processes are taken into account 

to be close to reality, but simplification of these formulations is required to 

accurately calibrate, simulate and understand model results. 
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The last chapter concludes on all results, on the BGE estimation and 

dynamics as well as on the simplification of bacterial growth model to 

implement them into global models. This chapter presents also some 

perspectives for further research. 
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Abstract 
 

A Monod (1942) model was used to describe the interaction and 

dynamics between marine bacteria and labile-dissolved organic carbon (L-

DOC) using data obtained from 36 biodegradation experiments. This model 

is governed by 2 state variables, DOC and bacterial biomass (BB) and 3 

parameters, specific maximum assimilation rate (Vmax), half-saturation 

constant (k) and bacterial growth efficiency (BGE). The calibrations were 

obtained from biodegradation experiments carried out in the Northeast 

Atlantic Ocean over different seasons and at different depths. We also 

conducted a sensitivity analysis to determine (1) which parameter had the 

greatest influence on the model, and (2) whether the model was robust with 

regard to experimental errors. Our results indicate that BGE is greater in 

surface layer than in deeper waters, with minimum values being observed 

during winter. In contrast, the Vmax/k ratio is inversely dependent on depth 

and does not show any seasonal trend. This reflects an increase in bacterial 

affinity for substrate with increasing depth (decrease of k) and/or better 

specific maximum assimilation rates (increase of Vmax). The sensitivity and 

robustness analyses demonstrate that the model is more sensitive to the 

Vmax/k ratio than to BGE, and that the parameters estimated are reliable. 

However, although the BGE values are close to those estimated 

experimentally, the use of a constant Vmax/k and BGE in a 1-dimensional 

model is not appropriate as these parameters should be described as variables 

that take depth and season into account. 
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I. Introduction 

 
The global oceanic dissolved organic carbon (DOC) reservoir is about 

685 x 10
15

 gC (Hansell & Carlson 1998a), is recognised as one of the largest 

pools of reduced carbon on the planet (Carlson & Ducklow 1995) and is 

directly related to atmospheric CO2 (Siegenthaler & Sarmiento 1993). 

Dissolved organic compounds are almost exclusively consumed by bacteria 

and are either incorporated into the microbial food web and/or respired as 

CO2, in proportions that are difficult to determine. Depending on the bacterial 

reactivity, DOC can be fractionated into several components. These include 

refractory material with turnover times of millennia, semi-labile material with 

turnover times of months to years and labile material with turnover times of 

hours to days (Williams & Druffel 1987, Bauer et al. 1992, Druffel et al. 

1992, Carlson & Ducklow 1995, Hansell et al. 1995, Carlson 2002). The 

labile component of DOC (L-DOC) can be studied by measuring bacterial 

DOC consumption in biodegradation experiments (Amon & Benner 1996, 

Carlson & Ducklow 1996, Sempéré et al. 1998). Semi-labile and refractory-

DOC are usually determined by examining DOC profiles throughout the 

water column (Wheeler et al. 1996, Hansell & Peltzer 1998, Wiebinga & de 

Baar 1998, Dafner et al. 2001, Sohrin & Sempéré 2005).  

 

Bacterial respiration (BR) represents ~ 50 to 90 % of the total community 

respiration (Sherr & Sherr 1996, del Giorgio & Duarte 2002). Understanding 

heterotrophic bacterial metabolism (production of biomass plus respiration) is 

therefore paramount in determining the role of the biological pump in the 

carbon cycle. More recently, an effort has been made to provide a more 

accurate description of the relationship between DOC assimilation and 

bacterial production (BP) (Anderson & Williams 1999, Lancelot et al. 2002, 

Vichi et al. 2003). The bacterial carbon demand (BCD) can be calculated 

from BP by the use of the bacterial growth efficiency (BGE = BP/BCD and 

BCD = BP + BR) (del Giorgio & Cole 1998, Rivkin & Legendre 2001). BGE 

ranges from < 5 to 60 %, median value being 24 % (Jahnke & Craven 1995, 

del Giorgio & Cole 1998), and is usually determined by DOC biodegradation 

experiments or locally computed from in situ size-fractionated community 

respiration measurements and BP data (del Giorgio & Cole 1998).  

 

Some biogeochemical models describe the interaction between DOC and 

bacteria but include other processes such as DOC production, the transfer of 

matter to higher trophic levels and different DOC pools (Baretta-Bekker et al. 

1995, Blackburn et al. 1996, Anderson & Williams 1998, 1999, Anderson & 

Ducklow 2001, Spitz et al. 2001, Lancelot et al. 2002, Dearman et al. 2003). 
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In these models, DOC uptake by bacteria is generally computed from Monod 

kinetics, which suggests a constant BGE (Taylor & Joint 1990, Baretta-

Bekker et al. 1995, Blackburn et al. 1996, Anderson & Williams 1998, 1999, 

Lancelot et al. 2002). Biodegradation experiments produce a simple 

ecosystem (no autotrophs, no source of DOC, and no grazers) which provide 

a reasonable data set that is easier to use for modelling bacterial utilisation of 

DOC. First order kinetic models are often used in describing DOC and 

particulate organic carbon (POC) degradation (Harvey et al. 1995, Sempéré 

et al. 2000, Fujii et al. 2002, Panagiotopoulos et al. 2002), but these models 

only take into account the concentration of organic matter (OM) at any given 

time. Recent studies have indicated that a better understanding of the 

dynamics of OM in models requires an appropriate knowledge of the 

dynamics of the bacterial community (Talin et al. 2003 and references 

therein). Only a few aquatic biogeochemical studies describe model 

performance for bacteria, which is a poorly modelled state variable 

(Arhonditsis & Brett 2004). Some models have been developed to describe 

the interaction between bacteria and OM, but these include a mathematical 

formula for more than 1 potentially limiting factor, several bacterial 

communities and/or the respiration process (Thingstad & Pengerud 1985, 

Martinussen & Thingstad 1987, Thingstad 1987, Cajal-Medrano & Maske 

1999, Touratier et al. 1999, Miki & Yamamura 2005).  

 

Here, we report on the determination of BGE, estimated using 2 different 

methods: (1) experimental, by calculations obtained from BP and BR 

measured using biodegradation experiments, and (2) numerical, by estimating 

the parameter values by finding the minimum distance between the 

experimental kinetics and the numerical simulations using the Monod (1942) 

model. The data used to determine both BGE come from the same 

experiments. However, in these experiments only BP, bacterial abundance 

and oxygen consumption were measured. Thus, numerous hypotheses have to 

be made in order to estimate the necessary DOC data set and then estimate 

the parameters numerically. We are aware that these assumptions increase the 

errors in data, and thus in parameter estimations, but the current state of 

microbial knowledge and techniques precludes the achievement of better 

estimations with these data sets. Consequently, our approach is qualitative by 

suggesting a new method of BGE estimation and a new way of improving 

biogeochemical models. We show that BGE values obtained using both 

approaches are within the same range, varying with depth and season. We 

also demonstrate how robust the model is with regard to sensitivity to BGE 

and to parameter estimations using perturbed experimental data. Finally, we 

discuss the use of this model for describing bacterial and DOC dynamics in 

biodegradation experiments and thus in biogeochemical models. 
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II. Materials and methods 

 
1. Experimental design 

i. Study area 

 
As part of the “Programme Océan Multidisciplinaire Méso Echelle” 

(POMME), seawater samples were collected in the Northeast Atlantic Ocean 

(Figure II-1) over three seasons; winter (POMME 1; P1), spring (POMME 2; 

P2) and summer (POMME 3; P3) 2001 (for further details on POMME and 

on sampling techniques, see Mémery et al. 2005). It is beyond the scope of 

this study to present a detailed protocol and mesoscale variability aspects, 

and such data are available elsewhere (F. Van Wambeke et al. unpubl. data). 

 

ii. General design 

 
Seawater was collected from 3 depths (5, 200 and 400 m) using Niskin 

bottles, then transferred immediately into large polycarbonate bottles without 

tubing. The protocol for seawater collection and for minimising organic carbon 

contamination is described in Sempéré et al. (2003). Following collection, 

seawater was filtered, using a low vacuum (<50 mm Hg) through pre-combusted 

(450°C, 6 hours) GF/F glass fibre filters in order to obtain bacterial seawater 

cultures. This experimental design removes all DOC sources and all predators, 

except for some viruses. A mean of 46 % of the in situ bacterial cells was passed 

through the filters (F. Van Wambeke et al. unpubl. data). DOC was not 

measured. However, we could not exclude the possibility that the filtration 

process might induce some increase in DOC concentration and slightly modify 

the bacterial activity, particularly in the deep samples, as in some cases specific 

activity of bacteria after filtration increased compared to that in situ (F. Van 

Wambeke et al. unpubl. data). The bulk incubation culture was then sub-sampled 

by dispension into duplicate pre-combusted borosilicate bottles to determine BP 

and bacterial abundance, and also into quadruplicate 125 ml Winkler bottles for 

dissolved oxygen determination. The latter samples were fixed with Winkler 

reagents, and measurements were made using an automated Winkler titration 

system based on that described by Williams & Jenkinson (1982). Experimental 

bottles were incubated in the dark in a temperature controlled room (± 1°C) over 

the course of the experiments. Samples were sacrificed and analysed for BP and 

dissolved oxygen using a time series of 0, 0.5, 1, 2, 5, 10 d. Consequently, we 

must hypothesise that dynamics are identical in all bottles.  
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Figure II-1. POMME zone in the Northeast Atlantic Ocean studied during 

Leg 2 of POMME 1 (P1: 1-15 March 2001), POMME 2 (P2: 18 April – 2 

May 2001) and POMME 3 (P3: 19 September – 3 October 2001) for BGE 

determination. Arrows represent principal currents: North Atlantic Current 

and Azores Current. See Mémery et al. (2005), Maixandeau et al. (2005) and 

Karayanni et al. (2005) for details on hydrological situations occurring at 

each site. Adapted from Guidi et al. (2007). 
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BP was calculated using the tritiated leucine method (Kirchman 1993). The 

experimental estimation for BGE (BGEE) was calculated by integrating data 

from time zero (t0) to the BP peak, which refers to the maximum BP value in the 

time series, as follows: 

 

2
E

IBP
BGE

OIBP t RQ
t

=
∆

+
∆

    (II.1) 

 

where IBP (µM C) was time-integrated BP from t0 to the BP peak with 

trapezoidal integration of discrete data. The conversion factor of leucine-carbon 

was 1.5 kg C mol
-1

 of leucine incorporated assuming an isotopic dilution of 1. 

The oxygen consumption rate ∆O2/∆t (µM d
-1

) was calculated assuming a linear 

regression model for the decrease in dissolved oxygen concentration with time 

(t). The respiratory quotient (RQ) was 0.8 (F. Van Wambeke et al. unpubl. data).  

 

iii. DOC and bacterial biomass estimations 
 

Initial bacterial biomass (BB) was determined by epifluorescence 

microscopy after DAPI staining, assuming a carbon conversion factor (CCF) 

of 20 fg C bacterium
-1

 (Lee & Fuhrman 1987). In order to estimate BB 

increase, the IBP (derived from the leucine method, see equation II.1) was 

added to this initial value of BB for computing the BB for all other time 

points. Numerous hypotheses were made to assess DOC dynamics. Total 

organic carbon (TOC) was measured using high temperature catalytic 

oxidation (Sohrin & Sempéré 2005) on the in situ vertical profiles, but not for 

the biodegradation experiments. Initial values of DOC were thus estimated as 

the difference between in situ TOC and POC, which was deduced from total 

particulate carbon (TPC) measurements obtained using an optical particle 

counter (HIAC) (Merien 2003). As the proportion of DOC to TOC fraction 

increases globally from 83 % at 5 m to 92 % at 200 m, we estimated that at 

400 m DOC is close to TOC. We then assumed that initial DOC 

concentration in the batches was close to in situ DOC concentration. Finally, 

we estimated DOC concentrations over the course of the experiments on the 

assumption that the quantity of DOC consumed over a short period, which 

we assumed to be only L-DOC according to duration of experiments, is equal 

to the sum of BB increase and CO2 produced over the same period, estimated 

as: 

 

∆ CO2 / ∆ t = - RQ x ∆ O2 /∆ t  (II.2) 
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2. Monod (1942) model 

 

The biodegradation model was set up on the basis of the following 

assumptions. (1) There is no source of DOC in the cultures. (2) Bacteria are 

the only organisms present (no flagellates and no virus) (these first 2 

assumptions are likely to be valid, since only the growth phase, and thus a 

short period of time, is considered). (3) L-DOC was the limiting factor on 

bacterial growth, which is a reasonable assumption since nutrient 

concentrations measured in water column profiles during the cruises were 

sufficient to sustain bacterial growth in the experiments considered (NO3 

concentrations ranged from 1.9 to 13.1 µM, except one value of 0.39 µM in 

spring, and PO4 concentrations from 0.1 to 1.04 µM), except perhaps in 

surface water in late summer where values were lower (from undetectable to 

0.04 µM for NO3 and from 0.01 to 0.02 µM for PO4) (F. Van Wambeke et al. 

unpubl. data). (4) We assumed that only the L-DOC fraction is consumed by 

bacteria during the 10 d biodegradation experiments as well as in the model.  

 

The Monod (1942) formula, which uses Michaelis-Menten kinetics, is 

one of the simplest and most widely used models for describing the 

interactions between 2 state variables, in this case bacterial C-biomass and 

DOC. Note that in this model the disappearing DOC is instantaneously taken 

up by bacteria and converted into C-biomass with a constant efficiency 

(numerical bacterial growth efficiency, BGEN). Consequently, BGEN is 

estimated using the model calibration and depends on the external limiting 

food concentration. 

 

max xV DOC BBdDOC

dt k DOC
= −

+

 (II.3) 

 

max x
N

V DOC BBdBB
BGE

dt k DOC
=

+

  (II.4) 

 

where BB is in µM C; DOC is concentration in µM C, with the assumption 

that L-DOC is the limiting food resource and the only fraction of DOC 

consumed; Vmax is the specific maximum assimilation rate in d
-1

; and k is the 

half-saturation constant for DOC in µM C. 

 

The parameters (BGEN, Vmax and k) were estimated, for each experiment, 

from all available DOC derived values and BB data. The parameter values 

were thus estimated using a non-linear regression that uses the least-squares 
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method. The calibration is performed for each experiment in order to 

compare the parameters obtained from the model for different depths and 

seasons. Nevertheless, it should be pointed out that DOC estimations are 

representative of the total pool of DOC (L-DOC, semi-labile-DOC plus 

refractory-DOC), whereas the model only simulates the decrease of L-DOC, 

which constitutes the first and only fraction of DOC used by bacteria during 

the 10 d biodegradation experiments. This does not affect the parameter 

estimations, as semi-labile-DOC and refractory-DOC are supposed to be 

constant and unaffected during these biodegradation experiments. Thus, 

model parameters are representative of bacterial growth in batch cultures. 

 

A sensitivity analysis was carried out to determine (1) which parameter 

has the most influence on the dynamics, and (2) the validity of parameter 

estimations according to experimental errors. First, the derivatives of the 

model were calculated with respect to the parameters, the highest derivative 

being the most influential parameter. This enables a quantitative comparison 

of parameter sensitivity. We then analysed the robustness of the parameter 

estimations with respect to the data. The measurement errors, the variability 

of environmental forcing parameters on the measurements and the 

assumptions made to assess DOC data may indeed indicate some variabilities 

in the observations used to calibrate the model. We have estimated that the 

sum of these variabilities was ≤ 30 %. For 1 experiment, 500 extra sets of 

data were obtained by replacing each original data point in the course of the 

experiments by its value multiplied by1 p± , where 3.0≤p  and is a 

random proportion that is uniformly distributed. Thus, ‘perturbed’ data 

represent the value that a data point could have if we consider the accuracy of 

the original data to be within the range of 70 to 100 %. We then estimated 

parameters of the model for these 500 data sets using the same method as 

those for data sets without perturbation. This procedure provides information 

on the parameter distribution and on the robustness of the BGEN estimations. 

 

3. Comparison of methods for BGE estimation 

 
The present study calculated BGE in 2 ways: as BGEE and BGEN. Both 

estimations implied assumptions about RQ and leucine-carbon conversion 

factors, which are supposed to be constant and equal in the 2 BGE 

estimations. The values of the BGEE may change with respect to BGEN 

according to the method used to calculate the O2 utilisation rate, the 

assumptions made to assess DOC data (as the CCF) and the integration time 

considered. BGEE values are estimated using integrated data from t0 to the 

BP peak and assuming a linear regression model for the decrease in dissolved 

oxygen concentration, whereas values for  BGEN are estimated using the 
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least-squares method between the outputs of the 2 state variables of the 

model and the whole data set for each experiment. In order to compare the 2 

methods, we calculated the relative quadratic distance (d) between BGEE and 

BGEN for each biodegradation experiment by taking BGEE as reference: 

 

E N

E

BGE BGE
d

BGE

−

=    (II.5) 

 

If d is low (d << 1), the 2 methods of BGE estimation are thus considered 

to be equivalent.  

 

 

III. Results 

 
1. Model calibration and simulation 

 

We performed a calibration of the model with the data for each 

experiment. The minimum distance between the model outputs and 

experimental data are obtained from high values of Vmax and k in all 

experiments. Consequently, DOC can be neglected in comparison to k, that is 

k DOC k+ ≈ . Then, equations (II.3) and (II.4) can be approximated by the 

following system (equations II.6 and II.7): 

 

x
dDOC

DOC BB
dt

α= −     (II.6) 

x
N

dBB
BGE DOC BB

dt
α=     (II.7) 

where        maxV kα =   in µM C
-1

 d
-1

         (II.8) 

 

This simplified model can be solved analytically. Equations A.II.3 and 

A.II.4 in Appendix II-A allow the removal of the integration step for the 

calibration and simulation. The use of these equations enables analysis to be 

performed faster and provides a more precise calibration. 

 

For most of the experiments (26 out of 36) the model (equations II.6 and 

II.7) produces an accurate fit both qualitatively and quantitatively with 

parameters α and BGEN (see Figure II-2). However, there is no agreement 

between the model outputs and data in the case of the other 10 experiments 

(see Figure II-3). Thus, these results have not been taken into account in the 
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analysis of the parameter variation according to depth and season. These 

inaccuracies are related to (1) missing BP or O2 data due to problems with 

analysis precision (BP was at the detection limit, or quadruplicate Winkler 

bottles were highly variable), which made correct estimation of BB or DOC 

concentration difficult in Expts L, Q, O and FF (‘nd’ in Table II-1); (2) the 

shape of the model, which is poorly suited to the shape of data in Expts C, J, 

II and U (e.g. in Expts C, BB data exhibit an exponential shape whereas the 

DOC data are linear); and (3) a stationary phase in bacterial data that was 

observed in Expts T and KK, whereas large amounts of DOC were still 

available (Figure II-3). 

 

2. Sensitivity and robustness analyses 

 

The derivatives of equations (II.6) and (II.7) with respect to parameters 

were used in order to study the sensitivity of the model (Figure II-4, 

Appendix II-B). Equations (A.II.5) to (A.II.8) represent the sensitivity of 

equations (II.6) and (II.7) with respect to parameters α and BGEN. In all 

cases, the sensitivity is equal to the product of a DOC BB× × , where a = 

BGEN, 1, α and 0 respectively, for equations (A.II.5) to (A.II.8). However, in 

all experiments we observed that 0 1nBGEα< < <  (see Appendix II-B for 

more details). There is indeed a great difference in the order of magnitude of 

sensitivity to α as a function of DOC concentration and BB (Figure II-4 b), 

which is between 20 and 100 times greater than the sensitivity to BGEN 

(Figure II-4 a). If we only consider the sensitivity to α, as 1 > BGEN, for the 

given values of DOC and BB, then equation (II.6) is more sensitive to a 

variation of α than equation (II.7) (Figure II-4 b). Only equation (II.7) is 

sensitive to a variation in BGEN (Figure II-4 a).  

 

We also analysed the robustness of the estimated parameters α and BGEN 

with respect to the estimated data set. For each experimental data set, we 

simulated 500 extra sets of data with randomly perturbed data up to 30 %, 

and we estimated model parameters for each of the extra sets. We termed the 

BGEN and α estimated with the perturbed data ‘BGEp‘ and αp, respectively. 

Then, for each experiment, we analysed the distribution of the 500 BGEp 

estimated with their corresponding extra sets of data, with respect to the 

BGEN estimated for the corresponding experiment without perturbation. The 

same analysis was performed for the parameter α. These simulations, which 

were performed for all experiments, provide a basis for studying how robust 

the model is according to the distribution of the parameters (see Figure II-5).  
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Figure II-2. Dynamics of (a) DOC and (b) BB for the biodegradation 

experiment carried out during spring at 5 m (Expt M, Table II-1). +: data for 

BB and DOC recalculated from O2 and BP data during the biodegradation 

experiment. Lines: results of simulations of the Monod (1942) model with 

parameters estimated by non-linear regression, where α = 0.007 µMC
-1

 d
-1

 

and BGEN = 0.27. 
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Figure II-3. Dynamics of (a) DOC and (b) BB for the biodegradation 

experiment carried out during spring at 200m (Expt T, Table II-1). +: data for 

BB and DOC recalculated from O2 and BP data during biodegradation 

experiment. Lines: results of simulations of the Monod (1942) model with 

parameters estimated by non-linear regression, where α = 0.049 µMC
-1

 d
-1

 

and BGEN = 0.15. 

(a) 

(a) 

(b) 
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In all experiments, the distribution of parameters following perturbation 

follows a unimodal low, and parameters estimated without perturbation are 

within or close to the modal class. In each experiment, 90 to 100 % of the 

500 perturbation simulations give rise to a BGEp< 0.4, indicating a weak 

distribution of BGEp. Moreover, > 50 % of the perturbation experiments give 

rise to: BGEN - 0.1 < BGEp  < BGEN + 0.1. A small percentage of the results 

gives a BGEp close to 1 (not shown). This result could be related to the 

scattering of DOC data caused by the perturbation; indeed, this scattering 

does not give a satisfactory model fit and the calibration method produces a 

curve with a very small αp. This indicates that the BB data, where the level of 

scattering is lower and thus well fitted, needs to be fitted using a very high 

value of BGEp in order to balance the weak αp. The values of α without 

perturbation are in the middle of the distribution and the highest αp is double 

that of α without perturbation. 

 

3. Parameters 
 

For each experiment, values of α and BGEN obtained by the 

parameterisation of the model are presented in relation to the BGEE 

calculated experimentally from O2 and BP data (Tables II 1-2). For some 

experiments, there were no results because of experimental problems (nd in 

Table II-1). BGEE ranged from 0.01 to 0.48, whereas α and BGEN ranged 

from 0.006 to 0.097 µM C
-1

 d
-1

 and from 0.04 to 0.41, respectively. BGE 

values were also averaged at each depth for a given season, at each season for 

a given depth and at each depth for the whole year (Table II-2). By 

calculating these means, the results where simulations were not possible or 

seemed inaccurate were excluded (see ‘Results; Model calibration and 

simulation’). As the number of results for a given depth and season were 

small (n = 4 in general) and some were not taken into account in means, the 

standard deviations increase rapidly when we remove 1 or 2 results (n = 3 

and 2, respectively, Table II-2). 

 

The relative quadratic distances d between BGEE and BGEN range from 

0.07 to 12.00 (Figure II-6). All distances, except 6 out of 26, have d < 0.5 and 

all except 3 have d < 1, which suggests that the 2 methods of BGE estimation 

are quantitatively equivalent.  

 

The results indicate that mean BGEN decreases from the surface (5 m) to 

deeper waters (200 and 400 m) in spring and summer, whereas there is no 

significant relationship with depth in winter (Table II-2). If we consider the 

annual means, we observe a decrease in BGEN with depth. However, the 

mean BGEN varies according to season in the surface layer with a minimum 
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mean in winter (P1). There were no significant differences in seasonal 

averages in spring and summer, owing to great variability within sites. In 

contrast, averaged α increased from the surface to deeper water whatever the 

season; however, there was no significant difference between 200 and 400 m 

as a results of high standard deviations of data among the stations studied. In 

contrast to the BGEN, α did not show any seasonal trend. Although BGEE 

values are more abundant, the trends are the same as for BGEN, i.e. minimum 

values observed in winter and at greater depths (Table II-2). Finally, we have 

demonstrated that both BGEE and BGEN (experimental and numerical) 

presented the same variations according to depth, that they were minimum in 

winter and equivalent from a quantitative point of view.  

 

 

 

Table II-1. Comparison of experimental bacterial growth efficiency (BGEE) 

and model parameters including numerical BGE (BGEN) and α, estimated 

numerically with a non-linear regression, for the 3 depths and 3 seasons 

studied in Northeast Atlantic Ocean during POMME (P1-3) cruises. Period 

of sampling for BGE determination: P1: 1-15 March 2001; P2: 18 April-2 

May 2001; P3: 19 September-3 October 2001. Values in bold correspond to 

results that were not taken into account in further analyses because 

simulations did not match data (see ‘Results: Model calibration and 

simulation’). nd: not determined 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

      

 
Winter (P1) 

  
Expt Spring (P2) 

  
Expt Summer (P3) 

 

 

Expt 

 
BGEE BGEN α    BGEE BGEN α    BGEE BGEN α  

                  

 5 m                 

 A 0.04 0.07 0.013   M 0.21 0.27 0.007   AA 0.28 0.24 0.011  

 F 0.13 0.14 0.014   P 0.30 0.41 0.006   DD 0.30 0.28 0.013  

 I 0.18 0.17 0.016   S 0.36 0.40 0.006   GG 0.48 0.35 0.012  

 L nd nd nd   V 0.26 0.19 0.011   JJ 0.35 0.29 0.016  

                  

 

200 

m                 

 B 0.04 0.13 0.011   N 0.15 0.27 0.016   BB 0.09 0.11 0.043  

 D 0.15 0.25 0.007   T 0.16 0.15 0.049   EE 0.15 0.19 0.016  

 G 0.05 0.07 0.052   Q 0.20 nd nd   HH 0.12 0.14 0.024  

 J 0.05 0.10 0.016   W 0.07 0.04 0.078   KK 0.18 0.13 0.038  

                  

 
400 

m                 

 C 0.01 0.05 0.024   O 0.04 nd nd   CC 0.08 0.09 0.045  

 E 0.06 0.09 0.040   R 0.02 0.26 0.017   FF 0.24 nd nd  

 H 0.05 0.06 0.049   U 0.03 0.10 0.119   II 0.33 0.21 0.027  

 K 0.05 0.11 0.026   X 0.07 0.06 0.097   LL 0.13 0.14 0.035  
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Figure II-4. Representation of the sensitivity of parameters BGEN and α as a 

function of variables BB and DOC in biodegradation experiment carried out 

during summer at 5 m (Expt GG, Table II-1). Sensitivity represented by a 

surface that corresponds to all possible combinations of the product 

a DOC B× × , where a = BGEN, 1, α or 0, according to the corresponding 

sensitivity (equations A.II.5 to A.II.8, respectively) (Appendix II-B). DOC 

and BB can take all possible values in their own range of variation during the 

experiment (α = 0.012 µM C
-1

 d
-1

 for equation A.II.7 and BGEN = 0.35 for 

equation A.II.5) (a): sensitivity of 
1

dBB dt
−

×  according to BGEN, which 

corresponds to equation (A.II.7) (sensitivity of 
1 0dDOC dt

−

× = ). (b): 

sensitivity of both parts of model in relation to α (µM C
-1

 d
-1

), which 

correspond to equation (A.II.5) and (A.II.6). 

 

(a) 

(b) 
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Figure II-5. Distribution of the parameters (a) αp (µM C
-1

 d
-1

) and (b) BGEp 

after 500 perturbations. Extra sets of data were obtained by replacing each 

initial data point by its value multiplied by p±1 , where 3.0≤p  and is a 

random proportion uniformly distributed, for a biodegradation experiment 

carried out at 200 m during summer (Expt BB, Table II-1). Results are 

presented as the percentage of each value of (a) αp and (b) BGEp compared to 

all values obtained after perturbation. The value of α and BGEN for the data 

without perturbations are 0.043 µM C
-1

 d
-1

 and 0.11, respectively. 

 

 

 

(a) 

(b) 
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Figure II-6. Distribution of the relative quadratic distance (d) (equation II.5) 

between BGEN and BGEE. If d > 1 (dark solid line), the 2 methods of 

estimation give results that are distant; if d < 0.5 (grey dashed line), the 2 

methods are considered equivalent; 2 distances are out of the scale and values 

are indicated in brackets (2.25 and 12.00). 
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IV. Discussion 

 
1. Analysis of model results 

 

The model fits the data in almost all simulations. However, in some 

cases, we observed that the model did not match the experimental data. For 

example, the experimental dynamics of BB seemed to reach a stationary 

phase even though there was still a significant concentration of DOC 

(remaining 47 and 54 µM C for Expts KK and T, respectively) (Table II-1, 

Figure II-3). The stationary phases observed in these experiments are likely 

to be due to a complete exhaustion of L-DOC, because the remaining DOC in 

the batch is close to that found in deep waters (40 – 50 µM C) (Sohrin & 

Sempéré 2005) and in situ nutrient concentrations were sufficient to avoid 

limitation (see ‘Materials and Methods; Monod (1942) model’). This 

remaining DOC is represented by semi-labile and refractory-DOC poorly 

assimilated by bacteria and not represented in the model, and thus the 

bacterial stationary phase cannot be simulated.  

 

Except for these biodegradation experiments, the sensitivity analysis has 

demonstrated that the Monod (1942) model is more sensitive to a variation of 

maxV k  ratio than to BGEN, indicating that the best estimations of both 

parameters require high precision in α values. Our results also demonstrate 

that a perturbation comprised up to 30 % of total variation in data affects the 

parameter estimations within a reasonable range: parameters estimated 

without perturbation are always within or close to the modal class; the 

distributions of parameters with perturbed experimental data are not very 

large around the parameters estimated without perturbation; and >50 % of the 

perturbation simulations give rise to: BGEN - 0.1 < BGEp < BGEN + 0.1. As 

such perturbations only influence the estimation of both parameters to a low 

order of magnitude, we can be sure that the parameters estimated without 

perturbation are reliable. However, for some of these perturbations we 

obtained BGEp values close to 1. For these perturbations, the model does not 

match in the case of very small L-DOC variations (e.g. owing to a low signal-

to-noise ratio of variations of O2 data). As the relative quadratic distances d 

for most experiments are ≤ 0.5, our estimations of BGEN are close to the 

classical estimations of equation (II.1) (BGEE). Moreover, we have 

demonstrated that the tendencies are the same when considering the 2 BGE 

(BGEE and BGEN). Consequently, the overall analysis of the model 

(qualitative and quantitative comparisons with experimental parameters, 

sensitivity and robustness analyses) shows that our numerical method of 

BGE estimation is well suited. 
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2. Biological analysis 
 

The parameter values, revealed by the calibration of the model, have 

shown a range of BGEN values below 0.5 (0.04 to 0.41, Table II-1) which is 

commonly observed in diverse aquatic habitats (del Giorgio & Cole 1998). 

The annual mean and standard deviations of BGEN at 5 m (0.25 ± 0.11) are 

consistent with published data for the Gulf of Mexico (Pomeroy et al. 1995, 

Jorgensen et al. 1999), Sargasso Sea (Carlson & Ducklow 1996) and the 

Atlantic Jet in the Mediterranean Sea (Sempéré et al. 2003). BGEN at 5 m 

was greater than at 200 and 400 m, and minimum values were observed in 

the winter as was also the case in the surface layer of the North Sea 

(Reinthaler & Herndl 2005). In contrast, minimum values of α were reached 

at 5 m and no trend emerged with season. The fraction of refractory-DOC 

increases with depth (Carlson 2002). Bacteria probably consume, in addition 

to L-DOC, some semi-labile and refractory organic compounds. Therefore, 

the fraction of assimilated L-DOC probably decreases with depth, and it is 

conceivable that BGE decreases with depth. As α is the ratio between 

maxV and k, the increase in α reflects an increase in bacterial affinity for 

substrate with increasing depth (decrease of k) and/or better specific 

maximum assimilation rates (increase of maxV ). These results suggest that the 

more refractory bulk DOC (representative of those observed below the 

productive layer, i.e. 200 m) (Sohrin & Sempéré 2005), as well as probable 

patchy distribution of L-DOC in deep waters, would explain lower BGE, 

higher affinity to the substrate and/or higher specific maximum assimilation 

rates.  

 

3. Experimental problems 
 

The data needed for the calibration were not directly measured. Patterns 

of change over time of DOC estimations are based on BP and BR, which 

were themselves estimated from indirect measurements (leucine 

incorporation and O2 variations). Hence, conversion factors (leucine to 

carbon, RQ) must be applied. The latter is not constant as bacteria can change 

their RQ (Kooijman 2000) according to changes in the quality and quantity 

of the substrate over the course of the experiments. However, the changes 

over time of these conversion factors has no influence on the comparison of 

BGE, as the same values were used in both cases (BGEE and BGEN) and the 

influence of these factors is discussed elsewhere (F. Van Wambeke et al. 

unpubl. data). Moreover, these changes of conversion factors over time have 

to be proven experimentally in order to be taken into account. It further 

results that the estimations of DOC concentrations may not be accurate and 
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representative of the real variation in DOC in the experiments. Direct 

measurements of DOC would be more appropriate, but there is, for instance, 

no protocol which is sufficiently sensitive for oligotrophic waters. 

Nevertheless, even if data vary by up to 30 % of the values without 

perturbation, the method of parameterisation is well suited. Consequently, 

estimated parameters are reliable. We have also assumed that the DOC 

concentration at a given time equals the initial DOC, minus the sum of CO2 

respired and BB produced. However, this hypothesis would be accurate only 

if the system behaves as a Monod (1942) model, i.e. if growth and respiration 

depend directly on the external concentration of the substrate. The presence 

of an internal carbon reservoir in bacteria (Ducklow & Carlson 1992, 

Cherrier et al. 1996) may indeed induce a time lag between assimilation and 

growth and/or respiration, which has not been taken into account in 

estimations of the data sets needed for the calibration of the model.  

 

Another bias is the difficulty in placing these results within a natural 

context. For example, the presence of viruses, which may induce a decrease 

in BGE and an increase in the growth rate of uninfected cells, cannot be ruled 

out (Middelboe et al. 1996). These are not represented in the model whereas 

they may in fact reduce bacterial abundance. Although great care was taken 

during filtration (Yoro et al. 1999), this process is likely to induce an increase 

in DOC due to particle breakdown (Carlson et al. 1999, Ducklow et al. 1999). 

However, increases in specific leucine incorporation rates at t0 from 

biodegradation experiments compared to their respective values in situ values 

occurred in less than half of the experiments (F. Van Wambeke et al. unpubl. 

data). The 10 d incubation experiments could also enable bacteria to use 

more refractory organic matter, thus lowering natural BGE (del Giorgio & 

Cole 1998, Carlson et al. 1999). Although these analytical biases are difficult 

to quantify, they should be kept in mind for comparisons and further 

interpretation. 

 
4. Improvement of biogeochemical models 

 

We have demonstrated using the Monod (1942) model that (1) 

parameters BGEN and α are dependent on depth, and (2) BGEN varies 

according to season, especially in the surface layer, in the Northeast Atlantic 

Ocean. Consequently, the use of a constant BGEN and α in 1-dimensional 

biogeochemical models (Anderson & Williams 1999, Lancelot et al. 2002) 

may not be appropriate. It is necessary to find a better method to simulate the 

uptake of organic matter by bacteria, for example by expressing BGEN and α 

as a function of depth, since the availability of L-DOC varies with depth. The 

seasonal changes in BGEN should also be described, for example with 
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temperature. Other environmental factors such as the composition in organic 

nutrients, phages and physiological conditions may affect the BGE (Cajal-

Medrano & Maske 2005). Moreover, BGE values could influence the 

existence and competition of bacterial communities living on distinct 

substrates (Miki & Yamamura 2005). 

 

The time lag between assimilation of the substrate, respiration and 

growth may require mathematical descriptions for each of these kinetics. 

Some models that use variable BGEN, such as the Droop (1968) model, take 

into account internal variable carbon storage (Grover 1991). In the case of 

DOC uptake by bacteria, this model allows bacteria to absorb the substrate in 

part of the cell, referred to here as the quota. Then, carbon stored in the quota 

will be allocated for different bacterial processes including maintenance and 

growth. In contrast to the Monod (1942) model, the Droop (1968) model also 

allows bacteria to survive during a starvation period, and requires 

differentiation of assimilation and growth processes. These assumptions give 

a better understanding of the interaction between DOC and bacteria in 

biogeochemical models (Vichi et al. 2003) and allow a variable BGE to be 

considered as BGE dBB dDOC= . 

 

Previous studies indicate that bacteria supplied with phosphorus are able 

to store organic carbon, without dividing, thereby maintaining a higher BGE 

(Zweifel et al. 1993). The assumption of carbon storage has also been 

proposed with observation of a non-coupling between (1) the use of DOC 

and (2) BP and BR (Ducklow & Carlson 1992, Cherrier et al. 1996). It is also 

important to take into consideration the metabolic energy used for 

maintenance processes, i.e. processes that do not produce new biomass but 

maintain cell integrity, in bacterial modelling (Cajal-Medrano & Maske 

1999, 2005). Some authors indicate that the addition of reserves and the 

maintenance in a Monod (1942) model is necessary in order to obtain the 

bacterial dynamics in chemostats (Kooi & Kooijman 1994, Kooijman 2000). 

We have to test such models using data from biodegradation experiments and 

study the effects on biogeochemical models. In the first case, the substrate is 

constant in the cultures but there are changes in the populations, which 

proliferate or dominate in cultures; in contrast, in the second case, there are 

changes in the availability of the substrate over the course of the experiment. 

Consequently, the description of the interactions between bacteria and DOC 

in biogeochemical models should be reviewed in order to include some 

fundamental mechanisms such as the use of reserves and the maintenance 

processes. 
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V. Conclusion 

 
We have shown that Monod-type modelling constitutes a fast and cheap 

method to estimate BGE from bacterial biodegradation experiments (DOC 

and BB data). This model is not very sensitive to variation in parameters and 

is robust with regard to experimental errors. However, in order to obtain BGE 

estimations close to the natural BGE, accurate measured experimental data 

are required. Moreover, more experiments are needed to observe the decrease 

in BGE and increase in α with depth with the dynamics of both state 

variables recorded over different seasons: rigid sampling with regard to depth 

and time with replicates is essential. An experimental process using the most 

precise measurements available is crucial for the calibration and validation of 

any model. Moreover, DOC data is necessary to validate our approach and 

thus our results. The introduction of BGE as a function of depth and 

temperature in the model of Anderson & Williams (1999) could prove to be 

the way forward. Nevertheless, the Monod (1942) model was designed for a 

system in steady-state in the natural environment; however, there are always 

perturbations and the steady-state condition is rare. Consequently, models 

using time variable assimilation rate and BGE such as Droop (1968) and 

Dynamic Energy Budget models (Kooijman 2000) should be investigated 

more thoroughly in order to reproduce the observations more accurately. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Chapter II 42 

APPENDIX II-A 
Search for the analytical solutions of the model 

 

The mass conservation law of the model (equations II.6 and II.7) gives 

the following equation: 

 

0
N

dDOC dBB
BGE

dt dt
+ =    (A.II.1) 

 

Consequently, ( )xNBGE DOC BB+ is a constant. If K1 is this constant, 

then ( )1 NDOC K BB BGE= − . The model and the conservation law 

produce the following equation for BB: 

 

( )1 1 1
1

dBB BB
K BB BB K BB

dt K
α α

 
= − = − 

 
  (A.II.2) 

 

Equation (A.II.2) is a logistic equation with an analytic solution as follows: 

 

( )
( )

0

1

0 0

1

1 K t

BB K
BB t

BB K BB e
α−

=

+ −

     (A.II.3) 

 

where 0BB  is initial bacterial biomass (µM C), t is time (d), α K1 is intrinsic 

growth rate (d
-1

) and K1 is carrying capacity (µM C) 

The same reasoning can be applied to the second variable of the model: 

 

 

( )
( )

0

1

0 0

2

2 K t

DOC K
DOC t

DOC K DOC e
α

=

+ −

   (A.II.4) 

 

where 0DOC  is initial DOC concentration (µM C), and 2 1
N

K K BGE=  

(µM C). 
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APPENDIX II-B 
Equations governing the sensitivity analysis 

 

 

dBB

dt
BGE DOC BB

N
α

∂

= × ×

∂

 
 
 

   (A.II.5)  

dDOC

dt
DOC BB

α

∂

= ×

∂

 
 
 

  (A.II.6) 

dBB

dt
DOC BB

BGE
N

α

∂

= × ×

∂

 
 
 

           (A.II.7)  0

dDOC

dt

BGE
N

∂

=

∂

 
 
 

        (A.II.8) 

 

In all experiments, 0 < α < BGEN < 1 (Tables II-1 and II-2). It follows that 

the values of equations (A.II5) and (A.II.6) are larger than those of equations 

(A.II.7) and (A.II.8). We thus conclude that the model is more sensitive to α 

= Vmax/k than to BGEN. 
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Abstract 
 

Biodegradation experiments are often carried out in batch cultures to 

determine bacterial properties such as the bacterial growth efficiency (BGE). 

We conducted biodegradation experiments with a unique bacterial strain and 

a unique carbon limiting substrate in order to study bacterial activities in two 

kinds of experimental environments. The only difference between these two 

experiments was the substrate regime. In the first experiment, the substrate 

was periodically pulsed in the culture. The same concentration was added at 

each pulse. In the second experiment all the substrate was added in the 

beginning of the experiment, the total amount of substrate introduced being 

the same in both experiments. These experiments first allowed pointing out 

key processes of bacterial growth and degradation activities. We 

demonstrated that the various bacterial measurements co-vary in both 

experiments. However, the specific carbon content varied during the 

experiments. We also observed a production of refractory material during the 

time course of the experiments. The respiration measurement allowed 

identifying maintenance process as well as the instantaneous response to the 

pulse addition. Then, three models were calibrated on the data sets. Two 

models, the Monod and the Marr-Pirt models, are empiric. The third model 

originated from the Dynamic Energy Budget (DEB) theory and was 

especially constructed for the pulse experiment due to the presence of 

starvation periods. Each of these models allowed the estimation of the BGE. 

The BGE was also calculated experimentally directly from the data sets. It 

results that the BGE, what else the method used, was always higher for the 

pulse than for the batch experiment. It seems that bacteria adapt their 

metabolism to respond to environmental perturbations, for example by 

adapting their assimilation or growth efficiencies. 
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I. Introduction 

 
Dissolved organic carbon (DOC) represents one of the largest active 

organic carbon reservoirs in the biosphere (Hedges 1992, Amon & Benner 

1996). It is widely accepted that DOC represents a dynamic component in the 

interaction between geosphere, hydrosphere and biosphere and as such has 

the potential to influence the global carbon cycle and climate change 

(Farrington 1992). Numerous processes are responsible of DOC production 

such as release by phytoplankton, egestion, excretion and sloppy feeding 

from grazers and cellular lysis generated by viruses (Nagata 2000). On the 

other hand, heterotrophic bacteria are considered as the major consumers and 

remineralisers of DOC in the ocean (Pomeroy 1974, Williams 2000). 

According to bacterial reactivity, DOC is usually fractionated into three 

pools: the refractory DOC (R-DOC) which turns over on the time scale of 

millennia and that accumulates in ocean, semi-labile DOC (SL-DOC) which 

turns over on the scale of months to years and labile DOC (L-DOC) which 

turns over on the scale of hours to days (Williams & Druffel 1987, Carlson & 

Ducklow 1995, Hansell et al. 1995, Carlson & Ducklow 1996, Nagata 2000, 

Carlson 2002). The SL-DOC and R-DOC concentrations are usually 

determined by examining DOC profiles throughout the water column, 

assuming that in deep-water (> 1000 m) only R-DOC occurs and that the 

water column has the same R-DOC concentration (Carlson & Ducklow 1995, 

Wheeler et al. 1996, Wiebinga & de Baar 1998, Sohrin & Sempéré 2005). 

The L-DOC component can be studied by measuring the bacterial DOC 

consumption in biological assays (Carlson & Ducklow 1996, Cherrier et al. 

1996, Sempéré et al. 1998, Carlson et al. 1999). The fraction of DOC that is 

transferred to higher trophic levels by bacteria is estimated by the assessment 

of the L-DOC utilisation in biodegradation experiments. These experiments 

must be carried out by forcing an uncoupling both of DOC production from 

consumption, and of bacterial production from bacterivory (Carlson & 

Ducklow 1996). Consequently, experiments are generally performed either 

by isolating bacteria from primary producers and grazers by filtering 

seawater if experiments result from in situ sampling, or by working on mono-

species strains of bacteria in pure cultures. 

 

Due to physical, chemical and biological processes (Carlson & Ducklow 

1995, Carlson et al. 2004, La Ferla et al. 2005) and to the decoupling between 

the production and consumption terms (Hansell et al. 1995, Carlson et al. 

2002), the DOC concentration fluctuates spatially and temporally in oceanic 

ecosystems. Relatively weak temporal variations in the dynamics of the water 

column may have a great impact on the functioning of the pelagic system 
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(González et al. 2002). Thus, it is crucial to study the responses of microbial 

communities to intermittent or transient forms of reactive DOC (Cherrier & 

Bauer 2004). The fluctuation of DOC availability varies spatially, from the 

presence of microzones containing elevated substrate concentration 

(Williams 2000) to the large scale as the nearshore zone influenced by 

upwelling events (Mcmanus & Peterson 1988). Temporal fluctuations range 

from the daily cycle due to highest phytoplankton production during daylight 

(Coffin et al. 1993) to the seasonal time scale for example due to the release 

of DOC during a phytoplankton bloom (Miki & Yamamura 2005a, Grossart 

& Simon 2007). However, experimental studies are generally carried out with 

natural seawater by adding for example a fresh plankton-derived DOC pulse 

in the start of the experiment (Cherrier & Bauer 2004). Even if this 

experimental setup allows alleviating problems due to DOC production and 

bacterial grazing, it still presents problems due to DOC measurement 

accuracy, and especially the problem of the assessment of DOC lability. 

Another difficulty in the interpretation of the results comes from bacterial 

activity: is the bacterial count or biomass increase related to the DOC 

utilisation? The final conclusions from results of this experimental design are 

based on lots of assumptions. 

 

The bacterial growth efficiency (BGE) is a widely used factor that 

enables the estimation of the carbon flows through the bacterioplankton. 

BGE indicates the proportion of the dissolved organic matter (DOM) that is 

made available by the bacteria as particulate organic matter (POM) and that 

may be consumed by the higher trophic levels (Cajal-Medrano & Maske 

2005). It thus has a profound effect on the marine organic carbon cycle (del 

Giorgio & Cole 1998, del Giorgio & Duarte 2002). BGE is generally 

experimentally determined from bacterial production (BP) and bacterial 

respiration (BR) measurements, or from BP and bacterial carbon demand 

(BCD) according to the following formula: BGE = BP/BCD where BCD = 

BP+BR (del Giorgio & Cole 1998, Sempéré et al. 1998, Rivkin & Legendre 

2001, Reinthaler & Herndl 2005). BGE may also be estimated from 

mathematical models as it often consists of a model parameter (Eichinger et 

al. 2006) or is a function of the specific growth rate (Cajal-Medrano & Maske 

1999, 2005). However, BGE estimations from different studies are hard to 

compare with each other due to the widely different methods used to 

calculate it and the utilisation of conversion factors which also exhibit large 

variations (Cherrier et al. 1996, del Giorgio & Cole 1998). Nevertheless, a 

pattern in BGE values appears, with decreasing BGE from coastal to open 

ocean systems, but with great variability (del Giorgio & Cole 1998). 

However, physical, chemical and biological processes, acting at several time 

and space scales as stated previously, affect DOC dynamics and thus 
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bacterial metabolism. As DOC utilisation by heterotrophic bacteria is 

separated from the production process in biodegradation experiments, the 

impact of DOC fluctuation on BGE is never taken into account in these 

biological assays. Consequently, the influence of the DOC variation on BGE 

must be investigated, specifically as BGE is often used as a constant 

parameter in biogeochemical models (Baretta-Bekker et al. 1995, Blackburn 

et al. 1996, Anderson & Williams 1998, 1999, Lancelot et al. 2002). These 

models are subsequently used to investigate the carbon cycle (Anderson & 

Williams 1998, 1999). 

 

In this study we focus on the influence of DOC load in bacterial cultures. 

Two kinds of experiments were performed: one under the classical conditions 

of biodegradation experiments, i.e. without any modification of the 

experimental design during the whole time course of the experiment and one 

by adding periodically and by pulses the same substrate amount in the 

culture. The only difference between both experiments is the input regime of 

the substrate in the batch cultures since the total amount of substrate is the 

same. To avoid any problems due to the sensibility of DOC measurements, 

the lability of DOC and the bacterial activity, we decided to carry out 

biodegradation experiments with a monospecific bacterial strain and a 

unique, highly labile, carbon substrate source. Thus, we easily might assume 

that the decreasing DOC concentration is related to the bacterial growth. This 

assumption was necessary since these data sets were also used to construct 

and calibrate a mechanistic model (Eichinger et al. submitted) and to estimate 

BGE (see below). For the same reasons, we applied intensive sampling and 

used DOC concentrations far from oceanic conditions where DOC 

concentration range generally from 34 µM C of R-DOC in deep-waters to 

more than 200 µM C in surface waters, with a high fraction of L-DOC, in 

ocean margins influenced by riverine inputs (Hansell 2002). In our 

experiments the total L-DOC concentration added in the cultures was 8 mM 

C, thus at least 20 times more than ambient L-DOC concentration. In this 

study, we defined L-DOC as the substrate and thus the DOC that is 

consumed during the time course of the experiment (with a turnover time of a 

few hours, approximately) whereas R-DOC was considered as the remaining 

DOC at the end of the experiments. No reference to SL-DOC was made.  

 

In the first section we present a detailed description of the experiments 

carried out to assess the influence of DOC load on the BGE, the sampling 

design as well as the measurements made, and the various methods used to 

estimate the BGE including experimental calculation and estimation from 

models. The different processes included in each model as well as their 

mathematical descriptions are given. The second part focuses on preliminary 
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experiments realised to determine the initial conditions for the pulse 

experiment, and to test the reproducibility of our experimental results. This 

latter step is a requirement allowing the utilisation of deterministic modelling 

method to describe DOC and bacterial dynamics, and thus to estimate BGE 

as model parameter. The third section points out the key processes 

highlighted by both experiments. The fourth part deals with the different 

methods investigated to estimate the BGE and compares BGE for both 

experiments, as obtained with each method. Finally, the last section presents 

the conclusions and discusses their implication for the BGE in aquatic 

ecosystems. 

 

 

II. Material and methods 

 
1. General setup 

i. Precautions 

 

Biodegradation experiments have been carried out to determinate 

bacterial and DOC dynamics in several experimental conditions. By 

dealing with bacteria and carbon, we had to be very careful with 

contaminations. To prevent bacterial contamination, all culture 

medium and material used directly to sample the culture batches were 

sterilised by autoclaving 20 minutes at 110°C, and all samples were 

handled under a laminary flow air bench. Contamination tests realised 

at the end of each experiment attested that our experimental setup 

ensured the sterility of the cultures. To prevent carbon contamination, 

all glass/borosilicate materials used for the culture or to sample were 

pre-comusted 6 hours at 450°C. The final volume of the batch cultures 

was always greater than 50 % of the initial culture volume, to ensure 

the significance of the results. 
 

ii. Experimental conditions 

 
To ensure reproducibility, all experiments were realised in the same 

environmental conditions: all experiments were carried out in a temperate 

room at 25 ± 1°C, all bottles were gently swirled and incubated in the dark. 

As these data are also used in a modelling framework, the dynamics must be 

measurable with robust measurements. For this reason we used substrate 

concentrations well above the ambient ones. 
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Three experiments were realised including two batch and one pulse 

experiments. The batch experiment B1 aimed to determine initial conditions 

as well as the pulse period (see III-1). The batch experiment B2 had exactly 

the same conditions, except that the initial substrate concentration was 5 

times higher. This substrate concentration corresponds to the total amount of 

substrate added in the pulse experiment, called experiment P. All the other 

conditions were exactly the same in this latter experiment, compared to the 

other ones. All experiments were made in 5 litres pre-combusted borosilicate 

bottles filled up with 4 (experiments B1 and P) or 3 (experiment B2) litres of 

culture medium. The main aim of this experimental setup is to study the 

influence of OM loading on bacterial activity, i.e. pulse loading versus one 

load.  

 

2. Medium constitution, bacterial strain and preculture 

conditions 

 
The medium culture was composed of artificial seawater (Lyman J. & 

Fleming R. 1940) containing all salts and ammonium needed to ensure 

bacterial growth (Appendix III-A). In this seawater, potassium phosphate, 

iron chloride, NaCl, pyruvate (carbon source) and vitamins were added 

(Appendix III-A). The pH was adjusted to 7.5. Each medium was autoclaved 

20 minutes at 110°C before its utilisation. 

 

The selected bacterial strain was Alteromonas infernus. This species 

originates from a hydrothermal station and can produce exopolysaccharides 

(EPS) during the stationary phase (Raguénès et al. 1997). This bacterial strain 

is motile, strictly aerobic, non-fermentative, non-luminescent, non-

pigmented, encapsulated. It is a Gram negative rod, with a size about 0.6-0.8 

by 1.4-2 µm with a single polar flagellum (Raguénès et al. 1997). 

 

The preculture conditions before the bacterial inoculation in the cultures 

were always the same and the preculture medium was identical to that of 

experiments B1 and P, but not identical to the medium of experiment B2 as 

the initial DOC concentration was five times higher. As the preculture 

medium and the incubation time before inoculation were the same for all 

experiments, we can assume that the initial physiological state of bacteria 

was the same for all experiments. As the preculture was incubated three days 

before inoculation, and as all the apparent substrate was consumed whereas 

bacteria were in stationary phase during this lag time (Figure III-4), we can 

assume that bacteria were starved before being introduced in the batches. 
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3. Sampling method and variable measurements 

i. Sampling 

 
To prevent any bacterial and carbon contamination, we did not insert any 

material in the culture bottles and handling of samples was done under 

laminar flow air bench. Sampling was realised at each point in time by 

pouring a certain volume of culture in another pre-combusted borosilicate 

bottle that was used for all sub-samples. This sampling technique allows 

keeping the culture in the temperate room most of the time. The 

measurements were always realised in the same order to avoid any bias due 

to the temporal lag between the different measurements. First sub-sampling 

was always for carbon measurements (DOC/POC) to prevent any carbon 

contamination by the other measurement methods. The sampling order was: 

(1) POC/DOC, (2) optical density (OD), (3) cell count by microscopy and 

cytometry analyses, and (4) oxygen consumption (Figure III-1). The cultures 

were always homogenised before sampling.  

 

ii. DOC 

 
Only DOC concentration in the culture was measured by using the total 

carbon analyses that did not give any information about the pyruvate 

concentration evolution. At the beginning of the experiment, the other 

identified carbon source, except pyruvate, was vitamin-DOC that we have 

estimated to comprise only 3 % of DOC when the initial carbon 

concentration from pyruvate was 1.6 mM C. When the initial substrate 

concentration was 8 mM C, this percentage was thus negligible (0.6 %). The 

medium also comprised more than 1 mM C of NaHCO3 that is inorganic and 

eliminated by acidification and bubbling before the DOC measurement. 

 

For DOC analyses, a variable amount (10 to 100 cm
3
) of the sub-sample 

was collected in a graduated pre-combusted borosilicate tube and filtered 

through a pre-combusted GF/F glass fibre filter (0,7 µm nominal retention 

size). DOC was measured by high temperature catalytic oxidation  (HTCO) 

(Sempéré et al. 2003, Sohrin & Sempéré 2005) using a Shimadzu TOC 5000 

Analyzer. Samples were acidified to pH ≈ 1 with 85 % phosphoric acid and 

bubbled for 10 minutes with CO2-free air to purge inorganic carbon. Three or 

four 100 mm
3
 replicates of each sample were injected into the column heated 

at 680 °C. The effluent passed through a drying unit (magnesium perchlorate 

cartridge), a scrubber to eliminate halogen gas and sulfates, a dust-

eliminating membrane filter to remove sea salt and phosphoric acid aerosols, 

and finally in non-dispersive infrared (NDIR) cell in which CO2 was 

detected. The coefficient of variation of DOC replicates was always smaller 
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than 2 %. Quantification was performed by a four point-calibration curve 

with standards (from 0 to 2 mM C for the B1 and P experiments and from 0 

to 8.5 mM C for the experiment B2) prepared by diluting potassium 

hydrogen phthalate in Milli-Q water. 

 

iii. POC 

 

In this study, POC refers to the bacterial biomass in carbon and was 

sampled at the same time as DOC on the filtration column. Indeed, POC is 

the part of the sub-sample retained on the GF/F filters. A variable but 

sufficient amount of culture volume was filtered in order to have a reliable 

POC signal. After the filtration step, each filter was dried in a drying oven, 

carefully stored in the dark and then analysed with a carbon analyser (Leco 

SC-144). Filters were introduced in a ceramic carrier and the combustion was 

carried out at 1350°C in an oxygen flux. The organic carbon is thus 

transformed in CO2 and detected by a NDIR cell. Calibration was performed 

with reference compound in the same order of magnitude than sample. The 

measurement uncertainty was between 3 and 8 % for these carbon 

concentrations. 

 

iv. Optical density (OD) 

 

Optical Density (OD) served essentially to check the bacterial growth 

during the manipulation. We collected 4 cm
3
 of the sub-sample to measure 

the OD with a spectrometer (Milton for experiments B1 and P and Jenway 

6310 for experiment B2). OD was measured at 600 nm, wavelength linked to 

particles density. The OD medium value was subtracted to each OD value.  

 

v. O2 consumption 

 
O2 consumption was estimated by measuring the O2 concentration with 

the Oroboros-2k oxygraph (OROBOROS, Austria) (Appendix III-B-1). This 

oxygraph provides the instrumental basis for temporal high-resolution 

respirometry due to a small lag time between two measurements (2 s). As 

recommended by the manufacturer the volume of the chambers was set at 2 

cm
3
, and the stirrer speed at 750 rounds per minute.  

 

Each day, a control sample was made with a sterile medium sample to 

determine the consumption of the polarographic oxygen sensor (POS). This 

value was then subtracted from each O2 consumption value measured the 

same day. The POS were calibrated with 0 and 100 % oxygen saturation. The 

calibration with 0 % oxygen saturation was done before the start of each new 
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experiment. It was calibrated by adding in the chambers anhydre sodium 

hydrosulfite (Na2SO3) in excess in order to complex all the oxygen. The 100 

% oxygen saturation was calibrated prior to each measurement, by 

introducing 2 cm
3
 of sterile culture medium in each chamber and by keeping 

the stopper open to equilibrate the gas with the atmosphere. When the 

equilibrium was reached (about 10 minutes), the 100 % oxygen saturation 

was recorded. Then, this medium was replaced by 2 cm
3
 of the sub-sample. 

The stoppers were then closed to prevent oxygen diffusion inside or outside 

the chambers and the recording of O2 concentration started at this very time 

point. After each measurement, both chambers were emptied and stoppers 

and chambers were cleaned with alcohol then rinsed with sterile medium. 

The decreasing O2 concentration allowed estimating the continuous O2 

consumption at each time point. O2 consumption was calculated by linear 

regression of the O2 concentration, where the slope corresponds to the 

consumption (Appendix III-B-2). In order to get rid of the thermodynamic 

effects induced by the movement of the stopper when opening and closing 

the chambers, the O2 consumption estimation started 10 minutes after the 

closing of the stopper. The consumption was estimated from 200 seconds 

measurements. 

 

vi. Bacterial abundance 

 

Total bacterial counts were estimated by two independent ways: 

microscopy and flow cytometry.  

 

Microscopy counts. Bacteria fixation was performed in an eppendorf by 

adding 100 mm
3
 of a 20 % tetraborated formol solution to 900 mm

3
 of the 

sub-sample. The fixation step took 15 minutes. Then, a few mm
3
 were taken 

out from this formol-mixture and added to a few cm
3
 of filtered MilliQ water 

in a Falcon sterile tube. The volume of the formol-mixture was adjusted 

according to an estimated bacterial density, so that there were at least 30 

bacteria per field under the microscope. We added 5-6 drops of Diamidino-

4',6-phénylindol-2 Dichlorhydrate (DAPI) (2.5 µg cm
-3

 final concentration) 

to stain bacteria and to count these latter by epifluorescent microscopy 

(Figure III-2). The 10 minutes incubation with DAPI was carried out in the 

dark and at constant temperature. The final mixture was filtered on a 0.2 µm 

porosity dark polycarbonate membrane, and this membrane was assembled 

on a slide with a cover-slip for the final microscopy counting. The counts (in 

cell cm
-3

) (Appendix III-C-1) were realised with an epifluorescent 

microscope (Olympus BH2 or BX61, Olympus, USA) by analysing 30 fields 

per sample.  
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Figure III-2: White and black picture (x 1000) of Alteromonas infernus 

stained with DAPI observed under an epifluorescent microscope. 

 

 

Flow cytometry counts. Flow cytometry samples were realised by fixing 

1.8 cm
3
 sample with 0.2 cm

3
 of a 20 % para-formaldehyde (PFA) solution  in 

2 cm
3
 cryotubes (Nalgene, USA). These samples were then stored in liquid 

nitrogen (-180°C) until analysis. Before analysis the samples were gently 

thawed in a bain-marie at room temperature, then stained with a DAPI 

solution (2.5 µg cm
-3

 final concentration) and then analysed by flow 

cytometry. Flow cytometry analyses were carried out on a MoFlo cell sorter 

(Dako, Dk) (Appendix III-C-2).  

 

Flow cytometry counts were also realised on DOC samples. Indeed, 

according to their size, bacteria are able to pass through the GF/F filters 

during the filtration. After we have taken out the DOC sample from the 

filtration column, we have also collected 1.8 cm
3
 of the culture for cytometry 

counts analysis. We so checked the transfer of bacteria through the GF/F 

filters and made appropriate POC and DOC corrections. 

 
4. DOC and POC data corrections 

 

Total bacterial density was estimated by flow cytometry and by 

microscopy for the experiments B2 and P. For both experiments cytometric 

counts were also realised from the DOC samples in order to estimate the 

percentage of bacteria passing through the filter for each data point, and to 

correct DOC and POC values according to this percentage. For the 

experiment B1 this correction was not possible as only the microscopic total 

counts were realised. 
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i. Experiment B2 

 

We noticed that bacterial dynamics are qualitatively identical for both 

techniques of bacterial density estimation, although the cytometry leads to an 

overestimation of the total bacterial counts (Figure III-3). This phenomenon 

has already been mentioned in the literature (Monfort & Baleux 1992). 

Assuming the flow cytometry as the reference technique, this difference is 

highly variable during the time course of the experiment, ranging from - 5 to 

54 %. This difference is higher during the exponential growth phase (34 to 54 

% of difference) than during other growth phases (- 5 to 30 %).  
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Figure III- 3: Comparison of bacterial density estimated with the MoFlo 

cytometer (o) and the epifluorescent microscope (+) after DAPI staining for 

the B2 experiment. 

 

 

Density of bacteria passing through the filter during DOC/POC 

separation was estimated by MoFlo flow cytometer. For the B2 experiment, 

percentage of bacteria in the DOC samples was estimated to range from 0 to 

14 %. Higher values were obtained during the exponential growth phase, 

whereas this percentage was near 0 % during the lag and the stationary 

phases. This suggests that bacteria are larger during non dividing period, and 

that the cell division leads to shrinking of bacteria, which subsequently 

reached the limit size of the filter retention size. We have then multiplied this 

percentage by the POC value at each point in time to estimate the bacterial 

biomass that has been considered as DOC instead of POC. This biomass was 

thus subtracted from the DOC values and added to the POC values for each 

sampling point.  
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ii. Experiment P 

 

Unfortunately, unfiltered samples and some filtered samples for the pulse 

experiment were not measured for bacterial density with cytometry due to 

technical problems. Thus, the percentage of bacteria passing through the 

filters was estimated by comparing the bacterial density analysed by 

epifluorescent microscopy in the full sample to the bacterial density analysed 

by cytometry after the filtration. In the B2 experiment the density values 

were always higher (except for one data point) when they were analysed by 

cytometry. As this phenomenon was already mentioned for other studies 

(Monfort & Baleux 1992), we can assume that the same result occurs for the 

P experiment. Thus, by calculating the percentage of bacteria going through 

the filters with a reference to the microscopic total counts instead of to the 

cytometric total counts, we introduce a bias, overestimating this percentage. 

Moreover, except two values of 10.8 and 12.8 %, the percentage of bacteria 

in the DOC samples was always inferior to 4.5 %. Due to this low 

percentage, to its overestimation and to the lack of some data, we have 

decided to not correct the DOC and POC data for the pulse experiment. 

 
5. BGE estimation 

 

For BGE estimation, we focused on the batch experiment B2 and the 

pulse experiment P. The only difference between both experiments is the way 

of supplying substrate to the batch cultures. Indeed, all the substrate was 

available at the beginning of the batch experiment, therefore the culture was 

not exposed to any perturbation during the time course of the experiment. By 

contrast, in the pulse experiment, substrate was periodically added in the 

batch culture. Note that the total substrate quantity added was the same in 

both experiments. We are specifically interested in the bacterial efficiency to 

assimilate the C-substrate and in their growth pattern. Here, BGE was 

calculated by using experimental data points and modelling methods. 

 

i. Experimental BGE estimation 

 

The experimental BGE estimation has been widely used in 

microbiological studies, especially using in situ samples, to compare the 

ability of bacteria to use DOC for their growth (del Giorgio & Cole 1998). 

BGE can be experimentally calculated with the following formula: BGE = 

BP/BCD and BCD = BP + BR (Carlson & Ducklow 1996, del Giorgio & 

Cole 1998, Rivkin & Legendre 2001, Sempéré et al. 2003, Cherrier & Bauer 

2004) where BCD is the bacterial carbon demand, BP the bacterial 

production and BR the bacterial respiration. In this study, BP was not 
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measured but it was estimated by the difference between the maximum and 

initial POC values. BCD was estimated as the difference between the initial 

(experiment B2) or the total substrate quantity put in the culture (experiment 

P) and the remaining DOC at the end of the experiment.  

 

ii. BGE estimation from models 
 

BGE has also been estimated by using three models with different levels 

of detail. The first model originates from the dynamic energy budget (DEB) 

theory (Kooijman 2000) and has been especially constructed for the pulse 

experiment due to the presence of the starvation periods. This model 

comprises a reserve compartment as well as two maintenance processes: 

maintenance is paid from mobilized reserve if the flux is large enough, but 

otherwise structure is used to pay the remaining part of the maintenance 

costs, which causes shrinking of the cell (Tolla et al. 2007, Eichinger et al. 

submitted – chapter IV) (equations III-3). Consequently, growth is not 

realised directly from assimilation but is buffered by the reserve 

compartment. When maintenance is realised from the structural biomass, 

bacteria release maintenance products in the culture, which correspond to R-

DOC. The BGE of this latter model corresponds to the parameter Y, ratio of 

the two primary parameters 
EL

y  and 
EV

y  (Table III-1).  

 

The second model is the Marr-Pirt model (Marr et al. 1963, Pirt 1965), 

which assumes a direct transfer from assimilation to growth, but which also 

includes a maintenance term. However, maintenance is only realised from the 

structural biomass as this model does not comprise any reserve compartment 

(equations III-2). As in the DEB model, R-DOC is produced from the 

maintenance of the biomass. BGE corresponds to the parameter 
VL

Y  of this 

model (Table III-1).  

 

The third model is the Monod model (Monod 1942), which includes 

neither reserve nor maintenance. It only assumes that the substrate is directly 

and instantaneously transformed in biomass with a constant efficiency, the 

BGE (Table III-1 and equations III-1). Note that here we also report that 

bacteria were able to produce refractory materials in our systems. However, 

this model does not allow any product formation. Consequently, in order to 

compare parameters governing assimilation and growth on L-DOC between 

the three models, DOC data were modified to deal only with the labile 

fraction of DOC. DOC values were set to zero during stationary phase. The 

way to modify data to focus on L-DOC was different for each experiment. 

For the B2 experiment, R-DOC concentration seems constant. L-DOC values 
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were thus estimated by offsetting with the R-DOC values to the total DOC 

values at the end of the experiment. In the P experiment, R-DOC 

concentration increased after each pulse and a linear regression to R-DOC 

values for all the experiment was applied and the equation governing this 

increase was estimated. A value from each DOC concentration was 

subtracted according to the formula: ( )* 0.0038 0.1067DOC DOC t= − +  

where *DOC  represents the corrected data, DOC  the original data and t 

the time. In this way, data were transformed to deal only with the apparent L-

DOC fraction, and thus to apply the Monod model on these modified data. 

 

A detailed description of the DEB and Monod models are given in 

Eichinger et al. (submitted - chapter IV) and Eichinger et al. (2006 - chapter 

II), respectively. The BGE estimated with the different methods have been 

compared to each other for each experiment, but also BGE have been 

compared between the batch and the pulse experiment. 

 

Monod model: (III-1)   Marr-Pirt model: (III-2) 
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Table III-1: Description and units of model parameters used in this study. 

Symbol Equival. Unit Description 

Parameters in the DEB model 

LAmj  
 

h
-1

 Maximum specific absorption rate 

K  
 mM C Half-saturation constant 

α  
LAmj

K
 

mM C
-1

 h
-1

 

Ratio between the maximum specific 

absorption rate and the half saturation 

constant 

EL
y  

 
- 

Yield coefficient from L-DOC to reserve 

mass 

EV
y  

 
- 

Yield coefficient from structural to 

reserve masses 

E
k   h

-1
 Reserve turnover rate 

EM
j   h

-1
 Maintenance flux from reserve mass 

VM
j   h

-1
 Maintenance flux from structural mass 

RV
y  

 
- 

Yield coefficient from structure to R-

DOC 

Parameters in the Marr-Pirt model 

α  
LAmj

K
 

mM C
-1

 h
-1

 

Ratio between the maximum specific 

absorption rate and the half saturation 

constant 

VL
Y  

EL

EV

y

y
 - Growth efficiency 

VM
j   h

-1
 Maintenance flux from structural mass 

RV
y  

 
- 

Yield coefficient from structure to R-

DOC 

Parameters in the Monod model 

α  
LAmj

K
 

mM C
-1

 h
-1

 

Ratio between the maximum specific 

absorption rate and the half saturation 

constant 

BGE  
EL

EV

y

y
 - Growth efficiency 
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III. Description of the experiments: initial conditions 

and reproducibility tests 

 
1. Determination of initial conditions and the pulse period 

 

The first step consisted in determining the initial conditions so that (1) 

DOC decrease and bacterial growth were substantial, (2) the pulse period was 

long enough to allow sample collection between subsequent pulses, and (3) 

DOC was apparently exhausted and bacteria were in stationary phase at the 

end of the pulse period. This latter condition allowed us studying bacteria in 

several states during the same experiment. We have determined the initial 

conditions as: initial DOC concentration: 1.6 mM C, and initial bacterial 

concentration: 5.10
6
 cells cm

-3
. A pulse period of 48 h was applied for the 

initial conditions indicated above (Figure III-4).  
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Figure III- 4: DOC and POC (C-bacterial biomass) dynamics for the batch 

experiment B1 where the initial conditions are: [DOC] = 1.6 mM C and 

[bact.] = 5.10
6
 bact cm

-3
. This experiment allowed determining the initial 

conditions for the pulse experiment as well as the pulse period. 48 hours after 

the start of the experiment, DOC was totally consumed and bacteria were in 

stationary phase. 
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2. Reproducibility 

i. Batch experiments 

 

Two kinds of batch experiments were carried out, the only difference 

being the initial DOC concentration. The B1 experiment was realised with an 

initial DOC concentration of 1.6 mM C in order to determine the pulse 

concentration and the pulse period (Figure III-4 and section III-1) and also 

assess the reproducibility of the experimental setup (Figure III-5). The B2 

experiment had an initial DOC concentration of 8 mM C, which corresponds 

to the total DOC concentration added in the longest pulsed experiment (see 

the following section). In both cases, the initial bacterial concentration was 

approximately 5.10
6
 cells cm

-3
 (4.6 .10

6
 and 4.1 cells cm

-3
 for the B1 and B2 

experiments, respectively).  

 

Several B1 experiments were realised independently with the same initial 

and external conditions. Dynamics of the data were plotted on the same graph 

(Figure III-5) in order to test the reproducibility of this experiment. No 

statistical analysis was applied on these data sets, but we were interested in 

the qualitative substrate and bacterial dynamics. In the stationary phase, there 

are some small discrepancies between the experiments (Figure III-5). 

However, these quantitative differences may be explained by small variations 

of the initial conditions. As an example, the bacterial density inoculated may 

vary slightly. Nevertheless, lag, growth and stationary phases occur at the 

same time for each experiment. We can thus admit that this experimental 

setup is reproducible. 

 

ii. Pulse experiments 

 

Two pulse experiments were realised independently, the only difference 

being the total duration, the P experiment considered in this study being the 

longest of both experiments. The pulse period was based on the previous 

batch experiment dynamics. We demonstrated reproducibility of results, 

which is crucial for model applications. As we aimed to carry out a long 

pulse experiment, a large culture volume was required. This was possible 

only (1) if we changed the experimental design by using a larger bottle and a 

different sampling system or (2) if we carried out the experiment in several 

bottles of 5 litres (like we used in the batch experiment), and assumed almost 

perfect reproducibility. In this way we don’t need to change the experimental 

protocol. As for the batch experiments, the P experiment was reproducible in 

a qualitative point of view (Figure III-6). We have thus chosen for the second 

strategy and used several bottles to realise the experiment. 
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Figure III- 5: Dynamics of DOC (mM C) (a), POC (mM C) (b) and OD (600 

nm) (c) of several batch experiments B1 realised with the same conditions. 

Each symbol corresponds to a different experiment. These graphs have 

allowed noticing the reproducibility of the experiment B1. 
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Figure III- 6: Dynamics of DOC (mM C) (a), POC (mM C) (b) and OD (600 

nm) (c) of two pulse experiments realised with the same conditions. Each 

symbol corresponds to a different experiment. These graphs have allowed 

noticing the reproducibility of the pulse experiment P. 
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IV. Identification of key processes 
 

1. Autocorrelation of bacterial measurements 

 
For each experiment, we noticed that the dynamics of bacterial variables, 

i.e. POC, OD and the abundance, were very close, especially for the batch 

experiments (Figures III-7 and 8 a-b). To test the correlation between these 

measurements, we applied linear regressions on OD and abundance data 

against POC data (Figures III-7 to III-9 c-d). The correlation coefficients 

were always higher than 0.8, except one value (0.38) for the P experiment 

(Figure III-9-c) and always better for the batch than for the pulse 

experiments.  Bacterial density showed high variations for this experiment. 

The correlation coefficient for OD against POC is always larger than 0.9, 

except for the experiment P as we had some technical problems with the 

spectrometer. We missed some data points due to this problem and needed to 

change the light source, which may explain some variations in the data set. 

Correlation coefficients estimated from abundance data are always inferior, 

which may be explained by the fact that the correlation seems less accurate 

during the stationary phase (Figures III-7 to III-9 a). However, as critical 

value p < 0.005 for all tests, these results exhibit a significant autocorrelation 

between the several variables used to measure bacterial growth in this study.  
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Figure III- 7: POC and bacterial density dynamics (a), and POC and OD 

dynamics (b) during the time course of the B1 experiment. As dynamics of 

these state variables are very close, linear regressions on bacterial density 

data vs POC data (c) and on OD data vs POC data (d) for the experiment B1 

were applied. The correlation coefficients are R
2
=0.83 (n=11, p=9.10

-5
) and 

R
2
=0.93 (n = 11, p =  2.10

-6
), respectively. 
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Figure III- 8: POC and bacterial density dynamics (a), and POC and OD 

dynamics (b) during the time course of the B2 experiment. As the dynamics 

of these state variables are very close, linear regressions on bacterial density 

data vs POC data (c) and on OD data vs POC data (d) for the B2 experiment 

were applied. The correlation coefficients are R
2
=0.85 (n=15, p=1.10

-6
) and 

R
2
=0.96 (n=15, p=9.10

-11
), respectively. 
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Figure III-9: POC and bacterial density dynamics (a), and POC and OD 

dynamics (b) during the time course of the P experiment. As dynamics of 

these state variables are very close, linear regressions on bacterial density 

data vs POC data (c) and on OD data vs POC data (d) for the pulse 

experiment were applied. The correlation coefficients are R
2
=0.38 (n=32, 

p=0.0002) and R
2
=0.81 (n=26, p=3.10

-10
), respectively. 

 

 

2. Production of refractory material 

 
Our results showed DOC remaining in the cultures at the end of the B2 

and P experiments (Figure III-10-a). In the P experiment such remaining 

DOC may consist of refractory material instead of unconsumed L-DOC due 

to nutrient limitation. Indeed, as bacteria grew after each carbon-pulse 

(Figure III-10-b), we may assume that bacteria are carbon and not nutrient 

limited. Moreover, the analysis of the molar ratios may give information 

about the limiting factor. The molar C:N ratios in the medium were 

calculated for both experiments and equal to 0.60 and 0.11 for the B2 and P 

experiments, respectively. The molar C:P ratios were 50 and 10 for B2 and P 

(b) (a) 

(d) (c) 
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experiments, respectively. It has been reported that the molar C:N and C:P 

ratios in the bacteria in natural environments averaged to 5 and 50, 

respectively (Fagerbakke et al. 1996, Heldal et al. 1996). From culture 

experiments, bacterial C:N may vary from 2.3 to 44, with a mean value of 

6.1, and C:P from 14 to 358, with a mean value of 45 (Vrede et al. 2002). In 

this study, BCD was estimated as the difference between the total substrate 

amount loaded in the system and the smallest DOC value. Here, the bacterial 

nitrogen demand (BND) and the bacterial phosphorus demand (BPD) were 

estimated by multiplying the BCD by the inverse of bacterial C:N and C:P 

ratios, respectively. By considering the wide range of C:N and C:P ratios 

reported previously, BND and BPD for experiment B2 may vary from 1.40 to 

0.14 mM N and from 0.51 to 0.02 mM P, respectively, with a mean value of 

1.16 mM N and 0.16 mM P, respectively. For experiment P, BND and BPD 

may vary from 1.2 to 0.12 mM N and from 0.44 to 0.02 mM P respectively, 

with mean values of 1 mM N and 0.14 mM P respectively. However, culture 

media had 14 mM N and 0.17 mM P. Given the wide range of values of the 

C:P ratios and the elevated concentrations of N and P in the culture media 

which were always higher than the bacterial demand, we may assume that the 

cultures were not limited by N and P, but rather by the OC source. This 

strongly suggests the refractory character of the remaining DOC.  
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Figure III- 10: Dynamics of DOC (a) and POC (b) for B2 (o) and P (+) 

experiments. 
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Figure III-11: Dynamics of specific POC during the time course of the 

experiments B2 (o) and P (+). 
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Figure III-12: Dynamics of specific O2 consumption during the time course 

of the experiments B2 (o) and P (+). 
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Figure III- 13: DOC (a) and respiration (b) dynamics during the time course 

of the P experiment. 
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3. Variation of the specific carbon content 

 

The final R-DOC concentration was larger in the B2 (1.5 mM C) than in 

the P (0.8 mM C) experiments (Figure III-10-a), and may explain why 

smaller maximal bacterial biomass was observed for B2 (1.1 mM C) rather 

than P (1.8 mM C) experiments (Figure III-10-b). However, maximum 

bacterial density was higher in the batch than in the pulse experiments (a 

maximum of 4.7 10
8
 bact cm

-3
 and 3.4 10

8
 bact cm

-3
, respectively) (Figure 

III-8 a and III-9 a), suggesting that bacteria were smaller in the B2 

experiment. This is further supported by the POC content per cell during the 

growth and stationary phases of the batch experiment compared to the pulse 

experiment, except during the first hours (Figure III-11).  

 

4. Maintenance process 

 

Our results showed high specific O2 consumption during the lag phase 

for B2 and P experiments (Figure III-12), suggesting a high bacterial 

consumption rate to adapt to the new medium and to start growth. The 

maintenance respiration, during the stationary phases, is highly visible in the 

pulse experiment. Indeed, the specific O2 consumption increased rapidly and 

almost instantaneously after the addition of a substrate pulse, and decreased 

also very quickly when bacteria have used all the apparent L-DOC and were 

still in stationary phase.  

 

5. Instantaneous response to a perturbation 
 

The various measurements highlighted the instantaneous response of 

bacteria to an environmental perturbation. Indeed, we noticed that the 

apparent pulsed substrate, defined here as L-DOC, was always consumed 

within few hours by bacteria (Figure III-13-a). The apparent L-DOC 

concentration was consumed faster at each new pulse as the loaded 

concentration was the same for each pulse but the bacterial density increased 

during the time course of the experiment. This instantaneous response is 

more visible in the respiration data. Indeed, respiration measurements were 

generally carried out approximately 30 minutes after other measurements. 

However, these 30 minutes were sufficient for bacteria to increase their 

respiration by a factor 10 (Figure III-13-b). This increasing respiration lasted 

a few hours, the peak of respiration corresponding to the time needed to 

consume all the apparent substrate and to increase the biomass.  
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V. Bacterial degradation of organic matter in a 

variable and a constant environment: which 

system is the most efficient? 

 
1. Experimental BGE estimation 

 
BGE can be estimated experimentally from data sets by calculating the 

POC increase and the DOC removal with the following formula: 

POC
BGE

DOC

∆
=

∆

. For both experiments, POC∆ was estimated as the 

difference between the maximum and the initial POC values, and DOC∆ as 

the difference between the initial and the last DOC values for the batch 

experiment, and as the difference between the total DOC added in the culture 

and the last DOC value for the pulse experiment. BGE then amounts to 0.14 

and 0.27 for the B2 and the P experiments, respectively, suggesting that 

bacteria are two fold more efficient with regular pulsed DOC input than with 

a unique DOC addition. 

 

2. BGE estimation from models 

i. Fitting 

 

Parameter estimation is based on the minimization of the sum of squared 

deviations of model predictions to data points, using the Nelder Mead’s 

simplex method (Lagaria et al. 1998).  The calibration was carried out using 

the original data set for the pulse experiment and the corrected data set for the 

batch experiment, as DOC and POC values were corrected for bacteria that 

passed through the filters. The DEB and Marr-Pirt models fit the data for 

both experiments very well (Figure III-14 a-e). However, the parameter 

values are different for each experiment (Tables III-2 and III-3). After data 

modification, the Monod model fits the DOC dynamics of both experiments 

accurately, which is explained by the fact that the DOC absorption is 

governed by the same formulation for the three models. However, the Monod 

model fits POC data less accurately (Figure 14 c-f). The least square value 

for this model is indeed higher for the B2 batch experiment (Table III-2). We 

effectively avoided the problem of the production of R-DOC as this 

production cannot be incorporated in the Monod model, but the absence of 

the maintenance process does not allow reproducing experimental dynamics. 

This is clearly visible in the dynamics of the B2 experiment as the data 

showed a biomass decrease at the end of the experiment, but the Monod 

model is unable to reproduce this biomass loss. 
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ii. Comparison of BGE estimations from the three models 

 

Each model allowed the estimation of a BGE for both experiments. In the 

Monod model, BGE is one of the parameters, in the Marr-Pirt model the 

BGE corresponds to the parameter 
VL

Y  whereas it corresponds to the 

compound parameter EL

EV

y
Y

y
=  in the DEB model (Tables III-2 and III-3). 

For both experiments, BGE estimated from the Monod model is lower by at 

least 40 % than BGE estimated from other models. This is due to the fact that 

the Monod model does not comprise any maintenance term. The BGE 

estimations from the Monod model are also very close to the experimental 

BGE estimations. This is not surprising, especially for the experiment B2, as 

we have calculated the experimental BGE by subtracting the initial from the 

maximum POC value. Thus, this estimation does not take into account the 

maintenance which especially appears at the end of the experiment (Figure 

III-14). As Marr-Pirt and DEB models account for maintenance, the BGE has 

to be higher than for a model without maintenance to reach the same 

maximum growth. BGE estimated from the Marr-Pirt model exhibits a 

difference of only 4 % with the BGE estimated from the DEB model for the 

batch experiment, and of 12 % for the pulse experiment. BGE estimated from 

both models may thus be considered as equivalent. 

 

Even if BGE estimated from the three models are different, we found that 

BGE was always higher for the pulse than for the batch experiment. This 

validates the result obtained with the experimental estimation. Nevertheless, 

the difference percentage between BGE for the pulse and the batch 

experiment is not the same for the different models. For the experimental 

estimation, the BGE is more than twice higher for the pulse than for the batch 

experiment, whereas this difference reaches only 65 % for the Monod model 

estimation. For the Marr-Pirt model, BGE is 88 % higher for the pulse 

compared to the batch experiment, and is 59 % higher when BGE was 

estimated from the DEB model. 
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Table III- 2: Parameter and least square values for each of the three models 

for the batch experiment B2. POC and DOC data were corrected for the 

bacteria passing through the filters. Parameters were estimated by the 

minimization of the sum of square deviations of model predictions to data 

points. As the Monod model cannot produce refractory material, DOC 

concentrations were held to 0, when bacteria were in stationary phase, by 

subtracting the R-DOC concentration at the end of the experiment to each 

DOC data point. 

Parameters Monod Marr-Pirt Switch DEB 

α  0.167 0.104 0.212 

Ek  - - 0.201 

ELy  0.211 

EVy  
BGE = 0.142 VL

Y = 0.203 
1.000 

EL

EV

y
Y

y
=  = 0.211 

EMj  - - 0.021 

VMj  - 0.012 0.006 

RVy  - 1.000 1.000 

Least square 0.516 0.338 0.259 
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Table III- 3: Parameter and least square values for each of the three models 

for the pulse experiment P. Parameters were estimated by the minimization of 

the sum of squared deviations of model predictions to data points. As the 

Monod model cannot produce refractory material, DOC concentrations were 

held to 0, when bacteria were in stationary phase between two pulses, by 

subtracting a linear regression on DOC data. This linear regression was 

estimated only on R-DOC data as they exhibit an increasing during the time 

course experiment, but it was applied on the whole data set. 

Parameters Monod Marr-Pirt Switch DEB 

α  0.364 0.347 0.484 

Ek  - - 0.603 

ELy  0.500 

EVy  
BGE = 0.234 VL

Y = 0.382 
1.492 

EL

EV

y
Y

y
=  = 0.335 

EMj  - - 0.000 

VMj  - 0.004 0.008 

RVy  - 0.855 1.000 

Least square 1.722 1.595 1.728 
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VI. Discussion 

 
This study has allowed pointing out several processes. Firstly, we have 

demonstrated that bacteria are able to produce refractory material. However, 

the nature of this material is unknown: it could consist of cell wall, 

suggesting that bacteria are a source of DOM and that bacteria-derived 

organic matter can be preserved for long periods (Nagata 2000), or it could 

consist of exopolysacharrides (EPS) as this bacterial strain produce it during 

the stationary phase (Raguénès et al. 1997). Chemical analyses are needed to 

identify the nature of this refractory material. To be sure that the studied 

system is fully limited by OC and not by a nutrient, it could be interesting to 

measure the pyruvate as well as the total DOC concentration. Such 

information could help us to understand whether the remaining DOC is only 

refractory or if it is made up of a part of not assimilated substrate. We could 

also measure the nutrient concentrations to follow their dynamics and 

eventually include them in models. However, this would complicate the 

experimental design by increasing the culture volume that needed 

considerably. An alternative would be the use of chemostats with a constant 

culture volume. The experimental design should be adjusted to allow the 

introduction of the pulses, for example by changing the dilution rate. 

 

The respiration measurements allowed the study of maintenance during 

the stationary phase. The Monod model is not suitable for this purpose. 

Indeed, it considers that a proportion BGE is used for the growth, and that the 

remaining proportion (1-BGE) is used for the respiration. However, when 

considering the equations, substrate concentration (L) equal to zero would 

imply that the respiration (which amounts to (1-BGE) L MV, where MV 

stands for the bacterial biomass) is also null. This result is inconsistent with 

our experimental results. The choice of a model is highly influenced by the 

available data. Indeed, if our experiments stopped after the growth phase and 

if we did not measure the respiration, we would notice that the Monod model 

is sufficient for this experiment. In this study, Marr-Pirt and DEB models are 

almost equivalent in terms of dynamics and of BGE estimations. However, 

by including nutrient measurements for example, we could appreciate the 

relevance of mechanistic approach, as the DEB theory, considering processes 

as the assimilation, maintenance and growth of each element. It has been 

demonstrated that when considering a food chain with a bacteria, fed on 

glucose, and a predator, the Monod and Marr-Pirt models are not able to 

reproduce experimental dynamics, whereas the DEB model is (Kooi & 

Kooijman 1994). Consequently, experimental efforts and developments are 

necessary to assess bacterial processes that should be included in models.  
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The P experiment and especially the respiration measurements, showed 

the versatility of bacterial metabolism, which is difficult to observe in 

constant conditions. We may introduce the notion of population 

synchronisation as bacteria are constrained by the presence or absence of 

food. This synchronisation may be due to several factors, such as the stress 

generated by absence of substrate and the large energy requirement for 

maintenance. Consequently, all bacteria become active at the same moment 

to assimilate the substrate and to grow, and cells continue maintenance when 

the substrate has totally disappeared. This metabolic flexibility is necessary 

to cope with the vicissitudes of a largely oligotrophic and ever-changing 

environment, and may result from the uncoupling of anabolic and catabolic 

processes (del Giorgio & Cole 1998). We may believe that the situation is the 

same in natural seawater, as food is not continuously available (Hanegraaf & 

Kooi 2002) and bacteria may be faced with long periods of absence of one or 

more nutrients (Konopka 1999) and with short periods of high substrate 

availability. Thus, by carrying out batch biodegradation experiments using in 

situ samples, bacteria may be in one or another situation. The resulting BGE 

are of course affected by the temporal variation of substrate availability. We 

consequently have to be very cautious when comparing BGE from different 

study sites and periods, without considering the “story” of the water mass. 

 

We also observed a highly significant autocorrelation between the 

various bacterial variables (POC, bacterial density and OD), especially for 

the batch experiments B1 and B2. It may be possible that calibration of two 

variables on the third would reduce the experimental cost and work 

considerably. For example, OD measurements do not require a large culture 

volume (2 cm
3
 against 10 to 100 cm

3
 for POC measurements) and are really 

fast and not expensive compared to POC and bacterial density measurements.  

However, it seems that this correlation is less accurate during the stationary 

phase compared to other growth phases, justifying that this kind of 

formulation should be applied cautiously. Moreover, three models have been 

used in this study to describe DOC and bacterial dynamics, and we have 

demonstrated that the Monod model is inaccurate for these data sets. Marr-

Pirt and DEB models can thus be used in further work to determine critical 

variables and parameters to be measured. 

 

On the other hand, the numerous variables measured also permitted to 

estimate the carbon content per bacteria, often called carbon conversion 

factor (CCF). This CCF is often considered constant and used to convert 

bacterial density into bacterial biomass-carbon. The mean CCF for marine 

bacteria is often considered to be 20 fgC bacterium
-1

 (Lee & Fuhrman 1987). 

However, our study clearly showed that this CCF is not constant but varies 
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during the time course of the experiment. Indeed, in the experiment B2, CCF 

decreased rapidly from 450 to 30 fgC bacterium
-1

 (38 to 3 fmolC bacterium
-1

) 

during the first lag phase, and then is quite stable during the rest of the 

experiment (Figure III-11). In the P experiment, the CCF also decreased from 

180 to 60 fgC bacterium
-1

 (15 to 5 fmolC bacterium
-1

) during the lag and 

exponential growth phases, and increased after each pulse (Figure III-11). 

The variation of the carbon content per cell has already been reported 

(Ducklow & Carlson 1992), being larger during growth phases than during 

stationary phase (Vrede et al. 2002). Due to the huge variation of the CCF 

during the several growth phases, the use of a constant CCF to deduce 

bacterial biomass-C from bacterial density should be avoided. By using a 

CCF of 20 fgC bacterium
-1

 for the first steps of the experiment B2, the error 

could be higher than 200 %.  

 

The calibration of the Monod, Marr-Pirt and DEB models on these data 

sets demonstrated the weakness of the Monod model to reproduce this kind 

of dynamics. The presence of the maintenance process is necessary to assess 

these bacterial dynamics. However, it seems that the formulation of the 

maintenance process has little impact on the model outputs. Nevertheless, the 

DEB model, due to its mechanistic formulation, is more flexible than the 

Marr-Pirt model and is able to apply to more situations. The maintenance 

from the reserve has more importance in the B2 experiment than in the P 

experiment. Indeed, the parameter 
EM

j  is negligibly small in the pulse 

experiment whereas it equals 0.021 h
-1

 in the batch B2 experiment (Tables 

III-2 and III-3). Contrary to the pulse experiment, the maintenance from 

reserve is higher than maintenance from the structure in the batch experiment 

(
EM

j is more than three times higher than 
VM
j ) (Table III-2). If the pulse 

experiment was realised with the initial conditions of the batch experiment 

B2 and with a longer pulse period, the Marr-Pirt model might have been 

unable to reproduce experimental dynamics as it does not comprise 

maintenance from reserve which is no more negligible (Figure III-15). 

Consequently, a mechanistic model like the DEB model may be useful in 

other conditions than that used in our pulse experiment, and may thus show 

dynamical differences with the Marr-Pirt model.  
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Figure III- 15: DOC and bacterial biomass dynamics for the DEB (solid 

line) and the Marr-Pirt (dashed line) models. For this simulation, we used 

parameters and initial conditions of the B2 experiment, and we applied a 

pulse period of 100 hours and a pulse concentration equal to the initial 

substrate concentration. In this case, both models show dynamical 

differences. 

 

Finally, the coupling of the experimental and the modelling work has 

allowed the estimation of the BGE according to several methods: the 

experimental way (by calculating ∆DOC and ∆POC) and the modelling way 

(by calibrating three models on the data sets). However, another way to 

estimate the experimental BGE is by considering that BCD = BP + BR 

contrary to BCD = DOC∆  and still considering that BP = POC∆ . To 

estimate BR, experimentalists generally apply a linear regression on all O2 

concentration data and consider only one BR value for the whole experiment 

(Eichinger et al. 2006). However, these experiments clearly show that we can 

not consider one BR value per experiment as it varies greatly, being high 

during assimilation and low during starvation periods. The non systematic 

linearity of BR, and its impact on BGE estimation, was already demonstrated 

by performing continuous oxygen measurement with oxygen microprobes 

(Briand et al. 2004). We could also estimate a dynamic BGE with the models, 

by estimating the ratio between the variation of the biomass and the variation 

of the substrate. This is consistent with the definition of the BGE. For the 

Monod model, this calculation would result in V
dM

BGE
dL

=

−

 resulting in a 

constant BGE. However, for the Marr-Pirt model this calculation would 

result in a dynamic BGE, which is a function of the state variable L and 
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amounts to V VM
VL

dM j
Y

dL Lα

= −

−

. For the DEB model, the BGE is also variable 

and amounts to E EV V EM
EL

dM y dM j
y

dL Lα

+
= −

−

 when E E EM Vk M j M>  

and to a more complex function in the other case. This dynamic estimation is 

also possible for the experimental BGE by calculating BGE from two 

consecutive data points. But for instance the variability between data does not 

allow a sufficient sensitivity to investigate such estimation. Nevertheless, it 

would be very interesting to compare these BGE for the different 

experiments and models, but we should previously choose a criterion for 

comparison as we can no longer compare single values but dynamics. 

Moreover, we would also have to solve some numerical problems as when L 

values approach 0, the dynamic BGE tends to infinity.  

 

The values of the four constant BGE (one experimental BGE and three 

BGE resulting from models) differed, but it always results that the BGE is 

higher in the pulse than in the batch experiment. We can thus state that 

bacteria are more efficient in a transient than in a constant environment 

(Poggiale et al. 2005). It seems that they are unable to grow efficiently when 

a large amount of substrate is present, whereas there growth is stimulated 

when the same amount of substrate is brought periodically.  

 

As the parameter α , the ratio between the maximum absorption rate 

mLA
j  and the half-saturation constant K , is also always higher for the pulse 

experiment (Tables III-2 and III-3), we can assume that bacteria also increase 

their maximum assimilation rate and/or increase their affinity to the substrate 

(decrease of K) in the pulse experiment. This is consistent with the fact that 

bacteria are faced with apparent “long” periods of absence of substrate, and 

that they subsequently have to increase their affinity to the substrate in order 

to increase their growth efficiency. The presence of two K systems has still 

been mentioned (Baxter & Sieburth 1984), where the low K system is 

constitutive and saturable, whereas the high K system may result from 

facilitated diffusion coupled with extracellular polymeric carbohydrate 

production. This hypothesis is consistent with our experiments as high 

affinities are observed in the P experiment showing the maximum products 

formation, which could correspond to EPS. Another hypothesis which might 

explain higher BGE values for the pulse experiment is by considering the 

competition. We can consider a ratio δ  between the amount of available 

substrate and the bacterial density. Both experiments started with the same 

bacterial density but the substrate concentration was 5 times higher in the 
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batch experiment B2. Consequently, δ  was higher in the B2 experiment 

which indicates a high substrate amount per bacterium. Thus, the competition 

for the substrate is negligible and bacteria do not need to increase their BGE 

or substrate affinity. By contrast, since the beginning of the pulse experiment, 

δ  is small. Moreover, bacterial density increased in the time course of the 

experiment, and we periodically added the same substrate concentration in 

the culture. Consequently, δ  decreased during the experiment, leading to a 

strong competition between bacteria which need to increase their BGE and 

affinity to the substrate. As bacteria are in strong limitation between two 

pulses, they also assimilate very rapidly each substrate pulse, which supports 

the increase of  
mLA

j .  

 

 

VII. Conclusion 

 
Numerous studies have investigated how environmental factors 

influenced the BGE (del Giorgio & Cole 1998). It was still demonstrated that 

BGE is influenced by DOC quality in term of molecular weight (Amon & 

Benner 1996), DOC chemical nature (Carlson & Ducklow 1996, Cherrier et 

al. 1996, Cherrier & Bauer 2004), substrate C:N ratio (Goldman et al. 1987), 

distance from the seashore (del Giorgio & Cole 1998, La Ferla et al. 2005), 

season (Reinthaler & Herndl 2005, Eichinger et al. 2006) and depth 

(Eichinger et al. 2006). However, there have been only few investigations 

dealing with daily and detailed seasonal variation of natural BGE (del 

Giorgio & Cole 1998). We have demonstrated that the temporal variation in 

substrate availability influence the BGE greatly, which may be two times 

higher in a pulse than in constant experimental conditions. This outcome may 

have great impact on knowledge resulting from the long effort on BGE 

determination. Indeed, to determine BGE we need to uncouple DOC 

production from its consumption, however the time and space variability of 

DOC distribution in field makes BGE highly variable. More experiments are 

required to confirm our results, for example by improving the protocol by 

measuring also nutrient concentration and by progressively improving the 

protocol to incorporate the DOC source more naturally. However, we should 

still consider pulse load of substrate or other kinds of variable inputs. The 

outcome of this study is even more important knowing that model 

formulation and parameter estimation from experimental dynamics are often 

used in global models to investigate the oceanic carbon cycle.  
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APPENDIX III-A 
Culture media 

 

• Composition of the several media used 

 
Zobell Medium (composition for 1 dm

3
) 

 

Large marine salt: 20 g 

Peptones: 7 g 

Yeast extract: 1 g 

Agar: 15 g 

Fecl3 (5.04 g/L): 0.5 cm
3
 

Milli-Q water: qsp 1 L 

 

Artificial seawater (Lyman & Fleming 1940), concentrated 10 times 

(composition for 2 dm
3
) 

 

NaF: 0,03 g = 30 mg 

SrCl2: 0,24 g = 240 mg  

H3BO3: 0,26 g = 260 mg 

KBr: 0,96 g = 960 mg 

NaHCO3: 1,92 g = 1920 mg 

KCl: 6,6 g = 6600 mg 

NH4Cl: 7,2 g = 7200 mg 

CaCl2, 2 H2O: 14.567 g = 14567 mg 

MgCl2, 6 H2O: 105.8 g = 105800 mg 

Na2SO4: 39 g = 39000 mg 

H2O: qsp 2L 

 

Vitamins (composition for 1 dm
3
) 

 

Cobalamine: 0.5 mg 

Biotine: 5 mg 

Thiamine: 50 mg 

Riboflavine: 50 mg 

Piridoxine: 50 mg 

Folic acide: 50 mg 

Nicotinic acide: 50 mg 

Para amino benzoic acide: 50 mg 

Panthoténic acide: 500 mg 

Meso-inisitol: 500 mg 
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Milli-Q water: qsp 1 dm
3
  

 

Iron solution (FeCl2) at 5.4 g dm
-3 

 

FeCl2, 4 H2O: 616 mg 

Milli-Q water: 100 cm
3
 

 

Phosphate solution (KH2PO4) at 20 g dm
-3 

 

KH2PO4: 2g 

Milli-Q water: 100 cm
3
 

 

Culture medium (for 1 dm
3
) 

 

Artificial seawater, concentrated 10 times: 100 cm
3
 

NaCl: 11,75 g 

FeCl2 (5,4 g dm
-3

): 0,5 cm
3
 

Carbon source (sodium pyruvate CH3COCOONa): 0,061 g for a DOC 

concentration of 1,6 mM C  

KH2PO4 (20 g dm
-3

): 1,122 cm
3
 

Vitamines: 1 cm
3
 

Milli-Q water: qsp 1 dm
3
 

 

• Preparation of the media 

 

Zobell medium 

 

All constituents are dissolved in a clean Erlenmeyer.  pH is adjusted to 7.5, 

the solution is autoclaved 20 min at 110°C, poured in Petri boxes under 

laminar flow air bench. After solidification, the medium was stored in cold 

(4°C) room. 

 

Artificial seawater 

 

For artificial seawater, the products are successively added one by one in pre-

combusted glass bottle. The product has to be dissolved before adding the 

following. The artificial seawater is divided into 20 flashes of 100 cm
3
, so 

that 1 flash will serve for 1 dm
3
 of culture medium as the seawater is 

concentrated 10 times. 
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Culture medium 

 

The different products, without vitamins, are mixed. pH is adjusted to 7.5, the 

solution is autoclaved 20 min at 110°C and vitamins are added when the 

medium temperature is near 25°C. Vitamins are filtered on 0.2 µm before 

their introduction in order to sterilise them. 

 

• Start of a preculture 

 
The bacterial strain Alteromonas infernus was conserved on Petri box on 

Zobell medium and regularly mended. The colonies were mended a few days 

before starting a new preculture in order to have active and “in good health” 

bacteria. To start a new preculture, one colony was selected in the Petri box 

under the laminary flow air bench and added in 10 cm
3
 of culture medium in 

a sterile tube. The tube was vortexed until having a homogeneous bacterial 

culture. The precultures were started with a concentration of 5.10
6
 bact cm

-3
, 

we thus had to calculate the volume to take among the 10 cm
3
 to obtain this 

bacterial density. In this way, we took 900 mm
3
 of the latter solution and we 

added 100 mm
3
 of formol at 20 % to fix the bacteria. The fixation step lasted 

15 min. Then, a few mm
3
 were collected from this formol-mixture and added 

to a few cm
3
 of MilliQ water in a sterile tube. Five-six drops of DAPI (2.5 µg 

cm
-3

) were added to stain bacteria, in the dark at constant temperature and 

during 10 min. Then, bacteria were filtered on 0,2 µm filter and on a dark 

membrane. After the filtration, the dark filter, with the stained bacteria, were 

carefully recovered and placed between a slide and a cover slip. A drop of 

immersion oil was added on the slide and on the plate for the observation 

under the microscope. Then, bacteria were counted under the UV lamp and a 

x100 objective. 30 slides were counted in order to obtain a representative 

result of the bacterial density with the formula (III-C-1) (Appendix III-C-1). 

 

The preculture has to be inoculated at a concentration of 5. 10
6
 bact cm

-3
, 

we estimated thus the volume to take out from the sample according to the 

following formula:
 

2 2
1

1

C V
V

C
=  

with 

V1 = volume to take out 

C1 = N = density of bacteria counted 

V2 = volume of the sample to inoculate  

C2 = final concentration = 5.10
6
 bact cm

-3 
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We then introduced the volume V1, with the bacteria, in the new medium 

V2 that had the same composition. This preculture is incubated in the dark at 

25°C during 3 days, in order to start the culture with starved bacteria. 

   

• Start of a culture 

 

The cultures were started from the previous preculture. The inoculation 

scheme is almost the same than for the preculture. Indeed, a few cm
3
 of this 

preculture was collected, and the DAPI stained bacteria were counted by 

epifluorescent microscopy. After bacterial addition, the culture was 

homogenised and this time corresponded to the time 0 of the experiment.  
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APPENDIX III-B 
O2 consumption estimation 

 

1. The oxygraph 

 

The Oroboros-2k oxygraph is composed of two independent 

measurement chambers housed in a Peltier copper block designed to regulate 

the temperature. In each chamber, a rotating electromagnetic field drives the 

stirrer bar to ensure the homogenisation of the sample (Figure III-B-1). 

Artefacts due to oxygen diffusion through the measurement chambers are 

minimised by using appropriate materials inert with O2, such as glass for 

chambers and titanium for stoppers and injection cannulas. Each chamber is 

equipped with a polarographic oxygen sensor (POS). Oxygen diffuses from 

the sample to the cathode surface through (1) an unstirred layer of the sample 

at the outer membrane surface, (2) the membrane and (3) the electrolyte layer 

(KCL, 1M). To minimize the unstirred layer of the sample, a high and 

constant stirring of the sample medium is required. At the cathode the oxygen 

pressure is effectively held at zero. Under steady-state conditions, the oxygen 

flux to the cathode depends on the external oxygen pressure, and the 

electrochemical reduction of oxygen yields an oxygen-dependent 

consumption of oxygen by the POS which is converted into an electrical 

signal. This signal is directly transferred on-line by the software DatLab 

(OROBOROS, Austria), and converted in real time in oxygen concentration 

and flux independently for the two chambers (Figure III-B-2). Subsequently, 

sections of the experiment are selected for averaging and tabulating oxygen 

flux (from http://www.oroboros.at). 

 

 
Figure III-B-1: Picture of the OROBOROS-2K oxygraph with its elements 

(a) and longitudinal scheme (b) (from http://www.oroboros.at). 

(a) (b) 
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Figure III-B-2: Picture of the OROBOROS-2K oxygraph with an example 

of outputs of the on-line software DatLab. 

 

2. Estimation of the consumption 
 

As each sample was in contact with atmospheric O2 before each 

measurement, we cannot deduce the instantaneous O2 concentration in the 

batch cultures. However, the decreasing O2 concentration allowed estimating 

the continuous O2 consumption at each time point. O2 consumption was 

calculated by considering a linear regression on the O2 concentration curve, 

where the slope corresponds to the consumption. In order to get rid of the 

thermodynamic effects induced by the movement of the stopper when 

opening and closing the chambers (Figure III-B-3), the O2 consumption 

estimation started a few times after the stopper closing. Several tries were 

realised to determine this interval time and to determine on how many points 

the linear regression has to be applied to calculate the consumption. To 

choose these times, we have tried several times after the closing and applied 

the linear regression on several data numbers, and we have chosen the times 

were the values of the slope did not change if we still increased the times 

(Figure III-B-4). So, the linear regression was applied 600 seconds (300 data 

points) after the stopper closing and on 200 seconds measurement (100 data 

points) (Figure III-B-5). This routine was programmed in a Matlab code in 

order to keep the same criteria for each time point. With this method, we 

obtained one consumption value for each time point of the experiment. 

 

Each day, a control sample was made with a sterile medium sample to 

determine the consumption of the POS. This value was then subtracted from 

each O2 consumption value measured the same day. We used the same 
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method to calculate the O2 consumption of the control sample than for the 

culture sample, except that we did not have the thermodynamic effect due to 

the stopper closing. Thus, the O2 consumption was estimated by calculating 

the mean of the slopes, with a time interval of 100 seconds, from the closing 

to the end of the recording. 

 

100 % 

oxygen

saturation

thermo-

dynamic

effects

O2 consumption

 

Figure III-B-3: Example of outputs of the on-line software DatLab. The 

upper panel represents curves of the chamber A and the other panel the 

curves of the chamber B. The upper curve corresponds to the O2 

concentration (in nmol cm
-3

) and the lower curve to the dynamic of the O2 

consumption (in pmol cm
-3

 s
-1

), calculated with the software but not used in 

this study. “OC” corresponds the time when the chambers were open and 

“FC” to the closing of the chambers. The first part of this dynamic 

corresponds to the 100 % oxygen saturation (stable part), the second linear 

part to the O2 consumption by bacteria. The non-stable parts between these 

two parts correspond to moments where we have opened or closed the 

stoppers. The figure shows that during almost 10 minutes, the O2 

consumption is not stable due to the thermodynamic effects. 
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Figure III-B-4: Dynamics of O2 concentration (nmol cm
-3

) in chamber A 

(left panel) and B (right panel), used as duplicate for the t0 of the pulse 

experiment. The upper panel represents the complete dynamic of O2 

concentration during the recording. This dynamic is identical to the dynamic 

from DatLab (previous figure). The second panel corresponds to the same 

dynamic but focused after the stopper closing (we have removed the 100 % 

oxygen saturation part). The third panel is a zoom of the second one on a 

period of 200 seconds just after the stopper closing. On the right graph, we 

see the effect of the stopper closing as the concentration is not stable. The last 

panel is also a zoom of the second one also on a period of 200 seconds, but 

600 seconds after the stopper closing. The dynamic is indeed more stable 

than in the third panel.  
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Figure III-B-5: Two examples of independent dynamics of the O2 

consumption. Both panels represent the O2 consumption values calculated, 

for one sample, with a linear regression on 100 points (200 seconds) and 

every 200 seconds. Here, time 0 corresponds to the time of the stopper 

closing. The left panel corresponds to the same sample than the previous 

figure (t0) (Figure III-B-4) and we see that the O2 consumption stabilizes after 

200 seconds. However, for the second panel (which corresponds to another 

time point), we see that the O2 consumption needs at least 600 seconds to 

stabilize. Finally, the O2 consumption value retained for each sample was the 

value 600 seconds after the stopper closing (the fourth point).  
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APPENDIX III-C 
Cell counts 

 

1. Microscopy 
 

For each slide, 30 fields were counted, and the bacterial abundance N (in 

cell cm
-3

) was estimated according to the following formula: 

 
2

preparedmean

grid filtered sample

Vn D π
N

S V V
=  (III-C-1) 

 

with 

nmean = average bacterial number per field 

Sgrid = surface of the count grid = 6400 µm
2
 (10000 µm

2
 ) if the microscope 

used was the Olympus BH 2 (Olympus BX 61) 

D = diameter of the filtration surface = 15500 µm (18300 µm ) if the filterer 

used was a turret (multiposition rosette)  

Vfiltred = volume of the filtered sample 

Vprepared = prepared volume (with formol) = 1000 mm
3
 

Vsample = total volume of the sample (without formol) = 900 mm
3
 

 

2. Flow cytometry 
 

The flow cytometer MoFlo cell sorter is equipped with a water cooled 

Argon laser providing a 352 nm (UV) and a 488 nm (blue) laser beam set up 

on a regulated 50 mW outpout power on UV. Three optical properties were 

measured for each single particle analyzed. Two light scatter intensities based 

on the 488 nm laser beam were measured, namely forward angle light scatter 

(related to the particle size) and right angle light scatter (related to cell 

structure and shape). The bacteria fluorescence induced by the DAPI after 

nucleic acid staining and UV excitation was also specifically recorded using 

a 405 ± 30 nm band pass-filter placed just in front of the photodetector. All 

the parameters were acquired in logarithmic scale, and the trigger acquisition 

was based on the right angle light scatter intensity in order to detect all the 

particles in the sample (bacteria, debris). The data were acquired in real time 

and list-mode using the SUMMIT 4.3 software (Dako, Dk). Flow cytometry 

data files (in Flow Cytometry Standard 3.0 format) were also analyzed using 

the same software. 

 

In order to avoid doublets and hard coincidences, samples were diluted in 

sterile medium in order to keep a flow rate lower than 8,000 events analysed 
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per second, a mandatory condition to ensure accurate counting. The sheath 

tank of the flow cytometer was filled with 0.2 µm filtered distilled water. 

Sheath pressure was kept constant at 60.0 PSI, and sample pressure at 60.1 

PSI. Analyses were performed during 1 minute. The exact volume analyzed 

was derived from a preliminary calibration phase during which a sample was 

weighed before and after a 3 minutes analysis in order to determine the 

average flow rate (in mm
3
 s

-1
). The procedure is repeated 3 times and the 

average flow rate is calculated. Bacteria were optically resolved from the 

cytogram Right angle light scatter (au) versus DAPI fluorescence intensity 

(au). A manual region was drawn around them and the SUMMIT software 

automatically displayed the bacteria count. Dividing the bacteria count by the 

volume analyzed provides the cell abundance. 
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CHAPTER IV 

 

Application of the DEB theory 

on data obtained in a perturbed 

environment 
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Abstract 
 

 
We developed a model for the biodegradation of organic compounds 

based on a set of data from an experiment with pulse donation of substrate. 

Experiments were realised with a monospecific bacterial strain and a unique 

carbon substrate. The mechanistic model has a reserve compartment as well 

as two maintenance terms and represents an application of the Dynamic 

Energy Budget (DEB) theory. The measured variables were the dissolved 

organic carbon (DOC) corresponding to the substrate concentration in 

addition to other DOC forms, and the particulate organic carbon (POC) 

corresponding to the carbon bacterial biomass. The model, comprising 4 state 

variables and 7 parameters, matches the data very well, but the complexity of 

this model makes it difficult to implement it in ecosystem models. We 

showed that the DEB model can be simplified to a model with two state 

variables and a logistic-like growth, with a variable carrying capacity. The 

other two state variables of the DEB model reduce to functions of the state 

variables of the simplified model. Using parameter values that correspond to 

the experimental results, simulations of the DOC and POC kinetics for the 

DEB model and its simplification are similar. The reduction of the DEB 

model to a model with two state variables offers the advantage that the 

reduced model can be numerically integrated with simplicity. Computational 

costs are greatly decreased, which is of great interest for further coupling of 

this bacterial growth model with biogeochemical and hydrodynamical 

transport models. Moreover, this simplification gives a mechanistic basis to 

the logistic equation.  
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I. The DEB theory for micro-organisms 

 
1. General concepts 

 
The Dynamic Energy Budget (DEB; (Kooijman 2000)) theory provides 

rules for uptake and use of energy by organisms. It exploits conservation 

laws and stoichiometric constraints. Energy and mass fluxes through the 

organisms and their surroundings are central in the DEB framework. One 

advantage of this theory is that, due to its mechanistic basis, small changes 

are sufficient to adapt the model from one to another organism. 

 

The DEB theory assumes that an organism is partitioned into a reserve 

and a structural compartment. The structural biomass is continuously 

degraded and reconstituted, whereas the reserve material is used and 

replenished.  The DEB theory focuses on three major processes: assimilation, 

maintenance and growth. Food (substrate) uptake is proportional to the 

surface area of the organism. The food (or substrate) is always assimilated in 

the reserve compartment, and reserves are subsequently used to pay the 

several costs. For each species of organism, a fixed part κ of this catabolic 

flux is used to pay somatic maintenance and growth, the remaining (1- κ) is 

used for development and/or reproduction. This law is called the “κ rule” in 

the DEB context. Typically three life stages are delineated, embryos don’t 

feed or reproduce, juveniles feed but don’t reproduce and adults feed and 

reproduce. For micro-organisms, which classify as juvenile, somatic and 

maturity maintenance can be combined and growth and maturation can be 

combined, which makes that we can set κ =1 without loss of generality. 

Maintenance has always priority above growth, thus growth stops if all the 

mobilised reserve for maintenance + growth is used for maintenance. The 

latter is paid to maintain the integrity of the cells and to maintain gradients 

across the cell membrane. Maintenance costs are assumed to be proportional 

to the structural volume. The specific growth costs are assumed to be 

constant during the life of an organism. This hypothesis implies that the 

structural biomass has a constant chemical composition: this is known as the 

strong homeostasis assumption in the DEB framework. It is also assumed 

that reserves respect the strong homeostasis assumption. However, since the 

proportion of structure and reserve can change during the life of an organism, 

the macro-chemical composition of the whole organism can vary.  

 

DEB theory provides also rules for the coupling between energy and 

mass fluxes. Experimental observations are mostly made on mass. Thus, we 

need robust rules to compare observations to model outputs. Models resulting 
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from the DEB theory are also constructed from mass balance equations. 

Thus, flux of one element may be deduced from fluxes of other elements. In 

the last part of this chapter, we demonstrate how dioxygen flux can be linked 

to assimilation, maintenance and growth processes, thus to carbon fluxes. 

This result is supported by experimental data. 

 

2.  The DEB theory for bacteria 

i. General considerations 
 

To deal with bacteria, we need to state some assumptions. First of all, 

bacteria are treated as V1-morph, that is as organism growing only in one 

dimension. For V1-morph individuals, the surface area is always proportional 

to the volume at the power 1. The main advantage of modelling bacteria as 

V1-morphs is that a population behaves in the same way as an individual. 

Consequently, the theory of structured population dynamics is not required to 

describe a population of bacteria, as we can work with the sum of the 

structural and reserve masses of the individuals. 

 

 

Reserve

Substrate

Structure

assimilation

maintenance

growth

 
 

Figure IV-1: General scheme of fluxes in the DEB theory for micro-

organisms. Words in black represent state variables of the model and words 

in red represent the main processes involved in the model. An individual is 

divided in a reserve and a structure compartment, and the reserve play central 

role as it fuels energy through the organism. 

 

The basic DEB theory assumes three main processes: assimilation (of 

one substrate), maintenance (from a unique reserve) and growth (of one kind 

of structural volume) (Figure IV-1). In the case of bacteria, reproduction and 

development processes are not required since they are combined with growth 

and maintenance, respectively. This simplifies the model. The theory gives 
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also rules for adapting the general scheme for the assimilation of several 

substrates. In this case, the model requires several kinds of reserves, typically 

one for each kind of substrate. Phototrophy is an example where two 

substrates (carbon dioxide and light) are required for one reserve 

(carbohydrate). There is a flux of maintenance from each kind of reserve, but 

stoichiometric restrictions apply for how the various reserves fuel the growth 

of a single structural component. This generates a need to define the fate of 

fluxes that arrive at the synthesizing unit for growth, but are rejected. 

Chemical compounds, such as lipids, carbohydrates and proteins belong to 

one or more reserves and/or to structure. In this study, the model only 

considers the carbon and then is constructed by considering only one 

substrate, one reserve and one structure. Nevertheless, some improvements in 

the model conception are made according to the experimental results (see II). 

 

Table IV-1 summarizes the various symbols used in this study for the 

basic DEB theory. Other variables will be added during the study. 

 

ii. Uptake 
 

The uptake rate is proportional to the surface area of the organism. For 

bacteria, substrate absorption is realised across the cell membrane. The 

uptake rate is proportional to the maximum specific uptake rate, a hyperbolic 

functional response and the structural mass of an individual (because we treat 

bacteria as V1-morphs). The first advantage of using a hyperbolic functional 

response is that a hyperbolic function of a hyperbolic function results in a 

hyperbolic function. We thus do not need to know the exact number of steps 

for the absorption process. Secondly, the hyperbolic functional response 

comprises only one parameter: the half-saturation constant K. The 

consumption of the substrate can thus be expressed as the following equation: 

 

mX V

dX
J f M

dt
=  (IV.1) 

 

X
f

K X
=

+

is the functional response 
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Table IV-1: Description of variables, parameters and symbols used in the 

DEB theory. The unity “J” (joule) is used for symbols dealing with energy. 

 

Symbol Equiv. Unit Description 

State Variables 

E
M   mM C Reserve mass 

E
m  

E

V

M

M
 - 

Reserve mass relative to the 

structural body mass 

V
M   mM C Structural body mass 

Parameters 

mX
J   mM C h

-1
 Maximum uptake rate 

K   mM C Half-saturation constant 

E
k   h

-1
 Reserve turnover rate 

General symbols 

*1*2J  or 
*2
*1J  

 
mM C h

-1
 

Flux of compound *1 associated 

with process *2 

*1*2j  *1*2

V

J

M
 h

-1
 

Specific flux of compound *1 

associated with process *2 

*2*1y  or *2*1Y   
 

- 
Yield coefficient of compound *1 

on compound *2 

*1*2n  
 

- 
Number of atoms of element *1 

present in compound *2 

*1p�   J h
-1

 Energy flux (power) of process *1 

κ  

 

- 

Fraction of catabolic power 

energy spent on maintenance plus 

growth 
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Table IV-1 continued 
 

Processes (
*

p� ) 

A   Assimilation 

C   Catabolism 

M   Maintenance 

G   Growth 

General compounds 

Organic    

X   Substrate 

V   Structure 

E   Reserve 

P   Product 

    

Mineral    

C   CO2 

H   H2O 

O   O2 

N   nitrogenous waste (ammonia) 

 

 

iii. Reserve and structural body masses dynamics 

 

The substrate is converted into reserve during the assimilation process 

with a fixed conversion efficiency 
EX

y . Reserve is used for maintenance and 

growth. Thus, the change in the amount of reserve is a function of the input 

(assimilation) and the energy requirements of the different cellular processes 

(maintenance + growth). Dynamic of the reserve mass can be described as 

follows: 
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E
EA EC

dM
J J

dt
= −  (IV.2) 

 

where 
EA

J  and
EC

J  represent the flux of reserve related to assimilation and 

catabolism, respectively. 
EA

J  is directly related to the assimilation of 

substrate (equation IV.1) by using the conversion efficiency 
EX

y  whereas the 

reserve used for catabolism (
EC

J ) is the combination of the maintenance 

(
EM

J ) and growth (
EG

J ) uses of the reserve. 

 

mEA EX EX X V

dX
J y y J f M

dt
= =  

EC EM EG
J J J= +  

 

The costs for maintenance are proportional to structural biomass and the 

costs for growth to the change in the structural biomass: 

 

V
EC EM V EV

dM
J j M y

dt
= +  (IV.3) 

 

where 
EV

y and 
EM

j represent the yield coefficient from the structure to the 

reserve and the maintenance flux from reserve, respectively. 

 

The reserve density dynamics 
E

m  may be defined as the specific 

assimilation flux minus 
E

m  loss, due to growth and maintenance. As 
E

k  is 

the turnover rate of reserve, we can write: 

 

E
EA E E

dm
j k m

dt
= −  (IV.4) 

 

From equation (IV.2) we deduce:  

 

VE E
EC EA EA V E

dMdM dm
J J J M m

dt dt dt
= − = − −  (IV.5) 

 

From equations (IV.3) and (IV.5):  
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V VE
EV EM V EA V E

dM dMdm
y j M J M m

dt dt dt
+ = − −  (IV.6) 

 

From equations (IV.6) and (IV.4):  

 

( ) ( )
V

EV E EA V EA E E EM V

dM
y m J M j k m j M

dt
+ = − − −  

V E E V EM V

EV E

dM k m M j M

dt y m

−
=

+

 

V E E EM V
V

EV V E

dM k M j M
M

dt y M M

−
=

+

  (IV.7) 

 

From equations (IV.2), (IV.3) and (IV.7), we can now deduce the reserve 

mass equation: 

 

m

VE
EA EC EX X V EV EM V

dMdM
J J y J f M y j M

dt dt
= − = − −  

m

E E EM VE
EX X V EM V EV V

EV V E

k M j MdM
y J f M j M y M

dt y M M

−
= − −

+

     (IV.8) 

 

 

iv. Complete growth model 

 

Finally, from equations (IV.1), (IV.7) and (IV.8) we can write the 

complete growth model:  

 

m

m

X V

E E EM VE
EX X V EM V EV V

EV V E

V E E EM V
V

EV V E

dX X
J M

dt K X

k M j MdM X
y J M j M y M

dt K X y M M

dM k M j M
M

dt y M M


=

+
 −

= − −
+ +

 −
=

+

  (IV.9) 

 

This model is the basic model for V1-morph individuals. Changes due to 

addition of processes must be made from this model. 
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II. Mechanistic model simplification for 

implementation in biogeochemical models: case of 

bacterial DOC degradation in a variable system 

 
Eichinger M, Kooijman SALM, Sempéré R and Poggiale JC 

Submitted to Ecological Modelling 

 
1. Introduction 

 

The dissolved organic carbon (DOC) is recognized as the largest pool of 

reduced carbon on the planet (Hedges 1992, Carlson & Ducklow 1995). This 

DOC is almost exclusively consumed by bacteria in the water column, and is 

thus either transformed in CO2 or transferred to higher trophic level. Recent 

studies have indicated that a better understanding of organic matter (OM) 

dynamics, thus of DOC dynamics, in models requires an appropriate 

knowledge of bacterial dynamics (Talin et al. 2003). However, despite their 

ecological role, bacteria are rarely or poorly represented (Arhonditsis & Brett 

2004). Most biogeochemical models use the Monod model (Monod 1942), 

that is Michaelis-Menten kinetics (Michaelis & Menten 1913), to describe 

bacterial growth (Baretta-Bekker et al. 1995, Blackburn et al. 1996, Anderson 

& Williams 1998, 1999, Lancelot et al. 2002, Raick et al. 2005). Later 

extensions included maintenance process (known as the Marr-Pirt model) 

(Marr et al. 1963, Pirt 1965) as a kind of death rate (but forming different 

products). 

 

However, some studies have demonstrated that the Monod or Marr-Pirt 

models are too simplistic and that the addition of a reserve compartment as 

well as a maintenance term is necessary (1) to fit bacterial dynamics in a food 

chain (Kooi & Kooijman 1994) and (2) to obtain the area of bacterial 

depletion, as function of  the C:P and C:N ratio in chemostat and batch 

experiments (Martinussen & Thingstad 1987). Indeed, this reserve 

compartment and the maintenance term may play crucial roles in bacterial 

dynamics as the first one acts as a buffer and allows bacteria to survive 

during depletion period and the second one represents the energetic cost for a 

cell to survive. The dynamic energy budget (DEB) theory (Kooijman 2000) 

accounts for these two processes. This theory has been widely tested against 

experimental data and used to construct numerous models for bacterial 

dynamics, e.g. trophic chains in a chemostat (Kooi & Kooijman 1994), 

biodegradation of multiple substrates (Brandt et al. 2003), adaptation to 

changing substrate availability (Brandt et al. 2004) and application of mass 

energy conservation laws (Kooijman et al. 1999). 
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Nowadays, two major currents concerning modelling studies are in 

expansion: the development of mechanistic models that account for more and 

more realistic processes, as stated previously, and the improvement of 

ecosystem models which is possible due to the progress in modern computing 

power and the advances in ecosystem and ecological theory (Fulton et al. 

2004, Raick et al. 2006). Developing mechanistic models is a major 

challenge in oceanography as it allows improving our understanding of how 

the marine organisms respond to direct or indirect environmental or anthropic 

perturbations. However, the inclusion of complex formulations in 

biogeochemical models often leads to model that are inexorably too large, 

difficult to parameterise and to deal with (Raick et al. 2006). A long pattern 

of studies try to estimate the effect of physiological details on model 

performance (Murray & Parslow 1999, Fulton et al. 2004, Raick et al. 2006, 

Lawrie & Hearne 2007). The methods used to investigate the impact of 

complexity on model performance are various: some authors compare several 

levels of sophistication in the model formulation and compare their 

performance to observations (Fulton et al. 2004, Baklouti et al. 2006b, Raick 

et al. 2006) or compare the qualitative dynamics of two levels of models 

(Murray & Parslow 1999, Baird et al. 2003, Guven & Howard 2007). These 

studies generally lead to the conclusion that simpler models do capture the 

crucial dynamics of the complex models. However, to construct a 

mechanistic model and testing its performance towards reduced models, we 

need biological information (Flynn 2005). The relevant physiological 

processes are poorly known (Baird et al. 2003) and the results of experiments 

carried out on bacterial populations are typically too scattery to allow the 

application of complex models.  

 

Models describing bacterial dynamics are often based on biodegradation 

experiments with batch cultures, i.e. with a certain quantity of substrate and 

of bacteria in the beginning of the experiment and where the system evolves 

without any modification during the time course of the experiment (Zweifel 

et al. 1993, Carlson & Ducklow 1996, Sempéré et al. 2000, Carlson et al. 

2002, Sempéré et al. 2003, Cherrier & Bauer 2004, Eichinger et al. 2006). 

The Monod model is typically used to fit data from batch experiments and 

also to describe bacteria-substrate interactions in biogeochemical models. 

The chemical composition in ecosystems can differ substantially for that used 

in the batch cultures, which can affect the biodegradation process. Another 

weakness of this scale transfer from laboratory to the ecosystem environment 

is that the local environment in the ecosystem is typically much more 

dynamic. Organisms are continuously subjected to perturbations and the 

bacterial carbon demand is fuelled by episodic input of dissolved OM. 

Indeed, food is not continuously available in natural environment (Hanegraaf 
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& Kooi 2002), contrary to the batch experiments generally carried out to 

determine parameters as the bacterial growth efficiency (del Giorgio & Cole 

1998). Long periods of absence of one or more nutrients (Konopka 1999) 

alternate with short periods of high substrate availability. The transient 

behaviour of DOC is very dynamic: the DOC concentration (1) shifts during 

a phytoplankton bloom (Miki & Yamamura 2005b), (2) varies greatly due to 

the DOC release by phytoplankton (Grossart & Simon 2007), fluctuates (3) 

seasonally, as well as non-periodically, as temporal input due to the rain 

(Miki & Yamamura 2005a),  or (4)  cyclically as a result of the hydrological 

effects in floodplains, like in Amazonian ecosystems (Farjalla et al. 2006) or 

in the Okavango Delta of Botswana (Mladenov et al. 2005, Mladenov et al. 

2007), (5) changes by upwelling events (Mcmanus & Peterson 1988). This 

episodic character of the DOC as substrate for heterotrophic bacteria has thus 

to be considered in the experiments as well as in the models. 

 

Here we describe in the first section an experiment that has specifically 

been set up to mimic the availability of substrate under field conditions. 

Then, we specify a mechanistic model, constructed from the DEB theory 

(Kooijman 2000) and taking into account the reserve and the maintenance 

processes, as these latter processes seem necessary when dealing with 

variable environment. In the next section we simplify it for implementation in 

biogeochemical models. The mechanistic model and its simplification are 

dynamically compared in the fourth section. The results are discussed in a 

wider modelling context in the last section. 

 

2. Description of the experiments 

 

The carbon substrate pyruvate was periodically added during 10 days to a 

batch culture of the bacterial strain Alteromonas infernus. Since other 

nutrients are in excess, the fed-bacth culture was carbon-limited with 

pyruvate as the only carbon source. The culture was incubated in a temperate 

room in the dark at 25 ± 1°C and gently swirled. The initial carbon substrate 

concentration [C(0)] was about 1.6 C mM C, whereas substrate pulses of 

[C(0)] concentration were added every 48 hours. This pulse period was 

chosen so that bacteria were starved between two pulses, allowing the study 

of the cell maintenance and the relevance of a reserve compartment. The 

experiment lasted approximately 230 hours, so there were 5 pulses, including 

the initial pulse at time zero. The measured variables are DOC, which 

includes the substrate and all other DOC forms that may be produced during 

the time course of the experiment, and particulate organic carbon (POC), 

which corresponds to the bacterial biomass-carbon. The reproducibility of the 

results of this experiment was demonstrated (Eichinger et al., unpublished 
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data), justifying the use of deterministic methods to describe the DOC 

assimilation and bacterial growth.  

 

3. Specification of the DEB model 

 

ME

MV

L

Case 1: growth

absorption growth

maintenance

ME
MV

L

Case 2: shrinking

absorption
growth

maintenance

R

LAJ
EGJ

M

EJ

R-DOC 

productionM

EJ

E E EM Vk M j M>

E E EM Vk M j M<

M

VJ

LAJ

 
 

Figure IV-2: Schematic representation of the switch DEB model. The 

several compounds involved are: L (substrate), ME (reserve mass), MV 

(structural body mass) and R (refractory DOC or R-DOC). The various 

processes involved are: absorption (A), maintenance (M) and growth (G). 
*2
*1J  or *1*2J  represent the absolute flux of compound *1 associated with 

process *2. The notation 
*2
*1J  is here specifically used when dealing with 

maintenance. 

 

 

The model was constructed on the basis of  the DEB theory (Kooijman 

2000) using a single reserve and a single structure compartment for a 

bacterial cell (Figure IV-2). We also assumed that the surface of the cell 

(which is linked to the uptake rate) is proportional to the structural volume 

(which is linked to the maintenance costs). This is the defining property for 

what is called V1-morphs. A population consists of a set of growing and 

dividing individuals, which all divide at a particular structural volume. It has 

been shown that in this case, there is no need to distinguish between the level 

of the individual and that of the population (Kooijman 2000, p. 315) and we 

can work with the sum of the structural and reserve masses of the individuals. 

Carbon substrate (and nutrients) is transformed into reserve (
E

M ), and 

reserve is mobilised at a rate that depends on the reserve density (
E

m ), i.e. 
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the ratio of the amounts of reserve and structure (
V

M ). As the experiment 

exhibits starvation period between two pulses, the model was constructed by 

assuming two maintenance fluxes: one from the reserve (
M

E
J ) and one from 

the structural body mass (
M

V
J ). Maintenance is paid from mobilized reserve 

if the flux is large enough, but otherwise structure is used to pay the 

remaining part of the maintenance costs, which causes shrinking of the cell. 

Growth is fuelled from the mobilized reserve flux minus the maintenance 

costs, so maintenance has priority over growth. We use a switch formulation 

as discussed in Tolla et al. (2007) to describe the use of one and/or another 

type of maintenance. Since the reserve dynamics is such that the reserve 

density can never be equal to zero (exactly), maintenance is never fully paid 

from structure. Part of it is always paid from reserve. 

 

The data showed a DOC accumulation during the experiment (Figure IV-

3). We modelled this by fractioning the DOC pool into two components: 

labile DOC (L-DOC) corresponding to the substrate, and non-labile or 

refractory DOC (R-DOC) that we assume to originate from structure when it 

is used to pay maintenance costs. The detailed nature of this fraction is 

unknown, but it might consist of cell wall material (Nagata 2000) or of 

exopolysaccharide (EPS) when bacteria are in stationary phase (Raguénès et 

al. 1997). Consequently, the model comprises four state variables:  

L, the L-DOC concentration, which represents the pyruvate concentration 

(mM C)  

R, the R-DOC concentration, which represents the refractory DOC pool 

(mM C) that accumulates during the experiment 

ME, the reserve mass (mM C) 

MV, the structural body mass (mM C) 

 

The changes in these state variables are specified as follows: 

( )

( )

E

E V

absorption

efficiency L M x absorption

1
x growth > 0

efficiency M M

growth < 0

growth > 0

gro

E

V

dL

dt

dM
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if

if

ifdM

ifdt

= −

= → − −

 
 

→ 
 
 

=

−
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+ growth
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( )V

wth < 0

0 growth > 0

efficiency M R x  growth < 0
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=  

→  structural maintenance
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where only the maintenance and the growth formulations (bold characters) 

change according to the switch. In formulae we have: 

 

if if 
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For a detailed explanation of the model construction, see Appendix IV-A. 

When there is high substrate concentration (after a pulse), (1) the 

maintenance is fully paid from reserve ( maintenance
EM V

j M= ) and 

generates inorganic carbon products as CO2 not considered in this study, (2) 

growth is positive ( growth E E EM V
V

E EV V

k M j M
M

M y M

−
=

+
) allowing an increase of 

the structure and (3) there is no R-DOC production. On the contrary, when 

there is not enough (mobilized) reserve, which happens at a particular value 

of the reserve mass ME relative to the structural body mass MV, (1) the 

maintenance is realised from reserve plus structure (maintenance = 

 EM V E E
E E E

EM
E V

VM

j M k M
k M M

j
M M

j

−
+

+

) the former still producing inorganic 

carbon, (2) structural growth is thus negative (growth= − structural 

maintenance = EM V E E
V

EM
E V

VM

j M k M
M

j
M M

j

−
−

+

) and (3) there is R-DOC production 

proportional to the decrease in structure. 

 



 Chapter IV 110 

Parameter estimation is based on the minimization of the sum of squared 

deviations of model predictions to data points, using the Nelder Mead’s 

simplex method (Lagaria et al. 1998). To compare the state variables to the 

data values, we assumed that: 

 

V E

DOC L R

POC M M

= +

= +

 

 

Description and values of model parameters are given in Tables IV 2 and 

IV-3. 

 

We conclude that our model fits qualitatively and quantitatively DOC 

and POC data very well (Figure IV-3). 
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Figure IV-3: Dynamics of DOC (mM C) (left part) and bacterial state 

variables (mM C) (right part) for the switch DEB model. The crosses 

represent the data and the curves the outputs of the model with the fitted 

parameter set for the switch DEB model (Table IV-2). We remember that: 

DOC L R= +  and V EPOC M M= + .  
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Table IV-2: Description and units of all variables and parameters used in this 

study. 

 

Symbol Equiv. Unit Description 

State Variables 

L  
 mM C L-DOC concentration 

E
M   mM C Reserve mass 

E
m  

E

V

M

M
 

- 

Reserve mass relative to the structural 

body mass 

V
M   mM C Structural body mass 

R   mM C R-DOC concentration 

Parameters in the switch DEB model 

LAmj   h
-1

 Maximum specific absorption rate 

K   mM C Half-saturation constant 

EL
y   - 

Yield coefficient from L-DOC to 

reserve masses 

EV
y   - 

Yield coefficient from structural to 

reserve masses 

E
k   h

-1
 Reserve turnover rate 

EM
j   h

-1
 Maintenance flux from reserve mass 

VM
j   h

-1
 Maintenance flux from structural mass 

RV
y  

 
- 

Yield coefficient from structure to R-

DOC 

Parameters in the simplified model 

α  LAmj

K
 mM C

 -1
 h

-1
 

Ratio between the maximum specific 

absorption rate and the half-saturation 

constant 

r  E
k  h

-1
 Growth rate 

κ   mM C Carrying capacity 
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Table IV-3: Parameter and initial condition values estimated for the switch 

DEB model. 

 

Parameters Values 

α  0.484 

Ek  0.603 

ELy  0.500 

EVy  1.492 

EMj  0.000 

VMj  0.008 

RVy  1.000 

Initial conditions  

( )0C  1.369 

( )0EM  0.000 

( )0VM  0.098 

( )0R  0.314 

 

 

4. Simplification of the DEB model 

i. Variable aggregation 

 

Because the L values were negligible compared to the estimated K value, 

we can eliminate the maximum uptake rate and the half-saturation constant, 

and use a linear equation for the absorption with a new parameter: mLAj

K
α =  

and V

dL
L M

dt
α= − . However, despite the current improvement of 

computing power, such a model, with 4 state variables and now 7 parameters 

for only heterotrophic bacteria living on a single substrate shall be difficult to 

implement in a general biogeochemical and circulation models (Murray & 

Parslow 1999, Raick et al. 2006).  

 

We need further simplification for such applications when scaling up 

from the physiological to the ecosystem level. Indeed, if the description of a 
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given process at the physiological level generally requires a fine scale of 

observation that subsequently generates intricate formulations, the resulting 

model can ultimately be simplified and adapted to a larger scale of 

observation (Baklouti et al. 2006a). Several methods exist to reduce a model, 

as statistical approaches or aggregation of state variables, where some 

processes are reformulated, short-circuited or not represented (Iwasa et al. 

1989, Raick et al. 2006). Lots of studies use the aggregation of variables, but 

they often do that in a theoretical way without any data support, for example 

by using a static instead of  a dynamical model when working on large time 

scale (Baklouti et al. 2006b) or by aggregating the physiological processes 

into less equations (Fulton et al. 2004).  

 

In this study, the model was simplified by considering the mass balance 

on model equations and by applying the perturbation theory (Appenix IV-B). 

According to the reserve mass value to the structural mass value (switch 

value), we have considered several mass balances. In the first case (when 

growth is positive), 
1T

C  is the total C-mass in the system and is expressed as 

a weighted sum of the three state variables L , 
E

M  and 
V

M  (as derivative of 

R  is null in this case). Using the perturbation theory, it results that 
1T

C  is not 

constant but varies as a function of time. 
E

M  can now be expressed as a 

weighted sum of 
1T

C  and the two other state variables L  and 
V

M . We also 

demonstrated that 
V

M can be described by a logistic-like function, where the 

growth rate ( r ) equals the reserve turnover rate of the DEB model (
E

k ) and 

the carrying capacity 1κ  is a function of L  and 
1T

C . In the second case 

(when growth is negative), mass balance is fractionated into two parts: 
2T

C  is 

a weighted sum of L  and 
E

M , 
3T

C  of 
V

M  and R . 
3T

C  is always constant, 

thus R  can be expressed as a function of 
3T

C  and 
V

M . Using again the 

perturbation theory, we demonstrated that 
2T

C  is also constant. Thus 
E

M  

dynamic can be easily expressed as a function of 
2T

C  and L . The equation of 

V
M  could also be reduced to a logistic-like growth where the growth rate 

still equals the reserve turnover rate of the DEB model (
E

k ) but where the 

carrying capacity 2κ  is a function of L  and 
V

M , which complicates the 

expression. Consequently, the complete DEB model with four state variables 

reduces to a system of two differential equations (derivatives of L  and 
V

M ), 
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dynamics of 
E

M  and R  being estimated as functions of L , 
V

M  and the 

three weighted sums of C-mass 
*T

C .  
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ii. Comparison between the complete and the simplified 

models 
 

The DEB model and its simplification were dynamically compared 

(Figure IV-4), by using the same parameter values (Table IV-3). It results 

that both models exhibit perfectly the same dynamics, even if the simulation 

time is longer than the time of the experiment. However, the simplified 

model comprises only two state variables, L and 
V

M , dynamics of 
E

M  and 

R  being estimated later as functions of both state variables, and the three 

weighted sums of C-mass 
*T

C . 
2T

C  and 
3T

C  are constant, but 
1T

C  is a 

function of time and has thus to be numerically integrated. As it only depends 

on time, 
1T

C  can be integrated independently, and its values can be recorded 

to estimate afterward L and 
V

M  dynamics. Finally, once L and 
V

M  have 

been integrated, dynamics of 
E

M  and R  can be estimated. Contrary to this, 

all state variables of the DEB model need to be numerically integrated at the 

same time. The reduction of the DEB model in a model with two differential 
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equations offers the advantage that the simpler model can be numerically 

integrated with simplicity.  
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Figure IV-4: Dynamics of DOC (mM C) and POC (mM C) for the switch 

DEB (dark line) and the simplified DEB (grey line) models for a time 

equivalent to 15 pulses. Parameter values are the same for both models 

(Table IV-3) and DOC L R= +  and V EPOC M M= +  for both models. 

 

 

5. Bacterial growth in biogeochemical models 

 
Biogeochemical models often use the Monod model to describe bacterial 

growth (Baretta-Bekker et al. 1995, Anderson & Williams 1998, 1999, 

Lancelot et al. 2002, Raick et al. 2006). However, we have proven that 

growth formulation (when growth is positive) can be expressed by a logistic-

like equation, with a variable carrying capacity depending on the total C-

mass and L . The logistic growth equation is even easier than the Monod 

model, but gives exactly the same dynamics than the mechanistic DEB 

model. When growth is negative, the model also reduces to two state 

variables. For both parts of the models, not any processes were eliminated, 

but their expressions were simplified. Reserve mass dynamic is now 

described as a function of the total carbon mass, L and the structural mass 

when growth is positive, and as a function of L when growth is negative. On 

the same way, R only depends on the structural body mass dynamic. Thus, 

we do not loose any model performance, but we gain in model simplicity. 

This result is very different from most results obtained from previous studies 



 Chapter IV 116 

on model reduction, as these latter studies generally search the best 

compromise between model performance and complexity, but they always 

loose performance to gain simplicity (Murray & Parslow 1999, Fulton et al. 

2004, Baklouti et al. 2006b, Raick et al. 2006). For example, by using a 

Monod or a Marr-Pirt model, which are both special cases of the DEB model 

and thus simplifications of our model, we should eliminate the reserve mass 

variable. DEB model simulations show that the reserve mass dynamics are 

indeed faster than structural mass dynamics, and that reserve mass values are 

also smaller than structural mass values (Figure IV-3). Consequently, reserve 

mass dynamics could be neglected compare to other state variable dynamics. 

This would effectively lead in further model simplifications. Nevertheless, it 

has still been proven that bacteria are able to store carbon in carbon limited 

systems (Baxter & Sieburth 1984) and in non carbon limited systems 

(Kooijman 2000). If growth is limited by nutrients such as nitrate or 

phosphate, the carbon reserve can become important (Kooijman and Troost, 

2007). Confrontation between data and models have also demonstrated that 

the addition of the reserve and the maintenance are necessary in the Monod 

model to reproduce dynamics of a tri-trophic food chain including bacteria 

(Kooi & Kooijman 1994, Nisbet et al. 2000). To conclude, our model 

reduction doesn’t reduce model insight as it still comprises necessary 

processes to describe bacterial growth. Computational costs are greatly 

decreased, which is of great interest for further coupling of this bacterial 

growth model with biogeochemical and hydrodynamical transport models 

(Baklouti et al. 2006b). Moreover, this simplification gives a mechanistic 

basis to the logistic equation considered as an empirical formulation.  

 

6. Conclusion 

 
The comparison of mechanistic models to their simplifications, and 

moreover based on data set as in this study, allows the examination of the 

effects of alternative process formulations on model behaviour (Murray & 

Parslow 1999). The outcome of this kind of study takes all its importance 

when we can demonstrated that a simplified model behaves and fits equally 

than the complex formulation, as the simpler model uses less number of 

parameters, less of development time and less time to validate, verify and 

calibrate (Fulton et al. 2004). This simplification step is crucial when we aim 

to implement mechanistic-growth model in global models. The coupling 

between experimentation and modelling approaches is very important as it 

allows model simplification on an experimental data basis, and not only on 

theoretical dynamics. 
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However, other experiments with other kinds of perturbations and 

inclusion of trophic relation should be done to test the relevance of a reserve 

compartment for marine bacteria. Our expectations for when reserve might 

be important should be tested with experiments. The application of 

mechanistic models is only feasible if the critical variables have been 

measured (Flynn 2005). However, these complex models are difficult to 

calibrate accurately without accurate data sets. Nevertheless, even if 

physiological details are not necessarily needed for global models, such 

models can still be used to identify critical variables: if a detailed model does 

not match an experimental data set well, it is likely that it does miss an 

essential process (Flynn 2005). 

 

 

III. Implementation of the respiration in DEB models 

 
1. Development of the O2 flux formulation  

 
The DEB theory allows the evaluation of respiration, i.e. the use of 

dioxygen. During the experiments, O2 consumption was also measured at 

each point in time. We have thus decided to use this data set in a modelling 

purpose. This will give a best insight of bacterial metabolism. Since energy 

for the conversion of substrate into reserve is extracted from substrate, 

assimilation has an anabolic as well as a catabolic aspect. Moreover, energy 

for the reserve conversion into structure is extracted from reserve, thus 

growth has also an anabolic and a catabolic aspect. The O2 flux was 

determined from Table IV-4. 

 

From this table we can first deduce each yield coefficient by multiplying 

the line of the considered yield coefficient by the line of the considered 

element C, H, O or N, the sum of this multiplication being 0 to respect the 

mass balance law. For example, to determine
a

OL
Y , we have to multiply the 

line of the anabolic assimilation with the line of oxygen indices: 

 

( )

2 1 0

1

2

a a

HL OL OE

a

OE HLa

OL

Y Y n

n Y
Y

+ − − =

+ −

=
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Table IV-4: Table resuming yield coefficients, chemical indexes and specific 

rates associated to each process and state variable. 
*

*2*1

p
Y  is the yield 

coefficient of compound *1 on element *2 associated with the process *p, 

which may be catabolic (cat or c) or anabolic (ana or a). 
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Ac assim (cat) c

CL
Y  

c

HL
Y  

c

OL
Y  

c

NL
Y  -1 0 0 0 ( 1)

cEA XE EA
j y j= −

 Aa assim (ana) 0 a

HLY  
a

OLY  
a

NLY  -1 0 1 0 
aEA EAj j=  

ME E-maint c

CE
Y  

c

HE
Y  

c

OE
Y  

c

NE
Y  0 0 -1 0 M

E
j  

MV V-maint c

CV
Y  

c

HV
Y  

c

OV
Y  

c

NV
Y  0 

RV
y  0 -1 M

V
j  

Gc growth (cat) c

CE
Y  

c

HE
Y  

c

OE
Y  

c

NE
Y  0 0 -1 0 (1 )

cEG VE EGj y j= −

 Ga growth (ana) 0 a

HE
Y  

a

OE
Y  

a

NE
Y  0 0 -1 1 

aEG VE EGj y j=  

C carbon 1 0 0 0 
CL

n  1 1 1  

H hydrogen 0 2 0 3 
HL

n  
HR

n  
HE

n  
HV

n   

O oxygen 2 1 2 0 
OLn  

ORn  
OEn  

OVn   

N nitrogen 0 0 0 1 
NL

n  
NR

n  
NE

n  
NV

n   
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In the same way, we can obtain each yield coefficient: 

 

( )

( )

( )

( )

( )

3 2

2 2

0

3 2

2

3 2

c

CL CL

c

HL HL NL

c c

OL OL HL

c

NL NL

a

CL

a a

HL HL HE NL

a a

OL OL OE HL

a

NL NL NE

c

CE CE

c

HE HE NE

Y n

Y n n

Y n Y

Y n

Y

Y n n Y

Y n n Y

Y n n

Y n

Y n n

=

= −

= − −

=

=

= − −

= − −

= −

=

= −

    

( )

( )

( )

( )

( )

2 2

1

3 2

2 2

0

3 2

2

c c

OE OE HE

c

NE NE

c

CV RV

c c

HV HV HR RV NV

c c c

OV OV OR RV HV CV

c

NV NV NR RV

a

CE

a a

HE HE HV NE

a a

OE OE OV HE

a

NE NE NV

Y n Y

Y n

Y y

Y n n y Y

Y n n y Y Y

Y n n y

Y

Y n n Y

Y n n Y

Y n n

= − −

=

= −

= − −

= − − −

= −

=

= − −

= − −

= −

  

From this table, we can also deduce the mass balance matrix .j Y k= , 

where Y is the yield coefficient matrix and k the vector of specific rates. We 

can thus describe mathematically the O2 flux 
O

j  by the following formula: 

 

c a c a

c a c M c M c a

O OL EA OL EA OE E OV V OE EG OE EGj Y j Y j Y j Y j Y j Y j= + + + + +  

 

As we have previously determined each yield coefficient, we can express 

the O2 flux 
O

j  in function of the various chemical indexes *1*2n : 

 

( )
( )

( )

( ) ( )
( )

( )
( )

( )

33
2 1

2 2

331
2 2 1

2 2 2

33
2 1

2 2

a
n n Yn n HL HE NLHL NL

n y j n n jLEOL EA OL OE EA

c
n n y Yn n HV HR RV NVM MHE NE

j n j n n y y jE RV RV VO OE OV OR

a
n n Yn n HE HV NEHE NE

n y j n nVEOE EG OE OV

− −−

− − − + − − +

− −−

= − − + − − − − +

− −−

− − − + − −

  
       

  
       

  
      

y jVE EG
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After having replaced each yield coefficient by the corresponding 

chemical indexes and grouped these indexes with respect to the various 

processes, we obtain the following formula: 

 

( ) ( ) ( )

( )( )

( ) ( )

4 3 2 4 3 2 4 3 2

1
4 3 2 4 3 2

4

4 3 2 4 3 2

M
n n n j n n n y j n n n jNE HE NL HL LE NE HE EOE EA OL EA OE

M
j n n n y n n n jNV HV RV NR HR VO OV OR

n n n j n n n y jNE HE NV HV VEOE EG OV EG

− − + + − + + − + − + + − +

= − + + − + − − + +

− + + − + − − +

 
 
 
 
 

 

 

The substrate L is pyruvic acid, with a known composition: 

3CH COCOOH . If we report all elements to the number of carbon 

( 1
CL

n = ), we thus obtain: 

 

1 1

4 3 0

CL OL

HL NL

n n

n n

= =

= =

 

 

For sake of simplicity, especially to reduce the number of parameters to 

estimate, we have merged all chemical indexes according to their origin 

(reserve, structure or refractory material): 

 

3 2

3 2

3 2

E HE NE OE

V HV NV OV

R HR NR OR

n n n n

n n n n

n n n n

= − + +

= − + +

= − + +

 

 

Now, we can write the O2 flux as: 

 

5
1 1 1 1

4 6 4 4 4

1 1
4 4

M MVE E R
O EA LE EA E RV V

VE
EG VE EG

nn n n
j j y j j y j

nn
j y j

      
= − − − − − − − −      
      

  
− − + −   
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2. Implementation in the model 

 

Changes in O2 concentration, or O2 consumption, can be written as 

follows: 

2
O O V

dO
J j M

dt
= =�  

 

As 
O

j  depends on the fluxes implemented in the switch model, we must 

describe O2 consumption for each case of the model. In all cases, we have: 

 

mEA LA EL

L
j j y

K L
=

+

 

 

 

2 2

0

0

5 5
1 1 1

6 4 4 6 4

1
4

E E EM V E E EM V

M M E EM VM EM

E EM E E

E EM VM

M M EM E E
V V

E EM VM

E E EM
EG EV EG

E EM

V VE E E E

V V

if M k j M if M k j M

k j j j
j j j m

m j j

j k m
j j

m j j

k m j
j y j

m j

n dMdO n dM dO n dMdL dL

dt dt dt dt dt dt dt

n dM

> <

+
= =

+

−
= =

+

−
= =

+

    
= + − + − = + − +    

    

 
− 

 
1

4

R
n dR

dt dt

 
+ − 
 

 

 

We finally found that O2 consumption depends on the variation of each 

of the other state variables. The introduction of the respiration process in the 

model implied the addition of three new parameters 
E

n , 
V

n  and 
R

n  which 

must also be calibrated. 

 

3. Calibration and simulation 

 
The three new parameters were calibrated at the same time than other 

parameters which are included in the growth model. We thus utilised 

simultaneously all available data, which are DOC concentrations, POC 

concentrations and O2 consumptions, to calibrate the model by minimising 
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the sum of square deviations between data and model outputs. Values of the 

three parameters accounting for the respiration were: 

 

1.179
E

n =  

16.247
V

n =  

42.884
R

n =  

 

Values of other model parameters are the same as in Table IV-3. The 

model was simulated by accounting for respiration in this case (Figure IV-5), 

dynamics of other state variables being the same as in Figure IV-3. 
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Figure IV-5: Dynamic of O2 consumption (mM h

-1
) for the switch DEB 

model. The crosses represent the data and the curves the outputs of the model 

with the fitted parameter set for the switch DEB model (Table IV-3 and 

respiration parameters 
E

n , 
V

n  and 
R

n  given previously). 

 

 

4. Conclusion 
 

The application of mass balance with the DEB theory allows estimating 

elemental fluxes, as O2 in this study. However, this implies the introduction 

of several new parameters (9 in our case) for the addition of only 1 state 

variable. We have thus merged these various parameters from 9 to 3 for 

simplifying the calibration, especially as the O2 consumption data were not 

sufficient to calibrate 9 parameters. We first notice that model outputs match 

well O2 consumption data. However, after each peak (which corresponds to 

the introduction of a substrate pulse), O2 consumption drops to 0, which is 
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quite surprising. Indeed, we might assume that bacteria never stop respiration 

due to maintenance, and thus consumption should not fall near zero values. 

This dynamic may be due to the calibration, as it doesn’t include any 

biological insight but just try to minimise the difference between model 

outputs and observations. As we do not have any data which could confirm 

that O2 consumption should not drop to 0, we cannot prove our assumptions.  

 

On the other hand, our parameter values for the chemical indexes which 

have allowed respiration calibration are also difficult to interpret. For 

example, for the bacterial species Klebsiella aerogenes growing on glycerol, 

the following parameter values were found (Hanegraaf 1997, Kooijman 

2000, p 314): 

1.66 0.422 0.312

1.64 0.379 0198

HE OE NE

HV OV NV

n n n

n n n

= = =

= = =

 

 

We can assume that chemical indexes are in the same order of magnitude 

for organisms that can be considered equivalent on a physiological point of 

view (both are heterotrophic and aerobic bacteria). This would result in our 

study to parameter values that amount to:  

 

0.120

0.288

E

V

n

n

=

= −

 

 

These values are really far from values we have estimated. However, if 

O2 consumption was simulated from this parameter set, with 
R

n  value being 

a weighted sum of 
E

n  and 
V

n , model outputs didn’t match data well. The 

best strategy would consist in measuring these chemical indexes. But these 

measurements would be highly difficult because (1) the experimental 

protocol would be difficult for this kind of measurements, (2) if we 

succeeded to measure these indexes for this bacterial species in culture, we 

could not discriminate the composition between reserve and structure, (3) for 

instance we can not separate the R-DOC from L-DOC. 
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APPENDIX IV-A 
Construction of the switch DEB model 

 

Refer to Table IV-2 for explanations of the notation and description of 

the several state variables and parameters used. The model was developed 

according to the following table and the conservation law matrix: 
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L
 :

 L
-D

O
C

 

R
 :

 R
-D

O
C

 

M
E
 :

 r
es

er
v

e 

M
V
 :

 s
tr

u
ct

u
re

 

sp
ec

if
ic

 r
at

es
 

Ac assim (cat) -1 0 0 0 ( 1)
cEA LE EA

j y j= −  

Aa assim (ana) -1 0 1 0 
aEA EAj j=  

ME E-maint 0 0 -1 0 
M

E
j  

MV V-maint 0 RV
y  0 -1 

M

V
j  

Gc growth (cat) 0 0 -1 0 (1 )
cEG VE EGj y j= −  

Ga growth (ana) 0 0 -1 1 
aEG VE EGj y j=  

 

This table gives rise to the differential equations of the 4 state variables 

by multiplying the column of the considered state variable (L, R, ME and MV) 

by the column of the specific rate and by the structural biomass MV: 

 

E

V

L V

E
M V

V
M V

R V

dL
j M

dt

dM
j M

dt

dM
j M

dt

dR
j M

dt

=

=

=

=
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where *j , the specific fluxes, are defined by the previous table: 

 

C a

E a c a

V a

L EA EA LE EA

M M

M EA E EG EG EA E EG

M M

M V EG VE EG V

M

R RV V

j j j y j

j j j j j j j j

j j j y j j

j y j

= − − = −

= − − − = − −

= − + = −

=

 

 

The specific fluxes *1*2j  or 
*2

*1j  of compound *1 associated with the 

process *2 are defined by the DEB theory (Kooijman 2000). As the 

maintenance can be done either from the reserve or from the reserve plus 

structure, two kinds of maintenance have to be defined, the maintenance from 

reserve having always the absolute priority on maintenance from structure 

(Tolla et al. 2007). The total maintenance flux 
EM

j  has to be constant, thus 

M M

EM E V
j j j= +  is constant. If the amount of reserve is sufficient to ensure 

all the maintenance, thus 
M

E EM
j j= . This is the case when 

EC EM
j j> , 

where 
EC

j  is the catabolic flux from reserve, i.e. the reserve loss flux, and 

can be calculated from: 

 

( )

( )

               (Kooijman, 2000)E
EA E E

VE E
V E V EA E E E

E

E EA E E EA EC

V

dm
j k m

dt

dMdM dm
M m M j k m r M

dt dt dt

dM
dtj j m k r j j

M

= −

= + = − +

= = − − = −

�

�

 

 

Thus ( )EC E Ej m k r= − � , and when ( )E E EMm k r j− >� , 
M

E EM
j j=  and 

consequently 0M

V
j = . For the other case, when ( )E E EMm k r j− <� , we have 

( )
M

E EC E Ej j m k r= = − � and thus ( )
M M VM
V EM E

EM

j
j j j

j
= − , where VM

EM

j

j
 

represents the quantity of energy spent to transform compounds from reserve 

to structure and then from structure to maintenance, which is obviously more 

costly than the direct transformation from reserve to maintenance. 
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On the same way, if maintenance is fully done from reserve, the 

remaining of the energy can be spent for the growth which amounts to 

EG EV
j y r= �  (Kooijman 2000), and if maintenance is also done from 

structure, growth of the structure is no more possible and 0
EG

j = . We can 

thus write: 

 

( )( )

( )

min ,

max 0,

max(0, )

M

E EM E E

M M VM
V EM E

EM

EG EV

j j m k r

j
j j j

j

j r y

= −

= −

=

�

�

 

 

We now have to determinate the specific growth rate r� : 
 

( ) ( )if if 
E E EM E E EM

E E EM E E EM

E EV E EM VM

m k r j m k r j

k m j k m j
r r

m y m j j

− > − <

− −
= =

+ +

� �

� �
 

 

It should be also noted that ( )E E EM E E EMm k r j m k j− > ⇔ >� .  

 

For a unique substrate, the assimilation flux is always 

EA LAm EL

L
j j y

K L
=

+

 (Kooijman 2000). We finally can write the complete 

model: 

 

( )( )

( )

( )

min , max(0, )

max(0, ) max 0,

max 0,

E

V

L V LE EA V LAm V

E
M V LAm EL EM E E EV V

MV VM

M V VE EV EM E V

EM

M VM

R V RV EM E V

EM

dL L
j M y j M j M

dt K L

dM L
j M j y j m k r r y M

dt K L

dM j
j M y r y j j M

dt j

jdR
j M y j j M

dt j


= = − = −

+


 
= = − − − 
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   = = − − 
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This model can also be written as follows: 

 

if if 

/

  /

0

E E EM VE E EM V

EE
LAm EL V E ELAm EL V EM V

EM V E EE E EM V
EEV V

E EM VM VE EV V

EM V E EVE E EM VV
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E EM VM VE EV V

k M j Mk M j M

dM LdM L j y M k Mj y M j M
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j M k Mk M j M My M
M j j MM y M

j M k MdMk M j MdM MM
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APPENDIX IV-B 
Switch DEB model simplification 

 

In this appendix, we show how the simplified model is obtained from the 

complete one.  

 

1. Case 1: 
E E EM V

M k j M>  

 

Since the parameter 
EM

j  is very small, we set '
EM EM

j jε=  where ε  is 

a small unitless parameter. Moreover, as the sum of squared deviations gives 

the minimum for a very high K  value, we have assumed K L>>  and we set 

mLA
j

K
α = . It follows: 

 

if '

'
'

'
 

0

E E EM V

V

E E EM VE
EL V EM V EV V

E EV V

E E EM VV
V

E EV V

k M j M

dL
L M

dt

k M j MdM
y L M j M y M

dt M y M

k M j MdM
M

dt M y M

dR
dt

ε

α

ε
α ε

ε

>


= −




−
= − −

+


− =
+


=



 

 

Let 
1T EL E EV V

C y L M y M= + +  represents the total amount of carbon 

(in reserve unit) in the system: 

1 '
T VE

EL EV EM V

dC dMdMdL
y y j M

dt dt dt dt
ε= + + = −  is the equation 

governing the mass balance in the system. We notice that there is a small 

carbon loss which is due to the maintenance process. This lost is very slow 

thus we can use perturbation theory in order to analyse and simplify the 

system. In a first step, since ε  is small, we consider that ε  is null. Then, in a 

second step, we study the case 0ε �  which is considered as a perturbation of 

the previous one. 
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If 0ε = , 1 0
TdC

dt
=  and 

1T
C is a constant. As a consequence, we can 

replace 
E

M  by the following expression:  

1E T EL EV V
M C y L y M= − −  

 

This permits to rewrite the equation for the structural biomass as a usual 

logistic-like equation: 

( )1

1V V
V

dM M
r M

dt Lκ

 
= − 

 
 

where the carrying capacity depends on the variable L : 

1

1
T EL

EV

C y L

y
κ

−
=  

and the growth rate is 
E

r k= .  

 

Finally, when 
E E EM V

M k j M>  and 0ε = , the complete model can be 

simplified and reads : 

( )1

1

V

V V
V

dL
L M

dt

dM M
r M

dt L

α

κ


= −


  
 = − 
  

 

When the time t  goes to infinity, we have: 0L → , 1

1

T

V

EV

C
M

y
κ→ = and 

0
E

M → . 

 

We now consider the case 0ε � . It follows: 

1 '
T

EM V

dC
j M

dt
ε= −  

 

In other words, 
1T

C  slowly changes and since 
V

M changes faster, it reaches 

its equilibrium value rapidly, leading to the equation: 

1 1'
T T

EM

EV

dC C
j

d yτ

= −  
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where tτ ε= . Since this equation is linear, its solution is 

1 1

'

( ) (0) EV

j EM

y

T TC C e
τ

τ

−

=  

 

We can thus conclude: 

( )
11

1
,

V

V V
V

T

dL
L M

dt

dM M
r M

dt L C

α

κ


= −



  
 = −    

 

with: 

( )
( ) ( )

1

11 ,
T EL

T
EV

C y L
L C

y

τ τ
κ

−

= , 
1 1

'

( ) (0)
EM

EV

j

y
T TC C e

τ

τ

−

=  and 

( ) ( )
1
( )E T EL EV VM C y L y Mτ τ τ= − − .  

 

 

 

2. Case 2: 
E E EM V

M k j M<  

 

The model reads: 

 

V

EM V E EE
EL V E E E

E EM VM V

EM V E EV
V

E EM VM V

EM V E E
RV V

E EM VM V

dL
L M

dt

j M k MdM
y L M k M M

dt M j j M

j M k MdM
M

dt M j j M

j M k MdR
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dt M j j M
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α
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−
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−
 = −

+
 −
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Let us define 
2T EL E

C y L M= +  and 
3T V

RV

R
C M

y
= + . Moreover, 

since we have '
E E EM V EM V

M k j M j Mε< = , it follows that 
E

M  is very 
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small in this case. In other words, 
EL

y L  is very close to 
2T

C thus we set 

2

1
'

T

EL

L C L
y

ε= −  and consequently '
E EL

M y Lε= . We thus finally get: 

2
1

' '
' '

T E VM
EM EL V

EL EM VM V

dC k j
j y M L

dt y L j j M
ε

 +
= −  

+ 
 

and 

3 0
T

dC

dt
=  

 

We use again the perturbation theory in order to analyse and simplify the 

model formulation. We first consider the situation 0ε = . In this case, 

2 0
TdC

dt
=  and consequently 

2T
C and 

3T
C  are constant. The structure 

dynamics is thus governed by the equation: 

' '

'
'

E EL EM VV
V

EM
EL V

VM

k y L j MdM
M

dt j
y L M

j

−
=

+

 

 

The condition 
E E EM V

M k j M<  also reads ' '
E EL EM V

k y L j M< . In 

this case and when 0ε = , the system of differential equations can be 

simplified as follows: 

'
'

' '

'
'

V

E EL EM VV
V

EM
EL V

VM

dL
L M

dt

k y L j MdM
M

dt j
y L M

j

α


= −



−
=

+

 

 

when the time t → ∞ : ' 0L → , 0
V

M → , 
2E T

M C→  and 
3RV T

R y C→ .  

In order to understand the dynamics in the situation 0ε � , we replace the 

fast previous variables by their equilibrium values and we still define tτ ε= , 

we get: ( )
2TdC

o
d

ε

τ

= . In other words, the variable 
2T

C  changes so slowly 
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that it cannot be seen during the experiment. We can thus consider 2 0
TdC

dτ

=  

and 
2T

C is constant.  

We can thus conclude: 

 

( )

( )

2

2

0

0

V

E T E EL EM VV
V

EM
T EL V

VM

dL
L M

dt

k C k y L j MdM
M

dt j
C y L M

j

α


= −



− −
=

− +


 

with : 

( ) ( ) ( )
2 2

0 0 0T T EL EC C y L M= = +   

( ) ( ) ( )
2

0E T ELM t C y L t= −  and ( ) ( ) ( )( )
3

0
RV T V

R t y C M t= −  
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I. Bacterial growth efficiency 

 
This thesis highlighted several patterns in the dynamics of BGE. 

Utilisation of the Monod model on in situ data has demonstrated that the 

BGE varies according to depth and season, with higher values in surface 

layer and during warm seasons (Eichinger et al., 2006 – chapter II). To our 

knowledge, BGE variation with depth was never shown previously. The fact 

that the BGE dynamic depends on the season, or on the temperatures, was 

already demonstrated, but not by using a modelling approach.  

 

The third chapter also deals with the BGE variability, but in artificial 

culture conditions. The experiments were here carried out to determine the 

influence of the input regime on bacterial and BGE dynamics. We have 

demonstrated that the way of introducing the substrate in the batch has a 

profound impact on the BGE value. The substrate quantity and quality were 

the same in both experiments, they thus may not have an impact in this case. 

The pulse experiment simulated a transient environment in terms of DOC 

availability. We have shown that this kind of environment, closer to natural 

environment from a qualitative point of view, is more efficient for bacterial 

degradation than a constant environment, generally investigated to estimate 

BGE. Consequently, the method of BGE estimation should be reviewed by 

trying to incorporate more realistic substrate dynamics. However, our 

experimental design is still far from natural conditions in terms of the amount 

of substrate, and experimental efforts should be done to be closer to natural 

DOC and bacterial concentrations. 

 

Chapters II and III both used models to estimate the BGE. This method 

seems suitable as we have proven in chapter II that BGE estimated from the 

Monod model and from experimental data are qualitatively and quantitatively 

equivalent. However, the BGE value estimated from models will of course 

depend on the model used. The Monod model does not incorporate 

maintenance process, and thus exhibits higher BGE values than models 

which do. BGE estimation from Monod model seems to be closer to the 

experimental estimation for both studies investigated in this thesis (chapters 

II and III). As the Marr-Pirt and DEB models include maintenance, they 

exhibit smaller BGE values than the Monod estimation. The BGE estimated 

from the Marr-Pirt and the DEB models are very similar and considered as 

equivalent. However, it is difficult from these results to determine which of 

these estimations matches better with the “true” or “natural” BGE. The 

diversity of methods used in BGE investigation makes BGE dynamics 

difficult to study. This variability can only be demonstrated when BGE are 
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estimated with the same method in the same study. We may talk about an 

“absolute” BGE. Indeed, even if BGE values are not identical with the 

different methods, they always show the same pattern: smaller in deep waters 

and during cold seasons, and smaller in a constant than in a transient 

environment. 

 

Nevertheless, a dynamic BGE could be investigated. Indeed, models 

provide tools to represent experimental dynamics by implementing the 

required processes. This tool could allow the representation of the BGE 

dynamics during an experiment and thus highlighting events or processes 

responsible for BGE changes. However, in this case the comparison between 

several estimations is difficult as we should compare dynamics and not 

individual BGE values. Nevertheless, this method should be considered. 

 

 

II. Bacterial growth models 

 
In this thesis, several bacterial growth models have been used and for 

different purposes. The Monod model was used to describe bacterial growth 

(1) from in situ data, as the data did not allowed the application of more 

complex models, and also (2) from artificial culture data to test its pertinence 

in transient conditions. The model matched the data well in the first case but 

not in the second case, as experiments realised in artificial conditions were 

carried out for a sufficient long time to exhibit biomass decrease which could 

not be simulated by the Monod model due to the absence of maintenance. 

Consequently, the adequacy of a model to describe data is primarily 

determined by the type of data, and simple models can often be sufficient to 

represent some dynamics.  

 

The Marr-Pirt and DEB models were utilised in chapter III for 

representing bacterial culture dynamics. The application of these models was 

required as experimental data showed the presence of maintenance. Both 

models equally fitted data, but we have also shown that the Marr-Pirt model 

could be less efficient if the pulse experiment was realised in the conditions 

of the batch experiment. This showed that the fit success may be determined 

by the data set, and that only small variations in the experimental setup could 

change the type of model that should be used. The advantage of the DEB 

formulation is that it is more flexible and thus suitable in all cases, as it can 

be reduced to Monod or Marr-Pirt models. 
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We also have demonstrated that the growth part of the Monod (chapter 

II) and DEB (chapter IV) models may be simplified in a logistic equation, 

with a constant and a variable carrying capacity, respectively. The utilisation 

of this logistic equation reduces the model complexity in terms of calibration 

and simulation costs, without affecting model performance. This 

simplification step is required if we use these models in a biogeochemical 

context. The key role of bacteria in the oceanic ecosystems has still been 

proven and we have demonstrated in this study that they need to be modelled 

accurately at the global level to obtain a good representation of the aquatic 

carbon cycle. Once a suitable formulation has been found, it should be 

simplified if this latter is complex in terms of number of parameters or state 

variables with respect to the number of organisms or elements. Model 

reduction facilitates calibration, simulation and understanding of the 

underlying processes. However, model reduction should only be envisaged 

when the complete model is constructed from experimental data, thus when 

the complete model might provide realistic representation of experimental or 

environmental dynamics. 

 

 

III. Experimentation – modelling coupling 

 
The conclusions of this thesis were possible because we coupled 

experimentation and modelling. This coupling is essential to obtain realism. 

For example, measurements made in chapter II (bacterial production and 

respiration) did not demonstrate the maintenance that occurred in these 

natural bacteria assemblages. Consequently, a model including maintenance 

was not required. On the contrary, experiments carried out in artificial 

conditions were specifically designed to place bacteria in starvation 

conditions and highlight the necessity of the maintenance process in bacterial 

modelling. Consequently, experiments should be planned in a modelling 

framework. We won’t find an appropriate formulation for bacterial growth 

without thinking before about which kind of processes they could implement. 

Then, the experimental design can be prepared by planning which kind of 

experiments and measurements should be used to quantify the various 

processes. The utilisation of models also requires numerous data for the 

calibration and validation, especially when dealing with transient 

environments, as the pulse experiment of chapter III. Of course, this requires 

a profound investment in terms of effort and finances. Then, model outputs 

could serve to improve the sampling strategy, the type of measurements to be 

made, the design of the future experiments. Chapter III discussed what 

experiments could discriminate between the DEB and the Marr-Pirt models. 
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Consequently, the best strategy alternates repeatedly between experiment and 

modelling. 

 

Another important fact highlighted in this thesis is the necessity to use 

artificial conditions to reveal key processes (chapter III). Indeed, the diversity 

of uncertainties, when dealing with natural samples (chapter II), complicates 

the analysis of results and makes the utilisation of complex model 

inappropriate as processes are difficult to isolate from uncertainties. The 

utilisation of artificial seawater and monospecific bacteria is of course far 

from in situ conditions, but we first need a better understanding of the key 

processes. Moreover, we can easily control external conditions and thus add 

several limitations or introducing other organisms as we go along. 

 

 

IV. Perspectives 

 
My conclusions lead me to think that hypotheses asserted in this thesis 

should be check experimentally. We have assumed that DOC accumulation 

in batches (chapters III and IV) is due to its refractory nature. This 

assumption could be check by measuring substrate (pyruvate) concentration 

as well as DOC concentration in the cultures. However, we should first 

improve our protocol of pyruvate detection. This kind of analysis is delicate 

and not much used currently. Nevertheless, it will be probably feasible soon 

with the method perfected by Tedetti et al. (2006) at LMGEM. We should 

also measure N and P concentrations (or NH4
+
 and PO4

3-
 concentrations) to 

be sure that the systems were not limited by inorganic nutrients. The 

measurements of N and P, in the culture medium as well as in the bacterial 

biomass, could also be useful for improving the DEB model. As done by 

Martinussen and Thingstad (1987), we could so take into account three 

reserves and have a more accurate idea on bacterial dynamics. Then, we 

could test several limitations, for example by pulsing periodically two 

nutrients (C and N or C and P), and then by pulsing the three of them (C, N 

and P). We could so have more insights about bacterial physiology, for 

example on the regulation of bacterial C:N and C:P ratios in transient 

environments. The investigation of Thingstad (1987) showed that a Monod-

type model may effectively be sufficient in many purposes, but that a model 

with a reserve for each kind of compound allows an easier incorporation of 

biologically plausible concepts. In addition, the depletion areas, in function 

of C:P and C:N ratios, of batch and chemostat cultures are accurately 

represented by this model with three reserves (Martinussen & Thingstad 

1987). This kind of approach would also allow a better understanding about 
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the storage capacity, and test the prediction of DEB theory that nutrient 

reserves accumulate under energy limitation. Nevertheless, the addition of all 

of these measurements needs an improvement of the experimental protocol, 

since the time required for doing all carbon measurements carried out in this 

thesis was already substantial, and the addition of other measurements would 

imply either a reduction of the  number of data points between two pulses, or 

another experimental design. 

 

One of the solutions would be the utilisation of chemostats instead of 

batch systems. The culture volume that is required to perform all 

measurements is a point of concern. The sampling protocol could so be 

automated. To mimic transient environments we should vary either the 

dilution rate or the substrate concentration in the input. 

 

The real complexity of the natural medium let me suggest that it is 

necessary to test prey-predator interactions in the context of the DEB theory. 

Kooi and Kooijman (1994) showed the necessity of adding a storage 

compartment as well as the maintenance process to the Monod model for 

representing data of a trophic chain implying one substrate, one bacterial 

species and one predator. We could imagine the same kind of protocol by 

pulsing the substrate. The model should include the DOC production by the 

predator (grazer), and it would thus comprise two DOC sources (the input 

substrate as well as DOC produced from grazing), with a differentiate 

preference in the uptake. In the DEB context, the grazer would have two 

nutritive sources: bacterial reserve and structure. In the same way, we could 

test an interaction between a phytoplankton and bacterial species. Bratbak 

and Thingstad (1985) tested this kind of interaction with chemostat 

experiments, where the nutritive resource was phosphate, and showed that 

bacterial density increased whereas phytoplankton density decreased at low 

dilution rates. They have also constructed a model where both organisms are 

in competition for the limiting resource but where the phytoplankton 

produces organic carbon assimilated by bacteria. This approach could be 

used by including more realist nutrient dynamics, as the pulse input of 

substrate in this thesis. The model should thus include two DOC sources and 

bacteria would compete for the inorganic nutrients with phytoplankton. Then, 

we could test the effect of these processes in a biogeochemical model, after 

having simplified their formulation. 

 

To sum up, more coupling between experimental and modelling work 

should be investigated. In the bacterial context, studies that deal with both 

approaches at the same time are seldom. Some investigations succeed to 
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demonstrate experimentally some theoretical results obtained few decades 

earlier. For example, the study of Becks et al. (2005) demonstrated the 

existence of chaotic behaviour in a microbial food web with chemostat 

experiments. The existence of chaos in simple ecological systems was 

however demonstrated with models since a long time. In this thesis, model 

comparison with experimental data (chapter III) showed that a complex 

model is not currently necessary to represent bacterial dynamics in a pulse 

DOC environment. Nevertheless, models provide tools to test assumptions 

and/or the influence of the addition of processes in system dynamics. In this 

context, the influence of the incorporation of physiological details in 

ecosystem models on global dynamics could be tested. For example, we can 

test the DEB formulations on the 1-D model of Anderson & Williams (1999), 

which simulates the DOC distribution in the water column, by keeping the 

same global model structure. Then, we can observe if these detailed 

formulations imply dynamical differences and judge the necessity of using 

mechanistic models at the global scale. 
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Summary 

Bacterial degradation of dissolved organic carbon in 

the water column 

An experimental and modelling approach 

This thesis deals with the growth of heterotrophic pelagic bacteria which 

use the dissolved organic carbon (DOC) as nutritive resource. It is widely 

recognised that heterotrophic bacteria play a predominant role in the carbon 

cycle. Indeed, they represent the most important living biomass in aquatic 

ecosystems and constitute the major DOC consumers. DOC is the second 

most important stock of bioreactive carbon in ocean and its dynamics are 

important for understanding the global carbon cycle and changes of 

atmospheric CO2. DOC may play an important role in the biogeochemistry of 

the oceanic carbon cycle as it contributes to the biological pump by the 

export of sinking biogenic particles. The carbon flow through the bacterial 

compartment is investigated by the bacterial growth efficiency (BGE). BGE 

provides an estimation of the DOC fraction that is used by bacteria for their 

growth, the rest being remineralised. Numerous studies investigated the 

influence of environmental factors on BGE values. These factors generally 

comprise temperature, season, distance from the shore and substrate quality. 

This thesis aims to investigate heterotrophic bacterial growth by using 

both experimental and modelling approaches. The experimental work used 

natural as well as artificial seawater. Various models for bacterial growth, 

comprising different levels of complexity, were investigated to represent 

mathematically the dynamics of the different experiments. Two main axes 

merge in this work: (1) the study of growth models, constructed from 

experimental results, with a view to implement them in ecosystem models, 

and (2) the investigation of the environmental factors influencing the BGE 

with these models. The main objective consists of the study of bacterial 

growth in different environmental contexts and to deduce a suitable 

mathematical formulation for describing the interaction between growth and 

DOC to include this in a biogeochemical model later on. 
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We first studied bacterial and DOC dynamics from in situ samples. 

Numerous biodegradation experiments, implying natural DOC and bacterial 

assemblages, were realised in stable conditions in the Northeast Atlantic 

Ocean according to several seasons and depths. We utilised the Monod model 

for representing the data acquired during these experiments. This model is 

empirical, constructed with Michaelis-Menten kinetics and is the most widely 

used for describing bacterial growth in ecosystem models. BGE was 

estimated experimentally, as generally done by most authors, and also by 

using the model. We demonstrated that BGE varies according to season and 

depth, the dynamics being the same with both methods of estimation. As 

BGE is one parameter of the Monod model, this result proved that it is 

inaccurate for representing the utilisation of DOC by bacteria in ecosystem 

models. 

 

We then decided to carry out experiments in artificial conditions, with a 

monospecific bacterial strain and a single DOC substrate. This setup provides 

data sets that are easier to analyse and allows the application of more 

complex models. To test the performance of several models, comprising 

several levels of complexity, including the Monod model, 2 kinds of 

experiments were performed: 1 experiment was realised in constant 

conditions with a single substrate load at the start of the experiment, as the 

previous study, the other experiment was carried out by pulsing the substrate 

supply periodically. The total amount of substrate was the same in both 

experiments, the only difference consists of the input regime. The substrate 

pulses mimic the spatial and temporal variability of DOC distribution. We 

demonstrated that the Monod model is inaccurate to represent bacterial 

dynamics when they are in starved conditions, which may often occur in 

natural environments. We also utilised a model implementing the bacterial 

maintenance, the Marr-Pirt model, and another model, constructed from the 

dynamic energy budget (DEB) theory, including maintenance as well as a 

reserve compartment. Both models match the data very well. However, the 

DEB model, due to its mechanistic basis, is more flexible and is able to adapt 

to more situations. BGE was estimated experimentally and with the 3 models 

for both experiments. We demonstrated that BGE is higher in the pulse 

experiment than in the experiment carried out in stable conditions with all 

methods of BGE estimation. Consequently, the spatial and temporal 

variability of DOC distribution has a profound impact on the estimation of 

BGE value.  

 

Data of the pulse experiment were also used to formulate a mechanistic 

model, based on the DEB theory as stated previously. In a third section, we 

investigate this model more profoundly and its potential inclusion in 
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ecosystem models. We adapted a bacterial growth model with the theory in 

order to account for the processes highlighted by the experiment. The model 

was first improved by considering 2 maintenance processes: when mobilised 

reserves are sufficient, maintenance is realised from the reserve pool, the 

remaining energy being used for growth; however, when the reserve flux is 

not enough to sustain maintenance, growth ceases and maintenance is 

realised from the reserve plus the structural volume and the cell shrinks. 

When maintenance is performed from the structure, the model permits the 

release of refractory material in the medium by bacteria. Maintenance was 

modelled in this way to account for the increasing non-used DOC in the 

culture. This model is quite complex to represent only a bacterial component 

and is thus difficult to implement in ecosystem models. The original model, 

comprising 4 state variables, was thus reduced to a system of 2 differential 

equations which may be easier implemented in global models. This result has 

a profound impact in the context of global modelling, as model simplification 

allows easier calibration, simulation and the understanding of model outputs. 

 

The results highlighted by this thesis were obtained thanks to the coupled 

experimentation-modelling approach. The experiments revealed key 

processes and facilitated the construction of models on the basis of biological 

insights, and models highlighted gaps in the knowledge which is required for 

a better representation of the system. Consequently, models may suggest new 

experiments to be performed and the best strategy alternates repeatedly 

between experiment and modelling. 
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Samenvatting 

Bacteriële afbraak van opgelost organische koolstof 

in de water kolom 

Een gecombineerde experimentele en modellerings 

benadering  

Dit proefschrift behandelt de groei van pelagische bacteriën die opgelost 

organisch koolstof (DOC) als energie bron gebruiken. Het is algemeen 

bekend dat dit type bacteriën een dominante rol spelen in de koolstof cyclus. 

Zij vertegenwoordigen de belangrijkste levende biomassa in aquatische 

oecosystemen en vormen de voornaamste consumenten van DOC. DOC is de 

op één na belangijkste poel van biologisch beschikbaar koolstof in de oceaan 

en zijn dynamika is belangrijk voor het begrip van de koolstof cyclus en van 

veranderingen in het atmosferisch CO2. DOC zou een belangrijke rol kunnen 

spelen in de biogeochemie van de koolstof cyclus in de oceaan aangezien het 

bijdraagt aan de biologische pomp die biogene deeltjes exporteert uit het 

oppervlakte water naar de diepte. De koolstof-stroom door het bacteriële 

compartiment wordt onderzocht aan de hand van de bacteriële groei 

efficientie (BGE). Deze efficientie geeft de fractie DOC aan dat door de 

bacteriën wordt gebruikt voor de groei, de rest wordt gemineraliseerd. Vele 

studies gaan over de invloed van omgevingsfactoren op BGE waarden. Deze 

factoren omvatten temperatuur, seizoen, afstand tot de kust en de kwaliteit 

van het substraat. 

 

Dit proefschrift combineert experimetele en modelmatige benaderingen 

om de groei van heterotrofe bacteriën te onderzoeken. Het experimentele 

werk maakte van natuurlijk, maar ook van kunstmatig zeewater gebruik 

Verschillende modellen voor bacteriële groei van uiteenlopende complexiteit 

werden onderzocht op hun representatie van de resultaten van de 

experimenten. Twee denklijnen komen in dit proefschrift samen: (1) de 

studie van groei modellen die gebaseerd zijn op experimentele resultaten met 

het oog deze toe te passen in ecosysteem modellen, en (2) de studie van de 

effecten van omgevingsfactoren op de BGE met behulp van deze modellen. 

De belangrijkste doelstelling is de bacteriële groei in de verschillende 

omgevingen te begrijpen en af te leiden welke wiskundige formulering het 

meest geschikt is om later in biogeochemische toe te passen. 
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 We hebben eerst de dynamica van bacteriën en DOC bestudeerd in in 

situ monsters. Vele biodegradatie experimenten betreffende DOC en 

microorganismen werden gedaan onder constante condities zoals die in de 

noordwestelijke Atlantische Ocean op de verschillende diepten en in de 

verschillende seizoenen gevonden worden. Wij hebben het Model model 

gebruikt om de resultaten van deze experimenten te beschrijven. Dit is een 

empirisch model dat gebruik maakt van Michaelis-Menten kinetika en is het 

vaakst gebruikte model voor bacteriële groei dat wordt toegepast in 

ecosysteem modellen De BGE werd rechtstreeks experimenteel geschat, 

zoals de meeste auteurs doen, maar ook met behulp van het Monod model. 

Wij hebben aangetoond dat de.BGE variëert met het seizoen en de diepte, en 

beide schattingsmethoden leverden dezelfde resultaten op. Aangezien de 

BGE een parameter van het Monod model is die niet zou mogen variëren 

laten deze resultaten zien dat het Monod model ongeschikt is om het gebruik 

van DOC door bacteriën te beschrijven in ecosysteem modellen.  

 

Vervolgens besloten we experimenten onder kunstmatige condities uit te 

voeren met een zuivere bacterie stam en een enkelvoudige DOC bron. Deze 

proefopzet levert data op die makkelijker te analiseren zijn en de toepassing 

van meer complexe modellen mogelijk maakt. Om modellen van verschillend 

niveau van complexiteit met elkaar te vergelijken, waaronder het Monod 

model, hebben we twee soorten experimenten uitgevoerd: één waarbij al het 

substraat aan het begin van de proef werd toegevoegd, en één waarbij dit 

pulserend werd gedaan met tussenpozen. De totale hoeveelheid toegevoegde 

substraat was in beide gevallen gelijk, het enige verschil is in de wijze van 

toediening. De gepulseerde dosering bootst de ruimtelijke en in de tijd 

variërende concentratie DOC na. We laten zien dat het Monod model de 

bactiële dynamica slecht beschrijft tijdens hongering, hetgeen in de natuur 

vaak voorkomt. .We pasten ook modellen toe die rekening houden met 

bacteriële onderhouds-processen, het Marr-Pirt model en een model dat 

gebaseerd is op de dynamische energie budget (DEB) theorie en ook nog een 

reserve compartiment heeft. Beide modellen beschrijven de experimentele 

resultaten voortreffelijk. Dankzij zijn mechanische basis is het DEB model 

echter meer flexiebel en kan het in meer situaties gebruikt worden. De BGE 

werd wederom geschat zowel direct uit de experimentele data als met behulp 

van de drie modellen. We laten zien dat de BGE bij de puls-experimenten 

hoger is dan bij de eenmalige dosering, ongeacht de gebruikte 

schattingsmethode. We kunnen dus concluderen dat variaties van de 

concentratie DOC in ruimte en tijd een grote invloed hebben op de waarde 

van de BGE .  
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Data van het puls-experiment werden ook gebruikt om het DEB model te 

verfijnen. In het derde gedeelte onderzoeken we de eigenschappen van dit 

model meer in detail om het model later in te bouwen in ecosystem modellen. 

We onderscheiden een tweetal onderhoudsprocessen, één waarbij de stroom 

van gemobiliseerde reserve groot genoeg is voor het onderhoud van de cel, 

en één waarbij dit niet het geval is en deze stroom moet worden aangevuld 

met gemobiliseerde structuur, met het gevolg dat de cel krimpt. Bij dit krimp-

proces wordt slecht afbreekbaar organisch koolstof gevormd, dat tijdens het 

experiment ophoopt waardoor de concentratie DOC toeneemt..Dit model is 

knap ingewikkeld voor toepassing in ecosysteem modellen. Om deze reden is 

het vereenvoudigd en zijn de 4 differentiaal-vergelijkingen die oorspronkelijk 

nodig waren tot 2 teruggebracht. Dit resultaat is van grote waarde voor 

globale modellering van de koolstof cyclus. Dit vereenvoudigt het schatten 

van parameter waarden  de computer simulaties en de interpretatie van de 

simulatie resultaten. 

 

De resultaten van dit proefschrift onderstrepen de kracht van een 

gecombineerde experimentele en modelmatige aanpak. De experimentele 

resultaten maakten het opstellen van een realistisch model mogelijk en de 

modellen legden gaten in de kennis bloot die nodig is om ecosysteem 

modellen te kunnen opstellen. Dit suggereert op zijn beurd weer het opzetten 

van gerichte nieuwe experimenten. De beste aanpak in biologisch onderzoek 

is het herhaaldelijk afwisselen van het doen van experimenten en het 

modelmatig analyseren van experimentele resultaten. 
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List of most used acronym: 
 

BCD bacterial carbon demand 

BGE bacterial growth efficiency 

BP bacterial production 

BR bacterial respiration 

C carbon 

CCF carbon conversion factor 

CO2 carbon dioxide 

DCAA dissolved combined amino acid 

DEB dynamic energy budget 

DFAA dissolved free amino acid 

DOC dissolved organic carbon 

DOM dissolved organic matter 

EPS exopolysaccharides 

H hydrogen 

HMW high molecular weight 

IBP integrated bacterial production 

IC inorganic carbon 

L-DOC labile dissolved organic carbon 

LMW low molecular weight 

MCHO monosaccharide 

N nitrogen 

O oxygen 

O2 dioxygen 

OC organic carbon 

OD optical density 

OM organic matter 

P phosphorus 

PER percent extracellular release 

POC particulate organic carbon 

POM particulate organic matter 

POMME programme océan multidisciplinaire méso-échelle 

POS polarographic oxygen sensor 

R-DOC refractory dissolved organic carbon 

RQ respiratory quotient 

SL-DOC semi-labile dissolved organic carbon 

TOC total organic carbon 

VHMW very high molecular weight 
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Variables, parameters and notations used for the models 
 

Symbol Equiv. Unit Description 

Chapter II – Monod model 

DOC   µM C DOC concentration 

BB   µM C Bacterial biomass - carbon 

max
V   h

-1
 Maximum specific assimilation rate 

k   µM C Half-saturation constant 

N
BGE   - Bacterial growth efficiency 

α  maxV

k
 µM C

 -1
 h

-1
 

Ratio between the maximum specific 

absorption rate and the half-saturation 

constant 

Chapters III-IV  Monod – Marr-Pirt – DEB models 

State Variables 

E
M   mM C Reserve mass 

E
m  E

V

M

M
 - 

Reserve mass relative to the structural 

body mass 

V
M   mM C Structural body mass 

L   mM C L-DOC concentration 

R   mM C R-DOC concentration 

Parameters 

mX
J   mM C h

-1
 Maximum uptake rate 

K   mM C Half-saturation constant 

E
k   h

-1
 Reserve turnover rate 

LAm
j   h

-1
 Maximum specific absorption rate 

EL
y   - 

Yield coefficient from L-DOC to reserve 

masses 

EV
y   - 

Yield coefficient from structural to 

reserve masses 

EM
j   h

-1
 Maintenance flux from reserve mass 

VM
j   h

-1
 Maintenance flux from structural mass 

RV
y  

 
- 

Yield coefficient from structure to R-

DOC 

α  LAmj

K
 mM C

 -1
 h

-1
 

Ratio between the maximum specific 

absorption rate and the half-saturation 

constant 

r  
E

k  h
-1

 Growth rate 

1
κ   mM C Carrying capacity 
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Symbol Equiv. Unit Description 

General symbols 

*1*2J  
 

mM C h
-1

 
Flux of compound *1 associated with 

process *2 

*1*2j  *1*2

V

J

M
 h

-1
 

Specific flux of compound *1 

associated with process *2 

*2*1y  or 

*2*1Y  
 - 

Yield coefficient of compound *1 on 

compound *2 

*1*2n  
 

- 
Number of atoms of element *1 

present in compound *2 

*1p�   J h
-1

 Energy flux (power) of process *1 

κ  
 

- 
Fraction of catabolic power energy 

spent on maintenance plus growth 

Processes (
*

p� ) 

A   Assimilation 

C   Catabolism 

M   Maintenance 

G   Growth 

D   Dissipation 

P   Production 

General compounds 

Organic    

X   Substrate 

V   Structure 

E   Reserve 

P   Product 

Mineral    

C   CO2 

H   H2O 

O   O2 

N   nitrogenous waste (ammonia) 

 




