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Preface

This document gives comments on my book Dynamic Energy Budget theory for metabolic
organisation, third edition. The comments follow the section-numbering in that book,
which has as consequence that different sections of the comments can have the same section
number; clicking on a section number referring within the comments brings you to the
correct section. The chapter-titles are identical to that of the book, but the (sub)section-
titles refer to the comments.

The types of comments include derivations of particular formulas, further motivation of
particular arguments, more biological examples and experimental support, historic back-
grounds and discussions of literature, as well as extensions of the theory. If, for instance
during the deb-tele courses, particular sentences in the book turn out to be unclear, I
respond by adding explanations in this document. This implies that this document is a
dynamic one that is modified many times a year.

Apart from this comments-document, the following deb-related material is available
via the DEBlab

� summary of concepts for each of the sections of the deb book

� notation document, including notation for new developments of deb theory

� erratum-list for the 3-rd edition of the deb book

� software package DEBtool for Matlab (active maintenance) and Octave (maintenance
ceased)

� Add my Pet (AmP) website with a library of data and parameter values and implied
properties for over 1000 animal species, which evolves rapidly

� software package AmPtool for Matlab, which is an DEBtool application for the anal-
ysis of the AmP collection

� Basic Methods for Theoretical Biology on methodology, modelling and applied math-
ematics

� microlectures, a collection of section-wise PowerPoint presentations for the chapters
of the deb-book and the comments

� phylogenetic survey of living organisms, a PowerPoint presentation with an emphasis
on life-cycles

� assays, written by participants of deb tele-courses (no longer maintained)

� Bibliography of DEB papers with pdf’s of over 1100 items

In the DEBlab you can find much more, like NicheMapR, DEB and DEBsea Shiny apps,
Aquaexcel.

http://www.bio.vu.nl/thb/research/bib/Kooy2010.html
http://www.bio.vu.nl/thb/research/bib/Kooy2010.html
http://www.bio.vu.nl/thb/deb/course/
http://www.bio.vu.nl/thb/deb/deblab/
http://www.bio.vu.nl/thb/research/bib/Kooy2010_i.pdf
http://www.bio.vu.nl/thb/research/bib/Kooy2010_n.pdf
http://www.bio.vu.nl/thb/research/bib/Kooy2010_e.pdf
http://www.bio.vu.nl/thb/deb/deblab/debtool
http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/
http://www.bio.vu.nl/thb/deb/deblab/add_my_pet/AmPtool.html
http://www.bio.vu.nl/thb/course/tb/tb.pdf
http://www.bio.vu.nl/thb/deb/sheets/
http://www.bio.vu.nl/thb/deb/sheets/cycle_pr.htm
http://www.bio.vu.nl/thb/deb/essays/
http://www.bio.vu.nl/deb/course/
https://www.zotero.org/groups/500643/deb_library/
http://www.bio.vu.nl/thb/deb/deblab/
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Basic concepts

1.1 Individuals as dynamic systems

1.1.3 Why reserves apart from structure?

Argument 3 for delineating reserve needs more context. Chemical composition of the
body depends on growth rate in practice if we compare individuals of the same size under
different feeding conditions. We don’t compare here individuals of different size under the
same feeding conditions. Figures 4.16, 4.17 and 4.24 give examples.

Feeding-related changes in chemical composition of the body can be visualized by plot-
ting the inverse of the von Bertalanffy growth rate as function of ultimate length for
different food levels. The standard deb model expect a linear relationship, where the
intercept relates to the maintenance rate coefficient, and the slope to the energy conduc-
tance. ‘No reserve’ means an infinitely large energy conductance, implying this line should
be horizontal, which is at odds with observations; see Section 2.4 of the comments.

Changes in weight during starvation can only be handled by models without reserve
by ignoring length and treating decrease in weight as ’shrinking’ and leaving the fact
that length does not change, such as during hibernation, as unexplained ‘detail’. These
models cannot accommodate condition indices, which deal with changes in length-weight
relationships.

1.1.4 Stages and switching

Not only aphids, but also some water fleas sport telescoping generations [448]: almost fully
developed embryo-like larvae start to produce parthenogenetic subitaneous eggs while they
are still being carried in the dorsal brood pouch.

Some insect groups have an imago that does not feed (e.g. mayflies, Ephemeroptera,
some antlions, Neuroptera, butterflies of the family Notodontidae, some mosquito’s such
as chironomids and chaoborids, some wasps), cf subsection 7.8.1, and the allocation to
reproduction has already been made in the nymph stage. In deb terminology, this classifies
nymphs as adults, and the adult has a growing nymph and a non-growing imago-stage.
Like more family members, the 8 cm long male of the blackdragon Idiacanthus antrostomus
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does not eat at all, has no teeth, no stomach and only lives long enough to mate; the 61 cm
long female has fanglike teeth and a long chin whisker to lure prey. The unability to eat
would classify such males as embryo, but allocation to reproduction as adults. This once
more illustrates that we should not think in terms of life stages, but in terms of metabolic
switching. Some fish species have an isomorphic embryo, a V1-morphic early juvenile
stage, which switches back to isomorphy at metamorphisis, see subsection 7.8.2. A lot of
stages can be delineated in the development, see Tables 7.3 and 7.4 of the comments, each
corresponding with a certain (constant) maturity level.

Not only the paradoxal frog Pseudis paradoxa and the midwife toad Alytes obstetricans
have larvae that are bigger than the adult, but also the deep-sea spiny eels Notacanthi-
dae have leptocephalus larvae that are larger than the adult, see subsection 7. Likewise,
pearlfishes Carapus have a tenuis larval stage that shrinks to 1/3 of its original length at
metamorphosis. Many echinoderms also reduce substantially in body mass at metamor-
phosis. Embryo’s of the parasitic wasp Venturia absorb nutrients while still inside the host
(some caterpillar), but this is not via a gut. The chlamydomonad Oophila amblystomatis
lives intra-cellularly in the embryo-tissues of the spotted salamander Ambystoma macula-
tum and returns carbohydrates and dioxygen for ammonia. So, also in this case embryos
acquire energy, but not via a gut. Many plants (Tracheophytes), allocate resources to the
fertilised ovum and a, sometimes big, seed or fruit develops on the parent plant. In terms
of resource allocation this very much resembles foetal development in placentalia. The salp
Thalia democratica alternates between sexual and asexual stages. After fertilization by an
old sexual individual, the young sexual individual first produces a single asexual foetus and
then becomes male. The solitary asexual individual produces lots of buds, which become
sexual individuals, that aggregate. Bud production is very similar to foetal production,
from an energy perspective.

Dung beetles (Scarabaeidae) lay their eggs in dung; the larvae eat dung and the initi-
ation of pupation is modified by food availability [1287]. Parasitic wasps that lay eggs in
a host have similar problems to solve once the host is finished by the larvae. Some lizards
can switch to a torpor state as embryo to wait with hatching for favourable environmental
conditions [1140].

The example of the aphid, sporting telescoping generations, illustrates that the reduc-
tion of puberty to a point event is really an idealisation for simplicity’s sake that is not
always very realistic. This is because puberty is supposed to re-direct allocation to matu-
rity to reproductive output. In reality puberty is a period, and the re-direction is gradual.
If puberty would have been an instantaneous event, maturity in aphids would already be
arrested in the embryo stage and assimilation would never be switched on.

If maturity is homogeneously distributed in structure and part of the structure is re-
moved, part of maturity is removed as well. You can think of unicellulars that propagate
by division, or the daughter cells of a cleaving egg cell of a multicellular organism sepa-
rate, or a body part is removed (e.g. of plants due to grazing or of a sea anemone that
is propagating vegetatively). Each structure should have a maturity. Most organisms can
be represented with a single structure, but plants need at least two: root and shoot, each
with its own assimilation activity.

Sex-determination is controlled by environmental factors in quite a few species. Changes
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in food availability determine sex in daphnids and rotifers (see Section 4.1.8), temperature
determines sex in lizards, crocodiles and turtles (see Section 1.3.3). Hymenopterans develop
as females from unfertilised eggs and as males from fertilised ones. If larvae of the echiuran
annelid Bonellia or the siboglinid annelid Osedax settle in virgin environment (which is in
the latter case the skeleton of a dead whale on the ocean bottom, that is decomposed with
help of bacteria in root-like structures), they become female, but if they settle on a female,
they become male [1220]. Both groups of annelids produce very small males, that don’t
feed. This illustrates that the events of metabolic switching matter (initiating feeding,
allocation to reproduction), and not the stages (embryo, juvenile, adult). This also holds
for the male of the burrowing barnacle Trypetesa lampas [403]; males and females are very
similar as planktontic larvae, till they settle, when the female grows a mantle sac of 5-11mm
and the tiny male does not develop a gut, only a sexual organ and settles on a female.
Males and females moult 3 times as nauplius, slightly increasing in size and transform
in a cyprid, with a bivalved shell, that settles. Then follows another metamorphosis and
both sexes follow very different trajectories. The eggs remain in the female mantle cavity
till the hatch. Females can live and grow upto 3 years; males shrink after at the last
metamorphosis, mature in a few days and live upto 3 months.

Western European girls reached puberty at 17 a in 1835, 15 a in 1900 and 13 a in 1945,
but the weight at puberty remained the same, 46 kg. These changes in age were due to
changes in diet as is further supported by changes in ultimate weight [899, 447].

Diapause, the delay of the onset of development of an egg or foetus, is discussed at
several places, e.g. {58} and Subsubsection 8.2.2. This delay can occur before or after
fertilisation. Foetal development is initially extremely slow, as if they experience a kind
of false diapause, but later sparks off where length increases linearly in time. A delay in
fertilisation can involve the storage of sperm. The rattlesnake can store sperm for some 5
years [163]. Such a very long storage time might represent a transition to parthenogenesis,
which occurs in 0.6% of the reptile species [700].

The occurrence of many life history events can be understood if they occur at fixed
maturity levels, such as hatching in frogs (see Section 2.5.2 of the comments) and mor-
phologically defined life stages in fish (see section 7.8.2 of the comments). The moment of
egg-laying is, however, not such a life history event. In many species it occurs as soon as
the egg the formed (ovopary), or just before hatching and/or birth (ovovipary). Phytons
and boas are related snakes, but boas are ovoviparous, while phytons lay their eggs some-
where during the development of the embryo. The phytoseiid mite Neoseiulus cucumeris
can delay egg laying in response to the presence of the predatory phytoseiid mite Iphiseius
degenerans [989]. So the moment of egg laying can depend on environmental factors and
part of the buffer handling rules of the mother.

1.1.4 Switching at maturation density?

Nina Marn observed that different populations of loggerheads, Caretta caretta, show scatter
in size and maturity levels at puberty, but the scatter in maturity density at puberty was
much less. If these differences are due to food conditions, rather than to parameter values,
this observation suggests that stage switches might be linked to maturity density, [EH ],
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Figure 1.1: Maturity per ultimate structure and actual structure (= maturity density) as func-
tions of κ for the 784 species of the add my pet collection. Then maturity density per reserve
capacity (= scaled maturity density) and (last row) the maturity investment ratio as functions
of κ. Sampling date 2017/05/05.

Figure 1.2: Maturity and energy investment ratio as functions of ultimate structural length for
the 784 species of the add my pet collection. Sampling date 2017/05/05
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rather than maturity, EH . Moreover, Carlos Teixeira noticed that maturity density at
birth among bird species turns out to depend on κ. Closer inspection revealed that this
holds for all species [50]. The reason is that maturity density at birth does not vary that
much. For k = 1 is does not vary at all and [EH ] = [EG]

1−κ
κ
. This also holds, but to a

lesser extend, for the values at puberty, since maturity density can vary in a wider range
for k < 1. The values for ebH for endotherms are larger that for ectotherms. Endotherms
have a large reserve capacity, [Em], which might be linked to compensation for their high
body temperature during starvation. An increase of body temperature should come with
an increase of reserve capacity to survive a given time of absence of food. The values for

energy divestment ratio at birth gbH =
Eb

H/L
3
b

(1−κ)[Em]
=

[Eb
H ]

(1−κ)[Em]
=

ebH
1−κ are the same for all taxa.

(The name is inspired by energy investment ratio g, where quantities on the κ-branch in g,
are replaced by equivalent quantities on the (1 − κ)-branch in gbH . Notice that g remains
constant during the life cycle, while gbH and gpH change if k ̸= 1.) It is yet unclear why
thresholds at stage transition would depend on allocation to maturity via 1 − κ, so the
larger the allocation to maturation the lower the thresholds at which transitions occur,
this is what data indicate. See Figure 1.1, which also shows that g = [EG]

κ[Em]
hardly depends

on κ, remarkably enough. This comment aims the access the implications of metabolic
switching at threshold values for gH , rather than EH .

Differences between switching at maturity or maturity density only become apparent
when we compare different food levels. If k̇J = k̇M , maturity density remains constant
during embryo and juvenile stages and it is not possible to link stage transition to maturity
density. We now assume that k̇J < k̇M , in which case maturity density increases till
puberty, after which it decreases again, since maturation ceases and growth continues
during the adult state. We still keep the maternal effect that reserve density at birth
equals mother’s reserve density at egg formation. Initial reserve and length at birth (and
puberty) have to be re-evaluated.

Maturity density has a strange dynamics at the start of development, since both matu-
rity and structure start at 0. As mentioned below (2.31): d

dτ
gH(0) = ±∞ or d

dτ
gH(0) = 0.

The latter only occurs if gH(0) = g0
H = g, which seems to be the natural initial value for

scaled maturity density. This means that for incrementally small initial scaled length l0,
we have v0

H = l30 and [EH ](0) = [EG]
1−κ
κ
.

We cannot work with scaled reserve density e during the embryo stage, since e(0) = ∞;
eqs (2.26-31) suggest that it is best to work with

d

dτ
uE = −uEl2

g + l

uE + l3
;

d

dτ
l =

1

3

guE − l4

uE + l3
;

d

dτ
gH = −g

0
H

l3
d

dτ
uE − gH

(
k +

3

l

d

dτ
l

)

The maternal effect amounts to uE(τb) = l3bf/g, where f is the scaled functional response
of the mother, with her reserve density in equilibrium. Scaled length at birth lb can be

found from (2.46) and solve lb from t(lb) =
xbgg

b
H

v(xb)g0H
−
∫ xb

0
r(x)
v(x)

dx = 0. DEBtool function

get lb md computes lb from parameters.
For scaled structural length at puberty, lp, it is easiest to work with (2.29-31), but (2.29)

replaced by d
dτ
e = (f − e)g/l and (2.30) by d

dτ
l = rB(f − lT − l) with rB = (3 + 3f/g)−1.

It can be obtained from d
dgH

l, where e = f , l(gbH) = lb (which is now known) and gH runs
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Figure 1.3: Scaled length at birth and
puberty as function of scaled functional
response, if switches occur at maturity
(blue), or maturity density (red). Param-
eter values: z = 1, v̇ = 0.02 cm/d, κ =
0.8, [ṗM ] = 18 J/d.cm3, k̇J = 0.002 d−1,
[EG] = 2800 J/cm3, EbH = 0.275 J, EpH =
50 J. gbH = 0.3185, epH = 4.135, g = 3.111,
k = 0.311.

from gbH to gpH . DEBtool function get lp md computes lb and lp from parameters. Figure
1.2 shows that gbH , g

p
H as well as g tend to decrease with ultimate structural length, but

the scatter hides the slope.
To compare with switching at maturity, we might choose ebH = Eb

HL
−3
b /[Em] = e0

Hv
b
H l

−3
b

and epH = Ep
HL

−3
p /[Em] = e0

Hv
p
H l

−3
p (at abundant food). We then select a smaller values for

f , keeping Eb
H fixed for switching at maturity and ebH for switching at maturity density,

and study how lb depends on f under both switching regimes. Figure 1.3 shows that length
at thresholds varies a lot more if switching is at maturity density, rather than at maturity.

Maturity density increases for k̇J < k̇M , so eH(0) < eH(τb) < eH(τp), which translates
to g < gbH < gpH < g/k. The latter condition originates from lp < 1 and d

dτ
eH(τp) > 0. For

unscaled scaled parameters we must have 1−κ
κ
[EG] < Eb

HL
−3
b < Ep

HL
−3
p < 1−κ

κk
[EG]. These

constraints clearly show that if k ↑ 1, the possible difference between Lb and Lp shrinks to

zero. For given lb, the scaled maturity density is given by gbH = v(xb)
xb

∫ xb
0

r(x)
v(x)

dx.
Stage transitions at maturity density threshold might be an option for animals that

start life with structure and maturity zero and have k ≪ 1, it is not an option for uni-
cellulars that grow and divide. At division in two (equal) parts, they half their amount
of structure and maturity. So maturity density does not change at division. If the divi-
sion threshold would be at maturity density, maturity density would increase to allocation
to maturity maintenance plus maturity being equal to maturity maintenance and further
remain constant at constant substrate density.

1.2 Homeostasis is key to life

1.2.1 Strong homeostasis

Empirical evidence for strong homeostasis comes, for instance, from the yolk of developing
Rhea eggs, where no change in composition could be found and the respiration quotient
remained constant during egg development [1131]. This should be seen in the light of yolk
dynamics as discussed in Section 2.6.2 in the comment on yolk dynamics, which implies
that this finding also supports weak homeostasis.

Notice that strong homeostasis deals with chemical composition of pools, but not with
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their dynamics, while weak homeostasis does the opposite: it deals with the dynamics of
pools, but assumes strong homeostasis, since pools are defined via their strong homeostatic
property: they do not change in chemical composition.

1.2.2 Weak homeostasis

Overwhelming empirical evidence exists for weak homeostasis, which states that reserve
density does not change during growth at constant food level, So wet as well as dry weight
is proportional to cubed length for isomorphs, with a constant proportionality factor inde-
pendent of length. The Add my Pet (AmP) collection has many examples of length-weight
relationships of this type with very good fits, especially for juveniles, where the contribution
of gonads to weight has not yet had the chance to disturb the relationship. You can find
these entries by searching for L-Ww or L-Wd in species-list page of the AmP website. De-
rived from this result, are the many excellent fits in the AmP collection of von Bertalanffy
growth curves for length and well as for weigths, where weights are taken proportional to
cubed length.

Support for weak homeostasis gains strength by the fact that the AmP collection has
many examples where data for males and females have been fitted simultaneously, with
excellent fit, assuming that males only differ from females by {ṗAm} and Ep

H (so the same
shape coefficient). Weights are again found to be proportional to cubed length, but males
are heavier for the same length than females, if their ultimate length is larger, but lighter
if their ultimate length is less than that of females. This is easy to understand in the
context of the std model, since maximum reserve density is [Em] = {ṗAm}/v̇, while males
and females have the same energy conductance v̇. Species for which males are larger than
females have, therefore, a larger reserve density and reserve contributes more to weight,
compared to females of the same length. Examples in the AmP collection are: Odorrana
swinhoana, Podarcis muralis, Nerodia sipedon, Bothrops insularis, Gloydius blomhoffii.

The AmP collection also shows many time-weight data that fit perfectly to the von
Bertalanffy growth curves for weights at constant food, assuming that weight is propor-
tional to cubed length again. This fit involves more assumptions, apart from weak home-
ostasis, such as assimilation proportional to squared length, maintenance to cubed length
and κ being constant. However, many entries show this for both time-length and time-
weight data, providing more direct support for weak homeostasis, since the simultaneous
fit can only be perfect if weights are proportional to cubed lengths. Notice that, length
and weight so not need to have measured at the same time on the same individual; this
evidence for weak homeostasis is, therefor, less direct.

Moreover, the AmP collection also has examples of growth at different constant food
densities. This data also shows that ultimate length depends on food, and that weight
increases with food, for individuals of the same length. This again shows the contribution
of reserve to weight and supports the proportionality of weight and cubed length as evidence
for weak homeostasis. This links up with the wide use of the ratio of weight and cubed
length as condition factor in animal ecology: a good conditions means a high reserve
density.

Finally, the observation that foetal length is proportional to time, and weight to cubed

https://bio.vu.nl/thb/deb/deblab/add_my_pet/species_list.html
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time [637, 1581], implies that weight is proportional to cubed length, demonstrating weak
homeostasis during embryo development, where most relative growth occurs. See further
the comment on section 1.2.1 on strong homeostasis, above.

1.2.3 Exoskeletons of isomorphs

Isomorphism itself poses no constraints on shape, but if organisms have a permanent exo-
skeleton, then stringent constraints on shape exist and as most animals with a permanent
exoskeleton actually meet these constraints, it is helpful to work them out. This is done
in [763].

A grasshopper remains isomorphic and has an exoskeleton, but it grows by moulting,
thus the exoskeleton is not permanent and isomorphism poses no constraints in this case.
The same holds for an organism which resembles a sphere, such as a sea urchin; it cannot
have a permanent (rigid) exoskeleton, because the curvature of its surface changes during
growth. A cylindrical organism that grows in length only, is not isomorphic. A cylindri-
cal organism that grows isometrically has only its caps as a permanent exoskeleton; thus
this includes only the caps, i.e. two growing disks separated by a growing distance. The
permanent exoskeleton generally represents a (curved) surface in three dimensional space,
which can be described in a simple way using logarithmic spirals. The idea of the logarith-
mic spiral or spira mirabilis (in the plane) goes back to Descartes’ studies of Nautilus in
1638 and to Bernoulli in 1692. The function has been used by Thompson [1416], Rudwick
[1224, 1225] and Raup [1154, 1155] to describe the shape of brachiopods, ammonites and
other molluscs. I will rephrase their work in modern mathematical terms and extend the
idea a bit.

A natural starting point for a description of the isomorphic permanent exoskeleton
is the mouthcurve. This is a closed curve in three dimensional space that describes the
‘opening’ of the permanent exoskeleton (shell). This is where the skeleton synthesizing
tissue is found. The development of the exoskeleton can, in most cases, be retraced in
time to an infinitesimally small beginning, giving the permanent exoskeleton just the one
‘opening’. This method avoids the problem of the specification of the shape of an invisibly
small object. To follow the mouth curve back in its development, we introduce a dummy
variable l, which has the value 0 for the present mouth curve and −∞ at the start of devel-
opment. By placing the start of development at the origin, the test on isomorphism of the
developing exoskeleton is reduced to mapping one exoskeleton to another by multiplication
and rotation only (so no translation). We can always orient the exoskeleton such that the
rotation is around the x-axis. Let R(l) denote the rotation matrix

R(l) =

 1 0 0
0 cos l sin l
0 − sin l cos l


The closed mouthcurve m at an arbitrary value for the dummy variable l, can be described
by

m(l) = cl/2πR(−l)m(0)
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where c is a constant describing how fast the mouth curve reduces in size when the ex-
oskeleton rotates over an angle 2π. If c is very large, it means that the exoskeleton does not
rotate during its reduction in size. Size reduction relates in a special way to the rotation
rate to ensure (self) isomorphism. It follows from the requirement that for any two points
m0 and m1 on the mouthcurve, the distance ∥m1(l + h)−m0(l)∥ depends on l in a way
that does not involve the particular choice of points. The rotation matrix is here evalu-
ated at argument −l, because most gastropods form left handed coils. For right handed
coiling l, rather than −l, should be used. The mouth curve, together with the parameter
c determine the shape of the exoskeleton.

An arbitrary point on the mouth curve will describe a logarithmic spiral to the origin.
To visualize this, it helps to realize that a simple function such as the standard circle is
given by f(l) = (sin l, cos l), where the dummy variable l takes values between −∞ and
∞. A graphical representation can be obtained by plotting sin l against cos l. Similarly,
the logarithmic spiral with the vertex at the origin through the point m(0) ≡ (m1, 0,m3)
is given by

f(l) = cl/2π(m1,m3 sin−l,m3 cos−l)

It lies on a cone around the x-axis
with vertex at the origin, and tan-
gent m3/m1 of the diverging angle
with respect to the x-axis. For in-
creasing l, the normalized direction
vector of the spiral from the vertex,
(m1,m3 sin−l,m3 cos−l)/∥m∥, with

∥m∥ =
√
m2

1 +m2
3, describes a circle

in the y, z-plane at x-value m1/∥m∥.

x-axis

m

m3

m1

y-axis

z-axis

Until now, no explicit reference to time has been made. If the length measure of the
animal follows a von Bertalanffy growth pattern, i.e. 1 − exp{−ṙBt} for t ∈ (0,∞), the
relationship cl/2π = 1− exp{−ṙBt} results. So, l = 2π

ln c
ln{1− exp{−ṙBt}}. This is realistic

when food density and temperature remain constant. In winter, when growth ceases in
the temperate regions and calcification partially continues in molluscs, a thickening of the
shell occurs, which is visible as a ridge ringing the shell. If the gradual transitions between
the seasons can be neglected, these ridges will be found at l = 2 pi

ln c
ln{1 − exp{−ṙBi}},

i = 1, 2, 3, .., when the unit of time is one growth season. In principle, this offers the
possibility of determining the von Bertalanffy growth rate ṙB from a single shell found on
the sea shore.

The mouth curve in living animals with a permanent exoskeleton frequently lies more
or less in a plane, which reduces the specification of the three dimensional mouth curve to a
two dimensional one, plus the specification of the plane of the mouth curve, which involves
two extra parameters. The exoskeleton can always be oriented such that the plane of the
mouth curve is perpendicular to the x, y-plane and the mouth opening is facing negative
y-values.
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Let p ≡ (p1, p2, 0) denote a point in the
plane of the mouth curve, such that this
plane is perpendicular to the vector p and
p2 ≤ 0. (Remember that the axis of the spi-
ral is the x-axis with the vertex at the origin
so that the orientation of the exoskeleton is
now completely fixed.) The mouth curve n
in the plane is now measured using the point
p as origin. If the mouth curve is exactly in
a plane, a series of two coordinates suffice to
describe the exoskeleton together with c, p1

and p2.

If it is not exactly in a plane, we can interpret the plane as a regression plane and still
use three coordinates, where the y-values are taken to be small. The relationship between
n measured in the coordinate system with the plane of the mouth curve as x, z-plane and
p as origin with the original three dimensional mouth curve m is:

m = p+

 −p2/∥p∥ −p1/∥p∥ 0
p1/∥p∥ −p2/∥p∥ 0

0 0 1

n

More specifically, if the mouth curve is a circle with radius r and the centre point at
(q1, 0, q3), we get n(ϕ) = (q1 + r sinϕ, 0, q3 + r cosϕ), for an arbitrary value of ϕ between 0
and 2π. This dummy variable just scans the circle. The 6 parameters c, p1, p2, q1, q2 and
r completely fix both shape and size of all isomorphic exoskeletons with circular mouth
curves. If only the shape is of interest, we can choose r as the unit of distance, which leaves
5 free parameters for a full specification.

This class of morphs is too wide because it includes physically impossible shapes. The
orientation of the mouth curve should be such that a mouth opening results and the shape
may not ‘bite’ itself when walking along the spiral. This constraint can be translated
into the constraint that the intersections of the exoskeleton with the x, z-plane should not
intersect each other. The intersections of the mouth curve with the x, z-plane are easy
to construct, given points on the mouth curve. When the point m1 ≡ (m1,m2,m3) on
the mouth curve m(0) spirals its way back to the vertex, it intersects the x, z-plane at
cli/2πR(li)m1, with li = iπ − arctanm2/m3 for i = 0,−1,−2, · · ·.

The distinction Raup [1154] made between a generating curve and a biological one is
purely arbitrary and has neither biological nor geometric meaning; Raup raises the problem
that realistic values for the parameters he uses to characterize shape tend to cluster around
certain values. Schindel [1253] correctly pointed out that this depends on the particular
way of defining parameters, and he used the intersection of mouth curve with the x, z-
plane to characterize shape and showed that realistic values for parameters of this curve
did not cluster. Any parameterization, however, is arbitrary unless it follows the growth
mechanism. This shape of permanent exoskeletons is dealt with here to show that the
shape is a result of the isomorphic constraint.
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Nautilus has a fixed number of septa per revolution. This is to be expected as it makes
a septum as soon as the end chamber in which it lives exceeds a given proportion of its body
size. (The fact that the septa in subsequent revolutions frequently make contact implies
that Nautilus somehow knows the number π.) These septa cause the shell to be no longer
isomorphic in the strict sense, but to be what can be called periodically isomorphic, by
which I mean that isomorphism no longer holds for any two values of l, but for values that
differ by a certain amount. Many gastropods are sculptured at the outer surface of their
shell; this sculpture is formed by the mantle curling around the shell edge. The distance
from the shell edge and the height of the sculpture relates to the actual body size, the
result being a shell that is also periodically isomorphic. Sculpture patterns that do not
follow the mouth curve, but follow the logarithmic spirals, do not degrade isomorphism.
Some shells of fully grown ammonites and gastropods have a last convolution that deviates
in shape from the previous ones, showing a change in physiology related to life stage.

Most shapes are simple and correspond to special cases where the mouth curve lies in
a plane. For p1 = 0, the mouth curve lies in a plane parallel to the x, z-plane; shapes such
as Planorbis and Nautilus result if the mouth curve is symmetrical around the x, y-plane.
A growing sheet is obtained when p1 → 0 and p2 = 0 so that the mouth curve lies in the
y, z-plane. Age ridges can still show logarithmic spirals (in the plane), depending on the
value of c. Figure 1.4 gives a sample of possible shapes. Although the shell of Spirula is
internal rather than external, this does not spoil the argument.

From an abstract point of view, the closed mouth curve can secrete exoskeletons to
either side and no formal restrictions exist for the parameters describing their surfaces.
(The biological reality is that two mouth curves are lined up and can be moved apart to let
the animal interact with the environment.) Animals such as bivalves have two logarithmic
spirals sharing the same mouth-curve, one turns clockwise, one anti-clockwise. Many
gastropods also have a second exoskeleton, the plane-like operculum, which is so small
that it easily escapes notice. Gastropods of the genera Berthelinia, Julia and Midorigai
have two valves, much like the bivalva. As illustrated in figure 1.5, more complex shape
are possible when the mouth curve is branched.

1.2.3 Age of shell material

Work with Laure Pecquerie shows the age of shell material in bivalves, which can be used
for reconstructing environmental conditions from isotope signals in matter sample from
the shell.
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Patella, c→ ∞, p2 = 0

Nautilus, c = 3, p1 = 0, p2 → 0

Spirula, c = 5, p1 = 0, p2 → 0
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Lymnaea, c = 2, p1 = 0, p2 → 0

Mytilus, c = 104, p1 → 0, p2 = 0

Ensis, c = 105, p1 → 0, p2 = 0

Figure 1.4: A sample of possible shapes of isomorphs with permanent exoskeletons. The mouth
curves are shown at equal steps for the dummy argument (Lymnaea, Spirula) or for time. Illumi-
nate well and evenly to obtain the stereo effect. Hold your head about 50 cm from the page with
the axis that connects your eyes exactly parelell to that for the figures. Do not focus at first on
the page but on an imaginary point far behind the page. Try to merge both middle images of the
four you should see this way. Then focus on the merged image. If this fails, try stereo glasses.
If the grey is in front, rather than at the background, you are looking with your right eye to the
left picture. Prevent this with a sheet of paper placed between your eyes and the page. About
10% of people actually look with one eye only and thus fail to see depth. If necessary, test this
by raising one finger in front of your nose and counting the number of raised fingers that you see
while focusing at infinity.
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Figure 1.5: The goose barnacle (Scalpellum
scalpellum) has an exoskeleton with a large
number of components; it is an example of a
branched mouth curve. Tetrahedrons provide an
example of permanent exoskeletons with three
branching points in the mouth curve and cubes
with eight. If the (branched) mouth curve is a
globular network, the exoskeleton can even re-
semble a sphere.

L ∈ (0, L∞) structural length of bivalve (soft tissue)
Ls ∈ (0, Lms ) distance from hinge along shell surface
Lh thickness of shell
Ws weight of shell
l ∈ (0, Lh) depth in shell from outside inwards

Ls = 0 at hinge and Ls = Lms at edge, but Lms changes in time, coupled to L.

Let us assume that

1 the shell is growing at the edge and at the inner surface

2 Lh = Lδh
3 Lms = Lδms
4 d

dt
L = Lṙ/3 = ˙rB(L∞ − L) in constant environment

An implication of assumptions 2 and 3 is that the weight of the shell can be written as
Ws = ds(Lδs)

3. The shell extends at the edge (outward direction) and becomes thicker by
deposition from the inside

d

dt
Ws = doLhL

m
s

d

dt
Lms + diL

m2
s

d

dt
Lh

leading to

d

dt
Lh = δh

d

dt
L with δh =

3dsδ
3
s/δ

m2
s

di + do

At t, the bivalve has structural length L(t). the edge is at distance Lms (t) = L(t)δms
from the hinge and the thickness is Lh(t) = L(t)δh.
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t0 t

0

Lh

Ls = L0
s Ls = Lm

s

- time

6

l
Figure 1.6: The depth in the shell l is plotted
against the time of deposition of shell material
t for three choices of distances from the hinge of
the shell Ls: close to the hinge (red), somewhere
in the middle (magenta) and at the edge of the
shell. The bivalve settled at time t0. The outer
side of the shell is at depth l = 0, the inner side
at l = Lh.

Suppose we drill a core in the shell with tiny diameter at distance Ls from the hinge
and the environment was constant, so

L(t) = L∞ − (L∞ − L0) exp(−ṙB(t− t0))

t− t0 =
1

ṙB
ln
L∞ − Ls
L∞ − L

where t0 < t is the time at settlement and L0 the length at settlement. We refrain from
monitoring the environment before settlement and choose the smallest value of L0

s = L0δ
m
s

at the edge of the shell when it just settled, which was at time t0 when structural length
was L0. The oldest material of the shell that we are interested in has been deposited at t0
and can be found at the outer side of the shell at distance L0

s from the hinge.
At the time the site of the sample was at the edge of the shell, Ls = Lms , the structural

length of the bivalve was L = Ls/δ
m
s , which was at time tL = t − 1

ṙB
ln L∞−Ls/δms

L∞−Ls
. At the

inner side of the shell, at l = Lh(t), the material was deposited at t. At the outer side of
the shell, at l = 0, the material was deposited at tL.

Let us consider too extreme choices for Ls, close to the hinge Ls = L0
s and at the edge

Ls = Lms .
Near the hinge, Ls = L0

s, and at the innerside of the shell, l = Lh(t), the material was
deposited at t; while at the outer side of the shell, l = 0, the material was deposited at t0.
At the edge, Ls = Lms , the material at outer, l = 0, as well as the inner, l = Lh(t), side of
the shell is deposited at t.

When the environment is varying in terms of food availability and temperature, von
Bertalanffy growth no longer applies, but as long as the specific growth rate is positive,
the relation between t and L is monotonous, so the inverse of L(t) exists. The standard
deb model specifies how the specific growth rate ṙ varies in time, given trajectories of
food density and temperature. Given observations on isotope ratios in the shell, these
environmental trajectories can be reconstructed.

1.3 Temperature affects metabolic rates

The issue of temperature dependence of metabolic rates is a complex one. Think of the
enzyme(E)-mediated transformation of substrate A to product B: A + E → yABB + E.
Like all transformations it depends on temperature in an instantaneous way. If temperature
changes, the rate is changing because of the velocity of molecules. If this transformation
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occurs in a living organism, it depends on temperature in a more complex ways, because
the cell/individual changes the properties of E qualitatively. This change is not instanta-
neous (involving enzyme turnover), so the way the rate depends on temperature becomes
dependent on temperature history. I don’t see yet attempts to capture this dynamically
and without such a model, experimental data are hard to interpret (see below).

The point that I make in chapter 1 of DEB3 is: IF yAB does not depend on temperature,
then all rate parameters should depend on temperature in the same way in the standard
DEB model (does not hold that strict in more-reserve models). If rate parameters depend
on temperature in different ways, conversion coefficients (like yield coefficients) become
temperature dependent and in fact all parameters can depend on temperature. Even if
we use one temperature-parameter per parameter to express how, we have already 13
temperature parameters in the standard DEB model, rather than one (TA). A challenging
question is how yAB can depend on temperature, while the same metabolic machinery is
doing the conversion. The above-mentioned transformation is generally not complete and
involves other products and probablyO2 as extra substrate. If yAB depends on temperature,
product formation depends on temperature in complex ways. To convince me the necessity
to go through all this pain (and say farewell to models with few parameters), it is necessary
to measure the substrate and product balances and demonstrate mass conservation. It is
not likely that this will be done. If done in the proper way, such a development can
still be consistent with DEB principles. The many parameters will make the resulting
model inapplicable, however. When I see that the standard DEB model has to work with
completeness levels of some 2.5 till 3.5 using literature data (while level 10 determines all
balances dynamically), it seems safe to choose different priorities to application to many
species. Responses of feeding, growth, reproduction not only depends on temperature, but
also on feeding history. When people with no attention for metabolic memory analyse
temperature responses, signals become connected to temperature, while, in fact, other
causes apply. Moreover temperature history cannot be ignored (another form of metabolic
memory). We should distinguish between short and long term responses to changes in
temperature; short term responses involve temperature history fundamentally. A lot more
can be said about this complex topic.

1.3.7 Temperature correction factor

The metabolic rates relate to temperature, by first choosing a reference temperature T1,
and then using the Arrhenius factor on the rate at T1 of sA(T ) = exp

(
TA
T1

− TA
T

)
, given in

Eq (1.3). The correction factor satisfies the natural constraint sA(T1) = 1.
This factor can be multiplied by a term to account for a low-temperature reduction out-

side the temperature range (TL, TH), namely sL(T )/sL(T1) with sL(T ) =
(
1 + exp

(
TAL

T
− TAL

TL

))−1
,

or a term to account for a high-temperature reduction, sH(T )/sH(T1) with sH(T ) =(
1 + exp

(
TAH

TH
− TAH

T

))−1
, or a term to account for both, sLH(T )/sLH(T1) with sLH(T ) =(

1 + exp
(
TAL

T
− TAL

TL

)
+ exp

(
TAH

TH
− TAH

T

))−1
, see Eq (1.3). Notice that the terms sL(T1),

sH(T1) and sLH(T1) just serve the function to ensure that the correction factors equal 1
for T = T1.
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Intuitive and natural constraints on these reduction factors are sL(T ) ≤ sL(T1), sH(T ) ≤
sH(T1) and sLH(T ) ≤ sLH(T1). This translates to constraints on TL, TH , TAL and TAH .
For sL this works out as T ≤ T1 and for sH as T ≥ T1. This suggests that if we want to
implement low-temperature reductions, the factor sL(T )/sL(T1) is only applied for tem-
peratures T < T1. Likewise high-temperature reduction is only applied for temperatures
T > T1. This imposes constraints on the choice of T1, which might force us to choose this
reference temperature in a species-specific way. The conditions T1 > TL and T1 < TH seem
natural, but not necessary for the condition that the reduction factors are less than 1. For
sLH , the 5-parameter temperature-correction variant, the situation is more complex. We
must have exp

(
TAL

T1
− TAL

TL

)
+ exp

(
TAH

TH
− TAH

T1

)
≤ exp

(
TAL

T
− TAL

TL

)
+ exp

(
TAH

TH
− TAH

T

)
. A

necessary, but not sufficient, condition is TL < T1 < TH .
The AmP collection has chosen 293.15K as reference temperature, but the polar cod,

Boreogadus saida, for instance, has a TH that is lower, with the implication that the
factors that should reduce metabolic rates actually increase them. This suggests a species-
dependent choice of the reference temperature, e.g. 2 ◦ for (ant)arctic species, and the
avoidance of the use of temperature-dependent pseudo-data for parameter estimation for
such species. This can be done by using reserve density [Em], rather than energy con-
ductance v̇, and maintenance ratio k, rather than maturity maintenance rate coefficient
k̇J .

Figure 1.8 compares the Arrhenius factor with the 5-parameter temperature-correction
variant. In the latter, the factor sLH(T1) is omitted, so the population growth rate at T1

is multiplied by sA(T )/sLH(T ) to correct for the effect of temperature. This is the reason
why the drawn curve is below the stippled line for all temperatures and don’t meet the
line at T1, since sLH(T ) > 1 for all T . This illustrates that the problem of choosing T1

sometimes in a species-specific way originates from the normalisation (our wish that the
temperature correction factor should equal 1 at the reference temperature). Notice that
the issue of reference temperature is not discussed in connection to Figure 1.8.

The comparison of temperature-dependent parameter values across species has prob-
lems. Depending on the species, endotherms don’t tolerate substantial deviations from
their target body temperature. When comparisons are made at 20 ◦C, they typically would
simply die at that temperature.
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Standard DEB model in time, length
& energy

2.1 Feeding

2.1.2 Food transport is across surface area of individual

Most animals have guts to process food before absorption, but this does not exclude simul-
taneous resource uptake through the skin. Hagfish (Myxini) have a gut, but can also absorb
dissolved organic matter across the skin and gill, possibly an adaptation to a scavenging
lifestyle.

2.1.4 Functional response

The text should separate the microscopic and macroscopic levels more clearly. Let us first
look at the microscopic level, which is discussed in detail in Section 3.7 and focus on a
mussel that filters algae. Suppose that these algal cells arrive at a rate ḣX per time at the
mussel in a given situation. Each cell needs a processing time of ḣ−1

m , so the mussel is busy

during a fraction ḣX
ḣX+ḣm

of its time and accepts cells only when it is not busy. So a fraction

ḣm
ḣX+ḣm

of the arriving cells is accepted and the feeding rate amounts to ḣ = ḣmḣX
ḣX+ḣm

cells
per time.

Now we link the microscopic to the macroscopic level, where we can’t observe the rate
at which algae arrive at the mussel, but we can quantify the filtering rate of the mussel.
If the mussel manages, somehow, to organise its feeding process such that all the filtered
water is swept clean, the feeding rate Ḟ (volume of water per time) amounts to ḣ = ḞN ,
where the algae have a density of N cells per volume of water. Feeding rate is at maximum
in absence of cells: Ḟm = ḣX/N for very small ḣX and N . The arrival rate of algae to the
mussel is ḣX = NḞm. In other words: the arrival rate of cells to the mussel is proportional
to the cell density, which is quite natural, and the maximum filtering rate represents the

proportionality factor. The feeding rate amounts to ḣ = ḣmN
N+K

for half saturation constant

K = ḣm/Ḟm.
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The dimension of ḣ is number of cells per time. This formulation treats cells as identical
copies (which is implied by the assumption of a fixed handling time per cell), but for
metabolic purposes we need to think about masses and energies and allow for differences
between cells. If MX denotes the mass of a cell in C-mol, we can quantify the ingestion
rate as J̇XA = MX ḣ. This is too simple for many applications, where we need more
compositional information about the cells (reserves, structure), and specify the feeding
process in more detail, [1242].

Functional response f is defined as the ingestion rate of food of a given (constant)
food quality as fraction of the maximum possible one for an individual of given size. It
takes values between 0 (absence of food) and 1 (abundant food). Two types of food can
differ in nutritional quality and the maximum specific assimilation rate {ṗAm} can depend
on food quality. In more detail, the energy content of ingested food can be written as
ṗXκX = f(X){ṗAm}L2, where κX is the digestion efficiency and {ṗAm} = sX{ṗref

Am}, where
sX is a dimensionless food quality parameter, relative to some standard; sX = 1 for that
standard food quality. So κX and sX play similar, but slightly different roles, where quality
coefficient sX relates to the variation of the maximum specific assimilation rate as function
of food quality.

The cumulative amount of food eaten at puberty since birth amounts to Mp
X −M b

X =∫ ap
ab
J̇XA(a) da, with J̇XA(a) = f{J̇XAm}L(a)2. If food density is constant, L(a) = L∞ −

(L∞ − Lb) exp(−ṙBa) with L∞ = fLm − LT and ṙB = k̇M/3
1+f/g

. Substitution gives

Mp
X −M b

X = f{J̇XAm}(L2
∞(ap − ab) + (3L∞ + Lp)

L∞ − Lp
2ṙB

)

The amount of food that the mother required to make an egg is M b
X = M0

E/yEX , which
completes the evaluation of the cumulative amount of consumed food at puberty Mp

X .
The food-equivalence of a sperm cell is probably small, but most sperm cells are wasted.
This evaluation includes overheads in the form of (somatic and maturity) maintenance and
maturation.

The remark that organizational simplicity is essential for robustness and evolutionary
change is further illustrated by the recent finding that, within the process of deuterostome
evolution, tunicates reduced their genome substantially in size (that of Oikipleura is the
smallest i animal kingdom), and evolved very rapidly, while vertebrates doubled their
genome size twice, and evolved much slower [470].

Figure 2 shows that the cumulative amount of food eaten at puberty is a U-shaped
function of the functional response, with a minimum close to the minimum functional
response that allows for full maturation. At this minimum function response, the cumula-
tive amount of food must go to infinity since it lasts infinitely long to reach the maturity
level at puberty, while the maintenance costs grow without boundary. The yield of (dry)
biomass on (dry) food, Y p

WX = W p
d /(wXM

p
X), has a maximum at a somewhat higher func-

tion response than that minimizes cumulative food intake. Applications at population level
should consider that most individuals don’t make it till puberty, and much more food is
required to replace an individual for one of the next generation.
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The cumulative amount of food eaten at puberty
(red), including overheads, plus the amount of
food eaten by the mother to make the egg as
function of the scaled functional response. The
yield of dry biomass on cumulative food (blue)
has maximum at a higher function response than
that minimizes cumulative food intake. The pa-
rameter values are from the generalized animal,
given in Table 8.1.

2.3 Reserve dynamics: simplified derivation

Work with James Maino, Mike Kearney and Roger Nisbet shows that a much simpler (but
somewhat less rigorous) derivation of reserve dynamics can be based on three steps:

1 mobilisation only depends on reserve and structure and fuels all metabolism other than
assimilation. Only in this way, the resulting growth and reproduction can capture a
set of empirical stylised facts [858].

2 gross mobilisation is proportional to E/L. Only in this way gross mobilisation is a func-
tion of reserve and structure only and reserve density remains constant at constant
food density with a feeding rate that is proportional to squared length.

3 part of mobilised reserve is rejected for growth of structure such that the ratio of the
rejected reserve and synthesized structure equals the existing reserve density. Only
in this way does mobilisation not affect reserve density, which is required for weak
homeostasis.

Reserve dynamics follows from these two rules as follows. Nett mobilisation equals gross
mobilisation minus rejection: ṗC = ṗgC − ṗrC . Gross mobilisation can be written as ṗgC =

v̇E/L. A fraction κC , say, of the gross mobilisation is rejected, so
κC ṗ

g
C

ṙV
= E

V
and ṗrC =

κC ṗ
g
C = ṙE and ṗC = E(v̇/L− ṙ).

Somatic maintenance can be introduced as a demand process by subtracting it from
gross mobilisation before allocation to growth. Allocation to maturity maintenance and
maturation (or reproduction) can be introduced as (constant) fraction of the mobilisation
(the κ-rule). None of these modifications affect the expression for mobilisation other than
via the specific growth rate ṙ. It can be shown that the proper rejection flux results nat-
urally from the dynamics of Synthesizing Units for all reserve densities, if these units rep-
resent a fixed fraction of structure. Unnecessary mobilisation of reserve can subsequently
be avoided with a self-inhibition of monomerisation of polymerous reserve.
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2.3 Reserve dynamics: Derivation of (2.4)

The derivation of (2.4) can be as follows. The general formula for reserve dynamics is
d
dt
[E] = [ṗA]−F ([E], V ), for some function F of the state variables [E] and V . We now use

the weak homeostasis assumption, which states that [E] is independent of V if d
dt
[E] = 0,

while [ṗA] ∝ V −1/3. The essential point of this assumption is that the individual can
grow under constant environmental conditions, but does this in such a way the the reserve
density does not change. This means that the function F has to be inversely proportional
to length as well, and, at equilibrium, F can be written as F ([E]∗, V ) = V −1/3H([E]∗|θ),
where function H does not depend on V , but on [E] only. Weak homeostasis only applies
at equilibrium. When we generalize this result to non-equilibrium conditions, we must
add a general term that disappears in the equilibrium. We do this by choosing some
general function G, like F , and multiply it with the factor ([E]∗ − [E]) to make sure
that it disappears at equilibrium. This directly results in (2.4). To demonstrate that the
function G◦([E]∗, [E], V ) = ([E]∗ − [E])G([E]∗, [E], V ) must equal zero, we differentiate to
[E]∗ and require that it is independent of [E]∗ by imposing d

d[E]∗
G◦ = 0, which leads to

0 = G+ ([E]∗ − [E]) d
d[E]∗

G. Separation of variables leads to the solution G([E]∗, [E], V ) =

G∗([E], V )/([E]∗ − [E]), for some general function G∗. When we substitute this result
back into the equation for d

dt
[E], the third term amounts to G∗([E], V ), about which we

know that is does not depend on [E∗] while G∗([E∗], V ) = 0. This can only be true if
G∗([E], V ) = 0, which leaves us at d

dt
[E] = [ṗA] − V −1/3H([E]|θ) at steady state, as well

as non-steady state conditions. The key argument around function G is that an arbitrary
function of [E] and V that disappears at steady state [E]∗ must depend on the value
[E]∗, while this value depends on food density. We assumed, however, that the use of
reserve does not depend on food density, so we can forget about such a function G and
d
dt
[E] = [ṗA]−V −1/3H([E]|θ) fully covers the set of all possibilities, given the assumptions.

2.3 Reserve dynamics: Derivation of (2.6)

The derivation of (2.6) is as follows: We have d
dt
E = ṗA − ṗC , while [E] = EV −1, so

d

dt
[E] = V −1 d

dt
E − EV −2 d

dt
V

= V −1 d

dt
E − [E]V −1 d

dt
V

= V −1 d

dt
E − [E]

d

dt
lnV

= ṗA/V − ṗC/V − [E]
d

dt
lnV

= [ṗA]− [ṗC ]− [E]
d

dt
lnV

Eqn. (2.6) follows from (2.5) and κṗC = ṗM+[EG]
d
dt
V , by realizing that d

dt
lnV = V −1 d

dt
V .
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2.3.1 Partitionability (2.9)

The definition of partitionability in (2.9) should be read as follows: if we multiply [E], [ṗM ]
and [EG] with some number κA between 0 and 1 (as is done in the right-hand side), the effect
is that [ṗC ] is multiplied with that number (as is done in the left-hand side). The criterion
applies to the dynamics of the reserve density [E], not to the dynamics of the amount
of reserve E. The reason is in the smooth merging of reserves in an evolutionary time
frame. Single-reserve systems evolved from multi-reserve systems. Moreover, symbiogenesis
frequently occurred in evolution, where two syntrophic species merge into a single one.
Since DEB theory is supposed to apply to all organisms, consistency arguments show that
both partners prior to merging, as well are the merged new species must follow the DEB
rules. To do this in a smooth way, we need a mergeability argument, which is the inverse
partitionability argument. The reasoning is spelled out in [780].

The step from the partitionability requirement to the requirement for H and κ follows
after substitution of (2.7) in the definition of partitionability, together with the observation
that it must apply for all values of V . The latter observation boils that to the argument
that the substitution of [ṗC ] in the left- and right-hand side of the partitionability definition
results in the equality of two ratios of terms in V , and so to equality of each of the terms.

2.3.2 Mergeability (2.15)

Using (2.14), the mergeability constraint κAḞ ([E], V ) = Ḟ (κA[E], V ) can be written as

κA

(
1 +

κ[E]

[EG]

)
[ṗC ]([E], V )− κA

[E]

[EG]
[ṗS] =

(
1 +

κAκ[E]

[EG]

)
[ṗC ](κA[E], V )− κA[E]

[EG]
[ṗS]

or

κA

(
1 +

κ[E]

[EG]

)
[ṗC ]([E], V ) =

(
1 +

κAκ[E]

[EG]

)
[ṗC ](κA[E], V )

From this (2.15) follows.

2.3.3 Mechanism for strong homeostasis

The proposed mechanism in Section 2.3.3 assumes that the (constant) fraction of structure
that consists of growth SUs is such that the ratio of the rejected reserve flux and the
synthesised structure flux equals the existing reserve density. The beauty of the argument
is that such a faction can actually exist, and the property applies even if the flux of reserve
allocated to these SUs varies. Fig. 2.2 illustrates that the standard deviation of the specific
use of reserve for growth and somatic maintenance during a stochastic feeding process is
very sensitive for the value of the rejection strength. This property suggests a possible
scenario for the evolution of strong homeostasis, in this case with respect for the growth
SUs in structure, via weak homeostasis. Originally the density of SUs would not have been
the value that results in weak homeostasis, so the setting of their specific abundance might
have been linked to a minimisation of variation, see [798].
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Figure 2.1: The SU-complex for mo-
bilisation, maintenance and growth is
inhibition of reserve monomers. The
monomer-polymer ratio in reserve is
constant and small.
M maintenance substrate
F monomer reserve
V structure

Figure 2.2: The standard deviation of the specific
use of reserve density as a function of the rejection
strength, if the assimilation rate k̇A jumps randomly
between 0 and 1 h−1. The hazard rate at level 0 is 2, 10
and 50 h−1 and at level 1 is 10 h−1. The standard de-
viations are estimated from Monte Carlo simulations
over 200 h, using reserve turnover rate k̇E = 1.5 h−1

and maintenance rate coefficient k̇M = 0.01 h−1.

The surface area of the interface of reserve and structure is proportional to the amount
of reserve ME for V1-morphs and to ME/L for isomorphs (for which length L ∝ M

1/3
V ,

where MV is the amount of structure) if structural homeostasis applies. To see this, think
of a growing sphere of radius Lr; it has volume V = 4

3
πL3

r and surface area S = 4πL2
r =

1
3
V
Lr

∝ V/L, where L = V 1/3. The volume of reserve is proportional to its mass (or energy
content) due to strong homeostasis and coupled to the volume of structure due to weak
homeostasis. The reserve is mobilised at rate J̇EC = ME k̇E for V1-morphs and at rate
J̇EC = ME v̇/L for isomorphs. So the reserve turnover rate k̇E is constant for V1-morphs,
but its equivalent for isomorphs, v̇/L, changes in time because the energy conductance v̇
remains constant, while length L changes in time.

The dynamics of the fraction of unbounded SUs for growth and somatic maintenance,
θ·, for V1-morphs is

d

dt
θ· = (1− θ·)k̇ + jEM/n− θ·k̇EmE/n, (2.1)

where n = N/MV denotes the specific number of SUs, k̇ the dissociation rate of the SUs,
mE =ME/MV the reserve density, jEM = J̇EM/MV the specific somatic maintenance costs
and J̇EM the somatic maintenance costs. Because maintenance is a demand process that
has a fixed specific rate, and growth a supply process with a varying rate, maintenance has
absolute priority above growth and takes mobilised reserve instantaneously at the moment
it arrives at the SUs. It, therefore, appears with the term jEM/n in the change of the
unbounded fraction.
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The steady state fraction of unbounded SUs then amounts to

θ∗· =
k̇ + jEM/n

k̇ + k̇EmE/n
, (2.2)

while the specific growth rate equals ṙ = (1−θ∗· )n yV E k̇ = mE k̇E−jEM

mEψ+yEV
for rejection strength

ψ = yEV k̇E
nk̇

and yield of structure on reserve yV E = y−1
EV . The mobilised reserve flux of

size ME k̇E is partitioned into the flux ME(k̇E − ṙ) that is accepted and used for somatic
maintenance at rate jEMMV and growth (i.e. structure is synthesised at rate ṙMV ), and
the flux MEψṙ that is rejected and returned to the reserve. The latter flux can be seen
(formally) as a synthesis of reserve, which helps to see that for ψ = 1 (so n = yEV k̇E/k̇),
homeostasis is most effective because reserve is then synthesised at the same specific rate
as structure, so the reserve density is not affected.

The dynamics of the reserve density becomes

d

dt
mE = jEA −mE(k̇E + ṙ(1− ψ)), (2.3)

where jEA is the specific assimilation rate, which depends on substrate density and so typ-
ically fluctuates in time. The mobilising SUs at the reserve-structure interface experience
a local chemical environment that changes with − d

dt
lnmE|jEA=0, so with k̇E + ṙ(1 − ψ).

Let us call this quantity k̇C , the normalised mobilisation rate. Fig. 2.2 gives the standard
deviation of k̇C as function of rejection strength ψ, when the assimilation rate k̇A jumps
randomly between 0 and some fixed value; so the assimilation process follows an alternat-
ing Poisson process with the consequence that the reserve density changes in time as does
the specific growth rate ṙ. The standard deviation of k̇C equals zero for ψ = 1 (because
k̇C = k̇E in that case), but increases almost proportional to the deviation from this value.
The tuning of the number of SUs n can then be seen as one of the mechanisms organisms
use to improve homeostasis.

The specific flux that is mobilised from the reserve, the specific mobilisation flux [ṗC ],
relates to the energy costs per unit of structure [EG] and the specific maintenance costs [ṗM ]
as [ṗC ] = [EG]ṙ+ [ṗM ] = [E](k̇E − ψṙ), where [E] is the reserve density. It is partitionable

for all positive values of ψ because [ṗC ] = [E] [EG]k̇E+ψ[ṗM ]
ψ[E]+[EG]

= [E] [EG]′k̇E+[ṗM ]
[E]+[EG]′

. So, rejection

strength ψ only affects the apparent growth costs, [EG]
′ = [EG]/ψ. The abundance of SUs

n, therefore, affects parameter values, not model structure.
Table 2.1 presents the specific mobilisation flux and the reserve density dynamics for

the first-order process; this is compared with that for V1 and isomorphs according to deb
rules. Three types of dynamics might represent steps in an evolutionary sequence. The
specific growth rate appears in either the specific mobilisation flux or the reserve density
dynamics because of the chain rule for differentiation (i.e. dilution by growth).

If the reserve capacity is large, which is the case for large bodied species, and for eggs
and seeds in an early stage of development, most of the mobilised reserve is rejected and
fed back to the reserve. This unnecessary mobilisation is avoided by self-inhibition of
monomerisation of reserve-polymers, as illustrated in Figure 2.1.
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Module Specific mobilisation Specific growth Reserve density
flux [ṗC ] rate ṙ = d

dt
lnV d

dt
[E]

First-order [E]k̇E
[E]k̇E−[ṗM ]

[EG]
[ṗA]− [E](k̇E + ṙ)

V1-morphs [E](k̇E − ṙ) [E]k̇E−[ṗM ]
[E]+[EG]

[ṗA]− [E]k̇E

Isomorphs [E](v̇/L− ṙ) [E]v̇/L−[ṗM ]
[E]+[EG]

({ṗA} − [E]v̇)/L

Table 2.1: Three steps in the evolution of reserve dynamics, and the implications for the specific
mobilisation flux, the specific growth rate and the dynamics of the reserve density. Symbols:
[E] = E/V reserve density, V structural volume, L = V 1/3 structural length, [ṗC ] = ṗC/V
specific mobilisation flux, [ṗM ] = ṗM/V specific somatic maintenance flux, [ṗA] = ṗA/V (volume-
)specific assimilation flux, {ṗA} = ṗA/L

2, surface-area-specific maintenance flux, [EG] specific
costs for structure, k̇E reserve turnover rate, v̇ energy conductance.

2.3 Turnover time of reserve

The turnover time for reserve equals the mean time that a randomly selected (generalised)
reserve ‘molecule’ stays in the reserve compartment; for this reason it is also called residence
time. Using (2.20), this time amounts at constant food (e = f) for juveniles and adults to

tE =
E

ṗC
=

1 + f/g

v̇/L+ k̇M(1 + LT/L)
.

So tE increases with structural length L. By comparison, the residence time of food
particles in the stomach ts and gut tg, see Section 7.3.1 and (7.68), are proportional to
structural length. So tE, ts and tg all increase with the length of the individual. This
links to the observation that distances across which metabolites have to be transported
also increase with a length measure.

Effects of the scaled functional response work out very different for the residence times in
reserve, stomach and gut. tE increases with f , ts is independent of f and tg decreases with
f . So the residence times of particles in the gut and the reserve respond almost oppositely
to changes in food density. The fact that tE increases with f enhances the buffering
capacity of reserve for changes in food availability. The residence time of ‘molecules’ in the
reproduction buffer very much depends on the buffer handling rules.

The maximum value for tE is reached for f = 1 and L = Lm = v̇
gk̇M

. For LT = 0

that gives tEm = (gk̇M)−1, so Lm = v̇tEm: maximum (structural) length is the product
of the energy conductance and the maximum (mean) residence time of ‘molecules’ in the
reserve. The residence time can thus be written as tE = f+g

1+(LT +gLm)/L
tEm. Scaled maximum

turnover time τEm = tEmk̇M = g−1 is thus inverse to the energy investment ratio. Since
energy investment ratio does not have a direct interpretation, apart from its definition
g = [EG]v̇

κ{ṗAm} , we now uncovered a direct interpretation of the energy investment ratio: the
inverse scaled maximum reserve turnover time.

A (constant) fraction of reserve consists of proteins that catalyse particular metabolic
transformations (enzymes). Enzymes are thermally rather unstable and functional at for-
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mation, but sooner of later loose their activity as catalyst. So when an individual grows
bigger, a larger fraction of its enzymes in the reserve is in the non-functional state, which
partly explains the loss of metabolic performance that is typically associated with ageing
in the literature, but has in fact nothing to do with that. The fully grown individual at
abundant food represents a worst case in terms of performance of compounds in its reserve
(and in terms of vulnerability for shrinking).

The maximum reserve density equals mEm = yEV

gκ
. When we compare different species,

the maximum reserve density increases proportional to the maximum length Lm, because
g is inversely proportional to Lm (see Section 8.2). If a large-bodied species makes use
of the same enzymes as a small-bodied one, a smaller fraction of its enzymes is in the
active state. By increasing the maximum reserve density, the density of active enzymes
can become independent of the maximum body size. This is another way to look at the
implied result that tEm

mEm
= κ

k̇MyEV
is independent of maximum body size across species:

The number of active enzymes decays by a first order process, so it decreases exponentially
in time, and the density of active enzymes in the reserve is independent of the maximum
body size of a species.

Large reserve capacities smooth out fluctuations in food intake rates much more ef-
fectively than small ones, as reflected in the turnover rate. This determines a typical
temporal scale of living. By ‘choosing’ for a reserve density proportional to maximum
structural length, big-bodied species not only solve the problem of preserving the integrity
of their reserve relative to their structure, but also increase the time they can survive star-
vation in proportion to maximum structural length as an aspect of the smoothing capacity
of a large reserve. The (walking, swimming, flying) speed and the diameter of the home
range also increase with maximum body length, which combines nicely with the feeding
rate scaling with cubed length inter-specifically (with squared length intra-specifically).
When there is no food, the combination of speed and starvation time scaling with length
nicely combines with the fraction of the home range that is searched for food being inde-
pendent of maximum body length. I mention this to demonstrate the natural coupling of
scales in space and time, and of behavioural, physiological and even molecular traits.

Enzymes not only occur in reserve, but also in structure. A (large) fraction of somatic
maintenance relates to the turnover of structure and different chemical compounds can have
different turnover rates. So the turnover of structure is paid from somatic maintenance and
the turnover rate is independent of food availability and body size. The turnover of reserve
is paid from overheads of assimilation and mobilisation and the turnover rate depends on
food availability and body size. The overhead of assimilation is in the yield of reserve on
food yEX (mass frame of reference), or in the assimilation efficiency κX (energy frame of
reference). The overhead of mobilisation translates into the overheads of all of the end-
points of mobilised reserve: somatic and maturity maintenance, growth and maturation
(or reproduction). The primary difference between reserve and structure is in the way
turnover is paid and in how the turnover depends on food availability and body size. One
might speculate that enzyme ‘species’ that loose their activity rapidly are subjected to the
structure-regime to avoid that the fraction of inactive enzymes becomes large.

The residence time of atoms of element i in an individual without a reproduction buffer
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Figure 2.3: Left: Von Bertalanffy growth curves can be fitted separately to the five data sets in
the lower right panel of Figure 2.10 for Daphnia magna for various food densities. Right: The
inverse of the estimated von Bertalanffy growth rates, ṙ−1

B , is plotted against estimated ultimate
lengths and a linear relationship results as expected by the standard deb model. From [768].

is given by

tiW = ts + tg

(
1− niE

niX

yEA
2

)
+ tE

niE
niX

yEX + tiV
niV
niE

ṙ

jEC
with jEC = mE(v̇/L− ṙ)

where it is assumed that atoms that enter the reserve stay in the gut half as long as atoms
that enter faeces or minerals. The residence time in structure, tiV , is independent of food
intake and amount of structure and can depend on the compound (in structure) in which
the atom is sitting.

Residence times have tight links with chemistry and in fact define metabolic organi-
sation. The main carbohydrate storage of plants is starch, a poly-glucose see Table 3.2,
while animals use glycogen, which is another poly-glucose, that can be digested by the
same enzymes. The main difference between starch and glycogen is that glycogen is much
more branched and enzymes unlock glucose at the tips of the branches. So glycogen can be
monomerised more quickly. Animals can also convert carbohydrates into lipids, a very slow
and concentrated form of energy storage, which is typically localised in specialised (adipose)
tissue, see Subsubsection 3.3.2 of the comments. So animals convert food-derived starch
in more rapid (glycogen) and a more slow (lipid) pools. The residence times of metabolic
pools have links with differentiation, cell-to-cell communication and activity dynamics of
the individual as a whole, see Section 10.5.1; plants don’t need to respond instantaneously
on signals from sensors, animals do.

2.4 κ is constant

If the allocation fraction to soma, κ, is constant, the inverse von Bertalanffy growth rate
increases linearly with ultimate length, ṙ−1

B = 3k̇−1
M + 3L∞/v̇ for {ṗT} = 0, cf. (2.24); this

is supported by empirical evidence, see Figure 2.3.
Suppose now that κ is not constant and decreases with size as κ = 1 − L/Lκ, where

Lκ is a parameter, see [858]. The von Bertalanffy growth d
dt
L = ṙB(L∞ − L) no longer
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applies, meaning that ṙB is no longer constant at constant food, but (2.21) still holds. Let
us define the generalised von Bertalanffy growth rate as

ṙB ≡ L−1
∞

d

dt
L

∣∣∣∣∣
L=0

= lim
L→0

ṙL

3L∞
for ṙ ≡ d

dt
lnL3

and evaluate how ṙ−1
B would depend on L∞ for this choice of κ at constant food, so constant

reserve density [E]. Let us take {ṗT} = 0 for simplicity’s sake, and we arrive at

ṙ =
[E]v̇/L− [ṗM ]/κ

[E] + [EG]/κ
=

[E]v̇/L− [ṗM ]/(1− L/Lκ)

[E] + [EG]/(1− L/Lκ)

L∞ =

(
[ṗM ]

[E]v̇
+

1

Lκ

)−1

or [E] =
[ṗM ]/v̇

L−1
∞ − L−1

κ

ṙB = L−1
∞

[E]v̇/3

[E] + [EG]
=

v̇/3

L∞ + (1− L∞/Lκ)v̇[EG]/[ṗM ]

ṙ−1
B = 3L∞/v̇ + 3(1− L∞/Lκ)[EG]/[ṗM ] = 3L∞/v̇ + 3(1− L∞/Lκ)/k̇M

The conclusion is that ṙ−1
B is still linear in L∞, but the slope is 3

v̇
− 3

Lκk̇M
, which is negative

for Lκ < v̇/k̇M . If we substitute typical values, as given in Table 8.1, the slope is negative if
Lκ < 3.1 cm. Notice that Lκ can’t be very large, because that would suppress reproduction,
and only positive slopes have been found empirically, so far.

Maximum length equals L∞ for [E] = [Em] = {ṗAm}
v̇

, so Lm =
(

[ṗM ]
[Em]v̇

+ 1
Lκ

)−1
=(

[ṗM ]
{ṗAm} +

1
Lκ

)−1
and L−1

m = L−1
κ + [ṗM ]

{ṗAm} . The value of κ for L = Lm is κmin = 1 − Lm

Lκ
=

1 −
(
1 + Lκ

[ṗM ]
{ṗAm}

)−1
or Lκ = {ṗAm}

[ṗM ]
κmin

1−κmin
. Expressed in terms of κmin, rather than Lκ,

maximum length equals Lm = κmin{ṗAm}/[ṗM ]. The slope of ṙ−1
B against L∞ is zero if

L−1
m = k̇M

v̇
+ [ṗM ]

{ṗAm} .
How would the body size scaling relationships work out for this choice of κ on the

assumption that κmin is an intensive parameter, so it does not depend on maximum body
size, comparing species? We again have the result that {ṗAm} is proportional to the zoom
factor, so is Lκ. So for small bodied species we would expect that the slope of ṙ−1

B against
L∞ would become negative. Such a pattern has not been observed, however. Figure 2.4
shows that the slope does not depend on maximum body length; notice that the slope (and
the intercept) is sensitive for the temperature.

An alternative choice for κ has been worked out by Dina Lika, where κ decreases
hyperbolically in L: κ = (1+L/Lκ)

−1, where Lκ is again a parameter. Following the same
reasoning, we find:

ṙ =
[E]v̇/L− [ṗM ]/κ

[E] + [EG]/κ
=

[E]v̇/L− [ṗM ](1 + L/Lκ)

[E] + [EG](1 + L/Lκ)

L∞ =
Lκ
2


√√√√1 +

4[E]v̇

[ṗM ]Lκ
− 1

 and [E] =
[ṗM ]

v̇
L∞

(
1 +

L∞

Lκ

)

ṙB = L−1
∞

[E]v̇/3

[E] + [EG]
=

v̇/3

L∞ + [EG]v̇
[ṗM ]

(
1 + L∞

Lκ

)−1 and ṙ−1
B =

3

v̇
L∞ +

3/k̇M
1 + L∞/Lκ
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Figure 2.4: The inverse von Bertalanffy
growth rate as function of ultimate length for
Rattus norvegicus, see Figure 4.7 and Mus
musculus, see Figure 6.2. The slope of the
lines does not decrease for decreasing maxi-
mum body length across species; in this case
the slope slightly increases with decreasing
maximum body length.

Figure 2.5: The inverse von Bertalanffy growth
rate as function of ultimate length (running from
zero to maximum length) if κ decreases lin-
early (blue) or hyperbolically (red) as function
of length for several choices of maximum length.
Parameters v̇ = 0.02 cmd−1, k̇M = 0.0064 d−1

and κmin = 0.7. Other choices of parameter val-
ues don’t change the picture qualitatively.

The inverse von Bertalanffy growth rate ṙ−1
B is now a non-linear function of ultimate length

L∞; the slope of ṙ−1
B for very small values of L∞ is 3

v̇
− 3

Lκk̇M
, which is, again, negative for

Lκ < v̇/k̇M .

Maximum length Lm equals L∞ for [E] = [Em] =
{ṗAm}
v̇

, so Lm = Lκ

2

(√
1 + 4{ṗAm}

[ṗM ]Lκ
− 1

)
.

The minimum value of κ for is κmin = (1 + Lm/Lκ)
−1 = 2

(
1 +

√
1 + 4{ṗAm}

[ṗM ]Lκ

)−1

or Lκ =

{ṗAm}
[ṗM ]

κ2min

1−κmin
. Expressed in terms of κmin, rather than Lκ, maximum length again equals

Lm = κmin
{ṗAm}
[ṗM ]

. On the assumption that κmin is an intensive parameter, we again have

that Lκ ∝ Lm, so for small-bodied species we should expect the relationship between ṙ−1
B

and L∞ that is very different from a linearly increasing one as have been found empirically.
As illustrated in Figure 2.5, a hyperbolic decrease of κ as function of L works out similarly
to a linear decrease; this contributes to the robustness of the argument.

This analysis supports the conclusion that a constant κ captures the general pattern
best; a constant κ also offers the best basis for generalisations of the κ-rule, cf Sections 5.3.1
and 5.3.2, which link up with the well-known (near-)allometric growth of body parts. Some
workers proposed that κ decreases with size to capture the idea that reproduction competes
with growth in the context of ideas on evolutionary optimisation; cf Section 8.1.3 of these
comments. Apart from the consequences of a decreasing κ on the relationship between ṙ−1

B

and L∞, we have the counter intuitive problem that in such a case little is allocated to
maturation initially, while the need for it is high. We need maturation as energy sink to
understand that no allocation to reproduction occurs during the juvenile stage, while the
onset of reproduction hardly seem to affect growth. We can’t include maturity maintenance
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into somatic maintenance at the expense of allocation to growth because in such a case
we should expect to see some reproduction at low food levels, while the general empirical
pattern is that no reproduction occurs at very low food densities; emergency reproduction,
including suicide reproduction, in response to reducing food availability is a variation
sported by a few taxa only. Notice that if κ would decrease with length, reproduction
more rapidly decreases with decreasing food.

The concept of von Bertalanffy growth goes back to August Pütter [1137], who proposed
in 1920 that the von Bertalanffy growth rate is inversely proportional to ultimate length:
ṙ−1
B = 3L∞/v̇B (my notation), so d

dt
L = v̇B

3

(
1− L

L∞

)
and v̇B = ṙL

1−L/L∞
. I tried hard to

understand his argument and came to the following reconstruction. Like deb theory, Pütter
(and later von Bertalanffy) did not link growth directly to feeding but to the intensity of
metabolism (i.e. the generation of anabolic substrates), that he took proportional to a
surface area and decay (of structure) to a volume. Pütter then compared growth with the
filling of a leaking cistern of height L∞ with water. When the water level L increases,
the change in length decreases and the conductance v̇B being a kind of universal constant
linking all species, small and large bodied. He motivated this analogy between growth
and water filling with the reasoning that some compound accumulates in structure with a
concentration proportional to L that inhibits growth using v̇B = ṙL for L ≪ L∞. I can’t
quite follow the reasoning, but I assume that the compound appears at a rate proportional
to the decay (volume) and disappears a rate proportional to the supply of anabolic substrate
(surface area); these rates have to be high relative to the dilution by growth. Growth ceases
if the concentration of this compound exceeds a threshold value. Pütter thus thought that
the growth rate decreases proportionally to the concentration of this compound. It is
striking that the more elaborate reasoning of deb works out that similarly, quantitatively,
and that the link between energetics and concentrations of compounds has been made that
long ago. Roff [1203] saw the negative correlation between the von Bertalanffy growth rate
and ultimate length as proof that the model was invalid on statical grounds. He probably
had no idea about the arguments of Pütter and just took the model as a curve.

Von Bertalanffy modified the idea of Pütter, did not consider length, but mass, and
removed the link with surface area. He modelled growth as a difference between two
allometric functions of weight, d

dt
W = aWα − bW β; allometric functions meanwhile had

become very popular in this field. Since this model has 5 parameters, including initial
weight, he took β = 1 for simplicity’s sake. The nice logic of Pütter became lost and
von Bertalanffy degraded the model to a purely descriptive one. So, while Bertalanffy
wanted to step away from surfaces, so from the growth rate v̇B, which is inherent to this
idea, cruel history attached his name to Pütter’s growth rate, and Pütter became almost
forgotten. Clark [260] recently made things even worse, by mixing up the role of Pütter
and von Bertalanffy and presents Pütter as the inventor of von Bertalanffy’s model, and
von Bertalannfy as the inventor of the role of surface area’s. The cacophony is complete
now; I imagine that both men turn in their graves, if they knew (and could).

The effects that parasites can have on hosts of inducing gigantism in combination with
reducing reproduction, and that this can be captured by increasing κ in the standard DEB
model is also reported by [540].

The κ-rule has many consequences, such as the waste-to-hurry phenomenon (see section
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8.2.1 of the comments), where species increase somatic maintenance to boost growth and
reproduction while staying small, and the existence of supply stress as quantifier for the
position of species in the supply-demand spectrum (see section 10.5.5 of the comments).
Supply stress is defined as the maturity maintenance times the squared somatic one over
cubed assimilation. The topology of the allocation scheme is key to this statistic (see
section 11.3 of the comments) and plays a dominant role in the range of possible values κ
can take (see section 4.10.0 of the comments).

2.5 Dissipation

2.5.1 Somatic maintenance linked to volume

Based on physical models, Stokes [1374] estimates the energy costs for locomotion for
a neonate Florida lancelet, Branchiostoma floridae to be around 10−9 W at 30 ◦C. The
Arrhenius temperature for this species was estimated at TA = 9369K, so rates differ
by a factor 2.87 for a reference temperature of 20 ◦C. The structural length at birth was
estimated at Lb = 0.011 cm (see add my pet) and the volume-specific somatic maintenance
costs at 20 ◦C at [ṗM ] = 67.52 J d−1cm−3. The total somatic maintenance costs of a neonate
is thus ṗM = [ṗM ]L3

b = 2.97 10−9 W If all of this would be correct, the cost of swimming
would represent some 30% of the somatic maintenance costs, which seems a bit high.

Around metamorphosis Stokes [1374] arrives at an estimate of 10−8 till 10−6 W for
swimming. Structural length at metamorphosis was estimated at Lj = 0.092 cm, so ṗM =
[ṗM ]L3

j = 1.8 10−6 W. deb theory assumes that investment in locomotion is a fixed fraction
of the somatic maintenance costs (as a first crude approximation). These numbers are thus
more or less consistent.

A comment on the legends of Figure 2.8: The leaves of some sclerophyllic trees last
longer than a year; averaging three years in Quercus ilex (holm oak) and Olea europaea
(olive), and five to six years in Quercus coccifera (kermes oak) [149]. The champion is
probably the Rocky Mountain bristlecone pine Pinus aristata with leaves lasting some 30
years; its grows at an altitude of around 3 km, where it is very cold and the growing season
lasts some 6 weeks per year. The life span of the trees is about 1500 year.

2.5.1 Somatic maintenance linked to surface area

The importance of osmotic work in growth is still an open question; experimental studies
found no effect of ionic strength of water on growth of fish [207].

Like the costs for the heat increment of feeding (or specific dynamic action, sda), the
costs for food handling is included in the overhead costs for assimilation; it determines the
value of digestion efficiency κX = µE

µX
yEX . What about the costs for food searching, which

is maximal in absence of food? Think e.g. of the filtering costs, discussed in Section 2.5.1.
As part of the energy costs for movement it is, in the standard deb model, included as a
(rather small) fixed fraction of volume linked maintenance costs. That the fraction is small
is further empirically supported by [1032] for fish fry. So food searching is at the expense
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of other types of movement. There are other options, however, that should be considered
if more detail is required (necessarily leading to more parameters). One is based on the
observation made in Section 5.3.2 on the dynamic generalisation of the κ-rule, that food
searching (filtering) is proportional to (1− f), while feeding is proportional to f . Suppose
now that the costs for food searching for food is proportional to surface area and that the
costs for sda is paid from mobilised reserve, see Section 4.4.2 of the comments. If the
maximum costs for food searching is not too different from the maximum costs of sda,
κF ṗAm, the sum of these two costs would become independent of f , and become a fixed
part of the surface area linked somatic maintenance costs. These considerations help to
understand why the parameter-sparse standard deb model is robust for contributions of
minor fluxes. The remarkable coincidence is that both fluxes relate to feeding, and don’t
apply to embryos, just like the other surface linked maintenance costs.

2.5.2 Maturation at constant food

If food density is constant, scaled length reduces for scaled time since birth τ and scaled
von Bertalanffy growth rate ρB to l(τ) = l∞ − ld exp(−ρBτ) for l∞ = 1 − lT and ld =
l∞ − lb. Scaled maturity changes as d

dτ
vH = b2l

2 + b3l
3 − kvH , with b3 = f/(f + g) and

b2 = f − b3l∞. This is an inhomogeneous first order differential equation that can be
integrated analytically, resulting in

vH(τ) = −a0 − a1 exp(−ρBτ)− a2 exp(−2ρBτ)− a3 exp(−3ρBτ) + ak exp(−kτ)

with a0 = −(b2+b3l∞)l2∞/k, a1 = −l∞ld(2b2+3b3l∞)/(ρB−k), a2 = l2d(b2+3b3l∞)/(2ρB−k),
a3 = −b3l

3
d/(3ρB − k) and ak = vbH + a0 + a1 + a2 + a3.

Maturation ceases as soon as it hits vpH , so the complete solution is min(vH(τ), v
p
H).

Since vH(∞) = f
k
l2∞, puberty cannot be reached if kvpH > fl2∞.

The scaled time since birth at puberty τbp and the scaled length at puberty lp have to
be found from l(τbp) = lp and vH(τbp) = vpH .

2.5.2 Maturation and heterochrony

Maturity is defined as a maintenance requiring quantity that is used to trigger metabolic
switches. It has no mass or energy. Maturation is the increase in maturity and is assumed
to be proportional to the investment of reserve into maturation. Maturity is quantified as
energy or mass of reserve. Adults don’t invest in maturation. Maturity maintenance is
proportional to maturity. If not fully paid, rejuvenation occurs, i.e. maturity decreases.

The first argument that is mentioned for maturation is that volume at first appearance
of eggs hardly depends on food density. As Figure 2.4 shows, this should not be taken too
literally. If stage transitions occur at fixed levels of maturity, volume at stage transitions
can depend on food density in the context of DEB theory if k̇J < k̇M . The variation at
puberty being larger than that at birth.

Heterochrony is an evolutionary change in the timing of expression of a phenotype
trait [1518, p 241], such as the onset of reproduction and can represent an acceleration
or retardation [509] or a deletion. In the deb context heterochrony translates into a
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change in the maturity threshold for that trait (typically inter-species). Horticulturists
can manipulate the maturity threshold at puberty in many plant species, but this also
occurs naturally. Understory representatives of the dipterocarps Hopea, Stemonoporus
and Vatica flower in an early life stage, compared to their canopy relatives [45]. The life
cycles of some Clusia (a Rosid belonging to the Malpighiales) resemble those of animal
species with sport direct development, such as some sea urchins and salamanders [1518, p
251]. Sea urchins typically have a plankton-feeding pluteus larve, which is so similar to that
of hemichordates that is mode was likely ancestral in both groups [1518]. If true, deletion
of the pluteus stage has occurred independently in 6 of the 10 echinoid orders at least 27
times [1142]. Heterochrony explains the origin of numerous examples of inducible defenses
in plants and invertebrates [1518]; spines in some juvenile pants are lost in later-developing
tissues, but sometimes they reappear again at regeneration from damage. See [1518] for
many more examples.

Work with Casey Mueller and Starrlight Augustine showed that maturation is accel-
erated at hatch before birth in the frogs Crinia nimbus and C. georgiana by lowering κ,
which increases respiration and maturation [1001]; at metamorphosis, κ is reset to its value
before hatching. The result is that metamorphosis is reached much earlier, compared to
the equally sized frogs Pseudophryne bibronii and Geocrinia vitellina, which do not sport
such an acceleration. The acceleration of maturation is very functional; C. georgiana lays
eggs in temporal pools that typically disappear soon after the froglets left it. These obser-
vations strongly support the way deb theory deals with maturation. See further Section
Subsubsection 7.8.2.1 of the comments.

Tadpoles of the common frog Rana temporaria and the green frog Pelophylax ridibun-
dus can over-winter in Europe, with the result that they grow to much larger sizes and
metamorphose in early spring. So temperature and/or light affect the process, but the
observation further supports the view that growth and maturation are parallel processes.

2.5.3 Maturity maintenance

The situation of absence of maturity maintenance, k̇J = 0, is a special case that has the
implication that birth and puberty always occur (if survival allows), even in extremely poor
nutritional situations. This does not seem to be realistic. Moreover the model then becomes
ill-posed in the situation of constant f = lp: allocation to reproduction ṗJ eventually
becomes either 0 or (1 − κ)l3pṗAm. The point is a bit academic, since we have to wait for
this moment infinitely long, i.e. much longer than aging allows.

The condition that k̇J = k̇M , labeled C1, is equivalent to the condition that the volume-
specific maturity maintenance costs [ṗJ ] = [ṗM ]1−κ

κ
, labeled C2, during the embryo and

juvenile stages in absence of surface-specific somatic maintenance, so {ṗT} = 0, and have
as implication that maturity density remains constant at value [EH ] = [EG]

1−κ
κ
, labeled

I1. Stage transitions then not only occur when maturity reaches threshold values, but also
when structural volume reaches threshold values. Notice that during the adult stage EH
remains constant at level Ep

H , but structural volume can grow (or shrink during prolonged
starvation), so [EH ] cannot remain constant during the adult stage. Structural length at
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birth, for instance, then equals Lb =
(

κ
1−κ

Eb
H

[EG]

)1/3

and it is no longer necessary to get it

from Eq (2.37) of DEB3. These are implications of the κ-rule, combined with the priority-
rule for somatic maintenance for allocation to growth and for maturity maintenance for
allocation to maturation.

To see the equivalence of the conditions C1 and C2, we need to realize that maturity
maintenance ṗJ amounts, according to Eq (2.19) of DEB3, to ṗJ = k̇JEH and that the

somatic maintenance rate coefficient k̇M is defined as k̇M = [ṗM ]
[EG]

, see {45}, 9 lines from

below. If we substitute this in C2, we get k̇J [EH ] = k̇M [EG]
1−κ
κ
. If we now substitute I1,

then condition C1 directly follows, or, alternatively, if we substitute C1, then implication
I1 directly follows.

So it suffices to show that C2 implies I1. This can be seen from how EH and V change:
d
dt
EH = (1− κ)ṗC − ṗJ and d

dt
V = (κṗC − [ṗM ]V )/[EG]. The chain rule for differentiation

learns that maturity density does not change if d
dt
EH = [EH ]

d
dt
V . Substitutions of the

changes leads to the condition (1− κ)[ṗC ]− [ṗJ ] = (κ[ṗC ]− [ṗM ]) [EH ]
[EG]

. This must hold for
all possible trajectories of ṗC , from which follows condition C2.

Although condition C1, or C2, leads to a nice simplicity, there is no biological reason
why it should apply and, moreover, it cannot apply as soon as κ or [EG] or [ṗM ] start to
change, due to e.g. effects of a toxic compound, unless maturity maintenance follows such
changes exactly. Generally k̇J ≪ k̇M , which has the consequence that structural length
at birth and puberty become food-dependent and decrease for decreasing food availability,
which can be seen as a stylized empirical fact.

2.5.4 Reproduction overhead

The energy allocation to reproduction, ṗR, is given by (2.55); females translate this in a
reproduction rate Ṙ = κRṗR/E0, see (2.56), where E0 represents the cost of an egg and
1−κR the overhead costs for reproduction, which is typically low. Some taxa, such as pond
snails, are hermaphroditic in a way that they synthesize sperm and oocytes simultaneously.
If the ratio of the allocation to sperm and oocytes would be constant, hermaphrodites
produce eggs at rate Ṙ = κ◦RṗR/E0, where κ

◦
R < κR.

The reproduction efficiency κR only quantifies the efficiency of the conversion from the
reproduction buffer to embryo reserve. These metabolic pools have, theoretically, the same
chemical composition (ignoring that yolk consists of lipo-proteins, but the conversion is ef-
ficient) and covers the wrapping. This should not be confused with the overall reproduction
efficiency, where the energy investment per offspring, E0/κR, is converted in a neonate with
energy L3

b [MV ]µV locked in structure and L3
bf [Em] in reserve. So the overall reproduction

efficiency amounts to κRL
3
b([MV ]µV + f [Em])/E0. The extra losses now include maturity

and somatic maintenance, maturation and growth overheads of the embryo.

Placentalia produce neonates and placentas. The energy costs of the placenta might be
proportional to that of the neonate, with the consequence that the reproduction rate can
again be written as Ṙ = κRṗR/E0, where overhead 1 − κR now includes the costs of the
placenta and will be large relative to that of egg layers. This more or less compensates the
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fact that the cost for a foetus is somewhat less than that of a comparable egg, see Section
2.6.2. Quite a few species eat their placenta and recover some of these losses.

Some toxic compounds affect reproduction, but not feeding, growth, respiration or
anything else, see Section 6.5.4. Such perturbations on the energy budget strongly support
the existence of parameter κR.

2.6 Growth: increase of structure

Rotifers, nematodes and dicyemida are examples of small animals that have a fixed number
of cells in adults and sport eutely: their cells divide till puberty, all further growth is only
by cell growth; gastrotrichs complete all cell divisions even at birth. Cells of some types
of tissue or organs of animals that don’t sport eutely loose their ability to divide and
further growth only results from cell growth. The relationship between cell growth and
body growth is a complex one in multicellulars.

While the specific change in volume and weight ṙ at constant food density is decreasing
with age after birth in the standard DEB model, the growth rate ṙW or ṙL3 has a maximum
for d

dt
ṙ+ ṙ2 = 0 (this follows from d

dt
ṙL3 = 0 with d

dt
L = Lṙ/3), which occurs at L = 2

3
L∞,

with L∞ = fLm − LT and a − ab = ṙ−1
B ln L∞−Lb

L∞/3
. Change in length is given by d

dt
L =

ṙB(L∞ − L) = Lṙ/3. So, the relationship ṙ = 3ṙB(L∞/L − 1) follows, and the maximum
specific growth for L = L∞2/3 is ṙm = ṙB3/2. This gives a simple biological interpretation
for the von Bertalanffy growth rate [792].

The chicken-meat industry harvests at the age of maximum integrative production, so
if W (a)−Wb

a−ab
has a maximum. At constant food density this maximum coincides with the

maximum of
L3(a)−L3

b

a−ab
, which occurs when (a−ab)ṙ = 1−(Lb/L)

3, i.e. if ṙ
ṙB

ln L∞−Lb

L∞−L = 1− L3
b

L3

with ṙB = v̇
f+g

3Lm and ṙ = v̇
f+g

(
f
L
− 1+LT /L

Lm

)
. The length at which that maximum is

reached, and so the age, must be obtained numerically.

For accelerating species that follow the abj model, the specific growth rate directly after
birth remains constant till the end of acceleration at ṙj = k̇M

(fLm−LT )/Lb−1
1+f/g

= 3ṙB((fLm−
LT )/Lb − 1), see the comment for section 7.8.2. This rate is larger than the maximum
growth rate if ṙj > ṙm, i.e. if 2L∞ > 3Lb. Since metabolic acceleration typically occurs
in species with small eggs, this always the case in practice. So accelerating species have a
constant high specific growth rate till the end of acceleration, after which the specific growth
rate decreases. This decrease is smooth, not abrupt, since asymptotic structural length
after the end of acceleration is L∞ = sMfLm − LT and acceleration factor sM = Lj/Lb,
where length at end of acceleration Lj is controlled by the maturity level at the end of
acceleration Ej

H . The smoothness of the decay in growth also follows from the structure
of the deb model, where growth is fueled from mobilized reserve, and the reserve density
as well as the energy conductance, which controls reserve mobilization, make no jumps.
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2.6.2 Constraints on maturation thresholds

For k̇M = k̇J (so k = 1), (2.32) gives L3
b =

Eb
H/[Em]

(1−κ)g
. UH = EH

{ṗAm} , with dim(UH) = t L2,

replaces EH to avoid using energy as dimension. Since Lb < Lm = v̇
gk̇M

, we have for

[Em] =
{ṗAm}
v̇

the constraint
Ub
H v̇

(1−κ)g
< L3

m or U b
H < (1−κ)gL3

m

v̇
= (1−κ)v̇2

k̇3Mg2
.

uH = UH v̇
gL3

m
, with dim(uH) = 0, replaces UH to avoid using time and length as dimension

as well. The constraint translates into ubH < 1 − κ, and for vH = uH
1−κ into vbH < 1. Since

Lb < Lp < Lm, we also have Up
H < (1−κ)gL3

m

v̇
, upH < 1 − κ and vpH < 1, while we have

Eb
H < Ep

H or U b
H < Up

H or ubH < upH or vbH < vpH .

For k̇J < k̇M = [ṗM ]
[EG]

, which seems most realistic, we know from the comment-section

2.6.2 that L3
b <

Eb
H/[Em]

(1−κ)g
. Let us consider the extreme scenario of zero maintenance ratio,

k = 0. Eq (2.28) can be rewritten as d
dτ
vH = − d

dτ
uE − kvH . For k = 0, this leads to

the solution uE(vH) = u0
E − vH , so at birth we then have ubE = ebl

3
b/g = u0

E − vbH . Using
(2.42), this directly leads to lb as a root of a 6th degree polynomial in lb. Only one of the
6 roots is valid, i.e. the smallest real positive root between 0 and 1. For any value of the
maintenance ratio k between 0 and 1, scaled length at birth lb must be between this root

and
(
Eb

H/[Em]

(1−κ)g

)1/3

. Since lb < 1, vbH <
(

3g

3gx
1/3
b

−Bxb
( 4
3
,0)

)3

− eb
g
(but see below). For the foetal

value for u0
E, as given in (2.51), k = 0 leads to vbH = l3b +

3
4

l4b
g
. Since lb < 1, vbH < 1 + 3

4g
.

For foetal development we have l(τ) = gτ/3 and (2.48) reduces for k = 0 to d
dt
vH =

l2(g + l) or vH(τ) = l3(1 + τ/4). Scaled age at birth obeys vbH = l3b (1 + τb/4), so it is the
root of a 4th degree polynomial in τb. Since lb < 1 and τb = 3lb/g we have vbH < 1 + 3

4g
for

k = 0, while from (2.50) we have vbH < 1 for k = 1.

2.6.2 Numerical solution for scaled length at birth

The start of the life cycle as egg is in deb theory implicitly defined by the rule that reserve
density at birth equals that of the mother at egg formation and structure and maturity
start at zero; birth being defined as the moment assimilation is switched on (when food
would be present). The initial amount of reserve of an egg can, in principle, be evaluated
with a shooting method, where an arbitrary amount is chosen first (with zero structure
and maturity), egg development is followed (in terms of reserve, structure and maturity)
till maturity exceeds its threshold value for birth, reserve density is evaluated, and the
initial amount of reserve is corrected. This process is then repeated till sufficient accuracy
is reached. Although straightforward, this method is computationally intensive, which is
a problem if we want to do this for all individuals in a population; we need to do this for
each time increment, because food varies, so does the reserve of the mother at egg laying.
To reduce computational effort, the number of variables (reserve, structure, maturity) is
first reduced to one, and then a weird transformation of variables is found to make the
resulting differential equation for this single variable linear. Although all this does reduce
the computational effort substantially, it is hardly exciting reading, especially for people
with a biological interest. The best reading strategy, therefore, is to skip most of the
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technical material in this section and in the knowledge that efficient DEBtool routines
exist that do all the required computational work.

The shooting method in one variable turns out to be rather stable, where y(xb) = yb

is evaluated by integrating d
dx
y using lb =

(
vbH
)1/3

as starting value. It is exact for k = 1

and has been the motivation for the choice of the symbol vbH , which appears to have the
interpretation as a scaled volume.

Alternatively the Newton Raphson procedure li+1
b = lib− t(lib)/t′(lib) can be used to solve

(2.46) with

l(x) =

(
1

lb

(
xb
x

)1/3

−
Bx(

4
3
, 0)−Bxb(

4
3
, 0)

3gx1/3

)−1

; l′(x) =
l2(x)

l2b

(
xb
x

)1/3

v(x) = exp

(
−
∫ x

0

k − x1

1− x1

l(x1)

g

dx1

x1

)
; v′(x) = v(x) exp

(
−
∫ x

0

k − x1

1− x1

l′(x1)

g

dx1

x1

)
r(x) = g + l(x); r′(x) = l′(x)

t(lb) =
xbgu

b
H

(1− κ)v(xb)l3b
−
∫ xb

0

r(x)

v(x)
dx

t′(lb) = − xbgu
b
H

(1− κ)v(xb)l3b

(
3

lb
+
v′(xb)

v(xb)

)
−
∫ xb

0

(
r′(x)

r(x)
− v′(x)

v(x)

)
r(x)

v(x)
dx

The problem here is in the accurate evaluation of the integrals. Euler integration requires
many steps if k > 1, but is nonetheless much faster.

DEBtool has three routines to obtain lb: get lb (Euler integration), get lb1 (advanced
integration) and get lb2 (shooting in one variable).

2.6.2 Yolk dynamics

Chordate embryos develop on the periphery of a blob of yolk, which reduces the problem
of dioxygen supply and allow large developmental rates, compared to other animals. They
internalize yolk fully at birth, while they still have that reserve density equals that of the
mother at egg formation (the maternal effect). The way to include this dynamics, without
adding parameters, is to assume that yolk Y has the same composition as reserve E, and
reserve is formed in constant ratio with structure, so [E] and ME/MV remain constant
during embryo development, EY (0) = E0, EY (ab) = 0. Reserve is transported yolk, not
requiring chemical transformation. This is, in fact, not fully true, since yolk consists of lipo-
proteins, while reserve mostly consists of lipids, proteins and carbohydrates. We assume,
however, that this conversion does not require energy and does not produce (mineral or
other) products. The dry weight of embryo, excluding the yolk, amounts to Wemb(t) =
wVMV + wEME = (wV + wEebmEm)MV = (wV + wEebmEm)

dV
wV
V (t). The trajectory of

yolk dry weight then becomes WY (t) = E(t)wE/µE − ebmEm
wE

wV
dV V (t), where E(t) is the

energy in yolk plus reserve. This can be checked by converting to moles: WY (t)
wE

=MY (t) =
E(t)
µE

− ebmEm

wV
dV V (t) =ME(t)+MY (t)− ebmEmMV (t) =ME(t)+MY (t)−ME(t) =MY (t).

The dynamics of E(t) and V (t) for embryos is given in Eqns (2.26-28) in scaled form. This
has been applied e.g. in [1001].
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Figure 2.6: Scaled reserve u0
E (left), scaled length at birth lb (middle) and fraction of reserve left

at birth ubE/u
0
E (right) as function of scaled reserve density at birth eb. The red dot indicates

where maturation ceases at birth, the blue one where growth ceases at birth. Parameter values:
g = 0.1, k = 0.1, vbH = 0.01 and 0.1 (curves starting at highest eb).

2.6.2 Maturation ceasing at birth

The maternal effect in the standard deb model states that the reserve density at birth
equals that of the mother at egg formation. This rule not only captures the dominant
empirical pattern, but also avoids a parameter for the initial amount of reserve and it
has the property that growth at constant food is of the von Bertalanffy type at all food
densities directly since birth. In starving mothers, this might be a low value, but lower
boundaries exist for viable eggs.

The initial amount of reserve can be low enough to cause shrinking during the embryo
stage; this occurs if eb < lb, see routine get eb min of DEBtool. It then depends on the rule
for death by shrinking if the embryo survives that shrinking, see 4.1.5 of the comments. If
the initial amount of reserve is lower than the level that causes the ceasing of maturation
at birth, shrinking to zero results if death by shrinking does not arrest the process. From
(2.29) follows that maturation ceases at birth if

(1− κ)eb(g + lb) = ebH(k(eb/g + 1)lb + eb − lb)

If k = 1, we have ebH = (1−κ)g and the equation collapses to eb = lb =
(
ubH
1−κ

)1/3

= (vbH)
1/3;

this is also the condition for which growth ceases at birth. For other values of k, the
equation has to be solved numerically; see routine get eb min of DEBtool.

Figure 2.6 shows that for k < 1 length at birth increases with reserve density at birth,
so does the cost of an egg, expressed as initial amount of reserve. For k < 1, the value
of eb for which maturation ceases is smaller than that for which growth ceases, and the
embryo shrinks prior to birth between these two values. For k > 1 the opposite holds,
and shrinking cannot occur prior to birth since below the value of eb for which maturation
ceases at birth, the embryo will not reach the state at birth; for k = 1 maturity and growth
cease at birth at the same value for eb. For decreasing reserve density at birth, the costs
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Figure 2.7: Scaled length l = Lv̇
gk̇M

as function of scaled

time τ = (a − ab)k̇M of the standard DEB model for
f = 1 (red), f such that growth ceases at birth (green)
or maturation ceases at birth (blue). Parameters: g =
3.1111, k = 0.3111, vbH = 0.0004 and lT = 0, like in the
generalised animal for z = 1. For f = 1 we have the
scaled von Bertalanffy time r−1

B (1) = 3 + 3/g. The black
line from (3, 0) to (r−1

B (1), 1) connects the asymptotes of
the growth curves at their von Bertalanffy times. All
embryo growth curves depart parallel to this line (so for
all nutritional levels), d

dτ l(0) = g/3.

for an egg can go up again, i.e.

d

deb
u0
E = 0 if

d

deb
lb =

lb
3

lb/eb − 1

eb + g
=

d

de
l

∣∣∣∣∣
e=eb

which can only occur in the case of shrinking prior to birth (eb < lb). The figure also
illustrates that the smaller vbH , the smaller eb can be and the higher the fraction of reserve
is left at birth.

Figure 2.7 illustrates how the energy investment ratio appears in growth curves at var-
ious nutritional levels. The extremes are shown in red (f = 1) and blue. For maintenance
ratio k = 1, the curve where growth ceases at birth (green) coincides with that where
maturation ceases at birth (blue). The growth rate at birth equals d

dτ
l(ab) = (f − lb)rB =

f−lb
3+3f/g

≃ (3+3/g)−1 for f = 1. So the curvature of the growth curve during the embryonic
stage decreases with g and large-bodied species will hardly show such a curvature.

For given energy investment ratio g and maintenance ratio k, scaled length at birth lb
increases with scaled maturity at birth vbH . The maximum value for lb equals 1 for eb = 1,
so a maximum value for vbH exists. To find this value, we rewrite (2.28) as

d

dτ
vH = uEl

2 g + l

uE + l3
− kvH (2.4)

and remove scaled time be considering

d

duE
l =

−1

3uEl2
guE − l4

g + l
;

d

duE
vH =

kvH
uEl2

uE + l3

g + l
− 1 (2.5)

For eb = 1 and lb = 1, we have xb =
g

1+g
and αb = 3gx

1/3
b . Moreover u0

E =
(

3g
αb−Bxb

(4/3,0)

)3

and ubE = 1
g
This set of 2 ode’s should now be integrated for uE is u0

E till ubE, where l(u
0
E) =

ϵ and vH(u
0
E) = ϵ3 for very small ϵ, e.g. some 10−4. We should test that l(ubE) = lb = 1.

2.6.2 Foetal development

From an energy allocation point of view, an important difference between egg and foetal
development is that allocation to reproduction is typically continuous in case of egg de-
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Figure 2.8: This picture of a dolphin foetus
clearly shows the substantial placenta, which is
formed by mother and foetus. The shape of the
placenta directly suggests that reserve transfer
from mother to foetus is proportional to the sur-
face area of the foetus if the diameter of the pla-
centa is proportional to the length of the foetus.

velopment, but cyclic in foetal development. The mother initially allocates little to the
developing foetus, but this increases during development and continues as milk production
after birth till weaning in mammals. The maternal rule that reserve density at birth equals
that of the mother at egg formation becomes somewhat fuzzy for foetal development if food
density is not constant, since foetal development concerns a period, not an event. Foetal
development evolved several times independently in Poeciliopsis [1173] and many (grad-
ual) transitions exist between egg and foetal development. This illustrates that it makes
sense to minimize the formal difference, pay allocation to the foetus from the reproduction
buffer and treat it as a buffer handling rule, not unlike the preparation of batches of eggs
in multiple batch spawners.

Work with Jess Roberts and Mike Kearney, in the light of up-regulation of the intake
and assimilation of the mother during pregnancy and lactation, see Section 7.7 of the
comments, has led to some re-formulation of allocation to foetal development.

Most mammals have a preparation period t0 after fertilisation that is used for hormonal
regulation, construction of placenta and vascular system in the mother and the foetus, see
e.g. [1213]. During this period there is hardly any significant size increase of the foetus,
even in absence of a diapauze. During this preparation stage till time t0, investment into
foetal development, ṗF , is taken to be small in absence of other overheads costs. The
realism of the latter still needs checking.

The simplest implementation of foetal development at scaled reserve density e of the
mother, here called slow development, is an allocation flux to foetal reserve of ṗF =
e{ṗAm}L2

F/κR, where LF is foetal structural length and e the scaled reserve density of
the mother. The foetus mobilises its reserve as (2.11):

d

dt
eF = (e− eF )v̇/LF

where eF is the scaled reserve density of the foetus and e that of the mother. The specific
growth rate of the foetus is given by (2.21) with LT = 0 (no heating or osmotic costs)

ṙF = v̇
eF/LF − 1/Lm

eF + g

LF≪eFLm≃ v̇

LF

eF
eF + g

At constant food density, foetal length grows (almost) linearly in time LF (t) = ṙBL∞t, with

ṙB = k̇M/3
1+f/g

, as in (2.24), and L∞ = fLm. Age at birth amounts to ab = (1 + g/f)3Lb/v̇.
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Expressed in scaled time and length, we have d
dτ
lF = g

3
eF−lF
eF +g

, which reduces for lF ≪ eF

to d
dτ
lF = g/3

1+g/eF
and for eF = f , scaled length as function of scaled time is lF (τ) =

gτ/3
1+g/f

.

Scaled age at birth amounts to τb = 3lb
f+g
fg

.
The subsection on foetal development suggests that foetuses development is speeded

up by assuming that eF ≫ g, here called fast development. The motivation was that
foetal development then resembles egg development closely with the only difference that
egg development eventually slows down, due to depletion of reserve (and/or yolk), while
foetal development remains fast till birth. In that case the specific growth rate reduces to
ṙF = v̇/LF , see (2.47), and the von Bertalanffy growth rate to ṙB = ṙLF /3

L∞−LF
≃ ṙLF

3L∞
= v̇

3L∞
.

Length grows approximately linearly in time, L(t) = ṙBL∞t = tv̇/3, see (2.47). Fast
development implies that gestation time hardly depends on the nutritional status of the
mother.

To bridge the gap between slow and fast foetal development, we might multiply eF with
stress coefficient sF , say, and take sF = 1 for slow and sF ≫ 1 for fast foetal development.
The changes in scaled length and maturity then become

d

dτ
l =

g

3

sF eF − l

sF eF + g
;

d

dτ
vH =

d

dτ
l3 + l3 − kvH

In both situations foetal length is (about) proportional to time, L(t) = v̇F t, but for slow
development v̇F = ṙBL∞ and for fast development v̇F = v̇/3.

Most non-mammalian taxa that sport foetal development do not produce milk, so
maturity at weaning Ex

H equals that at of birth Eb
H for them. The amount of milk fed

to the baby mammal varies a lot among species. Being highly precocial, baby guinea
pig Cavia porcellus starts feeding directly on solid food, while still accepting some milk.
Most mammalian babies exclusively feed on milk till weaning and the conversion efficiency
from milk to foetal reserve will be typically high. Since milk is synthesised from mothers’
reserve and converted to baby’s reserve, both conversion efficiencies are probably rather
high. This in-between step allows to accommodate baby’s need for water during the stage
that it is not yet able to drink directly. The water content of milk typically reduces
during the lactation period since the baby starts to drink an increasing amount of water.
The amount of milk is partly adjusted to the offspring needs (demand driven), but still
depends on the nutritional status of the mother (maternal effect), with the implication
that the allocation to milk production is about ṗ′F = e{ṗAm}L2

F , where LF is the structural
length of the baby till weaning, which happens then the maturity of the foetus reaches Ex

H .
Milk production production has an overhead fraction (1 − κLR), so the allocation to milk
production is ṗL = e{ṗAm}L2

F/κ
L
R, where LF is the structural length of the baby. After

weaning ṗL drops till zero till the next cycle starts. Baby’s transition to normal diet is
typically gradual, but we may neglect this ‘detail’ at first approximation. Surface area-
linked somatic maintenance might become important for the baby, LT > 0, and mother
might assist the baby to bring to costs down. The body temperature of the baby might
not be constant, which affects rate parameters.

Scaled lengths at birth, weaning and puberty at constant food, are obtained from
scaled maturity thresholds, by integrating dl

dvH
= dl

dτ
dτ
dvH

with d
dτ
vH = fl2 g+l

g+f
− kvH and
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d
dτ
l = g

3
l∞−l
g+f

and l∞ = f − lT and lT = 0 if vH < vbH . The scaled ages are obtained from

τ = −3(1 + f/g) ln(l∞ − l).
The cumulative energy investment in the foetus is

EF =
∫ ab

0
ṗF (a) da =

f{ṗAm}
κR

∫ ab

0
L2(a) da or U0F

E =
κREF
{ṗAm}

≃ L3
b

f + g

v̇

(
1 +

3

4

lb
f

)

and in milk production

EL =
∫ ax

ab

ṗL(a) a =
f{ṗAm}
κLR

∫ ax

ab

L2(a) da

The total mean investment rate is ṗR = EF +EL

t0+ax
, which has to be multiplied by the number

of young per litter if relevant. The dimensionless scaled energy investment in the slowly

developing foetus amounts to u0F
E =

v̇U0F
E

gL3
m

= l3b
f+g
g

(
1 + 3

4
lb
f

)
, which can be compared with

u0F
E = ubE+ l

3
b +

3
4

l4b
g
that was found for fast foetal development, (2.51). For eb = f , we have

ubE = fl3b/g and the latter expression can be written as u0F
E = l3b (1+

f
g
+ 3

4
lb
g
). This is slightly

smaller than for slow development, due to less cumulative maintenance; the difference in
u0F
E is 3

4
gl4b .

Section 7.7 of the comments discusses up-regulation of mothers’ intake during pregnancy
and lactation dynamically.

2.6.2 Foetal costs

The foetal costs in (2.51) can be re-written in terms of scaled age at birth, τb = abk̇M as
follows. Table 2.1 learns that ubE = fl3b/g and lb = gτb/3 (see above 2.47). The scaled

foetal cost is u0
E = l3b

(
1 + f

g
+ 3lb

4g

)
=

g3τ3b
27

(
1 + f

g
+ τb

4

)
. The unscaled foetal cost amounts

according to (2.51) to E0 = u0
Eg[Em]L

3
m = [Em]L

3
m
g3τ3b
27

(f + g + gτb/4)

2.6.2 States at birth and initial amount of reserve

The foetus has no assimilation; maturity, structure and reserve develop directly from the
supplies by the mother. Eqn (2.47) states that d

dt
L3 = v̇L2, so d

dt
L = v̇/3. This equals

Eqn (2.21) for e → ∞ and LT = 0 Weak homestasis implies that E(t) = [Em]L(t)
3, so

d
dt
E = [Em]3L

2 d
dt
L = [Em]L

2v̇. Change in maturity is given by Eqn (2.48) in scaled form,

where EH = uHg[Em]L
3
m and τ = tk̇M . So

d

dt
EH = k̇Mg[Em]L

3
m

d

dτ
uH

= k̇Mg[Em]L
3
m

(
(1− κ)l2(g + l)− kuH

)
)

= k̇Mg[Em](1− κ)L2(gLm + L)− k̇JEH

=
1− κ

κ
[EG]L

3(
v̇

L
+ k̇M)− k̇JEH

. This amount to d
dt
EH = (1− κ)ṗC − ṗJ as given in Eq (2.20) for e→ ∞ and LT = 0.
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2.6.2 Respiration and mobilisation

The respiration curves in Figure 2.12 were fitted with the assumption that respiration is
proportional to mobilization. This was in a period where advanced methods for parameter
estimation were not yet available. This approximation can only be very crude and does not
deserve further advertisement. It was inspired by lack of knowledge of values of some other
parameters. The add my pet entries don’t make use of this crude approximation. There is
also no need for it, since all relevant parameters are estimated simultaneously from a set
of data.

2.6.3 Maturation ceasing at puberty

Maturation ceases at puberty if ṗJ = (1− κ)ṗC (see (2.18)) and L = L∞ = fLm−LT (see
(2.25)) and [E] = f [Em] (see (2.10)) and EH = Ep

H . This determines f as follows from

(2.19), (2.17) and (2.12) for vpH =
Ep

H

(1−κ)g[Em]L3
m

and l∞ = f − lT

k̇JE
p
H

1− κ
= f [Em]L

3
∞
[EG]v̇/L∞ + [ṗM ] + {ṗT}/L∞

κf [Em] + [EG]
(2.6)

= f [Em]L
3
∞
v̇/L∞ + k̇M(1 + LT/L∞)

f/g + 1
(2.7)

kvpH = fl2∞ with l∞ = f − lT (2.8)

For lT = 0, this gives f = (kvpH)
1/3. See routine DEBtool/animal/get ep min. Contrary to

the situation at birth, if maturation ceases at puberty, growth ceases as well.
In the case of metamorphosis, see Section 7.8.2, we only need to substitute l∞ =

flj/lb − lT to find f at which maturation and growth are ceasing at puberty. See routine
DEBtool/animal/get ep min metam.

Length at puberty can be found by integrating change in length as function of maturity
from birth (or metamorphosis) to puberty. Since integration is computationally intensive
and inaccurate, we can also obtain it at constant food from numerically solving the equation
vH(τp) = vpH as function of lp, starting from lp = (vpH)

1/3. This is discussed in Section 7.8.2.
See routines DEBtool/animal/get lj and DEBtool/animal/get lp.

2.6.4 Twinning

Section 2.6.2 of the comments discusses the minimum reserve density at birth, such that
maturation just ceases. This corresponds with a minimum initial amount of reserve, that
can be compared with the maximum amount of initial reserve (at f = 1). Many reasons
might exist for why twinning via separation of cells at the 2, 4, 8, · · · cell-stage is not
possible, Mnemiopsis develops in only half an adult this way [921], but one of them is
that the remaining amount of reserve is not sufficient to complete the embryo stage. Since
reserve density tends to increase with maximum (structural) length, we might expect that
cells in the 2-cell stage cannot be separated in small species, but can be in large species
[773]. Using estimated parameter values of some 130 species, Figure 2.9 shows that this
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Figure 2.9: The yolkiness , i.e. the maximum initial reserve (at f = 1) as fraction of the one
at which growth ceases at birth and as function of the maximum structural length of a species
that sports egg development, not foetal development. The calculations are based on parameter
estimates from the add my pet library, sampling date 2017/05/05, 864 species. The colours on
the left refer to 10 log(sM), ranging for 0 (black) to 2.77 (white), and on the right to 10 log(L∞).
The lines are at values 2, 4, 8, 16

tendency is rather obscured by the huge variability of maturity levels at birth. Notice that
large Emax

0 /Emin
0 ratios hardly occur for L∞ < 1 cm; this seems to be the threshold for the

‘waste to hurry’ phenomenon, see Section 8.2.1 of the comments. Since all the yolky eggs
come from accelerating species, yolkiness might relate to accearation. Figure 2.9 suggests
that the yolkiness of eggs might relate to metabolic acceleration. Part of the explanation
is possibly the fact that specific maturity at birth, Eb

H/L
3
∞, decreases with acceleration. It

can only be part of the explanation because the scatter in yolkiness is much less than that
of specific maturity at birth.

2.6.5 Back-up production

Crested penguins produce a small egg followed, two days later, by a big one and the
incubation of the small one is ceased if the big one proves to be fertile. They can’t raise
two chicks.

Mothers reduce the number of offspring also in placentalia(e.g. pronghorn, elephant
shrews, bats, viscacha), where the mother reduces a considerable number of ova to usually
two, early in the development, but also later on, by killing embryos, see 1.1.4. Parent coots,
Fulica can do it in a later stage, if their litter is too large given the local food availability.
Mother Romanian hamsters and gerbils can eat some of their babies, preferring to eat
female babies in small litters and male ones in large litters [888].

Siblicide occurs frequently; it is obligatory in the nazca booby Sula granti of the Gala-
pagos Isles and the masked booby Sula dactylatra of the western and south Pacific. They
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typically lay two eggs (of equal size), 4–7 days apart, and if both are healthy, the big
chick throws the smaller one out of the nest, with lethal consequences. These two closely
related masked boobies are the largest boobies with 1.5 kg body weight, 81–91 cm length
and 152 cm wing span; the incubation is 45 d. Like the crested pinguins, these boobies
can’t raise two chicks.

Siblicide is also known in the cattle egret Bubulcus ibis, the common grackle Quiscalus
quiscula, the spotted hyena Crocuta crocuta, parasitic wasps Ichneumonoidea, salamanders
Salamandra, some sharks (sand tiger sharks Odontaspidae, mackerel sharks Lamnidae,
thresher sharks Alopiidae), coelacanth Latimeria and the sea star Patiriella, see 1.1.4 and
5.1.1.

As mentioned in 5.1.1, another variant is sported by some species of poison dart frog
Dendrobatus, which feed their offspring with unfertilised eggs.

2.6 Maternal effect

The literature on maternal effects is difficult to interpret, because the reports are conflict-
ing, they concern field situations where conditions are complex and varying (allowing for
a variety of interpretations) and egg size variation is typically large. A summary, partly
composed by Tjalling Jager, is as follows: Neonate size in Daphnia sometimes seems to
increase with lower food availability [499, 530, 275, 155, 942], sometimes it depends on
the clone [497], but starved mothers are also found to produce smaller neonates [1439].
Egg size can also increase with the age of the mother in Daphnia [155], salamander (Am-
bystoma [1275]) and chicken (Gallus [1272]) or with the size of the mother in fish [683, 469]
or decreases with old age in fish [469]. Egg size decreases for lower food availability (as
qualitatively assumed in the standard deb model) in wolf spiders (Lycosa [1000]), dung
flies (Scathophaga [142]), pine beetles (Dendroctonus [384]), sea slugs (Tenellia [251]), sea
urchins (Pseudechinus [1115]), fish [469, 208] and owls (Strix [688]), but the opposite was
found in cichlid fish [1398], fruit flies (Drosophila [1465]) and nematods (Caenorhabditis
[562]), while egg size was found to be independent of food in ground beetles (Pterostichus
[160]), lizards (Takydromus [362]), butterflies (Bicyclus [689], Speyeria [157]), gastropods
(Nassarius [252]) and copepods (Drepanopus [23]). Egg size sometimes decreases or in-
creases with food availability in rotifers (Brachionus [719, 463]), or remained constant
(Synchaeta [1366]). Postnatal growth also depends on the nutritional condition of the
mother [721, 950], as demonstrated in white-tailed deer (Odocoileus [988]), for instance.

The empirical evidence is rather weak due to lack of careful control of the conditions
of the environment and of the detailed nutritional status of the mother; in most situations
information is missing that is critical in a deb context and adaptation processes might be
involved that must be captured by changes in parameter values. In the case of Daphnia,
the bigger eggs at low food densities do not survive longer during starvation [529]. In
view of the observation that the eggs in the brood pouch substantially increase in volume
during incubation due to the uptake of water, see Section 4.11.3, and low food densities
lead to small clutch sizes, the least problematic interpretation is that Daphnia eggs take
up less water at high food levels due to lack of room in the brood pouch. Since reserve
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Figure 2.10:
Egg (wet) weight as function of the
postorbital-hypural length in the chinook
salmon Oncorhynchus tshawytscha. Data
from [95]

density changes rapidly in small individuals (namely proportional to v̇/L), the maternal
effect as implemented in the standard deb model hardly affects the time till death by
starvation. The range in egg size is rather limited in the deb context, so some variation
can easily obscure maternal effects. Egg size seems to be related to the size of the mother
in fish, see Figure 2.10, not only to weight, but also to length. The maternal effect rule
can’t explain this. Crowding might be a reason, since reproduction rate scales somewhere
between surface and volume, so the mass-specific reproduction rate decreases with the size
of the individual. This might also be the case in other taxa.

Despite this conflicting empirical evidence, the maternal effect as implemented in the
standard deb model seems most attractive. A constant egg size, as a possible alternative,
introduces a parameter that might be difficult to estimate in practice since allocation to
reproduction is a hidden variable. Moreover, the maximum assimilation rate is sensitive
to the diet. The normalisation of the scaled functional response f is sensitive to this
maximum, so is the scaled reserve at birth. The assimilation rate that corresponds to
f = 1 for one diet, might correspond to f < 1 for another diet. The rule that the
reserve density at birth equals that of the mother at egg formation avoids this problem.
Moreover, this rule is in beautiful harmony with vegetative propagation that is sported
by many species; some species (e.g. some sea cucumbers and anthozoans) sport them
simultaneously. This links up with the evolutionary origin of embryos from organism that
propagated vegetatively. The maternal effect as implemented in the standard deb model
avoids at least one parameter (the costs of an egg), and possibly more (e.g. to implement
that egg size increases with the nutritional status of the mother). It is also the only
possibility that ensures von Bertalanffy growth at constant food density, which allows to
solve the ode’s for the changes in state explicitly and important mathematical properties
can be obtained from that. How the von Bertalanffy growth rate depend on ultimate length
under the various food conditions plays an important role in the theory, and also how it
changes at abundant food with the maximum body size among species. All that becomes
quite a bit more complex for other maternal effects.

If the parameters of the offspring equal to that of the mother, reserve density at birth
equals that of the mother at start of development, implies that the scaled reserve densities
are also equal. This does not need to hold for the case the parameters differ. If the
ultimate size of males and females differ, for instance, this is typically caused by a difference
in {ṗAm}. This implies that, if the reserve density [E] of male and female neonates are
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the same, their scaled reserve densities e = [E]/[Em] differ, since the maximum reserve
capacity [Em] = {ṗAm}/v̇. The same holds for the scaled length at birth. At constant
scaled functional response f , e initially differs from f for males. The time required to
reach e = f will be small, since the change in reserve density is linked to v̇/L and l is
small.

2.7 Puberty

Puberty is the event at which further maturation ceases and allocation to reproduction
starts, such that no other flux is affected. Since allocation to maturation increases over time
at constant food in embryo’s and juveniles, the natural constraints (1−κ)f{ṗAm}L2

pap > Ep
H

and (1− κ)f{ṗAm}L2
∞ap > Ep

H must apply as long as f is large enough to reach puberty.
In scaled quantities, these constraints translate to fl2pτp > vpH and fl2∞τp > vpH . For the
standard model, for which l∞ = f − lT , the latter becomes f(f − lT )

2τp > vpH .
To reach puberty, allocation to maturation just before puberty must be positive, so

(1−κ)f{ṗAm}L2
p > k̇JE

p
H at constant food. In scaled quantities, this constraint translates

to fl2p/k > vpH . The combination of these different constraints learns that kτp > 1 and
f(f − lT )

2 > kvpH and also 1 > kvpH . While lp and τp must be obtained numerically from
core parameters and f , the latter constraint can be checked without numerical work.

2.7 Reproduction in C. elegans

The nematode Caenorhabditis elegans has a remarkable reproduction strategy [1492, 655].
There are males |and hermaphrodites }, differing in genetics, males being smaller. A
hermaphrodite fertilises itself if males are absent. One sperm cell is used to fertilise one
egg cell; sperm cells are produced first in a number that more or less matches the number
of egg cells to be produced, so L|

p < L~
p in absence of males. Any extra eggs remain

unfertilised. The post-reproductive period is typically long in absence of males. In the
presence of males, hermaphrodites hardly produce sperm and L~

p → L|
p; reproduction does

not cease (no post-reproductive period), but reproduction reduces with old age.
The effects of exposure to cadmium are similar to those of a reduction of assimilation

[13]: L~
p of individuals in isolation tends to that for individuals in the presence of males,

while the latter does not seem to be affected by cadmium.

2.7 Reproduction and moulting in ecdysozoans

Many taxa of ecdysozoans have a fixed number of moults, such as nematodes, copepods,
most insects, spiders. For them, moulting seems to be linked to growth to accommodate a
growth body and the costs for moulting is a fixed fraction of the specific cost of structure,
[EG]. Moulting in juveniles can perhaps better be linked to thresholds in maturity, but
some species also moult as adults, which can be linked to [ER] Some taxa, however, have
a undetermined number of moults and continue to moult while growth already ceased.
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Examples are daphnids, krill [294], collemboles, silverfish. These taxa linked reproduction
to moulting and the costs for moulting is a fixed fraction of the specific cost of somatic
maintenance [ṗM ]. Decapods show a wide variety of allocation strategies [1161].

In the hep model, imago’s do not allocate to reproduction. In the minute pirate bug
Orius, egg laying is well modelled using assumptions:

� life history events b(=birth), p(=puberty), j(=emergence of imago), i(=death)

� isomorphy during 0b and pj, no growth or allocation to reprod during ji

� moults occur when maturity exceeds thresholds

� reproduction buffer at j is Ej
R = [Ej

R]L
3
j , where [Ej

R] is a parameter, but Lj depends
on food

� egg production rate Ṙ(t) = − d
dt
ERκR/E0 for cost E0 per egg; κR is reproduction

efficiency

� reproduction buffer dynamics d
dt
ER = −ERk̇R, but mobilisation rate k̇R varies in

time

� buffer mobilisation rate dynamics d
dt
k̇R = (k̇R > k̇0

R)(k̇
m
R − k̇R)k̇

E
R

� constant temperature; all rates depend on temperature, but κR might decrease with
temperature

Buffer mobilisation rate k̇R(t) = 0 if t < t0 or else k̇mR
(
1− exp(−k̇ERt)

)
for t is time since

emergence. Threshold time t0 = log(k̇mR /k̇
0
R)/k̇

E
R .

Egg production rate Ṙ(t) = ER(t)k̇R(t)κR/E0 with d
dt
ER = −ERk̇R and ER(0) = Ej

R.

Cumulative number of eggs N(t) =
∫ t

0 Ṙ(s) ds.

The hep model states that the instar 6/imago transition occurs when [ER] exceeds
threshold [Ej

R], after which growth and further allocation to reproduction cease; after
puberty, i.e. at the instar 5/6 transition, further maturation ceases and allocation to
reproduction starts and growth switches from V1- to iso-morphic. The imago is not adult
in the DEB definition, since it does not allocate to reproduction. An argument for the
fact that allocation to reproduction in Orius albidipennis only occurs during instar 6, is
that temperature-dependence of imago survival just follows the 1-parameter Arrhenius
relationship, while egg laying hardly depends on temperature; the increase in allocation
to reproduction in instar 6 with temperature is (partly) compensated but a reduction in
instar duration.

Temperature dependence is complex inOrius laevigatus ; survival follows the 1-parameter
Arrhenius model, growth needs a 3-parameter one, and reproduction, via κR, is again dif-
ferent.
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2.7 Age at first brood in birds

Birds typically grow fast to an ultimate weight, and approach that well before they breed
for the first time. Many species are fed by their parents during growth, and typically reach
a larger weight than their parents, before the parents cease feeding. The young increase
their motivation to search for food during starvation and finally their weight settles at the
adult level. Birds also have a long life span, and they have the ultimate weight during
most of their life span. Time since birth at first brood is frequently reported, but this is
well after puberty has been reached. We here evaluate tR: the time since birth at the first
brood on the assumption that brooding starts if the reproduction buffer density reaches
some threshold level, food density is constant and the reproduction buffer is fully emptied
when littering.

Suppose that an individual at ultimate weight produces clutches at rate ḣN . The

reproduction buffer density at littering thus equals [ER] =
∫ ḣ−1

N
0 [ṗR] dt, where allocation

to reproduction ṗR = (1 − κ)ṗC − k̇JE
p
H and mobilisation ṗC = f [Em]L

3(v̇/L − ṙ) and

specific growth rate ṙ = f [Em]v̇/L−[ṗS ]/κ
f [Em]+[EG]/κ

. For fully grown individuals ṗC reduces to ṗC =

f [Em]L
2
∞v̇ = f 3[Em]L

3
mk̇Mg and ṗR to ṗR = (1 − κ)L3

m[Em]k̇Mg(f
3 − kvpH), so [ER] =

(1 − κ)[Em]k̇Mg(1 − kvpH/f
3)/ḣR. We now apply this to the first brood, where weight

might not be ultimate. Allocation to reproduction is zero for a < ap. The time at first
breeding tR now equals

(1− κ)[Em]k̇Mg(1− kvpH/f
3)/ḣN =

∫ tR

tp
((1− κ)f [Em](v̇/L− ṙ)− k̇JE

p
HL

−3) dt

1− kvpH/f
3 = ḣN

∫ tR

tp

(
f
1 + (g + lT )/l

f + g
− kvpH

l3

)
dt

The problem that time of first appearance of eggs does not coincide with puberty applies
generally, and becomes worse for increasing clutch size. For birds the problem is large,
since typically tR >> tp.

2.9 Standard deb model in scaled variables

The summary of the complete standard deb model (including the ageing module as dis-
cussed in section 6.1) in scaled variables is as follows (some of the more subtle components
are discussed in section 4.1 and in sections 4.1.5 and 4.1.5 of the comments). In addi-
tion to the primary parameters in Table 8.1 we need the Weibull ageing acceleration ḧa,
Gompertz stress coefficient sG, rejuvenation stress coefficient sH , specific maturity decay
k̇′J , maximum shrinking fraction δX and food particles have mass MX . We first introduce
the compound parameters and scaled variables as given in Table 2.2. We assume that
temperature, and so k̇M , is constant.

The scaled function response is now supposed to jump up and down between 0 and 1.
The time intervals for f = 0 are exponentially distributed with an intensity that changes
in time due to growth and the time intervals for f = 1 are deterministic and also change
in time; a big individual can handle of a food particle faster than a small one.
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Table 2.2: Compound parameters and scaled variables as used in the standard deb model

half-saturation coefficient K = {J̇EAm}
{Ḟm}yEX

specific scaled handling rate ρh = {J̇EAm}v̇2

MXyEX k̇3
M

g2

scaled feeding rate hX = ḣX/k̇M
somatic maintenance rate coefficient k̇M = [ṗM ]

[EG]

maintenance ratio k = k̇J/k̇M
maximum reserve capacity [Em] = {ṗAm}/v̇
energy investment ratio g = [EG]

κ[Em]

growth efficiency κG = µV [MV ]
[EG] = µV

µE
yV E

reproduction efficiency κ′R = (1− κ)κR
maximum length Lm = v̇

k̇Mg

scaled food density x = X/K
scaled functional response f = X

X+K = x
x+1

scaled reserve density e = [E]/[Em]
scaled length l = L/Lm

scaled heating length lT = [ṗM ]
{ṗT }Lm

scaled maturity vH = EH

g[Em]L3
m(1−κ)

scaled time τ = tk̇M
scaled maturity decay k′ = k̇′J/k̇M
scaled reproduction R = Ṙ/k̇M
scaled hazard h = ḣ/k̇M
scaled ageing acceleration q = q̈/k̇2M
scaled Weibull ageing acceleration ha = ḧa/k̇

2
M

No feeding (f = 0, hX = 0) occurs before birth, i.e. if vH < vbH . After birth, a food
handling interval has length τh = (ρhl

2)−1, the searching intervals have mean τs = τh/x and
the mean ingestion rate (in number of particles per scaled time) is hX = (τs+τh)

−1 = f/τh.
The change in scaled reserve density is

d

dτ
e = g(f − e)/l

where f = 0 for vH < vbH , otherwise f , and so x, is a given function of (scaled) time.
The maternal effect specifies the condition e of the neonate equals e of the mother at egg
formation. With l(0) = 0, the change in scaled length is

d

dτ
l = lr/3 with r =

ṙ

k̇M
= g

e/l − 1− lT/l

e+ κGg

where κG = 1 for r ≥ 0, otherwise κG is some value < 1 (see comments for 4.1.5).
With vH(0) = 0, the change in scaled maturity is

d

dτ
vH = −k′(vH − l2e(1− lr/g)/k) if vH < vpH or vpH > l2e(1− lr/g)/k else

d

dτ
vH = 0

where k′ = k for vH ≤ el2(1 − rl/g)/k, otherwise k′ is some value (see comments for
4.1.5). Reserve allocated to reproduction is first accumulated in a reproduction buffer with
handling rules that vary between species. The mean reproduction in scaled time amounts
to

R =
κ′R
u0
E

(
el2

e+ g
(g + lT + l)− kvpH

)
for vH = vpH else R = 0

where scaled initial reserve u0
E is given in (2.42) as a function of k, g, vbH and e (routine

available in DEBtool). Viable eggs satisfy d
dt
vH
∣∣∣
vbH
> 0, which translates to the constraint

ebl
2
b
g+lb
g+eb

> kvbH (routine available in DEBtool). Maturation ceases at puberty for kvpH =
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fl2∞, which reduces to f = (kvpH)
1/3 for lT = 0; for lower mean values of f the adult stage

is not entered.
Death is by ageing, rejuvenation or shrinking. The change in scaled ageing acceleration

and scaled hazard due to ageing is (cf Section 6.1)

d

dτ
q = (ql3sG + ha)e(g/l − r)− rq and

d

dτ
h = q − rh

Death by starvation occurs instantaneously if length shrinks too much, i.e. when l =
δX max l, and the hazard rate increases with increasing rejuvenation, hH = sH(max vH −
vH). This hazard due to rejuvenation adds to the hazard due to ageing; the change in
survival probability is d

dτ
S = −S(h+ hH).

Summing up, we have 1 forcing variable (apart from the temperature) and 7 state
variables (apart from the reproduction buffer)

x and e, l, vH ,max l,max vH , q, h

and 13 parameters
vbH , v

p
H , ρh, g, κ

′
R, κG, lT , k, k

′, sH , δX , ha, sG

Together they determine 2 life history events (birth, puberty) separating 3 life stages
(embryo, juvenile, adult) and 9 processes (feeding, digestion, somatic & maturity mainte-
nance, growth, reproduction, maturation, reproduction, ageing); 4 of 7 variables and 6 of
13 parameters deal with starvation and death (printed in red). At constant food densities
2 variables (max l,max vH) and 4 parameters (κG, k

′, sH , δX) don’t matter; 2 other vari-
ables (q, h) and 2 other parameters (ha, sG) concern ageing only. Since most species have
lT = 0, 6 parameters (vbH , v

p
H , ρh, g, κ

′
R, k) and 3 variables (e, l, vH) determine 8 processes

at constant food densities. The rescaling of scaled time and scaled length to real time and
structural volumetric length (which is proportional to physical length) involves 2 additional
parameters (k̇M , v̇); this also gives access to the feeding rate (particles per time) and the
reproduction rate (eggs per time).

The covariation of parameter values, as discussed in Chapter 8, and typical values, as
presented in Table 8.1, lead to the ballpark estimates for zoom factor z

vbH = 410−4 vpH = 0.25 ρh = 8z/MX g = 3/z κ′R = 0.2 κG = 0.8
lT = 0 k = 0.3 k′ = 0.2 sH = 2 δX = 0.8 ha = 310−4z sG = 0

where Lm = 1 cm for z = 1 and the mass of a food particle, MX , in mmol.
If searching follows a time-inhomogeneous Poisson process, which is a natural choice

[536] and section 4.1.1 and sections 2.3.3 and 7.2.4 of the comments, the rules for shrinking,
rejuvenation and associated survival become important even at constant food densities, due
to stochastic perturbations. Notice that in practice the mass of food particles will not be
constant, but follows a varying frequency distribution, with the effect that the handling
times will also be stochastic; these model elements are beyond the standard deb model.
Moreover, the hazard rate will have more contributions, such as from predation, which is
generally size and probably also maturity dependent.

The consequences of this stochasticity for the mineral fluxes are discussed in Section
4.3.1 of the comments. Scaling is ideal for the analysis of model properties, but if temper-
ature varies, the scaling of time is no longer a good idea.
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Figure 2.11: If searching follows a time-inhomogeneous Poisson process, the scatter increases
for decreasing zoom factor z, decreasing food density x, increasing food particle mass MX . The
scatter in the reserve density decreases with increasing length (upper left panel). The hazard rates
due to ageing (upper curve) and rejuvenation (lower curve) are given in the middle lower panel;
both contribute to the survival probability S (upper curve in middle upper panel). Death due to
shrinking did not occur in this case. The cumulative number of eaten food particles (black) and
of produced eggs (green) are shown. Reproduction is here initiated well after growth ceased, but
this is not determinate growth. Parameter values: x = 0.75, z = 5, MX = 510−4z3, vbH = 0.0004,
vpH = 0.25, ρh = 8z/MX , g = 3/z, κ′R = 0.2, κG = 0.8, lT = 0, k = 0.3, k′ = 0.2, δX = 0.8,
sH = 2, ha = z3 10−5, sG = 0.001
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3

Energy, compounds and metabolism

3.2 Body mass and composition

A data base on composition, mass and energy content can be found in [186]

3.2.1 Mass quantified as gram

The relationships between volumes, wet and dry weights, as given in (3.1 - 3.3), are very
sensitive for ideas about the water content of structure and reserve; see Section 3.3.1 of
the comments. The dry- over wet-weight ratio of structure and reserve is wV d

wV w
= dV d

dV w

and wEd

wEw
= dEd

dEw
, respectively. If dV d

dV w
= dEd

dEw
, the water content of reserve equals that of

structure. The molecular weight of reserve, wE, as presented in (3.1) and (3.2) includes
water in reserve and can be substantially larger than wEd in (3.3), which excludes water.
If we take wE = wEd or dEw = dEd, we essentially say that reserve has no water. If we take
dV w = 1g cm−3, we assume that the specific density of wet structure equals that of water,
which will typically hold by approximation. Excluding the contribution of the reproduction
buffer, wet weight can be written as

Ww = dV wL
3 + E

wEw
µE

= dV wL
3 + E

wEd
µE

dEw
dEd

= L3

(
dV w + fmEm

wEd
wV d

dV d
dEd

dEw

)

= L3 (dV w + fωdEw)
dV w=dEw= dV wL

3 (1 + fω)

with mEm = yEV
[Em]
[EG]

= [Em]
µE [MV ]

is the reserve capacity, [MV ] =
dV d

wV d
, see Table 3.3, and

ω = mEm
wEd

wV d

dV d

dEd
= [Em]

µE

wEd

dEd
. Likewise, dry weight can be written as

Wd = dV dL
3 + E

wEd
µE

= dV dL
3
(
1 + fmEm

wEd
wV d

)
= L3 (dV d + fωdEd)

If the water contents of reserve and structure are the same on a gram-per-gram basis,
dV d = dEd, we have ω = mEm

wEd

wV d
and dry weight can be written as Wd = dV dL

3(1 + fω).
Only in this case is the dry-wet weight ratio independent of feeding conditions and amounts
to Wd

Ww
= dV d

dV w
. If the water contents of reserve and structure differ, the dry-wet ratio depends
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on feeding conditions, and is, generally, variable. If reserve has no water, dEw = dEd, wet
weight reduces to Ww = L3

(
dV w + fmEm

wEd

wV d
dV d

)
= dV wL

3 + E wEd

µE
.

Since reserve initially declines faster than structure during starvation, the relative de-
crease in wet and dry weight has information about the water content of reserve, relative
to that of structure. If the relative declines are the same, the water content of reserve and
structure are the same.

Maximum reserve density, [Em] = {ṗAm}/v̇, is not a primary parameter. Energy con-
ductance has dimension length over time, and this length is in fact the ratio of volume and
surface area. This links this concept of energy conductance directly to isomorphs. Since
surface area of dry mass has little physical significance, we need surface area of wet mass,
so also volume of wet mass. This is why we need wE in (3.1), which includes water in
reserve.

How the chemical indices of wet mass nw∗1∗2 relate to that of dry mass nd∗1∗2 for ∗1 ∈
{H,O} and ∗2 ∈ {X, V,E, P} can be derived as follows on the basis of the assumption of
strong homeostasis. Let us call the number of H2O molecules per C atom x, so nwH∗2 =
2x+ndH∗2 and n

w
O∗2 = x+ndO∗2 , while n

w
C∗2 = ndC∗2 and n

w
N∗2 = ndN∗2 . The molecular weights

of wet mass relates to that of dry mass as w∗2w = w∗2d+18x, so x =
w∗2w−w∗2d

18
=

1−d∗2d/d∗2w
18

,
while d∗2w ≃ 1 g/cm3.

3.2.2 ATP

The role of energy in cellular metabolism, in particular the generation and use of atp, is
the main focus of bioenergetics [1003]. This compound is called the energy currency of
the cell. Together with nadph and nadh, which provide reducing power, it drives the
anabolic processes. Compounds involved in the decomposition processes are important for
the cell in two ways: through the production of atp from adp and p, which is produced
in anabolic processes, and through the production of elementary compounds that are sub-
strates for anabolic processes [613]. The final stages of the catabolic processing of lipids,
carbohydrates and proteins all make use of the same cellular machinery: the Krebs cycle.
To some extent, these substrates can substitute each other for fueling purposes. The cell
chooses between the different substrates on the basis of their availability and its need for
particular substrates in anabolic processes.

After this introduction, it perhaps comes as a surprise that atp is not the main focus
in deb theory. This is because atp itself does not play a leading role in energy fluxes.
It has a role similar to that of money in your purse, while your bank account determines
your financial status. A typical bacterial cell has about 5 × 106 atp molecules, which
is just enough for 2 seconds of biosynthetic work [838]. The mean lifetime of an atp
molecule is about 0.3 seconds [553]. The cell has to make sure that the adenylate energy
charge (1

2
adp+atp) (amp+adp+atp)−1 remains fairly constant (usually around 0.9,

but this matter is not settled yet). It does so by coupling endergonic (energy requiring)
and exergonic (energy releasing) reactions. If the energy charge is reduced, the energy yield
of the reaction atp→adp+p declines rapidly. The situation where the energy charge as
well as the concentration of amp+adp+atp remain constant relates to the concept of
homeostasis. Cells keep their purses well filled, which makes the dynamics of the purse
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Figure 3.1: The atp/adp shuttle transports energy from a site where an
energy producing transformation occurs, to a site where an energy requiring
transformation occurs. If both transformations occur at the same place and
time, and thermodynamics allows, the shuttle is not required. Variations in
the free energy of an atp molecule affect the speed of the shuttle, but not
necessarily the transformation rates. Form [769].

contents less interesting. atp is part of the machinery used to harvest or mobilize energy.
A varying energy yield per mole of atp does not necessarily complicate metabolic

dynamics. It primarily affects the rate at which atp is produced in energy-yielding trans-
formations or consumed in energy-requiring transformations, and therefore also the rate
at which atp and adp commute between the sites where these transformations occur, see
Figure 3.1. The analogy with money can be extended one step further: the big bank-money
is in a stable currency, while the exchange rate of the small purse-money may vary. The
focus on atp/ adp versus polymers is primarily a question of relevant time scales. Cell
division cycles and stages in the development of individuals last too long for a focus on
atp.

The chemiosmotic theory was developed to explain the molecular mechanism of atp
generation. It has boosted biochemical research in cellular energetics, and it is now a
central issue in all texts on molecular biology [1029], although competing theories do exist
[863]. The focus of bioenergetics on the processes of atp synthesis and use, matches the
classic division of metabolism into catabolic and anabolic processes very well [1520]. This
division, however, is less straightforward in the context of the deb theory, where reserves
play an essential role, and processes of synthesis and decomposition occur repeatedly in
metabolism. Other differences exist as well. Cell size influences cellular processes through
the ratio between membrane surface area to cell volume. This gives the deb theory a
natural focus on cell and life cycles. The link between activity coupled to a surface area
(membrane) and mass of metabolic substrate and product coupled to volume is a corner-
stone in the deb theory for the uptake and use of energy.

3.3 Classes of compounds

3.3.1 Terrestrial adaptations in mineral production

Lungfish are supposed to be closest related to ancestors that made the transition from fish
to amphibians, so from water to land. This not only concerns the way they respire, as their
name suggests, but also to the use of ammonia versus urea as nitrogen waste [864, p 187].
The Australian lungfish Neoceratodus is most ‘primitive’ among lungfish, lives in water
that does not become deoxygenated and cannot aestivate. It can only live for 20min out
of the water (at night) and their larvae have no external gills and has a inefficient unpaired
lung. The South American lungfish Lepidosiren and the four African ones Protopterus have
paired lungs, live in water that frequently becomes deoxygenated, the larvae have external
gills and can aestivate, especially the African species where the swamps in which they live
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Table 3.1: Typical values for the ash-free-dry-weight over wet-weight ratio. Any shell is excluded.
Measured values can differ considerably due to differences in protocol. This ratio affects [EG],
[MV ], dE and dV . The values [EG] = 2800 J cm−3 and [MV ] = 4mmol cm−3 of DEB3, Table 8.1
correspond with a ratio of 0.1. Values derived from [1174, 186, 984]. Values for bivalves of 0.2
correspond to the situation where all body fluids have been removed after rupturing the animal.
These body fluids should, however, be included for comparative reasons.

Scyphomedusa 0.04 Ctenophora 0.04 Ascidia 0.06 Ectoprocta 0.07
Priapulida 0.07 Cheatognata 0.07 Actinaria 0.08 Bivalvia 0.09
Echinodermata 0.09 Porifera 0.11 Sipuncula 0.11 Gastropoda 0.15
Polychaeta 0.16 Crustacea 0.17 Cephalopoda 0.21 Pisces 0.22
Turbellaria 0.25 Aves 0.28 Reptilia 0.30 Mammalia 0.30

can completely dry up for 9 months in a year. P. aethiopicus can even aestivate up to four
years. In the water lungfish use ammonia and some urea, while on land, they only use urea,
suppressing the formation of (toxic) ammonia via the ornithine cycle. Their kidneys cannot
excrete urea, they use their gills for this, like the spiny dogfish Squalus acanthias [424].
Gills are, however, inoperative on land, so urea accumulates in the tissues. Adaptation to
the terrestrial environment involved many adaptations, including the transfer of excretory
function from gills to kidneys. Although the four species of African lungfish Protopterus
retain gills as adults, 70% of dioxygen is taken in via the gills in the young post-larval
stage, but only 15% in the adult stage; the rest is taken in via the lungs. The lungs
remove carbon dioxide inefficiently in lungfish. In the water lungs remove only 28% of
carbon dioxide, the gills doing the rest, and on land the carbon dioxide level in the blood
increases. The receptors that detect carbon dioxide are external in the gills of lungfish and
internal in tetrapods. See Section 4.4 of the comments for gill-like structure in breeding
Lepidosiren males that work inverse to typical gills.

Frogs typically use ammonia in the tadpole stage, but convert to using urea as nitrogen
waste during and after metamorphosis [365]. Urea production typically starts at low in-
tensity in the embryo already and gradually becomes more important. Embryos of iguanas
produce urea, while after hatching iguanas produce uric acid [1245]; their eggs double their
weight during incubation due to water absorption. Eggs of terrestrial reproducers hardly
produce ammonia. Excretion of urea through the skin in known in Bufo and Rana species.

The Chinese soft-shelled turtle, Pelodiscus sinensis, excretes urea mainly through the
mouth instead of the kidney [649].

3.3.2 Water in tissues

Water in biomass can, like any other compound, belong to reserve or structure or both.
On of the ways to find out where it belongs is to study the relative decrease in wet and
dry weights during starvation. If both decrease equally fast initially, while only reserve is
used, the fractions of reserve and structure that are water are the same. The importance
of the water content for energetics is, o.a. in the volume-specific costs for structure [EG].
If most of the structure is water, these costs are expected to be low. The water content

http://www.bio.vu.nl/thb/research/bib/Kooy2010
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of structure also affects the mass-volume couple [MV ]. Given a fixed growth efficiency
κG = µV [MV ]/[EG] and chemical potential of structure [MV ] and [EG] are affected by the
water content is the same way. Table 3.1 gives typical values. At this moment, it is an open
question to what extent [ṗM ] is affected by the water content of structure. If most somatic
maintenance is linked to protein turnover, this parameter will decrease for increasing water
content. Intra-organismal water transport might become more costly for increasing water
content. It is not yet fully clear to what extent water content follows the rules for strong
homeostasis.

3.3.2 Segregation of reserve

Embryos of many species have a storage deposit, called yolk, composed of lipo-proteins.
These are proteins with large amounts of carbohydrates, lipids and cholesterol bound
to it, which are transformed to proteins, lipids and carbohydrates around birth. This
transformation is generally considered to be efficient from an energetic perspective, and
deb theory does not account for it explicitly. Animal species vary a lot in the extent of
segregation of yolk from the rest [204]. Some species, e.g. mammals, hardly have yolk;
such eggs are called alecithal. Some have a small amount that is hardly segregated, such
as many echinoderms, annelids, mollusks (except cephalopods), nematodes and tunicates;
these eggs are called isolecithal. Others have a large amount that is central in the egg,
called centrolecithal with arthopods as example, or the non-yolk is floating on a big blob
of yolk, called telolecithal, with cephalopods and vertebrates as examples, see Figure 3.2.
(These are also the groups with capillaries, so a closed blood circulation system.) The
mitotic apparatus can be in the center of the egg and cleavage is complete, a situation
called holoblastic cleavage. If yolk is segregated, the eggs are centrolecithal. The mitotic
apparatus can also be displaced from the center and cleavage can be incomplete, a situation
called meroblastic cleavage with telolecithal eggs as result. The egg segregates into a
number of separate blastomeres and a residue, i.e. a continuous mass of cytoplasm that is
specialised in storing. The blastomeres become separated from the yolk by a periblast, a
syncytial layer that is supposed to play a role in the mobilisation of yolk. Even in the case
of holoblastic development there is some segregation of the storage function.

The eggs of amniotes (reptiles, birds and mammals) have
a number of membranes: amnion, allantois, yolk sac, and
chorion. The amnion surrounds the embryo directly and
the amniotic fluid provides it with a stable fluid environ-
ment. The allantois takes care for gas diffusion and re-
moval of wastes. Yolk in the yolk sac is mobilised through
an umbilical cord. Surrounding all the other membranes is
the chorion, which prevents bacteria to invade. Around the
chorion is the albumin, or ‘white’ of the egg, and an outer
shell protects the whole egg mechanically, preventing drying
while still permitting air to reach the embryo and providing
calcium carbonate for the bones of the bird embryo. An air space provides an extra internal
buffer for environmental conditions.
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Figure 3.2: Meroblastic de-
velopment (dotted lines) as
it evolved from holoblastic
development (drawn) among
vertebrates. From Schwartz
[1273].

The allantois and yolk sac are modified to an elongated umbilical cord in the foetal
embryo, providing a connection through which maternal reserve and dioxygen reaches the
foetus, and wastes are removed. Together with part of the chorion, these membranes make
up the placenta, which physically attaches the embryo to the uterine wall of its mother.
Around the whole is the fluid-filled chorion.

The umbilical cord allows to separate yolk from the rest of the embryo, which calls for
an interpretation of the measurements. Mobilised yolk converts to reserve and structure, as
mentioned at {80}, where the conversion efficiency from yolk to reserve is very close to one
and reserve density remains constant. This conversion of yolk Y to reserve can formally be
considered as a transport process, i.e. a spatial reorganisation, with hardly any consequence
for the dynamics of development; the total mass of reserve of the embryo is thus the sum of
the mass of yolk and the reserve that has already been transported to the embryo tissues
and organs. On the assumption that yolk is zero at birth, in combination with the maternal
effect that reserve density equals that of the mother at egg formation eb, quantifies yolk
dynamics: MY (t) = ME(t) − ebmEmMV (t), where body yolk and the rest of reserve are
mobilised to fuel embryo development. This relationship not only interprets measurements
on yolk mass, but also gives the relationship between egg and foetal development, where
foetal mass corresponds with (1 + ebmEm)MV (t).

deb theory treats the yolk sac as an temporary organ for storage, not unlike adipose
tissue in juveniles and adults. The fact that some organs have a temporary role, or that the
role can change during development, is certainly not unique. The thymus is an example
of an mammalian organ that is mainly active in the early juvenile stage where it regulates
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growth, but its role in the immune-system lasts much longer; the size of the thymus shrinks
considerably around puberty.

Segregation of reserve comes with a transport issue. The general pattern is that some
reserve compounds can be mobilised rapidly and are stored near the site of intensive use,
and other compounds are mobilised slowly and are stored in specialised tissues. The distant
slow pools need to be mobilised and transported, which takes time. It is no coincidence
that the change in reserve density is proportional to v̇/L, so the mobilisation rate decreases
for increasing transport distance within an organism. All cells in a multicellular body
have reserve and structure; the reserve density might differ between organs or tissues in
isomorphs, without giving theoretical complications.

3.4 Conversions of energy, mass and volume

Additional to Table 3.3 other useful conversions are:

relationship unit description
κX = yEX

µE
µX

− digestion efficiency

uE = κE
[EG]L3

m
− scaled reserve

vH = EH

[EG]L3
m

κ
1−κ − scaled maturity

κG = µV
[MV ]
[EG]

= µV
µEyV E

− growth efficiency

3.6 Isotope dynamics

Isotopes can be used to infer about body temperature from the fossil record. By com-
paring δ1∗O in the phosphate of teeth of Mesozoic reptiles with that of fish, Bernard et
al [115] conclude that ichthyosaurs, plesiosaurs, and, to a lesser extent mosasaurs, were
homeothermic in the range 35–39 ◦C, swimming in seawater of 12 ◦C. Eagle et al [371] con-
clude that big non-avian dinosaurs had a body temperature of 37 ◦C, cf Subsection 8.2.2 of
the comments. Montani [986] warns, however, that the interpretation needs to account of
the linear increase in δ18O in biogenic carbonates and phosphates during the last 500Ma
at a rate of some 0.02Ma−1.

3.6.1 Reshuffling

The literature on isotope dynamics typically talks about mixing rather than reshuffling and
actually treats this dynamics as if atoms (and so isotopes) travel independently. deb the-
ory, however, accounts for the fact that atoms are locked in molecules and that molecules are
transformed. The atoms of product molecules correspond to particular atoms in substrate
molecules in simple transformations. In complex transformations, involving metabolic net-
works, we still should deal with frequency distributions of originating atoms in substrate
molecules. A similar problem is in stochiometric constraints on production, where most
literature discusses chemical elements, as if they travel independently, see e.g. [1369]. We
only have to remember that N is frequently limiting primary production, but N2 is very
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abundant (but only few species can use N in this form). We can’t avoid to consider
chemical transformations, which complicates the problem quite a bit.

3.6.2 Derivation of (3.26)

The definition of the odds ratio is the ratio of probabilities of two isotopes being selected
for a particular target. Its meaning requires the identification of the isotopes (and the one
that is in the numerator) and of the target. This definition involves the notion of a flux of
molecules to at least two targets. An odds ratio of 1 means that both isotopes have the
same probability of being selected for that target.

Isotope dynamics can only be understood if mass dynamics do no longer have any
secrets. So section 3.6 (and 4.7) can best be skipped at first reading.

All three basic fluxes, assimilation, dissipation and growth, have an anabolic and a
catabolic aspect. In other words: substrates have a dual function; they serve as source for
energy and building blocks. These functions are typically incompatible, because the use
as energy source involves a decomposition into simple products that are excreted into the
environment. Because of the difference in fate of substrate molecules, selection of molecules
with particular isotopes can occur at the partitionning of anabolic and catabolic fluxes; if
selection does not occur, we choose β = 1, which is just a special case.

We follow fluxes in C-moles, so for carbon in transformation k we can simply write J̇sk =
κkJ̇ska + (1− κk)J̇skc for any s ∈ S, where S is the set of all substrates in transformation
k. Notice that κk does not depend on s, only on k. For element i we need to account for
the chemical index, so nisJ̇sk = κknisJ̇ska + (1 − κk)nisJ̇akc . This does not add anything
new, because the chemical indices of the anabolic and catabolic fluxes are identical. This
does not hold for the isotopes, however. So the balance equation for the isotopes reads
n0k
is J̇sk = κkn

0ka
is J̇ska+(1−κk)n0kc

is J̇akc , where n
0ka
is ̸= n0kc

is if β ̸= 1. Notice that the selection
is different for the different transformations, so k appears in n0k

is .

If we integrate time t over a time increment dt, the total number of ‘balls’ in our
pool is m = nisJ̇sk dt, where m0 = n0k

is J̇sk dt are ‘white’ and m1 = m − m0 are ‘black’.
In the anabolic flux we select n = nisJ̇ska dt = κknisJ̇sk dt ‘balls’ from this pool, where
n0 = n0ka

is J̇ska dt = κkn
0ka
is J̇sk dt are ‘white’ and n1 = n− n0 are ‘black’.

We now use (3.25), substitute for β = β0ka
is , n, m0 and m1

n0 =
2c√

b2 − 4ac− b

κkn
0ka
is J̇sk dt =

2c√
b2 − 4ac− b

n0ka
is =

2c√
b2 − 4ac− b

1

κkJ̇sk dt
with

a = β − 1 = β0ka
is − 1

b = n−m1 − (m0 + n)β = (n+m0)(1− β)−m

=

(
(κk +

n0k
is

nis
)(1− β0ka

is )− 1

)
nisJ̇sk dt ≡ BnisJ̇sk dt
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c = m0nβ = κkβ
0ka
is

n0k
is

nis
(nisJ̇sk dt)

2

The expression for n0ka
is can be simplified to

n0ka
is =

2β0ka
is n0k

is√
B2 + 4(1− β0ka

is )β0ka
is κk

n0k
is

nis
−B

Since n0k
is = κkn

0ka
is +(1−κk)n0kc

is , we have n0kc
is =

n0k
is −κkn

0ka
is

1−κk
. For β0ka

is = 1, we have B = −1

and n0ka
is = n0k

is , so the process is unselective.

3.7 Synthesising Units

The concept of Synthesising Units comes back in deb theory at all levels of organisation;
it was implicitly applied already in Chapter 2 and will be applied explicitly in Chapter
4, comming back in all other chapters, such as in 7.1 and 7.6 on applications of SUs in
pathway dynamics. At the molecular level SU dynamics in intrinsically stochastic, and
since it is also used to model baheviour (which is notoriously stochastic), the stochastic
behaviour of SUs comes back at the population level in 9.3.1. This is a reason to consider
the stochastic aspects at the molecular level in more detail, although 11.2 argues that this
world is more alien than generally recognised.

3.7.1 From substrate to product

The derivation of the simplest SU-mediated transformation A → B, see Figure 3.6, is as
follows. On the basis of an advection-diffusion argument, the association between substrate
A and the SU is taken proportional to the concentration XA of substrate A. This is also
called the law of mass action. Let θ· denote the fraction of SU’s that can bind substrate
A and θA the fraction that is already bound: 1 = θ· + θA. One can also think of a single
SU where θ· and θA stand for the the fractions of time that it is in the free and bounded
state. This better illustrates that we here exploit the conservation law of time. Given the
dissociation rate k̇B and the association rate ḃA, the change in the fraction of enzyme in
the various binding states is given by

d

dt
θ· = k̇BθA − ḃAXAθ·

We now use a time scale separation argument and evaluate the steady state fraction θ∗·
for which d

dt
θ· = 0. We find θ∗· = k̇B

k̇B+ḃAXA
and θ∗A = ḃAXA

k̇B+ḃAXA
. The flux of substrate A

that disappears is J̇A = ḃAXAθ
∗
· = k̇B ḃAXA

k̇B+ḃAXA
. The flux of product B that is produced is

J̇B = k̇Bθ
∗
A = k̇B ḃAXA

k̇B+ḃAXA
. No surprise that J̇A = J̇B. In the context of mass balances we

might take J̇A negative. This is the well-known Michaelis–Menten kinetics [590] or Holling
II functional response [623]. If one molecule of A produces yBA molecules of B, we need
to multiply J̇B by yBA.
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3.7.2 Derivation of (3.33)

Equations (3.30)-(3.32) can be written in matrix notation as

d

dt


θ··
θA·
θ·B
θAB

 =


−ḃAXA − ḃXXB k̇A k̇B k̇C

ḃAXA −k̇A − ḃBXB 0 k̇B
ḃXXB 0 −k̇B − ḃAXA k̇A

0 ḃBXB ḃAXA −k̇A − k̇B − k̇C




θ··
θA·
θ·B
θAB


or

d

dt
θ = k̇θ

Notice that the sum of all rows is zero for all columns, so 1T k̇ = 0 and k̇ii = −∑j ̸=i k̇ij.
The differential equation only specifies changes in state, not the state itself. We have the
extra constraint 1Tθ = 1, which, in combination, specifies the equilibrium, where we have
0 = k̇θ. We now out-scale time using τ = tk̇B, arriving at d

dτ
θ = kθ with

k =


−xAkA − xB kA 1 kC

xAkA −kA − xB 0 1
xB 0 −1− xAkA kA
0 xB xAkA −kA − 1− kC


We just divided all elements of k̇ by k̇B and introduced the scaled variables with xA =
XAḃA/k̇A, xB = XB ḃB/k̇B, kA = k̇A/k̇B, kC = k̇C/k̇B. At equilibrium we have 0 = kθ and
1Tθ = 1. This is a system of 5 equations with 4 unknowns (namely the θ’s), but these
equations are not all independent. We replace the first of the set of 4 equations, namely

0 =
(
−xAkA − xB kA 1 kC

)
θ

by 1 = 1Tθ. We can write that again compactly in matrix form using a matrix k∗ which
equals matrix k, but with a first row replaced one ones. The result is ( 1 0 0 0 )T =
k∗θ. This can now be solved by left-multiplication with the inverse of k∗, giving k

−1
∗ ( 1 0 0 0 )T =

θ, which is (3.33).

3.7.2 Synthesising Units at molecular scale

Because a Synthesising Unit does not dissociate from substrates, it can be considered
as a server, i.e. a unit handling particles. A large but fixed number of identical servers
handle particles simultaneously, without interfering with each other, except by competing
for the same particles (clients). The term ‘server’ stems from an extensive theory of applied
probability calculus, known as queueing theory, which deals with this type of problem, e.g.
[1239, 1319]. The extension of the previous derivation of the dynamics of the SU to include
an arbitrary number of copies of an arbitrary number of substrates becomes complex, but
this is still feasible if the derivation uses the servers’ point of view.

In its simplest form, the Synthesising Unit (SU) is an enzyme or a complex of en-
zymes that binds a substrate molecule to deliver (synthesise) a product molecule or a set
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of product molecules. For simplicity’s sake, I assume that the substrate molecules arrive
according to a Poisson process, that the binding occurs with a fixed probability ρ if the
SU is in its binding stage, and that the production stage lasts an exponentially distributed
time interval. The production stage corresponds with a kind of ‘handling’ time. During
the production process, no substrate molecules are accepted by the SU, so the binding
probability ρ for each arriving substrate molecule follows a renewal process [279], alternat-
ing between the values ρ and 0, when the SU is binding and producing, respectively. I call
this SU a one substrate-one copy SU, which will be generalised to a multi substrate-multi
copy SU.

Let the binding and production periods, tb

- time
0

•
tb tc

6

product
release

6

product
release

1 cycle� -
binding� - prod.� -

and tp, be exponentially distributed random

variables, with means J̇−1
Xb and J̇−1

Xm, respec-
tively. The substrate molecules arrive at rate
J̇Xa = J̇Xb/ρ, where ρ denotes the binding
probability per arriving substrate molecule. The cycle period of the SU, tc = tb + tp,
catenates one binding period and the subsequent production period. The inverse of its ex-
pected value, J̇X = 1/Etc, equals the mean production rate, which I will call the intensity
of the production process; it is defined as the ratio of the cumulative number of events in
a period to the length of the period, for a large period.

When substrate molecules are sent to a one substrate-one copy SU, according to a Pois-
son process with intensity J̇Xa, it returns a Poisson process of rejected substrate molecules,
with an intensity that alternates between values (1−ρ)J̇Xa and J̇Xa, and a renewal process
of product molecules, with intensity J̇X = (J̇−1

Xm + J̇−1
Xb)

−1. The mean intensity of the
rejected substrate molecules amounts to J̇Xa − J̇X . Note that for very high intensities of
the arrival process, the production process approximates the value J̇Xm.

The events of substrate rejection and production are mutually dependent, but I will not
work out the structure in detail, because the practical interest is not in the performance
of a single SU, but a large set of independently operating SUs. The central limit theo-
rem for the addition of independent stochastic point processes implies that the rejected
substrate molecules and the product molecules of a sufficiently large set of s independent
SUs converge to independent Poisson processes with constant intensities J̇Xa − J̇X and
J̇X = ((sJ̇Xm)

−1 + J̇−1
Xb)

−1, respectively. An increase in the amount of SUs has the effect
of decreasing the production period; the reduction of the intensity of arriving substrate
molecules per SU cancels against the increase of the binding probability. Other implemen-
tations of the step to group performance are conceivable, but these require details of the
SUs’ spatial organization.

3.7.2 Multi substrate-multi copy SU

Suppose that the SU can be in a binding or in a production stage, and that it needs n
copies of a single substrate X to produce a product molecule Y , while the moment at which
the production stage of the SU is entered, tb, equals the moment of the n-th binding, tn,
so tb = tn. Such a SU can be called a one substrate-multi copy SU, or n-SU. The binding

period follows the Erlangian distribution ϕtb(t) =
J̇X(J̇X t)

n−1

(n−1)!
exp{−J̇Xt}, which has a mean
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value of Etb = nJ̇−1
X . It results from adding n independently exponentially distributed

random variables with parameter J̇X . For a mean production period J̇−1
Y m, the appearance

of Y molecules from a single SU is a renewal process with intensity J̇Y = (J̇−1
Y m+ nJ̇−1

X )−1.
A large set of s SUs will produce a Poisson stream of Y molecules with intensity J̇Y =
((sJ̇Y m)

−1 + nJ̇−1
X )−1, and a Poisson stream of rejected substrate molecules of intensity

J̇X − yX,Y J̇Y , where yY,X stands for the number of molecules of Y produced per processed
molecule X.

The model does not specify the details of

- time
0

•
t1

•
t2
•
t3

•
t4

•
tb tc

6

product
release

6

product
release

1 cycle� -
binding� - prod.� -

the production process. The SU might have
n different binding sites, or just a single one
in combination with a fast process of precur-
sor production while the precursor molecules

remain in the local environment of the SU that is under its control.

Now we are ready for the more interesting multi substrate-multi copy SU, which requires
n different substrate types for the production of a single molecule, or set of molecules, Y :
the n1, n2, · · · , nn-SU. The kinetics of the production process is based on the idea that the
SU can only enter the production stage if all required substrate molecules are bound.

3.7.3 Sequential processing

When the SU binds the different types of substrate sequentially, in a random order, the
expected waiting time to the binding of ni molecules of type i is niJ̇

−1
i . The order of the

types is not relevant, but when the SU is binding type i it continues to do so until all
required molecules for the production of one product molecule are bound. This directly
leads to the expected binding period

Etb =
n∑
i=1

ni

J̇i
(3.1)

and the mean production rate J̇X = (J̇−1
Xm +

∑
i niJ̇

−1
i )−1.

The interest in this mechanism is mainly in its mathematical simplicity, and its in-
teresting properties (M. P. Boer, pers. comm.) The parallel binding period is equal to
the sequential binding period minus the gain in time (compare (3.1) and (3.5)). Suppose
that the substrate fluxes are proportional to the substrate concentrations Xi, as a result
of some convection or diffusion process. The production rate can then be rewritten as
J̇X = J̇Xm(1+

∑
iXKi/Xi)

−1 = J̇Xmfn, where XKi denotes the saturation constant, which
quantifies the affinity of the SU for substrate i, including the transport rate from the (local)
environment to the SU, and the factor fn is the scaled functional response for n types of
possibly limiting substrates, which takes values between 0 and 1. (The term ‘functional
response’ originates from ecology, and stands for the feeding rate of a predator as function
of the density of prey.) The recurrent relationship fn = Xnfn−1

Xn+XKnfn−1
applies, for f0 = 1 and

n = 1, 2, · · ·, which leads to fn =
∏
iXi(

∏
iXi +

∑
iXKi

∏
j ̸=iXj)

−1.
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Figure 3.3: These pictures illustrate the produc-
tion by a strongly binding relatively slow (upper)
and a very fast (lower) 1,1-SU. The arrival events of
substrate molecules A and B, and the production
events of product molecules C are indicated with
filled and open dots on three time-axes. Filled dots
stand for acceptance, open ones for rejection. The
grey areas indicate periods during which the SU is
blocked for a substrate. Note that the fast SU still
has substantial blocked periods.

3.7.3 Parallel processing

Suppose that the binding of one type of substrate does not interfere with that of another.
The SU will not bind substrate i molecules, either if it already bound ni molecules of that
substrate, but still has to bind other types of substrate, or if the SU is in the production
stage, see Figure 3.3. For application, one might think of a substrate-product conversion
that is uphill, meaning that the chemical potential of the product is larger than that of
the substrate, and must be coupled to another conversion that is downhill. Let tbi denote
the moment of the binding of the ni-th molecule of substrate type i (so the binding is
complete for that substrate), and tb = maxi{tbi} the moment when all required substrate
molecules are bound, and the production stage is entered. The distribution function of
the binding period tb equals the product of the distribution functions of tbi, which are
incomplete gamma functions

Φtb
(t) =

n∏
i=1

Φtbi
(t) =

n∏
i=1

∫ t

0
ϕtbi(t1) dt1 =

n∏
i=1

P (ni, tJ̇i) (3.2)

where P (n, t) = 1
Γ(n)

∫ t
0 exp{−t1}tn−1

1 dt1 = 1 − exp{−t}∑n−1
j=0

tj

j!
is the incomplete gamma

function. The expected value of the binding period is

Etb =
∫ ∞

0

(
1− Φtb

(t)
)
dt =

∫ ∞

0

(
1−

n∏
i=1

P (ni, tJ̇i)

)
dt (3.3)

and the expected value of the cycle period is Etc = J̇−1
Xm+ Etb. The mean production rate,

therefore, occurs at intensity J̇X = (J̇−1
Xm + Etb)−1 for a single SU, and J̇X = ((sJ̇Xm)

−1 +
Etb)−1 for a set of s SUs. The intensity of the rejected substrate molecules of type i amounts
to J̇i/ρi − niJ̇X , where arriving substrate molecules of type i are bound with probability
ρi if the SU is in the binding stage.

For two possibly limiting nutrients, so n = 2, (3.3) reduces to

Etb =
n1

J̇1

+
n2

J̇2

−
n1−1∑
i=0

n2−1∑
j=0

(i+ j)!

i! j!

J̇ i1J̇
j
2

(J̇1 + J̇2)i+j+1
(3.4)
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→ J̇1/J̇Xm

↑
J̇2/J̇Xm

→ J̇1/J̇Xm

↑
J̇2/J̇Xm

Figure 3.4: The 0.1(0.1)0.7 contours of the
scaled production flux J̇X/J̇Xm as function
of the scaled substrate supply fluxes J̇ ′

1 =
J̇1/J̇Xm and J̇ ′

2 = J̇2/J̇Xm for a 1,1-SU.
The production flux for a 1,1-SU simplifies to

J̇X =
(
J̇−1
Xm + J̇−1

1 + J̇−1
2 − (J̇1 + J̇2)

−1
)−1

.

Figure 3.5: The 0.1(0.1)0.9 contours (right

to left) of the flux control coefficients ∂ ln J̇X
∂ ln J̇ ′

1

of the substrate flux J̇ ′
1 on the production

flux J̇X for a 1,1-SU. The flux control coef-
ficients for substrate J̇2 can be obtained by
interchanging the labels on the axes. The
stippled line marks J̇1 = J̇2.

and for three possibly limiting nutrients

Etb =
3∑
i=1

ni

J̇i
−

3∑
i2>i1=1

ni1
−1∑

i=0

ni2
−1∑

j=0

(i+ j)!

i! j!

J̇ ii1 J̇
j
i2

(J̇i1 + J̇i2)
i+j+1

+

+
3∑

i3>i2>i1=1

ni1
−1∑

i=0

ni2
−1∑

j=0

ni3
−1∑

k=0

(i+ j + k)!

i! j! k!

J̇ ii1 J̇
j
i2 J̇

k
i3

(J̇i1 + J̇i2 + J̇i3)
i+j+k+1

(3.5)

from which it is obvious how this expression generalises for a larger number of possibly
limiting substrates. There is no need to evaluate the integral in (3.3), when it comes to
practical computations. Note that the first summation in the last (i.e. third) summation
term in (3.5) only contains one element. The first summation in the middle summation
term contains three elements.

Figure 3.4 illustrates that the 1,1-SU behaves very like a minimum operator for small
substrate supply fluxes. This can be quantified using the Metabolic Control Analysis

[583], which shows that the flux control coefficients ∂ ln J̇X
∂ ln J̇i

rapidly decrease for increasing

substrate concentrations, see Figure 3.5. The elasticity coefficients, which quantify the

effect of a change in the SU concentration on the production flux, are ∂ ln J̇X
∂ ln s

= J̇X
sJ̇Xm

. When

a 1,1-SU binds sequentially, the production rate is J̇X =
(
J̇−1
Xm + J̇−1

1 + J̇−1
2

)−1
, which is

obviously lower than that obtained using parallel binding. An important implication of
SUs behaving like a minimum operator is that abundant substrates do not matter, and
only possibly limiting substrates need to be followed explicitly.

The supply fluxes of substrates to the SU can result from convection or diffusion pro-
cesses, which makes it likely that they are proportional to the concentration Xi of substrate
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in the local environment of the SU and the number of SUs. The 1-SU then behaves quan-
titatively according to the familiar MM-kinetics [590, 969]. Most texts on this kinetics
[1278, 1279] assume a reversible binding to the enzyme, however. For the 1-SU such an
extension hardly complicates the model. The 1,1-SU requires 9 binding and dissociation
rates to quantify the production process [60, 965], but reversible binding becomes really
complex for the multi substrate–multi copy enzymes. It requires the kinetics of all possible
combinations of partially filled enzyme–substrate complexes to be specified [1198], which
is not only cumbersome, but also involves a huge amount of parameters. The Carrier-
Synthesising Unit complex allows reversible binding with relative ease, see below.

3.7.3 Production of generalised compounds

As might be expected, an increase in substrate concentration almost cancels against an
increase in stoichiometric requirements, so J̇X is rather insensitive to multiplication of both
J̇i and ni by an arbitrary factor. This allows the use of SUs to quantify the production of
generalised compounds. The product flux of a {ni}n1 -SU approximates that of a 1, 1, · · · , 1-
SU, when we replace J̇i by J̇i/ni, resulting in

J̇X =

J̇−1
Xm +

n∑
i1=1

(
J̇i1
ni1

)−1

−
n∑

i2>i1=1

 2∑
j=1

J̇ij
nij

−1

+
n∑

i3>i2>i1=1

 3∑
j=1

J̇ij
nij

−1

− · · ·

· · · − (−1)n
n∑

in>···>i1=1

 n∑
j=1

J̇ij
nij

−1


−1

(3.6)

As is obvious from the derivation, the constraints niJ̇X < J̇i apply for all i = 1, 2, · · ·n.
Many applications of SUs not only involve generalised compounds, but also generalised

enzymes that catalyse the transformation. They can be thought of as a set of enzymes
that pass metabolites to each other, without accumulating pools of intermediary metabo-
lites. The implication is that the transformation is halted instantaneously when one of
the required substrate molecules is not (yet) available, and the SU ceases binding other
substrates, until the generalised product molecule is delivered.

3.7.3 Mixed transformations

The four basic classes of transformations are sequential-substitutable (ss), sequential-
complementary (sc), parallel-substitutable (ps) and parallel-complementary (pc). Mixed
transformations can be written as weighted sums of these four basic types. The change in
binding fractions is for J̇ ′

∗ = ρ∗J̇∗ and θT = ( θ·· θA· θ·B θAB )

d

dt
θ = k̇θ with k̇ = wssk̇ss + wsck̇sc + wpsk̇ps + wpck̇pc
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	 Figure 3.6: The conversion X → E and Y → E with

interaction. θ∗ indicates the fraction of Synthesising
Units that is bound to substrate ∗.

k̇ =


−k̇A·,·· − k̇·B,·· k̇··,A· k̇··,·B k̇··,AB

k̇A·,·· −k̇··,A· − k̇·B,A· 0 k̇A·,AB
k̇·B,·· 0 −k̇··,·B − k̇AB,·B k̇·B,AB
0 k̇·B,A· k̇AB,·B −k̇··,AB − k̇A·,AB − k̇·B,AB



with

k̇A·,·· = J̇ ′
Aw++ k̇·B,A· = J̇ ′

B(w++ − wss) k̇··,AB = k̇Cw+c

k̇·B,·· = J̇ ′
B(w++ − wsc) k̇··,·B = k̇Bw+s k̇A·,AB = k̇Bwps

k̇··,A· = k̇Aw+s k̇AB,·B = J̇ ′
Awp+ k̇·B,AB = k̇Awps

The zeros in k̇ relate to the assumption that transformations are orderly processes: within a
time increment, at most one event can occur. This covers all possibilities with the constraint
k̇··,A·
k̇··,·B

=
k̇·B,AB

k̇A·,AB
= k̇A

k̇B
. This constraint relates to a symmetry relationship between A and B

in binding to the SU, which is removed in the class of co-metabolic transformations. Notice
that k̇ has 9 degrees of freedom that can be expressed as functions of 4 weight coefficients
w, 2 arrival rates J̇ and 3 dissociation rates k̇, which amounts to 8 degrees of freedom; if
we multiply all rates with a constant, but divide all weight coefficients by that constant,
nothing changes.

3.7.4 Preference

Eqn. (3.35) corresponds to the situation where S1 can bind to an SU-S2 complex to
become an SU-S1 complex, releasing substrate S2 untransformed. Unfortunately, Figure
3.8 corresponds to the situation where S2 can replace S1, as indicated in the legends.

The preference scheme of Figure 3.8 is a special case of the interaction scheme of Figure
3.6 of the comments. The change in binding fractions for substrates X and Y and product
E are

d

dt
θ· = k̇XθX + k̇Y θY − (ḃXX + ḃY Y )θ·

d

dt
θX = −k̇XθX + ḃXXθ· − ḃY XY θX + ḃXYXθY

d

dt
θY = −k̇Y θY + ḃY Y θ· + ḃY XY θX − ḃXYXθY

with 1 = θ·+ θX + θY and X and Y stand for the densities of substrates X and Y in moles
per volume (or surface area). The pseudo steady state fractions are

θ∗X =
αY ḃXX − βX ḃY Y

αXαY − βXβY
; θ∗Y =

αX ḃY Y − βY ḃXX

αXαY − βXβY
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with

αX = k̇X+ḃXX+ḃY XY ; αY = k̇Y+ḃY Y+ḃXYX; βX = ḃXX−ḃXYX; βY = ḃY Y−ḃY XY

The product flux amounts to J̇E = yEXMX k̇Xθ
∗
X + yEYMY k̇Y θ

∗
Y and the fluxes of used

substrates to J̇X = MX ḃXθ
∗
· +MX ḃXY θ

∗
Y −MY ḃY Xθ

∗
X and J̇Y = MY ḃY θ

∗
· +MY ḃY Xθ

∗
X −

MX ḃXY θ
∗
Y . In absence of interaction, ḃXY = 0 and ḃY X = 0, this transformations reduce

to sequential processing of substitutable compounds. Notice the symmetry in X and Y of
all expressions.

This interaction scheme can be used to model dynamic preferences as described in
Subsection 5 of the comments for a 2-food, 2-reserve system. The concept of preference
is closely linked to that of inhibition. Think, for instance, about the situation that an
individual becomes a specialist of catching one type of prey species and ignores other
species unless that species becomes very rare (meaning that the ingestion rates drops far
below the maximum). It is as if the target species inhibits the catching of other species, a
situation worked out in Section 7.9.4.

3.7.4 Derivation of Eq (3.39)

The derivation of demand kinetics , Eq (3.39), for 2 substrates-with-preference assumes
that the supply kinetics which leads to Eq (3.36) still applies. The difference is that the
dissociation rate parameters k̇S1 and k̇S2 are no longer constant, but depend on the fractions
of SUs that are free, or bound to S1 or S2. This dependence is such that the delivery rate
of product P , k̇P is constant (as long as substrate supply allows). This product can be
formed from substrate S1, with yield yPS1 , or from substrate S2, with yield yPS2 . So
jP = yPS1j

+
S1

+ yPS2j
+
S2
, where j+

Si
denotes the flux of substrate that is accepted by the

SUs. The flux of substrate Si that arrives is called jSi
, but part of this flux is rejected

because a fraction of the SUs was already bounded by substrate at the moment of arrival.
The arriving flux equals the accepted flux plus the rejected flux: jSi

= j+
Si

+ j−Si
. The

lowercase for the fluxes is used, rather than the upper case, because the fluxes depend on
the number of SUs, which is taken to be constant in the derivation. The flux of product jP
in the demand-formulation is considered to be constant, so is in fact a model parameter.
To express this difference in nature with the substrate fluxes (which depend on substrate
availability), jP is replaced by the parameter k̇P . So

k̇P = yPS1j
+
S1

+ yPS2j
+
S2

= yPS1 k̇S1θS1 + yPS2 k̇S2θS2

Both dissociation rates depend on the bound fractions, but we now further restrict freedom
by assuming that ratio of the dissociation rates, ρS2 = k̇S2/k̇S1 , remains constant, so ρS2 is
a parameter. Substitution gives

k̇P = k̇S1(yPS1θS1 + ρS2yPS2θS2) = k̇S1θ

for θ = yPS1θS1 + ρS2yPS2θS2 . From an application perspective it is important to know
how much substrates is actually used per unit of time for product formation, i.e. j′Si

. If
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we know one of them, the other follows from the relationship k̇P = yPS1j
+
S1

+ yPS2j
+
S2
,

since j+
Si

= k̇Si
θSi

. The changes in the fractions is given in Eq (3.35) and we assume that
the fractions are in pseudo steady state (i.e. d

dt
θSi

= 0 for θSi
= θ∗Si

), using a time-scale
separation argument. The equilibrium values get an ∗ to differentiate them from the time-
varying fractions. Writing primes for multiplication by a (constant) binding probability
upon arrival of a substrate molecule to a free SU, we get from Eq (3.36)

θ∗S1
=

j′S1

k̇S1 + j′S1

and θ∗S2
=

k̇S1j
′
S2

(k̇S1 + j′S1
)(k̇S2 + j′S1

+ j′S2
)

but the varying k̇Si
values need to be replaced now using k̇S1 = k̇P/θ and k̇S2 = ρS2 k̇S1 .

From the latter 2 equations we have j+
S2

= ρS2 k̇P θ
∗
S2
/θ∗. Substitution of θ∗S2

and θ∗ gives the

equation Ax2+Bx+C = 0, with x =
θ∗S1

ρS2
yPS2

θ∗S2

, from which x can be solved. An alternative

derivation, due to Jaap van der Meer, is to solve k̇S1 from k̇P = k̇S1(yPS1θ
∗
S1

+ ρS2yPS2θ
∗
S2
),

which can be rewritten in the form Ak̇2
S1
+Bk̇S1 +C = 0, with A = ρS1(yPS1j

′
S1
+yPS2j

′
S2
−

k̇P ), B = yPS1j
′
S1
(j′S1

+j′S2
)− k̇P (ρS2j

′
S1
+j′S1

+j′S2
), C = −k̇P j′S1

(j′S1
+j′S2

). Back-substitute

this value for k̇S1 and k̇S2 = ρS2 k̇S1 in θ∗S2
and θ∗. The accepted flux of substrate S2 again

becomes j+
S2

= ρS2 k̇P θ
∗
S2
/θ∗.

3.7.5 Co-metabolism

The text discusses the situation where A as well as B can be transformed to C; Notice
that the scheme in Figure 3.9 is more general: B is transformed to D. The situation that
D is identical to C is a special case.

3.8 Metabolism

3.8.1 Trophic modes

The aphid Acyrthosiphon pisum can synthesise carotenoids with which, under favourable
conditions, it can extract energy from light to drive atp synthesis [1451]. The genes for
this synthesis probably orinigate from bacteria or fungi; the carotenoids are not extracted
from food. Green phenotypes could be selected from orange ones at 8 ◦C that were excep-
tionally rich in carotenoids; the green phenotype is heritable, supporting the hypothesis of
epigenetic regulation, but fades away at 22 ◦C. The ability to synthesise carotenoids seems
to be unique among animals.

Desulfobulbus forms colonies in the from of threads from the ocean bottom surface to a
centimeter deep down to transport electrons. This distance is enough to link dioxygen-rich
to hydrogen sulfide-rich environments to extract energy from H2S oxydation, see Figure
3.7.

The sulphur bacterium Achromatium oxaliferum lives on freshwater sediments in steep
dioxygen gradients, where it oxydises sulphur and iron and can fix inorganic carbon [1255].
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Figure 3.7: The bacterium Desulfobulbus forms multicellular threats to transport electons and
extract energy from the oxydation of H2S [1093].

Figure 3.8: The large grains in the
bacterium Achromatium oxaliferum
are calcium carbonate, the small
ones sulphur.

http://www.zmescience.com/research/studies/bacteria-forms-electrical-cables-sea-floor-0421343/
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It only occurs in environments that are rich in dissolved Fe2+ and is the only organism
known to store CaCO3 intracellularly (large grains), see Figure 3.8; Coccolithophorans
(a group of haptophyta) form carbonate platelets intracellularly, but then export them.
A.oxaliferum does not store CaCO3 in acidic environments, where CO2 predominates
HCO−

3 . Both iron and sulphur oxidation consume protons and so promotes HCO−
3 and

CaCO3 formation, reducing the flux of CO2 to RuBiSCO for C-fixation. A possible candi-
date transformation that explains CaCO3 and S accumulation is [517]:

2 FeS + 2Ca2+ + 2CO2 + O2 → 2 S + 2CaCO3 + 2Fe2+

The anaerobic methanotroph Methylomirabilis oxyfera is able to oxidize methane an-
earobically while reducing nitrite and producing dioxygen and dinitrogen, without produc-
ing other nitrogen oxides [399]. This pathway for dioxygen production might have preceded
that via oxygenic photosynthesis.

3.9 Auxiliary theory for the standard deb model

The variables of the standard deb model cannot be measured directly, only indirectly.
Auxiliary theory deals with the relationships between quantities that can be measured and
model variables. Its assumptions for the standard deb model are

� A well-chosen physical length of the body is proportional to (volumetric) structural
length; the proportionality constant is called the shape correction factor δM. It is
constant because of the assumption of isomorphy in the standard deb model.

� Volume, wet weight and dry weight have contributions from structure, reserve and
the reproduction buffer.

� A unit of structure, reserve and reproduction buffer as a constant mass and occupied
a constant volume on the basis of strong homeostasis. The specific chemical and
physical properties on these three quantities are constant (chemical composition,
chemical potential, specific entropy). Water might be an exception in some taxa
(where water can replace decreasing reserve, for instance). The relationship between
mass and volume can be more complex in terrestrial ecdysozoa (e.g. insects, where
air can replace decreasing reserve).

� The chemical composition of juveniles growing at constant food levels remains con-
stant. The comparison of the chemical composition of juveniles growth at different
food levels gives access to the chemical composition of reserve and structure. The
situation for adults is complicated by the role of the reproduction buffer.

Notice that the standard deb model does not deal with fast pools, such as the digestive
systems and blood (see Chapter 7). The time scale of the dynamics of the faster pools
should be taken into account in the interpretation of data in the context of the standard deb
model. Gut content might contribute to weight in reality, but is ignored in the standard
deb model, so linking measurements to predictions by the standard deb model should take
this into account. A similar problem relates to the use of time. The standard deb model
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only recognises searching for food and handling of food. So everything an individual does
(such as sleeping) should be classified into these two categories.

Future developments in the application of deb theory might use chemical proxies for the
amounts of reserve and stucture. Subsection 4.3.3 states that DNA belongs to structure
and rRNA possibly belongs to reserve. Other proxies might be found as well; some of
them might be taxon-specific. Further experience will learn to what extend such proxies
are useful and give satisfactory results. Variables that are hidden at this moment not
necessarily remain hidden in the future.
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4

Univariate DEB models

4 Multiple-reserve as one-reserve systems

Organisms that take their various substrates from the environment independently of each
other can, under particular conditions, still be modelled as one-reserve systems. So there
is not always a need to include all reserves explicitly. This can be seen using the following
argument and the notation is further developed in chapter 5.

If all rejected reserve fluxes are excreted, we have κEi
= 0 and in steady state mEi

=
jEiA/k̇E (see (5.17) for d

dt
mEi

= 0), which means that mEi
is constant if jEiA is constant,

so if the concentration of the i-th nutrient in the medium is constant. The concentration
of nutrients depend on the growth rate in a chemostat. If the concentration of the non-
limiting nutrients is large relative to the half saturation constant, we have jEiA ≃ jEiAm for
i unequal to the limiting one, which is independent of the growth rate and the non-limiting
reserves count as parts of the structure in the analysis of the chemical composition.

4.1 Changing feeding conditions

McCue [936] reviews starvation physiology and noticed that some small birds and mammals
may tolerate only one day of starvation, some snakes and frogs two years, and the Euro-
pean eel Anguilla anguilla holds the record of surviving for 1594 d under non-hibernation
conditions. He reports that the mean relative weight loss in endotherms is almost always
higher than that of ectotherms, which is doubtlessly linked to the maintenance rate being
body temperature dependent. Mass reductions during starvation by a factor 0.5 are no
exception, but this differs between organs, probably linked to functional aspects. Some
amphibians and fish are known to increase water content during starvation; the water con-
tent of reserve might be less than that of structure, but water might also escape the strong
homeostasis rules. The very long survival times during starvation can only be understood
from the ability to shut down maintenance costs. A satisfactory inclusion of this process
involves considerable biochemical ‘detail’.
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4.1.4 Prolonged starvation

Atlantic hagfish (Myxine glutinosa), living in deep waters (120 till 1200m), feed on carrion,
e.g. dead mammals that sink to the ocean bottom in addition to small animals that share
their muddy habitat. Both male and female gonads develop till near maturity, but then one
of the types degenerate; functional hermaphrodites are being very rare and the female:male
ratio in catches is 99:1. The incidence of egg resorption (atresia) is very high and the
reproduction cycle is not synchronised. No method is presently available to access their
age, so parameter values are speculative by necessity. Yet, using data of Scott Grant (pers.
comm.) and assuming a reproductive cycle of a year, the estimated value of κ = 0.76 (see
add my pet), while estimated ages at birth and puberty are ab = 131 d and ap = 1082 d at
5◦C and abundant food for a typical value of the energy conductance v̇ = 0.098 cmd−1 and
the Arrhenius temperature TA = 8kK. This combination of values suggests that juveniles
mainly feed on the low density of small-bodied fauna and the adult females use their
reproduction buffer as an extended reserve. Large males may be rare because of the likely
occurrence of large periods between finding carrion to feed on, while the density of small-
bodies fauna is too low to cover their maintenance costs; the minimum food level for longer
survival increases with size (f = li). The species probably have developed ways avoiding
frequent death of adult males.

4.1.5 Shrinking during starvation

The derivation of (4.5) from (3.39) is on the basis of the following substitutions: k̇P = jES,
yPS1 = 1, yPS2 = jES/jV S, ρS2 = ρV /yEV , j

′
S1

= κjEC and j′S2
= yEV jV C . P has the

interpretation of maintenance products, S1 of reserve, S2 of structure. The role of yEV in
the substitutions is on dimensional grounds: A, B and C are all squared specific fluxes of
reserve.

The equivalent of (4.6) for allocation of energy from reserve and structure to somatic
maintenance reads

[ṗES ] = min{[ṗS], κ[ṗC ]} and [ṗVS ] = [ṗ′S](1− [ṗES ]/[ṗS]) (4.1)

where [ṗ′S] = [ṗ′M ] + {ṗ′T}/L is the volume-specific somatic maintenance costs if fully paid
from structure. A natural simplification is to assume that [ṗ′M ]/[ṗM ] = {ṗ′T}/{ṗT}. If
maintenance would be an energy demand only (i.e. no building block aspects), a further
simplification would be [ṗ′S] = [ṗS], where the energy is mobilised from the pool µVMV =
µV [MV ]L

3. The energy invested to create that pool was [EG]L
3 > µV [MV ]L

3, so paying
maintenance from structure increases the somatic maintenance costs by a factor κ−1

G =
[EG]

µV [MV ]
. The fraction κG has the intepretation of a growth efficiency. For EV = µVMV =

µV [MV ]L
3, we have d

dt
EV = κGṗG.

The specific mobilisation rate is given in (2.12): [ṗC ] = [Em]e(v̇/L−ṙ). During shrinking
we have [ṗES ] = κ[ṗC ] and [ṗVS ] = [ṗ′S](1−κ[ṗC ]/[ṗS]). This gives the shrinking rate implicitly
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from −ṙµV [MV ] = [ṗ′S](1− κ[ṗC ]/[ṗS]). The (negative) specific growth rate then equals

ṙ =
e v̇
L
− [ṗS ]

κ[Em]

e+ µV [MV ]
κ[Em]

[ṗS ]
[ṗ′S ]

= k̇Mg
e/l − 1− lT/l

e+ µV [MV ]
κ[Em]

[ṗS ]
[ṗ′S ]

[ṗS ]=[ṗ′S ]
= k̇Mg

e/l − 1− lT/l

e+ κGg
(4.2)

The last expression very much resembles the expression for positive specific growth rates,
we just have to take κG = 1. Notice that ṙ = 0 if κ[ṗC ] = [Em]ev̇/L = [ṗS] or ev̇/L =
(1 + lT/l)gk̇M or e = l + lT . Further discussion is given in [53].

If shrinking is allowed, we need a death-rule, e.g. death by starvation occurs if shrinking
of structure exceeds a given fraction of the original structure (at the onset of ceasing
growth). The planarian Dugesia polychroa can shrink form 15 to 3mm and fully recover
from this after resuming feeding [71]. Shrinking might be rather widespread, even among
species with an internal skeleton. The Dehnel phenomenon was mentioned in Section 4.1.5
for shrews; Galápagos marine iguanas (Amblyrhynchus cristatus) can shrink 20% (6.8 cm)
within 2 years [1539].

4.1.5 Rejuvenation during starvation

During prolonged starvation, not only structure, but also maturity can shrink if the allo-
cated reserve to maturity maintenance plus maturation (or reproduction) is not sufficient
to cover the maturity maintenance costs, (1 − κ)ṗC < k̇JEH . This is behind strategy 2
in section 4.1.4 when κ is increased when the allocation to maturation (or reproduction)
is already ceased. This implies that the whole flux (1 − κ)ṗC is already allocated to ma-
turity maintenance; Empirical support comes from [1415], as mentioned in section 2.5.3.
Reserve can never be exhausted completely, thus the mobilisation rate ṗC can never go
down to zero, so there is always some maturity level that can be maintained; it amounts to
(1− κ)ṗC/k̇J . The simplest implementation of the rejuvenation process is an exponential
decay from EH to this level at rate k̇′J , say, so

d

dt
EH = −k̇′J(EH − (1− κ)ṗC/k̇J) or (4.3)

d

dt
MH = −k̇′J(MH − (1− κ)J̇EC/k̇J) (4.4)

If k̇′J = k̇J , decrease and increase of maturity follows the same expression. An extreme
situation is that k̇′J = 0, and maturity maintenance is “voluntary”. The general idea is
that maturity maintenance includes ((bio)chemical) defence and this system is no longer
‘updated’ e.g. with the side effect that the hazard rate is taken proportional to the fraction
of maturity that is not maintained, so ḣ ∝ (1 − (1−κ)ṗC

k̇JEH
)+. Alternatively, the effect on

the hazard can be linked to ‘attack’ events by pathogens. Like the situation of shrinking
of structure, it seems realistic to install a death-rule e.g. death by starvation occurs if
shrinking maturity exceeds a given fraction of the original maturity (at the onset of ceasing
maturation).
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For scaled maturity vH = EH

g[Em]L3
m(1−κ)

, and [ṗC ] = [E](v̇/L − ṙ), and scaled time

τ = tk̇M , we have

d

dt
vH = −k̇′J(vH − l2e(k̇M − lṙ/g)/k̇J) or (4.5)

d

dτ
vH = −k′J(vH − l2e(1− lr/g)/kJ) (4.6)

where r = ṙ/k̇M , k′J = k̇′J/k̇M , kJ = k̇J/k̇M . Further discussion is given in [53].

Empirical support for rejuvenation in response to feeding stress not only comes from
krill, see [1415] as discussed in subsection 2.5.3, but also from the beetle Trogoderma
glabrum, [97]. Earthworms, Dendrobaena octaedra, loose their clitellum (which plays a role
in reproduction) when cultured at high density (so low amount of food per individual), and
get it back when better fed (much) later on (pers. comm Tjalling Jager). This is handy
when juvenile individuals are required for bioassays. Starving fully mature medusae of
the hydropolyp Turritopsis nutricula can even back-transform to colonial polyps and can
completely reverse their life cycle [1104].

4.1.7 Dormancy

Food shortage coincides with low temperature in cold temperate seas, which is typically
avoided by linking rates to temperature. Metabolic rates are then depressed compared
to what can be expected on the basis of the Arrhenius relationship. Coma et al [266]
report that benthic invertebrates in warm temperate seas have their resting phase in the
summer, following a variety of strategies among bryozoans, bivalves, sponges, hydrozoans
and ascidians. Most species in the temperate zone follow a year cycle, where some species
are only active during spring, while others are during summer or winter. These patterns
are the result of several factors, rather then the availability of a single nutrient; water,
temperature, light, vectors for pollination or seed dispersal, a variety of nutrients can
interactively influence when species peak their metabolism.

Lack of water (and so of food) is for many (terrestrial) species a trigger to switch to
the torpor state. Lungfish, tenrecks, desert frogs and plants are familiar examples, but the
phenomenon is widespread. Tardigrades master the art in extreme and can recover from
torpor even after 120 years, if they have been able to store enough trehalose before entering
[648]. Only during World War II it was discovered that baker’s yeast, Saccharomyces
cerevisiae, can only enter torpor by desiccation if nutrient, but not energy starved, in which
case large amounts of trehalose accumulate, see Subsection 5.2.4 on damming up. Trehalose
not only provides an energy storage, but also protects membranes during desiccation [648].

Geiser [473] delineates two types of torpor: by low temperature and by metabolic
inhibition in combination with low temperature. He observes that endothermic hibernators
(mammals and one bird species, Phalaenoptlius nuttallii) are typically small (10 to 1000 g)
with a medium mass of 85 g.
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4.1.8 Emergency reproduction

Myxobacteria (e.g. Stigmatella) respond to starvation by aggregation, the formation of a
fruiting body which produces spores [587] in ways that are well-captured by deb theory.
This is an example of emergency reproduction. The life cycle of myxobacteria shares a lot of
features with those of myxamoeba (cellular and acellular slime moulds, e.g. Dictyostelium)
and the heterolobosean Acrasis.

4.2 Changing shapes

If individuals change in shape during growth, physical length is a poor quantifier for size,
but volumetric structural length defined as L = V 1/3 is still useful. The shape coefficient
δM, converting some physical length to volumetric length, see Section 1.2.3, changes with
length if shape changes. The idea of the shape correction function M(V ) is to multiply all
‘per surface area’-parameters with it, to know how functions of those parameters behave
for individuals that change in shape. The primary parameters are listed in Table 8.1, and
only {Ḟm}, {ṗAm}, {ṗT} and v̇ depend on surface area; dimension ‘length’ in v̇ represents
the ratio of a volume and a surface area. Maximum reserve density [Em] = {ṗAm}/v̇ is
not affected by changes in shape, because {ṗAm} and v̇ are affected in the same way; so

e = [E]/[Em] is also not affected. Maximum length Lm = v̇
k̇Mg

= κ{ṗAm}
[ṗM ]

, however, should

be multiplied by the shape correction function, since k̇M and g, or κ and [ṗM ], are not
affected.

An example of a function of parameters is the specific growth rate ṙ = v̇ e/L−1/Lm

e+g
=

v̇e/L−gk̇M
e+g

, see (2.21) for isomorphs with LT = 0. Isomorphs are V2
3
-morphs and have

shape correction function M(L) = 1. The shape correction function of a V1-morph is
M(L) = L/Ld, see (4.11). So if we want to know the specific growth rate of V1-morphs,
we find it from that of isomorphs by

ṙ =
M(L)v̇e/L− gk̇M

e+ g
=
ev̇/Ld − gk̇M

e+ g
=
ek̇E − gk̇M
e+ g

for k̇E = v̇/Ld, which is equivalent to (4.14) in the case that J̇MV = 0 (no shrinking).

Another example is the reserve residence time tE = 1+e/g

v̇/L+k̇M
for an isomorph with LT = 0,

see Section 2.3 of the comments. For a V1-morph this becomes tE = 1+e/g

k̇E+k̇M
. Notice that

for constant e, both ṙ and tE are constant, i.e. independent of length, for V1-morphs.
This ‘trick’ can be done for all properties that can be written as functions of states and
parameters. Never do this for growth curves or cumulative reproduction, since changes in
shape affect rates and these statistics integrate rates over time.

A nice confirmation of effects of changes in shape is found by White et al [1524] for
encrusting bryozoans as dynamic mixtures of V0- and V1-morphs: just as expected their
respiration is proportional to the square-root of mass and the diameter of the colonies is
proportional to time in constant environments.
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Figure 4.1: Scaled length at birth lb and di-
vision ld for an isomorph as function of scaled
functional response, f , for g = 1, k = 0.1 and
vdH = 0.01. The smallest f that allows division is
0.1. The mean length and the ratio of the mean
volume and surface area are also indicated.

4.2.0 isomorphs

Although isomorphs, or V2
3
-morphs, don’t change shape during growth, this section is

probably best to specify volume at division for dividing isomorphs, since chapter 2 deals
with propagation via eggs or fetuses.

The volume at division should be found from Vd =
∫ Ed

H

Ed
H/2

d
dt
V

d
dt
EH

dEH , with
d
dt
V = ṙV ,

d
dt
EH = (1−κ)ṗC− k̇JEH , ṗC = e[Em]V (v̇/L− ṙ) and ṙ = v̇ e/L−1/Lm

e+g
. The initial condition

V (0) = Vd/2 causes this equation for Vd to be an implicit one. Maturity density remains

constant if k̇J = k̇M , from which follows Vd =
Ed

H/[Em]

(1−κ)g
. This value can be used as an initial

estimate in the case that k̇J ̸= k̇M .
The number of parameters that are involved can be reduced by working with scaled

quantities: scaled maturity vH = uH
1−κ with uH = EH

g[Em]L3
m
, scaled length l = L/Lm, main-

tenance ratio k = k̇J/k̇M . Just like (2.54), we have d
dvH

l = (f−l)g/3
fl2(g+l)−kvH(g+f)

and solve

ld =
∫ vdH
vbH

dl
dvH

dvH for vbH = vdH/2 and l(vbH) = lb = ld2
1/3, starting from ld = (vdH)

1/3. We

now see that ld only depends on k, g and vdH , while it only can exist if f > ld. This lower
boundary for f is (kvdH)

1/3, where we have ld = f . DEBtool/alga/get ld computes ld and
DEBtool/alga/get ed min computes the smallest f , see Figure 4.1.

The survivor function of the stable length distribution is given by (9.13) of the com-
ments, so the probability density function is given by

ϕl(l) = − d

dl
Pr{l > l} =

2
1+ln f−l

f−lb
/ ln

f−lb
f−ld

f − l

ln 2

ln f−lb
f−ld

DEBtool/alga/get Eli computes, E l, E l2 and E l3 at constant f .

4.2.0 V1
2-morphs

Euglena has a cylindrical cell that grows in diameter, not in length, and divides longitu-
dinally. See Figure 4.2. Its surface area is (roughly) 2πLrLc and volume πL2

rLc, where Lr
is the changing cell radius and Lc the constant cell length. The cell tappers toward the
ends, so the caps are not included in the surface area and Lc should be adjusted a little
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1 2

3 4

Figure 4.2: Euglena cells divide longitudinally and don’t grow in length. They qualify as V1
2 -

morphs. The division process takes a full hour at 20◦C. Schiermonnikoog, 2012/12/28.

to account for the shape difference with a cylinder. Cells can change shape dramatically
within seconds, but these changes don’t affect surface area or volume; amounts of outer
membrane don’t change that fast and water is not flowing in and out rapidly. Surface
area is, therefore, proportional to volume to the power 1

2
, which classifies Euglena as a

V1
2
-morph, and the shape correction function is M(L) = (V/Vd)

−1/6 = (L/Ld)
−1/2. The

specific growth rate amounts to ṙ =
v̇e
√
Ld/L3−k̇Mg

e+g
= k̇Ee(Ld/L)3/2−k̇Mg

e+g
for a cell of structural

length L. The cell increases in volume by a factor 2 if the radius increases by a factor
√
2.

The inter-division interval ad can be found from Lr(ad) = L◦
d, with Lr(0) = L◦

d/
√
2 and

d
dt
Lr = Lrṙ/3. Ld serves the role of a reference value for the changing structural length

L, as does L◦
d for the cell radius. The (specific) population growth rate relates to the

inter-division interval as ṙ = a−1
d ln 2, a result which helps to see how cell dimensions (Lc,

Ld), metabolic properties (v̇, k̇M , g) and substrate availability (e = f if scaled functional
response f is constant) affect population performance.

Figure 4.3 shows that the growth curves of V0-morphs are more convex than the von
Bertalanffy one for isomorphs and that V1

2
-morphs are in between.
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Figure 4.3: To compare growth of V0-, V1
2 - and V2

3 -morphs at constant substrate densities,

we scale time as τ = k̇M t and length as L/Ld, where scaled length at birth is lb = Lb/Ld, and
scaled reserve turnover is kE = k̇E/k̇M . Energy conductance is v̇ = Ldk̇E by definition. Left:
Growth at lb and ultimate length. The table shows that all maximum lengths (f = 1) are equal
if g = kE . Right: Growth curves for scaled functional response f = 0.7 (stippled) and 1 (drawn).
Parameters: lb = 0.1, g = kE = 1.25.

4.2.1 V0- versus iso-morphs

Figure 4.3 shows that the growth curves of V0-morphs are more convex than the von
Bertalanffy one for isomorphs and that V1

2
-morphs are in between.

4.2.2 V1- versus iso-morphs

Let us compare the performance of iso- and V1-morphs that are otherwise as equal as pos-
sible in terms of parameter values and state variables. The significance of this comparison
is that the specification of population dynamics of dividing V1-morphs only requires ode’s,
since all individuals have the same reserve densities (that might change in time) and only
the total amount of structure of all individuals in the population is important, not the
amount of structure for each individual. The population dynamics of dividing isomorphs,
however, requires a formulation in pde’s, which are way more complex to integrate, or
ibm’s, which are also computationally intensive. If substrate density fluctuates in time in
a spatially homogeneous environment, reserve densities of isomorphs scatter, since baby
cells follow these fluctuations faster than mother cells while changing in time. This sug-
gests to approximate the dynamics of a population of isomorphs with that of ‘appropriate’
V1-morphs. One way to define ‘appropriate’ is to consider the parameters of individual
isomorphs in a time-length-mass frame:

K, yEX , {J̇EAm}, v̇, κ, jEM , yV E, M
d
H , k̇J

or in a time-length-energy frame
K, κX , {ṗAm}, v̇, κ, [ṗM ], [EG], E

d
H , k̇J

The parameters of the most appropriate V1-morph have the same values, except for {J̇EAm}
and v̇, because the corresponding parameters for V1-morphs, [J̇EAm] and k̇E have different
dimensions. Maturity at division Md

H affects mean cell size, but this cell size does not
affect population dynamics of V1-morphs, while it does affect that of isomorphs.
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Figure 4.4: The scaled population growth rates
for V1-morphs (red) and isomorphs (green, but
invisible, because it is beneath the red curve)
and V0-morphs (blue, but invisible, because it
is also beneath the red curve), as function of the
functional response, such that their growth rates
at f = 1 are identical. Given the parameters g =
0.5 and k̇E/k̇M = 100, this happens for L∗

d/Ld =
0.8929 for isomorphs and L∗

d/Ld = 0.7216 for
V0-morphs.

If the uptake capacities of the iso- and V1-morphs are equal at birth (just after division),
the V1-morph can grow faster, because it can increase its surface area faster during the
cell cycle. If, on the contrary, the uptake capacities are equal just prior to division, the
isomorph can grow faster, because it has a larger surface area at birth. This illustrates the
problem that the detailed way how we compare them really matters.

Resource acquisition depends on assimilation. For an isomorph, the surface area-specific
assimilation rate {J̇EAm} = J̇EAm/L

2 is a constant and [J̇EA] = J̇EAm/L
3 = {J̇EAm}/L

is a variable. For a V1-morph [J̇EA] is a constant and {J̇EAm} is a variable. A similar
relationship applies to the reserve mobilisation: the role of (varying) v̇/L for an isomorph
is similar to that of (constant) k̇E for a V1-morph.

For an isomorph, the reserve capacity is [MEm] =
{J̇EAm}

v̇
and for a V1-morph [MEm] =

[J̇EAm]

k̇E
. The uptake and mobilisation rate as well as the reserve capacity are all three equal

for iso- and V1-morphs if [J̇EAm] = {J̇EAm}EL2/EL3 and k̇E = v̇EL2/EL3. Since ELi
depends on the growth rate, so on the substrate concentration, it can vary in time. The
idea of approximating the population performance of isomorphs by that of V1-morphs is to
assume that the length distribution of individuals changes in pseudo-equilibrium and the
scaled reserve density of V1-morphs equals to the mean scaled reserve density of isomorphs.

Notice that Vd depends on ṙ that can change in time, , see 4.2.0 of the comments, and
the parameters [J̇EAm] and k̇E should be evaluated for each time increment. Since changes
in time are only slow, a continuation method using the Newton Raphson scheme is likely
to be numerically very efficient. This strategy can be followed for all non-V1-morphs.

Furthermore, we can substantially reduce computations by equating [J̇EAm] = {J̇EAm}EL2/EL3

and k̇E = v̇EL2/EL3 only for f = 1 and use these values for all food conditions. The rela-
tionship between population growth rate ṙ and division interval ad is ṙ =

ln 2
ad

. The division

interval for an isomorph at constant food is ad = ṙ−1
B ln L∞−Lb

L∞−Ld
, where Lb = 2−1/3Ld for

division into two parts at length Ld and ṙB = k̇M/3
1+f/g

and L∞ = fv̇

gk̇M
, see (2.23). The specific

growth rate for a V1-morph at constant food is ṙ = k̇Ef−k̇Mg
f+g

, see (4.18). By equating these

growth rates we can find L∗
d for v̇/L

∗
d = k̇E

L∗
d

Ld
=
α− 2−1/3

α− 1

g

fkE
with α = exp

(
ln 2

3

1

fkE/g − 1

)
and kE =

k̇E

k̇M
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The conclusion is that L∗
d depends (theoretically) on f , so a possibility is to select f = 1

as reference. In practice, however, for realistic values of the parameters, the population
growth rate as function of the scaled functional response is almost identical for dividing
iso- and V1-morphs, see Figure 4.4. Notice that the curve ṙ(f) for isomorphs only depends
on Ld via L∗

d/Ld (given that we replace v̇/L∗
d by k̇E and {ṗAm}/L∗

d by [ṗA]) and that the
curve for V1-morphs does not depend on Ld at all. The role of κ remains hidden in g.
For k̇J ̸= k̇M , Ld depends on f , and the story becomes somewhat more complex. Because
the ṙ(f)-curves are almost identical in practice, these developments would be of academic
value only.

4.2.2 V1- versus V0-morphs

As we did for equating the population growth rates for V1- and isomorphs, we can equate
the population growth rate for V1 and V0-morphs. From (4.10) we learn for constant

e = f that V (t) = V∞ − (V∞ − Vb) exp(− k̇Mg
f+g

t) for V∞ = fV
2/3
d V 1/3

m and Vb = Vd/2 and

V 1/3
m = v̇

k̇Mg
as before. The inter-division interval ad follows from V (ad) = Vd with the

result that ad =
f+g

k̇Mg
ln V∞−Vd/2

V∞−Vd
, while ṙ = ln 2

ad
. We are now looking for an L∗

d = v̇/k̇E such

that the population growth rate of V0-morphs equals that of V1-morphs, ṙ = k̇Ef−k̇Mg
f+g

,

and find for Ld = V
1/3
d

L∗
d

Ld
=
α− 2−1

α− 1

g

fkE
with α = 2(fkE/g−1)−1

and kE =
k̇E

k̇M

4.2.2 Droop as special case of DEB

The demonstration that the one reserve - one structure DEB model for V1-morphs without
maintenance or growth overhead reduces to the Droop model is as follows. The Droop
equations [358] are:

d

dt
Q = u− µQ (4.7)

µ/µ′
m = 1− kQ/Q (4.8)

u/um = s/(ks + s) (4.9)

quantity Droop DEB
specific growth rate µ ṙ

asymptotic growth rate µ′
m k̇E

cell nutrient quota Q mE + nXV
subsistence quota kQ nXV
specific uptake rate u jXA
max spec uptake rate um jXAm
half saturation constant ks K
nutrient concentration s X
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Figure 4.5: The specific growth rate ṙ as func-
tion of the cell quota Q for vitamin B12 lim-
ited growth of Pavlova lutheri, as specified by
Droop’s model [357]. The data were copied
from [832], but the curve ṙ(Q) = ṙm(1−Q0/Q)
was recalculated to remove the ‘artistic freedom’
that turned out to be included.

For internalised nutrient as reserve we have jEAm = yEXjXAm with yEX = 1. Mobilised
nutrient from reserve is built into structure without overhead, so yV E = nEV = nXV . Since
k̇E = jXAm/mEm, see {125}, the specific reserve dynamics (4.13) becomes

d

dt
mE = jEAmf − k̇EmE

Now, (4.9) shows that u = jEAmf . To see that Droop’s cell quota kinetics is equivalent
to DEB reserve kinetics for zero maintenance costs, k̇M = 0, we need to demonstrate that
µQ is equivalent to k̇EmE, since

d
dt
Q is equivalent to d

dt
mE. Multiplication of (4.8) with Q

leads to µQ = µ′
m(Q−kQ). Since Q−kQ is equivalent to mE, we only need to demonstrate

that µ′
m is equivalent to k̇E, where µ

′
m is the specific growth rate at infinite reserve density.

Since ṙ = k̇e
e−ld
e+g

= k̇Ee−k̇Mg
e+g

with e = mE/mEm, see (4.14), we indeed have that ṙ → k̇E for

mE → ∞ (which is obviously not possible in the cell since the maximum reserve density is
mEm = jXAm/k̇E). A minor difference between the Droop and the deb models is the use
of units. Where deb theory uses C-mol (because this is most handy when evaluating mass
conservation), Droop’s model is frequently applied on (dry) weights.

Droop aimed to relate cell quota to the specific growth rate as observed in chemostats
in steady state, see Figure 4.5. He had no dynamic system in mind, and emphasised its
empirical nature. To go from Droop to DEB, we need to split quota in subsistence quota
and reserve, link subsistence quota to structure, translate the model that links quota to
specific population growth rate into a model that specifies changes in reserve and structure,
include the effect of maintenance, and separate effects of surface areas from that of volumes
at the level if the individual, i.e. translate V1- to iso-morphs.

4.2.2 Growth at maximum yield

Eqn. (4.22) gives the (inverse) yield for V1-morphs as function of the growth rate at steady
state. The maximum yield is found from d

dṙ
Y = 0 to be reached for specific growth rate

ṙY = k̇M +
√
k̇M(k̇M + k̇E)

The maximum specific growth rate is given by (4.21): ṙm = k̇E−k̇Mg
1+g

. Since maximum
growth must be positive, a natural constraint on biologically reasonable parameters values
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is 0 < g < k̇E
k̇M

. The growth rate for maximum yield ṙY can only be effectuated if ṙY < ṙm;

This translates to the condition g < k̇E−ṙY
k̇M+ṙY

, which is thus more constraining than that

for maximum growth. Since g > 0, at least we must have k̇E > ṙY , so k̇E > 3k̇M . Since
investment ratio g = yEV

κmEm
(Table 3.3) and maximum reserve capacity mEm = jEAm/k̇E

(see (4.12)), we can further translate the condition to

κjEAmyV E >
k̇M + ṙY

1− ṙY /k̇E

If this condition is not satisfied, the yield of structural biomass on substrate increases
monotonically with the growth rate till the maximum growth rate is reached.

4.2.4 Crusts

The diameter of a crust of constant height Lh grows approximately linearly in time, Ld =
tv̇d/δM, at constant food density. The conductance v̇d depends on food density. Physical
volume is Vw = LhL

2
dπ/4, physical volumetric length Lw = V 1/3

w = (LhL
2
dπ/4)

1/3, structural

length L = δMLw, so that the diameter relates to structural length as Ld =
√

4L3

πδ3MLh
.

Structural volume grows as V (t) = L3(t) = δ3
ML3

w(t) = v̇2
dt

2LhδMπ/4.

The specific growth rate is given by ṙ = V −1 d
dt
V = 2

t
= 2v̇d

δMLd
= v̇d

√
πδMLh/L3. We

further have for mobilisation C, assimilation A, maintenance M and growth G

κṗC = ṗM + ṗG = κ(ṗA − ṙe[Em]V ); κ[ṗA] = [ṗM ] + ṙ[EG](1 + e/g)

The shape correction function for crusts is

M(V ) =
[ṗAm]L

3

{ṗAm}L2
=

[ṗM ]L3 + [EG](1 + 1/g)v̇dm
√
πδMLhL3

κ{ṗAm}L2
=

L

Lm
+

√
L1

L

with Lm = κ{ṗAm}
[ṗM ]

= v̇
k̇Mg

and L1 = πδMLh(1 + g)2v̇2
dm/v̇

2, where v̇dm is the maximum

value for v̇d (i.e. for f = 1). The specific growth rate can also be found from (2.21) by
multiplying v̇ with M(V )

ṙ =
M(L)v̇e/L− gk̇M

e+ g
=
ev̇
√
L1/L3 − (1− e)gk̇M

e+ g
=

(1 + g)eṙm − (1− e)gk̇M
e+ g

with ṙm = v̇dm
√
πδMLh/L3 which reveals how v̇d depends on f = e.

If maintenance represents the main contribution to dissipation, the use of dioxygen
amounts to

J̇O = ηOAṗA + ηODṗD + ηOGṗG = αV + β
√
V

The conclusion is that respiration increases with the square root of biomass for growing
crusts at constant food, if the contribution of maintenance to respiration is relatively small.
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4.3 Three basic fluxes

4.3.1 Assimilation

The matrix of chemical indices for the organics, nO as in (4.34) should generally include
water. Excersize 3.1.1 shows how to convert indices for dry to that of wet organics. Only
if the abundance of water, relative to carbon, in all organics is the same, we can also work
with dry organics, see Section 3.2.1 of the comments.

µX stands for the chemical potential of X, so of food. µAX = µE/yEX stands for
the energy per C-mole of food that is fixed in reserve, after the transformation. Using
J̇X = −J̇XA (food disappears so the flux J̇X is taken to be negative), ṗA = −µAX J̇X =
µEJ̇EA = −µEyEX J̇X . The difference µX − µAX went lost for the organism, so the as-
similation efficiency can be written as κX = µAX/µX = {ṗXm}/{ṗAm}, see {35}. Part
of this difference is still conserved in the faeces, some of it sits in e.g. the carbon dioxide
production and in heat production that are associated with assimilation. The notation in
µAX is somewhat uneasy, because first the process (assimilation A) is identified, and then
the compound (food X). The reason is in the relationship µAX = η−1

XA, which has nice
notational properties.

For the assimilation process we can work out the balance as follows. We first define the
matrix of mineral mass-energy couplers

ηM =


ηCA ηCD ηCG
ηHA ηHD ηHG
ηOA ηOD ηOG
ηNA ηND ηNG

 ≡
(
ηMA ηMD ηMG

)

The parameters η are given by ηM = −n−1
MnOηO, where the organic mass-energy couplers

ηO are given in (4.37). So the mineral fluxes that are released in the environment in
association with assimilation are J̇MA = ṗAηMA. This represents an energy drain ṗMA =
µT

MṗAηMA. The energy drain in product that is associated with assimilation (think e.g.
of faeces for animals) amounts to ṗPA = ṗAµPηPA. The energy balance for assimilation
process thus amounts to

−µX J̇X = ṗA + ṗPA + ṗMA + ṗTA

= ṗA(1 + µPηPA + µT
MηMA) + ṗTA

µX =
(
µAX(1 + µPηPA + µT

MηMA)− ṗTA
)
/J̇X

where ṗTA is the heat that dissipates into the environment in association with the assim-
ilation process; its amount follows from this energy balance. So the terms in the right
argument stands for the energy flux fixed in reserve, product en minerals, followed by
the dissipating heat. Only the reserve stays in the individual, the rest dissipates into the
environment.
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It is possible to express the basic powers as weighted sums of organic fluxes as

 ṗA
ṗD
ṗG

 =

 −µAX 0 0 0
−µAX −µGV −µE 0

0 µGV 0 0




J̇X
J̇V

J̇E + J̇ER

J̇P

 or ṗ = η−1
O J̇O

for µAX = η−1
XA and µGV = η−1

V G. If n−1
O exists, the basic powers can also be written as

weighted sums of mineral fluxes: ṗ = −η−1
O n−1

O nMJ̇M. This quantification is likely to be
sensitive to inaccuracies.

Since YV X = − J̇V
J̇X

= ηV GṗG
ηXAṗA

= ηV GjEGµE
ηXAjEAµE

= ηV GyEV ṙ
ηXAyEXjXA

= ηV Gṙ
ηXAjXA

y−1
V X , we clearly see that

YV X ̸= yV X . The first quantity is variable, the second one is fixed.

4.3.1 Product formation

Eqn. (4.37) is general for the product formation for the standard DEB system (one type
of food, one reserve, one structure). In the case of faeces, we have ηPD = ηPG = 0, but one
can also think of other products, such as hair, skin flakes, sweat etc. Goldfish produces
e.g. ethanol at low dioxygen levels; organisms other than animals have an even wider set
of possible products.

4.3.1 Anabolism & catabolism

Substrate and reserve serve a dual function; they are a sources of energy as well as building
blocks. For this reason, assimilation, dissipation as well as growth can be partitioned
into a catabolic and an anabolic flux, see Table 4.1 for aerobic metabolism. The table
does not present the anabolic aspect of dissipation because the stuctural compounds are
degraded and synthesized at the same rate with additional use of reserve, making that
the overall stoichiometry is identical to the catabolic aspects. This turnover of structure
complicates the behaviour of isotopes, however. In anaerobic metabolism dioxygen O is
replaced by another electron acceptor, but otherwise the derivations are similar. If other
than the mineral products are formed, such feaces for animals, we need extra information
of how this product formation is linked to the catabolic and anabolic aspects to be able
to partition the flux. In the catabolic aspect, substrates are transformed to extract energy
and all the products are excreted. Since the catabolic aspect of growth concerns the use
of reserve, just like maintenance, the stoichiometries of the two processes are identical,
and different from the anabolic aspect of growth. In the anabolic aspect, some of the
substrates are incorporated in biomass, others are excreted; anabolic processes typically
require energy derived from catabolic processes. Since the anabolic aspect is a fixed fraction
of the total flux (both for assimilation and for growth), this partitioning does not imply
an extension of the number of independent fluxes in the total metabolism, which remains
3 (assimilation, dissipation and growth). Phosphates and other micro-nutrients are not
included for simplicity’s sake.

If we assemble a matrix of chemical indices n, with 4 elements in the rows and 8
compounds in the columns, and a matrix of yield coefficients Y , with 8 compounds in



93

Table 4.1: The yield coefficients (upper panel) and the chemical indices (lower panel) for the
8 compounds that are involved in the 5 transformations with one reserve and one structure;
the energy and carbon substrates, X and S respectively, are frequently identical. Assimilation,
dissipation and growth have a catabolic and an anabolic aspect; that of dissipation is discussed
in the section on isotopes. The yield coefficients stand for

Y a
CS = 0 Y a

HS = nHS/2− nHE/2− Y a
NS3/2 Y a

OS = nOS/2− nOE/2− Y a
HS/2 Y a

NS = nNS − nNE
Y c
C∗ = nC∗ Y c

H∗ = −nN∗3/2 + nH∗/2 Y c
O∗ = −1 + nO∗/2− Y a

H∗/2 Y c
N∗ = nN∗

Y a
CE = 0 Y a

HE = nHE/2− nHV /2− Y a
NE3/2 Y a

OE = nOE/2− nOV /2− Y a
HE/2 Y a

NE = nNE − nNV
Following microbiological tradition, substrate is chosen as reference in the yield coefficients for
assimilation and reserve for dissipation and growth. The specific rates jEA = ṗA/µE , jED =
ṗD/µE and jEG = ṗG/µE are specified by the DEB theory (see Tables 3.5 and 3.6). The specific
dissipation flux jED = jEM/κ for V1-morphs (or jED = jEM if κ = 1).
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Ac assim. (cat) Y c
CX Y c

HX Y c
OX Y c

NX −1 0 0 0 (yXE − 1)jEA
Aa assim. (ana) 0 Y a

HS Y a
OS Y a

NS 0 −1 1 0 jEA
D dissipation Y c

CE Y c
HE Y c

OE Y c
NE 0 0 −1 0 jED

Gc growth (cat) Y c
CE Y c

HE Y c
OE Y c

NE 0 0 −1 0 (1− yV E)jEG
Ga growth (ana) 0 Y a

HE Y a
OE Y a

NE 0 0 −1 1 yV EjEG

C carbon 1 0 0 0 nCX 1 1 1
H hydrogen 0 2 0 3 nHX nHS nHE nHV
O oxygen 2 1 2 0 nOX nOS nOE nOV
N nitrogen 0 0 0 1 nNX nNS nNE nNV

the rows and 5 transformations in the columns (Table 4.1 presents the transposed Y
rather than Y , for typographic reasons), then the conservation law for elements implies
that nY = 0; it takes only simple book keeping and some patience to solve these yield
coefficients.

The assimilation flux of reserves depends on the concentrations of the complementary
compounds substrates, dioxygen and ammonia. The SU rule for the assimilation rate of
reserves jEA for x = X/KX , s = S/KS, o = O/KO, n = N/KN work out as follows:

jEA =
jEAm

1 +
∑
iA

−1
i −∑

iB
−1
i +

∑
iC

−1
i −D−1

with

Ai = x, s, o, n; Bi = x+ s, x+ o, x+ n, s+ o, s+ n, o+ n

Ci = x+ s+ o, x+ s+ n, x+ o+ n, s+ o+ n; D = x+ s+ o+ n

where X, S, O and N are the concentrations of energy substrate, carbon substrate, dioxy-
gen and ammonia, KX , KS, KO and KN are the half saturation constants; jEAm is the
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maximum specific assimilation rate of reserves. The consumption of substrates, dioxygen
and ammonia follow from the production of reserve via fixed coupling coefficients. A rather
small range of concentrations of substrates, dioxygen and ammonia limit assimilation si-
multaneously. In many practical applications we have at abundant dioxygen and x ≪ n
or x≫ n

jEA ≃ jEAm
1 + x−1

=
jEAmX

KX +X
or jEA ≃ jEAm

1 + n−1
=

jEAmN

KN +N

This is the familiar standard formulation for single-substrate limitation. If energy and
carbon substrate is identical, we should s→ ∞ to remove the extra limitation by carbon.
This might seem to be counter intuitive, because we in fact have x = s. The explanation
is that a single molecule is used for both energy and carbon, so we remove waiting time
compared to the situation for two different molecules.

The specific rate of appearance of ammonia in association with maintenance, for in-
stance, is jNM = nNEjEM ; that of dioxygen is Y c

OE jEM . If we assemble the rates in
Table 4.1 in a 5-vector k̇, the 8-vector of specific rates of appearances or disappearances
of compounds is given by Y k̇, where each rate can be positive as well as negative.

Reserve density dynamics of V1-morphs is d
dt
mE = jEA− k̇EmE, where k̇E is the reserve

turnover rate. The specific maintenance flux of reserve is constant at rate jEM = yEV k̇M .

The specific growth rate is ṙ = mE k̇E−jEM

mE+yEV
, where mE k̇E − jEM is the reserve flux that

is released from the reserves minus the losses through maintenance; mE + yEV are the
specific costs for new reserve plus structure. So the growth rate depends on the reserve
density mE, not on the nutrient concentrations directly; growth ceases at reserve density
mE = jEM/k̇E, where all mobilized reserves are used for maintenance. The flux of reserve
associated with growth is jEG = yEV ṙ.

The assumption by [1341] that the specific entropy of a compound is constant directly
translates in the entropy balance equation for compound ∗

s∗ = Y c
C∗sC + Y c

H∗sH + Y c
O∗sO + Y c

N∗sN

which gives the specific entropy of compound ∗, s∗, given the specific entropies of C, H, O
and N .

It is important to realize that the microchemical reaction equations are still far away
from a detailed chemical description of metabolism. Compounds can be produced in one
part of the pathway, and used in another part, and do not occur in the micro- or macro-
chemical reaction equation.

[779] gives such a decomposition for methanotrophy and [174] for the anaerobic oxida-
tion of ammonia (anammox). In the example of methanotrophy, the energy and carbon
source are identical, in the anammox the are different. The example for anammox shows
how additional biochemical information can be used in these decompositions and how the
number of conserved quantities can be extended. Here with eletrical charge, but extensions
with other chemical elements work out similarly.

4.3.1 Type I methanotrophy

The macro-chemical reaction equation for methanotrophs is
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Figure 4.6: The specific fluxes (left graph) of (from top to bottom) carbon dioxide C, reserves
E, ammonia N , methane X and dioxygen O as a function of the specific growth rate of a
methanotroph. That of water and structure are not shown. The ratio of the fluxes (right graph)
of methane (top curve), carbon dioxide (bottom curve) and ammonia (middle curve), with that
of dioxygen. Parameters: max spec assimilation rate (of E) jEAm = 1.2 mol/(h.mol), yield
coefficients yEX = 0.8 mol/mol and yV E = 0.8 mol/mol, maintenance rate constant k̇M = 0.01
1/h, reserve turnover rate k̇E = 2.00 1/h. Chemical indices of reserve and structure: nHE = 1.8;
nOE = 0.3; nNE = 0.3; nHV = 1.8; nOV = 0.5; nNV = 0.1.

CH4 +YCX CO2 +YOX O2 +YNX NH3 +YHX H2O → YWX CHnHW
OnOW

NnNW

Methanotrophs use methane (CH4) as energy source; methane is the only carbon source
in Type I methanotrophs, such as Methylomonas, Methylomicrobium, Methylobacter and
Methyloccus, which use the monophosphate pathway to process formaldehyde (CH2O), a
metabolite of methane. Methane and carbon dioxide (CO2) are carbon sources for Type
II methanotrophs, such as Methylosinus and Methylocystis, which use the serine pathway
to process formaldehyde. These organisms can also fix dinitrogen. I here selected type I
methanotrophs to illustrate the stoichiometric principles because very simple compounds
are involved only, see [779]. So we have nCX = nCS = 1, nHX = nHS = 4, nOX = nOS = 0
and nNX = nNS = 0.

Figure 4.6 gives the specific fluxes of compounds as functions of the specific growth rate.
It also gives the ratio of the carbon dioxide and dioxygen fluxes, and that of ammonia and
dioxygen. Many text books deal with these ratios as being proportional to the specific
growth rate. This obviously does not apply here.

The result we obtained is that we can relate the yield coefficients and chemical indices
of biomass to (varying) concentrations of nutrients in the environment, and to a (varying)
reserve density, which involves a number of constant energy budget parameters. These con-
stant parameters are the specific maintenance rate k̇M , the reserve turnover k̇E, the yield
of structure on reserve yV E, the chemical indices of reserve and structure, and the param-
eters of the assimilation process. Some text books mention that methanotrophs consume
two methane molecules for each produced carbon dioxide molecule. Our analysis shows,
however, that such a fixed relationship does not exist; it is very sensitive to environmental
conditions.
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Methane burning in assimilations’ catabolic transformation should generate enough en-
ergy to drive assimilations’ anabolic component. For the chemical potential µX of methane
and µE of reserve, we have µX j

C
XA > (µE − µX)j

A
XA or µX(1 − yEX) > (µE − µX)yEX or

yEX > µE/µX .

Notice that ammonia is taken up as well as excreted; a phenomenon that only recently
attracted attention in algal physiology. We know a priori that ammonium uptake always
exceeds excretion at steady state.

4.3.1 Anammox

The anammox (anaerobic ammonia oxidation) process is only known from the chemolithotrophic
planctomycete Brocadia anammoxidans. It generates energy from NH+

4 + NO−
2 → N2 +

2H2O, and fixes carbon from CO2 + 2NO−
2 + H2O → CH2O + 2NO−

3 . The measured
macrochemical reaction equation at specific growth rate ṙ = 0.0014 h−1 is [1389]

1NH+
4 + 1.32NO−

2 + 0.066HCO−
3 + 0.13H+ →

1.02N2 + 0.26NO−
3 + 0.066CH2O0.5N0.15 + 2.03H2O

Also is known that N2 comes from NH+
4 and NO−

2 and that N in biomass comes from NH+
4 .

The coefficients depend on the growth rate in a way that has been evaluated by Bernd
Brandt [174] who also corrected and detailed the equation. We here extend the elemental
balance equations with that for the electric charge. Table 4.2 presents the summary of the
decomposition of the macrochanical reaction equation.

Figure 4.7 shows how the fluxes of the compounds that are involved in the anammox
transformation depend on the growth rate. The chemical indices for biomass depend
on the specific growth rate as niw = niV +mEniE

1+mE
where the reserve density is given by

mE = jEA/k̇E = yEV
k̇M+ṙ

k̇E−ṙ . The specific growth flux equals jEG = ṙyEV and the specific

maintenance flux k̇MyEV . For further discussion see [174].

4.3.1 Dioxygen flux

The standard deb model assumes that dioxygen is abundantly available, or not at all
for fermenting organisms. If dioxygen is co-limiting (together with food), multivariate
formulations should be used. Suppose that the nitrogen waste is ammonia (NH3), and
faeces the only non-mineral product (ηPD = ηPG = 0). In that case we have

n−1
M =


1 0 0 0
0 2−1 0 1.5
−1 −4−1 2−1 0.75
0 0 0 1

 and ηO diag(ṗ) =


−ηXAṗA 0 0

0 0 ηV GṗG
µ−1
E ṗA −µ−1

E ṗD −µ−1
E ṗG

ηPAṗA 0 0


The flux of the 4 minerals associated to the 3 powers is given by (4.38): J̇M∗ = −n−1

MnOηO diag(ṗ),
where the 4 minerals are in the rows, the 3 powers in the columns. The fluxes of dioxygen
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Table 4.2: The yield coefficients (upper panel) and the chemical indices (lower panel) for the
nine compounds that are involved in the five transformations by anammox bacteria. The yield
coefficients are

Y A
CS = −n−1

NE Y A
H1S

= Y A
CS

Y A
HS = (3 + Y A

CS(nHE − 2))/2 Y A
N3S

= (3− nOE)Y
A
CS + Y A

HS

YM
N3E

= (−4− nHE + 2nOE + 3nNE)/6 YM
SE = nNE − YM

N3E

YM
H1E

= 1 + YM
N3E

YM
HE = nOE − 2YM

N3E
− 3

Y G
N3E

= YM
N3E

− (−4− nHV + 2nOV + 3nNV )/6 Y G
H1E

= Y G
N3E

Y G
HE = −2Y G

N3E
+ nOE − nOV Y G

SE = −Y G
N3E

+ nNE − nNV

Following microbiological tradition, substrate is chosen as reference in the yield coefficients: am-
monium for assimilation, and reserve for maintenance and growth. The yield coefficients follow
from the conservation law for elements and electrical charge. The DEB theory provides the spe-
cific rates ȷ̇EA, ȷ̇EM , and ȷ̇EG (see text). Note that the yield coefficients for the catabolic aspect
of growth equal those for maintenance.
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AC assim. (cat.) 0 –1 2 –1 1 –1 0 0 0 (ySE − nNE)ȷ̇EA

AA assim. (ana.) Y A
CS Y A

H1S
Y A
HS –1 0 Y A

N3S
−Y A

N3S
−Y A

CS 0 nNE ȷ̇EA

M maintenance 1 YM
H1E

YM
HE YM

SE 0 YM
N3E

0 –1 0 ȷ̇EM

GC growth (cat.) 1 YM
H1E

YM
HE YM

SE 0 YM
N3E

0 –1 0 (1− yV E)jEG

GA growth (ana.) 0 Y G
H1E

Y G
HE Y G

SE 0 Y G
N3E

0 –1 1 yV E jEG

C carbon 1 0 0 0 0 0 0 1 1
H hydrogen 1 1 2 3 0 0 0 nHE nHV

O oxygen 3 0 1 0 0 2 3 nOE nOV

N nitrogen 0 0 0 1 2 1 1 nNE nNV

+ charge –1 1 0 0 0 –1 –1 0 0

J̇T
O = ( J̇OA J̇OD J̇OG ) are in the third row:

J̇T
O = −


−1− nHX/4 + nOX/2 + 3nNX/4
−1− nHV /4 + nOV /2 + 3nNV /4
−1− nHE/4 + nOE/2 + 3nNE/4
−1− nHP/4 + nOP/2 + 3nNP/4


T 

−ηXAṗA 0 0
0 0 ηV GṗG

µ−1
E ṗA −µ−1

E ṗD −µ−1
E ṗG

ηPAṗA 0 0


The dioxygen flux that is associated to growth is given in element 3, i.e.

J̇OG = ṗG ((−1− nHE/4 + nOE/2 + 3nNE/4)/µE − (−1− nHV /4 + nOV /2 + 3nNV /4)ηV G)

= ṗG(−1− nHE/4 + nOE/2 + 3nNE/4)
(
µ−1
E − ηV G

)
for


nHV = nHE
nOV = nOE
nNV = nNE

where the mass-energy coupler for growth is given by J̇V = ηV GṗG = κGṗG/µV . So in
absence of overhead costs of growth, i.e. ηV G = µ−1

E or µGV = µE or µV J̇V = ṗG or
κG = µV [MV ]/[EG] = 1, and if the elemental composition of reserve and structure match,
no dioxygen is used. In other words: all use of dioxygen that is linked to growth comes
from the growth overheads, if the elemental composition of reserve and structure match.
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Figure 4.7: The specific fluxes of the compounds as a function of the specific growth rate
as fraction of the maximum of ṙm = 0.003 h−1 of the anammox bacteria. DEB Parameters:
k̇E = 0.0127 h−1, k̇M = 0.000811 h−1, ySE = 8.80, yV E = 0.8 C-mol/C-mol reserve. Composition
parameters: nHE = 2, nOE = 0.46, nNE = 0.25, nHV = 2, nOV = 0.51, nNV = 0.125.

4.3.1 Stochastic mineral fluxes

Section 2.9 of the comments presents a natural stochastic version of the standard deb
model, where the stochasticity is in food searching and survival. How would that work out
for the production of CO2, H2O and NH3 and the consumption of O2?

We first need to express the fluxes of compounds in terms of changes of scaled state

variables e and l. For this purpose, we scale the organic fluxes ȷO = J̇O
k̇MMV m

with MV m =

[MV ]L
3
m as function of scaled time τ = tk̇M . Notice that these scaled fluxes are not

dimensionless; their units are molmol−1

The scaled organic fluxes ȷO =
(
ȷX ȷV ȷE + ȷER

ȷP
)T

are for f alternating stochas-
tically from 0 to 1 and backwards

ȷX = − J̇XA

k̇MMV m

= −yXEf{J̇EAm}l
2L2

m

k̇M [MV ]L3
m

= − fl2

κyV X

ȷV =
J̇V

k̇MMV m

=
[MV ]L

3
m

k̇MMV m

d

dt
l3 = 3l2

d

dτ
l

ȷE =
J̇E

k̇MMV m

=
d
dt
E

µE k̇MMV m

=
l3 d
dτ
e+ 3el2 d

dτ
l

gκyV E
=
l3 d
dτ
e+ eȷV

gκyV E

ȷER
=

J̇ER

k̇MMV m

=
M0

EṘ

k̇MMV m

=
u0
ER

κyV E

ȷP =
J̇PA

k̇MMV m

=
yPX J̇XA

k̇MMV m

= −yPXȷX

We also scale the mineral fluxes ȷM = J̇M
k̇MMV m

. Using (4.35), the scaled mineral fluxes

follow from the scaled organic fluxes: ȷM = −n−1
MnOȷO. In summary, apart from the
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Figure 4.8: If searching follows a time-inhomogeneous Poisson process, the mineral fluxes behave
stochastically as well, with a relatively large scatter. The stochastic standard deb model, as well
as the parameters, are as presented in Section 2.9 of the comments. The extra parameters for
the mineral fluxes are: yEX = 0.8, yV E = 0.8, yPX = 0.1, κ = 0.8. The latter parameter does
not occur independently from the others, so does not count as extra.

chemical indices nM and nO, we need 3 extra parameters for the scaled mineral fluxes:
κyV E, κyV E, yPX .

Figure 4.8 presents a simulated trajectory of the 4 mineral fluxes, where the minerals
show more scatter than the state variables in figure 2.11. Part of this scatter will not
appear in practice because the digestive system will smooth out some fluctuations of the
assimilation. On the other hand, more sources of stochasticity can be expected, such
as differences in particle sizes (so in handling times), in food quality, in temperature, in
somatic maintenance (which includes behaviour), etc.

4.3.2 Derivation of (4.39) & (4.40)

The derivation is as follows, using Table 3.3 for conversions

d

dt
l =

d

dt
(MV /MV m)

1/3 =
d
dt
MV

3M
2/3
V M

1/3
V m
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=
ṗGηV G

3M
2/3
V M

1/3
V m

=
ṗGηV G
3l2MV m

=
ṗG

3l2µGVMV m

=
ṗG

3l2[EG]MV m/[MV ]
=

ṗG
3l2[EG]Vm

=
ṗG

3l2[EG]Em/[Em]

=
ṗG

3l2κgEm

d

dt
e =

d

dt

MEMV m

MVMEm

=
MV m

MEm

d

dt

ME

MV

=
MV m

MEm

(
M−1

V

d

dt
ME − ME

M2
V

d

dt
MV

)

=
MV m

MVMEm

(
d

dt
ME − ME

MV

d

dt
MV

)
=

MV m

MVMEm

(
ṗA − ṗC
µE

− ME

MV

ṗGηV G

)

=
1

l3MEm

(
ṗA − ṗC
µE

− ME

MV

ṗGηV G

)
=

1

l3µEMEm

(
ṗA − ṗC − ṗG

ME

MV

µE
µGV

)

=
1

l3µEMEm

(
ṗA − ṗC − ṗG emEm

µE
µGV

)
=

1

l3µEMEm

(
ṗA − ṗC − ṗG e

yEV
κg

µE
µGV

)

=
1

l3µEMEm

(
ṗA − ṗC − ṗG

e

κg

)
=

1

l3Em

(
ṗA − ṗC − ṗG

e

κg

)

The maintenance process is here assumed to produce ammonia as single nitrogen waste.
It is theoretically also possible that some dinitrogen is formed in this process. The results
of [174] show that this hardly affect to macrochemical reaction equation.

4.3.3 Derivation of (4.41)

Notice that (
wE wV

)( e0 ebl
3
b

0 l3b

)
=
(
wEe0 wEebl

3
b + wV l

3
b

)
.

If the write out the product with the factor [MEm]Vm, we arrive at the initial wet weight
Ww(0) = [MEm]VmwEe0, where [MEm]Vme0 is the initial amount of C-moles of reserve.
The wet weight at birth is Ww(ab) = [MEm]Vm (wEebl

3
b + wV l

3
b ), where [MEm]Vmebl

3
b is the

C-moles of reserve at birth and [MEm]Vml
3
b is the C-moles of structure at birth. If we

replace the molecular weights wE and wV , by those corresponding to dry-weights, we get
the result in dry-weights, rather than wet weights.

4.3.3 Derivation of (4.43)

Notice that [MV ]Vb stands for the C-moles of the structure of a neonate, so having volume
Vb. Further, E0 − Eb is the energy that is used from the reserve during the incubation
period, so µ−1

E (E0 −Eb) is the number of C-moles that is used from the reserve during this
period.
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Figure 4.9: The fractions of cumulated energy investment at birth for an egg (left) and foetus
(right) at eb = 1 (top) and eb = 0.6 (bottom). Foetal development does not suffer from the
problem that reserve decreases during growth, so the age at birth and the cumulated maintenance
losses are smaller. Egg development at eb = 1 is faster than for eb = 0.6, so the age at birth and
the cumulated maintenance losses are smaller. The parameter values are those for the generalised

animal, Table 8.1: g = [EG]v̇
κ{ṗAm} = 3.11, k = k̇J [EG]

[ṗM ] = 0.311, vbH =
Eb

H [ṗM ]3

(1−κ)κ2[EG]{ṗAm}3 = 0.0004,

κ = 0.8, κG = µV [MV ]
[EG] = 0.747.

4.3.3 Mass investment in neonates

At birth, the cumulative energy investment in somatic maintenance amounts to Eb
M =∫ ab

0 [ṗM ]L3(a) da, in maturity maintenance to Eb
J =

∫ ab
0 k̇JEH(a) da, in growth to Eb

G =
[EG]L

3
b , in maturity to Eb

H and energy in reserve Eb is left over from E0 it initially had.
The energy fixed in structure equals κGE

b
G = µVM

b
V , while (1−κG)Eb

G dissipated as growth
overheads. So the energy content of the egg decreased from E0 to Eb

W = Eb + κGE
b
G at

birth.

These various destinies of allocated energy can be expressed in a relative way as ebM =
Eb

M

E0
=

ubM
u0E

, ebJ =
Eb

J

E0
=

ubJ
u0E

, ebG =
Eb

G

E0
=

ubG
u0E

and ebE = Eb

E0
=

ubE
u0E

, with 1 = ebM + ebJ + ebG + ebE

and u∗ = E∗
{ṗAm}

g2k̇3M
v̇2

, as before, see Table 2.1. Scaled initial reserve u0
E, scaled length

at birth lb and scaled age at birth τb are functions of g, k, vbH and eb. We also have

ubM = κ
∫ τb

0 l3(τ) dτ and ubJ = k
∫ τb

0 uH(τ) dτ and ubG = κl3b and ebE =
ebl

3
b

g
. The evaluation

of this relative budget involves, therefore, one new parameter, κ, and if we want to split
out the growth overheads, we also need κG. The scaling shows that we don’t need to know
any rate parameter explicitly, since the energy fractions don’t involve time, see Fig. 4.9.
Notice that the pies have 5 degrees of freedom, which are determined by 5 parameters.
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Figure 4.10: Embryo, 3 d before hatching (left), larva, 13 d after hatching (middle), and breeding
male (right) of the South American lungfish, which shows the gills-like structures on the pelvic
fin that work opposite to typical gills and provide offspring with dioxygen. From University of
Washington Libraries.

4.4 Respiration

The South American lungfish, Lepidosiren paradoxa, lives in dioxygen-poor waters. When
the male guards the brood in its 1.5m long debris-filled burrow during the rainy season, his
pelvic fins develop highly vascularized, gill-like, feathery structures that release dioxygen
from the blood and take in carbon dioxide; the filaments disappear after the end of the
breeding season [1108]. The neonates are equipped with external gills, which eventually
disappear, see Figure 4.10.

4.4 Respiration: Derivation of (4.49)

We use (4.35) and (eqn:JO) to find J̇M = −n−1
MnOηOṗ. The first element of this vector

is the one that we need if we exclude assimilation by ṗA = 0 and product formation by
ηPD = ηPG = 0. From (4.5) we find

ηṗ = ( 0 ηV GṗG −(ṗD + ṗG)/µE 0 )T

The first row of n−1
MnO is for nC∗ = 1, because we work in C-moles:

( 1− nNX
nCN

nNN
1− nNV

nCN

nNN
1− nNE

nCN

nNN
1− nNP

nCN

nNN
)

Minus the product of this first row and ηṗ directly gives (4.49)
The significance of (4.49) is to demonstrate that, if respiration quotient is taken to be

constant, which is frequently done in animal physiology, the implied assumption is that a
very special relationship must exist between the elemental frequencies of reserve, relative
to structure. It is a rather complex relationship, however. If we make a slightly stronger
assumption, namely that urination and watering quotients are also constant, it in fact
means that reserve and structure must have the same relative elemental frequencies. This
is mentioned at the end of subsection 4.4.1. Reserve and structure can still differ in chem-
ical composition, while having the same relative elemental frequencies. That RQ does not
vary that much in animals is shown in Table , where lipids, carbohydrates and proteins in
combination comprise most of biomass and differ only a little in relative frequencies of C,
H and O, while N is confined to proteins. A large discrepancy between the relative elemen-
tal frequencies of reserve and structure would imply an inefficiency of the conversion from
reserve to structure. Organisms that assimilate different nutrients independently have mul-
tiple reserves, which is why microbiologists never assume RQ to be constant. Respiration
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is typically measured to quantify metabolic rate, which should be quantified as entropy
dissipation, but, under aerobic conditions, is typically quantified as heat dissipation in
practice. Calorimetry deals with the relationship between heat dissipation and respiration,
see Section 4.8.2 of the comments.

4.4.1 Derivation of (4.52)

The definition of n is given in (4.36), where nCN = 0 in case of ammonia as nitrogen waste.

4.4.2 Heat increment of feeding paid from mobilised reserve

In the standard deb model, the heat increment of feeding (specific dynamic action) is paid
as (fixed) part of the overhead costs for assimilation, directly from food; this is why these
costs don’t show up explicitly in the equations for growth or reproduction. The use of
dioxygen actually rises in a very early phase of the digestion process. The standard deb
model assumes instantaneous digestion and conversion to reserve, so that ‘detail’ cannot
be captured in the standard model; we need an explicit digestion module for this, cf.
7.3. What if we don’t pay the heat increment of feeding as overhead of the assimilation
process, but from the mobilised flux of reserve to the soma, κṗC? The energy costs are still
proportional to the feeding rate, so we can assume that an energy flux of size ṗF = κF ṗA
is involved, where κF is a constant for a certain food type. So, using (2.12), we arrive for
[ṗS] = [ṗM ] + {ṗT}/L, [ṗG] = [EG]ṙ, [ṗF ] = κF [ṗA] and [ṗA] = f{ṗAm}/L at

κ[ṗC ] = [ṗS] + [ṗG] + [ṗF ] = κ[E](v̇/L− ṙ)

ṙ =
[E]v̇/L− [ṗS]/κ− [ṗA]κF/κ

[E] + [EG]/κ

[E]=f [Em]
=

(1− κF/κ)f{ṗAm}/L− [ṗS]/κ

[E] + [EG]/κ

L∞ =
κ[E]v̇ − {ṗT} − κF{ṗAm}f

[ṗM ]

[E]=f [Em]
= f(κ− κF )

{ṗAm}
[ṗM ]

− {ṗT}
[ṗM ]

This evaluation shows that at constant food the payment of the heat increment of
feeding from assimilation overhead or mobilised reserve have the same result, apart from a
small change in the detailed interpretation of κ. In dynamic situations, however, where f
changes in time, payment of the heat increment of feeding from mobilised reserve implies
an extension of the specification of growth with an extra parameter. The difference only
shows up if d

dt
f ≫ v̇/L. Section 2.5.1 of the comments presents an argument to add the

cost of the heat increment of feeding (if paid from mobilised reserve) to that of searching
for food, and include it in the surface-linked maintenance costs. We then don’t need extra
parameters to quantify growth.

4.6 Water balance

Some terrestrial taxa, such as birds [1183], reptiles [1057] and terrestrial amphibians [981]
show a decreasing water content in their tissues during embryo and early juvenile devel-
opment. Altricial birds, which hardly have access to water in the nest as nestling, have
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a higher water content as embryo than precocial ones, which supports the interpretation
that water content, as provided by the mother, anticipates on the availability of water.
Water shortage can affect development [1057, 172, 981, 607, 608]. This can be taken into
account by delineating a state variable ‘water content’, apart from maturity, reserve and
structure, and treat it as a chemical compound, see Chapter 6. The ‘too little’ range is
here of interest, rather than the ‘too much’ range, but otherwise particular parameters can
depend on the water content.

4.7 Isotope dynamics in the standard deb model

4.7.1 Maintenance substrate

The implications of atoms of mobilised reserve having priority over that of mobilised struc-
ture to be build in into structure in the turnover of structure is that the reshuffling param-
eters of the dissipation transformation for nitrogen and carbon are

E + yMa
V EV → yMa

V EV + C + nNEN + water + dioxygen

is

αNDNE =
(nNE − yMa

V EnNV )+

nNE
; αNDV E = 1− αNDNE

αNDNV = 1− αNDV V ; αNDV V =
(yMa
V EnNV − nNE)+

yMa
V EnNV

αCDCE = (1− yMa
V E)+; αCDV E = 1− αCDCE

αCDCV = 1− αCDV V ; αCDV V =
(yMa
V E − 1)+

yMa
V E

4.8 Enthalpy, entropy and free energy balances

4.8.1 Heat proportional to dioxygen flux

In microbiology, heat is frequently taken to be proportional to the dioxygen flux. We can
now try to understand how this translates to constraints on biomass composition, and we
can specify the proportionality factor in terms of DEB parameters.

Let

n−1
M = uM =


uC
uH
uO
uN

 =


1 0 0 − nCN

nNN

0 2−1 0 − nHN

2nNN

−1 −4−1 2−1 n
4nNN

0 0 0 n−1
NN

 ; n ≡ 4nCN + nHN − 2nON
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and

nO =


nCX nCV nCE nCP
nHX nHV nHE nHP
nOX nOV nOE nOP
nNX nNV nNE nNP

 =
(
nX nV nE nP

)

and

ηO =


−ηXA 0 0
0 0 ηV G
µ−1
E −µ−1

E −µ−1
E

ηPA ηPD ηPG

 =
(
ηA ηD ηG

)

The dioxygen flux can thus be written as J̇O = −uOnOJ̇O, see (4.3). Dissipating heat is
given by

ṗT+ = −µT
MJ̇M − µT

OJ̇O

= (µT
Mn−1

MnO − µT
O)J̇O

see (4.77) and (4.35). The question now translates as: under what constraints do we have
ṗT+ = −µOT J̇O, and how does the constant µOT relate to parameter values? So we have
that

µOT = − ṗT+

J̇O
=

(µT
Mn−1

MnO − µT
O)J̇O

uOnOJ̇O
=

(µT
MuMnO − µT

O)ηOṗ

uOnOη̇Oṗ

must be constant, while the three elements of ṗ can vary. This can only happen if this
relationship applies to each of the three powers ṗ:

µOT =
(µT

MuMnO − µT
O)ηA

uOnOηA
=

(µT
MuMnO − µT

O)ηD
uOnOηD

=
(µT

MuMnO − µT
O)ηG

uOnOηG

so
µT∗

MuMnOηO = µT
OηO with µT∗

M = ( µC µH µO − µOT µN )

If η−1
O exists, this further reduces to the constraint µT∗

MuMnO = µT
O. It still depends

on some coefficients η via µOT , which is in µT∗
M.

Faeces as only product

Suppose ηPD = ηPG = 0, while ηPA ̸= 0. This situation occurs when faeces is the only
product, as in animals; η−1

O does not exist. Substitution for dissipation gives

µOT =
µT

MuMnE − µE
uOnE

which does not depend on any coefficient η. Let

µT = µT∗
MuMηO = ( µ1 µ2 µ3 µ4 )

We then must have that µ2 = µV , µ3 = µE, and ηPAµ4 − ηXAµ1 = ηPAµP − ηXAµX .

No product
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Suppose ηPA = ηPD = ηPG = 0 (no product; this situation can occur with bacteria). We
now have µ1 = µX , so the constraints no longer depend on coefficients η. Substitution of
the η’s gives

µOT =
µT

MuM(nE − µEηXAnX)− µE(1− µXηXA)

uO(nE − µEηXAnX)

=
µT

MuMnE − µE
uOnE

=
µT

MuM(nE − µEηV GnV )− µE(1− µV ηV G)

uO(nE − µEηV GnV )

or, for nO = ( nX nV nE ) and µT
O = ( µX µV µE )

µT
O = µT∗

MuMnO = (µT
MuM − µOTuO)nO

uOnEµ
T
O = (µT

MuMuOnE − µT
MuMnEuO + µEuO)nO

=
(
µT

MuM(uOnE − nEuO) + µEuO
)
nO

Notice that uOnE is a scalar and nEuO a (4 × 4)-matrix. Although the result does not
depend on the detailed dynamics of the DEB model, it does depend on an important
property of the standard DEB model: all mass fluxes are weighted sums of assimilation,
dissipation and growth.

Ammonia as N-waste

nCN = 0, nHN = 3, nON = 0 and nNN = 1, so n = 3 and

uM =
1

4


4 0 0 0
0 2 0 −6

−4 −1 2 3
0 0 0 4


This can be used to work out a numerical example.

4.8.2 Indirect calorimetry

Respiration, urination and watering quotients, as discussed in Section 4.4.1 and 4.5.1, deal
with the relationships between mineral fluxes (CO2, H2O, O2, NH3). Calorimetry deals with
the relationship between dissipating heat and these mineral fluxes. deb theory assumes
that parameter values are individual-specific, including the relative elemental frequencies
of reserve and structure. So considerations about the possible variation of these quotients
relate to ontogenetic comparisons, where the relative elemental frequencies are treated as
constants. Inter-specific comparisons, however, also need to deal with variations in relative
elemental frequencies. These variations can be considerable [1489, 1488], which come with
the need to calibrate the coefficients that are used in indirect calorimetry.

The interpretation of respiration and heat dissipation in terms of metabolism needs
considerable care. Most of the amazement in the literature that respiration frequently
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scales approximately with body weight3/4, known as Kleiber’s law, see Section 11.1 of the
comments, originates from the shaky assumption that respiration represents maintenance,
if contributions from assimilation are excluded from the measurements by starving the sub-
ject. deb theory shows that this interpretation is wrong. It also shows that reproduction
represents the export of reserve that comes with little overhead costs, so hardly contributes
to respiration. Although respiration and heat dissipation quantify metabolic activity, these
measures do have their limitations. The existence of life in anaerobic environments and
some (anaerobic) bacteria that consume rather than dissipate heat further illustrate this
limitation.

Modern ecological literature is frequently very sloppy on the relationships between
fluxes. Hirst et al. [610], for instance, group Rubner’s surface law [1222] together with
deb theory as being ideas that link external surfaces of organisms to fluxes, to contrast
it with MTE, see Section 11.1.1 of the comments, which links fluxes to internal tubing
networks. Where deb theory links food uptake to surface, Rubner links dissipating heat
to surface, and Hirst et al. don’t specify what flux they link to surface, mention excretion
as example, and treat it as being proportional to respiration. Also MTE does not specify
what flux they have in mind and also treat it as being proportional to respiration. Indirect
calorimetry shows, however, that the fluxes are not all proportional to each other, and deb
theory explains why. If all these fluxes to and from an individual would be proportional to
each other, it is impossible for the individual to follow a life cycle (embryo, juvenile and
adult), where reproduction is initially absent and growth eventually ceases. Respiration is
typically quantified in the ecological literature as an allometric function of body weight.
The additive nature of the various contributions to respiration, which are different functions
of body weight, is at odds, however, with any allometric function. Discussions on the precise
value of the scaling exponent are bound to be unproductive. This additive nature is also at
odds with any role for respiration to explain other metabolic functions, despite the many
attempts in the literature to project such a role on respiration. See Section 11.1.1 of the
comments for further discussions of ideas on respiration.

4.8.3 Equation (4.84)

The powers ṗ in Equation (4.84) are functions in scaled reserve density e and scaled length
l of an individual V1-morph, in this case, while the heat that dissipates from a population
of V1-morphs in a chemostat is evaluated. Assimilation, dissipation and growth all increase
proportional to mass (i.e. cubed length) of an individual. So by evaluating the powers for
l3 = 1 and dividing by the maximum mass MV m of an individual we arrive at the mass-
specific fluxes that are still a function of e. Multiplication with the total structural mass
MV+ of all individuals in the chemostat gives the performance of the whole chemostat.

4.9 Otoliths as composite products

Like wood of plants and shells of molluscs, otoliths in fish can be considered as products
which helps to convert observations from otoliths to expectations for growth and food
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intake in the past (collaborative work with Laure Pecquerie). We assume that otoliths
remain isomorphic, except at metamorphosis, where they make an instantaneous change
from a disc-like shape to a more complex one. The shape correction function of otoliths
can be quantified as M⊘(UH) = Mb

⊘ + (UH > U j
H)(M

p
⊘ −Mb

⊘). So d
dt
M = 0, except at

UH = U j
H . The physical otolith length L⊘ relates to the volumetric otolith length L⊘ as

L⊘ = L⊘/δL⊘, where δL⊘ = δbL⊘ or δpL⊘, depending on UH . The physical otolith surface
area (which we need for the degradation process of otoliths) is proportional to the squared
volumetric otolith length, but the proportionality factor makes a jump at metamorphosis.

Suppose that otoliths are products with volume V⊘ and volumetric length L⊘ = V
1/3
⊘ .

Like all product formation, change in otolith volume is a weighted sum of contributions
from assimilation, dissipation and growth. The otolith is in the otosac and suppose that
the otosac is isomorphic with volume δSV , that the use of otolith material in the fluid in
the otosac is proportional to the concentration of otolith material in this fluid and that
the precipitation of utilized material is proportional to the volume of fluid in the otosac,
relative to the volume of the otosac. The rest of mobilized otolith material is excreted into
the environment. The change in otolith volume then becomes

d

dt
V⊘ =

(
ṗA

[E⊘A]
+

ṗD
[E⊘D]

+
ṗG

[E⊘G]

)(
1− V⊘

δSV

)
The change in otolith volumetric length is d

dt
L⊘ = 1

3
L−2
⊘

d
dt
V⊘ and change in (body) vol-

umetric length d
dt
L = 1

3
L−2 d

dt
V = 1

3
L−2ṗG/[EG]. So the change in volumetric length as

function of the change in otolith volumetric length is

dL
dL⊘

=
δL⊘
δL

1
3
L−2ṗG/[EG]

1
3
L−2
⊘ (ṗA/[E⊘A] + ṗD/[E⊘D] + ṗG/[E⊘G])(1− L3

⊘/δSL3)

=
δL⊘
δL

ṗG/[EG]

(ṗA/[E⊘A] + ṗD/[E⊘D] + ṗG/[E⊘G])(L2/L2
⊘ − L⊘/δSL)

where

ṗA = {ṗ∗Am}fL2; ṗD = ṗM + ṗJ + (1− κR)ṗR; ṗM = [ṗM ]L3

ṗJ = k̇JEH ; ṗR = (1− κ)ṗC − ṗJ ; ṗG = κṗC − ṗM ; ṗC = [E]
v̇∗L2 + k̇ML

3

1 + κ[E]/[EG]

with f = 0 for UH < U b
H , κR = 0 for UH < Up

H . Furthermore {ṗ∗Am} = {ṗAm}M(L).
We can remove energies via division by {ṗAm} at a reference temperature and maturity,

i.e. Si = ṗi/{ṗAm}, with i = A,D,G,C,R,B,M, J with dim(Si) = L2:

SC =
ṗC

{ṗAm}
=

L2e

g + e
(M(L)g + L/Lm); SM =

ṗM
{ṗAm}

=
κL3

Lm
; SJ =

ṗJ
{ṗAm}

= k̇JUH

to obtain

dL
dL⊘

=
δL⊘
κgδL

v̇SG
(v̇⊘ASA + v̇⊘DSD + v̇⊘GSG)(L2/L2

⊘ − L⊘/δSL)

d

dt
L⊘ =

(v̇⊘ASA + v̇⊘DSD + v̇⊘GSG)(1− L3
⊘/δSL

3)

3δL⊘L2
⊘
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with

SA = M(L)fL2; SD = SM +SJ +(1−κR)SR; SG = κSC −SM ; SR = (1−κ)SC −SJ

and
v̇⊘A = {ṗAm}/[E⊘A]; v̇⊘D = {ṗAm}/[E⊘D]; v̇⊘G = {ṗAm}/[E⊘G]

Notice that dim(v̇i) = L/t, with i = ⊘A,⊘D,⊘G,⊘. The removal of energies from the
equations comes with a reduction of one parameter, namely

U b
H , U

j
H , U

p
H , k̇M , k̇J , g, κ, v̇, v̇⊘

combined with
[EG], [E⊘A], [E⊘D], [E⊘G] versus v̇⊘A, v̇⊘D, v̇⊘G,

given f(t). If food density X(t) is given, rather than scaled functional response f(t), we
need one extra parameter, the half saturation coefficient K. The conversion from the
energy allocated to reproduction ṗR to eggs involves the overhead factor 1 − κR. The
module for the buffer handling rule has additional parameters. The velocities v̇i might
be negative, provided that L⊘ > 0 for all possible environmental scenario’s for which the
individual can survive. They do not depend on temperature, because we obtained them
by via {ṗAm} at a standardized temperature. Notice also that if v̇⊘A = v̇⊘D = 0 and δS

large, we have dL
dL⊘

= δL⊘
δL

L2
⊘

κgL2
v̇

v̇⊘G
and L3 = δL⊘

δL
v̇

κgv̇⊘G
L3

⊘ if L⊘ = 0 when L = 0.

4.9 Otolith opacity

Otoliths typically have layers of transparent keratine-like protein, and opaque aragonite
plus protein. This observed sequence of layers can be explained if the deposition on the
otolith that is associated with growth and (possibly) assimilation has aragonite, and that
linked to dissipation has not. Otoliths of embryos are opaque, and embryos don’t have
assimilation, so contribution from growth and/or maintenance must have aragonite. In
winter, when food intake is so low that somatic maintenance costs is partly paid from the
reproduction buffer and growth is ceased, otolith depositions have no aragonite, so the
contribution from dissipation must be positive and must have no aragonite, while that of
growth must also be positive and must have aragonite. If fully grown the deposition has
no aragonite, so if the contribution of assimilation is positive, it can have no aragonite. On
the assumption that degradation does not affect the opacity, opacity is given by

O(t) =
v̇⊘ASA + v̇⊘GSG

v̇⊘ASA + v̇⊘DSD + v̇⊘GSG

which assumes value 1 if aragonite content is maximum, and 0 in complete absence of
aragonite. The relative contributions of assimilation and growth linked depositions to
opacity can be weighted unequally.

The color bands are used to assess growth. The human eye recognizes the band bound-
aries as maximum changes in color. Color change (in length of otolith) is given by

dO

dL⊘
=
dO

dt

dt

dL⊘
=

∑
k v̇⊘k

d
dt
Sk −O

∑
i v̇⊘i

d
dt
Si

(
∑
i v̇⊘iSi)δ

−1
L⊘

d
dt
L⊘

for i = A,D,G; k = A,G
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where we need

d

dt
SA = fL2 d

dt
M+ML2 d

dt
f +Mf2L

d

dt
L

d

dt
M = (UH > U b

H)(UH < U j
H)(

d

dt
UH/U

b
H)/(3M2)

d

dt
f = f 2 K

X2

d

dt
X

d

dt
SD =

d

dt
SM +

d

dt
SJ + (1− κR)

d

dt
SR

d

dt
SG = κ

d

dt
SC − d

dt
SM

d

dt
SR = (1− κ)

d

dt
SC − d

dt
SJ

d

dt
SC =

L

g + e
(Mg +

L

Lm
)(

gL

g + e

d

dt
e+ 2e

d

dt
L) +

L2e

g + e
(g
d

dt
M+

d

dt

L

Lm
)

d

dt
SM =

3κL2

Lm

d

dt
L

d

dt
SJ = k̇J

d

dt
UH

If X(t) is described by a cubic spline or a Fourier series, the evaluation of d
dt
X is straight-

forward.

4.9 Isotopes in otoliths

To follow isotopes in otoliths, it is most convenient to work with masses, rather than
energies or lengths. We also need more chemical detail. The chemical composition of
the contributions from assimilation, dissipation and growth to the otolith can differ; the
chemical indices are denotes by nkij for k = A,D,G. Each C-mole contributes differently
to volume, which makes that the otolith volume relates to the otolith mass as

V⊘ =MA
⊘/[M

A
⊘ ] +MD

⊘ /[M
D
⊘ ] +MG

⊘ /[M
G
⊘ ]

where the parameters [MA
⊘ ], [M

D
⊘ ] and [MG

⊘ ] are treated as constants. If [MA
⊘ ] = [MD

⊘ ] =
[MG

⊘ ] = [M⊘], the volume of the otolith simplifies to V⊘ = (MA
⊘ +MD

⊘ +MG
⊘ )/[M⊘], which

might be used as a first approximation to reduce the number of parameters.
Working with masses invites for working with yields, so we apply the relationships

[MA
⊘ ]v̇⊘A = {J̇EAm}yA⊘E; [MD

⊘ ]v̇⊘D = {J̇EAm}yD⊘E; [MG
⊘ ]v̇⊘G = {J̇EAm}yG⊘E.

Product formation, including otoliths, affects mineral fluxes. This can be avaluated by
extending the sets of organic yields for assimilation, dissipation and growth with that on
product formation, and the organic chemical indices with those of for otoliths, and obtain
the mineral fluxes from the elemental balance equaltion. Since otoliths are very small, the
correction is likely to be minute.
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The changes in mass of otolith, the color, the chemical indices, the isotope indices and
the isotope fractions of the otolith amount to

d

dt
MA

⊘ = yA⊘EJ̇EA

(
1− V⊘

δSV

)
d

dt
MD

⊘ = −yD⊘EJ̇ED
(
1− V⊘

δSV

)
d

dt
MG

⊘ = −yG⊘EJ̇EG
(
1− V⊘

δSV

)

O(t) =
yA⊘EJ̇EA − yG⊘EJ̇EG

yA⊘EJ̇EA − yD⊘EJ̇ED − yG⊘EJ̇EG

ni⊘(t) =
nAi⊘y

A
⊘EJ̇EA − nDi⊘y

D
⊘EJ̇ED − nGi⊘y

G
⊘EJ̇EG

yA⊘EJ̇EA − yD⊘EJ̇ED − yG⊘EJ̇EG

n0
i⊘(t) =

n0A
i⊘y

A
⊘EJ̇EA − n0D

i⊘ y
D
⊘EJ̇ED − n0G

i⊘ y
G
⊘EJ̇EG

yA⊘EJ̇EA − yD⊘EJ̇ED − yG⊘EJ̇EG

δ0
i⊘(t) =

n0
i⊘(t)

ni⊘(t)

with J̇EA, J̇EG ≤ 0. Notice that the chemical indices nij and the isotope indices n0
ij are

relative to carbon and that nAC⊘ = nDC⊘ = nGC⊘ = nC⊘ = 1. Notice also that the otolith is
not mixed, so we don’t have dilution by growth of the otolith.

Several possibilities can be delineated for n0k
i⊘. The simplest set of possiblities is that no

fractionation occurs at otolith formation, which we will examine in more detail. The isotope
indices n0k

i⊘ are obtained from n0k
i⊘ = −∑s α

ik
⊘sn

0k
is /Y

k
⊘s, where for elements i = C,H,N we

have substrate s = X for transformation k = A and s = E for k = D,G. For the element
oxygen, i = O, we have two substrates, the second one being dioxygen, s = O. Since
otoliths are very small, the effect of their production on the reshuffling parameters α will
be minute, and we can link the isotope indices directly to that of reserve or structure. The
contribution of dioxygen for oxygen in otoliths should be reconsidered. Since fractionation
occurs at the anabolic/catabolic forks of the three fluxes, the allocation to otoliths can
occur before or after the forks, so we have three possibilities per flux

n0A
i⊘ = nAi⊘

n0A
iX

niX
or nAi⊘

n0Aa
iX

niX
or nAi⊘

n0Ac
iX

niX

n0D
i⊘ = nDi⊘

n0D
iE

niE
or nDi⊘

n0Da
iE

niE
or nDi⊘

n0Dc
iE

niE

n0G
i⊘ = nGi⊘

n0G
iE

niE
or nGi⊘

n0Ga
iE

niE
or nGi⊘

n0Gc
iE

niE

This does not exhaust all possibilities; part of the atoms in otoliths can originate from
structure in the anabolic sub-flux of somatic maintenance. If we include the contribution
from growth into the anabolic flux (the second option), we have κaG = yV E + yG⊘E and
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κcG = 1 − κaG and for assimilation κaA = yEX + yA⊘E and κcA = 1 − κaA. For dissipation the
situation is simpler because κaD is a free parameter, independent of other parameters.

With the presently available information, we can neglect the contribution from assimi-
lation to otoliths, yA⊘E = 0, but future work with biomarkers might change that.

Simulation results show that, even in absence of effects of temperature on the odds
ratios, seasonal cycles in temperature result in a covariance of temperature and the isotope
fractions in otoliths.

4.10 Parameter estimation

Parameters can be estimated from a collection of n data sets by minimizing the (dimen-
sionless) loss function Fsb

Fsb =
n∑
j=1

nj∑
i=1

wij
nj

(dij − pij)
2

d2
j + p2

j

with pj = n−1
j

nj∑
i=1

pij and dj = n−1
j

nj∑
i=1

dij

where data set j has nj data points dij with predictions pij and wij are chosen weight coef-
ficients (default wij = 1), see [910, 909]. This loss function is called ‘symmetric bounded’,
because it is symmetric in the roles of data and predictions (so it punishes over- and
under-estimation equally), while the contributions of infinitely large predictions to the
loss function remain limited. In the practice of the Add my Pet (AmP) collection, some
pseudo-data are added to the collection of data sets with small weights coefficients (default
0.1) to avoid ill-posedness, and to reduce the risk to arrive at nonsense values for param-
eters in a biological perspective. All pseudo-data is zero-variate (so just single numbers),
see [855, 856].

The marginal confidence interval for parameter θ can be based on the profile of the
loss function, Fsb(θ), where all parameters are estimated from the data, except θ, and θ
is varied around its point-estimate θ∗, see [910]. The interval for confidence level p, with
0 < p < 1, is defined as the set of values for θ for which Fsb(θ) < F p

sb. The cut-off value F p
sb is

subsequently found from a calibration-step using a Monte-Carlo simulation: Independently
centered log-normally distributed random quantities, with a variation coefficient equal to
the observed variation coefficient, are added to the predicted values for the data and
the minimum of the loss function is determined for each Monte-Carlo run. In this way, a
frequency distribution of minima is constructed and the p-level cut-off value F p

sb determined.
The resulting confidence interval was found to be very close to the one that results from
a Maximum Likelihood method, for the simple case of a single data-set for the surviving
fraction of individuals as a function of time [853]. The reasons why Maximum Likelihood
methods cannot be used in the context of AmP are discussed in [910].

The survivor function S(θ) for the parameter θ can be found from a set of p-values,
with S(θ∗) = 0.5. Let θpl be the lower boundary of the p-level confidence interval for θ, and
θpu be the upper boundary, so S(θ

p
l )−S(θpu) = p with θpl < θ∗ < θpu, while θ

0
l = θ∗ = θ0

p. For
non-negative parameters we must have θ1

l = 0, for unbounded parameters θ1
l = −∞, while

θ1
u = ∞. We also have S(θpl )− S(θ∗) = S(θpl )− 0.5 = p/2, so S(θpl ) = (1 + p)/2. Similarly
S(θ∗) − S(θpu) = 0.5 − S(θpu) = p/2, so S(θpu) = (1 − p)/2. This provides the recipe for
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Figure 4.11: Lines of equal values for the von
Bertalanffy growth rate ṙB for Lm = Lref, f =
1, T = Tref, and [EG] = 5260 J/cm3 in the std
model. The lines follow from the relationship
[ṗM ] = 3ṙB([EG] + κ{ṗAm}/v̇), while [ṗM ] =
κ{ṗAm}/Lref.

obtaining S(θ) from the loss function profile and the frequency distribution of minima of
the loss function.

This method for estimation of parameters can be extended to multiple species [853],
offering the opportunity to constrain similar parameters for ns different species. The most
obvious constraint is to choose some of them to be equal for all species. A less stringent
constraint is to reduce the scatter of selected parameters among species by augmenting the

loss function Fsb with the dimensionless term
∑N
k=1

wkvar(θks )
mean(θks )2

, where k = 1, · · · , N scans

the parameters, wk denotes chosen weights coefficients and θks parameter k for species s,
for s = 1, · · · , ns. The constraint disappears for wk = 0 (so the species are independent),
while a high value for wk forces the corresponding parameters to be equal for the different
species. The general idea is to stepwise increase wk, estimate parameters and observe
the trait-off between the reduction of the variation coefficient for that parameter and the
increase in the mean relative error of all predictions for all data sets for all species. The
largest weight coefficient that does not spoil the mean relative error substantially is the
value we are looking for: this separates the real biological variation in the parameter from
the artificial one caused by ill-posedness of the parameter estimation.

Males differ from females in many AmP entries only by parameters {ṗAm} and/or Ep
H ,

while all other parameters are taken equal. This can be seen as a special case of multi-
species estimation. Likewise particular patterns in the co-variation of parameters among
species can be taken into account in a sloppy by, i.e. not imposing such patterns in a
hard way, but by reducing deviations from such patterns. We call this type of parameter
estimation, including the notion of pseudo-data: ‘estimation in context’.

4.10 Parameter estimation

If data includes time-length, so the von Bertalanffy growth rate ṙB is well-fixed by the
data, Fig. 4.11 shows that specific somatic maintenance [ṗM ] tends to correlate negatively
with energy conductance v̇ if L∞ is fixed. For small ṙB, either [ṗM ] or v̇ is poorly fixed.
Incubation time and/or respiration data fix the energy conductance well, so in combination
with time-length data, no problem is to be expected.

The ultimate reproduction rate (at constant food) is a hump-shaped function of κ, if
all other parameters remain fixed. For high κ, little is allocated to reproduction and for
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low κ little is allocated to growth, while feeding is coupled to size. For typical values of the
parameters, the ultimate reproduction rate has a maximum around κ = 0.45 for supply
species and κ = 0.66 for (extreme) demand species, see Section 10.5.5 of the comments,
while values around κ = 0.9 most frequently occur, see Section 8.1.3 of the comments.
This means that both a low and a high value of κ can predict a (relatively) low ultimate
reproduction rate. If κ is decreased and {ṗAm} is increased, such that their product remains
constant (so g remains constant), growth is hardly affected. The maturity thresholds have
to increase simultaneously to keep stage transitions at the same age and size, and other
parameters have to be adjusted as well to correct for difference in the costs per eggs,
which affect the reproduction rate. So both a low and a high value of κ can capture a
particular growth and reproduction pattern, as illustrated in Table 4.3. The high value
for κ (prediction H) represents a local minimum for the Weighted sum of Least Squares,
but this is not sure for the low value of κ (prediction L). This depends on numerical
details of the routines that compute the predictions. Prediction I here overestimates the
length and weight at birth, which directly relates to maximum reproduction, which is
estimated correctly. Notice that prediction L has a higher assimilation, but the same
energy conductance, so more reserve relative to structure. The effect on predicted physical
lengths is compensated by a lower shape coefficient.

4.10.0 Bijection between data and parameter space

Given a number of assumptions on (mainly) auxiliary parameters, a bijection (= one-
one map) is possible between 9 parameters and 9 data points, see [854] and Table 4.4.
Data are sensitive to environment conditions (food, temperature) and parameter values
are individual-specific. The relationship between parameter space and data space has
parallels with that between geno- and pheno-type. The required assumptions are

A1 temperature is constant and the reference temperature is Tref = 293K. If the actual
temperature differs, ab, ap, am and Ṙm must first be temperature corrected. A typical
Arrhenius temperature is TA = 8kK, which can be used for this purpose in absence of
better information. The correction can be done by dividing the ages and multiplying
the rate by temperature correction factor exp (TA/T − TA/Tref), see [774, Eq (1.2)].

A2 food is abundantly available. Feeding is not explicitly included here, meaning that
we don’t include digestion efficiency κX and maximum specific searching rate {Ḟm},
which are two core parameters of the standard model.

A3 surface-linked somatic maintenance {ṗT} = 0. This primarily concerns investment
into heating (for endotherms) and osmotic work (for freshwater organisms), which
depends on environmental conditions. We thus assume that these conditions are such
that our assumption holds.

A4 the chemical potentials of structure and reserve are µV = 0.5 and µE = 0.55MJC-
mol−1. The bulk composition of dry biomass is a mixture of carbohydrates, proteins
and fats [774, Table 4.2], which is species-specific, but the overall values are assumed
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Table 4.3: Artificial and pseudo data at abundant food, except length at puberty at f = 0.7,
and predictions based on two different parameter estimates. Reproduction is well-predicted for
a low value of κ (pred. L), as well as for a high value of κ (pred. H). Data and parameters
on feeding, ageing and temperature dependence have been omitted. Fixed parameter values:
reproduction efficiency κR = 0.95, chemical potential for structure µV = 500 kJmol−1, specific
mass of structure [MV ] = 4.2mmol cm−3.

data symbol unit value pred. L pred. H
age at birth ab d 15.5 15.5 15.54
age at puberty ap d 240 214 239.4
physical length at birth Lbw cm 0.46 0.7482 0.4619
physical length at puberty Lpw cm 2.2 2.096 2.19
– at f = 0.7 Lp0.7 cm 2.1 2.018 2.102
ultimate physical length L∞

w cm 6.25 6.176 6.26
dry weight at birth Wb g 6e-5 26.1e-5 6.023e-5
dry weight at puberty Wp g 0.0064 0.005738 0.0064
ultimate dry weight W∞ g 0.15 0.1467 0.15

ultimate reproduction rate Ṙ∞ #d−1 2.1 2.153 2.107
energy conductance v̇ cmd−1 0.02 0.02182 0.02007
vol-spec. somatic maint. [ṗM ] J d−1cm−3 18 17.88 17.6
growth efficiency κG − 0.74 0.5693 0.7391

parameter symbol unit estim. I estim. II
spec max assimilation {ṗAm} J d−1cm−2 343.07 21.98
shape coefficient δM − 0.09262 0.1606
energy conductance v̇ cmd−1 0.02182 0.02
allocation fraction to soma κ − 0.02981 0.808
vol-specific somatic maint. [ṗM ] J d−1cm−3 17.89 17.61

maturity maint. rate coeff. k̇J d−1 8.505e-4 8.968e-4
spec cost for structure [EG] J cm−1 3676 2813
maturity at birth Eb

H J 40.93 0.2813
maturity at puberty Ep

H J 1145 40.48
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Table 4.4: The combination of nine data (left) and parameters (right) that map to each other
one-to-one on the basis of the standard DEB model with acceleration and ageing.

description symbol unit unit symbol description

age at birth ab d J EbH maturity at birth

age at puberty ap d J EjH maturity at metam.
age at death am d J EpH maturity at puberty

dry/wet weight ratio δW − J d−1cm−2 {ṗAm} specific assimilation
wet weight at birth Wb g cmd−1 v̇ energy conductance

wet weight at metam. Wj g - κ allocation fraction to soma
wet weight at puberty Wp g J d−1cm−3 [ṗM ] spec. somatic maintenance
ultimate wet weight W∞ g J cm−3 [EG] specific cost for structure

max. reproduction rate Ṙm #d−1 d−2 ḧa ageing acceleration

to be insensitive for these variations. Chemical potentials of reserve and structure
can be estimated from data on energy content of biomass at two (or more) food levels.

A5 ratios of chemical elements in dry structure as well as dry reserve is C:H:O:N =
1:1.8:0.5:0.15. This fixes the molecular weight of reserve and structure to wE =
wV = 23.9 gC-mol−1. Notice that similarity of elemental frequencies does not imply
similarity in chemical composition. Avoidance of this assumption, including the
similarity between structure and reserve, requires measured elemental frequencies of
biomass at two (or more) food levels.

A6 only if the water content of reserve and structure are equal is the dry/wet weight
ratio independent of nutritional conditions (as is the standard assumption in the
ecological literature). We also make this assumption with the implication that the
dry/wet weight ratio δW has a simple relationship with specific density of biomass dW
and the specific density of structure dV , where the specific density of wet structure is
dwV = 1g cm−3 and the specific density of reserve equals that of structure. The water
content of structure and reserve can be estimated from data on dry and wet weight
trajectories during starvation.

A7 we refrain from the detailed specification of the handling rules for the reproduction
buffer and only consider maximum reproduction rate as a mean over several repro-
duction cycles for a fully grown adult female. To avoid this assumption, we need
reproduction data as function of time. Buffer handling rules tend to be species-
specific. Maximum weight as data point, see Table 4.4, is assumed to exclude the
reproduction buffer.

A8 reproduction efficiency κR = 0.95, which stands for the fraction of reserve that is
allocated to reproduction that ends up in offspring. In the case of reproduction by
eggs this represents a conversion from reserve of the mother to that of eggs, so no
chemical transformation is involved. This parameter can only be estimated if the full
energy balance is available from data.
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A9 growth efficiency κG = 0.8, which stands for the fraction of reserve that is allocated
to growth (of structure) that ends up in structure. This involves a chemical trans-
formation from reserve to structure. Growth efficiency can be estimated from e.g.
growth data at two (or more) food levels. In cases where this parameter could be
estimated, 0.8 turns out to be consistent with data.

A10 maturity maintenance rate coefficient k̇J = 0.002 d−1, which stands for the maturity
specific maintenance costs, if maturity is expressed in cumulative energy investment
in maturation. Maturity itself does not have mass or energy. The parameter can
only be estimated from data if reproduction is measured at several food levels. In
cases where this parameter could be estimated, 0.002 d−1 turns out to be consistent
with data.

A11 Gompertz stress coefficient sG = 10−4, which quantifies how fast ageing accelerates
during ontogeny. The parameter can be estimated from data on relative survival
frequency as function of age. For ectotherms acceleration is typically very low, for
endotherms it can be in the order of 0.1 (steeper decline of survival probability as
function of age). The value only affects survival by ageing and has no effect on the
energy budget, but the energy budget affects ageing.

Assumptions A1 to A3 relate to restrictions on environmental conditions under which
data has been collected. Assumptions A4 to A6 relate to body composition and assump-
tions A8 to A11 species properties. All these assumptions can be avoided, but this requires
more complex data, frequently at several food levels, and more advanced parameter iden-
tification methods [855, 856]. This list of assumptions leaves nine degrees of freedom for
the dynamic energy budgets as specified by the standard DEB model with acceleration
and ageing. The analysis can be simplified by reducing the 9 dimensions to 7 by omitting
ḧa and am, and obtaining [EG] directly from dV , but this is not done because of future
extensions to include the primary parameters {Ḟm}, κG and k̇J .

The implied bijection in both directions has the following algorithm.

4.10.0.1 Map from parameters to data

P1 maintenance ratio k = k̇J
k̇M

, with somatic maintenance rate coefficient k̇M = [ṗM ]
[EG]

P2 dry/wet weight ratio δW = dV
dwV

, with specific density of structure dV = κG[EG]
wV

µV

P3 energy investment ratio g = [EG]v̇
κ{ṗAm} and maximum structural length Lm = κ{ṗAm}

[ṗM ]

P4 scaled maturity U∗
H =

E∗
H

{ṗAm} , V
∗
H =

U∗
H

1−κ and v∗H =
V ∗
Hg

2k̇3M
v̇2

with ∗ = b, j, p

P5 scaled length at birth lb is solved from
xbgv

b
H

v(xb)l3
b
=
∫ xb

0
g+l(x)
v(x)

dx with xb =
g

1+g
and

v(x) = exp
(
−
∫ x

0
k−x1
1−x1

l(x1)
gx1

dx1

)
and l(x) =

(
1
lb

(
xb
x

)1/3
− Bxb

( 4
3
,0)−Bx( 4

3
,0)

3gx1/3

)−1

, where

Bx(a, b) is the incomplete beta function
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P6 scaled age at birth τb = 3
∫ xb

0
dx

(1−x)x2/3(3gx
1/3
b

/lb−Bxb
( 4
3
,0)+Bx( 4

3
,0))

P7 scaled exponential growth rate ρj = g 1/lb−1
1+g

(between birth and metamorphosis)

P8 scaled length at metamorphosis lj = lb +
∫ vjH
vbH

d
dvH

l dvH with d
dvH

l = ρj l/3

l3(1/lb−ρj/g)−kvH
and l(vbH) = lb

P9 scaled ultimate length l∞ = sM with acceleration factor sM = lj/lb

P10 scaled length at puberty lp = lj+
∫ vpH
vjH

d
dvH

l dvH with d
dvH

l =
g
3

l∞−l
g+1

l2 gl∞+l
g+1

−kvH
and l(vjH) = lj.

P11 scaled age at metamorphosis τj = τb + 3ρ−1
j log sM

P12 scaled von Bertalanffy growth rate ρB = (3 + 3/g)−1 (after metamorphosis)

P13 scaled age at puberty τp = τj + ρ−1
B log l∞−lj

l∞−lp

P14 ages a∗ = τ∗/k̇M with ∗ = b, p

P15 structural lengths L∗ = l∗Lm with ∗ = b, j, p,∞

P16 wet weights W∗ = dwVL
3
∗

(
1 + [Em]wE

dV µE

)
with ∗ = b, j, p,∞ and [Em] =

{ṗAm}
v̇

P17 maximum reproduction rate Ṙm = κR
E0
(1−κ

κ
[ṗM ]s3

ML3
m − k̇JE

p
H) with initial reserve

E0 = u0
EL

3
m[EG]/κ and initial scaled reserve u0

E =
(

3g

3gx
1/3
b

/lb−Bxb
( 4
3
,0)

)3

and xb =
g

1+g

P18 age at death am = Γ
(

4
3

) (
6

gk̇M ḧa

)1/3
, where Γ(x) is the gamma function.

The computation of scaled length at birth lb in step 5 is by far the most demanding,
but efficient routines based on [773] are available in software package DEBtool. Numerical
integrations are required in lj, lp and τb as well, which reduces accuracy.

4.10.0.2 Map from data to parameters

D1 acceleration factor sM = (Wj/Wb)
1/3. For non-accelerating species: Wj = Wb and

sM = 1 and aj = ab

D2 scaled length at birth lb = Lb

Lm
= sM

(
Wb

W∞

)1/3
, scaled length at metamorphosis

lj = Lj

Lm
= sM

(
Wj

W∞

)1/3
and scaled length at puberty lp = Lp

Lm
= sM

(
Wp

W∞

)1/3
can

be obtained from wet weights. Although structural lengths themselves cannot be
accessed yet, their ratios can. Ultimate structural length L∞ = LmsM and maxi-
mum structural length Lm be will given below when using ultimate wet weight W∞.
Maximum structural length Lm will be treated as a compound parameter and the
interpretation only applies to non-accelerating species; ultimate structural length L∞
exceeds Lm for accelerating species at abundant food
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D3 age at metamorphosis aj = ap log sM+ab log s
log sM+log s

with s =
(
sM−lj
sM−lp

)1/lb−1
. This is based

on the relationship between the exponential growth rate ṙj = 3 log sM
aj−ab

during ac-

celeration between birth and metamorphosis and the von Bertalanffy growth rate
ṙB = 1

ap−aj log
sM−lj
sM−lp after metamorphosis. Their links with DEB parameters at

abundant food is ṙj = k̇M
1/lb−1
1+1/g

and ṙB = k̇M/3
1+1/g

, see [774, Eq (2.24)]. So ṙB = rj
3/lb−3

and substitution gives the result

D4 cost for structure [EG] = µV dV
wV κG

= 26151 δV J cm−3, given the assumptions. This

directly follows from the definition of growth efficiency κG = µV dV
wV [EG]

D5 von Bertalanffy growth rate ṙB = 1
ap−aj log

1−lj
1−lp , which directly follows from the

definition L(t) = L∞ − (L∞ − L0) exp(−ṙBt)

D6 maximum reserve residence time tEm = Lm

v̇
= 1

gk̇M
= ab

3.7lb
, where scaled length at

birth lb is given above. This is based on d
dt
L(0) = v̇/3 and the approximation that

this holds during the full incubation time, leading to Lb = v̇ab/3, see [774, Eq (2.47)].
However, reserve becomes depleted during incubation of eggs, increasing incubation
time by a mean factor of 1.226 among species that are present in the collection. This
value for tEm is an approximation that will be replaced in step 9

D7 specific somatic maintenance cost [ṗM ] = 3ṙB [EG]
1−3ṙBtEm

. This is based on the von Berta-

lanffy growth rate ṙB = [ṗM ]/3
[EG]+[ṗM ]tEm

at abundant food ([774, Eq (2.24)]) after meta-

morphosis. Since tEm is an approximation, this value for [ṗM ] is also approximative
(see next step)

D8 somatic maintenance rate coefficient k̇M = [ṗM ]/[EG], from its definition, see [774,
Section 2.5.1]. This value for k̇M can be used as initial value for a numerical procedure
to solve k̇M from the exact value for ab = τb/k̇M , with τb given by [774, Eq (2.38)].

So k̇M must be solved from k̇Mab = 3
∫ xb

0
(1−x)−1x−2/3 dx

αb−Bxb
( 4
3
,0)+Bx( 4

3
,0)
, where Bx(a, b) is the

incomplete beta function, αb = 3gx
1/3
b /lb, xb =

g
eb+g

, g = ṙB
k̇M/3−ṙB

(see D9), while ṙB
is given in D5, aj in D3, lb, lj, lp in D2 and sM in D1. With this correct value for
k̇M , we obtain [ṗM ] = k̇M [EG] to replace the value obtained in step D7

D9 energy investment ratio g = ṙB
k̇M/3−ṙB

. This is based on the von Bertalanffy growth

rate ṙB = k̇M/3
1+1/g

, see [774, Eq (2.24)] and its definition g = [EG]
κ[Em]

, see [774, Eq (2.21)].

The value for tEm = (gk̇M)−1 that was obtained in step 6 can now be replaced

D10 allocation fraction κ = 1−ṘmtEms
−3
M l3b (1.75+g)/κR, with κR = 0.95 as default. This

is based on the maximum reproduction rate Ṙm = κR
E0
(1−κ

κ
k̇M [EG]s

3
ML3

m − k̇JE
p
H),

[774, Eq (2.58)], the costs per (foetal) offspring E0 = L3
b([Em]7/4+ [EG]/κ), see [774,

Eq (2.51)] and neglecting maturity maintenance (k̇J = 0). The cost of an egg is
slightly larger, due to retardation of development by the reserve becoming limiting,
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which increases cumulative maintenance costs. Placental costs are ignored as well,
assuming that most of it is recovered by eating the placenta after birth. Substitution

gives Ṙm = (1−κ)κRk̇M
1.75/g+1

s3ML3
m

L3
b

. This value for κ will be replaced in step 15.

D11 reserve capacity [Em] =
[EG]
κg

, based on the definition of the energy investment ratio

g = [EG]
κ[Em]

, see [774, Eq (2.21)]

D12 maximum structural length Lm = s−1
M

 W∞

dwV

(
1+

[Em]wE
dV µE

)1/3

where the coefficients dwV ,

dV , wE and µE are specified by the assumptions. This is based onW∞ = dwVL
3
∞

(
1 + [Em]wE

dV µE

)
,

see [774, Eq (3.2)]. We now have access to Lb = lbLm, Lj = ljLm and Lp = lpLm

D13 energy conductance v̇ = Lm/tEm, which directly follows from tEm = Lm/v̇

D14 specific assimilation rate {ṗAm} = v̇[Em] = [ṗM ]Lm/κ. This follows from the def-
inition of reserve capacity [Em] = {ṗAm}/v̇, see Section 2.3.1, and from maximum
structural length Lm = κ{ṗAm}/[ṗM ], see [774, Section 2.6]

D15 maturity level at birth Eb
H = 1−κ

κ
[EG]L

3
b , metamorphosis Ej

H = 1−κ
κ
[EG]L

3
j and pu-

berty Ep
H = 1−κ

κ
[EG]L

3
p. This is based on k = k̇J/k̇M = 1, where maturity density

does not change, see [774, Eq (2.32)]. The exact values can be obtained by integrating
the ode’s for reserve E and maturity EH over structural length L. For that purpose
the initial reserve E(0) = E0 is obtained by step 9 of the previous subsection, while
EH(0) = 0. The value for κ can be used as initial value for a numerical procedure to
solve κ from the exact value for Ṙm, repeating steps 11 till 15 till conversion

D16 ageing acceleration ḧa = 4.27
a3mk̇Mg

, for small Gompertz stress coefficient sG = 10−4.

This is based on am = Γ(4/3)/ḣW , with ḣ3
W = ḧav̇

6Lm
and Γ(4/3) = 0.893, see [774, Eq

(6.6)]

This series of 16 steps involves the solution of two implicit equations, each in one
variable, step 8 and 15, where good initial values are available.

4.10.0.3 Boundaries of parameter space

The following formal constraints on parameter values apply at constant food at scaled
function response f , with 0 < f ≤ 1. We assume a constant scaled food functional
response, rather than f = 1, because we here consider constraints on parameter and data
values. Parameter values are the result of natural selection, which occurs in the field, where
food is not always abundant. Demand species have a high specific searching rate, {Ḟm}, so
a small half saturation constant K, meaning that f = 1 is approximated for a large range
of fluctuating food densities. Supply species, however, have a large value for K, meaning
that the mean f will generally be smaller than 1, and this affects selection for parameter
values. So at first reading the sections on the boundaries of parameter and data space, you

http://www.bio.vu.nl/thb/research/bib/Kooy2010.html
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can best assume f = 1, but at second reading you might want to consider f < 1, especially
for supply-species.

BP1 All parameters, i.e. {ṗAm}, v̇, κ, [ṗM ], [EG], E
b
H , E

j
H , E

p
H , ḧa, must be positive. The

specific costs for structure [EG] > dV µV /wV follows from κG < 1.

BP2 Allocation fraction κ must be smaller than 1. Constraint BP6 is more restrictive,
however.

BP3 The maturity levels must increase: 0 < Eb
H ≤ Ej

H ≤ Ep
H ;

BP4 Birth can be reached at f if f > fR, where fR is the scaled function response at which
maturation ceases at birth. For uE = κE

[EG]L3
m

and vH = κEH

(1−κ)[EG]L3
m

and τ = tk̇M ,

we have d
dτ
uE = −uEl2 g+l

uE+l3
and d

dτ
vH = uEl

2 g+l
uE+l3

− kvH with d
dτ
vH(τb) = 0 for

f = fR. So d
dτ
uE(τb) = −kvbH and ubE =

kvbH l
3
b

l3
b
+gl2

b
−kvbH

. Since ubE =
ebl

3
b

g
, we have

fR =
gubE
l3
b

=
gkvbH

l3
b
+gl2

b
−kvbH

and, for x = g
g+e

, xb =
g

g+fR
=

l3b+gl2b−kv
b
H

l3
b
+gl2

b
. Since d

dτ
x = gx1−x

l

and for y = xeH
1−κ ,

d
dx
y = r(x)−ys(x) and r(x) = g+l(x) and s(x) = k−x

1−x
l(x)
gx

. This ode

for y in x needs to be integrated from (x, y) = (0, 0) to (xb, yb) with yb = gxbv
b
H/l

3
b ,

for 1
l(x)

= 1
lb

(
xb
x

)1/3
− Bxb

( 4
3
,0)−Bx( 4

3
,0)

3gx1/3
. From the boundary condition y(xb) = yb, lb can

be solved and fR is found.

Birth can just be reached under the best feeding condition if fR = 1. In that case
(g + 1)kvbH = l3b + gl2b . This cubic polynomial in lb must have a real root between 0

and 1, which translates into kvbH < 1 or Eb
H < (1−κ)κ2{ṗAm}3

k̇J [ṗM ]2
. If k̇J < k̇M , as found in

all entries of the collection, shrinking occurs at fR before birth.

Scaled length at birth lb cannot exceed 1. This implies that, given energy investment
ratio g and maintenance ratio k, scaled maturity vbH cannot be larger than the value
discussed in section 2.6.2 of the comments.

BP5 Supply stress ss =
k̇JE

p
H [ṗM ]2

f3s3M{ṗAm}3 ≤ 22

33
, else allocation fraction κ cannot be between 0

and 1 (see BP1 and BP2).

BP6 Allocation fraction κ must satisfy κ2(1−κ) > ss, in other words, it must be between
the two positive roots of κ2(1−κ) = ss. If κ is at one of the boundaries, maturity at
puberty is only reached asymptotically, maximum reproduction Ṙm = 0. If ss =

22

33
,

the two positive roots coincide and we have κ = 2
3
.

BP7 The constraint ap < am (see BD1) translates to ḧa < Γ
(

4
3

)
6

gk̇M t3p
. The detailed

argument is a bit more complex because death by ageing is stochastic and not all
individuals need to reach puberty.

Notice that BP4 concerns birth and BP5 puberty. These boundary conditions differ,
but have relationships. If we focus on abundant food conditions, BP4 states that kvbH < 1.
Given BP3, this condition is satisfied if kvpH < 1. Under abundant food conditions, again, ss
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relates to vpH as ss = κ2(1− κ)kvpHs
−3
M . BP6 translates into the condition that kvpH < s3

M,
where sM = lj/lb ≥ 1. If species don’t accelerate, sM = 1, the condition that it must
be possible to reach puberty automatically implies that birth can be reached as well. For
accelerating species, however, this no longer holds, and parameter combinations exist where
puberty can be reached, but birth cannot.

4.10.0.4 Boundaries of data space

The following formal constraints on data values apply at constant food at scaled function
response f , with 0 < f ≤ 1.

BD1 All data, i.e. dV , ab, ap, am, Wb, Wj, Wp, Wm, Ṙm, must all be positive

BD2 Ages must increase during the life-cycle: 0 < ab ≤ ap < am

BD3 Weights must increase during the life-cycle: 0 < Wb ≤ Wj ≤ Wp ≤ W∞.

BD4 A solution for k̇M from D8 must exist, which translates for τb = abṙB and kM = k̇M/ṙB
and αb = 3gx

1/3
b /lb and xb =

g
1+g

and g = 3
kM−3

into:

lim
kM↓3

3

kM

∫ xb

0

(1− x)−1x−2/3 dx

αb −Bx(
4
3
, 0) +Bxb(

4
3
, 0)

≤ τb ≤ lim
kM→∞

3

kM

∫ xb

0

(1− x)−1x−2/3 dx

αb −Bx(
4
3
, 0) +Bxb(

4
3
, 0)

Numerical studies suggest that by approximation we must have

1.93 10−6lb ≤ τb ≤ lb + l2b/4

BD5 Puberty can be reached if maximum reproduction Ṙm > 0. Allocation fraction κ
only has a solution if for ṗmM = s3

ML3
m[ṗM ] and ṗmJ = k̇JE

p
H and ṗmR = E0Ṙm/κR

ṗmR < ṗmM
1− κ

κ
− ṗmJ for κ→ 0

The quantities sM, Ṙm, [ṗM ], k̇J , Lm, E
p
H and u0

E are treated here as functions of
data (see algorithm of the bijection) and E0 = u0

EL
3
m[EG]/κ. So for small κ the

condition reduces to

u0
E[EG]Ṙm/κR < s3

M[ṗM ]− ṗmJ /L
3
m

Step D10 of the map from data to parameters shows that ṘmtEml
3
b (1.75+g) < κRs

3
M

follows naturally from the approximative estimate for κ, but is an approximative
constraint only.

In practice it sometimes occurs that Wj has not been measured and ab is too large for
application of the standard DEB model without acceleration. This large ab might indicate
acceleration, and one way to reconstruct Wj is to increase it incrementally from Wb (no
acceleration), till ab crosses the boundaries of the data space.
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Table 4.5: Elasticity coefficients ed for data, e.g. {ṗAm}
dV

∂dV
∂{ṗAm} = 0 and ep for parameters, e.g.

dV
{ṗAm}

∂{ṗAm}
∂dV

= 1, in case of parameter and data values that map onto each other as indicated in
the last columns. The second last column gives the relative error of mapping forward, followed
by backward. The data-elasticities were obtained by extrapolating the numerical derivatives to
zero perturbation; the parameter-elasticities were computed from the data-elasticities.

ed {ṗAm} v̇ κ [ṗM ] [EG] Eb
H E

j
H

E
p
H

ḧa error value d

dV 0 0 0 0 1 0 0 0 0 0 0.1
ab -0.060 -0.912 1.560 -0.048 -0.216 -0.324 0 0 0 3.1e-6 115.8 d
ap -0.254 0.759 1.435 -0.031 -0.053 0.230 -0.167 0.275 0 -3.8e-5 464.1 d
am 0.333 -0.333 0.333 -0.333 0 0 0 0 -0.333 -1.7e-4 1288 d
Wb 0.849 -0.726 4.820 -0.179 -1.630 0.959 0 0 0 9.1e-6 2.156 g
Wj 0.877 -0.709 4.770 -0.251 -1.572 -0.050 0.995 0 0 -1.7e-4 20.39 g
Wp 0.925 -0.648 4.630 -0.429 -1.404 -0.091 0.089 0.911 0 -2.4e-4 316 g

W∞ 3.870 -0.814 2.945 -3.070 -0.772 -1.010 0.995 0 0 -1.8e-4 55.7 kg

Ṙm 2.286 0.691 -6.680 -1.945 0.650 -1.990 1.000 -0.002 0 -1.9e-4 7.23 d−1

ep dV ab ap am Wb Wj Wp W∞ Ṙm error value p

{ṗAm} 1.004 4.131 -4.957 0 -0.013 -0.882 1.497 -0.265 0.181 2.8e-7 225 J d−1cm−2

v̇ 0 -3.529 2.464 0 0.526 4.438 -0.744 -0.111 -0.069 -1.1e-7 0.02 cmd−1

κ -0.003 0.067 -0.316 0 -0.286 0.028 0.095 0.162 -0.251 -3.8e-7 0.8

[ṗM ] 1.006 6.338 -7.352 0 -0.783 -0.890 2.220 -0.541 -0.000 1.9e-16 18 J d−1cm−3

[EG] 1 0 0 0 0 0 0 0 0 0 2615 J cm−3

Eb
H 1.016 -5.476 6.466 0 2.744 0.806 -1.950 -0.599 1.050 1.1e-5 275 J

E
j
H

1.017 -5.156 6.117 0 1.701 1.778 -1.844 -0.633 1.049 -1.7e-4 2750 J

E
p
H

1.016 -4.107 4.986 0 1.584 0.555 -0.404 -0.731 1.047 -2.5e-4 50 kJ

ḧa -0.003 1.393 -0.392 -3.003 -0.043 -0.403 0.118 0.327 -0.001 5.0e-4 10−6 d−2

4.10.0.5 Elasticities of the bijection

The bijection P from data d = (d1, ., d9)
T to parameters p = (p1, ., p9)

T has a differen-
tiable inverse D, so it classifies as a C1-diffeomorphism. In other words P(D(p)) = p and
D(P(d)) = d. A 9× 9 matrix of elasticity coefficients ep is associated to each point in the
9 dimensional parameter space and ed to each point in the 9 dimensional data space.

Table 4.5 gives (9 dimensional) parameters and data that are connected by the bijec-
tion, including the relative error between d and D(P(d)) and between p and P(D(p)),
respectively. The absolute relative errors vary from 0 till 1.8 10−4. These errors reflect
the accuracy of the numerical procedures that are used in the algorithm of the bijection,
where numerical integration and root finding occurs. We randomly sampled the data and
parameter space for mapping and noticed that the relative error could increase above 0.1
if ab < 0.5 d or am > 104 d or Wm > 1Mg. After filtering the random trials for these
boundaries, the mapping in both directions had a typical relative error of 0.0005, but
could occasionally increase till 0.05, while the errors in both directions correlated. These
errors reflect accuracy settings in the numerical procedures in the mapping.

The product eped = edep = I must hold. Jean-Christophe Poggiale proved this as
follows. Let D = diag(d) and P = diag(p). The elasticity matrices can now be written
as ed = D−1 ∂

∂pT P(d)P and ep = P−1 ∂
∂dT D(p)D. The inverse function theorem [35, p

372] learns that ( ∂
∂pT P(d))−1 = ∂

∂dT D(p). As a result we have e−1
d = (D−1 ∂

∂pT P(d)P )−1 =

P−1( ∂
∂pT P(d))−1D = P−1 ∂

∂dT D(p)D = ep. Likewise we have e−1
p = ed and eped =

edep. The elasticities for the parameters, ep, could not be obtained reliably by numerical
differentiation; many values sensitively depend on the perturbation factor that was used,
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specially for small factors. The values in Table 4.5 were obtained from those for ed. The
values for ed could only be obtained by plotting the numerical derivatives as function of the
perturbation factor and graphically back-extrapolate to perturbation zero. Many values
were approximately linear in the perturbation factor; not a good sign, but still workable.
The determinant of the matrix for the data elasticities was found to be det(ed) = 0.447 in
this numerical example.

The position of the zeros indicate absence of information, so Ṙm has information for ḧa,
but ḧa has no information for Ṙm. The reason is that, in the present simple implementation
of the ageing module in the standard DEB model, energetics affects ageing, but ageing does
not affect energetics. Since [EG] is proportional to dV , the elasticity dV

[EG]
∂[EG]
∂dV

= 1, while
that dV does not affect any other parameter.

The most extreme elasticity is ap
[ṗM ]

∂[ṗM ]
∂ap

= −7.4, that of [pM ] for ap. The map from

parameters to data is most sensitive to the parameter κ, with the weights and maximum
reproduction to be affected the most. The map from data to parameters are sensitive
mainly to the ages at birth and puberty, ab and ap, which affect all parameters except κ
and [EG] (small elasticities).

4.10.0.6 Map from data to parameters for mammals

Mammals don’t accelerate, but sport foetal development in combination with a delay of
the start of development and weaning. The Gompertz stress coefficient is assumed to be
given, but not necessarily small. To match the number of parameters to data types, we
assume that time at start of development t0 is known. Data that is typically available: tb,
tx, tp, tm, δW , Wb, Wx, W∞, Ṙm. Parameters that must be estimated are: Eb

H , E
x
H , E

p
H ,

{ṗAm}, v̇, κ, [ṗM ], [EG], ḧa.
The map from data to parameters has the following steps

D1m Age at birth ab = tb − t0, at weaning ax = ab + tx, at puberty ap = ab + tp, at death
am = ab + tm.

D2m Scaled lengths lb = (Wb/W∞)1/3 and lx = (Wx/W∞)1/3.

D3m Von Bertalanffy growth rate ṙB = 1
tx
log 1−lb

1−lx .

D4m Scaled length at puberty lp = 1− (1− lb) exp(−ṙB(tp − tb)).

D5m Cost for structure [EG] =
µV dV
wV κG

= 26151δV J cm−3.

D6m We have Lb = v̇ab/3 and Lm = v̇
k̇Mg

, so lb = abk̇Mg/3 and k̇Mg =
3lb
ab
.

D7m Further ṙB = g
1+g

k̇M
3

= lb/ab
1+g

, so g = lb
abṙB

− 1. Consequently from D6m: k̇M = 3lb
gab

.

From this we can solve [ṗM ] = k̇M [EG].

D8m Maximum reproduction Ṙm = κRk̇M
1−kvpH
v0E

with v0
E =

u0E
1−κ , u

0
E = ubE + l3b +

3
4

l4b
g
and

ubE = l3b/g. So u0
E = (1 + g + lb3/4)l

3
b/g and Ṙm = (1 − κ)κRk̇M(1 − kvpH)/u

0
E. For
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k̇J = k̇M , so k = 1, kvpH = l3p and Ṙm = (1−κ)κRk̇M(1−l3p)/u0
E and κ = 1− Ṙmu0E

κRk̇M (1−l3p)
.

This value of κ can be used as initial value for the exact solution from the equation

for Ṙm, where v
p
H =

upH
1−κ is obtained like in step D11m.

D9m Maximum reserve capacity [Em] = [EG]
κg

and maximum weight W∞ = L3
m(1 + ω)

with ω = wE [Em]
µEdV

. This gives Lm = (W∞/(1 + ω))1/3 and v̇ = k̇MgLm, while k̇Mg
was obtained in D6m. The unscaled structural lengths are Lb = lbLm, Lx = lxLm,
Lp = lpLm

D10m Specific assimilation {ṗAm} = [Em]/v̇.

D11m Scaled maturity at birth is ubH =
∫ lb

0
d
dl
uH dl with

d
dτ
uH = (1 − κ)l2(g + l) − kuH

and d
dτ
l = g/3 and d

dl
uH = duH

dτ
dτ
dl
. Likewise scaled maturity at weaning is uxH =

ubH+
∫ lx
lb

d
dl
uH dl with

d
dτ
uH = (1−κ)l2 g+l

g+1
−kuH and d

dτ
l = g

3
1−l
g+1

. Scaled maturity at

puberty is upH = ubH+
∫ lp
lb

d
dl
uH dl. The unscaled maturity levels are Eb

H = ubHg[Em]L
3
m,

Ex
H = uxHg[Em]L

3
m and Ep

H = upHg[Em]L
3
m.

D12m Ageing acceleration ḧa must be solved from am =
∫∞

0 exp(
6ḣ3W
ḣ3G

(1− exp(ḣGt) + ḣGt+

ḣ2
Gt

2/2)) dt with ḣ3
W = ḧav̇

6Lm
= ḧagk̇M/6 and ḣG = sGv̇/Lm = sGgk̇M . One approach

is to approximate Pr{a† > am} = 0.5, leading for τG = ḣGam to − ln 2 =
6ḣ3W
ḣ3G

(1 −

exp(τG) + τG + τ 2
G/2) or ḧa =

−sGg2k̇2M ln 2

1−exp(τG)+τG+τ2G/2

The delay t0 can obviously not exceed the time at birth tb = ab + t0. Moreover, g > 0,
which translates with D7m to ab < lb/ṙB, so tb − lb/ṙB < t0 < tb. Age at birth is rather

constrained since Lb = v̇ab/3 and Lb < W
1/3
b , because reserve contributes to weight. The

parameters [ṗM ] and ḧa decrease as function of increasing t0, while v̇, E
b
H , E

x
H and Ep

H

increase and [EG] is unaffected by t0. The behaviour of the parameters {ṗAm} and κ
depends on the values of the other parameters. In most cases it will be possible to select
t0 such that v̇ = 0.02 cmd−1.

4.11 Trajectory reconstruction

4.11.4 Reconstruction from otolith data

The available info about otolith opacity is now

dO

dLO
=

(
v̇OG

d

dt
SG −O

∑
i

v̇Oi
d

dt
Si

)
3O2L2

O

v̇2
OGS

2
G(1− L3

O/δSL
3)

for i = D,G

with

SD = (SM + (1− (L > Lp)κR)(1− κ)SG)/κ
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SG = κSC − SM

SC = L2e
g + L/Lm
g + e

SM =
κL3

Lm
d

dt
SD = (

d

dt
SM + (1− (L > Lp)κR)(1− κ)

d

dt
SG)/κ

d

dt
SG = κ

d

dt
SC − d

dt
SM

d

dt
SC =

L

g + e
(g +

L

Lm
)(

gL

g + e

d

dt
e+ 2e

d

dt
L) +

L2e

g + e

d

dt

L

Lm
d

dt
SM = 3κ

L2

Lm

d

dt
L

d

dt
e = ((L > Lb)f − e)v̇/L

d

dt
L =

v̇

3

e− L/Lm
e+ g

We assume that Tref and the 11 parameters TA, Lb, Lp, κ, κR, g, k̇M , v̇, v̇OD, v̇OG, δS are
known.
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Multivariate DEB models

5.1 Several substrates

5.1.3 Photo-synthesis, respiration and inhibition

The scheme in Figure 5.3 integrates the antenna system and the Calvin cycle into a single
PSU. It results in the following dynamics for j′C = ḃ··CX

int
C , where X int

C is the intracellular
molar concentration of carbon dioxide and ḃ··C the affinity for free PSUs, j′O = ḃ··OX

int
O the

same for dioxygen, j′L = ρ··jL, where ρ·· is the binding efficiency of photons to free PSUs,
j′′C = ḃL·CX

int
C , j′′O = ḃL·OX

int
O , j′′L = ρ·CjL = ρ·OjL, j

′′′
L = ρL·jL.

d

dt
θ·· = k̇HθLC + k̇CθLO − (j′C + j′L + j′O)θ··

d

dt
θLC = j′′Lθ·C + ȷ′′CθL· − k̇HθLC

d

dt
θ·C = j′Cθ·· − j′′Lθ·C

d

dt
θL· = j′Lθ·· + k̇LθLL − (j′′C + j′′O + j′′′L )θL·

d

dt
θLL = j′′′L θL· − k̇LθLL

d

dt
θ·O = j′Oθ·· − j′′Lθ·O

d

dt
θLO = j′′Lθ·O + j′′OθL· − k̇CθLO

1 = θ·· + θLC + θ·C + θL· + θLL + θ·O + θLO

The specific flux of carbohydrates amounts to

jH = k̇Hθ
∗
LC − k̇Cθ

∗
LO =

(
j′C − j′O +

j′′C − j′′O
j′′C + j′′O

j′L

)
θ∗·· (5.1)

1

θ∗··
= 1 +

j′C
k̇H

+
j′C + j′O
j′′L

+
j′O
k̇C

+
j′L

j′′C + j′′O

(
1 +

j′′′L
k̇L

+
j′′C
k̇H

+
j′′O
k̇C

)
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where θ∗LC and θ∗LO are the steady state fractions of PSUs. The PSU density affects the
binding probabilities ρ and affinities ḃ, and the yield of carbohydrate on photons are in
the binding probabilities ρ. Notice that j′′′L and k̇L only occur in the combination j′′′L /k̇L,
which means that we can remove one parameter. The number of parameters can be further
reduced by assuming j′′L = j′L, j

′′
C = j′C and j′′O = j′O, which leads to

jH =
(j′C − j′O)(1 +

j′L
j′C+j′O

)

1 +
j′C
k̇H

+
j′C+j′O
j′L

+
j′O
k̇C

+
j′L

j′C+j′O

(
1 +

j′′′L

k̇L
+

j′C
k̇H

+
j′O
k̇C

)
=

j′C − j′O

1 +
j′C
k̇H

+
j′O
k̇C

+
j′Lj

′′′
L /k̇L+(j′C+j′O)2/j′L

j′L+j′C+j′O

(5.2)

If self-shading can be ignored, the arriving photon flux jL can be taken proportional to
light intensity and the proportionality factor can be included in ρ. The rate k̇H has the
interpretation of the specific maximum (net) rate of carbohydrate synthesis and k̇C the
specific maximum (net) rate of photorespiration.

If O = 0 (no photorespiration), (5.1) reduces to

jH =
j′C + j′L

1 +
j′C
k̇H

+
j′C
j′′L

+
j′L
j′′C

(
1 +

j′′′L

k̇L
+

j′′C
k̇H

)
j′′C = j′C
j′′L = j′L=

j′C + j′L

1 +
j′C
k̇H

+
j′C
j′L

+
j′L
j′C

(
1 +

j′′′L

k̇L
+

j′C
k̇H

)
Notice that the present formulation has no photoinhibition if carbon dioxide is non-limiting;
to implement that, we need a possible transition for θCL to a new inhibition state θCLL.

If ρL· = 0 (no inhibition), (5.1) reduces to

jH =
j′C − j′O +

j′′C−j′′O
j′′C+j′′O

j′L

1 +
j′C
k̇H

+
j′C+j′O
j′′L

+
j′O
k̇C

+
j′L

j′′C+j′′O

(
1 +

j′′C
k̇H

+
j′′O
k̇C

)
j′′C = j′C
j′′L = j′L=

j′C − j′O

1 +
j′C
k̇H

+
j′O
k̇C

+
j′C+j′O
j′L

− j′C+j′O
j′C+j′O+j′L

The latter expression is (5.10) for photorespiration.

If ρL· = 0 and O = 0 (no respiration or inhibition), (5.1) reduces to

jH =
j′C + j′L

1 +
j′C+j′L
k̇LC
H

+
j′C
j′′L

+
j′L
j′′C

j′′L=j′L=
1

1
k̇H

+ 1
j′C

+ 1
j′L

− 1
j′C+j′L

The latter expression is the one for parallel complementary compounds, as given in Figure
3.7.
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The processed photon flux amounts to

j′+L = j′L(θ
∗
·· + θ∗·C + θ∗·O + θ∗L·) = j′L(1 +

j′C + j′O
j′L

+
j′L

j′C + j′O
)θ∗··

=
j′H

j′C − j′O

(
j′L +

(j′C + j′O)
2

j′L + j′C + j′O

)

The photons that are captured by the antenna system, but not processed in the processes
of photo-synthesis, respiration or inhibition must be removed to avoid harm to the assim-
ilation machinery. Energy can be emitted (known as energy quenching) in the form of
heat or emitted as chlorophyll fluorescence, which has links to the Mehler reaction. So the
rate of the Mehler reaction is proportional to j′−L = j′L − j′+L . Fluorescence yield is high
when less energy is emitted as heat or used in photochemistry; the emitted light has a
longer wavelength than the absorbed light. Chlorophyll fluorescence quantifies, therefore,
the efficiency of photochemistry and non-photochemical quenching. The Mehler reaction
consumes some dioxygen and produces some carbon dioxide. If the (ultimate) source of
this carbon dioxide is carbohydrate reserve, the quantitative effect of the Mehler reaction
will be difficult to separate from photo-respiration.

Let us now consider the C and O dynamics of the cell to determine j′C and j′O. Oxygenic
photosynthesis amounts to the transformation CO2 + 2H2O + light→CH2O + H2O +
O2, where water has been treated as non-limiting. The flux of hydrocarbon thus equals the
flux of dioxygen and also minus the flux of carbon dioxide: jH = jO = −jC . The rest of
metabolism interacts via the (intracellular) concentrations of carbon dioxide and dioxygen.

Suppose that somatic maintenance only requires the carbohydrate reserve in the trans-
formation CH2O + O2 → CO2 + H2O. The specific O2 consumption and the CO2 produc-
tion in association with maintenance both equal jHM , which is a parameter.

Suppose, furthermore, that growth is possibly (co)-limited by nitrogen and that nitro-
gen is stored in the form of nitrate, NO=

3 , and that growth has no nitrogen overheads.
The macro-chemical transformation of the growth process for carbohydrate reserve H and
nitrogen reserve N reads for yCV = 1− yV H and yOV = yCV − nHV −2nOV +6nNV

4
:

y−1
V HCH2O+ nNVNO3 + yOVO2 → CHnHV

OnOV
NnNV

+ yCVCO2 + (y−1
HV − nHV

2
)H2O

So the specific flux of CO2 that is associated with growth amounts to jCG = ṙyCV and of
O2 to jOG = −ṙyOV .

For a first-order exchange with the environment we get for environmental concentrations
XC and XO

d

dt
X int

C = k̇in

CXC + (jHM + ṙyCV − jH)[MV ]− (k̇out

C + ṙ)X int

C

d

dt
X int

O = k̇in

OXO − (jHM + ṙyOV − jH)[MV ]− (k̇out

O + ṙ)X int

O

The specific growth rate ṙ is given in (5.14), and is a function of the reserve densities of
carbohydrate and nitrate. It is likely that C and O don’t accumulate, so k̇in

C = k̇out
C = k̇env

C
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and k̇in
O = k̇out

O = k̇env
O . For the purpose of following growth, the internal concentrations

can be set in pseudo-steady state, i.e. d
dt
X int
C = d

dt
X int
O = 0, which links net photosynthesis

directly to the availability of light, carbon dioxide and dioxygen in the environment and
to the metabolic acticity:

j′C =
k̇env
C XC + (jHM + ṙyCV − jH)[MV ]

k̇env
C + ṙ

ḃC

j′O =
k̇env
O XO − (jHM + ṙyOV − jH)[MV ]

k̇env
O + ṙ

ḃO

This pseudo steady state assumption also avoids to problem of having to deal with the cells’
spatial structure. The fluxes j′C and j′O need to be substituted in (5.2) of the comments
and jH needs to be solved numerically; this is dome in DEBtool using a Newton Raphson
method with optional initial value and analytical derivative for jH . This initial value is
obtained by setting jH = 0 in the expression for j′C and j′′L = j′O = 0 in the expression for
jH . The number of iteration steps is typically 2 till 4, so the conversion is fast indeed, but
this might depend on parameter values.

Heterotrophic activity further modifies the dynamics of C and O and CO2 concentration
mechanisms can be considered where uptake from (and elimination to) the environment is
not proportional to its concentration, but again controlled by SUs. Although the photosyn-
thesis module has rather few parameters, quite a few other metabolic parameters modify
the resulting rate of photosynthesis. A high light level gives a large drain in intracellular
CO2 and a high production of O2, so a high photorespiration, which, in combination, can
easily appear as photoinhibition.

The photo-synthesis and inhibition model discussed in [876] differs in several aspects.
The antenna-system has been separated from the Calvin cycle and the inhibited state falls
back to the free state, rather than the excited state.

5.1.3 Combined dioxygen and dihydrogen production

The unicellular diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 (wildtype) can
produce dihydrogen at rates as high as 465 µmol per mg of chlorophyll per hour in the
presence of glycerol under aerobic conditions [78]. It does so while photosynthesing si-
multaneously. This dihydrogen production is mediated by an efficient nitrogenase system.
Dinitrogen fixation and dihydrogen production are typically inhibited by dioxygen; how
this bacterium manages to do it simultaneously and at high rates is yet unkown.

The mixture of dioygen and dihydrogen is known as knallgas and can be explosive.
Knallgas-bacteria, including Hydrogenobacter thermophilus, Hydrogenovibrio marinus, and
Helicobacter pylori, oxidize dihydrogen. There are both Gram positive and negative knall-
gas bacteria and grow best under microaerophilic conditions. This is because hydrogenase,
which used in dihydrogen oxidation, is inhibited by dioxygen, but dioxygen is still needed
as a terminal electron acceptor.
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Figure 5.1: The unicellular diatom Pinnularia uses lipids as energy reserve. The interface be-
tween the lipid droplets and the structure is clearly visible and varies substantially, depending on
the recent environmental trajectory. Stochasticity increases for decreasing spatial scale. Reserve
dynamics follows from the requirement of weak homeostasis. A simple mechanism behind reserve
dynamics is that mobilization is proportional to the surface area of the interface between reserve
and structure.2 These pictures suggest that this surface area also shows considerable stochasticity.

5.2 Several reserves

Figure 5.1 shows lipid droplets in the diatom Pinnularia for several levels of lipid con-
tent. Diatoms are mixotrophs, but mainly phototrophs, and lipids represent only their
carbon and energy reserve. These lipids consist mostly of triglycerides, monogalacto-
syl, digalactosyl and sulphoquinovosyl diglycerides, phosphatidyl glycerol, phosphatidyl
choline (lecithin), and phosphatidyl ethanolamine [1051]. The major fatty acids, palmi-
toleic, palmitic, eicosapentaenoic and eicosate-traenoic acids [1051], are probably also in
these droplets. The interphase between lipid reserve and structure is clearly defined and
well visible.

5.2.1 Growth: Derivation of (5.14)

We here deal with the transformation yE1VE1+yE2VE2 → V , where E1 and E2 are comple-
mentary compounds. Figure 3.7 for parallel complementary compounds gives for jC = jV G
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and large k̇C and j′′A = yV E1jE1G and j′′B = yV E2jE2G

jV G =
(
(yV E1jE1G)

−1 + (yV E2jE2G)
−1 − (yV E1jE1G + yV E2jE2G)

−1
)−1

=

( jE1G

yE1V

)−1

+

(
jE2G

yE2V

)−1

−
(
jE1G

yE1V

+
jE2G

yE2V

)−1
−1

Notice that jV G represents the gross specific synthesis of structure. It only equals the nett
synthesis if no shrinking occurs simultaneously (jSV = 0).

5.2.7 2-substrate, 2-reserve, 1-structure isomorphs

Proteins can be used as energy source, but this use generates metabolites that can be
become toxic at low concentrations. Carbohydrates and lipids are better sources for energy,
while proteins are better sources for building blocks. Since maintenance represents a need
for energy in the first place, the use of proteins for maintenance is probably avoided as
much as possible. Growth requires energy and building blocks in a (more or less) fixed
ratio. This subsection works out an extension of the standard deb model for 2 types of
food X and Y of constant composition, 2 reserves (protein standing for ‘building block’
reserve, 1, and non-protein for energy reserve, 2) and 1 structure for an isomorph. This
formulation is loosely based on [814, 813]. Several choices are made that can be replaced
by other choices.

nutrition We assume that the rules of Subsection 3.7.4 of the comments apply for se-
quential processing of substitutable substrates with interaction, where substrate is
identified with food (as generalised compound) and product with reserve (again a
generalised compound). Each food type contributes to both reserves, specified in
yield coefficients that will here be treated as constant, but can vary in practice (de-
pending on the nutritional condition of prey, for instance). So each assimilation
process, defined as the input to a particular reserve from the environment, has to
deal with both food types.

The dissociation rates relate to the maximum specific feeding rates as k̇X = {ḣXAm}L2

and k̇Y = {ḣY Am}L2, where L is the structural length of the individual and {ḣXAm}
the maximum specific feeding rate of food particles of type X in numbers per time.

The association rates relate to the maximum specific searching rates as ḃX = {ḞXm}L2

and ḃY = {ḞY m}L2. A natural simplification is {ḞXm} = {ḞY m} = {Ḟm} in absence
of an intrinsic preference for a food type.

The interaction affinities ḃXY and ḃY X are based on the deficits of the reserves de-
fined as si =

mEim
−mEi

mEim
, with ‘maximum’ reserve densities mEim = max(mX

Eim
,mY

Eim
)

and mX
Eim

=
{J̇X

EiAm}
v̇[MV ]

and mY
Eim

=
{J̇Y

EiAm}
v̇[MV ]

. The maximal reserve densities are not
real maxima because in 2-reserves systems these values can be exceeded due to the
(partial) return of rejected allocations to growth. See further below under assimila-
tion. These deficits thus stand for the relative ‘reserve-space’ that can still be filled
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by the individual; it is indicated by a symbol that stands for stress on the basis of
the idea that the individual wants to top up its reserves to maximum capacity. A
possible specification of the specific interaction affinities for {ḃXY } = ḃXY /L

2 and
{ḃY X} = ḃY X/L

2

ρXY =
{ḃXY }
{ḞXm}

= s1

(
MX

MY

yE1X

yE1Y

− 1

)
+

+ s2

(
MX

MY

yE2X

yE2Y

− 1

)
+

ρY X =
{ḃY X}
{ḞY m}

= s1

(
MY

MX

yE1Y

yE1X

− 1

)
+

+ s2

(
MY

MX

yE2Y

yE2X

− 1

)
+

where index + stands for taking the maximum of 0 and the value between the braces.
So ḃXY = 0 if a food particle MY has the same contribution to reducing the deficits
in both reserves as a food particle MX . This has as consequence that the individual
will not change food particle X for Y . The better the potential to reduce the reserve
deficits, the more likely the individual will feed on that type of food. The choice
of adding the effects on the deficits is not well motivated and alternatives might be
considered as well.

feeding Let {J̇XAm} = MX{ḣXAm} denote the feeding rate in mass per time, where MX

is the mass of a food particle of type X. The maximum specific assimilation rate for
reserve i for food X is {J̇XEiAm

} = yEiX{J̇XAm}, where yEiX is the yield of reserve
i on food X and i = 1, 2 (protein and non-protein). These yields are treated as
constants. The same we have for food Y (replace X by Y ). The total assimilation
rate for reserve i is {J̇EiA} = fX{J̇XEiAm

} + fY {J̇YEiAm
}, where the scaled functional

responses are fX = {J̇XA}/{J̇XAm} and fY = {J̇Y A}/{J̇Y Am}. The scaled functional
responses fX and fY are specified below. If the composition of food particles varies
in time (because they themselves have reserves and structure, for instance), the yield
coefficients yEiX and yEiY will vary in time.

assimilation Summing up: the specific assimilation rate for reserve i amounts to

{J̇EiA} = yEiX{J̇XAm}fX + yEiY {J̇Y Am}fY

with

fX = α̇Y {ḞXm}X−β̇X{ḞY m}Y
α̇X α̇Y −β̇X β̇Y

; fY = α̇X{ḞY m}Y−β̇Y {ḞXm}X
α̇X α̇Y −β̇X β̇Y

α̇X = {ḣXAm}+ {ḞXm}X + {ḃY X}Y ; α̇Y = {ḣY Am}+ {ḞY m}Y + {ḃXY }X
β̇X = {ḞXm}X − {ḃXY }X; β̇Y = {ḞY m}Y − {ḃY X}Y

The specific feeding rates are {J̇XA} = {J̇XAm}fX and {J̇Y A} = {J̇Y Am}fY . The
rates at which particles X and Y disappear from the environment (in numbers per
time) are {ḣXA} = {ḣXAm}fX and {ḣY A} = {ḣY Am}fY .
For increasingX and constant Y , we have α̇X → {ḞXm}X, β̇X → ({ḞXm}−{ḃXY })X,
α̇Y → {ḃXY }X, and β̇Y remains constant. This amounts to fX → 1 and fY → 0.
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The results for increasing Y and constant X follow from symmetry, i.e. interchanging
X and Y in all symbols. If both X and Y increase, both fX and fY remain smaller
than 1, with the implication that {J̇EiAm} = max(yEiX{J̇XAm}, yEiY {J̇Y Am}) =
max({J̇XEiAm

}, {J̇YEiAm
}). If the rejected mobilized reserve fluxes in the growth pro-

cess are excreted (κEi
= 0), the maximum reserve density becomes mEim =

{J̇EiAm}
v̇[MV ]

,
as stated above and see under mobilization.

reserve dynamics The change in reserve density is given by (5.17) and amounts to

d

dt
mEi

= jEiA − jEiC + κEi
jEiP − ṙmEi

where the specific mobilization flux jEiC and the specific rejection flux jEiP and the
specific growth rate ṙ are defined below. The mass-specific assimilation rate relates

to the surface area-specific one as jEiA =
{J̇EiA

}
[MV ]L

, where [MV ] is the volume-specific
mass of structure, which is treated as a constant.

mobilization On the assumption that the energy conductances of both reserves are the
same, specific reserve mobilization follows (5.13)

jEiC = mEi
(v̇/L− ṙ)

where specific growth rate ṙ still has to be determined.

At maximum structural mass MV m = [MV ]L
3
m, where ṙ = 0 and d

dt
mEi

= 0, specific
assimilation equals specific mobilization, jEiA = jEiC = mEi

v̇/L. The maximum

reserve density can now be solved: mEim =
jEiAm

v̇/Lm
=

J̇EiAm

MV mv̇/Lm
=

{J̇EiAm}L2
m

[MV ]L3
mv̇/Lm

=
{J̇EiAm}

[MV ]v̇
.

allocation The κ-rule is applied to both mobilization rates, with the same value for κ.

growth Following (5.14), the i-th reserve sends a specific flux jEiG = κjEiC − jSEi
to the

SU for growth of structure which leads to

jV G = ṙ + jSV =

∑
i

(
jEiG

yEiV

)−1

−
(∑

i

jEiG

yEiV

)−1
−1

(5.3)

which determines ṙ after having determined jSEi
(see below). The specific shrinking

rate jSV = 0 in the case that mobilization is sufficient to pay the maintenance costs or if
the reproduction buffer is not empty. If the reproduction buffer is empty and somatic

maintenance is (just) an energy requirement, we have jSV = jEiS
µEi

µV

(
1−

jSE1

jE1S
−

jSE2

jE2S

)
+

with jE1SµE1 = jE2SµE2 .

The growth efficiency κG, defined as d
dt
EV = κGṗG, is for the standard deb model

given by κG = µV [MV ]
[EG]

= µV
µGV

= µV yV E

µE
.
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For two reserves, it becomes κG = µV jV G∑
i
µEi

(κjEiC
−jEiS

)
, where jV G = ṙ by definition.

Notice that κG relates to the growth SU, implying that the rejected fluxes can affect
the reserve dynamics, but should not affect κG.

somatic maintenance Protein and non-protein reserves are substitutable for mainte-
nance, with a strong preference for non-proteins, and binding is parallel. According
to (4.5) where structure is now replaced by protein-reserve, the specific fluxes that
are actually used for somatic maintenance are

jSE1
= min

(
κjE1C ,

2AjE1S

2A+
√
B2 − 4AC −B

)
; jSE2

= min
(
κjE2C , jE2S(1− jSE1

/jE1S)
)

with A = ρ1jE1CjE1S, B = C + (jE1C + (1 − ρ1)jE2C)jE2S, C = −κjE2C(jE1C +
jE2C). The parameter ρ1 represents a preference for reserve 1 (which is close to

0 for proteins). The specific maintenance costs jEiS = jEiM +
{J̇EiT

}
[MV ]L

, as given in

(2.17), represents the somatic maintenance costs if all would have been paid from
reserve i, while jSEi

represents the costs that is actually paid from reserve i. Natural

simplifications are
jE1M

jE2M
=

{J̇E1T
}

{J̇E2T
} =

µE1

µE2
. Together with the expressions for growth

and mobilization, this implicitly determines ṙ, jSEi
and jEiC .

excretion A fixed fraction of the reserve fluxes that are rejected by the growth and mat-
uration SUs are excreted, as specified by (5.15). The specific rejected flux is

jEiP = κjEiC − jSEi
− yEiV jV G

The flux κEi
jEiP returns to the reserve, while the flux (1− κEi

)jEiP is excreted. The
book uses the notation jEiR for the rejected flux, but it does not consider rejection in
combination with reproduction, a process that is already indicated by R. A better
choice might be P for ‘Product formation’, although rejected fluxes are not necessarily
excreted. The choice κEi

= 1 still excludes the problem of possible unbounded
damming up of a reserve.

maturity maintenance Since the whole flux (1−κ)J̇EiC dissipates, it seems less natural
to install a priority rule for the use of a particular reserve for maturity maintenance
and allocate the rest to maturation. The simplest implementation of maturity main-
tenance is to pay the energy drain ṗJ = k̇JEH from the summed mobilization fluxes
(1 − κ)

∑
i ṗ

i
C , with ṗiC = µEi

J̇EiC . The (absolute) mobilization flux relates to the
specific one as J̇EiC = jEiCMV = jEiC [MV ]L

3. This allocation means a drain of
J̇EiJ = J̇EiC ṗJ/

∑
i ṗ

i
C from reserve i.

maturation The simplest implementation of maturation is to consider it as an energy
allocation:

d

dt
EH = (1− κ)

∑
i

ṗiC − k̇JEH if positive, else

= −k̇′J(EH − (1− κ)
∑
i

ṗiC/k̇J)
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The (absolute) flux that is allocated to maturation (or reproduction) relates to the
specific one as J̇EiR = jEiRMV = jEiR[MV ]L

3 = (1− κ)J̇EiC − J̇EiJ .

Like in the standard model, maturation continues till EH = Ep
H . If the reproduction

buffer is not empty, rejuvenation can be delayed by draining this buffer to supplement
maturity maintenance.

reproduction After EH = Ep
H , further maturation is ceased and the flux J̇EiR is allo-

cated to reproduction, i.e. filling a reproduction buffer that is (partially) emptied at
spawning. The maternal effect is applied for both reserves independently: the reserve
densities at birth equals those of the mother at egg formation (i.e. at spawning). The
costs of an egg, in terms of the initial amounts for both reserves M0

Ei
, is obtained

numerically (see below). The (standard) spawning rule is that as soon as enough
reserves are available in the reproduction buffer, an egg is made and laid, which
empties the reproduction buffer for one reserve. Some of the other reserve that is left
over and is left in the reproduction buffer; this rule can come with a considerable ac-
cumulation of one of the reserves in the reproduction buffer. The mean reproduction
rate amounts, according to (2.56), to

Ṙ = min(κ1
RJ̇E1R/M

0
E1
, κ2

RJ̇E2R/M
0
E2
)

for EH = Ep
H , else Ṙ = 0. A rather natural simplification is κ1

R = κ2
R.

mineral fluxes The mineral fluxes must be found from 0 = nMJ̇M + nOJ̇O with

J̇O =
(
J̇X J̇Y J̇V J̇E1 + J̇E1R J̇E2 + J̇E2R J̇PX

J̇PY

)T

nO =


nCX nCY nCV nCE1 nCE2 nCPX

nCPY

nHX nHY nHV nHE1 nHE2 nHPX
nHPY

nOX nOY nOV nOE1 nOE2 nOPX
nOPY

nNX nNY nNV nNE1 nNE2 nNPX
nNPY


where PX is faeces that is derived from prey X and PY that from prey Y ; the
production flux amounting to J̇PX

= −yPXX J̇X with J̇X = −J̇XA (negative because
food X is disappearing). The inequality yPXX + yE1X + yE2X < 1 has apply to allow
for CO2 production in association with assimilation of X. Further J̇V = jV GMV and
J̇Ei

= (jEiA − jEiC + κEi
jEiP )MV .

ageing The ageing process can be quantified approximately by substitution of

ṗC
Em

=
jE1C − jE1P

mE1

+
jE2C − jE2P

mE2

and Lm = κmin

(
{J̇E1Am}
[J̇E1S]

,
{J̇E2Am}
[J̇E2S]

)

in (6.1). The changes in ageing acceleration and hazard then become

d

dt
q̈ =

(
q̈
L3

L3
m

sG + ḧa

)
ṗC
Em

− ṙq̈;
d

dt
ḣ = q̈ − ṙḣ
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Figure 5.2: This spider wasp Anoplius viaticus just paralised the wolf spider Arctosa leopardus
and carries it to its burrow that she dug in the sand, where she will lay an egg on it (left).
The hatching juvenile will be able to complete its juvenile stage with the spider as food, pupate,
emerge and feed on nectar as adult; here Ammophila sabulosa feeding on Senecio inaequidens
(right). The pictures were taken in the dunes of Amsterdam near de Zilk.

maximum size Maximum structural length is reached at maximum assimilation, i.e.

{J̇EiAm} = yEiX{J̇XAm}+ yEiY {J̇Y Am}

and the reserves are fully filled, i.e. mEim =
{J̇EiAm}
v̇[MV ]

. Maximum structural length
Lm is now found from equating ṙ = 0 for these reserve densities. See function
DEBtool_M/iso_21/get_Lm_iso_21.

This model captures the general ’stylised empirical fact’ that young (fast growing)
individuals prefer protein-rich food types, while fully-grown individuals tend to prefer food
types with less protein. Think, for instance, of mammals, doves and flamingos, which
feed on milk as baby. This trait is developed in a spectacular way in ichneumonid and
sphecid wasps, such as Anoplius and Ammophila, see Figure 5.2, which feed on (protein
rich) spiders and insects as juvenile and (carbohydrate rich) nectar as adult. Hatchlings
of direct developing caecilians feed on the skin of their mother (dermatophagy), while the
foetuses of viviparous caecilians feed intrauterine by scraping from the uterus epithelium.
Hatchlings of the arrow frog Dendrobatus are fed by the mother with unfertilised eggs in
bromelias high in the trees, those of the white shark Carcharodon carcharias in the uterus
of the mother.

One 5th of all insects have endosymbiontic bacteria. Termites and cockroaches (which
are closely related) have what is called a fat body in their abdomen, consisting of adipose
tissue, with adipocytes (cells filled with lipid globules) and mycetocytes (cells packed with
bacteria, Blattabacterium in the case of cockroaches). The cockroaches hardly excrete
nitrogen waste but store it as uric acid crystals in their fat body, where the bacteria
convert it, using the stored lipids, to all the 10 amino acids the cockroaches need as well
as some vitamins. These bacteria cannot live outside the cockroach and the latter pass
them to the next generation via its eggs. This symbiosis allows the cockroach to live on
protein-poor diets.
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5.2.7.1 Specific growth rate of 21-isomorphs

Since the specific growth rate ṙ is specified implicitly, the change of the states of the
individual comprises a set of Differential Algebraic Equations (daes). It is more efficient
to make use to the properties of this model, rather than using a general method for solving
such a system. The specific growth rate ṙ of an isomorph with 2 reserves and 1 structure can
be found using a Newton Raphson method with continuation, i.e. where the initial value
ṙ0 equals the result of the previous iteration: ṙi+1 = ṙi −H(ṙi)/

d
dṙ
H(ṙi). The iteration is

terminated if |H(ṙi)| < 10−8. The function H is found using (5.3) of the comments:

H(ṙ) = ṙ + jSV −

∑
i

(
jEiG

yEiV

)−1

−
(∑

i

jEiG

yEiV

)−1
−1

d

dṙ
H(ṙ) = 1− jEiS

µEi

µV

(
jS′E1

jE1S

+
jS′E2

jE2S

)
(jSV > 0)−

(
ṙ + jSV −H(ṙ)

)2

∑
i

(
jEiG

yEiV

)−2
j′EiG

yEiV

−
(∑

i

jEiG

yEiV

)−2∑
i

j′EiG

yEiV


j′EiG

= −κmEi
− jS′Ei

jS′E1
= jSE1

A′

A
− 2A′ + (B2 − 4AC)

−1/2
(BB′ − 2A′C − 2AC ′)−B′

2A+
√
B2 − 4AC −B


with A′ = −ρ1mE1j

2
E2S

/jE1S; B′ = C ′ − (mE1 + (1− ρ1)mE2)jE2S

C ′ = κmE2(jE1C + jE2C) + κjE2C(mE1 +mE2)

for jSE1
< κjE1C else jS′E1

= −κmE1

jS′E2
= −jS′E1

jE2S/jE1S for jSE2
< κjE2C else jS′E2

= −κmE2

If jSEi
= jEiC , however, we have jS′Ei

= j′EiC
= −mEi

, The choice ṙ0 = 0 can be used for
the very first call this procedure. Even at constant food densities the ode’s need to be
integrated numerically and ṙ needs to be evaluated at each time increment. Typically the
iteration for ṙ requires very few steps (2 or 3) for convergence.

The specific growth rate needs special care for embryos, since ṙ → ∞ for L ↓ 0. To
avoid numerical problems for the embryo state variables, it is better to work with the
variable d

dt
L = ṙL/3 = v̇B rather than ṙ (for embryos at least; the notation refers to the

concept of the generalized von Bertalanffy growth, as discussed in 2.4 of the comments.)
Avoiding the pathological case of shrinking before birth, we have jSV = 0. We also have
jSEi

= jMEi
, since jEiT = 0 for embryos. This leads, for v̇Gi

= yV Ei
(κmEi

( v̇
3
− v̇B)− jMEi

L
3
), to

v̇B as the root of

H(v̇B) = v̇B −

∑
i

v̇−1
Gi

−
(∑

i

v̇Gi

)−1
−1

d

dv̇B
H(v̇B) = 1− (v̇B −H(v̇B))

2

(∑
i

θGi

v̇2
Gi

−
∑
i θGi

(
∑
i v̇Gi

)2

)
θGi

= −yV Ei
(κmEi

+ jM ′
Ei

)
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jM ′
E1

= jME1

A′

A
− 2A′ + (B2 − 4AC)

−1/2
(BB′ − 2A′C − 2AC ′)−B′

2A+
√
B2 − 4AC −B


with A′ = −ρ1mE1

j2
E2M

jE1M

; B′ = C ′ − (mE1 + (1− ρ1)mE2)jE2M

C ′ = κmE2(jE1C + jE2C) + κjE2C(mE1 +mE2)

for jSE1
< κjE1C else jS′E1

= −κmE1

jM ′
E2

= −jM ′
E1
jE2M/jE1M for jSE2

< κjE2C else jS′E2
= −κmE2

Using a continuation method, again, the Newton Raphson scheme v̇i+1
B = v̇iB−H(v̇iB)/

d
dv̇B

H(v̇iB)
will not give numerical problems.

5.2.7.2 Initial state of 21-isomorphs

At age zero we have d
dt
L(0) = v̇

3
= v̇B(0), see (2.47), also in the 2-reserve case, because

reserves are initially not limiting growth. Going backwards in time we have L ↓ 0,mEi
↑ ∞,

v̇B ↑ v̇/3 and v̇iG ↑ yEiV v̇B. Very shortly after the start of development, when maintenance
is still negligible but reserve densities not very large, we have for small t = ab/100, say

MV (t) = [MV ]L
3(t) with L(t) = tv̇/3

MEi
(t) = M0

Ei
− MV (t)

κyV Ei

and mEi
(t) =

M0
Ei

MV (t)
− 1

κyV Ei

EH(t) = (1− κ)
∑
i

µEi
(M0

Ei
−MEi

(t)) =
1− κ

κ
MV (t)

∑
i

µEi

yV Ei

The application of this is to determine M0
Ei
, ab and Lb of a 21-isomorph by a shooting

method: (1) development is followed from an very early age till birth, using initial estimates
for M0

Ei
, (2) maturity densities at birth mb

Ei
are evaluated, compared with the target

values and (3) estimates for M0
Ei

are adapted and the procedure repeated till mb
Ei

are

at the target values. The initial guess values are: L3
b =

Eb
H

[EG]
κ

1−κ =
Mb

V

[MV ]
, ab = 3Lb

v̇
,

M0
E1

=M b
V (m

b
E1

+ 1
κyV E1

), M0
E2

=M b
V (m

b
E2

+ 1
κyV E2

+
jE2M

ab
κ

). These initial guesses under-

estimate ab, over-estimate Lb and possibly over-estimate maintenance losses in M0
E2

(by
almost a factor 2 if the mb

Ei
’s are large). A (small) over-estimation of the start-values for

the initial reserves is numerically better, however, than an under-estimation (to complete
development properly). The initial reserves are also necessary to translate the reproduction
buffer into numbers of eggs at spawning.

The idea behind the maternal effect in the standard model is that the reserve density
does not change at constant food density after birth. This property does not necessarily
hold for a 221-isomorph; the quality of her eggs (quantified as M0

Ei
) might change during

the life cycle, even at constant food. This is partly caused by changes in food preference
and by damming up of reserve.
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5.2.7 Variable stoichiometry in iso 21 growth

As alternative for fixed stoichiometric requirements for both somatic maintenance and
growth, we can consider a scheme where growth is split into in a building-block component
(anabolic part) that is fueled by protein reserve only and an energy component (catabolic
part) that is preferentially fueled by carbohydrate/lipid reserve E2, but can also be fulled
by protein reserve E1 if necessary. The implication is that the mobilized E1 flux is never
rejected, jE1P = 0, and the E2 flux only if more is mobilized than required for somatic
maintenance plus the catabolic part of the growth process.

For simplicity’s sake we assume that the preference for using E2 for maintenance and
growth overheads is absolute, so ρ1 = 0, in which case the preference module reduces to
the switch module:

jSE2
= min(κjE2C , jE2S); jSE1

= min
(
κjE1C , jE1S(1− jSE2

/jE2S)
)

We also assume that µE1jE1S = µE2jE2S, meaning that the somatic maintenance need
represents an energy investment in the first place.

The yield yE1V specifies how many moles of E1 are required to synthesize one mole
of structure V , if no E2 is used. The yield yE2V is not defined, because V cannot be
synthesized from E2 only and how much E2 is used is variable. The energy that is fixed
per mole of structure is µV and, if all structure is synthesized from E1 only, the energy
that is used per mole of structure is µE1yE1V , so the growth efficiency is κG = yV E1µV /µE1 ,
which must be less than 1. To ensure this, it seems best practice to specify κG and derive
yV E1 = κGµE1/µV . Notice that yV E1 under variable stoichiometry is not comparable with
that under fixed stoichiometry. The growth efficiencies are comparable, but is variable
under fixed stoichiometry.

To simplify the notation, we write k̇E = v̇/L, but we have to remember that this is not
a constant parameter.

mode 1 Suppose that the E2 flux that is allocated to soma is more than can be used
for somatic maintenance plus growth overheads, let us call this situation mode 1.
No shrinking occurs, i.e. jSV = 0, jSE1

= 0, jSE2
= jE2S, jV G = ṙ, jE1G = κjE1C =

κmE1(k̇E − ṙ) and the specific growth ṙ follows from µE1jE1G = µV jV G, which covers
the anabolic part of growth. Notice that each carbon in E1 coverts to in 1 in structure
V by definition, since we here consider the anabolic part of growth only. The result

is ṙ =
κmE1

k̇E
κmE1

+µV /µE1
. The catabolic part of growth that needs to be covered by reserve

E2 is jE2G = (1− κG)ṙµV /µE2 . The rejected E2 flux is jE2P = κjE2C − jE2S − jE2G.
This flux equals zero if κjE2C = jE2S + jE2G for jE2C = mE2(k̇E − ṙ). It implies a

lower boundary of reserve density mE2 =
jE2S

+jE2G

κ(k̇E−ṙ) , below which reserve E2 cannot

cover all growth overheads and possibly also not all somatic maintenance. Maximum
size is not well-defined in this mode, since mE1 needs to be zero to avoid growth.

mode 2 Suppose now that the E2 flux that is allocated to soma can cover all somatic
maintenance, but not all growth overheads. The energy flux to growth that this
flux can cover is µE2(κjE2C − jE2S), while E1 contributes µE1κjE1C to growth. No
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rejection of E2 occurs, jE2P = 0, nor shrinking, jSV = 0. For specific growth rate ṙ, the

required investment is µV ṙ/κG = ṙµE1/yV E1 , so ṙ =
∑

i
µEi

mEi
κk̇E−µE2

jE2S

µE1
/yV E1

+κ
∑

i
µEi

mEi

. The flux

of E2 to growth overheads is zero if κjE2C = jE2S, which implies a lower boundary of
reserve density mE2 = (jE2S/κ+ ṙ)/k̇E, below which E2 cannot cover not all somatic

maintenance. Maximum size occurs when growth is zero, i.e. L∞ =
κv̇
∑

i
µEi

mEi

µE2
jE2S

mode 3 If the E2 flux cannot cover all somatic maintenance, but growth is still positive,
some of the costs needs to be covered from E1. The part of somatic maintenance
that is contributed by E2 is jSE2

= κjE2C , so E1 needs to contribute jSE1
= jE1S −

jSE2
µE2/µE1 . The specific growth rate follows from the balance jE1G = µV ṙ/κG =

κjE1C − jSE1
, which results in ṙ =

(mE1
+mE2

µE2
/µE1

)κk̇E−jE1S

κ+κµE2
/µE1

+µE1
/yV E1

. Growth is zero if mE1 +

mE2µE2/µE1 = jSE1
/(k̇Eκ), which implies lower boundaries of reserve densities mEi

,
below which shrinking occurs because not somatic maintenance can be covered. Max-

imum size occurs when growth is zero, i.e. L∞ =
κv̇
∑

i
µEi

mEi

µE1
jE1S

, like in mode 2, since

µE1jE1S = µE2jE2S.

mode 4 The final situation is that the mobilized reserves can cover only part of the
somatic maintenance costs, and the remaining part has to be covered from shrinking
of structure. No nett growth occurs in this situation. We assume that structure first
needs to be back-converted to reserve 1, before paying the remaining maintenance
costs, and the reproduction buffer does not contribute. The reserves contribute to so-
matic maintenance with

∑
i µEi

jEiC , while µE1jE1S needs to be payed. Thus shrinking
structure has to contribute jSV = −ṙ = (µE1jE1S −

∑
i µEi

(mEi
k̇E − ṙ))/(κGµV ). The

implied specific growth rate is ṙ = −µE1
jE1S

−
∑

i
µEi

mEi
k̇E

µV κG+
∑

i
µEi

. The mobilization fluxes are

jEiC = mEi
(k̇E − ṙ) and the allocation to somatic maintenance jSEi

= κjEiC .

The state at birth follows from the maternal effect, which specifies that mEi
at birth

equals that of the mother at egg formation. The initial amounts of reserve must be ob-
tained by a shooting method. Starting values can be based on the assumptions that
all somatic maintenance and growth overheads are paid from reserve 2, embryo devel-
opment follows the foetal pattern, so no retardation of growth, ṙ = k̇E and L(t) =

v̇t/3, and maturity density does not change too much, [EH ] =
1−κ
κ

µV [MV ]
κG

, which gives

L3
b = κ

1−κ
κGE

b
H

µV [MV ]
, while ab = 3Lb/v̇. Structural mass at birth is M b

V = [MV ]L
3
b and re-

quired MG
E1

= [MV ]L
3
bµV /µE1 moles of reserve 1 plus MG

E2
= 1−κG

κG

µV
µE2

[MV ]L
3
b moles of

reserve 2 to make it. The maintenance of this structure during the embryo stage required

MM
E1

= 0 and MM
E2

= jE2M [MV ]
∫ ab

0 L(t)3 dt = jE2M [MV ]
3
4

L4
b

v̇
moles of reserve 2. The re-

serves at birth are M b
Ei

= mEi
[MV ]L

3
b , so a first guess for the initial amounts of reserve is

M0
Ei

=M b
Ei

+ (MM
Ei

+MG
Ei
)/κ.

The shooting method requires the evaluation of reserve and structure during the embryo
period. We might use the above-mentioned integration method with yV E1 =

µE1

µV
and

yV E2 =
κG

1−κG
µE2

µV
.
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5.2.7 Reduction of iso 221 to iso 111

To demonstrate that the iso 221 model can reduce to the iso 111 model, so the standard
deb model, we first focus on substrate uptake. It is easiest to assume that {J̇Y Am} = 0
and {ḞY m} = 0. Alternatively, we could also take X equal to Y in all respects (abundance,
composition, yield coefficients, etc), but then we still have two substrate uptake routes,
where we must assume that the sum of these uptakes equals the uptake of a single substrate
and we have to account for this factor 2. So, for simplicity’s sake, we don’t do that. The
consequence is that {J̇YEiAm

} = 0 and mY
Eim

= 0, and mEim = mX
Eim

. The consequence of

{ḞY m} = 0 is that ḃY = 0 and {ḃY X} = 0. Further, we take MY = MX and yEiY = yEiX ,
with the consequence that ρXY = 0 and {ḃXY } = 0 and {ḃY X} = 0. The next step
is to take {ḣY Am} = 0, so {J̇Y Am} = 0 and {J̇YEiAm

} = 0 and {J̇EiA} = fX{J̇EiAm} =

fXyEiX{J̇XAm}. We now have αX = {ḣXAm}+ {ḞXm}X, αY = 0, βX = {ḞXm}X, βY = 0,

fX = {ḞXm}X
{ḣXAm}+{ḞXm}X , fY = 0. The half-saturation coefficient is K = {ḣXAm}/{ḞXm} and

fX = X
K+X

We now reduced the uptake of 2 substrates to a single one.
Likewise we now omit reserve 2, by setting yE2X = 0 and yV E2 = 0, with the consequence

that mE2 = 0 and jE2C = 0, and avoid excretion of rejected reserve 1 by setting κE1 = 1,
κE2 becoming irrelevant. Alternatively, it is again possible to make both reserves identical,
but again we have to deal with 2 mobilization fluxes, which we now avoid. The reserve
dynamics reduces to d

dt
mE1 = jE1A − jE1C + jE1P − ṙmE1 . The implicit equation for the

specific growth rate reduces to jV G = ṙ + jSV =
jE1G

yE1V
= yV E1jE1G and the growth efficiency

to κG = µV
µE1

yV E1
.

The maintenance flux follows from setting ρ1 = 1, while B = C = 0, which reduces the
somatic maintenance to jSE1

= min(κjE1C , jE1S) and j
S
E1

= 0.

5.3 Several structural masses

5.3.1 Growth of body parts

The growth of body parts directly follows from the extended κ-rule:

[ṗC ] =
g[E]

g + [E]/[Em]
(v̇/L+ k̇M(1 + LT/L) ≡ k̇C [EG]/κ from (2.12)

d

dt
VH =

κκH
[EGH ]

ṗC − [ṗM ]

[EGH ]
VH from (5.24)

= eHκH k̇C − k̇MHVH
d

dt
VR =

κ(1− κH)

[EG]
ṗC − [ṗM ]

[EG]
VR(1 + LT/LR) from (eqn:dVR)

= (1− κH)k̇CVR − k̇MVR(1 + LT/LR)
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Effects of compounds on budgets

6.1 Gompertz stress

The ageing module of deb theory has two components: the induction of damage induc-
ing compounds by ros derived from atmospheric dioxygen and the self-induction of these
compounds. ros production by affected mitochondria play an important role in the lat-
ter process. See Figure 6.1. The first route hardly depends on feeding level, because the
enhanced respiration is approximately balanced by an increase dilution by growth. The
second route depends on food level rather strongly because it is proportional to the mobil-
isation rate (metabolic activity). The importance of the second route is quantified by the
Gompertz stress coefficient.

6.1.1 Mean age for short growth periods

Suppose that growth period is small relative to the life span. Eq (6.3) was obtained from
Eq (6.2) by taking ṙ = 0 and setting L = f ∗ Lm = L∞. The expression for ḣW , where a
factor 6 was introduced, was motivated by the result in the second equation of Eq (6.3):
the Weibull aging model is widely known and the term ’Weibull aging rate’ was introduced
to celebrate this milestone. The Gompertz aging model is also widely known; the term
’Gompertz aging rate’ ḣG was introduced as a natural counter-player of the Weibull aging
rate. As far as I know, this is the first time where both well-known aging models appear
as two sides of the same medallion: these models are not really different.

The mean age at death, as far as ageing is concerned, is Ea† =
∫∞

0 Pr{a† > t} dt with
Pr{a† > t} given in (6.5). The result must be obtained numerically, but a straightforward

integration results in numerical instabilities. For x = aḣW and hG = ḣG/ḣW ,

Ea† =
∫ ∞

0
Pr{a† > a} da ḣG↓0

=
∫ ∞

0
exp

(
−(ḣWa)

3
)
da =

∫∞
0 exp(−x3) dx

ḣW
=

Γ(4
3
)

ḣW

=
∫ am

0
Pr{a† > a} da+

∫ ∞

am
Pr{a† > a} da =

∫ am

0
Pr{a† > a} da+ atail

=
∫ am

0
exp

((
1 + ḣGa+

ḣ2
Ga

2

2
− exp(ḣGa)

)
6

hG

)
da+ atail
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Figure 6.1: The proximal ros produced by mitochondria is superoxide (O−−
2 , left). Its pro-

duction from the respiratory chain can be induced (a) from Complex I by adding the inhibitor
rotenone in the presence of nadh, (b) under high ∆ρ and reduced coenzyme Q pool (Qred)
that together favour reverse electron transport, (c) from Complex III by inhibitor antimycin.
The less-damaging superoxide is rapidly converted into (1) less-damaging hydrogen peroxide by
sod-catalysed dismutation, which can form very damaging hydroxyl radical (HO.) (2) damag-
ing peroxynitrite (ONOO.) by reacting with nitric oxide (NO.). Mitochondrial ros can lead to
oxidative damage to mitochondrial proteins, membranes and mtdna (right). This leads to re-
duced activity of the tca and urea cycles, fatty acid oxydation, amino acid and haem synthesis,
iron-sufur-centre assembly. The outer and inner membranes of affected mitochondria become
more permeable; the leak of cytochrome c to the cytosol via the outer membrane permeabilisa-
tion (momp) activates apoptosis. The increased permeability of transition pores (ptp) for small
molecules leads to ischaemia/reperfusion injury. From [264].

=
∫ am

0
exp

(
−6

ḣ3
W

ḣ3
G

∞∑
i=3

(ḣGa)
i

i!

)
da+ atail

=
1

ḣW

∫ amḣW

0
exp

(
−x3

(
1 +

hGx

4
+
hGx

4

hGx

5
+
hGx

4

hGx

5

hGx

6
+ · · ·

))
dx+ atail

where age am is such that the rest term atail is small. For ḣG < 0, the expression with the
series should not be used, but the standard formulation (6.5) does then give no problems.

For ḣG > 0 we require that exp(ḣGam) ≫ 1+ ḣGam+ ḣ2
Ga

2
m. For ḣGam = 10 is condition

is satisfied. The rest term can be approximated by

atail ≃
∫ ∞

am
exp

(
−6

ḣ3
W

ḣ3
G

exp(ḣGa)

)
da =

E1

(
6
ḣ3W
ḣ3G

exp(ḣGam)
)

ḣG

where the exponential integral is defined as E1(x) =
∫∞
x

exp(−t)
t

dt ≃ exp(−x)
x

∑N−1
n=0

n!
(−x)n

; it
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Figure 6.2: The Weibull model S(t) = q exp(−ḣt −
(ḣW t)

β) (blue), and the corresponding deb model
(6.5) (red) are fitted to the survival data from Elandt-
Johnson and Johnson [383] for white USA males in
the period 1969-1971. The data don’t deviate from
the Weibull model, which has probably been used to
generate the data. Yet the deb model also fits the
data very well, despite the fact that the shape pa-
rameter deviates from 3. Parameter values Weibull
model: q = 0.989, ḣ = 0.0013 a−1, ḣW = 0.01275 a−1,
β = 6.812. Parameter values deb model: q = 0.980,
ḣ = 0.3302 a−1, ḣW = 0.00539 a−1, ḣG = 0.0824 a−1.

is built in Matlab as expint.

For ḣG < 0 we require that −ḣGam ≫ 2, the rest term can be approximated by

atail ≃
∫ ∞

am
exp

(
3
ḣ3
W

ḣ3
G

(ḣGa)
2

)
da =

erfc
(
ḣWam

√
3ḣW
−ḣG

)
2ḣW

√
3ḣW
−πḣG

the complementary error function is defined as erfc(x) = 2√
π

∫∞
x exp(−t2) dt.

Let the median age a50 be such that Pr{a† > a50} = 1
2
. As a rule of thump we have

Ea† < a50 for sG ≥ 0 and Ea† > a50 for sG sufficiently less than 0. For sG = 0, we have

a50 =
(log(2))1/3

ḣW
= 0.885

ḣW
and Ea† =

Γ( 4
3

)

ḣW
= 0.893

ḣW
.

For numerical purposes it makes sense to scale variables, using scaled time τ = k̇M t,
see Eq (2.26-28), and section 2.9 of the comments. Scaled specific growth amounts, from

(2.21), to r = ṙ
k̇M

= e/l−1−lT /l
κG+e/g

, with κG = 1 if r ≥ 0. Changes in scaled acceleration and

hazard become d
dτ
q = e(ql3sG + ha)(g/l − r) − rq and d

dτ
h = q − rh. This set works well

after birth, but at the start of development r and e are infinitely large and is it easier to
work with uE = el3/g, since uE(0) = u0

E giving d
dτ
q = guE(qsG + ha/l

3)(g/l − r)− rq. We
have q(0) = 0, d

dτ
q(0) = 0, since limt↓0 r → g/l, and h(0) = 0, d

dτ
h(0) = 0

6.1.1 Empirical Weibull curves

Figure 6.2 shows survival data of white USA males, as presented in [383], and the fitted
empirical Weibull model as well as the deb model. The data seems too smooth to be real
observations, and they were probably generated with the Weibull model. This has been
the reason not to include them in the book any longer. I still show it here to demonstrate
that the deb model can be very similar to the general Weibull model, even when the shape
coefficient is much higher than 3. We can conclude that the deb model can span the full
range of shapes of survival curves for the general Weibull and Gompertz models, but also
shows how aging is linked to nutrition.
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6.2 Temperature stress

Metabolic rates, including the ageing process, depend on temperature. The 1-parameter
Arrhenius model let the rate increase with temperature (in a particular way), while the 5-
parameter Arrhenius model let the rate decrease outside the temperature tolerance range,
linked to how far the temperature is beyond the temperature boundaries.

Apart from this effect of temperature on metabolic rates, temperature can also have
a lethal effect outside the temperature tolerance range, which can be called temperature
stress. Although this range for temperature stress does not need to coincide with that
for effects on rates, for simplicity’s sake we here assume it does. The modeling strategy
is the same as for effects of toxicants: the stress increases proportional to the difference
of (absolute) temperature with the temperature boundaries, while the target parameter
is the hazard rate. So the hazard rate associated with temperature stress amounts to
ḣT = ḣTL(1 − T/TL) for T < TL, ḣT = 0 for TL < T < TH and ḣT = ḣTH(T/TH − 1) for
T > TH . The idea behind this approach is the same as for toxicants: only small stress
levels have biological significance and, therefore, we can locally linearize using a Taylor
argument. If there is no low or high temperature stress, or there is no need to model it,
we have ḣTL = 0 or ḣTH = 0.

Assuming that the temperature stress, ageing and other causes of death (such as acci-
dental death, or effects of toxicants) are all independent, we can add the associated hazards,
so for the first two causes we have ḣ(a) = ḣa(a) + ḣT . The survival probability as function
of age a is, as usual, S(a) =

∫ a
0 exp(−ḣ(t)t) dt and the mean age at death is

∫∞
0 S(a) da.

6.2 Toxins and toxicants

The Amazonian climber Strychnos produces spherical seeds with a hard shell and tasty
flesh. The easy-to-damage soft skin of its seed is, however, loaded with deadly strychnine.
Ateles monkeys learned to eat these seeds by removing the hard shell and swallow the fruit
in one piece. Their digestive system digests the fruit flesh, but leaves the poisonous skin
of the seed untouched; when defecating simultaneously in the early morning as a group,
scarab beetles fly in and bury the faeces with the seeds. This not only provides the seeds
with good growth conditions, but also protects them. A beautiful example of co-evolution.

The maned rat, Lophiomys imhausi, chews on the toxic bark of the apocynacean
Acokanthera schimperi to extract acovenoside A and ouabäıne and smear his long hairs on
the back with these poisons for protection against predators.

6.4 Energetics affects toxicokinetics

6.4.2 Derivation of (6.28)

We start from the simple one-compartment model (6.9), but first write it in changes of the
number of molecules in the compartment: import to the compartment is proportional to
the concentration in the water cd and export from the compartment proportional to the
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number of molecules in the compartment MQ

d

dt
MQ = α̇∗cd − β̇∗MQ

where α̇∗ and β̇∗ are parameters. The one-compartment model rests on advective-diffusive
transport, with a leading role for concentrations (moles per volume) in homogeneous space
(applies to environment and compartment).

Now we make explicit how this kinetics depends on the size of the compartment. We
consider a compartment of length L and compare compartments of different lengths, but
of the same shape, for instance a sphere. Import is proportional to the surface area of the
compartment, because transport in 3 dimensions is across 2 dimensions. So we substitute
α̇∗ = α̇L2, for some parameter value α̇. The molecules are homogeneously distributed in
the compartment, but only those very near to the outer surface can leave the compartment
in a short period. They represent a fraction of the molecules in the compartment that is
proportional to the ratio of the surface area and the volume, so inversely proportional to
the length of the compartment. Think, for instance, of a sphere again. If the length L
represents the radius, it has surface area 4πL2 and volume 4

3
πL3, so the surface area-volume

ratio is 3/L. This ratio is thus inversely proportional to L. So we substitute β̇∗ = β̇/L, for
some parameter value β̇.

Let us consider the dimensions: dim( d
dt
MQ) = dim(α̇L2cd) = dim(MQβ̇/L) = # time−1,

where # stands for number of molecules in the compartment. So, given dim(MQ) = #,
dim(L) = length, dim(β̇) = length time−1. This means that we can write β̇ = Lrefk̇e,
where dim(Lref) = length and dim(k̇e) = time−1. We have this freedom because β̇, Lref

and k̇e are all numbers and we can choose k̇e always such that the substitution is valid
for any given Lref. Likewise, given dim(cd) = # (length of environment)−3, dim(α̇) =
(length of environment)3length−2 time−1 and we can write α̇ = k̇eP

∗
V dLref, with dim(P ∗

V d) =
(length of environment)3length−3. We have this freedom because α̇ and P ∗

V d are numbers
and we can choose P ∗

V d always such that the substitution is valid for any given Lref and k̇e.
So we now arrive at

d

dt
MQ = cdα̇

∗ −MQβ̇
∗

= cdL
2α̇−MQβ̇/L

= cdL
2k̇eP

∗
V dLref −MQk̇eLref/L

= (cdL
3P ∗

V d −MQ)k̇eLref/L

d

dt
[MQ] = (cdP

∗
V d − [MQ])k̇e/l

for [MQ] = MQ/L
3 and l = L/Lm and Lref = Lm. We are free to select a reference length

and selecting the maximum structural length of an animal is one of the possibilities. The
parameter k̇e has the interpretation of an elimination rate for a compartment of length Lref;
it controls the rate at which the concentration in the compartment follows the concentration
in the environment (which might change in time). Lref just serves as a reference value for
k̇e and does not need to have the interpretation of a maximum structural length of an
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animal. We see that P ∗
V d has the interpretation of a bioconcentration coefficient, since

P ∗
V d = [M∗

Q]/cd, where [M
∗
Q] is the value of [MQ] at equilibrium. After this observation, we

can drop ∗ and substitute PV d for P
∗
V d.

Let us now partition the compartment into reserve E and structure V ,

&%
'$

l ll l
↔

↔

↔
↔ ↔ such that reserve represents blobs in a matrix of structure and compound Q

freely travels between E (the collection of blobs) and V (the matrix), but the
compartment exchanges Q with the environment via V , not E. The mass of Q is thus
partitioned as MQ = MQV +MQE, the volume of the compartment as VW = V + VE with
V = L3. (The latter equality specifies how we choose our length-measure.) Structure has
mass MV , reserve ME. (I avoid introducing the mass of the whole compartment, because
V and E might differ in chemical composition and M ’s are quantified as C-moles. Moles
of different compounds cannot be added in a meaningful way; their weights can.)

Transport of Q from V to E is proportional to [MQV ] = MQV /V , that from E to V
proportional to MQE/VE = cE. Let us ignore, for a while, the transport of Q between V
and the environment, so d

dt
MQ = 0 and

d

dt
[MQV ] = (cEP

∗
V E − [MQV ])k̇

∗
e/l

where P ∗
V E is the partition coefficient between reserve and structure on the basis of volume.

Notice the similarity with d
dt
[MQ], which we already derived; reserve now plays the role

of environment and structure the role of the compartment. We just nested the same
reasoning. Suppose now that k̇∗e ≫ k̇e, so that the distribution of Q over V and E is in
pseudo-equilibrium with [M∗

QV ] = cEP
∗
V E. This leads for MQE = MQ −MQV to MQ =

MQV (1 + P ∗
EV [VE]). We now convert the partition coefficient P ∗

EV on the basis of volumes
to the partition coefficient PEV on the basis of C-moles, to avoid dealing with the variable
[VE]:

P ∗
EV =

mol Q in E

VE
mol Q in V

V

=
mol Q in E

ME

mol Q in V

MV

V

VE

ME

MV

= PEV
1

[VE]

[ME]

[MV ]
=
PEV
[VE]

e[MEm]

[MV ]

(Using PV d and PEV , while their dimensions differ, is an abuse of DEB notation. The
motivation is that their interpretations as partition coefficients are very related and we
need to keep the number of symbols to a minimum.) Substitution of the result gives

MQ = MQV

(
1 + e [MEm]

[MV ]
PEV

)
= MQV PWV or MQV = MQPVW . This should be read as a

definition of PWV and the observation that PVW = 1/PWV . Extension of the scaled reserve
density e with a possible reproduction buffer eR gives (6.27). The next step is to replace
[MQ] in the right-hand side of d

dt
[MQ] by [MQV ] and arrive at

d

dt
[MQ] = (cdPV d − [MQ]PVW )k̇e/l

If the volume of the compartment is changing, we need to account for dilution by
growth:

d

dt
[MQ] = (cdPV d − [MQ]PVW )k̇e/l − [MQ]ṙ
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with specific growth rate ṙ = d
dt
ln l3. The last step to arrive at (6.28) is to account for

uptake via food. Since food uptake is proportional to surface area as well, we can substitute
cd + fcX for cd.

6.5 Toxicants affect energetics

6.5.2 Hormesis

Two additional routes to hormesis have been found in the context of deb theory in terms
of changes of parameter values. An small increase in costs for structure, [EG], can sub-
stantially increase the reproduction rate, see [773], and this small change in costs can be
difficult to detect directly. A second route is a decrease in the specific somatic mainte-
nance, [ṗM ], in species that sport metabolic acceleration, see [776]. The route of decreasing
somatic maintenance is more likely in cases where specific somatic maintenance is high.
Species that waste a lot, i.e. have a high value for [ṗM ], were found to have a small nec,
so are sensitive to toxicants, see [59] and Section 8.2.1 of the comments. Such species are
popular for use in toxicity experiments, since their fast growth and reproductions combines
well with economic reasons for keeping experiments as short as possible. No wonder that
hormesis is frequently found in practical toxicity testing.

6.5.4 Direct effect on reproduction

Chlorpyrifos reduces reproduction (and survival) in the springtail Folsomia candida, with-
out affecting growth [657] at low concentrations. See Figure 6.3; the highest tested con-
centration was 20mg kg−1

food. Effects on growth, without effects on reproduction would be
much more difficult to understand in the context of deb theory, since size is coupled to
assimilation.
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Figure 6.3: Effect of chlorpyrifos on Folsomia candida, from Jager et al. [657]. Parameters
ṙB = 0.058 d−1, Lm = 0.653mm, Lp = 0.418mm, Ṙm = 26.2 eggs/d, k̇e = 10d−1, c0R = 0.0107 -,
cR = 6.77 10−3 -, ḃfn = 1.21 10−3 mgkg−1

foodd
−1 ṙnf = 0.672 d−1
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Extensions of DEB models

7.2 Feeding

7.2.2 Food or nutrient intake after starvation

The Morel [993] model is in deb notation

jXA(X,mE) = f
(
jhXAm − (jhXAm/j

l
XAm − 1)mE k̇E/yEX

)
with f =

X

K +X
(7.1)

d

dt
mE = yEXfj

h
XAm − (1− f + fjhXAm/j

l
XAm)mE k̇E (7.2)

m∗
E =

yEXfj
h
XAm/k̇E

1− f(1− jhXAm/j
l
XAm)

=
XyEXj

l
XAm/k̇E

X +KjlXAm/j
h
XAm

(7.3)

The maximum reserve density is mEm = yEXj
l
XAm/k̇E. If nutrients are just internalized,

rather than transformed, we typically have yEX = 1. For jhXAm → jlXAm, the standard food
intake is recovered. A change in assimilation does not affect the way how growth depends

on reserve (density), so ṙ = mE k̇E−jEM/κ
mE+yEV /κ

. This extension of Droop’s model is not consistent
with deb theory. Therefore, it was slightly modified in the deb book.

Andersen [29] proposed the algal growth model

v = vi − ve = α′ Q
′ −Q

Q′′ −Q′ (S − S ′)

µ

µ′ = 1− Q′

Q
and

µ′′

µ′ = 1− Q′

Q′′ and
d

dt
Q = v − µQ

where the symbols are given in Table 7.1. Nutrients not only enter cells but also leave cells
at rate ve; this leak is not further specified, but serves to motivate the existence of the
parameter S ′. He mentions the problem this model gives for low S and high Q, which he
‘solves’ by taking max(0, µ) for growth and neglecting the effect of leaking nutrients on S
in these situations.

Like Droop, he considers simple nutrients (such as phosphate and nitrate) and follows in
fact chemical elements, neglecting any overheads. In deb terms this means that yEX = 1,
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Table 7.1: Symbols of the model by Anderson [29] and the deb equivalents
v jXA nutrient uptake S X nutrient concentration
ve yXE jEM/κ maintenance losses S′ nutrient conc at v = 0

α′ Ḟm/MV affinity
Q mE + yEV cell quota µ ṙ specific growth rate

Q′ yEV subsistence quota µ′ k̇E µ at Q = ∞
Q′′ mEm + yEV max cell quota µ′′ ṙm µ at Q = Q′′

κ = 1 and yV E = 1/nEV where X and E now stand for some chemical element. Table 7.1
gives the link with deb theory, wheremEm and ṙm now only mean the maximum ofmE and
ṙ, and the expressions found for them no longer apply. The interpretation that ve relates
to maintenance losses is mine; Andersen thought about an analogy with one-compartment
kinetics. I will here avoid problems with negative uptake and growth rates assuming that
ve = 0 and S ′ = 0 and κ = 1.

The model in deb notation reads for jEM = 0 and ḟm = Ḟm/MV

jXA(X,mE) = ḟm(1−mE/mEm)X

d

dt
mE = yEXjXA − k̇EmE and ṙ =

k̇E
1 + yEV /mE

where mEm is a parameter, like ḟm, k̇E and yEV . We also have ṙm = k̇E
1+yEV /mEm

.

At steady state we must have for yXE = 1/yEX

yEX ḟm(1−m∗
E/mEm)X = k̇Em

∗
E or m∗

E =
(
m−1
Em + yXE k̇E(ḟmX)−1

)−1

The specific nutrient uptake at constant X amounts for jEAm = yEXjXAm to

j∗XA(X) =
(
(mEmyXE k̇E)

−1 + (ḟmX)−1
)−1

so mEm = jEAm/k̇E

where jXAm is the maximum of j∗XA as function of X. To avoid the use of mEm, we can
also write

jXA(X,mE) = (ḟm − yXEmE k̇E/K)X

for half-saturation constant K = jXAm/ḟm.
The parameters are ḟm, jXAm, k̇E, yEV and yEX = 1; I still include the latter parameter

for dimensional purposes. The relationship j∗XA(S
′) = jXM , or j−1

XM = j−1
XAm + (ḟmS

′)−1,
gives perhaps the best map of Andersen’s parameter S ′ to deb concepts, but this map is
not free of problems. (Notice that jXM = jEMyXE.)

In summary, Andersen’s model only deviates from the deb model for V1-morphs in
the uptake rate (which depends on reserve in his model) and in the way maintenance
is implemented (by subtracting the costs from assimilation, and avoiding the inherent
problems); his reserve dynamics is identical to (4.13) and his growth dynamics to (4.14). His
focus on simple nutrients makes that yEX = 1 (nutrients are internalised, not transformed)
and no growth overhead costs are paid and, as consequence, no nutrients are released to
the environment in association with growth. As a consequence Anderson’s model inherits
most of the nice deb properties on homeostasis.
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Figure 7.1: These talking gouramis, Trichopsis vittatus, come from the same brood and therefore
are the same age. They also grew up in the same aquarium. The size difference resulted from
competition for a limited amount of food chunks, which amplified tiny initial size differences.
This illustrates that age cannot serve as a satisfactory basis for the description of growth and
food intake should be included explicitly.

7.2.4 Feeding: Size variation via food intake

We here focus on spatially homogeneous situations, and create ourselves a stochastic model
for feeding of a single individual on a single type of food particles. We then extend the
model to more individuals and see how social interaction can amplify size differences. This
section is meant to present a mechanism behind the phenomenon depicted in Figure 7.1.

The stochastic feeding model is constructed such that the expected feeding rate is
J̇XA = f{J̇XAm}L2 with f = X/(K +X), where J̇XA is quantified as mass of particles per
time and food density X and saturation constant K as mass of food particles per volume.
The mass of a food particle is MX (in C-mole). In number of food particles, we write
ḣX = f{ḣXm}L2 with {J̇XAm} = −{ḣXm}MX , and f = X#/(K#+X#), with X = X#MX

and K = K#MX . (Notice that J̇XA < 0 and ḣX > 0.) At high food density X#, for f = 1,
searching takes a negligible amount of time, and the mean time it takes to handle a single
food item is th = 1/ḣXm = {ḣXm}−1L−2. Since ḣX = (ts + th)

−1, the time for searching is
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ts = 1/ḣX − 1/ḣXm = K#{ḣXm}−1X−1
# L−2.

Suppose that the food particles at a given time are randomly distributed in space with
mean density X#. The probability that the nearest food particle is at a distance larger
than L from an individual at a random site is

Prob{Ld > L} = exp(−X#L
3π4/3)

So, the nearest food particle is at mean distance

ELd =
∫ ∞

0
Prob{Ld > L} dL = Γ(4/3)(X#π4/3)

−1/3 = aX
−1/3
#

with a = Γ(4/3)(π4/3)−1/3 ≃ 0.554. Traveling at speed Ṡ, the time to reach this particle is

ts = ELd/Ṡ = aX
−1/3
# /Ṡ, so the speed is Ṡ = aX

−1/3
# /ts = aK−1

# {ḣXm}X2/3
# L2 = ḃX

2/3
# L2

for ḃ = aK−1
# {ḣXm}.

We now construct a feeding process of a single individual in a unit cube of habitat on
the basis of the following rules

R1 a new food particle appears at a random site within the cube at the moment one of
the resident particles disappears. It stays on this site till it disappears; the total number
of food particles remains constant.

R2 a food particle disappears at a constant probability rate µ, or because it is eaten
by the individual.

R3 the individual travels in a straight line to the nearest visible food particle at
speed Ṡ = ḃX

2/3
# L2, eats the particle upon arrival and waits at this site for a time

th = {ḣXm}−1L−2. The individual changes direction if the food particle at which it is
aiming disappears or a nearer new one appears. It changes speed because of changes in
length.

R4 the individual grows following the DEB rules for an isomorph, i.e. the food particle
converts to reserve instantaneously; the scaled reserve density e of an individual of struc-
tural volume L3 makes a jump from e to e+ (LX/L)

3 upon feeding; scaled reserve density
is used for metabolism at rate d

dt
e = −e{ḣXm}L3

X/L; reserve converts to structure and the

length changes at rate d
dt
L =

{ḣXm}L3
Xe−Lk̇Mg

3(e+g)
. At time t = 0 the length is L = Lb, and the

reserve density e = f .
R5 all food particles are visible.
We now extend the rules for N individuals that interact not only by competition, but

also by social intimidation using the following rule that replaces R5
R5 a food particle becomes invisible for an individual of length L1, if an individual

of length L1 is within a distance Ls(L2/L1)
2 from the food particle, irrespective of being

aimed at.
Notice that even for the intimidation length Ls → 0 the individuals interact (weakly)

by competition because the mean traveling distance will increase, despite the replacement
of disappearing food particles. The differences in length will amplify for increasing intimi-
dation length.

The interpretation of the food length LX is L3
X = MXyEX/[MEm], which makes that

Lm = −{J̇XAm}yEX

kMg[MEm]
= κ{J̇EAm}

jEM [MV ]
= −κ{−J̇XAm}

jXM [MV ]
(cf {122} Table 3.4). Notice that by increasing
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mass MX , while keeping {J̇XAm} constant, the maximum length will increase as well.
Keeping {J̇XAm} constant, however, will result in an increase in variance. The speed can
be made independent of food density and proportional to length, rather than squared
length, by inserting more detail in the feeding process (especially in the visibility module).
We here want to minimize the number of parameters that needs to be specified.

The food density X and the particle disappearance rate µ are environmental parame-
ters. Although our food particles do not move, the replacement scheme has the effect as if
the particles move at infinite speed to another random location at random points in time.
The mean distance between two random points on a unit edge is 1/3, on a unit square it
is 0.521405, and on a unit cube it is 0.65853. So the mean speed of a food particle in a
cube with edge LD is 0.65853LDµ. If this is in the same order of magnitude as the speed
of the organism, it strongly affects the feeding process; if it is much larger, the individuals
will starve to death.

We have two different spatial units, that of the individual (in {ḣXm}, Lb and LX) and
of the environment (in X, K and Ls), here chosen as cm and m, respectively. Speed is
primarily controlled by the saturation constant K. The social interaction increases with
decreasing number of food particles per individual. The variance increases with food length
LX , but decreases in time because of the smoothing capacity of the individual increases
with size (the catabolic flux is inversely proportional to a length measure).

We have 8 parameters X#, K#, Lb, LX , {ḣXm}, k̇M , g, µ for feeding and growth of a
single individual with state variables scaled reserve density e and structural length L, and
one extra parameter, Ls, for the feeding and growth ofN individuals. Notice that {ḣXm}L3

X

plays the role of the energy conductance v̇ in the standard DEB formulation, which does not
account for stochasticity and the discreteness of food particles. This stochastic extension,
therefore, does not come with an increase in the number of parameters, while we need a
single parameter to introduce social interaction. We can out-scale one parameter, if our
interest is in relative length l = L/Lm with Lm = {ḣXm}L3

X/k̇Mg, and another one by
choosing the spatial scale such that K# = 1, and a final one if we out-scale time, e.g. by
choosing the maintenance rate coefficient k̇−1

M as unit of time. The core of the problem
of how the variance in length builds up as function of time t, food density X, number of
interacting individuals N and the intimidation length Ls has thus 6 parameters.

Figure 7.2 illustrates simulation results; notice that both individuals have exactly the
same parameter values, although they seem to follow different growth curves! Stochastic
growth is retarded relative to the deterministic expectations because of the border effects
(which increase the traveling distances), and the stochastic displacements of food particles.
Even in the single individual case, the variance behaves different, compared to the random
telegraph process, as described in section 4.1.1 and Figure 4.1. Notice also how effectively
reserve smooths out stochastic fluctuations in food availability.

7.6 Organelle-cytosol interactions

I here use the link between two levels of organisation to extract information about cells
regulatory activities for a univariate V1-morph.



156 7. Extensions of DEB models

0.4

0.6

0.8

1

0 500 1000 1500 2000
time, d

sc
a
le
d
re
se
rv
e
d
en
si
ty

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000
time, d

le
n
g
th
,
cm

0.4

0.6

0.8

1

0 500 1000 1500 2000
time, d

sc
al
ed

re
se
rv
e
d
en
si
ty

0.1

0.2

0.3

0.4

0.5

0 500 1000 1500 2000
time, d

le
n
gt
h
,
cm

Figure 7.2: The scaled reserve density e and the length L, in the single (top) and the two (bottom)
individual situation. The green lines give the deterministic expectation without interaction.
Parameters: µ = 2d−1, X# = 10m−3, K# = 2m−3, {ḣXm} = 10d−1cm−2, Lb = 0.1 cm,
LX = 0.1 cm, k̇M = 0.01 d−1, g = 2, Ls = 0.2m.

7.6.1 Varying cellular needs for products from the pathway

Mitochondria serve a wide range of functions in eukaryotic cells. The mitochondrion also
houses the tricarboxylic acid (tca) cycle, cf {109}. The nine transformations of this linear
metabolic pathway amount to the oxidation of the acetyl group of acetyl-CoA to CO2:

C2H3O-SCoA + 3NAD+ + FAD + GDP3− + P2−
i + 2H2O →

2CO2 + 3NADH + FADH2 + GTP4− + 2H+ + H-SCoA
The H-SCoA re-binds to pyruvate or fatty acid for the next cycle; the reduced co-enzymes
nadh and fadh2 are re-oxidised by dioxygen in a multi-step transformation of the respi-
ratory chain. The free energy is used to convert adp and pi to atp via a proton gradient
across the mitochondrial inner membrane, as is well known. What is usually less empha-
sised in text books is that the intermediary metabolites (e.g. citrate, succinate, fumarate,
malate) are also used as building blocks. So not all the pyruvate that is passed to mito-
chondria should be combusted completely. Cells’ need for building blocks, relative to that
for atp, depends on the growth rate, and hence on the rate of pyruvate allocation to mi-
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Figure 7.3: The resources that are mobilised from the reserve by the catabolic flux are allocated
to maintenance and growth, i.e. increase in structure. When the reserve density increases, the
catabolic flux and the allocation to growth increase, but not the allocation to maintenance (right
panel; widths of arrows indicate the sizes of fluxes). The flux of substrate to the enzymatic path-
way is proportional to the catabolic flux. The mixture of products and intermediary metabolites
that are released from a linear pathway and allocated to maintenance (or growth) is constant.
This paper solves the problem of how the non-linear dynamics of the pathway should be organised
to fulfil this complex task.

tochondria. The six non-membrane-bound enzymes of the tca cycle are released from the
gel-like mitochondrial matrix by gentle ultrasonic vibration as a very large multi-protein
complex [868]. This spatial organisation suggests interactions between the enzymes that
might be responsible for the regulation of the proper atp/building blocks ratio.

Consider an n-step linear metabolic pathway, as illustrated in Figure 7.3, which is
mediated by enzymes S1, · · · , Sn with the following i-th step:

Xi−1 → yXiXi−1
Xi + yPiXi−1

Pi with i = 1, · · · , n. (7.4)

A molecule of intermediary metabolite Xi−1 is transformed into yXiXi−1
molecules of an-

other intermediary metabolite Xi and yPiXi−1
molecules of product. Other substrate

molecules might be involved as well, but their availability is assumed to be such that
they do not limit the rate of transformation. The product Pi might actually be composed
of a set of (possibly different) molecules, rather than a single molecule. Products are,
therefore, taken to be generalised compounds. Without loss of generality we can identify
the last intermediary metabolite Xn with the last product Pn. The substrate flux JX0A to
the pathway is given by a model for the whole cell and might vary (slowly) in time. If all
intermediary metabolites would follow the full pathway (which they generally do not), we
have the overall transformation

X0 →
n∑
i=1

yPiX0 Pi with yPiX0 = yPiXi−1
Πi−1
j=1yXjXj−1

for i = 2, · · · , n (7.5)

Now consider the situation where some intermediary metabolites follow only part of the
pathway and step out of the transformation process at the various nodes of the pathway
and become available for two cellular functions: maintenance and growth of structure, see
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Figure 7.3. Cellular maintenance and growth require the intermediary metabolites Xi and
products Pi in possibly different relative amounts:∑

i

yXiXM
Xi +

∑
i

yPi+1XM
Pi+1 → XM ;

∑
i

yXiXG
Xi +

∑
i

yPi+1XG
Pi+1 → XG (7.6)

where XM and XG are taken to be generalised compounds that are involved in the main-
tenance and growth process, respectively, and the yield coefficients y are taken to be
stoichiometric constants (i.e. fixed constants whose values follow are constraint by mass
conservation). This latter requirement yields the important conclusion that all products
and intermediary metabolites that are released from the pathway depend linearly on the
growth rate. To see this, note that the released material at growth rate zero is allocated
to maintenance. If more material is released than is needed for maintenance, the extra
material is allocated to growth. If, for example, the growth rate is doubled, then twice
as much material per unit of time is needed for growth, provided that structure does not
change in composition. Maintenance has priority over growth. Accordingly, the flux ratio
J̇XG

/J̇XM
depends on the flux J̇X0 in a very special way, as will be discussed below.

The problem now is that the mass balance at the whole-cell level forces us to assume
that the chemical composition of the mixture of metabolites and products that is allocated
to maintenance is constant. The same applies to the mixture that is allocated to growth,
while the composition of both mixtures will differ. This mass balance does not and cannot
account for leaks from a pathway, where leaks are defined to be fluxes that are not associ-
ated to maintenance or growth (or any other process that the whole-cell model specifies).
What does this imply for the dynamics of the pathway? How is pathway kinetics linked
to cellular requirements for particular compounds? The cell has many pathways and if
each pathway produced compounds that are not allocated to maintenance or growth, any
model at the cellular level would be problematic, unless the cellular model incorporated
the details of the then (very large) set of models for all different pathways. Such a complex
model would hardly contribute to further insight concerning cellular metabolic functions
and would be highly impractical in most applications. Consequently, we here discuss a
consistency issue between a whole-cell model and model for the dynamics of a pathway.

Pathway model

The cellular requirements can be expressed in the overall transformation

X0 → YXMX0 XM + YXGX0 XG (7.7)

where the variable stoichiometric coefficients Y depend on the flux of substrate JX0A to the
pathway. Both these coefficients and the flux must be specified by a model for the whole
cell, which we will now specify.

To make a clear notational distinction between the two levels of organisation (pathway
and cell), we will mark all yield coefficients (i.e. mass-mass couplers) that link the levels
with ◦.

Substrate X0 is released from the reserve as part of the catabolic flux, so

J̇X0 = y◦X0E
J̇E,C or for jX0A = J̇X0/MV jX0A = y◦XMEjEC (7.8)
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Generalised compound XM participates in the maintenance flux, so

J̇XM
= y◦XMEJ̇E,M or for jXM = J̇XM

/MV jXM = y◦XMEjEM (7.9)

while generalised compound XG is used for building structure, so

J̇XG
= y◦XGV

J̇V,G or for jXG
= J̇XG

/MV jXG
= y◦XGV

ṙ (7.10)

CompoundXG differs from the structureXV by the inclusion of compounds that are used in
the overhead of growth and by that fact that more than one pathway will deliver compounds
that are used in growth. For yXMX0 = y◦XME/y

◦
X0E

and yXGX0 = y◦XGV
/(y◦X0E

yEV ), the
variable yield coefficients required in (7.7) can now be expressed in terms of deb fluxes as

YXMX0 =
J̇XM

J̇X0

=
yXMX0

1 + yEV ṙ/jEM
and YXGX0 =

J̇XG

J̇X0

=
yXGX0

1 + jEM/(yEV ṙ)
(7.11)

The enzymes that are involved in the metabolic pathway are, by definition, part of the
reserve and/or structure since these two components constitute the whole cell in an uni-
variate system. So the amount of the i-th enzyme, MSi

, can be written as weighted sums
of reserve and structure:

MSi
= nSiEME + nSiVMV = (nSiEmE + nSiV )MV with mE =

jEM + ṙyEV

k̇E − ṙ
, (7.12)

The costs for synthesis of the enzymes appear in the yield coefficients for assimilation
and growth:

yXE = 1/yEX = y◦XE +
∑
i

nSiE yXSi
(7.13)

yEV = y◦EV +
∑
i

nSiV yESi
(7.14)

Turnover costs of enzymes that are part of the structure should be included in the specific
maintenance costs as

jEM = j◦EM + k̇Si
nSiV y

∗
ESi

(7.15)

where y∗ESi
= yESi

if no reserve components are saved from the decomposition of enzyme
Si; generally we have y∗ESi

≤ yESi
. The turnover of enzymes that are part of the reserve

is implied by the reserve turnover. If both nSiE > 0 and nSiV > 0, we must have that
k̇Si

= k̇E to avoid a distinction between enzyme molecules that are part of the reserve and
of the structure.

Notice that the intermediary metabolites of the metabolic pathway, Xi, don’t appear
in the reserve or structure; they only occur in fluxes, not in pools. Strict consistency
requires that their amounts are negligibly small, and no need exists to evaluate their
concentrations in the highly spatially structured internal environment of the cell. The
maintenance compound XM will be excreted in one form or another, just like part of the
growth compound XG, while another part of XG will be included in the structure XV . This
completes the placement of our dual function problem in the context of the deb theory
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SUi SUi+1
-

J̇Xi−1F

�6J̇Xi−1R

-

J̇XiP

-

J̇XiF

�6J̇XiR

-

J̇Xi+1P

Figure 7.4: The arrival (F , for “feeding”),
rejection (R) and production (P ) fluxes for
two Synthesising Units that are involved in a
metabolic pathway. In a linear pathway for
i = 1, · · · , n we have that J̇Xi,P = J̇Xi,F .

for we now have defined and related the various fluxes at the cellular level that specify the
fluxes and the variable yield coefficients in (7.7).

We now specify the fluxes through the linear metabolic pathway as a function of the
arrival flux of substrate to the pathway, including the branches of rejected fluxes of in-
termediary metabolites and products. We need interaction between SUs in the pathway,
because without interaction, some intermediate metabolites always escape further transfor-
mation, while the cell might not need them for maintenance or growth. For this purpose
we introduce n − 1 handshaking parameters αi, 0 ≤ αi ≤ 1, that affect the release of
product and the binding of substrate between SU i and i + 1. The unbound fraction of
the i-th SU changes such that if the handshaking parameter αi = 0, the handshaking is
open, cf {251}, and the SUs operate independently. If αi = 1, however, the handshaking is
closed, cf {250}, and no intermediary metabolites Xi are released if the binding probability
ρi = 1; an SU only releases its product if the receiving neighbour SU is in the binding state.
This coordinates the activities of all the SUs in the pathway and quantifies the distributed
release of products and intermediary metabolites. If the handshaking parameter αi is set
to zero, all control is “bottom up” because the SUs do not interact and the behaviour of
the whole follows (in complex ways) from the behaviour of the units. If the handshaking
parameters are increased, the control becomes increasingly “top down”, cf [1280] since the
behaviour of the whole feeds back to the behaviour of the units. If the handshaking is
closed for all SUs in the pathway, αi = 1 for i = 1, · · · , n − 1, and binding is sure, ρi = 1
for i = 1, · · · , n, then the full pathway acts as if it is just a single SU (see appendix) and
all metabolites X0 that are processed are transformed into products. The behaviour of the
units is then fully controlled by the behaviour of the whole.

We use a time scale argument to derive the arrival (F ), rejection (R) and production
(P ) fluxes of intermediary metabolites in terms of the steady state binding fractions of the
SUs. (We use F for “feeding” to indicate arrival rates to avoid confusion with assimilation,
which we also need; when a metabolite flux is “fed” to an SU, it does not mean that
all will be “eaten”). All intermediary metabolites Xi that are produced by the i-th SUs,
arrive at the i + 1-th SUs, so JXiF = JXiP . The pathway kinetics (cf 7.1.2) amounts for
i = 1, · · · , n− 1 to the following changes of unbound fractions, θi, of SUs:

d

dt
θi = (1− αi(1− θi+1)− θi) ki − (θi + αi−1(1− θi)) ρiJXi−1F/MSi

(7.16)

d

dt
θn = (1− θn)kn − (θn + αn−1(1− θn)) ρnJXn−1F/MSn (7.17)

Setting the change in the fractions, (7.16, 7.17) equal to zero, we obtain for the unbound
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fractions of the i-th SUs at steady state (denoted by ∗) as

θ∗i =
(1− αi + αiθ

∗
i+1)ki − αi−1ρiJXi−1F/MSi

ki + (1− αi−1)ρiJXi−1F/MSi

for i = 1, · · · , n− 1 (7.18)

θ∗n =
kn − αn−1ρnJXn−1F/MSn

kn + (1− αn−1)ρnJXn−1F/MSn

(7.19)

where the arrival flux JX0F of substrate to the pathway is given. Since SU i exists in MSi

copies, and produces yXiXi−1
intermediary metabolites Xi from each molecule Xi−1, the

production fluxes are

JXiP = (1− αi(1− θi+1)− θi) ki yXiXi−1
MSi

for i = 1, · · · , n− 1 (7.20)

JXnP = (1− θn)kn yXnXn−1MSn (7.21)

The set of equations (7.18–7.21) determine the unbound fractions θi and arrival rates JXiF

for all SUs. Since mass conservation implies that the rejection fluxes equal the difference
between the arrived and the processed fluxes, the rejection fluxes are

JXiR = JXiP (1− (θi+1 + αi(1− θi+1)) ρi+1) (7.22)

= JXiP − JXi+1P/yXi+1Xi
for i = 0, · · · , n− 1 (7.23)

JXnR = JXnP (7.24)

Note that, if αi = ρi = 1, no rejection of Xi, i = 0, · · · , n− 1, occurs, so JXiR = 0. This
is how closed handshaking is constructed. A nice property of this construction is that more
than once a particular enzyme turns out to be a consortium of several smaller ones. As long
as the members of the consortium pass metabolites by direct channeling (i.e. the enzyme-
product complex does not release the product molecule into the liquid environment, but
the molecule is directly bound to a neighbouring enzyme molecule in a enzyme-substrate
complex), such a discovery has no consequence for the pathway model. Constraints apply
to parameter values; the handshaking parameters restrict the maximum flux that can be
processed. With an open handshaking protocol all excess flux is simply rejected, but
that possibility becomes increasingly restricted by gradually closing the handshaking. The
physical impossibility to allocate more than can be processed leads to unbound fractions
outside the interval (0,1). Any choice of parameter values should be tested for its validity.

This completes the model specification of cells’ regulatory functions in terms of the
handshaking and the binding parameters. The fluxes and bound fractions can be obtained
analytically for n = 2, but you don’t want to see the result. The result is of little relevance
for our purpose, fortunately, because the deb model already specifies the fluxes. Our
interest is in the implied constraints; the next section shows that these can be obtained
without explicitly solving for the fluxes.

7.6.3 Matching the pathway and the deb model

We specified the flux of substrate to the pathway (7.8), and the (variable) yield coefficients
(7.11), while the maintenance flux J̇EM ≡ jEMMV and the growth flux J̇E,G = yEV ṙMV
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are given in (4.14) and (4.16). Together they quantify the transformation at the cellular
level. We also specified how the fluxes of substrates for maintenance and growth (7.20 –
7.24) as released by the pathway depend on the flux of substrate to the pathway.

The specific flux of substrate X0 to the pathway equals by equations J̇E,C ≡ jECMV =
(k̇E − ṙ)ME and (7.8)

jX0F = nX0E jEC = nX0E(jEM + ṙyEV ) = nX0E(k̇E − ṙ)mE = nX0E
jEM + k̇EyEV
1 + yEV /mE

(7.25)

where the specific growth rate ṙ and the reserve density mE can vary in time. We now
equate the release of intermediary metabolites and products from the pathway to their
use by the cell. Given (7.6), (7.9) and (7.10), the specific required fluxes of intermediary
metabolites and products are,

jXiP = jPi
/yPiXi

= yPXiE
jEM + yPXiV

ṙ for i = 1, · · · , n (7.26)

with yPXiE
= yPiXM

y◦XME/yPiXi
and yPXiV

= yPiXG
y◦XGV

/yPiXi

jXiR = jXi
= yXiE jEM + yXiV ṙ for i = 0, · · · , n− 1 (7.27)

with yXiE = yXiXM
y◦XME = yPXiE

− yPXi+1,E
/yXi+1Xi

and yXiV = yXiXG
y◦XGV

= yPXiV
− yPXi+1V

/yXi+1Xi

The first equality sign in (7.26), and in (7.27), is a consequence of the following consider-
ations for the links between the fluxes that are required by the cell and those released by
the pathway. The released intermediary metabolites Xi, i = 0, · · · , n− 1, are the rejected
fluxes J̇Xi,R; the released products Pi, i = 1, · · · , n, are linked to the production fluxes
of the metabolites one step earlier. Since both intermediate metabolite Xi and product
Pi are stoichiometrically linked to Xi−1, product Pi is linked to Xi with yield coefficient
yPiXi

= yPiXi−1
/yXiXi−1

.
We must have that jXiP > jXiR for all growth rates ṙ, which implies from (7.26) and

(7.27) that yPiXM
> yPiXi

yXiXM
and yPiXG

> yPiXi
yXiXG

. It turned out that jXiP and jXiR

cannot be exactly linear in the specific growth rate ṙ [796] for i = 1, · · · , n, but numerical
studies of (7.18–7.21) reveal that, given values for k̇i, the values for αi, ρi, nSiE, and nSiV

can be chosen such that linearity is almost perfect.
The conclusion is that to match the products of pathways to the varying needs of the

cell, we need an appropriate mix between open and closed handshaking protocols and an
appropriate link of the abundance of the enzymes to reserve and structure. All required
information on the fate of the products of the pathway is then contained in the flux of
substrate to the pathway. Applied to mitochondria this means that if the amount of
(active) mitochondria is linked appropriately to reserve and structure, they can deliver
the required mixture of atp and intermediary metabolites using the flux of pyruvate to
the mitochondria as only control; the composition of the mixture depends on the flux of
pyruvate.

The significance of this result is that if the reserve is omitted from the cell model, and/or
no enzyme is associated with reserve, nSiE = 0, production and rejection fluxes deviate
from linearity in the specific growth rate and the pathway model does not match the cell
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Figure 7.5: This is how humans lay eggs, from
[879].
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Figure 7.6: The pre- (left) and post-embryonic (right) development of the male impala Aepyceros
melampus. Data from [401, 402]. The curves have been estimated simultaneously, assuming slow
development, and the energy conductance was estimated to be v̇ = 0.35 cmd−1 at 20◦C, using
an Arrhenius temperature of 8 kK and a body temperature of 39.5◦C. The start of development
was 53.2 d after fertilization. The observed ages and expected weights at weaning and puberty
are indicated. Add my pet gives further details.

model. The Marr-Pirt model, for instance, which is a limiting case of the deb model for
vanishing reserve, has a consistency problem with this pathway model. We believe that
this result is rather general, and applies to a large class of acceptable pathway models.
Cyclically organised pathways turn out to behave very similar to the linear ones that are
discussed above [796], which further supports the generality of this conclusion.

7.7 Mother–foetus system

At birth of the baby, the human mother produces 3500 g baby, 900 g placenta and 900 g
amniotic fluid, while she increased her blood volume with 2000 g, her body fluids with
1500 g, her uterine with 900 g and her breasts with 500 g; the latter in preparation of milk
production. This all on top of an increase in reserve, so more than three times the mass
of the baby is involved in pregnancy.
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Figure 7.7: Post-embryonic development of the female (left) and male (right) cow Bos primige-
nius Holstein. Data from [105]. The observed and predicted age and weight at birth, weaning
and puberty are indicated. The gestation time is 277 d with a body temperature of 38 ◦C, but
the start of development was estimated to be 215 d (female) or 163 d (male). Add my pet gives
further details.

Figure 7.6 shows that foetal development and milk production do not affect growth
in the impala. Moreover the initiation of foetal growth is only at 25% of the gestation
time; this period is probably used for placental growth and hormonal preparation of the
body. The less-than-perfect fit for post-embryonic growth probably relates to the scatter in
environmental conditions. This interpretation is confirmed by the post-embryonic growth
of the related cow Bos primigenius under controlled conditions: almost all scatter is gone,
especially in the bull data, see Figure 7.7. I have presently no explanation for why the
times at the start of the development is different for female and male embryos, while the
weights at birth are equal. Section 8.1.1 of the comments gives further details.

The simplest implementation of foetal development is to work with an mean allocation
to foetal development ṗR across reproductive cycles, see Section 2.6.2 of the comments.
Work with Jess Roberts and Mike Kearney suggests a more detailed implementation of
foetal development of the reproduction buffer in combination with an explicit allocation to
milk production and an up-regulation of the assimilation (and intake) of the mother. The
mammalian reproduction rate is to some extend constraint by Ṙ = (t0 + ax)

−1, where t0 is
the time at first development. The rate must be multiplied by the litter size N , but let us
assume that N = 1 for simplicity’s sake.

The allocation to the foetus, including reproduction overheads, at scaled functional
response f is ṗR = f{ṗAm}L2

F/κR during pregnancy and ṗL = f{ṗAm}L2
F/κ

L
R during

lactation in the form of milk, see Section 2.6.2 of the comments. No up-regulation occurs
during the juvenile period.

Let us here suppose that allocation to the reproduction buffer just covers the costs for
foetal development till birth, but not lactation, and that milk production is paid from extra
(= up-regulated) assimilation. At the end of a reproduction cycle, the reproduction buffer
is just emptied. If this extra assimilation input does not end up in reserve, but directly
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in the reproduction buffer, the lactation has no interaction with growth or maintenance
(somatic or maturity) of the mother. This seems consistent with observations so far.

The extra assimilation of the lactating mother is converted into milk from the repro-
duction buffer as a buffer handling rule. The cumulative milk production for a single
baby from birth till weaning is EL = f{ṗAm}

κLRκL

∫ ax
ab
L2
F (a) da, where κL is the conversion effi-

ciency from milk to baby reserve. For constant food availability, we have
∫ ax
ab
L2
F (a) da =

L2
∞(ax − ab)− Lx−Lb

ṙB

(
L∞ + Lb+Lx

2

)
. The extra mean amount of food that is eaten by the

lactating mother is ṗ+
L/κX , while it actually increases during lactation till weaning. The

(mean) energy investment into milk production by the mother is ṗ+
L = ELṘ, where Ṙ

stands for the reproduction rate. The assimilation rate has to be up-regulated by this flux
to cover the energy costs for milk production. The next reproduction cycle typically starts
directly after weaning. The relative up-regulation, i.e. up-regulated relative to standard
assimilation, is highest just prior to weaning (structural length of the baby is largest) of
mother’s first baby (structural length of the mother is smallest).

The placenta consists of a foetal part (chorion frondosum) and a maternal part (decidua
basalis). Mammalia typically eat their placenta (and most of the umbilicus) and neonates
directly start feeding on milk. After birth, allocation to milk production by the mother
takes over from allocation to foetal development; the overhead might differ, but otherwise
the dynamics is the same till weaning. Initially milk is the only water source for the
neonate; baby’s water intake gradually increases during lactation, while milk becomes less
watery. Milk consumption reaches a peak when the baby reaches a maturity threshold Es

H ,
which coincides with permanent pouch exit in marsupials. The preference for milk decays
till zero at weaning, i.e. when the baby reaches another maturity threshold level Ej

H and
food intake of the mother is not longer up-regulated. If milk and solid food are considered
as substitutable parallely processed substrates and the specific searching is linked linearly
to the maturity levels at peak milk intake and at weaning, we arrive at

{J̇EA} = yEX{J̇XAm}fX + yEY {J̇Y Am}fY

with
fX = {ḞXm}X

{ḣXAm}+{ḞXm}X+{ḞY m}Y ; fY = {ḞY m}Y
{ḣY Am}+{ḞXm}X+{ḞY m}Y

{ḞXm} =
Ej

H−EH

Ej
H−Es

H

{Ḟ s
Xm} {ḞY m} =

EH−Es
H

Ej
H−Es

H

{Ḟ j
Y m}

Milk production is not always done by the mother in mammals; the Dayak fruit-eating
bat Dyacopterus spadiceus sports paternal lactation. The masked stingaree Trygonoptera
personata feeds their offspring with uterine milk; many pigeons do this with gastric milk.

The composition of (cow) milk, c.f. Table 4 is
compound formula g/g-wet milk kJ/g g/mol mol/mol-dry milk
carbohydrate CH2O 0.046 17.2 30 0.38
lipid CH1.92O0.12 0.015 38.9 15.84 0.24
protein CH1.61O0.33N0.28 0.035 17.6 22.81 0.38
mineral 0.007 0 0
water H2O 0.877 0 18 0

which amounts to 2 kJ g−1 wet milk or 16.26 kJ g−1 dry milk or 4mmol g−1 wet milk and
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an overall formula of CH1.83O0.53N0.11 for dry milk. The water content typically decreases
during the lactation period, which motivates to work in dry milk and consider water bal-
ances separately. We need this to evaluate respiration during lactation. To that end, the
organic fluxes J̇O are extended with J̇L as

J̇T
O =

(
J̇X J̇V J̇E J̇P J̇L

)
and the chemical indices with a new column

nO =


nCX nCV nCE nCP nCL
nHX nHV nHE nHP nHL
nOX nOV nOE nOP nOL
nNX nNV nNE nNP nNL


and the basic powers with

ṗT =
(
ṗA ṗD ṗG ṗL

)
and the mass-energy couplers ηO with a new row and column

ηO =


−ηXA 0 0 0
0 0 ηV G 0
µ−1
E −µ−1

E −µ−1
E 0

ηPA 0 0 0
0 0 0 ηLL


were ηLL = 2µmol J−1. Notice that J̇Er = 0 during lactation. The mineral fluxes now
follow from (4.35) and (4.37).

7.8 Extra life–stages

Subsection 7.8.1 assumes that you have had a glance at subsection 7.8.2 on acceleration,
an odd consequence of following the (sub)sections of the deb book.

7.8.1 The abp and sbp model for copepods

Copepods have sexual reproduction in last copepodite stage. They moult 11 times: 5
naupliar stages and 6 copepodite stages. The naupliar and copepodite stages differ sub-
stantially in morphology, so the transition can be called metamorphosis. In cyclopoids, the
last copepodite stage is carnivore, younger copepodites are omnivore, and the nauplii are
herbivore. This feeding pattern suggests that only the last copepodite stage allocates to
reproduction, so has to be classified as adult, in the context of deb theory, and the other
copepodite and nauplii stages as juvenile. The need for proteins for copepodite relates
allocation to reproduction, where embryos are in need for protein-rich reserve. Length
versus time curves show a clear upcurving till the final stage, where growth ceases.
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The abp model

The simplest deb model that captures this pattern is that the embryo follows the standard
model without acceleration, the juvenile the standard model with type M acceleration.
The adult increases somatic maintenance such that growth ceases. Another way to cease
growth is that κ switches κa =

[ṗM ]Lp

{ṗ∗Am}e , where {ṗ∗Am} = {ṗAm}sM. The end of acceleration

coincides with puberty, so Lj = Lp and sM = Lp/Lb. Expressed in the specific assimilation

at birth, κ of adults amounts to κa =
[ṗM ]Lb

{ṗAm}e , which changes in time because scaled reserve
density e does. The juvenile is growing exponentially at constant food density, with specific
growth rate ṙj =

κṗA−ṗM
f [Em]+[EG]

= v̇ f/Lb−1/Lm

f+g
, so L(t) = Lb exp(ṙjt/3), where t is time since

birth. During the adult stage, where ṙ = 0, the reserve mobilisation rate amounts to
ṗC = v̇∗E/Lp = v̇E/Lb, where v

∗ = vsM. See Eq (2.12) for ṙ = 0. No allocation to
growth, as long as reserve allows, and allocation to the reproduction buffer is ṗR = (1 −
κa)ṗC − k̇JE

p
H = ṗC − ṗM − k̇JE

p
H . The mean reproduction rate amounts to Ṙ = κRṗR/E0,

as before.
Since food quality changes during ontogeny, it is at this moment not sure that {ṗAm} re-

mains constant and that {ṗXm} and κX are changing. Unless contra-evidence shows up, we
make that assumption, however, meaning that assimilation amounts to ṗA = f{ṗAm}L3/Lb,
where L grows from Lb to Lp during the juvenile period, after which it remains constant
at Lp.

If dilution be growth can be neglected in the ageing process, we have the cubed Weibull

aging rate ḣ3
W = ḧaev̇

6Lb
and the Gompertz ageing rate ḣG =

sGev̇L
3
p

LbL3
m
, while the survival

probability Eq (6.5) still applies. For small sG, so small ḣG, the mean age at death is
approximately Γ(4/3)/ḣW , as before.

Copepods differ from insects, metabolically, by the larval stages being juvenile, rather
than adult. Moults are triggered by maturity levels in copepods, but this cannot be the
case in insects since maturity no longer increases during the adult stage. Notice that
cladocerans don’t accelerate and do grow as adult; quite a difference with copepods. May
be that spiders, scorpions and ostracods also follow the copepod pattern.

The sbp model

Calanus sinicus was found to follow the standard deb model without acceleration till
puberty, where growth ceases, like in the abp-model. So the κ no longer applies after
puberty.

Both the abp and the sbp model suffer from the property that asymptotic length is not
observable, which substantially complicates the estimation of [ṗM ] and κ.

7.8.1 The hep model for ephemeropterans

Nymphs of ephemeropterans transform into flying subimagos, which subsequently trans-
form into imagos withing minutes till 3 days (depending on species and temperature).
Imagos live several days, and, like subimagos, don’t feed, implying that nymphs allocate
to reproduction. Ephemeropterans are presently the only insects that moult (once) while
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having wings. The hep model also applies to Odonata and possibly some other groups as
well.

To capture this pattern the hep model assumes that type M acceleration occurs be-
tween birth (event b) and puberty (event p), and transformation to subimago occurs when
reproduction buffer exceeds a threshold (event j), called [Ej

R]. So (isomorphic) growth
occurs in the adult nymph, but not in the (sub)imago. We assume that the heating length
is zero, i.e. LT = 0, so lT = 0 as well.

Allocation to reproduction at constant food amounts to d
dt
ER = ṗR = (1− κ)ṗC − ṗJ ,

with reserve mobilisation ṗC = [Em]L
3( v̇sM

L
+ k̇M) eg

e+g
, maturity maintenance ṗJ = k̇JE

p
H ,

acceleration factor sM = Lp/Lb = lp/lb. If emergence would not kick in, L → L∞ =
sMfLm and the reproduction buffer density grows at constant rate d

dt
[ER] → 1−κ

κ
[ṗM ]− ṗJ

L3
∞
.

The change in reproduction buffer density is d
dt
[ER] = [ṗR] − 3ṙB(L∞/L − 1)[ER]. Since

reproduction buffer density starts at zero at event p, we are sure that it hits any finite
threshold, but we need to find the first event as long as (1 − κ)[ṗM ]L3

∞ > κṗJ , to allow
for puberty to be reached. In the hex model (see next section), the reproduction buffer
density has a maximum, due to acceleration, and therefore does not hit a threshold value
for sure.

At constant food density, scaled length changes in scaled time as d
dτ
l = rB(l∞ − l) or

l(τ) = l∞ − (l∞ − lp) exp(rBτ) with scaled rB = (3 + 3f/g)−1 and l∞ = sMf . The dimen-

sionless scaled reproduction buffer density vR = κ
1−κ

[ER]
[EG]

changes as d
dτ
vR = fgsM/l+f

g+f
−

kvpH
l3

− 3rBvR(fsM/l − 1). So scaled time at emergence is τj =
∫ vjR

0
d
dvR

τ and l(0) = lp and

l(τj) = lj with v
j
R = κ

1−κ
[Ej

R]

[EG]
. The number of eggs at emergence is N = κR[E

j
R]L

3
j/E0 =

(1− κ)κRv
j
Rl

3
j/u

0
E

7.8.1 The hex model for holometabolic insects

Work with James Maino and Mike Kearney on holometabolic insects shows that insect lar-
vae, like copepods, most fish and molluscs, sport metabolic acceleration [795, 777] (i.e. be-
have as V1-morphs). So energy conductance v̇ and specific maximum assimilation {J̇EAm}
and searching {Ḟm} rates are increasing with length between birth (event b) and meta-
morphosis (event j), while the embryo (in the egg) and the imago (in the pupa) grow
isomorphically; growth ceases after emergence.

Some insect taxa don’t feed as imago (e.g. ephemeropterans), meaning that allocation
to reproduction must have taken place during the larval stage, which classifies larvae as
adults. Insects thus skip the juvenile stage and directly go from embryos to adults, like
Oikopleura, see 2.7.1, and maturity remains constant during the larval stages. Maturity
is linked to structure and larval structure transforms to reserve in the pupa, so maturity
of that structure becomes irrelevant and maturity of the imago builds up from zero till
emergence.

Thysanura, the most basal insect order continues moulting till death, like Collembola
(also hexapods, but not insects); the total number of moults amounting from 17 to 66. The
ephemeropterans sport some 45 moults, the anisopterans some 8 till 18 moults (avaraging
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Figure 7.8: Dioxygen consumption in the blowfly
Phormia regina at 20-24 ◦C. From Taylor [1404]

at 12.5 moults [276]). These two taxa comprise the Palaeoptera (which develop wings
gradually and cannot fold them), while other insects are classified as Neoptera (which
develop wings in the transition to the final moult only and can fold them). The neopterans
are subsequently divided in the hemi- and holo-metabolic insects. The number of moults
in the holo-metabola, the most advanced neopterans is around 6 (and also sport pupae
and some endothermy), revealing a dramatic reduction of the number of moults in insect
evolution.

Moulting occurs when the surface area of the gut (which grows continuously and controls
food digestion) exceeds that of the head (which remains fixed during each instar and
controls food acquisition) by some threshold value, so when L2(t)/L2

i > si, where Li is set
to L(t) at moulting. The idea is that food acquisition and processing (digestion) need to
be in balance, a practical problem for ecdysozoans. Ephemeropterans are unique among
insects by having an instar in the imago stage, that can fly but not eat; this moult must
be triggered differently.

Reserve mobilisation during the larval stages amounts to ṗC = E(k̇E − ṙ), while

[EG]
d
dt
V = [EG]ṙV = κpC − [ṗM ]V , so ṙ = κ[E]k̇E−[ṗM ]

κ[E]+[EG]
= ek̇E−gk̇M

e+g
= gk̇M

e/lb−1
e+g

. Reserve

turnover k̇E relates to energy conductance of the embryo v̇ as k̇E = v̇/Lb. Notice that
k̇E
gk̇M

=
1
lb
. At constant food, we have e = f and structural length grows as L(ab) = Lb exp(tṙ/3)

for t is time since birth. So the first moult occurs at L2 = L2
b exp(t1ṙ2/3) = s1L

2
b , i.e. time

t1 = 3 log(s1)
2ṙ

after birth. The second moult occurs at time t2 = 3 log(s2)
2ṙ

after the first one,
etc. The values si will probably don’t differ very much, so the inter-moult period remains
constant, like the ratio of surface areas (and lengths and volumes); the detailed nature
of the moulting trigger only reveals by comparing different feeding levels. The moulting
triggers are not part of the DEB model. Since Lb depends on the nutritional status via
the maternal effect, all lengths at moulting do. Feeding actually ceases around moulting,
which modifies the growth trajectory; this is here treated as a modifying ‘detail’. Shrinking
will probably hardly occur in insects, since the reproduction buffer only becomes depleted
if starvation is really extreme.

Metamorphosis (pupation, event j) occurs when the reproduction buffer per amount
of structure exceeds the value [Ej

R]. This trigger also induces spawning in molluscs, see
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Section 2.7.2. Allocation to reproduction amounts to ṗR = (1− κ)ṗC − ṗJ , with constant
ṗJ = k̇JE

b
H , and the reproduction buffer builds up as ER(t) =

∫ t
ab
ṗR(s) ds. So at constant

food, where e = f and ṙ are constant, we have for time t since birth

ER(t) = (1− κ)(k̇E − ṙ)f [Em]
∫ t

0
V (s) ds− tṗJ

= (1− κ)Eb
g + lb
e− lb

(exp(ṙt)− 1)− tṗJ with Eb = f [Em]Vb

Pupation occurs when ER(t)/V (t) = [Ej
R], a time which has to be evaluated numerically.

This time decreases for decreasing f , but the size at metamorphosis, and so the number
of eggs, decrease as well. The maximum value [ER] can take for increasing V (t) is [Em

R ] =
(1−κ)f [Em](k̇E/ṙ−1) = (1−κ)f [Em] g+lbf−lb

, which is reached asymptotically only. It might

be useful to define the stress value sj = [Ej
R]/[E

ref
R ], with [Eref

R ] = (1 − κ)[Em]g
k̇E+k̇M
k̇E−gk̇M

=

(1 − κ)[Em]
g+lb
1−lb

, which is [Em
R ] for f = 1, as parameter. The maximum reproduction

buffer density at f thus becomes [Em
R ] = [Eref

R ]f 1−lb
f−lb

. This rule for metamorphosis, i.e.

metamorphosis occurs when [ER] = sj[E
ref
R ], allows that the number of instars can depend

on food density.
Stress sj has a simple relationship with scaled reproduction buffer density: vjR =

[Ej
R]

[EG]
κ

1−κ = sj
1+lb/g
1−lb

. Scaled time since birth at pupation, τj = tj k̇M , can be found from

vjR = f
g
g+lb
f−lb

(1 − exp(−rτj)) − τjkv
b
H exp(−τjr)/l3b with r = ṙ

k̇M
= f/lb−1

f/g+1
. A decrease of

food availability, f from 1 to lb decreases allocation to reproduction, but even more to
growth, with the effect that pupation is reached earlier, but at a smaller size. The lowest
scaled function response fmin for which pupation is possible, τj <∞, satisfies the condition
fmin−lb

1−lb
= fmin

sj
, so fmin = sj lb

sj−1+lb
, while fmin > lb must apply to start development.

The simplifying assumption that the chemical composition of the structures of imago
and lava are equal in terms of relative elemental frequencies seems to be rather natural. The
measured respiration of pupae follows the pattern that can be expected on the basis of deb
theory, see Figure 7.8. We see an initial decline during the final stages of the transformation
of structure of the juvenile to reserve, followed by an increase when the structure of the
adult builds up. This once more demonstrates that reserve does not require maintenance.
More in particular the mineral fluxes of the pupa simplify to 0 = nMJ̇M + nOJ̇O with

nT
O =

(
nCV nHV nOV nNV
nCE nHE nOE nNE

)
and J̇T

O =
(
J̇V J̇E

)
,

J̇V = −M l
V k̇

l
E +MV ṙ with

d

dt
M l

V = −k̇lEM l
V and

d

dt
MV = ṙMV

J̇E = ylEVM
l
V k̇E − J̇EC with J̇EC =ME(v̇j/L− ṙ) and κJEC = yEV ṙMV + jEMMV

whereM l
V (t) and y

l
EV refer to the larval structure andME,MV , L to the reserve and struc-

ture of the imago; v̇j = v̇Lj/Lb is the elevated energy conductance, where Lb and Lj are
the lengths are birth and metamorphosis. A simplifying assumption is k̇E = k̇lE, although
the substrates for both transformations differ. Since maturity builds up, no allocation to
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reproduction occurs during the pupal stage. Applications of the model should reveal if the
reproduction buffer that has been build up during the larval stages remains separate from
the reserve in the pupa, or that they merge; merging leads to earlier emergence and a re-
duction of effects of nutritional condition on emergence. The inverse yield for structure (of
the image) on reserve y−1

EV = yV E must be smaller than ylV E if structure of larva and imago
are chemically identical, else the interconversion to reserve would be without overhead.

Although the gradual decay of larval structure is important to capture the U-shaped
profile of pupal respiration in time, for the state at emergence we can simplify by assuming
that the conversion is instantaneous. In that case, reserve at pupation (excluding the
reproduction buffer) amounts to Ej = ylEVM

j
V µE + E(tj), where M

j
V is larval structure

at pupation and E(tj) larval reserve at pupation. So the pupa evolves from (L,E,EH) =
(0, Ej, 0) to (Le, Ee, E

e
H), where E

e
H is a parameter. The method to derive Le and Ee

differs from that of egg development, because egg initial reserve was unknown, but reserve
density at birth was. The changes in uE, l and uH given in (2.26-28) still apply, where
the start now has label j, and ’birth’ label e. The scaled quantity vH = uH

1−κ changes as
d
dτ
vH = − d

dτ
uE − kvH and the scaled time since pupation is given by τe =

∫ veH
0

dτ
dvH

with
d
dτ
uE = −uEl2 g+l

uE+l3
and d

dτ
l = 1

3
guE−l4
uE+l3

and uE(0) = l3j (κκV + f/g) with κV = ylEV /yEV is
the conversion efficiency from larval reserve to larval structure, back to imago reserve.

The weight at emergence has contributions from structure, reserve and reproduction
buffer; the latter is the same as at pupation. Substitution gives W e

w = Ved
w
V + (E +

ER)
dwV wE

dEµE
= dwVL

3
m(l

3
e +

[EG]wE

κdEµE
((1− κ)vjRl

3
e + ueE)) with typically dwV = 1g cm−3.

Reserve mobilisation in imagos is at a constant rate to fuel (somatic plus maturity)
maintenance, while the reproduction buffer is also mobilised at a constant rate to produc-
tion of batches of eggs. Metabolic history prior to pupation can dominate reproductive
output after emergence (such as in ephemeropterans) and buffer handling rules can be
species specific; The steady state reproduction rate, where assimilation balances mobilisa-
tion, is Ṙ = (ṗeXκX − ṗeJ − ṗeM)/E0, where ṗ

e
X = f{ṗXm}L2

e is the feeding rate (in J d−1),
ṗeJ = k̇JE

e
H is the (constant) maturity maintenance rate of the imago, ṗeM = [ṗM ]L3

e is the
(constant) somatic maintenance rate and E0 the energy cost of an egg at f . Since food
of larvae and imagos is very different, the specific assimilation rates might differ as well.
Imagos typically heat their body before and during flying [582], so somatic maintenance
is temporarily increased. Since the reproduction buffer is also used for maintenance if
reserve mobilisation is not sufficient, it hardly makes sense to separate reserve from the
reproduction buffer in imagos. Like larvae, imagos don’t change in maturity.

Given the reasoning of ageing, it is likely that larvae live too short for ageing to be
important and that ageing is reset at pupation. On the assumption that ageing acceleration
does not occur (sG = 0) and that ageing during pupation can be neglected and given
that growth is ceased after emergence (ṙ = 0), (6.1) reduces to d

dt
mQ = ηQC

ṗC
MV

and
d
dt
mD = k̇WyDQmQ. For constant ṗC and mQ(0) = 0 and mD(0) = 0, this leads to

mQ(t) = ηQC
ṗC
MV

t and mD(t) = k̇WyDQηQC
ṗC

2MV
t2. The result is that the hazard rate equals

ḣ(t) = 3ḣW t
2 and the mean time since emergence at death is tm = Γ(4

3
)/ḣW .

Hibernation can occur in all stadia and impressive migratory movements are known in
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a variety of insect species [842].

This model differs from the standard deb model with acceleration by the acceleration
that here occurs during the adult stage; the end of acceleration is not triggered by a
maturity threshold by by a threshold of [ER]. Moreover larval structure is transformed
to reserve, maturity is reset at pupation and growth of the imago is ceased at emergence.
For comparative reasons it might be of interest to derive a maturity threshold at pupation

if maturation would continue during larval development. With ṙ = fk̇E−gk̇M
f+g

and ṗC =

f [Em]V g
k̇E+k̇M
f+g

, maturity would change as d
dt
EH = (1 − κ)ṗC − k̇JEH , which amount to

EH(t) = Eb
H exp(−k̇Jt) + 1−exp(−(ṙ+k̇J )t)

ṙ+k̇J
(1− κ)ṗC(t) for t is time since birth.

7.8.1.1 Pupa dynamics in hex and hax models

Dina Lika composed to following derivation of pupa-dynamics as used in DEBtool_M\animal\get_tj_hex
and get_tj_hax.

Decay of larval structure:

dV l

dt
= −k̇lEV (7.28)

Increase of pupa structure:

dV

dt
= ṙV (7.29)

Reserve dynamics:

dE

dt
= κV k̇

l
EV − ṗC (7.30)

Changes in maturity

dEH
dt

= (1− κ)ṗC − k̇JEH (7.31)

where ṗC = E [EG]v̇j/L+[ṗM ]

κ[E]+[EG]
with v̇j = v̇Lj/Lb. v̇ is the energy conductance at birth, Lb

and Lj the length at birth and pupation, respectively.

A simplifying assumption is that k̇lE = k̇ = v̇/Lb. To simplify further, we assume that
the conversion of V l to E is instantaneous. So, initial energy in reserve E(tj) + κV [EG]Vj.

Next we introduce scaled variable to arrive in a non-dimensional form of equations 8.1
and 7.30

Set uE = E
g[Em]L3

m
and l = L

Lm
, with g = [EG]

κ[Em]
, k̇M = [ṗM ]

[EG]
, [Em] =

{ṗAm}
v̇

, and Lm = v̇
gk̇M

.

Note that v̇ is the energy conductance before acceleration.

Reserve dynamics:
d
dt
E = −ṗC = −E [EG]v̇j/L+[ṗM ]

κ[E]+[EG]

= −E [EG]v̇jL
2+[ṗM ]L3

κE+[EG]L3

= −EL2 [EG]v̇j+[ṗM ]L

κE+[EG]L3

(7.32)
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Table 7.2: The different types of acceleration, the variables and/or parameter values that
change, the approximate events of start and end of changes and the observable changes (decrease
in blue, increase in red), relative to the standard DEB model.

type variable period regulation

R κ h - j J̇O,
d
dt
EH ,

d
dt
W , ab, aj, ap, Wj, Wp

X X b - ∞ J̇O, Ṙm,
d
dt
W , Wj, Wp, W/L

3, aj, ap
A {ṗAm} b - p J̇O, Ṙm,

d
dt
W , Wj, Wp, W/L

3, aj, ap
M {ṗAm}, v̇ b - j J̇O, Ṙm,

d
dt
W , Wj, Wp, ab, aj, ap

T {ṗAm}, v̇, k̇J , [ṗM ] 0 - b J̇O, Ṙm,
d
dt
W , ab, aj, ap

In scaled form:

d
dt
uE = −uEl2L2

m

[EG]v̇j

g[Em]L3
m

+
[ṗM ]L

g[Em]L3
m

κuE+
[EG]L3

g[Em]L3
m

= −uEl2
κv̇j
Lm

+
[ṗM ]l

g[Em]

κuE+κl3

= −uEl2 v̇j/Lm+k̇M l

uE+l3

= −uEl2 v̇sM/Lm+k̇M l
uE+l3

= −uEl2 gk̇MsM+k̇M l
uE+l3

(7.33)

Note that in the third step v̇j was set equal to v̇sM , with sM = Lj/Lb.
If we set t = τ/k̇M , equation 7.33 becomes

d
dτ
uE = −uEl2 gsM+l

uE+l3 (7.34)

Changes in the scaled length:
d
dτ
l = 1

Lmk̇M

dL
dt

= 1
Lmk̇M

ṙ
3
L

= ṙ
3k̇M

l

(7.35)

with ṙ = [E]v̇j/L−[ṗM ]/κ

[E]+[EG]/κ
= κEv̇sM−[ṗM ]L4

κE+[EG]L3
1
L
= uEgsM−l4

uE+l3
k̇M
l
.

Therefore,
d

dτ
l =

1

3

uEgsM − l4

uE + l3
(7.36)

7.8.2 Metabolic acceleration

Metabolic acceleration is defined as a long-term increase in respiration, relative to expecta-
tion based on the standard deb model. Table 7.2 presents 5 types of metabolic acceleration
that have been found, as discussed in [775]. The maturation type does not concern an in-
crease in specific feeding, assimilation or mobilisation, only in change in allocation. The 4
other types do involve such an increase and concern an increasing number of parameters.
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7.8.2.1 Maturation

An illustrative and remarkable form of acceleration of maturation has been observed in
the Australian myobatrachid Crinia georgiana, compared to Pseudophryne bibronii [1001],
see figure 7.9. Crinia sports developmental acceleration, Pseudophryne does not. Their
maximum body weights are similar, but Crinia has larger eggs. They both have a free-
swimming tadpole stage, but we also found the pattern in species with direct development.

When Crinia hatches, before it starts feeding, and the water table in their pond is
low, it decreases allocation fraction κ steadily till birth. Between birth and metamorphosis
κ remains constant at a low level, and is reset after metamorphosis. This has several
coordinated effects: respiration is increased, growth is decrease and maturation increased.
In view of growth overheads, a decrease of growth might expected a decrease in respiration.
But that does not happen: all reserve that embryos and juveniles allocate to the (1 −
κ) branch of mobilised reserve is spend on maturity maintenance and maturation, and
eventually ends up as carbon doixide, water and N-waste, which comes with the use of
dioxygen. The ecological significance is that they reach metamorphosis much earlier and
smaller, allowing them to leave their pond before it dried out. It seems that the rate
at which reserve is mobilized, which depends on the amounts of reserve and structure, is
not changed. That is, the absolute mobilised flux steadily increases, and the one relative
to structure steadily decreases. Mobilisation also does not change during the late embryo
stage when the acceleration of maturation occurs. So respiration increases, but mobilisation
does not.

Acceleration of maturation is remarkable, because it demonstrates the trait off between
growth and maturation. Acceleration is achieved by changing κ, while it typically remains
constant during the full life cycle [858]. The fact that it occurs in direct as well as indirectly
developing frogs shows that the mode of development has nothing to do with acceleration
of maturation.

In summary, the diagnostic characteristics of this type of acceleration are

� no change in size-specific feeding or mobilisation

� a temporary decrease in allocation fraction κ, with the effect of

a decrease of growth

an increase in maturation,

a reduction of the size at stage transitions

an increase in respiration

Since this type of acceleration is only found in embryos and juveniles, and the change in κ
is only temporary, effects on reproduction are probably minor.

7.8.2.2 Intake

A rather frequently occurring form of acceleration is an increase in feeding rate combined
with shifts in food preference. The feeding capacity just increases with squared structural
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P. bibronii

C. georgiana

Figure 7.9: Dry weight (left) and dioxygen consumption (right) of two similar myobatrachid
frogs P. bibronii (top) and C. georgiana (bottom) at 12 ◦C. Both sport indirect development, via
a tadpole stage. Hatching, birth and metamorphosis are indicated, but the first two coincide in
P. bibronii. The tadpoles of this species live in permanent pools, while that of C. georgiana in
temporary ones that dry up, soon after their metamorphosis. C. georgiana accelerates maturation
by lowering κ temporarily, as indicated, which also reduces growth. In this way it can leave the
pond at the age of 110 days, while P. bibronii needs 200 d. C. georgiana is 4mg at metamorphosis,
P. bibrionii 35mg dry, while the maximum weights are 500 and 200mg, respectively. Both frogs
have a (constant) specific somatic maintenance rate of some 400 J d−1cm−3. The curves are
based on DEB theory and have been estimated simultaneously per species [1001]. The step-up
in respiration at birth is due to the onset of assimilation. The egg sizes differ by a factor 2
E0 = 65 and 144 J, while the maximum adult sizes of these frogs differ by a factor 10, Wd = 0.15
and 1.2 g for P. bibronii and C. georgiana, respectively. Some parameters are for P. bibronii :
EbH = 9J, EjH = 314 J, EpH = 2103 J, v = 0.040 cmd−1, κ = 0.69, [ṗM ] = 491 J d−1cm−3. And

for C. georgiana: EhH = 1.5 J, EbH = 8J, EjH = 71 J, EpH = 1686 J, v = 0.056 cmd−1, κh = 0.86,
κb = 0.61, [ṗM ] = 369 J d−1cm−3.



176 7. Extensions of DEB models

length, but the amount of food and/or the food quality increases faster for some period and
remains higher. Acceleration type X stands for ‘food’, and differs from other acceleration
types because the parameters of the individual remain constant. The individual as a
dynamic system does not change, only the interaction with the environment (food).

Neonates need high-quality food to cover their relatively high growth needs, compared
to later stages that mainly need to cover maintenance needs. Fed with the same type of
food, neonates do less well and can sport retarded growth. Taxa like fish are born tiny and
change in food preference to bigger prey while growing. Not only because they are bigger
themselves, but they also can swim faster. This can sometimes lead to an extra increase
in food intake.

When some large individuals of perch Perca fluviatilis become cannibalistic, they grow
into giants [1084]. The conversion efficiency from fish to fish is higher than from zooplank-
ton to fish.

An increase in food availability means an increase in growth rate. Such a cause can
be detected by comparing different diets and food availability levels. If the amount of up-
curving of length-at-age is sensitive to such changes, this indicates for a typeX acceleration.
When fed with abundant food of high quality, length, or the cubic root of weight, increases
linearly for neonates and incubation times are be well-predicted by the standard DEB
model. So acceleration disappears in such situations. Although actual intake is increased,
intake capacity is not.

In summary, the diagnostic characteristics of this type of acceleration are

� an increase in size-specific feeding and assimilation

� no increase in size-specific maximum assimilation

an increase of growth, maturation and reproduction

little change in size at stage transitions

an increase in respiration

� acceleration disappears if high quality food is provided and incubation time is then
predicted well by the standard model

7.8.2.3 Assimilation

Type A acceleration concerns in increase in surface area-specific assimilation capacity at
some stage in development. This acceleration does not disappear at abundant high-quality
food. Males of the longfin inshore squid seem to make this step-up at birth, see Figure
7.10, the southern elephant seal at puberty, see Figure 7.11. The curve for the male
elephant seal assumes that puberty is an event; the data shows that puberty takes a period
rather than an event, but this ‘detail’ is omitted for simplicity’s sake. Food intake matches
this capacity increase, since if not, we would not notice the increase. Where type X
acceleration typically concerns a shift in food preference, type A acceleration is a step-up
in the assimilation rate and with a constant digestion efficiency this goes with a step-up
in the feeding rate. When assimilation is increased, but not reserve mobilisation (see next
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Figure 7.10: Length-at-time since birth of male (blue)
and female (red) longfin inshore squid Doryteuthis
pealei. Data from [1393]. The fits assume that the
mean temperature was 15 ◦C. The parameters of both
sexes are identical, except for the maximum specific
assimilation rate {ṗAm}. The measured and predicted
age at birth are

temperature measured predicted
(◦C) (d) (d)

22 10.71 11.14
18 18.54 17.35
15 26.75 25.83

Data from [943]

Figure 7.11: Weight-at-time since
birth of male (blue) and female (red)
southern elephant seal Mirounga leon-
ina. Data from [213]. The fits as-
sume that the body temperature was
38.1 ◦C. The parameters of both sexes
are identical, except for the maximum
specific assimilation rate {ṗAm} of the
male makes an instantaneous jump up
at puberty.
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Figure 7.12: The pea aphid Acyrthosiphon
pisum accelerates, like other insects, till the fi-
nal moult, where growth is ceased. Data from
[1285].

acceleration type), reserve capacity increases. As a consequence of the increase of reserve
density (the amount of reserve per structure), mobilisation increases but not as a result
of an increase in mobilisation capacity. This step-up in reserve capacity comes with a
decrease of growth rate and an increase in capacity to survive starvation.

The function of this sex-dimorphy is probably social. So far, I don’t know of examples
of type A acceleration that affects both sexes.

In summary, the diagnostic characteristics of this type of acceleration are

� change in size-specific feeding and assimilation, but not mobilisation

� change in reserve structure ratio during acceleration at constant food

an increase in growth, maturation, reproduction and respiration

on effect on size at stage transitions

an increase in respiration

� acceleration does not disappear if high quality food is provided

� incubation time is predicted well by the best fitting standard model

7.8.2.4 Mobilisation

A different and much more common form of acceleration is by the simultaneous increase of
surface-area specific assimilation rate and energy conductance during the period between
birth and metamorphosis [795]. The increase is proportional to structural length. The
factor with which these parameters at birth are multiplied to arrive at those at (metabolic)
metamorphosis, the acceleration factor, depends on feeding conditions. At high feeding
levels, acceleration is larger than at low ones. So two individuals might be identical in
terms of parameters and state variables (amounts of reserve and structure) at birth, might
be in different environments during the early juvenile period, and remain different for
the rest of their lives, even when exposed to the same environment. This pattern can
be captured concisely in DEB theory by assuming that the embryo, late juvenile and
adult stages behave as isomorphs, while the early juvenile stage increases its surface area
proportional to structural volume, rather than volume to the power 2/3. Since assimilation
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and mobilisation increase simultaneously, reserve turnover increases, but reserve density is
unaffected. Acceleration type M stands for ‘morph’, and differs from type A acceleration
by the involvement of the energy conductance and by taking place between birth and
metamorphosis. Metabolic metamorphosis is defined as the moment of switching back to
the isomorphic state and might, or might not, correspond with a sudden morphological
change. This type of acceleration can be recognised by an up-curving of length-at-time
since birth at constant food, an incubation time that is longer than expected without
acceleration, and reserve density is unaffected.

Type M acceleration was first discovered in anchovy Engraulis encrasicolus [1077,
1078], bluefin tuna Thunnus orientalis [679] and zebrafish Danio rerio [49]. Acceleration
has now been found in many ray-finned fish (actinopterygii) at scattered places, but not
in cartilage fish (chondrichthyes), although all orders of this class are represented in the
collection [791]. Ray-finned fish produce tiny eggs, compared to cartilage fish, and many
(but not all) species first elongate their body as neonate and later become more bulky.
When they elongate their body, they change in shape in the way described above. Quite
a few other taxa, e.g. annelids, bivalves, echinoderms, have larval stages that have a very
different morphology, compared to the late juvenile and adult stages. These larval stages
develop slower than the late juvenile and adult stages. Other taxa, e.g. cephalopods, don’t
have deviating morphology of early juveniles, but still show acceleration. Figure 7.10 shows
this for squid Dorytheutis. Although the acceleration is rather small in this example, and
the up-curving of length-at-age is not really visible in the data (although it is in several
other cephalopod species in the add my pet collection), type M acceleration is still de-
tectable in squid because of the long incubation times. Without type M acceleration, the
parameters that would describe post-embryonic growth correctly, would under-estimate in-
cubation times considerably. Figure 7.12 gives an example of an insect, which sport extreme
acceleration. The collembola Folsomia (enthognatha) represents a transition stage, where
acceleration clearly occurs in the neonate till puberty, but most growth (after puberty)
is of the von Bertalanffy type, so without acceleration. Insects evolved from crustations,
according to many workers. It is remarkable that none of the 13 species of branchiopods
in the collection have acceleration and all 4 species of maxillopods have it. Maxillopods
have nymph stadia with a deviating morphology, which branchiopods don’t have.

Figure 7.13 gives an overview of where type M acceleration has been found. It evolved
at least 5 times in animal kingdom. We cannot be sure that accelerating metabolism is
the original mode in animals and that it is lost in many taxa. Although species with
larval stages typically accelerate, not all accelerating species have larval stages. Starting
metabolism slowly seems to be more general than having larval forms. Larval development
it thought to have evolved many times independently [538]. It is likely, therefore, that
metabolic acceleration also evolved many times independently.

Big-bodied species typically get big-bodied offspring. The co-variation rules of DEB
parameters specify that maturity at birth (and puberty) increase proportional with maxi-
mum structural volume. When we compare species of very different maximum body sizes,
it is natural to compare them on the basis of maturity density: the ratio of maturity and
maximum structural volume. Maturity density at birth and puberty have no clear rela-
tionship with acceleration, see Figure 7.14. The figure also illustrates that relative size at
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Figure 7.13: The distribution of acceleration in animal taxa. The colour of the font refers to
the value of the acceleration coefficient. Taxa can have more or less accelerating species, which is
why colours can vary within a word. The acceleration coefficient refers to the factor with which
the specific assimilation and energy conductance for neonates have to be multiplied to arrive at
values for late juveniles and adults.
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Figure 7.14: Maturity density at birth and puberty hardly depend on acceleration. Relative
length at birth decreases with the acceleration factor, but length at puberty hardly so. As a
consequence, maturity ratio spbH = EpH/E

b
H increases with the acceleration factor, but [EpH ]/[E

b
H ]

hardly so. Data for 785 species of the add my pet collection, sampling date 2017/05/14
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birth is taxon-specific, the lophotrochozoans, that is mostly the molluscs and specifically
the bivalves, have really small neonates.

What could be the function of type M acceleration? The patterns for Actinopterygii,
where relative length at birth hardly depends on ultimate length, suggest and neonates
need to have a particular small size to stay very close to the surface, where algae and
small-bodied grazers are, which serve as food. Large-bodied fish species accelerate more
to reduce the time to reach puberty. This seems to be an adaptation to the problem that
their food are predators of their offspring. They try to super-saturate the predators of
their neonates, by reducing the spawning period, and meeting in relatively small spawning
grounds. This reminds of the strategy of bamboos, which suffer from chickens that feed on
their seed. They synchronize flowering, skipping years, to avoid that these birds can build
up high population densities.

Species range from supply to demand systems. Supply-species ‘eat what is available’
and demand-species ‘eat what they need’. Insects and cnidarians are more to the supply
end of the spectrum, bird and mammals to the demand end. The standard DEB model
has a supply-organisation for growth and maturation (or reproduction) and a demand-
organisation for maintenance. This set-up already reveals that no species are at the ex-
tremes of the spectrum. Independent of where species are in the spectrum, there must
always be a balance between acquisition and use of resources.

Figure 8.9 shows the energy conductance as function of maximum structural length
before and after acceleration. The scatter is large and there is no really clear pattern to
discover for acceleration species. They do not have a low energy conductance before accel-
eration, combined with a typical one after, nor do they have a typical energy conductance
before acceleration, combined with a larger one after. The figure does confirm the expecta-
tion of the co-variation rules of DEB theory that energy conductance does not depend on
maximum structural length. When we look at the maturity levels at birth, metamorphosis
and puberty, the pattern is much more clear: accelerating species have lower values than
non-accelerating species, but the differences decrease from birth to puberty. Although size
at birth, metamorphosis and puberty not only depend on parameter values, but also on
food availability, generally size increases with maturity level. Figure 7.15 shows that the
absolute neonate growth is larger for non-acceleration species, but at puberty it is smaller.
Relative neonate growth is independent of acceleration, but accelerating species grow rela-
tively faster at puberty. The difference between absolute and relative growth is caused by
neonate accelerating species are relatively smaller than non-accelerating ones, see Figure
7.14.

A low metabolic rate at birth allows for more time to learn finding and selecting food,
capturing it and digesting it. The specific somatic maintenance costs for accelerating
and non-accelerating species turn out to be the same (not illustrated). So in terms of
demand, a small size means less need for resources, which is thus less for accelerating
species when young. Digestion frequently involves a gut flora that first needs to settle
and might need time to function well in interaction with the host. The host supports gut
flora by secreting polysaccharides into the gut, which might not only support the flora, but
might also select for particular species. This illustrates the need of fine tuning between host
and gut flora. A low level of metabolism only requires a low assimilation rate to support it.
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Figure 7.15: The growth rate (first row) at birth (left), metamorphosis (middle) and puberty
(right), and the specific ones (second row) at 20 ◦C as functions of maximum structural length.
Colours relate to acceleration: black = no acceleration, via blue and red, to white = max acceler-
ation. Birth and metamorphosis coincide for non-accelerating species. Data from the add my pet
collection, sampling date 2017/05/05 at 784 species.
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Endotherms have a high metabolic rate, because of their high body temperature, and don’t
sport acceleration. They do have advanced forms of parental care, however, and mammals
typically feed milk to their neonates. Milk composition beautifully matches the needs of the
neonate and changes dynamically with the needs. Kangaroos can have new neonates, while
the joey of the previous reproductive cycle still suckles, but from different nipples that give
milk of different composition. Both birds and mammals typically inoculate the gut flora of
their neonates via saliva. So here the parents assist in covering the metabolic need of the
neonates; the consideration on acceleration helps to understand why parental care evolved
in endotherms. These examples serve to illustrate that the initiation of assimilation is a
delicate process and point to the functionality of starting slowly.

Since all species with larval forms have acceleration, and larvae thus have a lower
metabolic rate before, compared to after metamorphosis, the suggested function of accel-
eration is in nice harmony with the idea of Garstang on the function of marine larvae as a
mechanism for dispersal [465]. Slow metabolism allows for more dispersal time, especially
in situations where dispersal rate is not metabolically controlled, but depend on water or
air transport, for instance.

Not all larvae feed, while DEB theory defines birth as the onset of assimilation (poten-
tial), not as hatching. This classifies non-feeding larvae as embryos; they may represent
transition to direct development, where the larval stage is completely taken out of the life
cycle. With the reduction of the larval period, the embryo needs to increase metabolic rate,
or the juvenile and adult need to decrease metabolic rate to avoid a sudden step up. Few
data on metabolic rate of embryos and juveniles are available. Most data are consistent
with the idea that acceleration of metabolism is initiated at birth. Data on early larval de-
velopment of the Japanese oyster Crassostrea gigantea shows that acceleration only starts
after birth and ceases at settlement. This pattern might be more general, and probably
applies to most bivalves and possibly to many other taxa as well. The pondsnail Lymnaea
stagnalis still has a trochophora larval stage, but it passes through this stage inside the egg.
It even seems to start feeding inside the egg (pers. comm. Elke Zimmer), but continues to
accelerate after hatching. Both examples show different cases of uncoupling between larval
stage and acceleration.

In summary, the diagnostic characteristics of this type of acceleration are

� change in size-specific feeding and assimilation and mobilisation

� no change in reserve structure ratio during acceleration at constant food

an increase in growth, maturation, reproduction and respiration

on effect on size at stage transitions

an increase in respiration

� acceleration does not appear if high quality food is provided

� incubation time is predicted well by the best fitting standard model
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7.8.2.5 Temperature

Endotherms can accelerate during ontogeny due to an increase in body temperature, which
stands for type T . Birds and mammals are ectotherms as embryo, and many need maternal
care to keep body temperature in a healthy range. Since embryos are kept relatively warm
by their parents, metabolism is high, so is heat generation, which increases with size.
Although this rest-heat is not sufficient to maintain a constant body temperature, it does
elevate body temperature, also because surface area per volume decreases. While growing,
their capacity to maintain a constant body temperature increases, which is visible as an
acceleration of growth [764]. This is why (sigmoid) Gompertz curves and logistic curves
have been used to describe size-at-age for birds, see Section 4.11.2. Measured and predicted
the body temperature and growth curve of the guillemot match perfectly, see [774, Figure
4.28]. Such a cause can be detected by studying growth at sufficiently high environmental
temperatures, such that body temperature is constant, even if the capacity to heat the body
is less than adequate. This does not always work, however, because some species need a
lower temperature and a temperature gradient during embryo development. Brunnich’s
guillemot seems to need a 40 ◦C temperature difference between one side of the egg and
the other to develop [1171].

7.8.2 Derivation of Eq. (7.84)

All surface areas should be divided by the shape correction function M(V ) during the
juvenile I stage. Since the dimension length in the energy conductance v̇ is the ratio of a
volume and a surface area, v̇ should be replaced by v̇∗ = v̇M(V ). The maximum specific
searching rate {Fm} and the maximum feeding rate {J̇XAm} are both multiplied by the
shape correction function, which implies that half saturation coefficientK = {J̇XAm}/{Fm}
remains constant; for constant food density X, the scaled functional response f = X

K+X

remains constant as well. The equation for d
dt
e is given in Eq. (2.11), where v̇ is replaced

by v̇∗.

The specific growth rate for the standard DEB model is given in Eq. (2.21): ṙ =

v̇ e/L−(1+LT /L)/Lm

e+g
. Since g = [EG]v̇

κ{ṗAm} , and v̇ as well as {ṗAm} are affected by the changes in

shape during the juvenile I stage in the same way, g is not affected. Since Lm = κ{ṗAm}
[ṗM ]

=
v̇

k̇Mg
, Lm is affected and should be replaced by L∗

m. The replacement of v̇ by v̇∗ gives the

result for ṙ. The equation for d
dt
L is given above Eq. (2.23); notice that v̇ should be ṙ, as

mentioned in the errata.

The equation for d
dt
UH found from that for d

dt
EH given in Eq. (2.5.2), that for ṗC given

in Eq. (2.12) and that for ṗJ given in Eq. (2.19). The substitutions for the standard model
for juveniles amount to

d

dt
EH = (1− κ)E(

v̇

L
− ṙ)− k̇JEH (7.37)

= (1− κ)eL3{ṗAm}
v̇

(
v̇

L
− ṙ)− k̇JEH (7.38)
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= (1− κ)eL2{ṗAm}
g + (L+ LT )/Lm

e+ g
− k̇JEH (7.39)

where LT is set equal to zero. In this equation {ṗAm} should be replaced by {ṗAm}∗ and
Lm by L∗

m for changing shape during the juvenile I stage. Now we divide by the left and
right hand sides by {ṗAm} to remove energy, UH = EH/{ṗAm}, but this assimilation power
{ṗAm} only serves as a reference to eliminate the dimension energy, and should not be
replaced. The result is

d

dt
UH = (1− κ)eL2{ṗAm}∗

{ṗAm}
g + L/L∗

m

e+ g
− k̇JUH (7.40)

= (1− κ)eL2 g
∗ + L/Lm
e+ g

− k̇JUH (7.41)

which is given in Eq. (7.84).

7.8.2 Metamorphosis at constant food

The amount of metabolic acceleration of type M at abundant food can be quantified
by acceleration factor sM = M(Vj) = Lj/Lb. The end of acceleration, an event called
metamorphosis j, can, or cannot, be linked to an abrupt change in morphology. The use
of physical length measures is problematic when shapes are changing. Generally the shape
coefficient before, δbM, and after, δjM, acceleration can differ. Although no strict rules exist
for how to link physical to structural length during acceleration, a natural choice for a
shape coefficient is δM(L) = wbδ

b
MδbM + (1− wa)δ

j
M, with wa = M(L3).

If food density is constant, and e = f , the juvenile I is growing exponentially at specific
growth rate ṙj, say, where M(V ) = L/Lb increases from M(Vb) = 1 to M(Vj) = Lj/Lb =
sM. Type M metabolic acceleration is assumed to affect {Ḟm}, {ṗAm}, v̇ and {ṗT} before
acceleration by a factor sM after the end of acceleration.

Work with Starrlight Augustine and Goçalo Marques showed the following simplifica-
tions. At metamorphosis length growth switches to von Bertalanffy growth in a smooth
way, with the implication that Lj =

L∞

1+
ṙj

3ṙB

. Lm = v̇
k̇Mg

does not have the interpretation of

the maximum length. We have for L(ab) = Lb and L(aj) = Lj and LT = {ṗT }
[ṗM ]

< eLm−Lb,

where {ṗT} is the value at birth, while {ṗT} = 0 before birth.

d

da
L = Lṙj/3 with ṙj = v̇

e/Lb − (1 + LT/Lb)/Lm
e+ g

LT =0
= k̇M

eLm/Lb − 1

1 + e/g
for ab ≤ a < aj

L(a) = Lb exp (ṙj(a− ab)/3) for ab ≤ a < aj

d

da
L = ṙB(L∞ − L) with ṙB =

k̇M/3

1 + e/g
and L∞ = eLmsM − LT sM for a ≥ aj

L(a) = L∞ − (L∞ − Lj) exp (−ṙB(a− aj)) for a ≥ aj

The specific growth rate ṙ relates to the von Bertalanffy growth rate ṙB as Lṙ/3 = ṙB(L∞−
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L), which leads to

ṙ = 3ṙB
L∞ − L

L
=

k̇M
1 + e/g

eLmsM − LT sM − L

L
=

v̇

e+ g

esM − (L+ LT sM)/Lm
L

with ṙ = ṙj for L = Lj.
To find length at metamorphosis Lj given maturity at metamorphosis Ej

H , we first need
the mobilisation rate from Eq. (2.12) and then the change in maturity from Eq. (2.18)

ṗC = e[Em]L
3(v̇sM/L− ṙ)

L=Lj
= f [Em]L

3
j(v̇/Lb − ṙj)

d

da
EH = (1− κ)ṗC − k̇JEH or

d

da
UH = (1− κ)eL3(1/Lb − ṙ/v̇)− k̇JUH

starting from the state at birth (a, e, L,EH) = (ab, f, Lb, E
b
H). The length at metamorphosis

is found by integration of

d

dEH
L =

ṙjL/3

(1− κ)ṗC − k̇JEH
with L(Eb

H) = Lb and L(E
j
H) = Lj =

∫ Ej
H

Eb
H

(
d

dEH
L

)
dEH

An alternative way to find Lj is to solve the ode for EH first. For t being the time
since birth, t = a− ab

EH(t) = (1− κ)f [Em]L
3
b(v̇/Lb − ṙj)

exp(ṙjt)− exp(−k̇Jt)
ṙj + k̇J

+ Eb
H exp(−k̇Jt)

Now we should solve EH(tj) = Ej
H and the solution for tj must be found numerically.

Finally we have Lj = Lb exp(ṙjtj/3).
The change in length just before and after metamorphosis are equal, but the change

of these changes, so the acceleration, makes a jump. These second derivatives, for LT =

0, are given by d2

d t2
L
∣∣∣
L↑Lj

=
ṙ2j
32
Lj and d2

d t2
L
∣∣∣
L↓Lj

= −ṙ2
B(L∞ − Lj), and their ratio is

−(eLm/Lb − 1)3. Although this ratio is independent of Lj, L∞ = eLmsM still depends on
Lj.

In scaled quantities, for uE = E
g[Em]L3

m
, vH = EH

(1−κ)g[Em]L3
m
, l = L

Lm
, τ = tk̇M (where

t is time since birth), k = k̇J
k̇M

, rB = ṙB
k̇M

, rj = ṙj
k̇M

, q = q̈

k̇2M
, ha = ḧa

k̇2M
, h = ḣ

k̇M
we have

the following. The scaled specific growth rates r during and after acceleration amount for
l∞ = sM(f − lT ) and r = 3rB(l∞/l − 1) to

rj =
g

f + g

f − lT − lb
lb

and r =
g

f + g

fsM − lT sM − l

l
while rB =

g/3

f + g

where rj = r for l = lj. Or in terms of uE = el3/g rather than f = e = guE/l
3

rj =
guEl

−1
b − l3lT/lb − l3

uE + l3
and r =

guEl
−1sM − l2lT sM − l3

uE + l3
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Given (τ, e, l, vH) = (τj, f, lj, v
j
H) at metamorphosis and assuming vjH < vpH

d

dτ
l = lrj/3 or lr/3 = rB(l∞ − l) before or after j

d

dτ
uE = fl3/lb − uE(g/lb − rj) or fsMl2 − uE(gsM/l − r) before or after j

d

dτ
vH = el3(1/lb − rj/g)− kvH or el2(sM − lr/g)− kvH before or after j

d

dτ
q = (ql3sG + ha)e(sMg/l − r)− rq

d

dτ
h = q − rh

d

dvH
l =

rjl/3

el3(1/lb − rj/g)− kvH
or

rl/3

el2(sM − lr/g)− kvH
with

l(vbH) = lb; l(vjH) = lj =
∫ vjH

vbH

(
d

dvH
l

)
dvH ; l(vpH) = lp =

∫ vpH

vjH

(
d

dvH
l

)
dvH

Scaled maturity during acceleration (τ < τj) amounts to

vH(τ) = fl3b
1/lb − rj/g

k + rj
(exp(rjτ)− exp(−kτ)) + vbH exp(−kτ)

with vH(τj) = vjH , l(τj) = lj = lb exp(τjrj/3) or exp(τjrj) = (lj/lb)
3 = s3

M and exp(−kτj) =
s
−3k/rj
M . Substitution gives

vjH = fl3b
1/lb − rj/g

k + rj
(s3

M − s
−3k/rj
M ) + vbHs

−3k/rj
M

from which sM, and so lj, can be solved numerically. Change in scaled maturity after
acceleration (τ ≥ τj) is

d
dτ
vH = fl2(sM− l∞−l

f+g
)−kvH = b2l

2+b3l
3−kvH for b2 = fsM−b3l∞

and b3 =
f
f+g

. Scaled maturity as function of scaled time since metamorphosis becomes

vH(τ) =

(
vjH +

3∑
i=0

ai

)
e−kτ −

3∑
i=0

aie
−irBτ

with

a0 = −(b2 + b3l∞)l2∞/k

a1 = −(2b2 + 3b3l∞)l∞lδ/(rB − k)

a2 = (b2 + 3b3l∞)l2δ/(2rB − k)

a3 = −b3l
3
δ/(3rB − k)

τp = τj +
1

rB
ln
l∞ − lj
l∞ − lp

lδ = l∞ − lj

l∞ = sM(f − lT )

from with lp can be solved numerically, while vH(τp) = vpH .
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The reproduction rate Ṙ as function of length L can be found from Eq. (2.55)

ṗC = e[Em]L
3(v̇sM/L− ṙ)

= {ṗAm}
eL2

e+ g
(gsM + (L+ LT sM)/Lm) = {ṗAm}SC

Ṙ =
κR
E0

ṗR =
κR
E0

(
(1− κ)ṗC − k̇JE

p
H

)
=
κR
U0
E

(
(1− κ)SC − k̇JU

p
H

)

The gonado-somatic index (4.89) at time t1 since emptying the reproduction buffer
amounts to

Q =
MER

ME +MV

=
t1ṗR

E + L3[MV ]µE
=

t1ṗR
L3(f [Em] + [EG]yV E)

For a fully grown individual, with {ṗT} = 0 and ṙ = 0 and L = fLmsM = L∞ and
e = f , the mobilisation rate reduces to ṗC = e[Em]L

2
∞sMv̇ = f 3[Em]L

2
ms

3
Mv̇ and the

allocation to reproduction to ṗR = (1−κ)ṗC− k̇JEp
H = (1−κ)f 3[Em]L

2
ms

3
Mv̇− k̇JEp

H . The
gonado-somatic index becomes

Q =
t1k̇Mg/f

3

f + κgyV E

(
(1− κ)f 3 − k̇2

Mg
2

s3
Mv̇2{ṗAm}

k̇JE
p
H

)

This reduces to (4.89) for sM = 1.

If food is constant, e = f , and the growth period is short, relative to the life span, ṙ ≃ 0,
L ≃ esMLm−LT or r ≃ 0, l ≃ fsM − lT . Further, for lT = 0, we have d

dτ
q = qf 3s3

MsGg+

hag,
d
dτ
h = q and h3

W = hag
6
, hG = sGs

3
Mf 3g. Substitution gives d

dτ
q = qhG + 6h3

W and

q(τ) =
6h3W
hG

(exp(hGτ)− 1). Since d
dτ
S = −hS, so S(τ) = exp(−

∫ τ
0 h(ν) dν) = exp(−q(τ)).

For S(τm) = 2−1 or q(τm) = log 2 or the median life span τm is the root of 0 = log(2) +
6h3W
h3G

(1− exp(τmhG) + τmhG + τ 2
mh

2
G/2), see Eqn (6.5) of DEB3. For sG → 0, this equation

reduces and can be solved, leading to τm =
(
log2
h3W

)(

1/3).

7.8.2 Maturation ceasing at puberty

The minimum scaled functional response to reach puberty in the case of acceleration
at constant food, is found from the conditions that both growth and maturation cease
eventually. Growth ceases if L∞ = Lp, which leads to lp = (f − lT )sM. Maturation
ceases if (1 − κ)ṗC = k̇JE

p
H , with ṗC at L = Lp and ṙ = 0 equals ṗC = f [Em]L

2
pv̇sM.

Substitution gives kvpH = f(f − lT )
2s3

M. In absence of acceleration, we have sM = 1
and the condition reduces to the one that is found in Section 2.6.3 of the comments.
Section 4.10.0.3 of the comments states that supply stress at constant food amounts to
ss = κ2(1− κ)kvpHs

−3
M . Substitution in the minimum f condition learns that f can also be

found from ss = κ2(1− κ)f(f − lT )
2.
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Figure 7.16: Length as function of time at con-
stant food during acceleration. Time is scaled
such that the inclination point (i.e. transition
from V1- to iso-morphic stage) is at value 1.
Length is scaled such that the asymptote has
value 1. The green curves represent expo-von
Bertalanffy-curves, for different choices of max-
imum growth rates, the red curve is the Gom-
pertz one.

7.8.2 Acceleration of metabolism at birth

Type M acceleration amounts to the insertion of a V1-morphic stage between birth and
metamorphosis, which has the effect that {ṗAm} and v̇ increase during this period [795].
The effect on growth is illustrated in Figure 7.16. The transition from the V1- to the
iso-morphic stage is smooth, since the growth rate depends on reserve mobilisation, so
on the amounts of reserve and structure, and the amounts don’t change suddenly. The
resulting exo-von Bertalanffy curve has 4 parameters. The smooth transition between
the exponential and von Bertalanffy stages implies ṙj = 3ṙB(eLm/Lj − 1). Apart from
anchovy Engraulis encrasicolus [1077], this also has been found for Pacific bluefin tuna
Thunnus orientalis [679], zebrafish Danio rerio [49], copepods, crabs and quite a few other
species, see Figure 7.13. A remarkable implication is that if two identical neonates are
exposed to different temperature and/or food conditions, their values for {ṗAm} and v̇
differ at metamorphosis and remain different, even if they experience the same conditions
after metamorphosis. Figures 7.17 and 7.18, show a small sub-sample of the zebrafish
data that have been used to estimate parameter values (see the add my pet collection.
The acceleration by a factor lj/lb = 3 is clearly visible in the growth data of [829]. The
parameters, as given in Figure 7.18 can be used to obtain the maturity levels at the various
life stages, see Tables 7.3 and 7.4.

During the V1-morphic early juvenile stage, assimilation, dissipation and growth are
all proportional to weight at constant food, so respiration is proportional to weight. This
is exactly what [1121, 712, 991] found for prior to metamorphosis in seven species of fish:
common carp (Cyprinus carpio), rainbow trout (Oncorhynchus mykiss), red sea bream
(Pagrus major), ocean pout (Macrozoarces americanus), lumpfish (Cyclopterus lumpus),
shorthorn sculpin (Myoxocephalus scorpius), yellowtail kingfish (Seriola lalandi). After
metamorphosis, respiration was found to be less than proportional to weight, again as
expected.

Acceleration has the effect that the residence time of molecules in the reserve does not
change during acceleration, see Section 2.3 of the comments, while it would increase with
length in absence of acceleration. The maximum reserve residence time tEm = Lm/v̇ is
unaffected by acceleration. The mean value of energy conductance v̇ at 20 ◦C before and

http:\www.bio.vu.nl/thb/deb/deblab/add_my_pet/
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Figure 7.17: Total Length (snout till end of caudal fin, left) and survival probability (right) as
functions of age for the zebrafish Danio rerio. From [49], based on data from [829, 479].

120 140 160 180 200 220
2

2.2

2.4

2.6

2.8

3

age, d

S
L
,
cm

@
@I

120 140 160 180 200 220
0

200

400

600

800

1000

1200

age, d

cu
m
u
la
te
d
#
eg
gs

Figure 7.18: Observations, the symbols refer to the different individuals, and model predictions,
solid lines, for growth (left) and reproduction (right) during 82 days of caloric restriction at
two feeding levels which are estimated at f1 = 0.74 and f2 = 0.69. Animals are 116 d of
age and 2 cm standard length SL (tip of snout till base of caudal fin) at arrival. They are
acclimated to laboratory conditions for two weeks. Caloric restriction is initiated at age 132
d (arrow). From [49]. The shape coefficient during the acceleration was assumed to decrease

linearly in length: δM(L) = δbM + (δjM − δbM)
Lj−L
Lj−Lb

. In combination with data illustrated in

Figure 7.17 and other data, the parameters were estimated to be: {ṗAm} = 246.3 J d−1cm−2 (for
the embryo), v̇ = 0.0278 cmd−1 (for the embryo), κ = 0.437, κX = 0.5 (for Tetramin), κR = 0.95,
[ṗM ] = 500.9 J d−1cm−3, k̇J = 0.0166 d−1, [EG] = 4652 J cm−3, EbH = 0.54 J, EjH = 19.66 J,
EpH = 2062 J, TA = 3000K, ḧa = 1.96 10−9 d−2, sG = 0.0405, δbM = 0.1325 (for TL of embryo),

δjM = 0.1054 (for TL after metamorphosis).
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Table 7.3: Maturity levels for the embryonic developmental milestones of the zebrafish D. rerio.
Developmental stages and ages (28.5 ◦C) are as defined by [713]. Ages are presented in hours
post fecundation, hpf. The ages depend on temperature and food conditions, the maturity levels
do not.

Stage Age EH

hpf mJ

2-cell 0.75 0.01

4-cell 1 0.02

8-cell 1.25 0.02

16-cell 1.5 0.02

32-cell 1.75 0.02

64-cell 2 0.03

128-cell 2.25 0.03

256-cell 2.5 0.04

512-cell 2.75 0.05

1k-cell 3 0.07

High 3.33 0.088

Oblong 3.66 0.11

Sphere 4 0.14

Dome 4.33 0.171

30%-epiboly 4.66 0.20

50%-epiboly 5.25 0.27

Germ-ring 5.66 0.33

Stage Age EH

hpf mJ

Shield 6 0.38

75%-epiboly 8 0.71

90%-epiboly 9 0.96

Bud 10 1.3

3-somite 11 1.7

6-somite 12 2.1

14-somite 16 4.6

21-somite 19.5 8.0

26-somite 22 11.2

Prim-6 25 16.0

Prim-16 31 29.5

Prim-22 35 41.4

High-pec 42 68.9

Long-pec 48 99.6

Pec-fin 60 180

Protruding-mouth 72 280
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Table 7.4: Maturity levels for post embryonic developmental milestones of the zebrafish D. rerio.
Standard length SL (tip of snout till base of caudal fin), developmental stages and names as given
in [1067]. Ages, in days post fecundation (dpf), at f = 0.63 and f = 1 as well as SL at f = 1 are
model predictions at 28.5 ◦C. Birth corresponds with stage pSB+; metamorphosis is just before
stage PR; puberty corresponds with stage A. The ages and lengths depend on temperature and
food conditions, the maturity levels do not.

Stage age SL age SL EH
dpf cm dpf cm J

f=0.63 f=1

pSB+ swim bladder inflation 4.5 3.8 4.0 3.7 0.5

Fle early flexion 7.2 4.5 6.3 4.6 1.1

CR caudal fin ray 8.9 4.9 7.4 5.1 1.6

AC anal fin condensation 10.5 5.4 8.5 5.9 2.3

DC dorsal fin condensation 12.3 5.7 9.6 5.8 3.3

MMA metamorphic melanophore app. 12.9 5.9 10.0 6.0 3.8

AR anal fin ray appearance 14.2 6.2 10.9 6.3 5

DR dorsal fin ray appearance 15.0 6.4 11.4 6.5 5.9

PB+ following pelvic fin bud app. 18.7 7.6 13.8 7.7 12.7

PR pelvic fin ray appearance 21.3 8.5 15.5 8.5 21.9

PR+ following pelvic fin ray app. 22.5 9.2 16.3 9.3 27.9

SP onset of posterior squamation 23.8 9.8 17.2 9.8 34.9

SA onset of anterior squamation 25.0 10.4 17.9 10.5 42.3

J juvenile 26.2 11.0 18.7 11.0 50.9

J+ following juvenile 30.8 13.0 21.6 13.2 91.7

J++ following juvenile 40.7 16.0 27.5 16.4 221.6

A adults 218 26.0 59.9 30.6 2061
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after acceleration are 0.05 and 0.11 cmd−1 and the corresponding coefficients of variation
are 1.2 and 2.1, respectively. So both in mean and in variation coefficient, this means
a step-up of a factor 2 for all species together. Species that accelerate have a mean v̇
before and after acceleration of 0.035 and 0.26 cmd−1, while species that don’t accelerate
have 0.055 cmd−1. Species that accelerate start with a relatively low v̇ and end-up with a
substantially larger one.

Bivalves vary on the acceleration scheme by accelerating at a later stage: the embryo
and early juvenile stages follow the standard model, the V1-morphic phase is around meta-
morphosis, after which they follow the standard model again. The jump up in {ṗAm} and
v̇ is around a factor 10 for Crassostrea, compared to pre-metamorphosis, as is beautifully
illustrated in its mydata-file. The reserve capacity [Em] = {ṗAm}/v̇ is unaffected by the
acceleration.

The Gompertz growth curve

L(t) = L∞ exp(− exp(δG − ṙGt))

where δG = ln(ln(L∞/Lb)) and t is time since birth, is frequently used to describe growth
empirically. It has 3 parameters, while the expo-von Bertalanffy curve has 4, so that latter
has more plasticity in shape. We can compare both curves on the basis of the same values
for length at birth Lb = L(0), ultimate length L∞ = L(∞) and moment of inclination, tj.
The Gompertz curve reaches maximum growth at tj = δG/ṙG, with Lj = L(tj) = L∞/e
and d

dt
L(tj) = L∞ṙG/e. The expo-von Bertalanffy curve has d

dt
L(tj) = Lj ṙj and ṙj =

3ṙB(fLm/Lj − 1).
Writing l = L/L∞, so δG = ln(− ln(lb)), and τ = t/tj, the Gompertz curve reduces to

l(τ) = exp(− exp(δG(1−τ))) and the expo-von Bertalanffy curve to l(τ) = lb exp(τrj/3) for
τ < 1 or l(τ) = 1− (1− lj) exp(−rB(τ − 1)) for τ > 1, where rj = ṙjtj, rB = ṙBtj =

rjtj
3/lj−3

and lj = lb exp(rj/3). To compare both curves, we now require that the latter equals the
one for the Gompertz curve, lj = exp(−1), from which follows rj = −3 − 3 ln lb. Figure
7.16 compares both curves. The scaled Gompertz curve has a scaled maximum growth
rate of d

dτ
l(1) = δG

exp(1)
and the scaled expo-von Bertalanffy one of d

dτ
l(1) = −1+ln lb

exp(1)
. The

latter is larger.

7.8.3 Programmed shrinking

Fish of the superorder Elopomorpha and of the order Ophidiiformes and several other
scattered taxa, such as the paradoxal frog Pseudis paradoxa and the midwife toad Alytes
obstetricans, show substantial programmed shrinking at some point during their juvenile
period, during which they cease feeding. This coincides with substantial changes in mor-
phology, so it can be called metamorphosis. Unfortunately little is known about details
of their embryo and early juvenile development, relative to later development. For the
moment we assume that these events only affect shape and size, but its basis is lack of
better knowledge.

To quantify their development, the assumptions are that they generally follow the
standard model (for isomorphs). When maturity hits threshold Es

H , shrinking starts at
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event called s, with specific rate k̇E, which lasts some period t0. Structure, reserve and
maturity shrink in harmony, so reserve density and maturity density do not change during
this period of programmed shrinking. At event called j, the process is completed and the
standard model is followed again with the same parameters. So if the state variables Vs, Es
and Es

H apply at event s, the values at event j are Vj = δsjVs, Ej = δsjEs and E
j
H = δsjE

s
H ,

where δsj = exp(−k̇Etsj). Like all rates and times, tsj and k̇E depend on temperature.

7.9 Changing parameter values

As discussed in subsection 2.5.2 of the comments, some frogs accelerate maturation by
temporarily lowering κ. Some fish species insert a V1-morphic stage between birth and
metamorphosis, and bivalves do this at metamorphosis, as discussed in subsection 7.8.2 of
the comments.

7.9.2 Suicide reproduction

The occurrence of suicide reproduction is remarkably distributed among taxa, suggesting
that it evolved many times independently. The lampreys (Hyperoartia) sport suicidal
reproduction, but the hagfishes (Myxini) not. Like in eel and salmon, suicidal reproduction
is coupled to spawning and an early development in freshwater and marine existence in
between.

The North Pacific giant octopus Enteroctopus doflein reproduces only once at an age of
5 till 7 years when it can weigh some 70 kg. The mother lays some 105 eggs in a burrow and
guards and cares for half a year without feeding. She dies when the eggs hatch. Although
the temperature is low, such long starvation times are only possible for large-bodied species.

7.10 Summary

Add my Pet has 10 related deb models, which specification can be summarized as follows,
where the environmental variables, temperature T (t) and food density X(t), can change
in time t. All models are variations on the standard (std) model and all models deal with
environmental variables in the same way:

Effect of temperature on any rate k̇:

Basic: k̇(T )

k̇(Tref)
= exp

(
TA
Tref

− TA
T

)

Extended: k̇(T )

k̇(Tref)
= exp

(
TA
Tref

− TA
T

) 1+exp

(
TAL
Tref

−TAL
TL

)
+

+exp

(
TAH
TH

−TAH
Tref

)
+

1+exp

(
TAL
T

−TAL
TL

)
+

+exp

(
TAH
TH

−TAH
T

)
+

Effect of food on assimilation:
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if EH < EbH , ṗX = 0, else ṗX = f{ṗXm}L2 with f = X
K+X and K = {J̇Xm}

{Ḟm} and {ṗXm} =

{ṗAm}/κX

7.10.1 s-models

s-models assume isomorphy throughout the full life cycle.

7.10.1.1 std model

The std-model follows from the assumptions as listed in Table 2.4.
Within the family of deb models, the std-model can be seen as a canonical form.

Main characteristics:

◦ 1 type of food X, 1 type of structure V , 1 type of reserve E, 1 type of feces P

◦ 4 minerals (carbon dioxide C, water H, dioxygen O, N-waste N); O is not limiting

◦ 3 life stages (embryo, juvenile, adult) triggered by maturity thresholds

• birth is defined as start of assimilation via food uptake

• puberty as end of maturation and start of allocation to reproduction

◦ If mobilisation is not fast enough to cover maturity and/or somatic maintenance, rejuvenation
and/or some shrinking can occur, but only after use of the reproduction buffer

◦ The reproduction buffer is continuously converted to a spawning buffer, which is instanta-
neously converted to exported eggs, if the spawning buffer exceeds a density threshold

Parameters:

Temperature: TA, TL, TH , TAL, TAH

Hazard: ḧa, sG, δL, ḣJ , ḣ0, ḣ
e
0

Life stage: EbH , E
p
H

Core: {Ḟm}, {ṗAm}, [ṗM ], {ṗT }, k̇J , k̇′J , v̇, [EG], κ, κX , κP , κR, [EsR]

Chemical: [MV ], dO = ( dX dV dE dP ), µO = ( µX µV µE µP ), nM, ndO,
where the chemical coefficients for minerals and (dry) organic compounds are

nM =


1 0 0 nCN
0 2 0 nHN
2 1 2 nON
0 0 0 nNN

 and ndO =


1 1 1 1

ndHX ndHV ndHE ndHP
ndOX ndOV ndOE ndOP
ndNX ndNV ndNE ndNP

.
If the N-waste is ammonia, we have nCN = 0, nHN = 3, nON = 0, nNN = 1.

Help quantities (for the specification of changes in state):
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wet/dry mass: The chemical coefficients of wet organic mass nw∗1∗2 relate to that of dry mass
nd∗1∗2 for ∗1 ∈ {H,O} and ∗2 ∈ {X,V,E, P} as nwH∗2 = 2x∗2 +n

d
H∗2 and nwO∗2 = x∗2 +n

d
O∗2 ,

while nwC∗2 = ndC∗2 and nwN∗2 = ndN∗2 , where x∗2 =
1−dd∗2/d

w
∗2

18 , while dw∗2 ≃ 1 g/cm3.

mass fluxes: J̇O = ( J̇X J̇V (J̇E + J̇ER
) J̇P ) relate to energy fluxes ṗ =

(
ṗA ṗD ṗG

)
,

as J̇O = ηOṗ with ηO =


− 1
κXµX

0 0

0 0 κG
µV

1
µE

− 1
µE

− 1
µE

κP
κXµP

0 0

 and κG = µV
[MV ]
[EG]

assimilation: ṗA = κX ṗX

somatic maintenance: ṗS = [ṗS ]L
3. If EH < EbH , [ṗS ] = [ṗM ], else [ṗS ] = [ṗM ] + {ṗT }/L

maturity maintenance: if (1−κ)ṗC > k̇JEH (no rejuvenation), ṗJ = k̇JEH , else ṗJ = k̇′JEH

mobilization: ṗC = E(v̇/L− ṙ). If [E] ≥ [ṗS ]L
v̇κ (no shrinking), ṙ = [E]v̇/L−[ṗS ]/κ

[E]+[EG]/κ , else if ER > 0,

ṙ = 0, or if ER ≤ 0, ṙ = [E]v̇/L−[ṗS ]/κ
[E]+[EG]κG/κ

(shrinking)

growth: ṗG = κṗC − ṗS , but if κṗC < ṗS and ER > 0: ṗG = 0

maturation/reproduction: ṗR = (1− κ)ṗC − ṗJ , but if (1− κ)ṗC < ṗJ and ER > 0: ṗR = 0

dissipation: if EH < EpH , ṗD = ṗS + ṗJ + ṗR, else ṗD = ṗS + ṗJ + (1− κR)ṗR

Initial states: L(0) = 0, EH(0) = 0, ER(0) = 0, q̈(0) = 0, ḣA(0) = 0 and E(0) = E0 such that

[E](ab) equals that of mother at egg production

Changes in state:

structure: d
dtL = Lṙ/3. So, initial change is d

dtL(0) = v̇/3

reserve: If EH < EbH (embryo), d
dt [E] = −[E]v̇/L, else d

dt [E] = ({ṗAm}f − [E]v̇)/L

maturity: If EH < EpH (embryo or juvenile), d
dtEH = ṗR, else

d
dtEH = 0. However, if ṗJ < 0

and ER = 0 (rejuvenation), d
dtEH = ṗ′J with ṗ′J = min(0, ṗJ k̇

′
J/k̇J)

buffer: If EH = EpH (adult), d
dtER = ṗR − ṗ′J − ṗ′G, else (EH < EpH)

d
dtER = 0. If adult and

ER > 0, ṗ′G = max(0, [ṗS ]L
3 − κṗC), else (ER ≤ 0) ṗ′J = 0 and ṗ′G = 0. The buffer

is partitioned as ER = E0
R + E1

R, where E0
R converts, for positive E0

R, to E1
R at rate

ṗmax
R = 1−κ

κ L3 [EG]v̇/L+[ṗS ]
1+g − ṗJ and g = [EG]v̇

κ{ṗAm} .

hazard: ḣ = ḣA + ḣX + ḣB + ḣP

• aging: d
dt q̈ = (q̈ L

3

L3
m
sG + ḧa)e(

v̇
L − ṙ)− ṙq̈; d

dt ḣA = q̈ − ṙḣA

• starving (food): If EH < EbH , ḣX = 0, else if ṗC <
k̇JEH
1−κ , ḣX = ḣJ(1− ṗC(1−κ)

k̇JEH
).

Let L0 be the length at which ṙ = 0 for the last time.
If L = δLL0, hX dt = ∞ (instant death due to shrinking)
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• accidental (background): If EH < EbH , ḣB = ḣ0b
B , else ḣB = ḣbiB; both constant

• thinning (predation): If EH ≥ EbH , ḣP = 2
3 ṙ, else ḣP = 0

Input/output fluxes:

food: J̇X = ṗA
κXµX

feces: J̇P = κP ṗA
κXµP

eggs: If E1
R = [EsR]L

3: Ṙ dt = κR[E
s
R]L

3/E0 eggs are produced and E1
R is set to 0

minerals: J̇M = −n−1
MnwOJ̇O, where J̇M = ( J̇C J̇H J̇O J̇N )

heat: ṗT+ = −µTOJ̇O

death: at death, [MV ]L
3 moles of structure and (E+ER)/µE moles of reserve become available

in the environment

7.10.1.2 stf-model

Like the std-model but with

◦ fetal development (rather than egg development, see also the stx-model)

Budding, as found in cnidarians and salps has, metabolically, similarities with fetal prop-
agation: no assimilation by buds during development. This type of fetal development is
found in e.g. some cartilaginous and ray-finned fish, Peripatus.

The deviation from the standard model amounts for the fetus, which has EH < Eb
H , to

E(0) = 0 and d
dt
[E] = ({ṗAm}f − [E]v̇)/L, where f equals the value of the mother. For

the mother, the deviation amounts to d
dt
ER = ṗR−n{ṗAm}fL2

e, where Le is the structural
length of the fetus, n the number of fetuses, such that ṗRab = nf{ṗAm}

∫ ab
0 L2

e(t) dt. The
effect is that ER = 0 at the end of the gestation period.

7.10.1.3 stx-model

Like the stf-model but with

◦ fetal development (rather than egg development) that first starts with a preparation
stage and then sparks off at a time, t0, that is an extra parameter

◦ a baby stage (for mammals) just after birth, ended by weaning, where the juvenile
switches from feeding on milk to solid food at maturity level Ex

H . Weaning is between
birth and puberty, so Eb

H ≤ Ex
H ≤ EHp.

In its simplest form, it is a two parameter extension of std-model at abundant food. Food
quality and up-regulation of assimilation can involve more parameters. This life history is
found in placentalia. Milk production is from up-regulated feeding/assimilation.
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7.10.1.4 ssj-model

Like the std-model but with

◦ a non-feeding stage between events s and j during the juvenile stage that is initiated at
a particular maturity level, Es

H and lasts a particular time, tsj. Substantial metaboli-
cally controlled shrinking occurs during this period, with specific rate k̇E, faster than
can be explained by starvation.

It is a three parameter extension of the std-model. This life history is found in Elopi-
formes, Albuliformes, Notacanthiformes, Anguilliformes, Ophidiiformes, some Anura and
Echinodermata. The comments on Section 7.8.3 give more background.

Given V = Vs, E = Es, EH = Es
H at time t, V = δsjVs, E = δsjEs and EH = δsjE

s
H at

time t+ tsj, with δsj = exp(−k̇Eδsj), while ṗX = 0 for t ∈ (t, t+ tsj).

7.10.1.5 sbp-model

Like the std model but with

◦ growth ceases at puberty, meaning that the κ-rule is not operational in adults.

It has the same parameters as the std-model, and is similar to the abp-model, which differs
by acceleration. This life history is found in Calanus, while other copepods accelerate.

At puberty, growth ceases. so ṗG = 0, and the κ-rule no longer applies. Mobilisation
after puberty is ṗC = v̇E/Lp, and allocation to reproduction is ṗR = ṗC − ṗM − ṗJ , with
ṗJ = k̇JE

p
H .

7.10.2 a-models

a-models also assume isomorphy, but during part of the life cycle metabolism accelerates
following the rules for V1-morphy.

7.10.2.1 abj-model

The deb model with type M acceleration is like std-model, but

◦ acceleration between birth b and metamorphosis j

◦ before and after acceleration: isomorphy

Metamorphosis is before puberty and occurs at maturity Ej
H , so E

b
H ≤ Ej

H ≤ EHp, which
might or might not correspond with changes in morphology. TypeM acceleration has never
been found in cartilaginous fish, amphibians, reptiles, birds or mammals, and typically
occurs in taxa with larval stages.

The abj-model is a one-parameter extension of std-model and reduces to the std-model
for Ej

H = Eb
H . During metabolic acceleration, {ṗAm} = {ṗbAm}L/Lb and v̇ = v̇bL/Lb, where

{ṗbAm} and v̇b refer to the values at birth. At j, acceleration ceases: {ṗAm} = {ṗbAm}sM
and v̇ = v̇bsM, with acceleration factor sM = Lj/Lb.
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7.10.2.2 asj-model

The deb model with delayed type M acceleration is like abj-model, but

◦ start of acceleration is delayed till maturity level Es
H and lasts till metamorphosis at

maturity level Ej
H

◦ Before and after acceleration: isomorphy

Metamorphosis is still before puberty, so Eb
H ≤ Es

H ≤ Ej
H ≤ EHp and the acceleration

factor is sM = Lj/Ls. This model is a one-parameter extension of the abj-model and
reduces to the std-model for Eb

H = Es
H = Ej

H . This life history is found in Mnemiopsis,
Crassostrea and Aplysia. Further improvement of data might require a change from abj-
to asj-models for quite a few species.

7.10.2.3 abp-model

The deb model with type M acceleration is like model-abj, but

◦ acceleration between birth and puberty

◦ before acceleration: isomorphy

◦ after acceleration: no growth, so no κ-rule

Metamorphosis can occur before puberty and occurs at maturity Ej
H , but only affects

morphology, not metabolism. This model has the same number of parameters as the std-
model. The acceleration factor is sM = Lp/Lb. It is similar to the sbp-model, which has
no acceleration. It applies to copepods, may be also to ostracods, spiders and scorpions.

At puberty, growth ceases, so ṗG = 0, and the κ-rule no longer applies. Mobilisation
after puberty is ṗC = sMv̇E/Lp = v̇E/Lb, and allocation to reproduction is ṗR = ṗC −
ṗM − ṗJ , with ṗJ = k̇JE

p
H .

7.10.3 h-models

h-models also assume isomorphy, but during part of the life cycle metabolism accelerates
following the rules for V1-morphy

7.10.3.1 hep-model

The deb for ephemeropterans, odonata and possibly other insect groups. Its characteristics
are

◦ morphological life stages: egg, larva, (sub)imago; functional stages: embryo, juvenile,
adult, imago

◦ the embryo still behaves like the std-model

◦ acceleration starts at birth and ends at puberty
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◦ puberty occurs during the larval stage

◦ emergence of the imago occurs when reproduction buffer density, ER/L
3 = [Ej

R], hits a
threshold

◦ the (sub)imago does not grow or allocate to reproduction. It mobilizes reserve to match
constant (somatic plus maturity) maintenance

The model is discussed in the comments for Section 7.8. The difference with the abp-model
is that growth continues at puberty, ceasing of growth uses on another trigger and imago’s
don’t allocate to reproduction.

Between p and j, allocation to reproduction is ṗR = (1−κ)ṗC−ṗJ . After j, mobilisation
is ṗC = ṗM + ṗJ , allocation to reproduction is ṗR = 0.

7.10.3.2 hex-model

The deb model for holometabolic insects (and some other hexapods). Its characteristics
are

◦ morphological life stages: egg, larva, (pupa), imago; functional stages: embryo, adult,
(pupa), imago

◦ the embryo still behaves like the std-model

◦ the larval stage accelerates (V1-morph) and behaves as adult, i.e. no maturation, allo-
cation to reproduction and Eb

H = Ep
H .

◦ pupation occurs when reproduction buffer density hits a threshold, ER/L
3 = [Ej

R]

◦ pupa behaves like an isomorphic embryo of the std-model, emergence occurs at EH = Ee
H

Larval structure rapidly transforms to pupal reserve just after start of pupation, and
sets EH = 0 at j.

◦ the reproduction buffer remains unchanged during the pupal stage

◦ the imago does not grow or allocate to reproduction. Imago’s reserve mobilisation
matched somatic plus maturity maintenance ṗC = ṗM + ṗJ .

Hemi-metabolic insects skip the pupal stage, don’t convert larval structure to reserve.
Imago structure equals larval structure when reproduction buffer density hits a threshold.
The model is discussed in the comments for Section 7.8.

For k̇E = v̇/Lb, reserve mobilisation prior to pupation (i.e. during acceleration) is

ṗC = E(k̇E − ṙ) with ṙ = κ[E]k̇E−[ṗM ]
κ[E]+[EG]

= gk̇M
e/lb−1
e+g

. The larva allocates to reproduction

as ṗR = (1 − κ)ṗC − ṗJ , with ṗJ = k̇JE
p
H . [ER] has a maximum at [Em

R ] = [Eref
R ]f 1−lb

f−lb
with[Eref

R ] = (1−κ)[Em]g+lb1−lb
, so pupation occurs when [ER] = sj[E

ref
R ], with sj = [Ej

R]/[E
ref
R ].

Reserve mobilisation of the imago is ṗC = ṗeM+ ṗeJ , where ṗ
e
M = [ṗM ]L3

e and ṗ
e
J = k̇JE

e
H .
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7.10.3.3 hax-model

The hax model is a hybrid between the hep and hex models: the hep-rules are followed till
[ER] = [Ej

R], then pupation follows, with an emergence and an imago stage which might or
might not feed. An example of a hax model with a non-feeding imago-stage is the harlequin
fly Chironomus riparius.



8

Co-variation of parameter values

Genetic markers show that the quaking aspen, Populus tremuloides, is possibly the biggest
organism on earth. A giant individual, called pando or the trembling giant, in south-central
Utah (US), weighs 6Gg, lives on 43 ha and has 4e4 truncs. The mean life span of a trunc
is estimated at 130 yr, of the root at 8e4 yr, see Wiki.

8.1 Intra-specific parameter variations

8.1.1 Intra-specific effects of selection

Several animal species have been domesticated and selected for particular types of produc-
tion, for instance chickens has been selected for meat or egg production, cows for meat and
milk production. Tables 8.1 and 8.2 compare three races of each.

The red jungle fowl (RJ) is the wild race, while the White Leghorn (WL) has been
selected for egg-laying and the Indian River (IR) for meat production. Little information
was available to estimate the Arrhenius temperature; the used value of about TA = 20 kK
resulted in typical values for specific maintenance cost [ṗM ] = 18 J d−1cm−2. The expected
life span for RJ is much larger than for WL than for IR; that for IR is really short indeed.
The males are bigger than the females; the female-to-male ratio of the zoom factors z for
JF, WH and IR are 0.8305, 0.9597 and 0.6822, respectively. Compared to original RF,
selection of egg-laying increased, and for meat production decreased relative female size
while WH and IR are both much bigger than RF, WH being the largest.

The maximum specific assimilation rate {ṗAm} of female IR remained the same, com-
pared to the wild type RJ, but that of WL decreased. For the males it decreased for
WL, and even further in IR. It is remarkable that selection on production did not increase
specific assimilation, although it did increase maximum size.

The energy conductance v̇ did not change much, that of IR males is a bit larger,
meaning a faster metabolism. All are half the typical value 0.02 cmd−1. The implied
shorter survival time in absence of food is compensated with their lower specific somatic
maintenance costs. Both WL and IR have lower specific somatic maintenance [ṗM ] than
JR, which might relate to the shorter life spans (less turnover of structure). It is less
likely that enforced lack of movement in IR and WL plays an important direct role in the

http://en.wikipedia.org/wiki/Pando_(tree)
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Table 8.1: The parameters of the standard deb model estimated for the male (m) and female (f)
chicken Gallus gallus of the races Red Jungle fowl (RJ), the egg-chicken White Leghorn (WL),
and the meat-chicken Indian River broiler (IR). The parameters were estimated using data from
[1272]; see add my pet. The parameter are given for 20 ◦C, using an Arrhenius temperature
TA = 19794K. The reproduction efficiency has been set at κR = 0.95 and the Gompertz stress
coefficient at sG = 0.1 for all cases. The dry-wet-weight ratio was set to dV = dE = 0.38 for
RJ and WL and to 0.30 for IR. The feeding parameters has not been given here, due to lack of
adequate data.
parameter symbol unit RJ, f RJ, m WL, f WL, m IR, f IR, m
zoom factor z - 4.97 5.984 8.649 9.012 8.391 12.3
spec. assimilation rate {ṗAm} J/d.cm2 427 372 270 301 435 178
energy conductance v̇ cm/d 0.0083 0.0090 0.0113 0.0111 0.00965 0.0155
fraction to soma κ - 0.2486 0.4317 0.5051 0.4306 0.3492 0.6734
spec som. maint. cost [ṗM ] J/cm3 21.38 26.82 15.79 14.39 18.09 9.739

mat. maint. rate coeff. k̇J 1/d 0.0025 0.0039 0.0020 0.0020 0.0020 0.0011
spec. cost structure [EG] J/cm3 9918 9864 9948 9947 7709 10600
maturity at birth Eb

H J 8.99e4 4.61e4 8.14e4 9.72e4 9.12e4 7.43e4
maturity at puberty Ep

H J 2.67e6 1.65e6 2.87e6 3.68e6 6.53e6 2.69e6

aging acceleration ḧa 1/d2 2.72e-49 1.32e-45 2.32e-22 1.41e-21 5.24e-21 8.69e-22
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Figure 8.1: The maximum reproduction rate as function of κ (left) and the weight increase since
birth function of time since birth (right), for three races of chicken, using the parameters of Table
8.1. The estimated values for κ are indicated.
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lowering of [ṗM ], but possibly indirectly. It would be of significant scientific importance
to find the reasons for this. The specific costs for structure [EG] reflects the dry-to-wet
weight ratio, which was set to somewhat lower to IR, due to their meat being water-rich;
adequate data were lacking, however. All has a growth efficiency κG around 0.8, but males
IR had 0.6 only, despite the fact that they are the biggest. Allocation to sperm production
in males was assumed to equal that to egg production in females (in absence of adequate
data); yet, due to males’ larger size, this allocation represents a relatively small fraction
of the mobilisation flux, and κ for RJ and IR males is much bigger than that of females.
Figure 8.1 shows that κ is much smaller than the typical for animals, which is around 0.8.
It is smallest for RJ and largest for WL.

Several parameters affect how maximum reproduction rate depends on κ, but the max-
imum is reached but about κ = 0.5 and this is the value found for female WL, which was
selected for maximizing reproduction. This is remarkable, because the maximum reproduc-
tion rate is typically only 25% of the optimized value, where κ is allowed to vary, keeping
all other parameters fixed; RJ being no exception. It seems, therefore, that if selection is on
maximizing reproduction, κ assumes the optimal value; the fact that κ is typically far from
optimal means that selection is in different directions and/or that optimal κ comes with
drawbacks that are not yet fully understood. Another remarkable feature is the cumulative
growth rate, defined as the weight increase since birth over time since birth. Meat chickens
are typically harvested when this reaches is peak, around 70 d. This growth rate is lowest
for RJ, and (by far) highest for IR. The difference in practice is even much bigger, since IR
is fed abundantly with a food type that gives a scaled functional response f over about 2;
f is only confined to the interval (0,1) comparing different quantities of food of the same
quality. Particular experimental conditions can only lead to ‘overeating’, i.e. eating more
than typical at abundant food.

The log10 of the maturity ratio spbH = Ep
H/E

b
H , see Section 2.5.2 of the comments, for

RJ, WL and IR females are 1.47, 1.54, 1.66, and or males 1.55, 1.58, 1.56, respectively. All
are close to 1.5, but the female IR is clearly more altricial than RJ.

Table 8.2 give the parameter values for three races of cows; all were selected for produc-
tion, the wild type went extinct. Little information was available to estimate the Arrhenius
temperature; the used value of TA = 12 kK resulted in typical values for specific mainte-
nance cost [ṗM ] = 18 J,d−1cm−2. Again, the males are larger than the females, but the
specific assimilation rates of the females are larger than those of the males; in the case of
the milk-cow Holstein even close to a factor 2. the female-to-male ratio of the zoom factors
z for Ho, An and Br are 0.88, 0.82 and 0.80, respectively.

The energy conductances are larger for females than for the males, so they have less
reserve, for Holstein and Angus this amounts to a factor 2. The values for the males are
about double the typical value for animals. The specific maintenance cost [ṗM ] for the
female Holstein is remarkably low; she is also the largest of the three females. This is
doubtlessly connected with her very low value of κ, but the mechanistic coupling is not yet
clear; milk production is from the (1−κ) branch of the reserve mobilisation flux. The log10

of the maturity ratio spbH = Ep
H/E

b
H for Ho, An and Br females are 0.77, 1.49, 1.06, and

for males 0.71, 0.88, 1.58, respectively. Holstein is most precocial. The difference between
females and males seem to increase with altriciality.
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Table 8.2: The parameters of the standard deb model estimated for the male (m) and female
(f) cow Bos primegenius of the races milk-cow Holstein (Ho), the meat-cow Agus (An) and the
zebu Brahman (Br). The parameters were estimated using data from [105], see add my pet. The
parameter are given for 20 ◦C, using an Arrhenius temperature TA = 12 kK. The reproduction
efficiency has been set at κR = 0.95 and the Gompertz stress coefficient at sG = 0.1 for all cases.
The dry-wet-weight ratio was set to dV = dE = 0.3. The feeding parameters has not been given
here, due to lack of adequate data.
parameter symbol unit Ho, f Ho, m An, f An, m Br, f Br, m
zoom factor z - 51.71 58.83 46.68 57.06 47.18 58.64
spec. assimilation rate {ṗAm} J/d.cm2 2206 1211 1755 1108 1625 1132
energy conductance v̇ cm/d 0.087 0.0413 0.0748 0.0368 0.0421 0.0367
fraction to soma κ - 0.326 0.971 0.618 0.96 0.552 0.966
spec som. maint. cost [ṗM ] J/cm3 13.9 20.0 23.3 18.7 19.0 18.6

mat. maint. rate coeff. k̇J 1/d 0.0010 0.0040 0.00016 0.0049 0.0019 0.00028
spec. cost structure [EG] J/cm3 8307 7829 7825 7842 7844 7692
maturity at birth Eb

H J 2.00e8 1.72e6 4.49e7 1.42e6 3.37e7 2.58e6
maturity at puberty Ep

H J 1.19e9 8.74e6 1.40e9 1.09e7 3.87e8 9.96e7

aging acceleration ḧa 1/d2 3.51e-15 1.12e-12 1.16e-14 1.89e-12 4.79e-13 2.12e-12

8.1.3 Allocation strategies

Species in the collection can roughly be classified as sub-optimal, optimal and supra-optimal
on the basis of the maximum reproduction rate (of a fully grown adult at abundant food),
relative to the value at optimal κ [791]. The ‘optimal’ value of κ is here defined as the
value that maximized maximum reproduction rate. Optimal species have a maximum
reproduction rate that is at least 80% of the maximum possible one for a species with that
parameters while varying κ. Sub-optimal species have a lower maximum reproduction and
a κ that is smaller than the one that maximizes reproduction; supra-optimal species have
also a lower maximum reproduction, but a larger value for κ. Table 8.3 lists the optimal and
sub-optimal species, of the 240 species studied, Figure 8.2 presents the κ values and Figure
8.3 the maximum reproduction rates as fraction of their optimized maximum. The κ values
appear to follow a beta-distribution, in terms of approximate empirical description with
mean 0.812 and variance 0.0442. (The survivor function of the beta distribution is given by
S(κ) = 1−Iκ(a, b), where Iκ(a, b) is the incomplete beta function.) Although the collection
grew by a factor 4 since [856] at 2018/01/01, this hardly affected the frequency distribution
of κ and the fit for 1000 species is even better. The explanation is that, for fully grown
individuals, κ equals the somatic maintenance as fraction of assimilation, and assimilation
equals somatic plus maturity maintenance plus reproduction investment [?]. These fluxes
appear to follow Weibull distributions, with the mathematical consequence that the ratio
follows a beta distribution to a very good approximation. The reason why these fluxes
follow a Weibull distribution is, probably, because many factors contribute to their value.
This is the same reason why allometric functions frequently fit scatter clouds in log-log
plots very well. The result resembles a well-known property of gamma distributions: If x
and y are independently gamma-distributed random variables, then x

x+y
follows (exactly) a

beta distribution. This also holds for Weibull-distributed random variables to a very good
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Figure 8.2: Left: The survivor function for κ among the 420 animal species in the add my pet
collection (blue; sampling date 2016/10/24)) and that for the value that maximizes reproduction
rate (red). The survivor functions for the beta distribution are also shown. Right: The value of κ
that maximizes reproduction rate as function of κ. Colours indicate maximum structural length
from small (black) to large (white).

Figure 8.3: Left: The survivor function for maximum reproduction as fraction of the optimized
maximum among the 420 animal species in the add my pet collection (sampling date 2016/10/24).
Right: Maximum reproduction at optimal value of κ as function of the actual maximum repro-
duction. Colours indicate maximum structural length from small (black) to large (white).
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approximation. The optimal κ values also seem to be beta distributed with mean 0.482
and variance 0.0034, very different from the actual values. The rare coelacanth Latimeria
is among the optimal species, so being optimal does not imply great abundance.

Table 8.1 suggests that if selection is for maximizing reproduction, κ becomes optimal.
So the conclusion is that natural selection is not maximizing reproduction.

Some species might have a low κ to reduce body size; maximum structural length is
proportional to κ. The (huge) ocean sunfish Mola illustrates that a low κ does not imply
small body size, but it would be even larger with a larger value of κ. The minimum food
density that allows survival increases with body size, so does the risk of not finding enough
food. The logic directly relates to the ‘waste-to-hurry’ hypothesis [776], that says that the
specific somatic maintenance costs is (greatly) increased in species that live of blooming
resources to boost production (growth and reproduction) and remain small, with a short life
cycle as implication. This hypothesis helps to understand why the specific maintenance
costs of copepods and daphnids is around 1400 J d−1 cm−3, while that of equally small
aphids and tardigrades is much closer to the typical value of 20 J d−1 cm−3 at 20◦C. While
in a bloom, food availability is not a problem. If resources are not blooming, increase of
maintenance is not a smart strategy, since food is typically not abundant. Species that live
of resources that are more constant in time might reduce their κ to reduce the minimum
food level that they require, while still running their metabolism economically.

Why then do other species have a large κ, close to 1? A possible reason is to increase
body size to avoid size-dependent predation or increase the ability to average resource
availability in space and time [791]. Large body size comes with large reserve capacity
to smooth out temporary variation, large home ranges and a reduction of predation risk.
The first two effects directly follow from the co-variation rules that are implied by DEB
theory. Yet, the difference between a large value for κ and a very large one (= even
more close to 1; the frequency distribution of Figure 8.2 shows that there are many of
them), is hardly felt for maximum body size, but greatly for reproduction. The more
important reason for a very large κ might be to reduce reproduction, avoiding exhaustion
of resources via intra-specific competition of offspring. Survival of bleak periods might
be a much stronger selection criterion than maximization of reproduction; not-exhausting
the environment and so reducing the length of bleak periods might be part of this survival
strategy. Predator-prey systems might co-evolve in terms of parameter settings, κ being one
of them, where stability and robustness might be more important than absolute numbers.
Frequent ecological disasters with introduced species point into that direction. Supporting
observations for a reduction of reproduction are that the created pinguin Eudyptes, see
Section 2.6.4, and the shoebill Balaeniceps rex produce two eggs per season (in a single
clutch), while they can raise a single young only. The second one only serves as backup and
is discarded as soon as the first one proves to be vital. So the limiting factor is not in egg
production, but in raising offspring. This possibly applies to most species with parental
care.

Discussions on allocation strategies easily make use of optimisation arguments. deb
theory hardly uses such arguments.
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Table 8.3: Species of the add my pet collection that have a sub-optimal κ (left) and the optimal
one (right). All other of the 240 species have a supra-optimal κ. The maximum reproduction
rate is given as fraction of the one it would have with optimal κ. If this fraction is less than 0.8,
a species is either sub- or supra-optimal.

sup-optimal species Ṙ/Ṙm

Asplanchna girodi 0.1642
Folsomia candida 0.6213
Oikopleura longicauda 0.6373
Thalia democratica 0.2823
Hippocampus whitei 0.6953
Pleuronectes platessa 0.7097
Mola mola 0.3198
Geocrinia vitellina 0.6538
Gallus gallus IR 0.6776
Gallus gallus RJ 0.1875
Melopsittacus undulatus 0.0651
Myrmecophaga tridactyla 0.6402
Bos primigenius Holstein 0.7891

optimal species Ṙ/Ṙm

Chironex fleckeri 0.9979
Hydra viridissima 0.9657
Pelagia noctiluca 1
Beroe ovata 0.8913
Sagitta hispida 0.9684
Aspidiophorus polystictos 0.9249
Crassostrea gigas 0.8595
Daphnia hyalina 0.9305
Diaphanosoma brachyurum 0.9507
Oikopleura dioica 0.8676
Eptatretus stoutii 0.8399
Lampetra planeri 0.914
Chiloscyllium plagiosum 0.9699
Thymallus thymallus 0.9995
Clupea harengus 0.9626
Danio rerio 0.9825
Pimephales promelas 0.9124
Trisopterus luscus 0.9648
Sparus aurata 0.8367
Zoarces viviparus 0.8587
Thunnus thynnus 0.9561
Latimeria chalumnae 0.9979
Crinia nimbus 0.9911
Heteronotia binoei 0.9552
Sceloporus undulatus 0.8697
Gallus gallus WL 0.975
Phocoena phocoena 0.9193
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8.1.3.1 Small versus large eggs

There is a link between structural volume at birth, Vb, and maturity at birth, Eb
H . In case

of a maintenance ratio of k = 1, this link is even a direct proportionality. Plant champion
in mass of seed is the coco de mer palm Lodoicea maldivica, with seeds of 25 kg and 50 cm
diameter. It grows on poor soils and their leaves seem to collect nutrients around the tree
via rain, which might help offspring [378]. This is doubtlessly a more general strategy
among plants on poor soils. Another aspect is that most of the weight of these seeds
is not reserve, but floating material for traveling the sea, an adaptation to life on small
islands. The parallel with the coelacanth Latimeria chalumnae is striking, which also lives
in oligotrophic environments and make eggs of 325 g. Most fish make very small eggs. The
coelacanth is ovoviviparous, however, and their large birth size of 50 cm long might be an
adaptation to the type of food eaten by neonates.

Most optimization arguments lead to the uninspiring result that reproduction rate or
population growth rate is maximized by producing an infinitely large number of infinites-
imally small young. No energy argument seems to forbid this possibility. It is hard to
understand why it pays to produce (few) large eggs. One possibility is in accounting for
a changing spatially heterogeneous environment. Reproduction is usually synchronized
with a favourable season, which is usually short. The reason why the crossbill breeds in
midwinter in Scotland, for instance, is that it feeds its young with spruce seeds, which are
mature early in spring. This habitat is not always favourable for them; if the seeds are
finished, they have to move out. The same holds for ducks breeding in Iceland, where the
adult starts to incubate while there is still snow. When the chicks hatch, food is available,
but not for long; soon after they are able to fly, the conditions grow worse and they are
forced to migrate to the sea. These examples are obvious, but the principle is probably
quite common. The selection constraint is, therefore, a maximum period for completing
development up to a stage allowing for migration.

It is consistent with the structure of the deb model that such a stage can be tied to
a certain body volume. That the time needed to reach such a volume is strongly reduced
by laying large eggs is obvious from the expression for the juvenile period. The fact that
birds with large eggs, such as shearwaters and the kiwi, also have long incubation times
does not devalue the argument. The deb model shows that the time taken for the chick
to reach a certain size would be even longer if the eggs were smaller. This insight is one
of the gains of formalized reasoning, where all relevant variables can be considered at the
same time. Another aspect to consider for endotherms is that small young have a hard
time maintaining a high body temperature.

A direct link exists between relative egg size and position in the altricial-precocial spec-
trum. In order to hatch in a late stage of development, eggs of precocial species must be
relatively large to allow sufficient maturation at birth. This might give problems in terres-
trial species, since nitrogen waste accumulates in the eggs, and the original one, ammonia,
is rather toxic. Aquatic species hardly suffer from this problem, since ammonia is well-
soluble. Most terrestrial species made the switch from ammonium secretion (ammonotely),
to the somewhat less toxic, but also more expensive, but still well-soluble, urea (ureotely);
the tadpoles of amphibia sport ammonotely, but most switch to ureotely at metamorpho-
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Figure 8.4: The energy costs of producing an egg relative to that of a foetus (left) and incubation
time relative to gestation time (right), as a function of the investment ratio g and scaled length
at birth lb (plotted on the y-axis) at high energy density at birth, eb = 1.

sis. Reptiles and birds even made the switch to uric acid (uritely), which is much less
toxic, much less soluble, but also more expensive than urea [1545]. Some bird species with
water-rich and nitrogen-poor food sport facilitative ammonotely [818], probably to reduce
energy costs. This allowed the birds, and their ancestral dinosaurs, to make relatively
large eggs, hatching into precocial neonates that hardly require parental care. All pale-
ognaths (e.g. ostriches and tinamus) are precocial, only ’advanced’ neoaves are altricial.
The long incubation times of eggs of the dinosaurs Protoceratops and Hypacrosaurus (2.8–
5.8months) [394] suggest that they did not breed their eggs, so poorly developed parental
care. The nests of oviraptor, the colonies of maiasaurs and the close association of an
adult Psittacosaurus with many small juveniles, on the other hand, do suggest some form
of parental care in dinosaurs, like found in contemporary crocodiles and ground-nesting
precocial birds. Only after the development of flight, dinosaurs started to breed in trees
as birds. The evolution of altricialy in (advanced) neoaves, and especially the songbirds
(Passeriformes), can be seen as an adaptation to life in (deciduous) trees, which started to
dominate the terrestrial environment around the time that the big dinosaurs disappeared
(and might have contributed to their disappearance). Quite a few traits are coupled in this
adaptation of life in trees, such as

◦ small maximum body weight of less than a kilo (extremes are the raven and the ground-
dwelling lyrebird; small twigs cannot carry heavy weight)

◦ altriciality, combined with the demand-position in the supply-demand spectrum

◦ advanced parental care with adaptation of the nesting in the form of

bright colours of the inner mouth and yellow swollen gape lining

faecal sacs of nestlings, to facilitate sanitation [642]

vocabulary and begging behaviour
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◦ a high water content of neonate tissues (since water can be in short supply in a nest high
in a tree),

◦ anisodactyl feet (perching), not requiring active muscle contraction for gripping branches

◦ short rounded wings and maneuverable tail, allowing sharp turns when slowly flying
between branches

◦ advanced singing, including the development of a syrinx (a bony structure at the bottom
of the trachea), since the leaves hamper visual signals

◦ high body temperature for flying vertically and fast manoeuvrings (songbirds are hot
among birds)

So dinosaurs developed from precocial to altricial, just reverse, compared to mammals [51].
Mammals sport uerotely and evolved in parallel with the dinosaurs. They originated some
310Ma ago, but lead eggs till some 30Ma ago [180]. Ureotely probably prevented an early
evolution of relatively large eggs in mammals and they were forced to the altricial condition
till the invention of foetal development, where the foetus can use the draining system of
the mother to get rid of its nitrogen waste. The precocial condition evolved much later in
placental mammals; the (still egg-laying) monotremes and marsupials (with tiny neonates)
are extremely altricial. Since they provided milk to their babies, right from their origin
[180], the early mammals probably did also breed their eggs, so parental care was well
developed, which combines well with the altricial condition.

8.1.3.2 Egg versus foetus

The ratio of the energy costs of egg to foetus production is shown in Figure 8.4 in the case
of high reserve density at birth, eb = 1. This figure also shows the ratio of the incubation
and gestation time. For very small investment ratios, g, the latter ratio becomes

√
2ebu

3

lb

(
1

2
ln
u2 + u

√
2 + 1

u2 − u
√
2 + 1

+ arctan
u
√
2

1− u2

)

with u ≡ (4eb/lb − 1)−1/4. For very small scaled lengths at birth, this ratio becomes

Bxb(
1
3
, 0)x

−1/3
b /3, with xb ≡ g

eb+g
. The development of the embryo in an egg is somewhat

retarded at the end of incubation, because of the diminishing reserves. This means that
the incubation period is somewhat longer than the corresponding gestation period and
that the cumulative costs at birth of an egg are somewhat higher than those of a foetus.
This comparison assumes that all parameters are equal. Another difference is that, when
breeding, the incubating individual is more restricted in its freedom than the pregnant
mother.

8.1.3.3 Versatility versus specialization

Bacteria as a group are much more diverse in their metabolism than eukaryotes. Within
the α-subgroup of the purple non-sulphur bacteria, there is a wide variety of complex
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Figure 8.5: Maximum population growth rate decreases for increasing dna duplication times.
The curves are for aspect ratio δ = 0, and 0.6. The aspect ratio is specified just prior to division
and is fixed. Cell shape and relative size are indicated just before and after division for δ = 0.1
and 0.6, at a doubling time of 0 and 1.5 h. Cell volume at division relative to the volume that
triggers dna duplication, Vd/Vp, is given in the right figure. Numerical studies show that the
figure is independent of parameter values for lp, g and k̇M , given maximum population growth
rate.

metabolic pathways, each involving a considerable number of genes [1378]. This can only
be understood by assuming that the ancestor of this group possessed all the pathways
for, for example denitrification, aerobic and anaerobic photosynthesis, methylotrophy, etc.
During evolution, most species lost one or more of these traits; this brings us to the problem
of understanding why it can be beneficial for species to cut out dna that is not used in a
particular environment rather than leaving it unused.

As shown in Figure 8.5, the deb model offers an explanation; the population growth
rate decreases for increasing dna duplication time tD, particularly at high substrate lev-
els. As the growth process continues during dna duplication, the cell becomes larger the
longer the dna duplication period, if dna duplication is triggered once the cell reaches a
certain specific size. Since the uptake of substrate relates to surface area, and the surface-
area/volume ratio grows worse the larger the cell, the cell is better off reducing the time
required to duplicate dna. The effect of the dna duplication time on the population growth
rate is less at low substrate levels, because the division intervals are extended under these
circumstances.

The evolutionary significance of a high population growth rate is probably found in the
spatial and temporal heterogeneity of the environment. Useful substrates for heterotrophs
are usually rare. If a plant or animal dies, the locally present microbes will grow at a
high rate over a short period. If the subsequent selection processes thin randomly, the
most abundant species has the best opportunity of surviving until the next time substrate
becomes available. Since the ratio of the numbers grows exponentially at a rate equal to
the difference in the population growth rates, small differences can be significant for long
growth periods.
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8.1.3.4 Growth versus reproduction: determinate growth

The relative amount of effort spent on reproduction differs from one species to another.
Even within a species, it can depend on environmental conditions. Based on work with
Dina Lika [857], this subsection compares the consequences of two allocation strategies
in animals: indeterminate growth, where growth continues during the reproductive stage,
and determinate growth, where growth is stopped during the reproductive stage. Both
animals are otherwise similar, and have no differences during the embryonic stage, when
no food uptake occurs, and the juvenile one, when no allocation to reproduction occurs.
Both strategies frequently occur, even among rather closely related species: cladocerans
sport indeterminate growth (Daphnia magna can grow by a factor two in length, that is a
factor eight in volume, during the reproductive period), while copepods sport determinate
growth.

8.1.3.5 Embryo and juvenile stages

The age at birth ab and the energy costs per egg E0 vary somewhat with the food density,
because the reserve density at birth is taken to equal that of the mother: [Eb] = f [Em] at
steady state. This applies to both allocation strategies that are compared. For simplicity’s
sake, I here take ab constant and neglect maintenance costs during the embryonic stage,
which results in the energy costs per egg E0 = ([EG] + [Em]f)Vb. Up to the age at puberty
ap, the determinate animal is identical to the indeterminate one. At constant food density
the volume V (a) is given by

V (a) =
(
V 1/3
∞ − (V 1/3

∞ − V
1/3
b ) exp{−ṙBa}

)3
(8.1)

with ṙB = (3[EG] + 3κf [Em])
−1[ṗM ] and V 1/3

∞ = fV 1/3
m and V 1/3

m = κ{ṗAm}
[ṗM ]

, where κ is
the fraction of catabolic power that is allocated to somatic maintenance plus growth, as
opposed to maturity maintenance plus maturation or reproduction.

The age at puberty ap is reached when the cumulative investment in maturation exceeds
a threshold value: Ep =

∫ ap
ab

((1− κ)ṗC(a)− [ṗJ ]V (a)) da, where Ep is the threshold value
for energy invested in maturation, ṗC the catabolic power and [ṗJ ] is the specific maturation
maintenance cost. The catabolic power is defined as the power that is released from the
reserves to fuel metabolism. Substitution gives

Ep = (1− κ)f
(
{ṗAm}

∫ ap

ab

V 2/3(a) da− [Em] (V (ap)− Vb)
)
− [ṗJ ]

∫ ap

ab

V (a) da (8.2)

If [ṗJ ] =
1−κ
κ
[ṗM ], the relationship (8.2) reduces to Ep = [EG](V (ap)−Vb)1−κ

κ
, which reveals

that V (ap) does not depend on the scaled functional response f . The stage transition
occurs when cumulative investment in maturation exceeds a fixed threshold, while at the
same time structural mass exceeds a fixed threshold; age at puberty ap does depend on f ,
however. For other values of [ṗJ ], V (ap) does depend on f , and κ, and stage transition no
longer occurs at a fixed structural mass.

Figure 8.6 illustrates how the age and length at puberty depend on the scaled functional
response f and the partitioning fraction κ. The value of κ for which the length at puberty
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Figure 8.6: The age at puberty ap (left) and length at puberty V (ap)
1/3 (right) as functions of

scaled functional response f , and partition coefficient κ. The parameter values are V
1/3
b = 0.8mm,

[ṗM ]/[Em] = 0.1 d−1, [ṗJ ]/[Em] = 0.15 d−1, Ep/[Em] = 10mm3, {ṗAm}/[Em] = 2.5mmd−1,
[EG]/[Em] = 0.02.

does not depend on the feeding rate is κ = (1+[ṗJ ]/[ṗM ])−1 = 0.4, which is just outside the
range for which maturity can be reached for this parameter combination (see also Figure
8.7). The volume at puberty can differ up to a factor of 6 from the ultimate volume at
indeterminate growth for this choice of parameter values.

8.1.3.6 Adult stage

The hazard rate has a direct relationship with energetics, and relates to mean life span
through Ea† =

∫∞
0 Pr{a† > a} da =

∫∞
0 exp{−

∫ a
0 ḣ(t) dt} da. For a reproduction rate Ṙ(a),

the life span reproduction amounts to

NR =
∫ ∞

ap
Ṙ(a) Pr

{
a† > a

}
da (8.3)

Constant fraction allocation

In the constant fraction allocation strategy, a constant fraction κ of catabolic energy is
allocated to somatic maintenance plus growth during all life stages. During the embryonic
and juvenile stage, a constant fraction is allocated to maturity maintenance plus matura-
tion; the investment in maturation switches to reproduction after the cumulated energy
investment in maturation exceeds a certain threshold Ep. Maturity maintenance does
not increase after the switch, but is proportional to volume before the switch. Somatic
maintenance is always proportional to volume.

The reproduction rate is

Ṙ(a) =
κR
E0

(
(1− κ)f

κf/[EG] + 1/[Em]

(
{ṗAm}
[Em]

V 2/3(a) +
[ṗM ]

[EG]
V (a)

)
− [ṗJ ]V (ap)

)
(8.4)

while the volume V (a) is given by (8.1).
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If the aging acceleration is small enough, such that the period of substantial growth
is short with respect to the life span, the hazard rate and the survival probability can be
approximated by

ḣ(a) =
ḧa[ṗM ]

2κ[EG]
(a− ap)

2; Pr{a† ≥ a} = exp

{
− ḧa[ṗM ]

6κ[EG]
(a− ap)

3

}

for a ≥ ap.
The mean life span equals

Ea† = ap + Γ
(
1

3

)(
6κ[EG]

27ḧa[ṗM ]

)1/3

≃ ap + 1.62

(
κ[EG]

ḧa[ṗM ]

)1/3

(8.5)

Bang-bang allocation

The bang-bang allocation strategy is the same as the fixed-fraction allocation one, but
growth is ceased at certain volume Vp; all catabolic energy is then allocated to maintenance
(somatic plus maturity) plus reproduction. This leads to the reproduction rate

Ṙ =
κR
E0

(
f{ṗAm}V 2/3(ap)− ([ṗM ] + [ṗJ ])V (ap)

)
(8.6)

If the aging acceleration is small enough, such that survival to puberty is almost sure,
the hazard rate and the survival probability for the determinate animal can be approxi-
mated for a ≥ ap by

ḣ(a) =
ḧa{ṗAm}f

2[EG]V 1/3(ap)
(a− ap)

2; Pr{a† ≥ a} = exp

{
− ḧa{ṗAm}f
6[EG]V 1/3(ap)

(a− ap)
3

}

The mean life span is

Ea† = ap + Γ
(
1

3

)(
6[EG]V

1/3(ap)

27ḧa{ṗAm}f

)1/3

≃ ap + 1.62

(
[EG]V

1/3(ap)

ḧa{ṗAm}f

)1/3

(8.7)

and the life span reproduction simplifies to NR = Ṙ(Ea† − ap).

8.1.3.7 Comparison of reproduction and life span

Assuming that aging allows, the reproduction rate of the fully grown indeterminate animal
exceeds that of the determinate one if

(1− κ)V∞ − V 1/3
∞ V 2/3(ap) + κV (ap) ≥ 0 (8.8)

Somatic maintenance costs can only be paid by the neonate if V∞ ≥ Vb. Maturity can

only be maintained by the neonate if V∞ ≥ Vb
(

κ
1−κ

[ṗJ ]
[ṗM ]

)3
. Reproduction is only initiated

if V∞ > V (ap). For very low feeding rates, the ultimate size can drop below the size at
birth, as implied by the model assumptions. Figure 8.7 illustrates that the reproduction
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Figure 8.7: The grey area indicates the combination
of values for the scaled functional response f and the
partitioning fraction κ, for which the adult state is
reached; the age at puberty is infinitely large at its
border. The fat curve represents values for f and κ
where the reproduction rate of the determinate ani-
mal equals that of a fully grown indeterminate one.
The dotted curves represent boundaries for which the
neonate just can pay somatic and maturity mainte-
nance costs. Parameter values: see Figure 8.6.

10−3NR
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κ

Figure 8.8: The life span reproduction NR (left) and the population growth rate ṙ (right) of
the indeterminate (solid) and the determinate (dotted) animals as a function of the partitioning
fraction κ at abundant food (f = 1). Parameters: see Figure 8.6, and κR = 1, ḧa = 510−7 d−1.

rate of a fully grown indeterminate animal exceeds that of the determinate one for all
biologically meaningful combinations of f and κ, given the parameter values. The area
left of the concave (upper-left to lower-right) dotted curve is less relevant, because this is
where the ultimate size is below that of the neonate. The area left of the convex (lower-left
to upper-right) dotted curve represents values for f and κ where neonates cannot maintain
their state of maturity.

Comparison of (8.5) and (8.7) shows that the life span of the indeterminate animal
exceeds that of the determinate one if V∞ > V (ap), which is always the case. The reason
is in the decreasing specific oxygen consumption for increasing body size. The assumption
that death by aging is negligibly small before puberty obviously breaks down when the
juvenile period becomes excessively large.

Figure 8.8 gives the life span reproduction and the population growth rate as a function
of the partition coefficient at abundant food (f = 1), and shows that the differences
between both allocation rules are substantial for the life time reproduction, but small for
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the population growth rate, given this choice of parameter values.

The bang-bang allocation will probably lead to larger population growth rates for high
death rates, because reproduction is larger just after maturation and the contribution of
the early offspring to the population growth rate is more important than that made by later
offspring. This is because the early offspring will reproduce earlier as well, the interest upon
interest principle. Selection for high population growth rates can be expected in situations
of alternating periods of food abundance, followed by starvation with random thinning.

The difference between determinate and indeterminate growth disappears if the switch
to the adult stage is outside the growth period, so the body size at puberty is close to the
ultimate body size. Copepods, which cannot grow once they start reproduction, in fact
follow the von Bertalanffy growth curve quite well. The difference with daphnids, which
keep their growth potential, only becomes apparent if the animals are continuously exposed
to low food densities during their juvenile stage, and then exposed to high food densities
during the adult stage. This might be a rather artificial situation, with little relevance
to field ecology. Holometabolic insects cannot grow after the pupal stage, and juveniles
and adults feed on different diets; the coupling of energetic properties between adults and
juveniles still awaits further study in the context of the deb theory.

8.2 Inter-specific parameter variations

8.2.1 Primary scaling relationships

The value [EG] = 2800 J cm−3 in Table 8.1 corresponds with a wet-over-dry weight ratio
of 10, a chemical potential for structure of µV = 560 kJC-mol−1, a growth efficiency of
κG = 0.8 and the molecular weight for structure of wV = 24.6 gC-mol−1, so [MV ] =
dV /wV = 4mmol cm−3. The growth efficiency κG is the energy fixed in new structure as
fraction of the energy invested in growth. It is likely to vary somewhere between 0.75 and
0.9. The chemical potential is somewhere between 616 (for lipids) and 401 (for proteins)
kJC-mol−1, Table 4. The molecular weight is determined by the chemical indices as given in
Figure 4.15, on the assumption that the chemical elements C, H, O and N comprise (almost)
all of the mass. Although structure might differ from reserve in chemical composition,
it is less likely that it will differ much in terms of elemental frequencies. The cost for
structure is given by [EG] =

µV dV
κGwV

. Its most variable component is the specific density

dV . Assuming that the specific density for wet mass is close to dV = 1g cm−3, that
for dry mass will vary from dV = 0.01 g cm−3 for gelatinous taxa (cnidaria, ctenophores,
appendicularians, tunicates) to 0.3 g cm−1 for vertebrates (birds, mammals), a variation
by an order of magnitude. The variation in [EG]/dV is found to be really small in the
add my pet library, see Figure 8.9, but the role of κG as pseudo data point needs further
evaluation.

Although most primary parameters depend on Lm as expected, see Figure 8.9, some
noticeable deviations exist (see below). Accelerating species have a small maturity at birth,
metamorphosis and puberty, given maximum structural length, but the differences with
non-accelerating species decrease from birth to puberty. These seem to catch up with
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Figure 8.9: A selection of primary
parameters as function of ultimate
structural length as estimated in the
add my pet library. Sampling date
2018/02/25 at 1035 species. The
lines are the expected relationships
using the values of Table 8.1.
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Table 8.4: Extreme estimates for the specific somatic maintenance costs [ṗM ] in J d−1cm−3, for
the 130 species in the add my pet collection, corrected for a temperature of 20 ◦C. The cladocerans
and copepods comprise Chydorus sphaericus, Ceriodaphnia pulchella, Daphnia cucullata, Daph-
nia hyalina, Daphnia magna, Daphnia pulex, Scapholeberis mucronata, Simocephalus serrulatus,
Diaphanosoma brachyurum, Acanthocyclops robustus, Cyclops vicinus, Mesocyclops leukarti, Eu-
rytemora affinis.

[ṗM ] < 10 J d−1cm−3 [ṗM ] > 1000 J d−1cm−3

3 Eunectus murinus 1300 Oikopleura longicauda
4 Boa constrictor 1400 daphnids, copepods
5 Andrias japonicus 1450 Caenorhaditis elegans
7 Callorhinus ursinus 2100 Bosmina coregoni, B. longirostris
8 Esox lucius 2300 Oikopleura dioica

10 Acipenser ruthenus 8100 Thalia democratica

non-accelerating species during ontogeny.

8.2.1 Waste to hurry

Some small-bodied species have a very high specific somatic maintenance and assimilation
rates (the two are coupled given a value for Lm). Other, medium-sized, species have
low values [776]. Table 8.4 gives extremes in the add my pet collection; the champion is
Thalia democratica with 8 kJ cm−3d−1, which forms blooms that can be seen on satellite
images. The tadpole shrimp Triops longicaudatus has a specific somatic maintenance of
4 kJ cm−3d−1 at 20 ◦C; it needs to complete its life cycle during the short period that
its pool lasts, to negotiate the subsequent long dry period as egg. The taxa with high
values are all adapted to follow temporary peaks in local food abundance rapidly with
population numbers; for most of these species resting stages are known to survive periods
with starvation. This suggests that these species waste energy to stay small. Wasting
energy is very well known in the micro-biological and biochemical literature as futile cycles
[1138, 1364, 1365]. The pathway of destroying ATP is known, but its function was not.
What is new is the effect that this can have, in combination with high intake, on growth
and reproduction at the level of the individual, thanks to the κ-rule: somatic maintenance
competes with growth and reproduction is a parallel process.

Figure 8.10 shows that specific somatic maintenance actually decreases for increasing
ultimate length, and is about proportional to maximum specific growth and to squared
specific investment into reproduction: the waste-to-hurry principle.

Figure 8.11 shows that the fact that [ṗM ] decreases with L∞ is due to the fact that
it increases with {ṗAm} post-metamorphosis: sM{ṗAm} ∝ [ṗM ]x with x ≃ 0.8, [?]. Given
that ultimate structural length at abundant food is L∞ = κ{ṗAm}/[ṗM ], where {ṗAm}
is the value after acceleration for accelerating species, we then have [ṗM ] ∝ L

1
x−1
∞ and

{ṗAm} ∝ L
x

x−1
∞ . Both these exponents are negative for 0 < x < 1. Maximum assimilation

is ṗAm = {ṗAm}L2
∞ ∝ L

2+ x
x−1

∞ . For x = 0.8 the exponent amounts to −2. The co-variation
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Figure 8.10: Ultimate length decreases for increasing specific somatic maintenance, while max-
imum growth rate and ultimate reproduction rate increases. Data from the AmP collection,
sampling date 2017/05/23 at 685 species.

rules expect that ṗAm ∝ L3
∞, so very different indeed! The consequence of {ṗAm} ∝ [ṗM ]0.8

is, thus, that large-bodied species would have less to assimilate than small-bodied ones,
which is clearly impossible. This explains why big-bodied species have problems to evolve
the waste-to-hurry strategy. They cannot increase both (specific) assimilation and (specific)
somatic maintenance to boost growth and reproduction, and are bound to be efficient, by
having a low specific somatic maintenance. This problem comes on top of the problem that
periods of food abundance do not last long, while juvenile period and life span increase with
body size. Small-bodied species need to combine the waste-to-hurry strategy, i.e. increase
both specific assimilation and specific somatic maintenance, with torpor or migration to
survive starvation periods. Waste-to-hurry strategists are better in increasing specific
somatic maintenance, than specific assimilation (hence the power 0.8). Yet, reserve density
increases with specific somatic maintenance, caused by an increase of specific assimilation
with specific somatic maintenance, while energy conductance is independent.

The combination of large body size and high specific somatic maintenance is not possi-
ble. The range of specific somatic maintenance values among species dramatically increases
for decreasing maximum body size. The waste-to-hurry phenomenon has great ecological
importance since it enhances the mass and energy flow from phyto-plankton to the food
chain, where the fast-eating small-bodied grazers are at the bottom. Without this enhanced
input, food pyramids would be much smaller in aquatic habitats.

A high specific somatic maintenance goes with a low no-effect concentration (nec) for
toxic chemicals [59], see Figure 8.12. Many agricultural pest species live under conditions
that favor waste-to-hurry: the large food supply, so no selection for efficiency, but only
available for a short time (at least the typical crops). This makes these pest species thus
more vulnerable for pesticides (as general pattern).

8.2.1 Ageing acceleration

Another deviation in the trends in parameter values concerns the ageing acceleration ḧa,
which is expected to be proportional to the zoom factor, but found to be inversely propor-
tional to it. This is caused by the waste-to-hurry phenomenon again, where small-bodied
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Figure 8.11: Maximum specific assimilation after acceleration as function of specific somatic
maintenance at the reference temperature of 20 ◦C among animal taxa. The parameters come
from the AmP collection at 2017/12/27, when it had 913 entries. The lines are eyeball fitted, see
Table ??
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Figure 8.12: The No Effect Concentration as function of the specific somatic maintenance for 4
pesticides. Data from [59].
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Figure 8.13: Ultimate length in Actinopterigii is independent of κ, because assimilation capacity
decreases with κ. Ultimate length in Mammalia is also independent of κ, but now because specific
maintenance increases with κ.

species have a very high maintenance, which affects how the ageing acceleration depends
on maximum structural length.

8.2.1 Assimilation capacity

The primary parameters κ, {ṗAm} and [ṗM ] are thought to be independent of each other.
This would imply that ultimate length L∞ = κsM{ṗAm}/[ṗM ] would increase with κ.
Although scatter obscures relationships, L∞ does not always clearly behave like that in
plots. In mammals, which have sM = 1, L∞ seems independent of κ, because [ṗM ] tends
to increase with it. In actynoperygii L∞ seems independent of κ, because sM{ṗAm} tends
to decrease with it, see Figure 8.13.

Since sMv̇ seems independent of κ for them, the implication is that reserve capacity
[Em] decreases with κ and g = [EG]

κ[Em]
is again independent of κ.

8.2.2 Secondary scaling relationships

Length at birth is independent of ultimate length, L∞ = sMfLm, in the class Actinopte-
rigii. This probably relates to adaption of feeding on plankton as neonates, and staying in
surface waters without much effort, being transported by stream in these waters.
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Figure 8.14: While length at puberty is proportional to ultimate length in Actinopterigii, as
typical, length at birth is independent of ultimate length in this class.

8.2.2 Respiration

Only three key features of deb theory matter to understand why weight-specific respiration
decreases with maximum body weight of species [852]:

1 food is converted to a temporary metabolic pool called ‘reserve’ (a process called
assimilation), and reserve is mobilized for metabolism (see [858] for a detailed dis-
cussion)

2 a fraction κ of mobilized reserve is allocated to somatic maintenance and growth (the
κ-rule)

3 somatic maintenance is proportional to the permanent metabolic pool, referred to
as ‘structure’. So reserve does not require maintenance (see [761, 773] for a detailed
discussion)

This is all one needs to know, since respiration, defined as dioxygen flux, follows from the
mass balance.

If specific somatic maintenance increases, all else being equal, the ultimate body mass
decreases and the weight-specific respiration increases since somatic maintenance dom-
inates respiration in fully-grown individuals. If, on the other hand, specific assimilation
increases, ultimate body mass increases, as does maximum reserve density, and the weight-
specific respiration decreases as consequence.

These two changes in volume-specific somatic maintenance and surface area-specific as-
similation underlie why weight-specific respiration generally decreases with body size. The
understanding of why respiration behaves like this is directly linked to the understanding of
why specific assimilation and/or specific maintenance would vary among species. Although
these implications of DEB theory have been known for some time [759], the question of
how or why assimilation and maintenance vary among species seems very different from the
question of how respiration depends on body size, but in a deb context they are actually
the same questions.
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type quality 1 2 3 4 5 6 7 8

eye closed + + - - - - - -
plumage naked + - - - - - - -

down - + + + + + + +
contour - - - - - - ± +

activity motor - ± + + + + + +
locomotor - - - + + + + +

behaviour stay in nest + + + - - - - -
fed by parents + + + + + - - -
follow parents - - - - + + + -
search alone - - - - - ± + +
no interaction - - - - - - - +

score label

1 altricial
2 semialtrical 2
3 semialtrical 1
4 semiprecocial
5 precocial 4
6 precocial 3
7 precocial 2
8 precocial 1

Table 8.5: Scores from altricial (1) to precocial (8) in neonate birds based on Nice [1028],
according to Starck & Ricklefs[1354, 1355].

8.2.2 Respiration-reproduction coupling

Empirical relationships between parameter values suggest that the maximum neonate
mass production rate is proportional to maximum respiration, with proportionality fac-
tor 10 g/mol. This relationship can be used in cases where we have uncertainty about the
reproduction rate, and estimate κ from this relationship.

The maximum neonate mass production rate amounts to J̇∞
W b

w
= W b

wṘm = W b
wκR ∗

(1 − κ) ∗ k̇M ∗ (sM ∗ (sM − lT )
2 − k ∗ vHp)/uE0, cf Eq (2.58) of DEB3. The maxi-

mum respiration rate is the third element in J̇M = −n−1
MnOJ̇O, see Eq (4.35), where

J̇O = ( J̇∞
X J̇∞

V J̇∞
E + J̇∞

ER
J̇∞
P )T and J̇∞

X = sM{ṗAm}L
2
m(sM−lT )2

µXκX
, J̇∞

V = 0, J̇∞
E = 0,

J̇∞
ER

= E0Ṙm

κRµE
and J̇∞

P = κP sM{ṗAm}L
2
m(sM−lT )2

µP κX
. The initial reserve is E0 = u0

Eg[Em]L
3
m.

Given parameters, we can predict wR = dotJ∞
W b

w
/J̇∞

O and minimize the difference with the

expected value of 10 g/mol. This can be seen as a constraint on parameter values, which
involves many parameters, but is very sensitive for κ.

8.2.2 Altriciality index

The concept of the altricial-precocial spectrum typically applied to birds and mammals
only. A semi-quantitive scoring method exists for birds, see Table 8.5.

Birds and mammals are described as altricial if born in an early state of development
(no feather or fur, eyes closed) or as precocial if born in an advanced state (directly capable
of running around, searching for food). A natural altriciality index is the maturity ratio
spbH = Ep

H/E
b
H , see Figure 8.15. Oikopleura (and insects) score lowest (spbH = 0) by skipping

the juvenile period and directly allocate to reproduction at birth. Endotherms are more
precocial, while placentals are more precocial than marsupials and birds. See Section
8.1.3.1. of the comments for links between neonate size and nitrogen waste, and the
explanation for why birds evolved from precocial to altricial, while mammals in the opposite
direction. See Section 8.1.1 of the comments for intra-specific difference in altriciality for
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Figure 8.15: The survivor function of the log10 maturity ratio spbH (left), and the corresponding
one on the basis of maturity densities (right) of the species in the add my pet collection. Sampling
date 2017/05/06 at 684 species: all animals (black), mammals (red), birds (blue).

Figure 8.16: The alternative altriciality coefficients show little correlation, except for the
Tetrapods; EpH/E

b
H for the marsupials scores higher than that of the placentalia, but still corre-

lates well.

chickens and cows.
Figure 8.17 shows that the maturity ratio is proportional to L4

∞ in ray-finned fish. If
Ep
H ∝ L3

p and Lp ∝ L∞, while Eb
H ∝ L3

b and Lb ∝ L0
∞, we would expect an exponent of 3.

See Figure 8.14. But it is found to be 4, due to the behaviour of Ep
H in ray-finned fish.

Figure 8.16 shows how the maturity ratio spbH = Ep
H/E

b
H relates to the maturity density

ratio spbHL = [Ep
H ]/[E

b
H ].

8.2.2 Maximum reproduction

The reproduction rate is expected to decrease with maximum (structural) length among
species. Maximum structural length, i.e. the cubic route for maximum structural volume,
equals Lm = κ{ṗAm}/[ṗM ]. Apart from contributions by reserve and reproduction buffer,
maximum structural volume is the maximum volume of an individual. Maturity at birth is
expected to be proportional to cubed maximum length, which leads to a constant relative
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Figure 8.17: The maturity ratio spbH = EpH/E
b
H tends to increase in scatter with ultimate body

length. It is about proportional to L4
∞ for Actinopterygii, but not for other taxa. Maturity at

birth is independent of ultimate body length in Actinopterygii, but increases with L4
∞ at puberty.

The maturity density ratio hardly depends on ultimate body length.
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Figure 8.18: Left: The expected maximum reproduction rate (left) and investment in reproduc-
tion (right) at 20 ◦C as function of the maximum structural length among the 684 entries in the
add my pet collection, sampling data 2017/05/08. The line, with slope −1 (left) or 3 (right), is
based on simple physical and chemical expectations.

length at birth. Figure 8.18, updated from [791], shows that the tendency for reproduction
is actually present in the add my pet collection, but large deviations occur. This is mainly
due to species of fish, echinoderms and bivalves that have a (relatively) large body size, but
tiny and many eggs. The ocean sunfish Mola mola, for example, has a maximum weight
of 2.3Mg and produces some 3 1010 eggs per year. Endotherms (birds and mammals) have
relatively large offspring. The cost per egg (or foetus) scales with structural length to the
power 4 [761, 774], so the product of the reproduction rate and the cost per offspring, the
energy investment in reproduction, should scale with cubed length and is not sensitive for
relative size of offspring. Figure 8.18 confirms that beautifully and the scatter is much
smaller.

A related quantifier is the investment into reproduction as fraction of assimilation at

constant food for ultimate size, i.e. e = l = f . κAR =
ṗ∞R
ṗ∞A

=
(1−κ)ṗ∞C −ṗ∞J

ṗ∞A
=

(1−κ)ṗ∞A −ṗ∞J
ṗ∞A

=

1−κ− ṗ∞J
ṗ∞A

= 1−κ− k̇J [Ep
H ]f3L3

m

f3{ṗAm}L2
m

= 1−κ−k̇J [Ep
H ]

κ{ṗAm}/[ṗM ]
{ṗAm} = 1−κ−κk [Ep

H ]

[EG]
= 1−κ−kupH/f 3 =

1 − κ(1 +
[ṗpJ ]

[ṗM ]
) = 1 − κ − ss/κ

2, with upH =
Ep

H

g[Em]L3
m

= κf 3 [Ep
H ]

[EG]
for [Ep

H ] =
Ep

H

f3L3
m

and

[ṗpJ ] = [Ep
H ]k̇J and supply stress ss =

ṗ∞J
ṗ∞A
κ2 =

ṗ∞J ṗ∞2
M

ṗ∞3
A

. A natural constraint is κAR ≥ 0,

which implies a lower and upper limit for κ that corresponds with the constraint that the
supply stress must be between the 2 roots of ss = κ2(1−κ) for positive reproduction. The

value for κ, called κopt, that maximizes κAR amounts to κopt =
(2ṗpJ [ṗM ]2)1/3

{ṗAm}f = (2ss)
1/3 and

κAopt

R = 1− 3
2
κopt = 1− 3

2
(2ss)

1/3. Fig 8.19 illustrates how κAR depends on κ and Fig. 8.20
shows how κ, ss and κ

A
R co-vary among vertebrates in the AmP collection.

8.2.2 Overall reproduction efficiency

The energy allocation to reproduction is E0/κR per offspring, while L3
b [MV ]µV of that

energy is fixed in neonate structure and L3
b [Em] in neonate reserve, at abundant food. So

the overall reproduction efficiency κtot
R = κR([MV ]µV + [Em])L

3
b/E0 quantifies the fraction
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Figure 8.19: The allocation to reproduction
as fraction of assimilation at ultimate size, κAR
as function of the allocation fraction of mo-
bilised reserve to soma, κ. Parameters EpH =
7e4 J; k̇J = 0.002 d−1; [ṗM ] = 200 J/d.cm3;
{ṗAm} = 1000 J/d.cm2; f = 1.

Figure 8.20: A plot for κ, supply-stress ss
and κAR at f = 1 for the 4016 vertebrates in
the AmP collection. The mesh is the surface
defined by κAR = 1−κ− ss/κ2. All points are
on that surface.

of energy allocated to reproduction that is fixed in neonate mass. It accounts for the losses
in the conversion of reproduction buffer to embryo reserve, maturation and maturation
maintenance of the embryo, somatic maintenance and growth overheads of the embryo.
All costs after birth are taken care of by the neonate itself, apart from parental care.

8.2.2 Acceleration

Species with no metabolic acceleration have Eb
H = Ej

H . Figure 8.9 shows that species with
metabolic acceleration have a relatively low Ep

H , E
j
H and Ep

H for their size, independent of
the ultimate size. This is a remarkable feature that might link to the nature of metabolic
acceleration. Section 2.6.4 of the comments on twinning discusses an intriguing implication:
the yolkiness of eggs turns out the be proportional to metabolic acceleration.

8.2.2 von Bertalanffy growth rate

An interesting application of the scaling of the von Bertalanffy growth rate with body size
is in speculations about the body temperature of dinosaurs. It relates to the question of
whether or not dinosaurs were endotherms, which is still a topic of considerable controversy
[408]. The blood vessels in bones [68], the bone structure [82], and predator/ prey ratios
[407] resemble those of birds and mammals, the general morphology points to a very
active life style [67], all indications that dinosaurs were endotherms [323]; the absence of
respiratory turbinates in dinosaurs is taken as evidence that they were ectotherms with no
need to recover water from their breath [1221], the micro-distribution of oxygen isotope
in bones led some to conclude that the body temperature varied considerably in a 5-
Mg Tyrannosaurus [976], and many speculations about growth and reproduction rates of
dinosaurs are based on the low ectothermic levels [235]. The problem of sufficient heat loss
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in big dinosaurs in hot mesozoic climates was stressed by others. Although some dinosaurs
weighed up to 100 Mg [37], big dinosaurs were not born big, not all of them were big as
adults and they also roamed in cold climates [219]. Studies by Alexander [16] showed that
the body temperature of small dinosaurs would exceed the environmental temperature by
a few degrees only.

Maiasaurs fit the von Bertalanffy growth curve very well, see Figure 8.21. This indicates
that the body temperature was constant during their life span. If the shape coefficient
would be δM = 0.09, while the maximum length is 7.6m, with k̇M = 400 a−1 and v̇ =
300 a−1, the expected value is ṙB = 0.146 a−1 at 25 ◦C, while the observed value is 0.347 a−1.
Using an Arrhenius temperature of TA = 6 kK, this leads to an estimated body temperature
for the maiasaur of 6(6000

298
− ln 0.347

0.146
)−1 kK or 38.3 ◦C. This has been recently confirmed

independently by isotope data [371], cf Section 3.6 of the comments..
It would be most interesting to have data for smaller species and/or species in cold

climates, but this will probably remain a wish.

8.3 Elimination rate as a function of partition

Another examples of the scaling of the elimination rate are given in Fig. 8.22 and 8.23.
Both examples support the conclusion that the elimination rate is inversely proportional
to the square root of the octanol-water partition coefficient.

le
n
gt
h
,
cm

age, a

Figure 8.21: The mea-
sured length-at-age for the
maiasaur (data by Horner,
based on age estimates
from bone structure [1135])
and the fitted von Berta-
lanffy growth curve (ulti-
mate length 7.6 m, von
Bertalanffy growth rate
0.347 a−1). This sug-
gests a body temperature
of 38.3 ◦C, see text.
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Figure 8.22: The elimination rate in Eisenia
fetida is approximately proportional to 1/

√
Pow

for polycyclic aromatic compounds at 22 ◦C.
Data from Matscheko et al. [923].

Figure 8.23: The elimination rate in Daphnia
pulex is approximately proportional to 1/

√
Pow

for the compounds isoquinoline, acridine, and
benz(a)acridine at 21 ◦C. Data from Southworth
et al. [1343].
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Living together

9.1 Trophic interactions

9.1.2 Syntropy: direct transfer

The constraints for weak homeostasis can be derived as follows. The first observation is
that ṙ1 = 0 if f = g1k̇

1
M/k̇

1
E, and ṙ2 = 0 if

M1
V

M2
V

=
g2

g1

k̇2
M

k̇1
M

j2
PAm

k̇2
E

1

ζPM + ζPA
(9.1)

This constraint can be substituted into the expression for ṙ2 and allows ṙ1 = ṙ2 for f =

g1
k̇1M+ṙ1

k̇1E−ṙ1
, to be written as

(1 + ṙ1/k̇
2
M)k̇1

Mg1(ζPM + ζPA) = (1− ṙ1/k̇
2
E)jP (9.2)

Substitution of jP shows that this constraint can be re-written as a third-order polynomial
in ṙ1 being equal to zero, which only holds if all coefficients are equal to zero.

Pitcher plants Nepenthes offer nice examples of mutual syntrophic relationships. N.
lowii and N. macrophylla excrete carbohydrates at the underside of the lid that hags
above to pitch that attracts the maintain tree shrew Tupaia montana to come to lick it and
drops its nitrogen-rich faecal pellets in the pitch during the act. The plants lives too high in
Borneo mountains to attract insects, like many of the other 150 pitcher plants species do.
N. rajah catches both insects and droppings, also from the summit rat Rattus baluensis . N.
hemsleyana offers housing to one or two tiny Hardwicke’s woolly bats Kerivoula hardwickii
to collect their droppings and ecto-parasites. These bats can locate the pitchers by their
extra-high sonar, well above 250 kHz, which is well-reflected by the parabolic rear wall
of the upper pitchers. The Black-spotted Sticky Frog Kalophrynus pleurostigma develops
inside pitchers, profiting from the cached insects.

9.1.2 Derivation of (9.2)

The ratio MV 1/MV 2 can be derived as follows: We are looking for conditions under which
MV 1/MV 2 remains constant, and is independent of the specific growth rate ṙ. So if MV 1 is

http://en.wikipedia.org/wiki/User:Mgiganteus1/sandbox4
http://en.wikipedia.org/wiki/Kalophrynus_pleurostigma
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growing at rate ṙ, MV 2 must also grow at that rate. This must hold for all rates, so also
for ṙ = 0. If f = g1k̇M1/k̇E1, we have that ṙ1 = 0 (see formula for ṙ1 and set numerator
equal to zero) and jP = ζPM k̇M1g1 + ζPAk̇E1f = k̇M1g1(ζPM + ζPA) (see below the formulas

for ṙ1 and ṙ2). We set the numerator of ṙ2 equal to zero and obtain k̇E2jP
jP,Am2

MV 1

MV 2
= k̇M2g2.

Substitution of jP and rearranging terms gives

MV 1

MV 2

=
g2

g1

k̇M2

k̇M1

jP,Am2

k̇E2

1

ζPM + ζPA

which is the formula that is presented. Equating the polynomial coefficients in ṙ1 to

zero, as explained in the text, we have ζPM

ζPA

(
k̇M1

k̇E
+ k̇M1

k̇M2

)
= 1 − k̇M1

k̇M2
. Rearrangement of

terms gives ζPM = ζPA
k̇−1
M1−k̇

−1
M2

k̇−1
E +k̇−1

M2

, so ζPM + ζPA = ζPA
k̇−1
M1+k̇−1

E

k̇−1
E +k̇−1

M2

. Substitution into the equa-

tion for MV 1/MV 2 directly gives the result in the last line. The formula for ME1/ME2

can be derived from the observations that ME = MVmEmf (from Table 3.4 at {122}),
and the scaled functional response f of the recipient is jP

jP,Am2

MV 1

MV 2
. This gives ME1

ME2
=

MV 1

MV 2

mEm1

mEm2
f
jP,Am2

jP

MV 2

MV 1
= mEm1

mEm2

jP,Am2

jP
f . We now substitute jP , which reduces for ζPG = 0

and k̇E1 = k̇E to jP = ζPM k̇M1g1 + ζPAk̇Ef = fk̇EζPA
(
1 + k̇M2−k̇M1

k̇M2+k̇E

g1
f

)
. The latter follows

after substitution of ζPM for the value obtained above. Substitution of mEm1

mEm2
= MEm1

MEm2

MV 2

MV 1

directly leads to the formula for ME1/ME2 that is presented on the bottom line.

9.1.3 Symbiontic relationships

The number of known symbiontic relationships continues to increase. Mites and collemboles
turn out to play a key role in the fertilization of mosses [287].

The flagellate Hatena (Katablepharidophyta) has the (single) symbiont Nephroselmis
(Prasinophyceae, Viridiplantae). The symbiont retains its nucleus, mitochondria, plastid,
and occasionally the Golgi body, but the flagella, cytoskeleton and endomembrane system
are lost. Its eye-spot, which is inside the plastid, is always near the apex of the host and the
host use it for phototaxis. When the host divides, a one daughter gets the symbiont, and
the other develops a feeding apparatus to engulf a new symbiont, after which the feeding
apparatus degenerates [1043].

The opistobranch Phyllodesmium feeds on soft symbiontic corals and houses coral’s
algal symbionts in its complex midgut. The zooanthellae not only remain active photo-
synthesically, but also give the slug exactly the same color as its coral prey, which makes
it difficult to detect [1080]. The opistobranch Elysia harbors the chloroplast of its prey
Vaucheria (Xanthophyta). Since Elysia parents don’t pass the chloroplasts to their off-
spring, the acquisition of chloroplasts is the first thing to do in its 10-month life. It seems
that Elysia chlorotica integrates genes for chorophyll production in its genome after eating
Vaucheria chloroplasts for the first time [974], but it can’t pass these genes to its offspring.
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Figure 9.1: Stereo view of the direction field and isoclines for the deb model for V1-morphs in a
chemostat. The parameter values are the same as in Figure 9.2 and the projection of this direction
field on the x, y-plane reduces to the direction field given in Figure 9.2, where the reserves are set
at equilibrium.

9.2 Population dynamics

9.2.1 Expologistic growth; derivation of (9.17)

Notice that the general strategy of the chapter is to start on ground that should be familiar
to microbiologists and step by step more DEB elements are introduced. So we have to show
that (9.17) reduces to (9.12) by removing deb elements. The first step is to exclude aging,
so ḣa = 0. The second step is to remove reserve, so [Em] → 0. We work here with
compound parameters, rather than with primary ones, so we have to study each of the
compound parameters to evaluate the consequences. We have g = [EG]

κ[Em]
, so g → ∞. We

also have ld =
k̇Mg

k̇E
= [ṗM ]

κ[ṗAm]
, so ld remains fixed. The implementation of these changes in

(9.17) results in d
dτ
x1 = YgȷXm(f − ld)x1 − x1 = Yg

f−ld
f
ȷXmfx1 − x1 = Y ȷXmfx1 − x1 with

Y = Yg
f−ld
f

. This latter relationship is given in the table at the bottom of {315} for the
Marr-Pirt model. Notice the absence of dots in the equations, because we work in scaled
time, that is dimensionless.

The direction field of the model (9.17) is given in Figure 9.1. Mortality is excluded,
ḣa = 0, to facilitate comparison with the situation where reserves are in equilibrium; see
Figure 9.2.

9.2.1 Time scale separation

Simplifying approximations for batch dynamics by Jean-Christophe Poggiale. Assume that
we have the following model for V1-morphs in a batch reactor (Figure 9.2)

d

dτ
x0 = I − jXmfx1

d

dτ
e = kE (f − e)
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Table 9.1: Definition, values and units of the parameters.

Symbol Parameter Name Value Unit

İ input rate of substrate 1 mMh−1

jXm maximum specific uptake rate 0.125 mMh−1

Kx half-saturation constant for uptake 5 mM

k̇E Reserve turnover rate 0.925 h−1

k̇M Maintenance turnover rate 0.04 h−1

g Investment ratio 0.5 -

d

dτ
x1 =

kEe− kMg

e+ g
x1

Let us assume that e is a fast variable with respect to x0 and x1. It follows that e
reaches a quasi-steady state value f , which is a function of the slow variables:

f (x0) =
x0

Kx + x0

We can thus replace e by f in the third equation, which leads to the two dimensional
model (Figure 9.3):

d

dτ
x0 = I − jXmfx1

d

dτ
x1 =

(kE − kMg)x0 − kMgKx

x0 (1 + g) + gKx

x1

Furthermore, if we assume that x0 is also fast with respect to x1, then x0 also reaches a
quasi-steady state value obtained by vanishing the first equation. We thus get f = I

jXmx1
.

Finally, we can replace f by its value in the third equation and we consequently a one-
dimensional model (Figure 9.4):

d

dτ
x1 =

kEI

I + gjXmx1

(
1− kMgjXm

kEI
x1

)
x1 = r (x1)

(
1− x1

K

)
x1

where

r (x1) =
kEI

I + gjXmx1

and K =
kEI

kMgjXm

9.2.1 Derivation of (9.13)

The first step in the derivation of (9.13) from (9.12) is the determination of the equlibrium.
To this end we start with the equation d

dτ
x1 = 0, and learn for f = x0

x0+1
that f ∗ =

(Y ȷXAm)
−1 and Y ȷXAmx

∗
0 = x∗0 + 1, so that the equilibrium value for x0 is x∗0 = (Y ȷXAm −

1)−1. We find the equilibrium value for x1 from d
dτ
x0 = 0 and obtain x∗1 =

xr−x∗0
ȷXAmf∗

.
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Figure 9.2: This figure shows the dynamics of the standard DEB - model

The second step is the linearisation of (9.12) around the equilibrium x∗ = (x∗0 x
∗
1)
T ,

where linearisation means the two-term Taylor approximation of H in x∗, where we re-
write (9.12) as d

dτ
x = H(x). The expression d

dxT H(x∗) is known as the Jacobian matrix.
We find for constant Y = Yg

d

dτ
x = H(x) =

(
H1(x)
H2(x)

)
=

(
xr − ȷXAmfx1 − x0

YgȷXAmfx1 − x1

)

= H(x∗) +

(
d

dxT
H(x∗)

)
(x− x∗) with H(x∗) = 0

=

(
d
dx0
H1(x

∗) d
dx1
H1(x

∗)
d
dx0
H2(x

∗) d
dx1
H2(x

∗)

)
(x− x∗)

=

(
d
dx0

(xr − ȷXAmf
∗x∗1 − x∗0)

d
dx1

(xr − ȷXAmf
∗x∗1 − x∗0)

d
dx0

(YgȷXAmf
∗x∗1 − x∗1)

d
dx1

(YgȷXAmf
∗x∗1 − x∗1)

)
(x− x∗)

=

 − ȷXAmx
∗
1

(1+x∗0)2
− 1 −ȷXAmf ∗

YgȷXAmx
∗
1

(1+x∗0)2
YgȷXAmf − 1)

 (x− x∗)

with ȷXAmf
∗x∗1 = xr − x∗0 and Yg = (f ∗ȷXAm)

−1

=

 −xr+x∗20
x∗0+x∗20

− 1
Yg

xr−x∗0
ȷXAmx

∗2
0

0

 (x− x∗)
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Figure 9.3: This figure compares the 2D-model dynamics to that of the DEB - model.

9.2.2 Structured population dynamics

I took the sections on stable age and size distribution out of the main text, because lack
of space, and the general concepts behind these distributions can be found in many text
books.

9.2.2.1 Stable age distributions

If food density is constant or high (with respect to the saturation coefficient), the distri-
bution of individual states in the population, such as age and volume, stabilises, while the
numbers grow exponentially. This distribution can be evaluated in a relatively simple way,
which makes it possible to evaluate statistics such as the mean volume and its variance,
mean life span, etc. Situations may occur where the individual states change cyclically, so
that such a stable distribution does not exist. The distribution of individual states has a
limited practical value, because it only holds at prolonged constant food densities. How
long food density must remain constant for state distributions to stabilise is hard to tell
in specific cases and impossible in general. The main value of stable distributions lies in
finding practical approximations for the behaviour of population models based on individ-
uals. The derivation of stable state distributions is easiest when looking at the stable age
distribution, which I will explain briefly. More extensive treatment is given by Frauenthal
[443].

Let ϕN(a, t) da denote the number of females at time t aged somewhere in the interval
(a, a + da), where da is an infinitesimally small time increment. The total number of
individuals is thus N(t) =

∫∞
0 ϕN(a, t) da. Individuals that have age a at t must have been
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Figure 9.4: This figure compares the logistic-like growth dynamics to that of the DEB - model.

born at t−a and must be still alive to be counted in N , so we have the recursive relationship
ϕN(a, t) = ϕN(0, t − a) Pr{a† > a}, where ϕN(0, t) da denotes the number of births in

(t, t+da). The birth rate relates to the reproduction rate as ϕN(0, t) =
∫∞

0 ϕN(a, t)Ṙ(a) da,
where Ṙ(a) is the reproduction rate of an individual of age a. If we substitute the birth
rate into the recursive relationship, we arrive at the integral equation

ϕN(0, t) =
∫ ∞

0
ϕN(0, t− a) Pr{a† > a}Ṙ(a) da (9.3)

Rather than specifying the number of births before the start of the observations at t = 0,
we specify the founder population ϕN(a, 0) = ϕ0(a) and write

ϕN(0, t− a) = ϕ0(a− t)/Pr{a† > a− t} for a > t (9.4)

The integral in (9.3) can now be partitioned and gives what is known as the renewal
equation

ϕN(0, t) =
∫ t

0
ϕN(0, t− a) Pr{a† > a}Ṙ(a) da+

∫ ∞

t

Pr{a† > a}
Pr{a† > a− t}

ϕ0(a− t)Ṙ(a) da (9.5)

The second term thus relates to the contribution of the individuals that were present in
the founder population. Depending on the survival probability and age-dependent repro-
duction rate, its importance decreases with time. Suppose that it is negligibly small at
some time t1 and that the solution of (9.5) is of the form ϕN(0, t) = ϕN(0, 0) exp{ṙt}, for



240 9. Living together

some value of ṙ and ϕN(0, 0). Substitution into (9.5) gives for t > t1

ϕN(0, 0) exp{ṙt} =
∫ t1

0
ϕN(0, 0) exp{ṙ(t− a)}Pr{a† > a}Ṙ(a) da or (9.6)

1 =
∫ t1

0
exp{−ṙa}Pr{a† > a}Ṙ(a) da (9.7)

The latter equation is known as the characteristic equation. It is possible to show that,
under some smoothness restrictions on reproduction as a function of age, this equation has
exactly one real root for the population growth rate ṙ1. The other roots are complex and
have a real part smaller than |ṙ1|. The general solution for ϕN(0, t) is a linear combina-
tion

∑
i ϕi(0, 0) exp{ṙit}. For large t, the exponential exp{ṙ1t} will be dominant, so the

asymptotic solution will be ϕN1(0, 0) exp{ṙ1t}; because the other roots are of little practi-
cal interest, the index will be dropped and ṙ is thus taken to be the dominant root. The
smoothness restrictions on Ṙ(a) are violated if, for instance, reproduction is only possible
at certain ages. In this case, the information about the age distribution of the founder
population is not lost.

The stable age distribution – i.e. the distribution of the ages of a randomly taken
individual, a – is defined by ϕa(a) da ≡ ϕN(a, t) da/N(t) for t → ∞. As before, we have
for large t

ϕN(a, t) = ϕN(0, t− a) Pr{a† > a} = ϕN(0, 0) exp{ṙ(t− a)}Pr{a† > a} (9.8)

As N(t) ≡
∫∞

0 ϕN(a, t) da serves only to normalise the distribution, we get the simple
relationship between the age distribution and the survivor probability of the individuals

ϕa(a) =
exp{−ṙa}Pr{a† > a}∫∞

0 exp{−ṙa1}Pr{a† > a1} da1

(9.9)

Note that a is defined for the population level, while a† is the age at which a particular
individual dies, so it is defined for the individual level. For a stable age distribution, the
adage ‘older and older, rarer and rarer’ always holds. The mean age in the population is
thus

Ea =
∫ ∞

0
aϕa(a) da =

∫∞
0 a exp{−ṙa}Pr{a† > a} da∫∞
0 exp{−ṙa}Pr{a† > a} da

(9.10)

9.2.2.2 Stable size distributions

Volume distribution is intimately related with the growth of dividing individuals, as has
been widely recognised [265, 330, 561, 912, 1474]. It can most easily be expressed in terms
of its survivor function. If death plays a minor role, (9.9) gives the stable age distribution
for Pr{a† > a} = (a < ad) with ad = ṙ−1 ln 2. For dividing individuals aged between 0 and
ad, the stable age distribution is given by ϕa(a) da = 2ṙ exp{−ṙa} da = 2 ln 2

ad
2−a/ad da. For

reproducing immortal individuals, the stable age distribution is ϕa(a) da = ṙ exp{−ṙa} da.
The expected value of scaled length to the power i amounts to E li =

∫
ϕa(a)l(a)

i da.
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Figure 9.5: The mean volume of E. coli
as a function of population growth rate
at 37 ◦C. Data from Trueba [1440]. For
a chosen aspect ratio δ = 0.28, a main-
tenance rate coefficient k̇M = 0.05 h−1

and an investment ratio g = 1, the least-
squares estimates of the volume at the
start of dna replication is Vp = 0.454µm3,
the time required for division is tD =
1.03 h and the energy conductance v̇ =
31.3µmh−1. pop. growth rate, h−1
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The mean length increases less steeply with increasing substrate density or ṙ than
length at division, because the mean age reduces. Figure 9.5 shows that the mean volume
of rods depends on population growth rate in the predicted way.

The survivor function of the stable age distribution is thus: Pr{a > a} ≡
∫ ad
a ϕa(a1) da1 =

(a < ṙ−1 ln 2)(2 exp{−ṙa} − 1). The stable age distribution only exists at constant food
densities, where volume increases if age increases. It was first derived by L. Euler in the
eighteenth century [735]. The remarks on the need for scatter for stability of age distribu-
tions also apply to size distributions. See Diekmann et al. [328, 329] for a more technical
discussion.

If growth is deterministic and division occurs at a fixed size and the baby cells are of
equal size, no stable age distribution exists. If there is some scatter in size at division, a
stable age distribution exists, unless growth is exponential [102], because the information
about the age distribution of the founder populations never gets lost. If sisters are not
exactly the same size, a stable age distribution exists, even if growth is exponential. The
age distribution has a weaker status, that of an eigenfunction: if the founder population
has this particular age distribution, the age distribution will not change, while all other age
distributions for the founder population will change cyclically with period ad. In practice,
however, scatter in growth rate and the size of baby cells will be more than sufficient for
a rapid convergence to the stable age distribution.

The survivor function of the stable volume distribution is

Pr{V > V } = Pr{a > t(V )} = 2 exp{−ṙt(V )} − 1 for V ∈ (Vd/2, Vd] (9.11)

where t(V ) is the age at which volume V is reached. The probability density is thus

ϕV (V ) dV = (V ≥ Vd/2)(V ≤ Vd)2ṙ exp{−ṙt(V )} dt (9.12)

For isomorphs, t(V ) is given in (2.23). Since scaled length, l, has a monotonous relationship
with volume; we have Pr{l > l} = Pr{V > V }. The survivor function of the stable length
distribution for isomorphs that divide at scaled length ld becomes

Pr{l > l} = 2
1+ln f−l

f−lb
/ ln

f−lb
f−ld − 1 (9.13)
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The same can be done for rods, which leads to

Pr{l > l} = 2
ln

1−ld/f

(1−ld/f−δ/3)(l/ld)
3+δ/3

/ ln
2(1−ld/f)

1−ld/f+δ/3 − 1 (9.14)

and for V1-morphs
Pr{l > l} = (l1/l)

3 − 1 (9.15)

These relationships can be important for testing assumptions about the growth process
using the stable length distribution. Actual stable length distributions reveal that the
scaled length at division, ld, is not identical for all individuals, but has some scatter, which
is close to a normal distribution [736]. It is assumed that the size-age curve does not
depend on the size of the baby cell. As soon as a small baby cell has grown to the size of a
larger baby cell, the rest of their growth curves are indistinguishable. Let ϕV b

denote the
probability density of the number of baby cells of volume V , i.e. cells of an age less than
an arbitrarily small period ∆t, and ϕV d

the probability density of the number of mother
cells of volume V , i.e. cells which will divide within the period ∆t. A practical way to
determine ϕV b

(V ) dV and ϕV d
(V ) dV empirically is to make photographs at t and t + ∆t

of the same group of cells and select cells that are divided at t + ∆t, but not at t. The
photograph at t can be used to obtain ϕV d

(V ) dV and that at t+∆t to obtain ϕV b
(V ) dV .

When N denotes the total number of cells in the population, the number of cells with a
volume in the interval (V, V + dV ) is NϕV (V ) dV . Painter and Marr [1062] argued that
the change in this number is given by

d

dt
NϕV = 2

d

dt
NϕV b

− d

dt
NϕV d

−N
∂

∂V

(
ϕV

dV

dt

)
(9.16)

The first term stands for the increase caused by birth, the second one for loss attributed to
division and the third term for loss due to growth. Since the stable volume distributions
do not depend on time and d

dt
N = ṙN , some rearrangement of terms gives

∂

∂V

(
ϕV

dV

dt

)
= ṙ

(
2ϕV b

− ϕV d
− ϕV

)
This is a linear inhomogeneous differential equation in ϕV (V ), with solution

ϕV (V ) =
dt

dV
ṙ exp{−ṙt(V )}

∫ V

Vmin

exp{ṙt(V1)}(2ϕV b
(V1)− ϕV d

(V1)) dV1 (9.17)

where Vmin is the smallest possible cell volume and, since ϕV (Vmax) = 0, ṙ satisfies [1474]∫ Vmax

Vmin

exp{ṙt(V1)}(2ϕV b
(V1)− ϕV d

(V1)) dV1 = 0 (9.18)

The connection with the previous deterministic rules for division can be made as follows.
When mother cells divide into two equally sized baby cells, we have ϕV b

(V ) = 2ϕV d
(2V ).

So, ϕV b
(V ) dV = (V = Vd/2) and ϕV d

(V ) dV = (V = Vd) when division always occurs at
Vd. Substitution into (9.17) gives (9.12) and into (9.18) gives t−1

d ln 2, as before. When
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Figure 9.6: The probability density of the length of E. coli B/r A (left) and K (right) at a
population growth rate of 0.38 and 0.42 h−1 respectively at 37 ◦C. Data from Koppes et al. [800].
For an aspect ratio of δ = 0.3, the three parameters are Vd = 0.506µm3, V∞ = −0.001µm3 and
σ2 = 0.026 and Vd = 2.324µm3, V∞ = −1 µm3 and σ2 = 0.044. Because of the relatively large
variance of the volume at division, these frequency distributions give poor access to the single
parameter that relates to the growth process V∞.

division always occurs at Vd, so ϕV d
(V ) dV = (V = Vd), and the sizes of the baby cells are

Va and Vp, we have ϕV b
(V ) dV = (V = Va)/2+ (V = Vp)/2 with Va+Vp = Vd and Va < Vp.

Substitution into (9.17) gives

ϕV (V ) dV = (V ≥ Va)(V ≤ Vd)ṙ exp{ṙ(t(Va) + t(Vp)(V ≥ Vp)− t(V ))} dt

and substitution into (9.18) gives 1 = exp{−ṙtda}+ exp{−ṙtdp}.
Figure 9.6 gives the stable length distribution for Escherichia coli, together with the

model fit with a log-normal distribution for the length at division. Since the curves ap-
proach the x-axis very closely for large cell lengths, the approximation ṙ = t−1

d ln 2 is
appropriate. Although the goodness of fit is quite acceptable and only three parameters
occur, the one relating to the growth process, V∞, is not well fixed by the data. Again, the
conclusion must be that this population response is consistent with what can be deduced
from the individual level, but that the population behaviour gives poor access to that of
individuals.

9.2.2.3 Discrete individuals

The derivation of (9.22) is via

1 =
∞∑
i=1

exp{−ṙ(ap + i/Ṙ)} = exp{−ṙ/Ṙ− ṙap}
(
1− exp{−ṙ/Ṙ}

)−1
(9.19)

9.2.2.4 Population growth rates and division intervals

Substitution of the expressions for age at division gives the expressions for the population
growth rates at constant substrate densities and for their relative values with respect to the
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Figure 9.7: The population growth rate ṙ for dividing organisms as it simplifies when expressed
as a fraction of its maximum ṙm and small maintenance costs [ṗM ] and/or storage capacity [Em].
The last three rows in the ‘V1-morphs’ column correspond to the models by Marr–Pirt, Droop
and Monod. These models are graphically compared with the deb model for V1-morphs in the
figure below. The symbols l1 and V1 stand for ld and Vd for f = 1.

isomorphs rods V1-morphs

ṙ gk̇M
f+g

1
3

ln 2

ln
f−ld2

−1/3

f−ld

(1−δ/3)f/ld−1

(f+g)/gk̇M

ln 2

ln
2(1−ld/f)

1−ld/f+δ/3

f/ld−1

(f+g)/gk̇M

ṙ
ṙm

1+g
f+g

ln
1−l12

−1/3

1−l1

ln
f−ld2

−1/3

f−ld

1+g
f+g

(1−δ/3)f/ld−1
(1−δ/3)/l1−1

ln
2(1−l1)

1−l1+δ/3

ln
2(1−ld/f)

1−ld/f+δ/3

1+g
f+g

f/ld−1
1/l1−1

ṙ
ṙm

∣∣∣ [Em] → 0
ln

1−l12
−1/3

1−l1

ln
f−ld2

−1/3

f−ld

(1−δ/3)f/ld−1
(1−δ/3)/l1−1

ln
2(1−l1)

1−l1+δ/3

ln
2(1−ld/f)

1−ld/f+δ/3

f/ld−1
1/l1−1

ṙ
ṙm

∣∣∣ [ṗM ] → 0 f 1+g
f+g

(V1
Vd
)1/3 f 1+g

f+g
(V1
Vd
)1/3 f 1+g

f+g
ṙ
ṙm

∣∣∣ [Em], [ṗM ] → 0 f(V1
Vd
)1/3 f(V1

Vd
)1/3 f

maximum population growth rates, which are collected in Figure 9.7. The scaled length
at division, ld, is a function of f , because of the fixed period required to duplicate dna. It
has to be solved numerically from (7.69), but, for most practical purposes, it can probably
be treated as a constant. For small aspect ratios, δ, the expressions for rods reduce to that
for V1-morphs, while for an aspect ratio of δ = 0.6 rods resemble isomorphs. The table in
Figure 9.7 therefore illustrates how the population growth rate of dividing deb isomorphs
reduces stepwise to well known classic models. It also illustrates why many microbiologists
do not like models that explicitly deal with substrate density; the saturation coefficient for
uptake is usually very small for most combinations of micro-organisms and substrate types,
and the saturation coefficient for population growth is even smaller, so that problems arise
in measuring such low densities. Natural populations of micro-organisms tend either to
grow at the maximum rate, or not to grow at all. This on/off behaviour is a major obstacle
in the analysis of population dynamics.

The functions in Figure 9.7 are used to obtain Figure 9.9.

9.2.2.5 Generalized reactor: a semi-structured model

A well-stirred generalized reactor has a food input, and each component can leave the
reactor at its own rate. The purpose of this section is to reduce the complex dynamics of
deb individuals in a generalized reactor to a small set of ode’s, by assuming that the stable
age distribution applies at each point in time (which is obviously a crude approximation,
since it typically takes a long time with constant conditions). This reduced formulation
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can then be compared with more complete ones. The survivor function of the stable age
distribution is

Sa(a) =

∫∞
a exp(−ṙN t)S(t) dt∫∞
0 exp(−ṙN t)S(t) dt

where ṙN is the (unknown) specific population growth rate (which varies in time, see below).
The survival probability is approximated by

S(a) = exp

(
6ḣ3

W

ḣ3
G

(
1− exp(ḣGa) + ḣGa+ ḣ2

Ga
2/2

)
− ḣBa

)
,

see Eq (6.5), for background hazard ḣB and approximated Gompertz aging hazard ḣG =
k̇MgsGf

3 and Weibull aging hazard ḣ3
W = ḧak̇Mg/6. A typical maximum ages is am =

Γ(4/3)/ḣW .
We partition the total number of individuals per volume, N , in embryo, juvenile and

adult densities N = N0b + Nbp + Npi. Only ‘average’ lengths are delineated for the three
stages: L0b = Lb/2 and Lbp = Lb/2 + Lp/2 and Lpi = Lp/3 + L∞ ∗ 2/3 (since most of the
time L will be close to L∞). The lengths Lb, Lp and L∞ depend on f and are updated
for each time step. We further assume that reserve is in instantaneous equilibrium, e = f ,
and the reproduction rate is taken to be a continuous flux, while the cost per egg is

always for f = 1: Ṙ =
(
fl2pi
f+g

(g + lpi)− kvpH

)
κR(1−κ)k̇M

u0E
and scaled length lpi = Lpi/Lm,

see Eq (2.56). The specific population growth rate ṙN is (implicitly) approximated by
exp(−(ṙN + ḣB)ap) = exp((ṙN + ḣB)/Ṙ)− 1, cf Eq (9.22).

The dynamics of the number densities is

d

dt
N0b = ṘNpi−ḣ0bN0b−k̇bN0b;

d

dt
Nbp = k̇bN0b−ḣbjNbj−k̇pNbp;

d

dt
Npi = k̇pNbp−ḣpiNpi

The flux k̇b =
exp(−ṙNab)S(ab)∫ ab
0

exp(−ṙN t)S(t) dt
≃ (ṙN + ḣB)

exp(−(ṙN+ḣB)ab)

1−exp(−(ṙN+ḣB)ab)
is from embryo to juvenile and

k̇p = exp(−ṙNap)S(ap)∫ ap

ab
exp(−ṙN t)S(t) dt

≃ (ṙN+ḣB) exp(−(ṙN+ḣB)ap)

exp(−(ṙN+ḣB)ab)−exp(−(ṙN+ḣB)ap)
from juvenile to adult, assuming

that aging plays a minor role till puberty. The stage-dependent hazards are approximated
by ḣ0b =

1−S(ab)
ab

, ḣbp =
S(ab)−S(ap)

ap−ab
and ḣpi =

S(ap)
am−ap .

The dynamics of scaled food density x = X/K in the reactor amounts to

d

dt
x =

J̇XI
VXK

− ḣXx− f
{J̇XAm}
K

(NbpL
2
bp +NpiL

2
pi)

for half saturation coefficient K, scaled functional response f = x
1+x

, food input to the

reactor J̇XI , reactor volume VK , hazard rate for food ḣD, specific feeding rate {J̇XAm}.
This completes the specification of the reactor dynamics. For ḣB = ḣX , the reactor

behaves as a chemostat.
When starting with a freshly laid egg, initial food density matters more than with EBT

and CPM, since embryos convert to juveniles directly. Fig 9.8 compares the trajectories
for this semi structured model, the cohort projection model and the escalator boxcar train,
for the same species and reactor parameters.
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Figure 9.8: Population trajectories of Torpedo marmorata in a well-stirred reactor of volume
VX = 1000L3

m L, food hazard ḣX = 0.1 d−1, ḣB = 0d−1, food supply J̇XI = 0.03VX mol/d
at 15◦C, starting with a freshly laid egg and x(0) = 10. Trajectories are shown for the semi
structured model (black), the cohort projection model (blue) and the escalator boxcar train
(red). The period between reproduction events in the cohort projection model is 365 d.

9.2.2.5 Population growth rates for semelparous reproduction

If reproduction is semelparous, where N eggs are laid shortly before dying at age am,
where survival probability is S(am) = Sm, the reproduction rate reduces to a Dirac delta
function: Ṙ(a) = 0 for a < am and Ṙ(am) = ∞ for a = am, while Ṙ(am) da = N . In
this case, the characteristic equation for specific population growth rate ṙN reduces to
1 = SmN exp(−ṙNam) or ṙN = a−1

m log(SmN).

9.3 Food chains and webs

9.3.1 Asymptotic behaviour of trophic chains: bifurcation analysis

When the number of loosely coupled variables is sufficiently large in a system, the system
is likely to have very complex asymptotic behaviour, including the occurrence of multiple
attractors, possibly of the chaotic type. This is almost independent of the specific model;
the behaviour has been observed in several models for tri-trophic food chains. Bifurcation
analysis deals with qualitative changes in the asymptotic behaviour of the system, when
a parameter is varied in value. Table 9.2 gives the possible bifurcation types, which all
have been found in tri-trophic food chains. The bifurcation type depends on the value
of the eigenvalue of the Jacobian matrix evaluated at the equilibrium and the Floquet
multiplier, which is an eigenvalue of the Poincaré next-return map. If all complex values
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Table 9.2: List of basic local bifurcations for odes: dx/dt = f(x, α), and maps: yn+1 = f(yn, α)
with normal forms. The bifurcation point is α = 0. λ is the eigenvalue of the Jacobian matrix
evaluated at the equilibrium ( ddtx = 0 and yn+1 = yn) and µ is the Floquet multiplier evaluated
at the limit cycle. The bifurcation type depends on the real (Re) parts of these characteristic
exponents. With food web dynamics, a stable positive attractor originates at a supercritical
transcritical bifurcation (superscript +) and an unstable positive equilibrium or limit cycle at
a subcritical transcritical bifurcation (superscipt −). Superscript ± refers to supercritical and
subtritical.

symbol bifurcation normal form characteristic
exponents

Te Tangent, of equilibrium d
dtx = α− x2 Re λ = 0

Tc Tangent, of limit cycle yn+1 = yn + α− y2
n Re µ = 1

TC±
e Transcritical, of equilibrium d

dtx = αx± x2 Re λ = 0
TC±

c Transcritical, of limit cycle yn+1 = (1 + α)yn ± y2
n Re µ = 1

H± Hopf d
dtx = −y + x(α± (x2 + y2))
d
dty = x+ y(α± (x2 + y2)) Re λ1,2 = 0

F± Flip yn+1 = −(1 + α)yn ± y3
n Re µ = −1

of the Floquet multipliers are within the unit circle, the dynamic system’s orbit converges
to a limit cycle.

9.3.1.1 Methods

The analysis of bifurcation behaviour must be done numerically, using specialised software:
locbif [711] and auto [340] can calculate bifurcation diagrams using continuation meth-
ods. The theory is documented in [816]. The analyses cannot be done on a routine basis,
however, and the user must have a fairly good idea of what to expect and what to look
for. Although the software is rapidly improving in quality, at present it is still deficient
in computing certain types of global bifurcations, for instance, and one has to rely on
‘in-house’ software to fill in the gaps, see [151].

Results of bifurcation analyses are frequently reported in the form of bifurcation dia-
grams. These diagrams connect points where system’s asymptotic behaviour changes in a
similar way when the bifurcation parameters are varied. So, the system has similar asymp-
totic behaviour for values of bifurcation parameters within one region. The construction of
such diagrams is only feasible if there are just one or two of such parameters. Many food
chain studies take parameters that represent properties of species which cannot be changed
experimentally. When the organisms live in a chemostat, two natural bifurcation parame-
ters are the throughput rate and the concentration of substrate in the feed. Diagrams with
these parameters are called operating diagrams.

9.3.1.2 Bifurcation diagrams for bi- and tri-trophic chains

Figure 9.9 shows the bifurcation diagram, as computed by Bob Kooi and Martin Boer for
bi- and tri-trophic chains living in a chemostat. The reserve capacity is reduced to zero
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Figure 9.9: Bifurcation diagrams for Marr-Pirt model of bi- and tri-trophic chains. The
right figure is a detail of the left one. The transcritical bifurcation curves TCe,1, TCe,2 and
the supercritical Hopf bifurcation curve H−

2 relate to both bi- and tri-trophic chains, all others
only to tri-trophic chains. The bifurcation parameters are the dilution rate ḣ and the substrate
concentration in the reservoir Xr. Left of the TC

−
e,2 curve, the predator is washed out;

between this curve and theH−
2 curve, the bi-trophic chain

has a stable equilibrium, and right of the curve H−
2 it has

a stable limit cycle. The curves TC−
e,3 and H−

3 mark sim-
ilar regions for the tri-trophic chain. Within the folded
(closed) flip-bifurcation curve F−

1 the limit cycle is unsta-
ble. Homoclinic G=

e , G
=
c and heteroclinic G ̸=

e,c bifurcation
curves denote global bifurcations to multiple attractors.

Parameters:
i 1 2 3

K 8 9 10 mg l−1

jXAm 1.25 0.33 0.25 h−1

Yg 0.4 0.66 0.6

k̇M 0.025 0.01 0.0027 h−1

for all species, so they follow the Marr–Pirt model. The system amounts to

d

dt
X0 = (Xr −X0)ḣ− j1

XAmf0,1X1

d

dt
X1 = (j1

XAmf0,1Y
1
g − k̇1

M − ḣ)X1 − j2
XAmf1,2X2

d

dt
X2 = (j2

XAmf1,2Y
2
g − k̇2

M − ḣ)X2 − j3
XAmf2,3X3

d

dt
X3 = (j3

XAmf2,3Y
3
g − k̇3

M − ḣ)X3

where jiXAm is the maximum specific feeding rate of species i; fi,j = (1 + Kj/Xi)
−1 is

the scaled function response; Y i
g is the ‘true’ yield coefficient, k̇iM the maintenance rate

coefficient. The bifurcation parameters are Xr and ḣ.
The bi-trophic chain has simple asymptotic behaviour only. If the species are not

washed out, they can either coexist in a single stable equilibrium, or in a single limit
cycle. A supercritical Hopf bifurcation separates the corresponding parameter regions. The
diagram beautifully illustrates the paradox of enrichment, which is the observed induction
of oscillatory behaviour that follows an increase in resource levels [1215].
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Figure 9.10: Stereo
view of part of the orbit
of the three trophic
levels (x1, x2 and x3 in
the x-, y-, z-direction,
respectively) of the
Monod model for a
food chain on a chaotic
attractor (throughput
rate ḣ = 0.08732 h−1

and substrate level
Xr = 200mg l−1).

Figure 9.9 illustrates that the bifurcation diagram of the tri-trophic chain is very com-
plex in a small part of the parameter space. A detailed discussion is given in [750]. The
diagram has an ‘organising centre’ M1, which is a codimension-two point; the transcritical
curves TCe,3 and TCc,3 for equilibrium and limit cycles, where X3 = 0, originate here.
The points M2 and M3 on these curves are the origins of the tangent bifurcation curves
Te,3 and Tc,3 for equilibria and limit cycles. A pair of interior equilibria or limit cycles
disappears simultaneously as the two bifurcation parameters passes a tangent bifurcation
curve. The latter tangent bifurcation curve Tc,3 has a cusp bifurcation point N . This type
of bifurcation is often associated with a so-called catastrophe.

Figure 9.10 presents part of the orbit of the three trophic levels in a chemostat, using
the Monod model. The bifurcation parameters are in the chaotic region of the bifurcation
diagram. The bifurcation diagram for the tri-trophic chain on the basis of the full deb
model for V1-morphs resembles that of the Marr–Pirt model [749].

9.3.1.3 Closed nutrient-producer-consumer system

Figures 9.11 and 9.13 show the asymptotic dynamics of the system, while Figure 9.12 gives
typical orbits. We observe that it shows the typical paradox of enrichment: the system
starts oscillating above a certain nutrient level. If consumers require the reserve of the
producers, it also has a lower bound for the nutrient level, due to the maintenance costs of
the consumer and the system has an upper boundary for nutrient, above which it cannot
exist. If the consumers do not require the reserve of the producers, both the homoclinic and
the tangent bifurcation points disappear. This means, the upper bound for the nutrient
level disappears (the larger the nutrient level, the larger the amplitude of the oscillations,
cf [1036]) with unrealistic low minima. The lower bound also disappears in the sense that
the system goes extinct at very low nutrient levels by a gradual decrease of the consumer
population. Notice that consumers cannot invade the producer population with a very
small inoculum size in the case of co-limitation by producers’ reserve, but it can in absence
of this co-limitation; see Figure 9.11. We can conclude that the nutritional details of the
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producer/consumer interaction affect their kinetics in a qualitative way. Muller et al [1006]
discuss a very similar producer-consumer model, which deviates slightly in the specification
of consumers’ growth (implementation of maintenance and of maximum growth).

9.3.1.4 Canonical map for tri-trophic chains

Many aspects of the bifurcation pattern of continuous-time systems can be understood from
discrete-time systems, where the variables at time point n + 1 are taken to be functions
of those at time point n. These systems are called maps. Martin Boer [151] showed that
the bifurcation behaviour of a tri-trophic chain of the Marr–Pirt and Monod type can be
understood from the one-dimensional map

xn+1 = fα,β(xn) = 16βx3
n − 24βx2

n + 9βxn − β + α (9.20)

where x is an abstract variable, and α and β bifurcation parameters; fα,β is thus a cubic
polynomial in xn, which is not invertable. There are two critical points, c1 = 1

4
and

c2 = 3
4
; f(c1) = α is a local maximum, and f(c2) = α − β is a local minimum. The map

does not have a corresponding one-dimensional continuous system, and the equivalence
is abstract, involving a Poincaré next-return map, where subsequent intersections of the
dynamic system’s orbit are compared with a plane chosen at a suitable location in the
state space. All the points of intersection appear to lie close to a single curve when plotted
against the preceding points, as occurs in the Lorenz system [877]. The shape of this
curve resembles a cubic polynomial. A useful way to construct such a map is to select the
local minima of the highest trophic level and to plot subsequent values against each other.
The significance of identifying this one-dimensional map as a canonical form of the multi-
dimensional system is in the powerful mathematical theory that exists for one-dimensional
maps [958, 324, 893, 1316, 1386].

Figure 9.14 gives the map fα,β for α = β = 0.8, for which the map has three fixed
points, p1 < p2 < p3, and is invariant on the interval [p1, p3]. The fixed points p1 and p3

are repellors, since d
dx
f(pi) > 1. Then with q ∈ (p1, c1) we have limn→−∞ fn0.8,0.8(q) → p1

and with r ∈ (c2, p3) we have limn→−∞ fn0.8,0.8(r) → p3, where superscript n denotes the
number of times the map f is applied.

An orbit starting at a point q ∈ (p1, c1) is called homoclinic if there exists an n > 0
such that fn(q) = p1. This homoclinic orbit is called degenerated if d

dx
fn(q) = 0, which

is the case in Figure 9.14. An orbit starting at a point r ∈ (c2, p3) is called heteroclinic if
there exists an n > 0 such that fn(r) = p1. The heteroclinic orbit in Figure 9.14 is also
degenerated, since d

dx
fn(r) = 0. For further background, see for instance [324].

Figure 9.15 shows a one-parameter bifurcation diagram with bifurcation parameter α,
for β = 0.8. It is symmetrical with respect to the point (α, x) = ((1+β)/2, 1/2) = (0.9, 0.5).
The unstable equilibrium values p1 and p3 are plotted.

At the tangent bifurcation point T , at α ≈ 0.2255, the heteroclinic orbits disappear,
together with the basin of attraction and the fixed points p1 and p2. In the region between
this tangent bifurcation T and homoclinic bifurcation point G= (α ≈ 0.5361), the bifur-
cation diagram resembles the well-known bifurcation diagram of the (unimodal, with one
critical point) logistic map yn+1 = ryn(1− yn) for r ∈ [1, 4] discussed in [929].
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For increasing α the fixed point becomes unstable and a cascade of period doubling
leads to chaotic dynamics. As with the unimodal logistic map for r = 4, the strange at-
tractor disappears suddenly at a homoclinic bifurcation point. In the interval α ∈ [0.8, 1.0]
there is chaotic dynamics with abrupt destruction of the chaotic attractor and its basin
of attraction at the end points of this interval in α = 0.8 and α = 1.0. Here homoclinic
orbits to the equilibria p1 and p3, respectively, degenerate at the global bifurcation point
(see Figure 9.14). With α = (1 + β)/2 the equilibria p3 and p1 switch roles.

In the one-parameter bifurcation diagram of Figure 9.15 points on a heteroclinic orbit
between p3 and p1 are plotted in the interval α ∈ [≈ 0.2255, 0.8]. At the global bifurcation
point G̸=, the heteroclinic orbits between points p3 and p1 become degenerate. Figure 9.15
also gives the basin of attraction. In the absence of heteroclinic orbits, α ∈ [0.8, 1.0], the
basin is connected. However, with heteroclinic orbits α ∈ [≈ 0.2255, 0.8] convergence to
a positive attractor for α ∈ [≈ 0.2255, 0.5361] occurs in disconnected intervals with end
points on heteroclinic orbits, and the basin boundary has a complex geometry close to the
equilibrium p3. In the ‘hole’ in the chaotic region there is convergence only for the countable
points at the homoclinic and heteroclinic orbits and otherwise there is no convergence. At
the tangent bifurcation point T the boundary basin is a vertical line where α is constant,
that is the basin of attraction disappears abruptly at the tangent bifurcation together with
the fixed points p1 and p2.

Figure 9.16 illustrates the next minimum map for the Monod model for a tri-trophic
chain in the chemostat, and the one-parameter bifurcation diagram for the throughput
rate. Both the map and the diagram have striking similarities with the canonical map
given in Figures 9.14 and 9.15. A full analysis of the two-parameter bifurcation diagram
can be found in [151].

9.3.1.5 Stochastic producer-consumer models

Trajectories for the producer and consumer populations at different values for the total
amount of nutrient in the system are given in Figure 9.17 to show the vanishing role of the
Hopf bifurcation point.
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Figure 9.11: The bifurcation diagrams for the producer (top) and the consumer (bottom) dy-
namics in a closed system, using the total amount of nutrient as bifurcation parameter. The
producer follows Droop’s kinetics, the consumer follows Marr-Pirt’s kinetics and has a constant
hazard rate; there is no free nutrient in the environment. Left: The consumer is not limited by
producers’ reserve, so ṙC = ṙCP . Right: Producers’ reserve and structure are complementary
for consumers. At very low nutrient levels, the system cannot exist. At intermediary nutrient
levels, the system has a point attractor. A transcritical (TC, left) or tangent (Te, right) and a
Hopf bifurcation point (H−) mark the boundaries of these intermediary nutrient levels. At larger
nutrient levels, the system oscillates with increasing amplitude. A homoclinic bifurcation point
(G=, right) marks the upper boundary of this interval; the system cannot exist at higher nutri-
ent levels (right), while producers’ minima become extremely small for growing nutrients levels
(left). Parameters: ḣ = 0.005 h−1, nNP = 0.15 mol

mol
, nNC = 0.25 mol

mol
, yCN = 5.5 mol

mol
, yCP = 2 mol

mol
,

K = 10mM, jPAm = 0.15 mol

mol h
, k̇N = 0.25 h−1, k̇PM = 0.02 h−1, k̇NM = 0.01 h−1.
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Figure 9.12: Orbits of the producer-consumer system of Figure 9.11 for nutrient levels just below
(left, N = 15.3mM) and above (right, N = 15.5mM) the homoclinic bifurcation point. Orbits
that start within the stippled separatrix of the top figure result in a stable oscillation (one such an
orbit is indicated), while other orbits lead to extinction. This separatrix breaks open for higher
nutrients levels (right figure), and all orbits lead to extinction (one such an orbit is indicated).
The saddle point, and the spiral source are indicated.

nn us

BT•

G=H−Te

total nutrient

h
aza

rd
rate

201612840

0.15

0.1

0.05

0

n us

H−TC

total nutrient

h
azard

rate

201612840

0.15

0.1

0.05

0

Figure 9.13: The two-dimensional bifurcation diagram for the producer-consumer system as in
Figure 9.11, using the total nutrient level and consumers’ hazard rate as bifurcation parame-
ters. The consumer requires producers’ structure and reserve (left) or producers’ structure only
(right). Three areas are indicated: n no co-existence, s stable co-existence, u unstable co-existence
(oscillations). The tangent (Te), Hopf (H

−) and Homoclinic (G=) bifurcation curves meet in a
Bagdanov-Takens point in the top figure; the transcritical (TC) and Hopf (H−) bifurcation curves
diverge in the bottom figure.



254 9. Living together

p3

p2

p1

•

•

•

yn−1

yn

rc2c1q

1.2

1

0.8

0.6

0.4

0.2

0

−0.2

Figure 9.14: The function fα,β for α = 0.8
and β = 0.8. The points p1, p2 and p3 are
fixed points, and c1 and c2 are critical points.
At point q a degenerate homoclinic orbit starts
(f2

0.8,0.8(q) = p1 and limn→−∞ fn0.8,0.8(q) → p1

for q ∈ (p1, c1)). At point r a degenerate
heteroclinic orbit starts (f2

0.8,0.8(r) = p1 and
limn→−∞ fn0.8,0.8(r) → p3 for r ∈ (c2, p3)). The
solid interval on the diagonal is the basin of
attraction.

α

G ̸= +G=G=T G=

10.80.60.40.20

1.2

1

0.8

0.6

0.4

0.2

0

−0.2

Figure 9.15: One-parameter bifurcation dia-
gram of the canonical map for β = 0.8. The
dashed curves indicate the repellors p1 and p3.
The points on the dotted curves lie on a hetero-
clinic orbit. The points on the dashed-dotted
curve lie on a homoclinic orbit. The attractors
are plotted as points. The grey regions are the
basin of attraction of these attractors. This
diagram is point-symmetrical with respect to
point (0.9, 0.5).

ȳ
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feed Xr = 200mg l−1. The resulting map resembles the canonical cubic map with two critical
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Figure 9.17: The trajectory of the stochastic model for different values for the total amount of
nutrient N . The fat dots are the linearly interpolated values with equal time units apart. For
low N -values, the start is at the stable equilibrium of the expected value of stochastic model,
which is at the intersection of the d

dtP = 0 and the d
dtCh = 0 isoclines (while d

dCh
Cs = 0; solid

curves). For large N -values (N = 2.7, 3.0), the start is at a random point of the limit cycle of
the NTS-model. The isoclines of the deterministic model are plotted as well (stippled). Notice
that for N = 2.3 few points of the S-model are at the mean, because of its tendency to cycle. For
N < 2.6 1000 time units are used, and 5000 for N > 2.6. The various bifurcation points for the
total amount of nutrient are:

tangent focus Hopf global

deterministic 1.217 1.520 3.165 7.11
stochastic 1.229 1.535 2.801 6.96
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Evolution

10.1 Life orginated anaerobically

The frequency of the various types of amino acids in proteins of archaea, eubacteria and
eukarya strongly suggests that the last universal common ancestor (LUCA) was an anaer-
obic organism, as were the ancestors of archaea and eubacteria, whereas the ancestor of
eukarya was an aerobe [494]. The presence of dna topoisomerase IB in Thaumarchaeota,
eubacteria and eukarya suggests that LUCA had dna [189].

10.3 Evolution of the individual as a dynamic system

10.3.3 Constant cell size at division

Recently some progress has been made to understand mechanisms that control the cell size
at division of animals cells [1446].

10.3.4 Simplification and integration

10.3.4 Out of the sea

The idea that the ancestors of animals and fungi (Opisthokonts, notably the chytrids) left
the sea well before the animals did (some 0.5 billion years ago), was recently supported
by the discovery of fossilised eukaryotic cells in a 1.2 billion year old lake sediment in
Scotland [1388]. The cyanobacteria, which evolved 2.7 billion years ago did so probably in a
freshwater habitat, where they still have their largest diversity. Since they are mixotrophic,
with heterotrophic origins, this habitat must have been rich in organic matter of bacterial
origin.

10.3.4 Modular recombination

Lake [821] argued that all double-membrane prokaryotes form a natural group that orig-
inated from the merging of an Actinobacterium and a Clostridium; the Bacilli and the
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Figure 10.1: Two scenarios for the relative phylogenetic position
of the Bacteria (B) Archaea (A) and Eukarya (E). In the above
scenario from [821], all double-membrane organisms are grouped
together, although the Bacteria have no membrane coat proteins,
except those of the PVC superphylum. In the right scenario
from [439], the double membrane and membrane coat proteins
are thought to be present in the Last Universal Common Ancester
(LUCA).

Archaea making up group 4 and 5, see Figure 10.1. It would explain the distribution of
phototrophy (confined to Clostridia and these double-membrane prokaryotes) and of two
slowly evolving indels in enzymes involved in pyrimidine- and histidine-biosynthesis, PyrD
and HisA; these indels are shared by Actinobacteria and double-membrane prokaryotes.

An more promising alternative hypothesis was formulated after the recent discovery
that Gemmata, a Planctomycete, so a member of the Planctomycetes-Verrucomicrobia-
Chlamydiae (PVC) superphylum, not only has a nuclear membrane, but is also capable
of endocytosis [875, 1241]; until very recently this property was thought to be confined
to the Eukarya. If the required membrane coat proteins of PVC-bacteria and Eukarya
have a common origin, a possible scenario is that Eukarya originated on the inclusion of
an archaeal symbiont in a PVC-bacterium that subsequently lost its cell membrane and
its genome somehow entered the nuclear membrane [439]. Alternatively, the LUCA was
already compartmentalised and had already membrane coat proteins, see Figure 10.1. This
would also explain the ability of some Archaea to produce methane, by adding 2 enzymes
to the 16 that PVC-bacteria use to detoxify formalin. If the LUCA had it all, subsequent
scenarios become simple, but the explanation of the acquisition of these properties become
more complex.

10.3.4 Plastids and the storage of polysaccharides

The plastids of the Glaucophyta still contain the peptidoglycan wall of the cyanobacterial
ancestors. See Figure 10.2. Secondary plastids typically have 4 membranes, rather than 2,
as a result of the phagocytotic entering of the host. The biochemical properties of these
membranes reveal their evolutionary origins. ‘Algae’ (= phototrophic eukaryotes) can be
classified as α-glucan (glycogen, starch, i.e. a mixture of amylose and amylopectin) or β-
glucan (paramylon, laminarans) accumulators. Starch is restricted to the Archaeplastida,



259

Figure 10.2: A heterotrophic an-
cestor of the Archaeplastida possi-
bly included a cyanobacterium only
once, an event followed by mul-
tiple secondary and tertiary en-
dosymbioses of descending Chloro-
phytes and Rhodophytes in other
heterotrophic taxa. The number
of secondary inclusons is controver-
sial. Some plastids lost phototro-
phy, as in the parasitic Apicomplex-
ans. From [73]

.

to their secondary endosymbiosis derivatives and to a particular subgroup of unicellular
nitrogen-fixing cyanobacteria. Rhodophytes and Glaucophytes synthesise starch in the cy-
toplasm, but Chlorophytes in their plastids. Rhodophytes posses the complete set of 12
genes for eukaryotic glycogen metabolism, but only a few genes originating from cyanobac-
terial pathways. Chlorophytes (including plants) have over 40 genes for starch metabolism,
largely orginating from gene duplication of the Rhodophyte genes. Starch accumulation in
plastids had 3 stages [73]: a small pool of malto-oligosaccharides, a larger pool of glycogen
and then a big pool of starch. Apart from the early plastids, a more recent cyanobaterial
endosymbiont evolved, see Figure 10.3; many symbiontic relationships between cynanobac-
teria and eukaryotes evolved independently, but their integration with the host metabolism
is less intense.

10.5 Multicellularity and body size

10.5.5 From supply to demand systems

Species can be ranked according to a supply-demand spectrum that roughly reflects where
the controls of energetics are: from environmental to internal, see [854]. The use of re-
sources is ‘pre-programmed’ in demand-species and the individual tries hard to match this
demand by eating enough. Supply-species hardly have such a program, or modify it in a
flexible way, according to the possibilities offered by the environment. Table 10.1 compiles
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Table 10.1: Stylised eco-physiological properties that relate to the position of a species in the
supply-demand spectrum

Supply Demand
eat what is available eat what is needed
large half saturation coefficient small half saturation coefficient
rather passive, simple behaviour rather active, complex behaviour
little parental care advanced parental care
sensors less developed sensors well developed
can handle large range of intake can handle small range of intake
low peak metabolic rate high peak metabolic rate
open circulatory system closed circulatory system
iso- & centro-lecithal eggs a- & telo-lecithal eggs
typically ectothermic typically endothermic
reserve density varies strongly reserve density varies little
large range of ultimate sizes small range of ultimate sizes
survives some shrinking well survives shrinking badly
survives rejuvenation well survives rejuvenation poorly
energetic birth control behavioural birth control
no upregulation for reproduction upregulation for reproduction
no acceleration of ageing acceleration of ageing
evolutionary original evolved from supply systems
has demand components has supply components
(maintenance) (some food must be available)
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Figure 10.3: The thecate amoeba
Paulinella chromatophora (Cercozoa, Eu-
glyphidae) has an cyanobacterial symbiont
that still has its full genome, including
genes coding for nitrogen fixation. This
symbiont is related to Prochlorococcus and
Synechococcus [1570], while plastids are
related to Gloeobacter and/or Pseudan-
abaena [1022]. Since P. chromatophora
is closely related to the heterotrophic P.
ovalis, and the endosymbiont hardly lost
genes, Paulinella acquired its endosym-
biont probably recently. Picture taken in
Leeuwin-Naturaliste National Park, West-
ern Australia, at 2014/12/12.

stylised eco-physiological properties of species that link to their position in the spectrum.
No species are at the extremes of the spectrum, as indicated in the table. There is a lot
coherence between these properties.

Demand species have less metabolic flexibility to handle starvation in terms of shrinking
and rejuvenation, but they compensate that by a higher talent for finding the last food
item (= low half saturation constant), for which they need complex behaviour and good
memory and sensors. The half saturation constant is in fact the ratio of the (specific)
ingestion and searching rates, meaning that demand species have a large specific food
searching rates. High peak metabolic activity, relative to the standard one, is part of the
skills they need to capture (fast) prey and is connected to searching rate. Capillaries (in
a closed circulatory system) make that an increase in heart beat is felt in all corners of
the body (where muscles contract), which explains the link with a high peak metabolic
rate. Only annelids, cephalopods and vertebrates have capillaries, all other animal species
work with open circulatory systems, where an increase in heart beat has less consequences
for tissues that are further away from the heart. Annelids probably have them to build
up pressure when pushing their body through soil; without capillaries muscle contraction
would transport fluid inside the body too easily and does not have the effect that the body
is pushed forward. We see this as an adaptation to life in soils that has little to do with the
evolution from supply to demand systems. Cephalopods and vertebrates have telolecithal
eggs, which possibly relates to their closed circulatory system with which they mobilise
yolk. The embryo being on the outside of yolk facilitates access to environmental dioxygen
and allows for high metabolic rates, compared to iso- or centro-lecithal eggs. Mammals
have alecithal eggs, which probably relates to their foetal development.

Demand systems have (food) acquisition homeostasis, with thermal homeostasis as
pinnacle. Many species (insects, reptiles) developed in the direction of thermal homeostasis
via behaviour (sitting in sun or shade), some species (insects, tunas, sharks) sport metabolic
heating (endothermy), but mammals and birds have fully mastered this art (after birth).
Endothermy induces timing problems of ageing relative to maturation; food availability



262 10. Evolution

Figure 10.4: Allocation fraction κ as function of supply stress ss for the species of the add my pet
collection. Sampling date 2023/11/25 at 4237 entries. Modified from [854]. Notice that ecdyso-
zoans are extreme supply species and endotherms (birds, mammals) extreme demand species.
The points in both plots are identical, only the colour-coding is different and the abscissa is
logarithmically transformed (left) to expose extreme supply species.

has seasonal controls and life cycles must fit seasonal cycles. If an endothermic mouse
and an ectothermic lizard of the same body size and energy budget parameters would
also have same ageing parameters, the (warmer) mouse would live too short. Endotherms
accelerate ageing (Gompertz stress coefficient sG > 0), starting with an extra-low ageing
rate. This gives age-dependent survival probabilities that are high for a long time, and then
suddenly drop. Survival curves of ectotherms drop much more gradually, as far as ageing
is concerned [774, Chapter 6]. Notice that many factors affect survival and ageing is rarely
the most important one in field conditions. Birds and mammals also sport upregulation of
metabolism before egg laying or during pregnancy and lactation: maximum feeding rate is
temporarily increased [774]. The rationale of this pattern is discussed below. Zoo keepers
(and farmers) know that most birds can be stimulated to lay more eggs by removing freshly-
laid eggs, which shows that egg-production is not energy limited. Offspring production in
birds is typically limited by parental care just before fledging, when food requirement is at
maximum [791].

Because supply stress ss =
k̇JE

p
H [ṗM ]2

f3s3M{ṗAm}3 =
kvpH
f3s3M

(1−κ)κ2 =
ṗJ ṗ

2
M

ṗ3A
= ṗJ

ṗA
κ2, as introduced in

the boundaries of the data and parameter spaces in Section 4.10.0 of the comments, relates
assimilation (supply) to maintenance (demand), it quantifies the distance to the supply-
end in the classification of species in the supply-demand spectrum and as consequence
sd = 22/33 − ss the distance to the demand-end of the spectrum [854]. The width of the
supply-demand spectrum is thus ss+sd = 4/27. Figure 10.4 also shows that κ is frequently
very close to the upper boundary for zero reproduction, but not to the lower boundary.
This is further discussed in [791]. Although maximum reproduction is around κ = 0.45 for
supply-species [791], κ approaches 2/3 for demand-species. Hexapods are extreme supply
species because they skip the juvenile stage and directly after birth allocate to reproduction.
This has the consequence that ṗJ is very small for them. Notice that most points are near
maximum κ, and few near minimum κ, especially for low ss.
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Figure 10.5: The supply stress as function of the minimum scaled functional response that is
required to reach puberty. Figure updated from [854] for the add my pet collection, sampling
date 2023/11/25 at 4237 entries. The curve is smax

s (fmin) = f3
min4/27. Left: Colour coding as in

Figure 10.4. All supply species hide in the lower left corner of the figure. Right: As left, but only
endotherms are highlighted, the rest only as small dots. The red-level for mammals (bigger dots)
and the blue-level for birds (smaller dots) are proportional to κ; the closer to black, the lower κ,
while the highest values of κ occur at low values for fmin and ss.

If f = 1, e = 1 and L = Lm, we have ṗA = ṗM + ṗJ + ṗR, while ṗM/ṗA = κ,
ṗJ/ṗA = ss/κ

2 and ṗR/ṗA = 1 − κ − ss/κ
2. So ṗJ/ṗM = ss/κ

3, while ṗJ = k̇JE
p
H and

ṗM = k̇M [EG]s
3
ML3

m, so
ss
κ3

=
kEp

H

[EG]s3ML3
m
. The significance of this relationship is that ss

rather strongly depends on taxonomy, while k̇J , so k, is poorly determined by data.

Maturity density Ep
H/s

3
ML3

m = l3p(1 − κ)g[Em] for k = 1 while the relationship holds

approximately for k < 1. Maturity ratio then reduces to k ≃ ss/κ2

(1−κ)l3p
= f 3

min/l
3
p, where

scaled length at puberty lp quantifies determinateness. Since κ = 4
27

maximizes (1− κ)κ2,

we must have ss < l3p4/27, and, of course, lp < 1. This translates to k < 36/22

32−22
= 7.9, which

is uninformative since k < 1 must apply to avoid that maturity density increases over
ontogeny. This relationship demonstrates that species that grow considerably as adult, i.e.
during reproduction, are supply species. Fish frequently have lp = 0.5, which translates to
ss < 0.02 if k = 1.

This interpretation of ss is confirmed by Figure 10.5, which presents it as function of
the minimum functional response, i.e. the food ingestion rate as fraction of the maximum
one of an individual of that size, that is required to reach puberty. It amounts to fmin =(

k̇JE
p
H [ṗM ]2

κ2(1−κ)s3M{ṗAm}3

)1/3

=
(

f3ss
κ2(1−κ)

)1/3
and has a minimum for κ = 2/3 for non-accelerating

species. For k = 1 the minimum functional response reduces to fmin = f 3l3p. The figure
also shows, in general, that smax

s (fmin) = f 3
min4/27, which directly follows from the previous

expression for f = 1 and κ2(1− κ) > ss and ss < 4/27.

Figure 10.6 shows that all points in a 3D-plot (κ, fmin, ss) are on or very near a simple
(curved) surface for f = 1. Given that fmin satisfies kvpH = fmin(fmin − lT )

2s3
M, and
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Figure 10.6: Supply stress ss, allocation fraction to soma κ and minimum scaled functional
response to reach puberty fmin are on, or very close to, the surface ss(κ, fmin) = fmin(fmin −
lT )

2κ2(1 − κ) at f = 1. Deviations from this surface are due to the fact acceleration factor
sM depends on the scaled functional response if sM > 1. Data from the add my pet collection,
sampling date 2023/11/25 at 4237 entries.

f 3
min = ss

κ2(1−κ)
with ss =

kvpH
s3M

(1−κ)κ2, deviations from this surface can only occur for large

sM in combination with small fmin, due to the fact that sM depends on f . The figure
clearly shows that supply species can reach puberty for a much broader range of food
intake levels, compared to demand species. Some mammals and birds have a minimum
scaled functional response for reaching puberty close one. This explains why these taxa
have upregulation of metabolism linked to reproduction. This upregulation is an extra
module in DEB models, that is not part of the standard DEB model.

Figure 10.5 shows that endotherms with low values for fmin and ss have a high value
for κ. The coupling between κ and ss follows from the increase of the possible range of
κ with ss. Yet it is remarkable that none of the endotherms in the add my pet collection
have a low supply stress ss in combination with a low κ. These couplings require further
investigation.

Another strong confirmation for the interpretation of ss comes from taxa that have a
large value of ss: these are exactly the taxa that can considered to be demand species on
the basis of the criteria of Table 10.1: all invertebrates have a small supply stress ss, but
vertebrates have higher values. While Myxini and Actinopterygii are close to the supply
end of the spectrum, Chondrichthyes tend to be closer to the demand end. One species of
Sarcopterygii, the coelanth, turns out to be a supply species, while the Australian lungfish
has demand tendencies. This strategy is probably open to lungfish, because they can
switch off maintenance (torpor, although the non-Australian species can do this better).
Lampreys, Cephalaspidomorphi, seem to have some demand tendencies, which possibly
relates to their life style of ‘milking’ fish. Only the European brook lamprey is presently
in the collection; more species are required for confirmation. Bony fish, Actinopterygii,
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Figure 10.7: Supply stress as func-
tion of ultimate structural length.
Data from the add my pet collec-
tion, sampling data 2023/11/25 at
4237 entries.

tolerate a very wide range of food levels [772], which confirms their classification as supply
species.

Birds and mammals are close to the demand end, where food intake is primarily con-
trolled by metabolic needs, while most invertebrates are close to the supply end, where
food intake is primarily controlled by food availability. Cnidarians are possibly the most
extreme supply species with extreme capacity of shrinking and rejuvenation in response
to starvation: some medusea can even rejuvenate till polyps [1104]. Because cephalopods
have a closed blood circulation system, telolecithal eggs, high peak metabolic rate, com-
plex behaviour and superb vision, we expected to see tendencies for demand species in this
taxon. Yet their ss values are small, which probably relates to their life style of suicide
reproduction. They don’t die by ageing and their size at death is considerably smaller than
their asymptotic size, while most species approximate that size (insects being an exception,
[775]). This means that their value for sM{ṗAm} is relatively very large for species with
that size at death, so ss is small; their range in body sizes at death is quite large.

Figure 10.7 shows supply-stress ss as function of ultimate structural length of species.
It shows that vertebrates, and especially endotherms are demand species and typically
have a relatively large body size.

The values of the supply-stress follows a scaled beta distribution very closely, see Figure
10.8 and [852]. The explanation is that supply-stress is a product of three ratio’s of fluxes;
each of these ratio’s follows a beta distribution, so does the product. The reason why
each ratio follows a beta distribution is the same as why κ = ṗ∞M/ṗ

∞
A follows a beta

distribution: the fluxes themselves follow a Weibull distribution, and this is because many
factors contribute. Products of independently beta-distributed variables are again beta-
distributed. The three ratios are not mutually independent, however, two of them being
even identical. Yet Monte-Carlo studies confirm that the approximation is close to perfect
in the neighborhood of the parameter values as found. The reason why the survivor
functions for somatic maintenance and assimilation are that close is because their ratio,
κ, is close to 1, and because their ranges are huge, since the collection has tiny as well as
huge bodied species. Figure 10.8 also presents support for why the Weibull distribution fits
that of fluxes well: Maturity maintenance at birth fits the Weibull distribution rather well,
but the one at puberty fits perfectly. Environmental scatter (including food availability)
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Figure 10.8: The survivor functions of maturity maintenance at birth and puberty (left), assim-
ilation and somatic maintenance (middle) and supply stress (right). They are plotted on top of
the best fitting Weibull distributions (left and middle) or beta distribution (right), scaled between
0 and 22/33. Notice that ṗpJ fits the Weibull distribution better than ṗbJ and that ṗpJ = ṗ∞J . Data
from the add my pet collection, sampling date 2023/11/25 at 4237 entries.

during the juvenile period when maturity builds up, is the most likely cause.
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Evaluation

11.1 Historic setting

Many of the questions around energy budgets are far from new. R. Boyle, R. Hooke and J.
Mayow in the seventeenth-century were among the first to relate respiration to combustion,
according to McNab [948]. The first measurements of the rate of animal heat production
were made by A. Crawford in 1779, and A.L. Lavoisier and P.S. de Laplace in 1780 aimed
to relate it to dioxygen consumption and carbon dioxide production [948]. The concept
of energy was first proposed by Thomas T. Young in 1807, according to Blaxter [147]. It
means something like ‘the ability to do work’, which primarily consists of driving chemical
reactions against the direction of their thermodynamic decay. Interest in how metabolic
rate, measured as dioxygen consumption rate, depends on body size goes back at least
as far as the work of Sarrus and Rameaux [1244] in 1839. They were the first to find
rates proportional to surface area for warm-blooded animals [125]. Later this became
known as the Rubner’s surface law [1222]. The casual way A.R. Wallace mentioned this
idea in a note to E.B. Poulton (appendix 3 in [423]: ’Supposing organisms ever existed
that had not the power of natural reproduction, then since the absoptive surface would not
only increase as the square of the dimensions while the bulk to be nourished and renewed
would increase as the cube, there must soon arrive a limit of growth’ ) suggests that its
roots go back to before 1865; he probably knew the work of Sarrus and Rameaux. As far
as I know, Pütter [1137] is the first who restated this bright insight in a mathematical
model, which he applied to fish. The fact that the surface law was based on work with
warm-blooded animals, generated a lot of criticism. Pütter saw growth as the difference
between build-up and break-down. The processes of build-up, which later became known
as anabolic processes, were linked directly to the metabolic rate, which was assumed to
follow the surface law. The processes of break-down, now known as catabolic processes,
were assumed to proceed at a constant rate per unit of volume. Volume was thought to
be proportional to weight; the growth rate then results from a weighted difference between
surface area and volume. Pütter took the rate, that later became known as the von
Bertalanffy growth rate, inversely proportional to ultimate length on the basis of a toxicity
argument, see Section 2.4 of these comments. More data were generated with improved
methods of measurement; invertebrates were also covered. Krogh [807] was the first in
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1916 to fit general allometric curves to respiration as function of body weight, i.e. one of
the type y = αxβ, where y is a variable dependent on another variable x. Kleiber [724]
found in 1932 that metabolic rates are proportional to weight to the power 0.75 and this
became known as Kleiber’s law. Extensive studies undertaken by Brody [192] confirmed
this proportionality. Von Bertalanffy [125] saw anabolic and catabolic rates as special cases
of the allometric relationship. He viewed this as a simplified approximation that could be
applied to almost all types of metabolic rates, including the anabolic and the catabolic, but
the constant β varies somewhat with the tissue, physiological conditions and experimental
procedure. The growth curve proved to be rather insensitive to changes in β for catabolism,
so, like Pütter, von Bertalanffy took the value one and classified species on the basis of
the value for β of anabolism. The surface law was just one of the possibilities for von
Bertalanffy.

Although von Bertalanffy [124] was the genius behind the ideas of general systems
theory, he never included the feeding process in his ideas about growth. I do not know
why, because mass balance equations are now always bracketed together with dynamic
systems. I think that the use of allometric equations, which is a step away from mechanistic
explanations towards meaningless empirical regressions, obstructs new ideas in metabolic
control. The idea of allometry goes back to Snell [1335] in 1891 and, following the work of
Huxley [641], it became widely known. Both Huxley and von Bertalanffy were well aware of
the problems connected with allometric equations, and used them as first approximations.
Now, a century later, it is hard to find a study that involves body size and does not use
them.

The von Bertalanffy growth rate as function of ultimate length works out in the same
way inter- and intra-specifically (for larger body sizes, see below), as does the respiration
rate as function of body weight (approximately). These two facts might have contributed
to the omission to distinguish between these two very different ways of comparison in the
quest for broad patterns that characterises that period; an omission that did send the whole
field into a Gordian knot for more than a century. Zeuthen [1573] was the first to point
to the necessity of distinguishing between size differences within a species and between
species, but these wise words did not land.

11.1 Metabolic Theory of Ecology

The problem of the scaling of respiration is still discussed actively [739, 7, 567] and many
explanations have been suggested, such as the minimization of transport costs in fractally
branching tube-systems assuming that all individuals have equal blood flow in their capil-
laries [1514]. The fact that only a minute fraction of the species have a closed circulatory
system (and so capillaries) and the assumption that the flow in the main veins equals that
in the capillaries (while in fact it differs by several orders of magnitude) are just two argu-
ments from a list that renders this line of thinking unproductive [951, 34, 1340]. On top of
that, Brown himself exposed inconsistencies in their model assumptions [77], generalised
it and concluded that all scaling exponents between 2/3 and 1 could be understood from
the structural design of distributing networks. The central argument is that sites that
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need maintenance are connected by tubes that don’t need it, and the larger the size, the
large the relative mass of tubes. Empirical evidence does not support this view (whale
biomass does not consist mainly of tubes, as is very well known in Japan), and it is not
clear why these tubes, i.e. living tissue, would not require maintenance. Mysteriously
enough, the explanation does not seem to apply to embryos in eggs, which initially hardly
respire. Capillaries still playing a key-role in e.g. bird eggs. The fact that capillaries are
found in demand systems that sport high peak over standard metabolic rate ratios, see
Section 1.2.5, and distribution networks have to deal with peak metabolic rates, questions
to what extent the design of these networks constrains standard metabolic rates. Demand
systems need closed circulatory systems for peaking their metabolism; a higher hart beat
directly results in an increased transport near all cells. The effect of increasing hart beat in
open circulatory systems on transport at the periphery is much less. West et al [1514] sug-
gested in error that branching tubing systems are really wide-spread and were fussy about
what is transported in what systems for what function. They mentioned tracheal tubes in
insects, but these tubes cannot branch because the inner lining is attached to the moult;
this moulting system would be impossible with branched tubes. They even mentioned
micro-organisms, but branching systems in micro-organisms still need to be discovered;
the endoplasmatic reticulum is organised very differently from blood circulation systems
and has no pump. The hart-beat of organisms has a complex relationship with body size
[258], which makes it unlikely that minimisation of transport costs result in a 3/4-scaling.
Encrusting bryozoans respire proportional to weight0.5 [1524], as correctly predicted by
DEB theory, see Section 4.2.4 of the comments. So there is no fundamental reason why
the range of exponents is between 2/3 and 1. Embryos in eggs reduce weight over time
combined with an increase in respiration. They clearly demonstrate that explanations for
respiration should not focus on values of scaling exponents at all; the use of allometric
regression should cease.

The West-Brown-Enquist (WBE) model [1515] used a very different argument to arrive
at the 3/4-scaling for plants; plants would consist of a bundle of (non-branching) capillaries
that would taper in a very special way towards the top and the minimisation of transport
costs would lead to the scaling relationship. Such tapering has never been documented
empirically. What is transported from where to where and how that relates to respiration
remains unclear (including the definition of respiration itself). Price [1129] changed the
argument, but confusingly still calls it the WBE-model. Respiration would be proportional
to the number of petioles that are located at the tips of a fractally branching tubing
network, similar to animals. The sum of the surface areas of the cross-sections remains
constant, as well as the sum of the volumes of spheres of a diameter that equals the length
of a branch, for each branching level. The first argument gives a constant flow rate through
all branch levels, the second argument is not given further motivation. This review paper is
silent about roots, both in terms of weight and contribution to respiration. This description
of shape does not do right to the actual morphology and morphological diversity of plants.
Many plant families have both trees and herbs. Wood is a product that does not respire
but in this respiration-weight relationship dominates weight. It is really doubtful that the
3/4-relationship applies to trees, where wood is included in the weight; no data are known.

All the many attempts to explain Keiber’s 3/4-rule for respiration implicitly or explicitly
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consider respiration as THE key process behind metabolism. Once we would understand
that, we understand it all. This idea is also behind the allometric patterns collected
by Peters [1087] where all scaling exponents are compared with value 3/4. Respiration
is typically identified with THE metabolic rate, where heat or CO2 production or O2

consumption are all considered as equivalent. One only has to think of organisms living
in anearobic environments to realise that only entropy production can possibly quantify
metabolic rate. One needs deb theory (or an equivalent alternative theory that fully species
all energy fluxes, but see Section 11.4 of these comments), however, to quantify entropy
of living systems. Section 4.8.1 discusses that one first needs energy balances to obtain
entropy balances, and for energy balances one needs mass balances. So one has to know
quite a bit about the studied system to quantify entropy production. Many workers identify
respiration of resting individuals with maintenance. DEB theory shows that respiration
cannot be identified with maintenance and that biomass cannot be treated as a single
variable and that respiration does and will not explain all metabolism. Section 4.4.1 shows
that if heat or CO2 production and O2 consumption would be all proportional to each
other, strong constraints on biomass composition would apply that lack empirical support.
Reproduction, for instance, can be a substantial energy flux that hardly contributes to
respiration, since reproduction concerns the export of reserve. The conversion of food
into that reserve might have occurs quite some time before the respiration measurement.
Respiration has contributions from several interacting processes and this interaction comes
with the need to study all contributing processes simultaneously. In a deb context, it
makes no sense to study growth, but not food uptake or reproduction or maturation.
Likewise, it makes no sense to study ageing or effects of chemical compounds without
studying energetics. Some workers complain about the many parameters the standard
deb model would have [1583], but the number of parameters per process is really small
(one or two). (Zuo et al [1583] state that the deb model would have 17 variables; they
just counted the number of entries in a symbol table in [1338].) The basic difference with
alternative metabolic studies is that deb theory studies all processes simultaneously, and
others do it one by one, ignoring the interactions.

West et al [1516] proposed a growth model on the basis of the explanation for respira-
tion, which became together with the Arrhenius relationship for temperature dependence,
the pillars of the popular metabolic theory of ecology (MTE) [206]. Growth is taken to be a
function of size only, and parameters depend on temperature. The embryo stage is ignored
as well as reproduction or maturation (despite its name ‘ontogentic growth model’). I don’t
see how an individual can grow incrementally while keeping the diameter and the flux in its
capillaries constant and maintaining a fractally branching tubing transport system (it can
only grow with jumps of a constant factor and has to restructure its transport system with
each jump). The model ignores the huge body of empirical evidence that growth depends
on food. This model also suffers from the absence of growth overheads, as pointed out in
[951], which was later ‘repaired’ by including overheads only [629], but not the costs for
new tissue [952]. The model was supported empirically by the argument that normalized
growth has a maximum at relative mass of 0.316, which is realistic for growth at abundant
food, but Sousa et al [1340] correctly pointed out that this cannot be distinguished from the
value 0.296 that results for von Bertalanffy growth at abundant food. Growth applies to a
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specific individual, while the respiration argument of [1514] does not distinguish between
intra- and inter-specific comparisons. This discrepancy causes fundamental methodological
problems that cannot be repaired. I fully agree with Zeuthen [1573] that all explanations of
respiration that fail to distinguish between intra- and inter-specific comparisons are bound
to fail, including all constructs that build on such explanations.

The recent growth model by Sibly et al. [1300] suffers from the same problem: growth
is independent of food and the model does not specify what happens if food availability
is not enough for the needs; reproduction is not specified. It has reserve, which somehow
solves problems in case of starvation, but in some miraculous way it does not contribute to
body weight and its dynamics is not specified. Although Sibly’s motivation to develop an
alternative for the standard deb model was to simplify it, his model has more parameters.
An even more fundamental problem of both these and other MTE-based growth models is
that they start with the observation that respiration is an allometric function of weight.
This idea cannot be combined with the notion that respiration has additive contributions
from underlying processes, such as maintenance, growth overheads and specific dynamic
action. These additive terms simply don’t add up to an allometric function of body mass,
especially because growth is fast in neonates but ceases later on in the life cycle. All
such models have a problem with relating respiration to other metabolic activities of the
individual, and cannot respect energy balances. Later Sibly et al realised that the von
Bertalanffy growth model is incompatible with respiration scaling with weight3/4 [1298],
and argued that fish biologists should have filed parameters of the ’ontogenetic’ growth
model for that link. This is incorrect for two reasons, first deb theory demonstrates that
they are compatible (but one needs reserve for that), second the ’ontogenetic’ growth model
is incompatible with the scaling of respiration, as explained. Still later, Sibly and Brown
proposed yet another growth model [1299], but it suffers from basic dimension errors and,
therefore, does not count as a model.

Sibly et al were surprised that the von Bertalanffy growth rate turned out to scale with
weight−1/3 intra-specifically (in rayfinned fish), although the inventor of that statistic,
August Pütter [1137], already pointed that out some 95 years ago, and he even presented
a mechanism for that; see section 2.4 of these comments. They were also surprised to find
that the von Bertalanffy growth rate turned out to scale with weight−0.23 inter-specifically
(in rayfinned fish). Yet they did not fit any data and just took reported values in Fishbase
at 30 September 2014 and produced log-log plots. If they would have done this, they
would have discovered that the von Bertalanffy growth curve does not fit well at all for
accelerating species, section see 7.8.2 of these comments, and many rayfinned fish species
do accelerate as shown by the add my pet collection. This is why fish biologists fit the
Gompertz curve to the early stages of these fish species. The deb explanation for why
the von Bertalanffy growth rate seems to scale with weight−0.23, rather than weight−1/3

inter-specifically directly follows from [774, (8.5)], which shows that the von Bertalanffy
growth rate is not an allometric function of body weight and the deviation builds up for
decreasing body sizes.

The κ-rule was criticized by Johnston et al [668] as being at odds with the principles
of physiological ecology, that state that growth and reproduction compete in terms of
energy allocation. This is a misunderstanding of the κ-rule. Since deb theory respects



272 11. Evaluation

Figure 11.1: Upper left: Heat dissipation in a preg-
nant, Ovis aries, according to Ginther et al [492]
as published in Science 2024. They ‘stylised’ the
heat trajectory into a linear increase, using the up-
per right figure as data source from Brockway et al
1963 [191], which mentiones that it was a 50 kg ewe.
Left: The same according to DEB theory (red), us-
ing the parameter values of the AmP collection, with
the source data of Brockway (blue) and the ‘stylised’
tractory of Ginther (magenta). The AmP ewe has
an ultimate weight of 86 kg and at 50 kg it gener-
ates 0.242MJ/h, while the Brockway ewe generates
0.297MJ/h. The red stippled curve ’corrects’ the
DEB predictions for the difference. Birth is indicated
by the yellow line. Ginther arrives at the estimate
3600×(4.3e5−2.9e5)/2 = 252MJ for the indirect costs
of reproduction, the measured costs are 60.5MJ, while
the DEB equivalent is 64.6MJ and corrected 79.4MJ.

energy conservation, energy allocated to growth is not allocated to reproduction and vice
verse. So these targets do compete, also in deb theory. As explained in [858], it is always
possible in models where food is first converted to reserve and reserve is mobilised for
use in metabolism, to write allocation to growth plus somatic maintenance as fraction of
mobilised reserve. This itself does not pose any restrictions. The simplifying assumption
that κ is constant obviously does pose restrictions. We did find evidence for cases where κ
did change temporarily, see [1001]. Changes in κ do not give theoretical complications in
deb theory, but it complicates applications. Section 5.3.2 on dynamic generalisations of
the κ-rule discusses the interactive control of κ, which is necessary to understand particular
details of allocation to body parts. Subsection 2.4 of the comments discusses arguments and
empirical evidence for why a constant κ is generally a reasonable simplifying assumption.
The mean relative error of 0.07 for deb models applied to over 2000 animal species in
the AmP collection further supports this. The explanation that the κ-rule provides for
the waste-to-hurry phenomenon that emerged from the AmP collection is possibly the
strongest argument in favor of a constant κ.



273

Figure 11.2: The total reproduction efficiency
L3
b([MV ]µV + [Em])κR/E0 for the molluscs,

squamates, birds and mammals in the AmP
collection. The deviating behaviour of the
molluscs is caused by the many simultaneous
hermaphrodites. They lay very small eggs, so
suffer less from embryonic maintenance costs,
and pay the bill after birth, where the multi-
million offspring reduces to 1 or 2 during the
life time of the mother (which can differ from
less than a year to centuries).

Figure 11.3: The total reproduction efficiency
as function of the precociality index sbpH =
EbH/E

p
H for the same taxa. The cephalopods

have a high total reproduction efficiency and
the gastropods a low one, but no clear link was
found for them with the precociality index. Very
unlike the three vertebrate taxa, where the to-
tal reproduction efficiency decreases sharply for
increasing precociality index.

The default parameter value for the reproduction efficiency κR = 0.95 was criticized by
Ginther et al [492], especially for mammals. They conclude that almost all allocation to
mammal reproduction is lost in overheads, where DEB theory would assume trivial losses.
They illustrate their claims by comparing pregnant sheep with non-pregnant ones, see Fig.
11.1. Several things went wrong here; the evaluation of reproduction efficiency cannot
do without a model for embryos. They misunderstood that κR quantifies the conversion
efficiency from the reproduction buffer to embryo reserve. This efficiency is high, because
it only includes the wrapping of reserve into an egg; while the chemical composition of the
reproduction buffer is very similar to the initial egg content. Foetal development is very
similar to egg development, and some fish genera have species with aplancental oviviparous
as well as placental viviparous development. Ginther et al ‘stylised’ the heat trajectory
to a linear increase since copulation, and say it ”was well supported by our data and was
conservative”. Fig. 11.1 shows that their claims are simply flawed and they must have
known this. It turned out that the data source Brockway et al [191] used a 50 kg ewe, while
AmP parameters result in a heat production that is a bit lower than the Brockway et al one
and the ultimate weight of the AmP ewe is 86 kg (which might be the reason); the figure
also shows foetal values that are corrected for this difference in ewe values. Notice that the
DEB predictions are based on the AmP data for sheep, not on the presented heat data,
and that they do not depend on the criticized parameter κR. The difference between DEB
predictions and Brockway’s data might be due to a difference in race of sheep; the mean
relative error of predictions for the AmP entry is 0.04, which has both pre-natal and post-
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natal development. The integrated costs for reproduction overheads is 252MJ for Ginther
et al method, while 60.5MJ was measured, and the DEB predictions amount to 64.6MJ, or
79.4MJ. So the DEB-based indirect costs are almost spot on (especially when the negative
parts in the empirical trajectory are excluded), and Ginther’s predictions were not. When
they were pointed to this mismatch (see e-letter published with [492]), they simply waved
it away with the remark that a non-linear increase in heat production did not improve
the fit significantly above a linear one; they did not specify the assumptions made in this
statistical testing. The rest of their rebuttal is an accumulation of misunderstandings of
DEB theory and of metabolic costs, which resulted from the lack of a modeling framework
in their analysis. By including the embryo development overheads, as Ginther et al do in
their assessment, it seems that they actually aim at a overall efficiency measure, which
would be L3

b([MV ]µV + [Em])κR/E0, where E0/κR is the investment into a single offspring
and L3

b [MV ]µV is fixed in structure at birth and L3
b [Em] in reserve, both at abundant food.

The embryo overheads include somatic and maturity maintenance, growth overheads and
maturation. If the step from food is included, the total efficiency should be multiplied by
the digestion efficiency κX (typical range 0.1-0.8), which obviously depends on the type
of food. Total foetal weight is about twice the actual foetal weight in mammals, where
fluids that surround the foetus, the placenta, the increased uterus and milk accumulation
(in the later stages of the pregnancy) contribute to the extra weight. Most of the fluids
become lost, the increased uterus shrinks after birth, and the placenta is typically eaten
by the mother; the latter two factors recover part of the costs. Milk production is typically
paid via up-regulation of assimilation. These complications modify the total efficiency
a bit. In their discussion of life history and evolutionary implications, they ignore that
males also allocate to reproduction, with a comparable intensity relative to females, but
hardly anything of this investment ends up in offspring tissue. Quite a few species are
simultaneous hermaphrodites; the AmP collection takes this into account by halving the
value for κR.

Fig. 11.2 shows that the overall reproduction efficiency ranges from 0.65 to 0.75, based
on assimilation energy (not food energy). Many species sport absorption of eggs, and/or
canabalism among siblings, which reduces efficiency, as discussed in [52] for the Greenland
shark. Fig. 11.3 shows that the reproduction efficiency decreases sharply for increasing
precociality index for tetrapods. This is in part because energy allocated to maturity
dissipates. Another reason is that more cumulative maintenance is paid in precocial species
because they have relatively large offspring with a correspondingly long development time.
The relationship was not found for molluscs, which have tiny altricial offspring.

As I see it, deb theory is a very simple theory for a very complex network of interactive
processes that together define how an individual develops from starting egg cell to death
my aging in interaction with its environment. My personal surprise as biologist is not
to find deviations from predictions in some cases, but that these simplistic assumptions
generally do a great job in practice. This means that deb theory meets to fine balance of
accommodating the huge biodiversity and still has the required simplicity to allow practical
applications. An exciting application of the theory is in its support to understand cases
where the theory does not seem to work. When Barneche et al [81], for instance, conclude
that present theories (including deb theory) fail to match their empirical finding that
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Table 11.1: Criteria for general explanatory models for the energetics of individuals, modified
from Sousa et al. [1339].

1 The models must be based on explicit assumptions that are consistent with physics and (geo)chemistry.

2 The assumptions should be consistent in terms of logic, but also with empirical patterns; see Table 11.2.

3 The taxa to which the model applies should be delineated by explicit criteria.

4 Different models for the various taxa should be consistent with an explicit evolutionary scenario.

5 The assumptions should cover the full life cycle of the individual, from initiation of development to
death, and quantify all possible uses of substrates (to allow mass and energy balancing).

6 The predictions should be testable in practice, which typically constrains its maximum complexity
substantially (quantified in terms of number of variables and parameters).

fish fecundity scales hyperallometrically with body weight in field data, my first reaction
is: deb theory only gives hypoallometric predictions if you assume that food density is
constant. Since fish grow from tiny fry to much larger sizes, they change food selection
while growing. It is easy to get hyperallometric relationships with slightly more complex
scenarios for food availability. This type of mismatch is not due to the structure of the
theory in the first place, but to the simplifying assumptions about the environment. See
also [699].

11.1 Criteria for general models

Table 11.1 presents criteria for general explanatory models for the energetics of individuals.
Models implied by deb theory meet all 6 criteria for being general and explanatory.

ad 1 The theory consists of a list of coherent and consistent assumptions, as summarised
in Table 2.4 for the standard deb model. Practical applications require the deriva-
tion of specific mathematical models from these assumptions. Originally I thought
that these assumptions could easily be replaced by others in the process of testing
the implications against experimental data. Later it turned out difficult, if not im-
possible, to replace any of them without creating inconsistencies. This points to the
possible existence of a smaller set of deeper assumptions, from which these assump-
tions follow. Many parts of the theory were originally more complex. As is typical
in science, simplicity does not come naturally, but must be acquired with hard work.

ad 2 deb theory has an explanation for each of the empirical stylized facts as presented
in Table 11.2, Section see 11.1 of the comments. Table 11.1 gives an overview of
the many empirical models that turn out to be special cases of deb models, or very
good numerical approximations; the list continued to grow over the years. Many of
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them are quite old and together they concern very different aspects of life; none of
the original authors could be aware of the coherence of these empirical models. This
in itself is for me already a most rewarding side-result of deb theory. deb theory
reveals how they all follow from simple physical and chemical phenomena; this helps
to understand under what conditions these models will probably not work that well.
Each of these models was created because it described experimental data well. Using
all this evidence, and the results of some 200 man-year of research by the group
working on deb theory, I dare to state that, at present, deb theory is the best tested
quantitative theory in biology.

ad 3 deb theory deals with all organisms, i.e. micro-organisms, animals and plants. It
is not only biologically but also chemically implicit; species and compounds only
receive names in applications deb theory meets the objective restriction criterium by
including all taxa. The standard deb model, which deals with isomorphs with one
reserve and one structure feeing on one type of food, is supposed to apply to animals,
i.e. organisms that feed on other organisms; micro-algae need several reserves, plants
also need two structures (roots and shoots).

ad 4 An explicit evolutionary scenario has been worked out for the models of deb theory.
The applicability to all species restricts the possible structure of deb theory substan-
tially, because we know that most organisms evolved from the merging of ancestors.
Think for instance of mitochondria and chloroplasts that once had an independent
existence, and of the many symbioses (e.g. corals) that exist. The constraint that two
taxa follow some set of energetic rules, and the merged taxon again follows the same
set of rules restricts how this set of rules can potentially look like; see the discussion
on partitionability and mergeability of reserve dynamics.

ad 5 deb theory specifies the fluxes of all chemical compounds, using conservation laws for
chemical elements (and their isotopes). It also exploits the conservation of energy and
time and uses the state variable maturity to trigger qualitative changes in metabolism,
and reserve to explain why embryos can grow (i.e. increase structure) without feeding.

ad 6 The core theory deals with the logic of quantitative aspects of metabolic organisation;
the set-up has not been constrained by the necessity to test against experimental
data. It turned out that quantities that play key roles in deb theory (maturity,
reserve(s), structure(s)) cannot be measured directly, only indirectly. This calls for
elaborate auxiliary theory to relate deb quantities to quantities that can be measured
(lengths, weights, composition, performance in various situations). This auxiliary
theory relates sets of different types of measurements to sets of several deb quantities.

11.1 Empirical evidence

Table 11.2 presents (stylized) empirical facts, and Tables 11.3 and 11.4 show how deb
theory explains these facts. The patterns are used to test topological alternatives for the
standard deb model in Table 11.5, see Section 11.3 of the comments.
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Table 11.2: Stylized and empirical facts, modified from Sousa et al. [1338]

Feeding

F1 Many species (almost all animals and plants) have an embryo stage that does not feed

F2 During starvation, organisms are able to reproduce, grow and survive for some time

F3 At abundant food, the feeding rate is at some maximum, independent of food density

Growth

G1 Growth of isomorphic organisms at abundant food is well described by the von Bertalanffy; at
constant food density, no substantial shrinking occurs independent of ageing

G2 The inverse von Bertalanffy growth rate increases linearly with ultimate length both intra-
specifically (or different constant food levels) and inter-specifically for large body sizes

G3 Foetuses increase in weight approximately proportional to cubed time

Reproduction

R1 Many species (almost all animals and plants) have a juvenile stage that does not reproduce

R2 Reproduction increases with size intra-specifically, but decreases with size inter-specifically

R3 A range of constant low food levels exists at which an individual can survive, but not reproduce

R4 Growth can be simultaneous with reproduction, but growth can also cease long before reproduction
is initiated

R5 Allocation to reproduction can continue during starvation

Respiration

O1 Animal eggs and plant seeds initially hardly use dioxygen

O2 The use of dioxygen increases with decreasing mass in embryos and increases with mass in juveniles
and adults

O3 The use of dioxygen by isomorphs scales approximately with body weight raised to a power close
to 0.75

O4 Animals show a transient increase in metabolic rate after ingesting food (heat increment of feeding)

Stoichiometry

S1 The chemical composition of organisms depends on the nutritional status (starved vs well-fed)

S2 The chemical composition of organisms at constant food density becomes constant during growth

Energy

E1 Some energy always dissipates, also in absence of dioxygen

E2 Dissipating heat for heterotrophic isomorphs under aerobic conditions is a weighted sum of three
mass flows: carbon dioxide, dioxygen and nitrogenous waste

Ageing

A1 Mean life span typically increases inter-specifically with maximum body length in endotherms, but
hardly depends on body length in ectotherms

A2 Survivor curves for life span terminated by ageing are typically well described by the Weibull and
Gompertz models
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Table 11.3: Explanations for the stylized facts listed in Table 11.2 as offered by deb theory; see
also Table 11.4.

F1 The embryo is considered as a non-feeding juvenile that starts its development with zero
maturity and structure and an amount of reserve such that the reserve density at birth
equals that of the mother at egg formation, see Subsection 2.6.2.

F2 Growth and reproduction are fuelled by mobilised reserve, not by feeding directly. Death
by starvation occurs if shrinking of structure exceeds a threshold or when rejuvenation pro-
gresses, see Subsection 4.1.4 of the book and Subsections 4.1.5 and 4.1.5 of the comments.

F3 Feeding is at maximum if all time is allocated to the processing of food, see Section 2.1.

G1 The von Bertalannfy growth model is a special case of the standard deb model, see Sub-
section 2.6.1.

G2 As August Pütter already noted, see Section 2.4 of the comments, the inverse von Berta-
lanffy growth rate increases linearly in ultimate length. This is implied by deb theory,
see Subsection 2.6.1, and is an important argument for why the allocation fraction κ to
soma remains constant during development, see Section 2.4 of the comments. The von
Bertalanffy growth rate of different species decreases almost linearly with the maximum
body length due to the increase of the (maximum) reserve capacity, see Subsection 8.2.2.

G3 Huggett andWiddas (1951) already observed that foetuses increase in weight approximately
proportional to cubed time, see Table 11.1; Their model is a special case of the standard
deb model, see Subsection 2.6.2.

R1 Allocation to reproduction is initiated when maturity reaches the puberty threshold, see
Subsection 2.5.2.

R2 Reproduction increases intra-specifically between a squared and a cubed length, see Section
2.7, but inter-specifically it decreases approximately proportional to length, see Subsection
8.2.2.

R3 Due to the existence of maturity maintenance, individuals can survive, but not reproduce,
in a certain range of low food densities, see Subsection 2.5.3 of the comments. Figure 9.13
of the DEB book beautifully demonstrates this. Moreover, if maturity maintenance would
not exist, the supply stress would be zero for all species and they cannot be ranked in a
supply-demand spectrum. See Subsection 10.5.5.

R4 At constant food, reproduction increases with length, see Section 2.7. Growth is compet-
ing with somatic maintenance, reproduction with maturity maintenance; both are parallel
processes, due to the κ-rule for allocation, see Section 2.4.
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Table 11.4: Table 11.3 continued.

O1 Since only structure requires somatic maintenance and the embryo starts at zero structure,
it initially hardly use dioxygen, see Section 2.6.2.

O2 The use of dioxygen increases with decreasing mass in embryos because it looses (dry)mass
(namely reserve) during development, while its structure is growing, see Section 2.6.2.
Respiration increases with mass in juveniles and adults because reserve density remains
constant at constant food, due to the assumption of weak homeostasis, see Subsection
1.2.2, and their increasing structure requires maintenance.

O3 The weight-specific use of dioxygen decreases during the life cycle because investment in
growth decreases (and growth-overheads contribute to respiration), see Section 4.4. Fully
grown adults of different species have a reserve density that increases with maximum length,
see Section 8.2.2, while only structure requires maintenance.

O4 The conversion cost from food to reserve is paid from food, see Subsection 4.4.2 and Sub-
section 2.5.1 of the comments.

S1 The chemical composition of reserve and structure can differ, and reserve density depends
on the nutritional status, see Section 2.3, the chemical composition of the body can vary.

S2 Due to the weak homeostasis assumption, see Section 1.2.2, the chemical composition of
organisms at constant food density becomes constant during growth.

E1 The delineation of an explicit dissipating flux, see Section 2.5, and overhead costs in all
transformations ensure that some energy is always dissipating; the flux of dioxygen is
obtained from the oxygen balance, heat from the energy balance, see Subsection 4.3.1 and
Sections 4.4 and 4.8.

E2 The method of indirect calorimetry by Lavoisier 1780, see Table 11.1, assumes that dissi-
pating heat is a weighted sum of the fluxes of carbon dioxide, dioxygen and nitrogenous
waste. This is a special case of the standard deb model, see Subsection 4.8.2.

A1 If the Gompertz stress coefficient is close to zero, as holds for most ectotherms, life span
hardly depends on maximum body size, but if it is positive, as is typical for endotherms,
it increases with maximum length, see Section 6.1 and Subsection 8.2.2.

A2 Both the Weibull and the Gompertz models are special cases of the DEB module for ageing,
see Section 6.1.
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11.2 Number of free protons

The derivation of the probability distribution of the number of free protons is as follows. We
can safely neglect the decrease of the number of water molecules, sayN , due to dissociation.
If Pn(t) denotes the probability that the number of protons at time t equals n, we have for
n = 1, 2, · · ·

Pn(t+∆t) = k2(n+ 1)2 ∆t Pn+1(t) + k1C∆t Pn−1(t) +

+ [1− (k2n
2 + k1C)∆t]Pn(t) + o(∆t) (11.1)

where o(∆t) refers to the probability that more than one event (i.e. dissociation or binding)
occurs during a time increment ∆t. If we bring the term Pn(t) to the left, divide by ∆t
and let ∆t approach to zero, we arrive at

P ′
n(t) = k2(n+ 1)2Pn+1(t) + k1CPn−1(t)− (k2n

2 + k1C)Pn(t) (11.2)

where P ′
n(t) denotes the derivative of Pn(t) with respect to the time. For n = 0 we have

P0(t+∆t) = k2 ∆t P1(t) + [1− k1C∆t]P0(t) + o(∆t) (11.3)

and so

P ′
0(t) = k2P1(t)− k1C∆t P0(t) (11.4)

which is a special case of (11.2) when we make the appointment that P−1(t) = 0. So, (11.2)
represents the stochastic model for the number of ’free’ protons.

By comparison, the corresponding deterministic model would be

n′(t) = k1C − k2n
2(t)

Separation of variables and integration gives

n(t)−m

n(t) +m
=
n(0)−m

n(0) +m
e−t/τ ,

wherem denotes the equilibrium number of ’free’ protons in the deterministic model, which

is given bym =
√
Ck1/k2, and τ the relaxation time, which is given by τ = 1/

√
4Ck1k2. At

25◦C, k1 = 2.4 10−5 s−1 and k2 = 103 ion−1 s−1 (in ice, k2 is faster!). This gives a relaxation
time of some 36µs.

We now continue with a further analysis of the stochastic model. As long as we are in-
terested in processes with relaxation times much longer than 36µs, we can confine ourselves
to the limiting probability distribution of n for large t, where we have that P ′

n(∞) = 0.
When we divide by k2, call Ck1/k2 = m2, as before, and abbreviate Pn(∞) to Pn, (11.2)
reduces in the limit to

(n+ 1)2Pn+1 +m2Pn−1 − (n2 +m2)Pn = 0 (11.5)
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Starting with P1 = m2P0, and using (11.5) in the form

Pn+1 =
(
(n2 +m2)Pn −m2Pn−1

)
(n+ 1)−2,

we find by induction that Pn = (mn/n!)2P0. This relation determines the probabilities up
to an arbitrary factor. Obviously, we must have that

∑∞
n=0 Pn = 1. The series I0(x) =∑∞

i=0(x/2)
2i(i!)−2 is well known as the modified Bessel function. So

∑∞
n=0(m

n/n!)2 =
I0(2m). We therefore arrive at

Pn = (mn/n!)2I−1
0 (2m) (11.6)

This probability distribution relates to the Poisson distribution by just squaring the Poisson
probabilities and renormalizing to assure that the sum of the probabilities remains 1. The
normalizing constant I−1

0 (2m) in (11.6) compares with e−m in the Poisson distribution.
Since I ′0(x) = (2/x)

∑∞
i=0 i(x/2)

2i(i!)−2, so
∑∞
n=0 n(m

n/n!)2 = mI ′0(2m), the expected
number of protons equals µ = mI ′0(2m)/I0(2m). This is lower than the value m, which
should be expected on the basis of the deterministic model. This is obvious when we obtain
the variance by summing (11.5) for n = −1, 0, 1, · · ·. It is found to be σ2 = m2 − µ2 =

m2
(
1− (I ′0(2m)/I0(2m))2

)
. Although it is less than the variance of a Poisson distribution

with the same mean it is still considerable for small m.
The lifetime of a randomly selected water molecule, a hydroxylion and a hydronium ion

follow an exponential distribution with mean k−1
1 , i.e. some 4.16 104 s = 11.55 h, for water

and k−1
2 , i.e. some 10−3 s, for both ions at 25◦C. Diffusion causes these particles to displace

in time, t, over a mean distance of
√
2Dt, where D denotes the diffusion coefficient. For

H2O, OH− and H+, the latter is 2.26, 5.3 resp. 9.31 10−5 cm2s−1 at 25◦C. The mean total
lifetime displacement in an unbounded body of pure water is thus 1.37 cm, 3.26µm and
4.32µm, as a crow flies. This means that the limited size of a cell is likely to influence the
transport, even apart from influences exercised by, e.g. the membrane.

11.3 Basal Metabolic Rate

Ricklefs et al [1185] partition the energy budget (in Joules per day) into the following
modules

BMR Basal metabolic rate: the rate of energy metabolism of a non-growing individual
(ṗG = 0) at rest under post-absorptive conditions (ṗA = 0) in a thermo-neutral
environment (ṗT = 0).

DEE Daily energy expenditure: the rate of energy metabolism of an active individual.
DEE = FMR (Field Metabolic Rate) when measured on free-living animals.

ACT Activity metabolism: ACT = DEE − BMR metabolic expenditures for activity.

As a rule of thump, they suggest that DEE≃ 4BMR in birds and mammals, but the factor
varies between 2 and 7. They found no correlation between DEE and BMR in 28 species
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of birds, but a strong correlation in 15 species of mammals. In an attempt to explain these
differences they propose a (conceptual) ‘shared pathway model’, where the high rates in
active individuals replace those of a passive one (leading to absence of correlation between
DEE and BMR) and a ‘partitioned pathway model’, where activity is added to BMR
(leading to positive correlations). All this concerns inter-specific comparisons.

BMR is not easy to address in a DEB context; allocations to maturation and/or re-
production need to be considered. Digestion can continue long after feeding is ceased,
shrinking and rejuvenation can occur if digestion is ceased for too long. The growth pe-
riod in birds is typically shorter than that in mammals, relative to the life span. Since
growth is asymptotic and contributions from growth can affect the results (even if actual
growth per day is negligibly small). Fully grown individuals can suffer from ageing, which
typically reduces metabolic rates (quantified as effects of damage compounds on param-
eter values). Last but not least, differences in nutritional conditions can easily dominate
the results. DEE is typically measured using the method of double labelled water, which
makes strong assumptions. Inter-species comparisons involve variations in parameter val-
ues among species, which can easily obscure the more subtle patterns in budgets.

11.4 Topological alternatives

Apart from production and assimilation models, intermediate models can be formulated,
as well as models of a different type. Lika and Kooijman [858] delineate the following
classes of models that are topological alternatives of the standard deb model

4 κ-models have branching first (κ stands for partitioning of energy fluxes). The lower
left index refers to the branch of E, lower right to the branch of S (0 indicates S
before E), and upper right to the branch of J (1 indicates J after E).

4 A-models have E first as destination of assimilates (A stands for assimilation). The
lower right index refers to the branch of S, upper right to the branch of J .

3 P -models have allocation to S+J first (P stands for production). The lower left index
refers to the branch of E.

5 S-models have allocation to S first (S stands for somatic maintenance). The lower left
index refers to the branch of E and upper right to the branch of J (0 and 1 indicate
J before and after E).

5 J-models have allocation to J first (J stands for maturity maintenance). The lower left
index refers to the branch of E and lower right to the branch of S (0 and 1 indicate
S before and after E).

The standard deb model classifies as ARG, the model by [859] as RP , RS
R0 or RS

R1 (which
all turn out to have the same properties, cf Table 11.5). Figure 11.4 illustrates the models.

The specification of the models for juveniles and adults can be done similar to the
standard deb model (see below), with the generalisation of the reserve density dynamics
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Figure 11.4: The 21 possible allocation schemes, excluding (S,R) and (J,G) combinations, from
[858].
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Table 11.5: Tests of the capacity to capture 8 patterns of Table 11.2 at constant food for the
21 energy budget models of Figure 11.4. Symbols: + means ‘yes’, − means ‘no’, ? means that
numerical analysis is required. Where two marks are given, the first refers to constant κ, the
second to variable κ. The test for the inverse generalised von Bertalanffy growth rate (pattern G2)
is done for intra- and inter-specific comparisons; in the case of ‘?’, the relationship is non-linear,
the degree of curvature must be analysed numerically. From [858].

model F2 G1 G2 R2 R3 R4 R5 S1

Rκ
R0
G

− + −/− + + + + +/−
Rκ

R1
G

− + −/− + + + + +/−
Gκ

R
G0

+ + +/− + + + − +/−
Gκ

R
G1

+ + +/− + + + − +/−
AG

+ + −/− + + + + +/+

AR + + +/+ − + + + +/+

A + + ?/? − + − + +/+

AR
G

+ + +/− + + + + +/+

RP − + −/− − + − + +/−
GP + + −/− − + + − +/−
P + + ?/? − + − + +/+

S + + ?/? − + − + +/+

SR + + +/+ − + + − +/+

RS
R0 − + −/− − + − + +/−

RS
R1 − + −/− − + − + +/−

GS
R + + +/+ − + + − +/−

J + + ?/? − + − + +/+

JG + + −/− + + + + +/+

GJG0
+ + −/− + + + − +/−

GJG1
+ + −/− + + + − +/−

RJG − + −/− + + + + +/−

d
dt
[E] = (κwf [Em]− [E])v̇/L, where κw equals 1, κ or 1− κ, depending on the model, such

that the mobilisation rate does not depend on assimilation.

All models have the same variables and parameters and also the same assimilation rate
as function of body size, yet their properties are very different. The models for which E,
S and/or J are on the same axis (main, G− or R−axis), their sequence does not matter;
so the models A = P = S = J and JG = AG and SR = AR and Rκ

R
G0 = Rκ

R
G1 and

Rκ
R0
G = Rκ

R1
G and RS

R0 = RS
R1 and GJG0 = GJG1 in terms of growth and reproduction;

this leaves 12 different models. The models A, P , S, J and ARG are symmetric in allocation,
relative to the G- and R-branches; the 16 other models are asymmetric.

For some models only a fraction κ of assimilation matters for ultimate length. Somatic
maintenance controls ultimate length in all models, but for some models also maturity
maintenance matters. Some models do not allow existence at low food levels, even if size
is very small.

Table 11.5 compares the capacity to capture 8 general empirical patterns for all models.
The standard deb (ARG) model with constant κ is the only one that passes all our tests
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successfully [858]. Only A-models can naturally accommodate embryo development. The

Gκ
R
G0-model passes most tests, but has maturation and reproduction directly from food.

So embryos have to do this differently and reproduction is prohibited during starvation
as observed, for instance, in baleen whales. The κ, RP , GP , RS

R0
RS

R1, GS
R, GJG0 and

GJG1-models have problems with weak homeostasis when κ is varying. [858] observed that
models can be identical in their growth and reproduction behaviour, but different in the
implied mineral fluxes.

11.4.1 Detailed specification per model with fixed and variable κ

In the expressions for specific influx into the reserve compartment [ṗEA], specific reserve
mobilisation rate [ṗC ], specific growth rate ṙ and specific maturation (or reproduction
investment) [ṗR], the fixed fraction to soma κ can be replaced by the variable κ = 1−L/Lκ.
Where only one expression for ultimate length L∞ or inverse generalized von Bertalanffy
growth rate ṙ−1

B is given, it is independent of κ, else the value for fixed κ is given first,
followed by that of variable κ. The ultimate length L∞ is for several models given implicitly
only, and needs to be solved as root of a cubic polynomial in L∞ (a built-in routine in
Matlab and Octave). In the case of variable κ, length L can never exceed Lκ, which
poses constraints on the value of Lκ: Lκ > L∞. Further: specific assimilation rate [ṗA] =
f{ṗAm}/L, specific somatic maintenance rate [ṗS] = [ṗM ] (for {ṗT} = 0), specific maturity
maintenance rate [ṗJ ] = k̇JEH/L

3, specific growth rate ṙ = d
dt
lnV (with V = L3), change

in reserve density d
dt
[E] = [ṗEA] − [ṗC ] − ṙ[E], change in maturity d

dt
EH = [ṗR]L

3 for
EH < Ep

H , else
d
dt
EH = 0. [ṗR] represents energy investment into reproduction, rather than

maturation, for EH = Ep
H Parameters: specific maximum assimilation rate {ṗAm}, energy

conductance v̇, specific somatic maintenance rate [ṗM ], specific maturity maintenance rate
coefficient k̇J , specific costs for structure [EG], allocation fraction κ, maturity threshold at
puberty Ep

H , length parameter for allocation Lκ. Input: scaled functional response f (a
dimensionless function of food density between 0 and 1). Finally: L→ L∞ for ṙ → 0.

κ-models

Rκ
R0
G -model

[ṗEA] = (1− κ)[ṗA]− [ṗJ ]; [ṗC ] = [E](v̇/L− ṙ)− [ṗJ ]

d

dt
[E] = (1− κ)[ṗA]− [E]v̇/L; ṙ =

κ[ṗA]− [ṗS]

[EG]

ṙ−1
B =

3[EG]

[ṗM ]
or ṙ−1

B =
3[EG]

[ṗM ]

(
1− L∞

Lκ

)

L∞ =
κf{ṗAm}

[ṗM ]
or L∞ =

f{ṗAm}
f{ṗAm}/Lκ + [ṗM ]

[ṗR] = [E](v̇/L− ṙ)− [ṗJ ]
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Rκ
R1
G -model

[ṗEA] = (1− κ)[ṗA]; [ṗC ] = [E](v̇/L− ṙ)

d

dt
[E] = (1− κ)[ṗA]− [E]v̇/L; ṙ =

κ[ṗA]− [ṗS]

[EG]

ṙ−1
B =

3[EG]

[ṗM ]
or ṙ−1

B =
3[EG]

[ṗM ]

(
1− L∞

Lκ

)

L∞ =
κf{ṗAm}

[ṗM ]
or L∞ =

f{ṗAm}
f{ṗAm}/Lκ + [ṗM ]

[ṗR] = [E](v̇/L− ṙ)− [ṗJ ]

Gκ
R
G0-model

[ṗEA] = κ[ṗA]− [ṗS]; [ṗC ] = [E](v̇/L− ṙ)− [ṗS]

d

dt
[E] = κ[ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]

[EG] + [E]

ṙ−1
B =

3[EG]

[ṗM ]
+

3L∞

v̇
or ṙ−1

B =
3[EG]

[ṗM ]

(
1− L∞

Lκ

)
+

3L∞

v̇

L∞ =
κf{ṗAm}

[ṗM ]
or L∞ =

f{ṗAm}
f{ṗAm}/Lκ + [ṗM ]

[ṗR] = (1− κ)[ṗA]− [ṗJ ]

Gκ
R
G1-model

[ṗEA] = κ[ṗA]; [ṗC ] = [E](v̇/L− ṙ)

d

dt
[E] = κ[ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]

[EG] + [E]

ṙ−1
B =

3[EG]

[ṗM ]
+

3L∞

v̇
or ṙ−1

B =
3[EG]

[ṗM ]

(
1− L∞

Lκ

)
+

3L∞

v̇

L∞ =
κf{ṗAm}

[ṗM ]
or L∞ =

f{ṗAm}
f{ṗAm}/Lκ + [ṗM ]

[ṗR] = (1− κ)[ṗA]− [ṗJ ]

A-models

AG-model

[ṗEA] = [ṗA]; [ṗC ] = [E](v̇/L− ṙ)

d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]/κ− [ṗJ ]

[EG]/κ+ [E]
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ṙ−1
B =

3L∞

v̇
+

3[EG]/[ṗM ]

1 +
κk̇JE

p
H

[ṗM ]L3
∞

or ṙ−1
B =

3L∞

v̇
+

3(1− L∞/Lκ)[EG]/[ṗM ]

1 +
(
1− L∞

Lκ

)
k̇JE

p
H

[ṗM ]L3
∞

[ṗM ]

κ
=

f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

or
[ṗM ]

1− L∞/Lκ
=
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = (1− κ)([E](v̇/L− ṙ)− [ṗJ ])

AR-model

[ṗEA] = [ṗA]; [ṗC ] = [E](v̇/L− ṙ)

d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]

[EG]/κ+ [E]

ṙ−1
B =

3[EG]

κ[ṗM ]
+

3L∞

v̇
or ṙ−1

B =
3[EG]

[ṗM ]
+

3L∞

v̇

L∞ =
f{ṗAm}
[ṗM ]

[ṗR] = (1− κ)([E](v̇/L− ṙ)− [ṗS])− [ṗJ ]

A-model

[ṗEA] = [ṗA]; [ṗC ] = [E](v̇/L− ṙ)

d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]− [ṗJ ]

[EG]/κ+ [E]

ṙ−1
B =

3L∞

v̇
+

3[EG]

κ[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

or ṙ−1
B =

3L∞

v̇
+

3[EG]

[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

[ṗM ] =
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = (1− κ)([E](v̇/L− ṙ)− [ṗS]− [ṗJ ])

ARG-model

[ṗEA] = [ṗA]; [ṗC ] = [E](v̇/L− ṙ)

d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

κ[E]v̇/L− [ṗS]

[EG] + [E]κ

ṙ−1
B = 3

(
[EG]

[ṗM ]
+
L∞

v̇

)
or ṙ−1

B = 3

(
[EG]

[ṗM ]
+ L∞

(
1

v̇
− [EG]

Lκ[ṗM ]

))

L∞ =
κf{ṗAm}

[ṗM ]
or L∞ =

(
[ṗM ]

f{ṗAm}
+

1

Lκ

)−1

[ṗR] = (1− κ)[E](v̇/L− ṙ)− [ṗJ ]
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P -models

RP -model

[ṗEA] = (1− κ)([ṗA]− [ṗS]− [ṗJ ]); [ṗC ] = [E](v̇/L− ṙ)− (1− κ)([ṗS] + [ṗJ ])

d

dt
[E] = (1− κ)[ṗA]− [E]v̇/L; ṙ =

[ṗA]− [ṗS]− [ṗJ ])

[EG]/κ

ṙ−1
B =

3[EG]

κ[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

or ṙ−1
B =

3[EG]

[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

[ṗM ] =
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = [E](v̇/L− ṙ)− (1− κ)([ṗS] + [ṗJ ])

GP -model

[ṗEA] = κ([ṗA]− [ṗS]− [ṗJ ]); [ṗC ] = [E](v̇/L− ṙ)− κ([ṗS] + [ṗJ ])

d

dt
[E] = κ[ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− κ([ṗS] + [ṗJ ])

[EG] + [E]

ṙ−1
B =

3L∞

κv̇
+

3[EG]

κ[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

or ṙ−1
B =

3L∞

v̇
+

3[EG]

[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

[ṗM ] =
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = (1− κ)([ṗA]− [ṗS]− [ṗJ ])

P -model

[ṗEA] = [ṗA]− [ṗS]− [ṗJ ]; [ṗC ] = [E](v̇/L− ṙ)− [ṗS]− [ṗJ ]

d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]− [ṗJ ]

[EG]/κ+ [E]

ṙ−1
B =

3L∞

v̇
+

3[EG]

κ[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

or ṙ−1
B =

3L∞

v̇
+

3[EG]

[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

[ṗM ] =
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = (1− κ)([E](v̇/L− ṙ)− [ṗS]− [ṗJ ])

S-models

S-model

[ṗEA] = [ṗA]− [ṗS]; [ṗC ] = [E](v̇/L− ṙ)− [ṗS]
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d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]− [ṗJ ]

[EG]/κ+ [E]

ṙ−1
B =

3L∞

v̇
+

3[EG]

κ[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

or ṙ−1
B =

3L∞

v̇
+

3[EG]

[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

[ṗM ] =
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = (1− κ)([E](v̇/L− ṙ)− [ṗS]− [ṗJ ])

SR-model

[ṗEA] = [ṗA]− [ṗS]; [ṗC ] = [E](v̇/L− ṙ)− [ṗS]

d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]

[EG]/κ+ [E]

ṙ−1
B =

3[EG]

κ[ṗM ]
+

3L∞

v̇
or ṙ−1

B =
3[EG]

[ṗM ]
+

3L∞

v̇

L∞ =
f{ṗAm}
[ṗM ]

[ṗR] = (1− κ)([E](v̇/L− ṙ)− [ṗS])− [ṗJ ]

RS
R0-model

[ṗEA] = (1− κ)([ṗA]− [ṗS])− [ṗJ ]; [ṗC ] = [E](v̇/L− ṙ)− (1− κ)[ṗS]− [ṗJ ]

d

dt
[E] = (1− κ)[ṗA]− [E]v̇/L; ṙ =

[ṗA]− [ṗS]

[EG]/κ

ṙ−1
B =

3[EG]

κ[ṗM ]
or ṙ−1

B =
3[EG]

[ṗM ]

L∞ =
f{ṗAm}
[ṗM ]

[ṗR] = [E](v̇/L− ṙ)− (1− κ)[ṗS]− [ṗJ ]

RS
R1-model

[ṗEA] = (1− κ)([ṗA]− [ṗS]); [ṗC ] = [E](v̇/L− ṙ)− (1− κ)[ṗS]

d

dt
[E] = (1− κ)[ṗA]− [E]v̇/L; ṙ =

[ṗA]− [ṗS]

[EG]/κ

ṙ−1
B =

3[EG]

κ[ṗM ]
or ṙ−1

B =
3[EG]

[ṗM ]

L∞ =
f{ṗAm}
[ṗM ]

[ṗR] = [E](v̇/L− ṙ)− (1− κ)[ṗS]− [ṗJ ]
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GS
R-model

[ṗEA] = κ([ṗA]− [ṗS]); [ṗC ] = [E](v̇/L− ṙ)− κ[ṗS]

d

dt
[E] = κ[ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− κ[ṗS]

[EG] + [E]

ṙ−1
B =

3[EG]

κ[ṗM ]
+

3L∞

v̇
or ṙ−1

B =
3[EG]

[ṗM ]
+

3L∞

v̇

L∞ =
f{ṗAm}
[ṗM ]

[ṗR] = (1− κ)([ṗA]− [ṗS])− [ṗJ ]

J-models

J-model

[ṗEA] = [ṗA]− [ṗJ ]; [ṗC ] = [E](v̇/L− ṙ)− [ṗJ ]

d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]− [ṗJ ]

[EG]/κ+ [E]

ṙ−1
B =

3L∞

v̇
+

3[EG]

κ[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

or ṙ−1
B =

3L∞

v̇
+

3[EG]

[ṗM ]

(
1 +

k̇JE
p
H

[ṗM ]L3
∞

)−1

[ṗM ] =
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = (1− κ)([E](v̇/L− ṙ)− [ṗJ ]− [ṗS])

JG-model

[ṗEA] = [ṗA]− [ṗJ ]; [ṗC ] = [E](v̇/L− ṙ)− [ṗJ ]

d

dt
[E] = [ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]/κ− [ṗJ ]

[EG]/κ+ [E]

ṙ−1
B =

3L∞

v̇
+

3[EG]/[ṗM ]

1 +
κk̇JE

p
H

[ṗM ]L3
∞

or ṙ−1
B =

3L∞

v̇
+

3(1− L∞/Lκ)[EG]/[ṗM ]

1 +
(
1− L∞

Lκ

)
k̇JE

p
H

[ṗM ]L3
∞

[ṗM ]

κ
=

f{ṗAm}
L∞

+
k̇JE

p
H

L3
∞

or
[ṗM ]

1− L∞/Lκ
=
f{ṗAm}
L∞

+
k̇JE

p
H

L3
∞

[ṗR] = (1− κ)([E](v̇/L− ṙ)− [ṗJ ])

GJG0-model

[ṗEA] = κ([ṗA]− [ṗJ ])− [ṗS]; [ṗC ] = [E](v̇/L− ṙ)− κ[ṗJ ]− [ṗS]
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d

dt
[E] = κ[ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]− κ[ṗJ ]

[EG] + [E]

ṙ−1
B =

3L∞

v̇
+

3
[ṗM ]
[EG]

+
κk̇JE

p
H

[EG]L3
∞

or ṙ−1
B =

3L∞

v̇
+

3(1− L∞/Lκ)[EG]/[ṗM ]

1 +
(
1− L∞

Lκ

)
k̇JE

p
H

[ṗM ]L3
∞

[ṗM ]

κ
=

f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

or
[ṗM ]

1− L∞/Lκ
=
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = (1− κ)([ṗA]− [ṗJ ])

GJG1-model

[ṗEA] = κ([ṗA]− [ṗJ ]); [ṗC ] = [E](v̇/L− ṙ)− κ[ṗJ ]

d

dt
[E] = κ[ṗA]− [E]v̇/L; ṙ =

[E]v̇/L− [ṗS]− κ[ṗJ ]

[EG] + [E]

ṙ−1
B =

3L∞

v̇
+

3
[ṗM ]
[EG]

+
κk̇JE

p
H

[EG]L3
∞

or ṙ−1
B =

3L∞

v̇
+

3(1− L∞/Lκ)[EG]/[ṗM ]

1 +
(
1− L∞

Lκ

)
k̇JE

p
H

[ṗM ]L3
∞

[ṗM ]

κ
=

f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

or
[ṗM ]

1− L∞/Lκ
=
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = (1− κ)([ṗA]− [ṗJ ])

RJG-model

[ṗEA] = (1− κ)([ṗA]− [ṗJ ]); [ṗC ] = [E](v̇/L− ṙ)− (1− κ)[ṗJ ]

d

dt
[E] = (1− κ)[ṗA]− [E]v̇/L; ṙ =

[ṗA]− [ṗS]/κ− [ṗJ ]

[EG]/κ

ṙ−1
B =

3[EG]

[ṗM ] + κk̇JE
p
H/L

3
∞

or ṙ−1
B =

3[EG]

[ṗM ]/(1− L∞/Lκ) + k̇JE
p
H/L

3
∞

[ṗM ]

κ
=

f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

or
[ṗM ]

1− L∞/Lκ
=
f{ṗAm}
L∞

− k̇JE
p
H

L3
∞

[ṗR] = [E](v̇/L− ṙ)− (1− κ)[ṗJ ]

11.4 Variations on the standard DEB model

In our efforts to fit the standard DEB model to the species in the AmP collection, it
became clear that we need some extensions, see the DEBtool manual. These extensions
are minor and fit patterns that are evolutionarily consistent and order, rather than species,
dependent.

Several variations on the standard (std) model have been proposed, for simplicity’s
sake. Kooijman [763], for instance, observed that if k̇M = k̇J , maturity density remains
constant, implying that life history events (birth, puberty), still occur at fixed maturity

http://www.bio.vu.nl/thb/deb/deblab/debtool/DEBtool_M/manual/index_animal.html
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Figure 11.5: Prenatal and postna-
tal growth of the milk shark Rhizo-
prionodon acutus. Length of both
embryos and neonates initially grow
linearly in time, but at different
rates. Data from [1526].

thresholds, but now also at fixed values for structure. This reduction in number of state
variables certainly simplifies the mathematics, but gave problems in particular applications.
Another example is the DEBkiss model [659, 654], which is very close to the Kooijman-
Metz model [793]. It is, in fact, another special case of the std model, with v̇ → ∞.
The odd implications for embryo development are fixed with a new embryo development
module, which boils down to introducing a new state variable, yolk, which is mobilised such
that the von Bertalanffy growth curve is back-extrapolated into the embryo stage, starting
from structure zero, and yolk is zero at birth. In the std model length of the embryo and
the neonate initially grows linearly as well, but at different rates (since growth depends on
reserve density, which is infinitely large in the starting embryo, but not so in the neonate).
See Fig. 11.5.

Although the motivation was to simplify the std model for routine applications in
toxicity tests, it hardly does so in terms of number of state variable and parameters: yolk
replaces reserve (so no less state variables), the yield of structure (i.e. biomass) on yolk
replaces the yield of structure on reserve, the yield of yolk on food replaces the yield of
reserve on food. The energy conductance is then the only parameter that is reduced, but
at considerable loss of performance. If this really means a reduction in required number of
parameters very much depends on the data that needs to be described. Males frequently
differ for females, for instance, not only in ultimate size, but also in size at first maturity,
in (von Bertalanffy) growth rate and in length-weight relationship. The standard DEB
model can capture these differences, with a difference in max specific assimilation {ṗAm}
and maturity at puberty Ep

H only. Females of many rays and sharks are larger than males,
meaning that they have a larger value for {ṗAm}, but with the same value for the energy
conductance v̇, female’s reserve capacity [Em] = {ṗAm}/v̇ is larger, which contributes
to weight. So females have a larger weight than males for the same length and they
grow slower, since they have to build up this larger reserve. By a step-up of {ṗAm},
the female has automatically a smaller von Bertalanffy growth rate than the male in the
std DEB model, but not in the DEBkiss model. The DEBkiss model can only capture
the female-male couple with more parameters than the standard DEB model. Growth at
different constant food levels shows a related problem. In the DEBkiss model growth (of

biovolume) is given by d
dt
L3 = κf{ṗAm}L2−[ṗM ]L3

[EG]
, which gives a von Bertalanffy growth rate

of ṙB = k̇M/3 for k̇M = [ṗM ]/[EG], while in the std model we have ṙB = k̇M/3
1+f/g

for energy
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investment ratio g = [EG]v̇
κ{ṗAm} . This is easy to check since v̇ → ∞ means g → ∞. So

the von Bertalanffy growth rate ṙB depends on food in the std model, but not so in the
DEBkiss model. Ultimate length L∞ depends on food in both models, implying that ṙB
does not depend on L∞ in the DEBkiss model, but it does in the std model. Figure 2.3 of
the comments confirms the latter for the waterflea, and Fig 2.4 for rat and mouse, while
the AmP collection has many more convincing examples. The fundamental reason for this
is easy to understand: reserve needs to build up during growth, this costs energy, which
slows growth down since reserve per structure increases with the food level. It is as if food
converts to less biomass at high food levels; a pattern that has been reported frequently
in the literature (but frequently interpreted as a reduced digestion efficiency at high food
levels). Adult humans can live happy with three meals per day, but babies want food more
frequently. This naturally follows from std DEB model, since change in reserve density is
linked to v̇/L, but less so from the DEBkiss model.

The DEBkiss model has problems with the 6 compelling reasons for why reserve has
been introduced, as listed in section 1.1.3 of [774]. As an implication, the DEBkiss model
cannot handle the scatter in weights at certain length (at least for juveniles), which is
widely used in ecology to quantify nutritional condition, and avoids the problem by not
working with lengths. This cannot be avoided completely, however, since feeding depends
on surface area, and maintenance on volume, while length is proportional to the ratio of
the two for isomorphs. Moreover, the value for v̇ can be estimated from data, even if it
would be large and embryo data are omitted, but such very high values have not been
found in the species in the AmP collection. Jager [654] inaccurately compares DEBkiss
with the std model in an appendix in a rather unfair way. The conclusion of Lika and
Kooijman [858] was that the std model was the only model among the 21 topological
alternatives with weak homeostasis that fitted a set of stylized facts; he left out these
important restrictions and made a caricature of the arguments. The DEBkiss model is not
a topological alternative (no reserve), nor does it sport weak homeostasis (for which you
need more than one metabolic pool). Apart of the problem that the reproduction buffer
is only present in adults, it hardly counts as a pool because those metabolites are already
allocated to reproduction; the fact that it can be used otherwise under extreme starvation
does not change its status. Due to its inherent pulsing nature, it certainly cannot be a
second pool, next to structure, that follows weak homeostasis. The reproduction buffer is
not indicated in the 21 diagrams of [858], because all models with an incrementally small
allocation to reproduction in an incrementally small time period require a reproduction
buffer and buffer handling rules, since eggs are not incrementally small. I wonder how the
DEBkiss model would work out for species with foetal development, which don’t need a
reproduction buffer, since they can allocate incrementally small amounts directly to the
foetus. The mapping by Jager to replace reserve by the reproduction buffer is incorrect, so
is the mapping of the DEBkiss model to the Rκ

R0
G model. Consistency with the empirical

facts as listed by [858] was not the reason for introducing reserve, as stated by Jager, only
to compare topological alternatives, which all have reserve (as well as a reproduction buffer
that is not shown in the diagrams). Jager’s argument that the parameters of the debmodel
would be difficult to estimate from data is at odds with the demonstration that a bijection
exists between (almost all) DEB parameters and a simple set of data [854], while the code
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for the mapping in both directions is offered in DEBtool. Moreover, the Add my Pet
collection of thousands of animal species, where quite a few entries are really data-poor,
demonstrates that the estimation of DEB parameter is hardly problem in practice. The
DEBkiss model only applies to animals, according to Jager, not to other organisms, and has
much less consistency with popular empirical models in the biological literature. Especially
the inconsistency of the DEBkiss model with indirect calorimetry hurts: dissipating heat
is a weighted sum of O2-consumption and CO2- and NH3-production; the DEBkiss model
can only accommodate 2 fluxes, not 3: this is at the root of metabolic theory. Users of the
DEBkiss model should realize that several parameters look the same in notation, compared
to the std model, but can have different values and the detailed interpretation is different.
The specific somatic maintenance cost [ṗM ], for instance, relates in the DEBkiss model to
all of the biomass, but in the std model to structure, which is only part of biomass. This
different mapping affects other parameters as well, such as {ṗAm}, since the ratio with [ṗM ]
controls ultimate size.

Sherborne et al [1292] proposed a decision tree for what model to use in what situation
in ecotoxicity research, where the fist decision-question ’is reserve essential?’ suggests that
the answer depends on a technical detail that is only of interest for the specialist. A better
rephrasing of this question would be ’is the step from results of a standarised toxicity test
in the laboratory to field conditions (where food is varying) of importance to you?’, or ’is
the coherence of results of tests with animals and those with other organisms important for
you?’. They incorrectly suggest that the std model requires more data than the DEBkiss
model. These alternative decision-questions better illustrate that we are not talking about
a technical detail that one could avoid in a risk-assessment context. With a view on the
data used in the AmP collection of 2650 animal species to estimate the parameters of the
std model, I would not know any example where the DEBkiss model would need less data.
So their suggestion that the std model needs more data is simply incorrect. The authors
used parameter values from the collection in a DEBkiss model. This is misleading, as
mentioned above. In the DEBkiss model the whole body needs somatic maintenance, for
instance, in the std model only the structural part. This affects all other parameters. So
user of the DEBkiss model should estimate DEBkiss parameters independently from data.
Since large-bodied animals have relatively more reserve, the implication is that it will be
much harder model to simulate ecosystems that have both small- and large-bodied species
using the DEBkiss model, since the large-bodied species go extinct, even without the help
of toxicants. Contrary to the DEBkiss model, the std model has a natural consistency with
Kleibers law.

Martin, co-author of Sibly’s model [1300], proposed a variation on the DEBkiss model
specifically for fish, the DEBlipid model [913], to repair the problem that the DEBkiss
model cannot handle changes in the composition of biomass (during the juvenile stage and
across seasons). Apart that it inherits most problems of the DEBkiss model and ignores
the embryo stage altogether, it introduces some new problems as well. Eggs cannot be
synthesized from lipids, since initial egg mass needs to fuel embryo growth, while embryo
structure has proteins. The DEBlipid model also deleted maturation and links stage tran-
sitions to size. In this way it cannot capture the supply-demand spectrum [854] (since the
quantifier supply stress is proportional to maturity maintenance), that has strong empirical
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support in view of the segregation of large animal taxa along the supply-demand spectrum,
and acceleration of maturation [1001] (where an decrease κ comes with an increase of res-
piration and maturation, leading to an earlier metamorphosis at a much smaller size), and
the fact that size at puberty generally does depend on food level (smaller size at puberty
at less food).

A weak aspect of the DEBlipid model is that it tries to capture season and size related
changes in the chemical composition of salmon biomass, without having any information
about food intake (or temperature), neither in quantity nor quality. Food intake in young
salmon in rivers must be very different from that of large ones in the sea, with a transition
from tiny, to small invertebrates, to a variety of fish species of increasing size (and swimming
speed). Since the invertebrate-fish conversion efficiency is likely to be less efficient than
the fish-fish conversion, later in life, an increase in reserve density during ontogeny is to be
expected in a standard DEB context. Moreover, the increasing body size of fish prey partly
relates to species of increasing maximum body size, which have larger reserve capacity, as
expected by DEB theory and confirmed in the AmP collection. Reserve is likely to be
richer in lipids in fish, compared to structure. Given a trajectory for temperature, I expect
that it would be possible to reconstruct food intake from any lipid trajectory, like has been
done for data on growth, reproduction and otolith size, see [774, Section 4.11]. The reason
why DEB theory is chemically implicit is that taxa differ considerably in this respect.
The 85000 species of molluscs, for instance, use carbohydrates rather than lipids as main
energy storage. By working with fractional powers of energy, the DEBlipid model lost its
connection with underlying physics.

11.4 DEB models have no alternatives

DEB theory aims to specify the metabolism of an individual thermodynamically in a chang-
ing environment, in terms of temperature and substrate availability, where metabolism
includes feeding, digestion, growth, maintenance, development, respiration, excretion and,
possibly, aging.

The theory as been set-up as a formal theory, where a set of consistent and coherent
assumptions fully specify mathematical models. Many models for aspects of metabolism
have been proposed, but the key issue revealed by DEB theory is that all have to be
effective at the same time to specify the individual (thermo)dynamically. These processes
do interact and have to be studied in coherence, while being consistent, realistic as well
as general. This problem is much more complex, as illustrated in Section 11.1 of these
comments, and restricts the possible class of models substantially.

Originally, in 1979, I intended to setup a DEB model based on a set of assumptions,
as listed in [774, Table 2.4], and subsequently replace assumptions to arrive at a set of
different models that can be compared for realism and other criteria. This is typically an
effective way to gain insight. Despite considerable effort over the years, it turned out to
be very hard to replace assumptions, however, which motivated research for the reasons.
The standard DEB model can considered to be a canonical form among DEB models, and
thought to be applicable to many animal species, which are metabolically simpler than
other taxa due to the fact that they live of complex substrates, namely other organisms.
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Other DEB models are extensions of the standard one, including multiple reserves and
structures, extra life stages, etc. The following 7-step reasoning leads to the conclusion
that alternatives for the standard DEB model are impossible with a comparable level of
complexity and consistency with a set of stylized facts, see Table 11.2 of the comments.

1. To specify the individual thermodynamically, we need mass balances for chemical
elements. Since life exists in anaerobic environments [418], the use of dioxygen cannot
be used as a quantifier for metabolic rate. Since some microbes absorb heat, rather
then produce it [865], heat dissipation can also not be used as quantifier. The only
quantifier that works is entropy dissipation [1341], but to access entropy of living
biomass, we need an entropy balance, and, therefore, an energy balance. To create
an energy balance, however, we need a mass balance, see [774, Section 4.8.1].

2. To create a mass balance, we need the strong homeostasis assumption: pools of
metabolites that do not change in chemical composition. This excludes biochemical
models that follow particular chemical compounds, because we need to follow all
chemical compounds in an individual to create a mass balance, which is impossible.
So the notion of pools of metabolites is unavoidable.

3. Given strong homeostasis, we need at least 2 pools. With a single pool, it will not be
possible, for instance, to include (metabolic) memory, such as the nutritional status.
[774, Section 1.1.3] gives additional arguments for why we minimally need 2 pools.

4. We need the weak homeostasis assumption, i.e. constant chemical composition of
the whole body during growth in constant environments, to match stylized fact S2
in Table 11.2 and to access the chemical composition of the pools. If we cannot
determine their chemical composition, we have a model that cannot be tested against
reality on important traits, and we loose coherence with molecular biology.

5. Within the class of 2-pool models with weak homeostasis, the standard DEB model
is the only one among the 21 topological alternatives that is consistent with a set of
8 stylized facts. See Section 11.4 of these comments and [858, 1341].

6. This still allows freedom in the relationship between food availability and ingestion
rate. The Synthesizing Units, that DEB theory uses for specification [767], represent
a very natural framework in the context of Markov processes, that can readily be
extended to include behavioral modifications [536].

7. The final bit of freedom is how food intake relates to size. The DEB assumption that
food intake is proportional to surface area has a nice link with underlying physics
for transport, while the simplest, and parameter-free, way to relate surface area to
volume results from the assumption of the standard DEB model that shape does
not change during growth (isomorphy). This can readily be extended to include
particular changes in shape during ontogeny, such as done to capture metabolic
acceleration [777].
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A remarkable observation in the context of lack of alternatives for the standard DEB model
is that 26 popular empirical models for various aspects of metabolism turn out to be special
cases of DEB models or very good numerical approximations, see [774, Table 11.1]. This
suggests that the set of stylized facts constrain simple models more than is apparent on
first sight, even without a formal context. Anyway, none of these modelers realized that
they have been modeling different aspects of the same thing. It is, indeed, not self evident
that the development of a bird egg [1144] has intimate relationships with the dynamics of
(nutrient) cell quota of algae [358] and follow from the same set of assumptions.

Another remarkable observation is that the only way to access the entropy of living
biomass, a notoriously difficult task indeed, is via the parameters of a DEB model. To get
those parameters, we need to follow the individual throughout its life cycle and monitor
what goes in and out. Gaps in knowledge of these dynamic budgets can partly be compen-
sated with such (partial) knowledge of other species and/or estimate parameters in that
context. DEB theory presently has quite a few handles for this, as demonstrated by the
Add-my-Pet collection of over 2000 animal species.

It is possible, and frequently even necessary, as shown in many places [774], to extend
the standard DEB model. Some details can be modified without much harm for the setup,
such as the replacement of the assumption for maternal effect (i.e. the neonate has the
reserve density of the mother at egg formation), but this costs at least an extra parameter
and properties of such a model will be harder to analyze. Such minor modifications do not
result in a really different model, in my opinion, but can be functional in particular cases.

What level of model complexity is actually required? The answer to this key question
depends on the context of the research aims, so there is not a single answer. Simplicity
is attractive for many reasons, but too much simplicity gives problems with reality. If
biodiversity cannot be accommodated, we also loose connection with the evolutionary
context. Too much complexity, on the other hand, easily gives problems with practical
applicability, since data will be lacking. [797] discusses the relationship between available
data and parameters that can be estimated in the context of the standard DEB model,
showing that the estimation of all primary parameters of the standard DEB model already
frequently suffers from the problem of lack of data. While data completeness level 10
specifies the energy balance empirically, see [855], the mean completeness level in the AmP
collection of 2026 animal species is only some 2.5, and the maximum one 6 at 2019/10/31.
This motivated the development of context-based parameter estimation methods, while
ideally all parameters should be determined accurately by data. This is presently way
beyond scope. Much more complex models will have a strong tendency to be species-
specific which hampers comparison with other species. They are also difficult to test and
uncertainty about parameter values easily makes them useless.

In the document ‘Basic methods for theoretical biology’ and in [778], I warned for the
‘Christmas tree syndrome’: Just before Christmas, many people buy a Christmas tree for
indoors; beautiful, but not beautiful enough. They start hanging balls, and other stuff,
to enhance beauty, but if you continue too long with this, the Christmas tree will tumble
over and you have nothing. The tree stands for the basic model structure, the balls for
modules to include particular details. For me, the standard DEB model represents the tree
without balls. My advice would be: don’t forget to remove balls that are not needed (i.e.
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functional).
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[520] W. Greve. Ökologische Untersuchungen an Pleuro-
brachia pileus 2. Laboratoriumuntersuchungen. Hel-
gol. Wiss. Meeresunters., 23:141–164, 1972.

[521] K. Grice, C. Cao, G. D Love, M. E. Böttcher, R. J.
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1987.

[576] H. Heesterbeek. R0. PhD thesis, Univ. of Leiden,
1992.

[577] H. J. A. M. Heijmans. Holling’s ‘hungry mantid’
model for the invertebrate functional response con-
sidered as a Markov process. Part III: Stable satiation
distribution. J. Math. Biol., 21:115–1431, 1984.

[578] H. J. A. M. Heijmans. Dynamics of structured popu-
lations. PhD thesis, Univ. of Amsterdam, 1985.

[579] J. J. Heijnen. A new thermodynamically based cor-
relation of chemotrophic biomass yields. Antonie van
Leeuwenhoek, 60:235–256, 1991.

[580] J. J. Heijnen and J. P. van Dijken. In search of a
thermodynamic description of biomass yields for the
chemotrophic growth of micro organisms. Biotechnol.
Bioeng., 39:833–858, 1992.

[581] J. J. Heijnen and J. A. Roels. A macroscopic model
describing yield and maintenance relationships in aer-
obic fermentation. Biotechnol. Bioeng., 23:739–761,
1981.

[582] B. Heinrich. The Hot-Blooded Insects; Strategies and
Mechanisms of Thermoregulation. Harvard Univ.
Press, Cambridge, Mass., 1993.

[583] R. Heinrich and S. Schuster. The Regulation of Cel-
lular Systems. Chapman & Hall, New York, 1996.

[584] J. M. Hellawell. Age determination and growth of the
grayling Thymallus thymallus (L.) of the River Lugg,
Herefordshire. J. Fish Biol., 1:373–382, 1969.

[585] M. A. Hemminga. Regulation of glycogen metabolism
in the freshwater snail Lymnaea stagnalis. PhD the-
sis, Vrije Univ., Amsterdam, 1984.

[586] A. M. Hemmingsen. Energy metabolism as related to
body size and respiratory surfaces, and its evolution.
Rep. Steno. Mem. Hosp. Nordisk Insulinlaboratorium,
9:1–110, 1969.

[587] M. Hendrata and B. Birnir. Dynamic-energy-
budget-driven fruiting-body formation in myxobac-
teria. Phys Rev E Stat Nonlin Soft Matter Phys.,
81:DOI:10.1103/PhysRevE.81.061902, 2010.

[588] A. J. Hendriks. Modelling non-equilibrium concentra-
tions of microcontaminants in organisms: compara-
tive kinetics as a function of species size and octanol-
water partitioning. Chemosphere, 30:265–292, 1995.



318 Bibliography

[589] R. W. Hendrix, M. C. Smith, R. N. Burns, M. E. Ford,
and G. F. Hatfull. Evolutionary relationships among
diverse bacteriophages: all the world’s a phage. Proc.
Natl. Acad. Sci. U. S. A., 96:2192–2197, 1999.
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pages 25–38, 1974.

[681] H. Kaiser. The dynamics of populations as result of
the properties of individual animals. Fortschr. Zool.,
25:109–136, 1979.



Bibliography 321

[682] J. D. Kalbfleisch and R. L. Prentice. The Statistical
Analysis of Failure Time Data. J. Wiley, Chichester,
1980.

[683] E. Kamler. Parent-egg-progeny relationships in teleost
fishes: an energetics perspective. Rev. Fish. Biol.
Fish., 15:399–421, 2005.

[684] O. Kandler. The early diversification of life and the
origin of the three domains: a proposal. In J. Wiegel
and M. W. W. Adams, editors, Thermophiles: The
keys to Molecular Evolution and the Origin of Life.,
pages 19–31. Taylor & Francis, Washington, 1998.

[685] G. Kapocsy. Weissbart- und Weissflugelseeschwalbe.
A. Ziemsen-Verlag, Wittenberg Lutherstadt, 1979.

[686] S. J. Karakashian. Growth of Paramecium bursaria as
influenced by the presence of algal symbionts. Physiol.
Zool., 36:52–68, 1963.

[687] W. H. Karasov. Daily energy expenditure and the cost
of activity in mammals. Am. Zool., 32:238–248, 1992.

[688] P. Karell, P. Kontiainen, H. Pietï’ainen, H. Siitari,
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See the notation document.
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These talking gouramis, Trichopsis vittatus, come from the same brood and therefore are
the same age. They also grew up in the same aquarium. The size difference resulted
from competition for a limited amount of food chunks, which amplified tiny initial size
differences. This illustrates that age cannot serve as a satisfactory basis for the description
of growth and food intake should be included explicitly.

Dynamic Energy Budget (DEB) theory is a formal theory for the uptake
and use of substrates (food, nutrients, light) by organisms and their use for maintenance,
growth, maturation and propagation; it applies to all organisms (microorganisms, animals,
plants). The document gives background, explanation and extension for the third edition
of the DEB book.
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