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Dynamic Energy Budget Theory is about simple, mechanistic, rules for the
uptake and use of energy by heterotrophs and its implications for physiological organization
and population dynamics. Its predictions are tested against a wide variety of experimental
results. Among others, the theory explains the observed body size scaling relationships of
physiological traits, such as why respiration rates increase approximately with body weight
to the power 0.75. It discusses the coupling between aging and energetics and proposes
new quantitative relationships between food intake and life span.

The theory is applied to ecotoxicology, leading to a new and simple methodology for
characterizing the toxicity of compounds. It provides a basis for the extrapolation of
laboratory results to consequences in the field.

Each topic is given a general introduction, followed by formulation of the theory in
elementary mathematical terms. Methodological aspects of mathematical modelling are
discussed in detail. The book is of interest to scientists and mathematicians with a broad
interest in fundamental and applied problems in biology.
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Preface

In 1978 Thea Adema asked me to develop a statistical methodology for screening toxicants
for their effects on daphnid reproduction. I observed that large daphnids tended to have
bigger litters than small ones and this led me to realize that reproduction cannot be
modelled without including variables such as growth, feeding, food quality and so on. Since
then I have found myself working on a theory of Dynamic Energy Budgets (deb), which
has rapidly covered more ground. Ten years ago, I would not have seen any connection
between topics such as feeding of daphnids, embryo development of birds and the behaviour
of recycling fermenters. Now, I recognize the intimate relationship between these and many
other phenomena and the fundamental role of surface/volume ratios and energy reserves.
Although new relationships continue to fit into this theory, the time seems ripe to collect
the results into a book and to reveal new, exciting forms of coherence in biology.

deb theory is central to eco-energetics, which is the study of the mechanisms involved
in the acquisition and use of energy by individuals; this includes the many consequences
of the mechanisms for physiological organization and population and ecosystem dynamics.
The related field of bioenergetics focuses on molecular aspects and metabolic pathways
in a thermodynamic setting. Although the first and second laws of thermodynamics are
frequently used in eco-energetics, thermodynamics is not used to derive rate equations,
as is usual, for example, in non-equilibrium thermodynamics. One of the reasons is that
the behaviour of individuals cannot be traced back to a restricted number of biochemical
reactions. This difference in approach blocks possible cross-fertilizations between levels of
organization. This barrier is particularly difficult to break down because eco-energetics
usually deals with individuals in a static sense; an individual of a given size allocates
energy to different purposes in measured percentages. This tradition hampers links with
physiological processes. deb theory, in contrast, treats individuals as non-linear, dynamic
systems. This process oriented approach has firm physiological roots and at the same time
it provides a sound basis for population dynamics theories, as will be demonstrated in this
book. The hope is that deb theory will contribute to the cross-fertilization of the different
species of energetics.

I like my job very much as it offers good opportunities to enjoy the diversity of life
during spare time hikes. Many of my fellow biologists stress the interesting differences
between species to such an extent that the properties they have in common remain largely
hidden. I believe that this obscures the way in which a particular species deviates from
the common pattern, and the causes of deviations, and urges me to stress phenomena that
species seem to have in common. I fully understand the problem of being overwhelmed
by the diversity of life, but I think that reactions of ecstasy, apathy or complaint hardly

xi
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Dynamic Energy Budget theory aims to quantify the energetics of heterotrophs as it changes
during life history. The key processes are feeding, digestion, storage, maintenance, growth, de-
velopment, reproduction and aging. The theory amounts to a set of simple rules, summarized in
table 4.1 on page {116}, and a wealth of consequences for physiological organization and popu-
lation dynamics. Although some of the far reaching consequences turn out to be rather complex,
the theory is simple, with only one parameter per key process. Intra- and inter-specific body
size scaling relationships form the core of the theory and include dividing organisms, such as
microbes, by conceiving them as juveniles.

contribute to insight. This book explores to what extent a theory that is not species-specific
can be used to understand observations and experimental results, and it culminates in a
derivation of body size scaling relationships for life history traits without using empirical
arguments.

deb theory is quantitative, so it involves mathematics; I feel no need to apologize for
this, although I realize that this may be an obstacle for many biologists. My hope is that
an emphasis on concepts, rather than mathematical technicalities, avoidance of jargon as
much as possible and a glossary will reduce communication problems. Only in some parts
of the chapter on population dynamics may the mathematics used be called ‘advanced’,
the remainder being elementary. The text is meant for scientists and mathematicians with
a broad interest in fundamental and applied quantitative problems in biology.

The aim is summarized in the diagram on this page. The primary aim is not to
describe energy uptake phenomena and energy use in as much detail as feasible, but to
evaluate consequences of simple mechanisms that are not species-specific. The inclusion
or exclusion of material in the book was judged on its relevance with respect to a set of
mechanisms that appeared to be tightly interlocked. This book, therefore, does not review



Preface xiii

all that is relevant to energetics. It does, however, include some topics that are not usually
encountered in texts on energetics, because deb theory appears to imply predictions for the
topics. Discrepancies between predictions and actual behaviour of particular species will,
hopefully, stimulate a guided search for explanations of these discrepancies. I have learned
to appreciate this while developing the deb theory. It opened my eyes to the inevitable
preconceptions involved in the design of experiments and in the interpretation of results.

The emphasis is on mechanisms. This implies a radical rejection of the standard ap-
plication of allometric equations, which I consider to be a blind alley that prevents un-
derstanding. Although it has never been my objective to glue existing ideas and models
together into one consistent framework, many aspects and special cases of the deb theory
turned out to be identical to classic models, for example:

author year page model

Descartes 1638 {24} logarithmic spirals in shells
Arrhenius 1889 {44} temperature dependence of physiological rates
Huxley 1891 {252} allometric growth of body parts
Pütter 1920 {81} von Bertalanffy growth of individuals
Pearl 1927 {174} logistic population growth
Fisher & Tippitt 1928 {108} Weibull aging
Emerson 1950 {145} linear growth of colonies of bacteria on plates
Huggett & Widdas 1951 {89} foetal growth
Best 1955 {141} diffusion limitation of uptake
Smith 1957 {103} embryonic respiration
Leudeking & Piret 1959 {190} microbial product formation
Holling 1959 {63} hyperbolic functional response
Marr & Pirt 1962 {162} maintenance in yields of biomass
Droop 1973 {162} reserve (cell quota) dynamics
Rahn & Ar 1974 {235} water loss in bird eggs
Hungate 1975 {249} digestion

The deb theory not only shows how and why these models are related, it also specifies the
conditions under which these models might be realistic, and it extends the scope from the
thermodynamics of subcellular processes to population dynamics.

Discussion will be restricted to heterotrophic systems, those that show either a close
coupling between energy and nutrients (i.e. building blocks) or do not suffer from nutrient
limitation. Autotrophic systems are characterized by the decoupling of energy and nutrient
uptake and are not discussed here.

Potential practical applications are to be found in the control and optimization of biolog-
ical production processes. In my department, for example, we use deb theory in research
on reducing sludge production in sewage treatment plants and optimizing microbial prod-
uct formation. Other potential applications are to be found in medicine. Ecotoxicological
applications will be discussed in chapter 8.
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nids in relation to the deb theory, while Bob Kooi, Hans Metz, Odo Diekmann, Henk
Heijmans, André de Roos and Horst Thieme contributed significantly to the mathematical
aspects of deb-structured populations. Rob van Haren and Hans Schepers worked on mus-
sel energetics in relation to the accumulation elimination behaviour of xenobiotics. Sigrid
Bestebroer, Paul Bruijn, Christa Ratsak and Erik Muller worked on various deb aspects
of sewage water treatment. Paul Hanegraaf studied the coupling between energy and mass
fluxes. Rienk-Jan Bijlsma is working on extension of the theory to include plants. Various
students have done excellent work on specific details: Wyanda Yap, Karin Maarsen, Rik
Schoemaker, Arianne van der Berg, Karen Karsten, Marinus Stulp, Bert van der Werf.

I gained a lot from productive collaboration and discussions with Ad Stouthamer,
Henk van Verseveld, Hans de Hollander, Arthur Koch (microbiological physiology), Dick
Eikelboom, Arnbjørn Hanstveit (applied microbiology), Nico de With, Andries ter Maat
((neuro)physiology), Nico van Straalen, Ger Ernsting (ecology), Jacques Bedaux (statis-
tics), Leo and Henk Hueck, Thea Adema, Kees Kersting (ecotoxicology), Jan Parmentier
(chemistry), Wim van der Steen (methodology), Odo Diekmann (permanent skeletons of
isomorphs), Schelten Elgersma (Taylor expansion incubation time) and last but not least
Roger Nisbet and Tom Hallam (energetics, population dynamics).

The text of the book has been improved considerably by critical comments from a
number of readers, particularly Ger Ernsting, Wout Slob, Miranda Aldham-Breary, Tom
Hallam, Karen Karsten, Henk Hueck, Andree de Roos, Bob Kooi, Martin Boer, Wim van
der Steen, Emilia Persoon, Gabriëlle van Diepen, Ad van Dommelen and Mies Dronkert.
Present behind all aspects of the 15 years of work on the theory is the critical interest of
Truus Meijer, whose loving patience is unprecedented. The significance of her contribution
is beyond words.



Preface xv

Book organization

The first two chapters are introductory.

Chapter 1 gives the historical setting and some philosophical, methodological and tech-
nical background. Many discussions with colleagues about the way particular observations
fit or do not fit into a theory rapidly evolved into ones about the philosophical principles
of biological theories in general. These discussions frequently related to the problem of the
extent to which biological theories that are not species-specific, are possible. This chapter,
and indeed the whole book, introduces the idea that the value of a theory is in its useful-
ness and therefore a theory must be coupled to a purpose. I have written a section on the
position I take in these matters and insert throughout the book many remarks on aspects
of modelling and testability to point to fundamental problems in practical work. Chapter
1 sets out the context within which deb theory, developed in subsequent chapters, has a
meaning.

Chapter 2 introduces some basic concepts that are pertinent to the organization level
of the individual. The concept ‘system’ is introduced and the state variables body size
and energy reserves are identified to be of primary importance. The relationship between
different measures for body size and energy are discussed; these are rather subtle due to
the recognition of storage materials. A variant of the principle of ‘homeostasis’ is given
to accommodate ‘storage’. Effects of temperature on physiological rates are presented and
the notion of life stages is discussed. Chapter 2 also introduces vital concepts for the
development of deb theory, and paves the way for testing theory against experimental
data, which will occur during the development of the deb theory.

The next two chapters develop the deb theory. Chapter 3 describes processes of energy
uptake and energy use by individuals in all life stages, which together form the deb theory.
This set of processes gives a complete specification of the transformation of food into
biomass and will later be used to analyze consequences and implications. The discussion
includes the processes of development and aging because of their relevance for energetics.
Special attention is given to the process of aging because most other energetics theories
select age as a primary state variable; the focus is therefore on the coupling between aging
and energetics. Chapter 3 provides the meat of the deb theory.

Chapter 4 summarizes the deb theory in a dimensionless form and lists the 12 assump-
tions on which the theory is based. It is shown that some assumptions of simple mechanisms
that are difficult to test directly can be replaced by a mathematically equivalent set that
is easier to test, but has a more complex relationship with mechanisms. Implications for
developing individuals are analyzed and some observations that do not seem to fit into
the theory at first glance are discussed. The auxiliary purpose of these analyses is to give
examples of deb theory application and to show how it can be used to improve biological
insight.

Chapters 5, 6 and 7 deal with applications to other levels of biological organization and
to inter-species comparisons. The consequences, implications and usefulness of the deb

model are evaluated.

Chapter 5 develops population consequences. It starts with some well known standard
population dynamic theories and introduces the deb machinery step by step. The pop-
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ulation, after its introduction as a collection of individuals, is considered as a new entity
in terms of systems analysis with its own relationships between input, output and state.
These new relationships are expressed in terms of those for individuals. The coupling be-
tween mass and energy fluxes at population level is studied as an important application of
this point of view. Chapter 5 ends with an analysis of the behaviour of food chains and
explains why long chains cannot exist. Applications to communities are discussed very
briefly.

Chapter 6 compares the energetics of different species and studies some of the evolu-
tionary implications. deb theory also relates to parameter values. Chapter 6 shows how,
for a wide variety of biological variables, body size scaling relationships can be derived
rather than established empirically. This approach to body size scaling relationships is
fundamentally different from that of existing studies. The chapter also compares different
life history strategies and gives some speculations about the origin of life.

Chapter 7 explores consequences of deb theory for several suborganismal phenomena:
details of the digestion process, the organization of protein synthesis and the growth of
parts of organisms. The purpose is to show that a model at the level of the individual
can help when modelling at the suborganismal level, and even at the molecular level in
some cases. The relationship between the energy allocation rule of deb theory and the
allometric growth of body parts is demonstrated to make the link to classical theory for
this topic.

The last chapter, chapter 8, illustrates applications of the theory in ecotoxicology. The
purpose is twofold: to show that fundamental science can really contribute to the solution
of practical problems, and to show that applied research can contribute to fundamental
science. The chapter focuses on realistic models for uptake and elimination of xenobiotics,
which account for body size and lipid fraction, the coupling of kinetics with lethal and
sublethal effects and the evaluation of the consequences of effects of toxicants on individuals
for the population level.

The logical structure of the chapters is indi-
cated in the diagram (right). The level of bi-
ological organization is indicated on the hor-
izontal axis. The best reading sequence is
from top to bottom, but a first quick glance
through the section on notation and symbols,
page {326}, can save time and annoyance.

ch 1

ch 2

ch 3

ch 7 ch 4 ch 5

ch 6

ch 8
mol. cell ind. pop.



Chapter 1

Energetics and models

This introductory chapter presents some general background to theoretical work in ener-
getics. I start with an observation that feeds the hope that it is possible to have a theory
that is not species-specific, something that is by no means obvious in view of the diversity
of life! A brief historical setting follows giving the roots of some general concepts that are
basic to Dynamical Energy Budget (deb) theory. I will try to explain why the application
of allometry restricts the usefulness of almost all existing theories on energetics. This ex-
planation is embedded in considerations concerning philosophy and modelling strategy to
give the context of the deb theory.

1.1 Energy and mass fluxes

1.1.1 Hope for generality

Growth curves are relatively easy to produce and this may explain the fact that the lit-
erature is full of them. Yet they remain fascinating. When environmental conditions,
including temperature and food availability, are constant and the diet is adequate, organ-
isms ranging from yeasts to vertebrates follow, with astonishing accuracy, the same growth
pattern as that illustrated in figure 1.1. This is amazing because different species have
totally different systems for regulating growth. Some species, such as daphnids, start to
invest at a certain moment during growth a considerable amount of energy in reproduction.
Even this does not seem to affect the growth curve. So one wonders how the result can be
so similar time and again. Is it all coincidence resulting from a variety of different causes,
or do species have something in common despite their differences? Are these curves really
similar, or is the resemblance a superficial one?

These questions led me on a breathtaking hike into many corners of biological territory.
They became an entertaining puzzle: Is it possible to construct a set of simple rules, based
on mechanisms for the uptake and use of material by individuals, that is consistent with
what has been measured? The early writers made a most useful start: growth results
from processes of build-up and break-down. Break-down has something to do with making
energy and elementary compounds available, so how are they replenished? What processes
determine digestion and feeding? What determines food availability? Build-up results in

1
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yeast
Saccharomyces

carlsbergensis [56]

rhizopod
Amoeba

proteus [568]

sea-gooseberry
Pleurobrachia pileus [275]

thrasher
Toxostoma

recurvirostre [596]

Figure 1.1: These growth curves all have the shape L(t) = L∞ − (L∞ − L0) exp{−γ̇t}, while
the organisms differ considerably in their growth regulating systems. How is this possible? Data
sources are indicated by entry numbers of bibliography.)
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size increase, and so affects feeding, but offspring are produced as well. This obviously
affects food availability. Where does maintenance fit in? Why should there be any main-
tenance at all? What is the role of age? This is just a sample of the questions that should
be addressed to give a satisfactory explanation of a growth curve.

1.1.2 Historical setting

Many of these questions are far from new. Boyle, Hooke and Mayow in the 17th-century
were among the first to relate respiration to combustion, according to McNab [472].
The first measurements of the rate of animal heat production are from Crawford in 1779,
Lavoisier and de Laplace in 1780 aimed at relating it to oxygen consumption and carbon
dioxide production [472]. Interest in how metabolic rate, measured as oxygen consumption
rate, depends on body size goes back at least as far as the work of Sarrus and Rameau [628]
in 1839. They were the first to find rates proportional to surface area for warm-blooded
animals [66]. Later this became known as the Rubner’s surface law [614]. Pütter [574]
used it in a model for the growth of individuals in 1920. He saw growth as the difference
between build-up and break-down. The processes of build-up, which later became known
as anabolic processes, were linked directly to the metabolic rate, which was assumed to
follow the surface law. The processes of break-down, now known as catabolic processes,
were assumed to proceed at a constant rate per unit of volume. Volume was thought to
be proportional to weight. The growth rate then results a weighted difference between
surface area and volume. The casual way Wallace mentioned this idea in a note to Poulton
(appendix 3 in [219]), suggests that its roots go back to before 1865. The resulting growth
curve is presented in figure 1.1. The fact that Pütter applied the model to fish, whereas the
surface law was based on work with warm-blooded animals, generated a lot of criticism.

More data were generated with improved methods of measurement; invertebrates were
also covered. Kleiber [390] found in 1932 that metabolic rates are proportional to weight
to the power 3

4
and this became known as Kleibers law. Extensive studies undertaken

by Brody [97] confirmed this proportionality. Von Bertalanffy [66] saw anabolic and
catabolic rates as special cases of the allometric relationship, i.e. a relationship of the type
y = αxβ, where y is a variable and x is usually body weight. He viewed this as a simplified
approximation which could be applied to almost all types of metabolic rates, including
the anabolic and the catabolic, but the constant β varied somewhat. It depends on tissue,
physiological condition and experimental procedure. The growth curve proved to be rather
insensitive to changes in β for catabolism, so, like Pütter, von Bertalanffy took the value
1 and classified species on the basis of β for anabolism. The surface law is just one of the
possibilities.

Although von Bertalanffy [65] was the genius behind the ideas of general systems
theory, he never included the feeding process in his ideas about growth. I still do not know
why, because mass balance equations are now always bracketed together with systems.
I think that the use of allometric equations, which are a step away from a mechanistic
explanation towards a meaningless empirical regression, act as an obstacle to new ideas
in metabolic control. I will explain this in later sections. The idea of allometry goes
back to Snell [672] in 1891 and, following the work of Huxley [345], it became widely
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known. Both Huxley and von Bertalanffy were well aware of the problems connected with
allometric equations, and used them as first approximations. Now, a century later, it is
hard to find a study that involves body size and does not use them.

Zeuten [787] was the first to point to the necessity of distinguishing between size
differences within a species and between species. The differences in body size within a
species, as measured in one individual at different points during development, are treated
here as an integral part of the processes of growth and development. Those between species
are discussed in a separate chapter on parameter values, where I will show that body size
scaling relationships can be deduced without any empirical arguments.

1.1.3 Energetics

The problem that everything depends on everything else is a hard one in biology, anything
left out may prove to be essential in the end. If one includes as much as possible one loses an
intellectual grasp of the problem. The art is to leave out as much as possible and still keep
the essence. Here, I will focus the discussion on an abstract quantity, called energy, rather
than a selection of the many thousands of possible compounds usually found in organisms.
Any selection of compounds would exclude others, so what is the role of the ones that
have been left out? Jeong et al. [357] made an heroic attempt to model the compound-
based physiology of Bacillus and introduced more than 200 parameters. Many compounds,
however, have not yet been identified and the quantities and dynamics of most compounds
are largely unknown. Moreover, organisms such as yeasts and vertebrates differ in their
main compounds. So tracking down compounds does not seem a promising route to an
understanding of the similarity in growth curves. A better route would seem to be the use
of the concept of energy, meaning something like ‘the ability to do work’, which primarily
consists of driving chemical reactions against the direction of their thermodynamic decay.
The term was first proposed by Thomas Young in 1807, according to Blaxter [73]. Energy
is stored in a collection of organic compounds. So a full explanation cannot do without
mass fluxes, as I will explain on {41}.

The general idea is that at least some phenomena can be understood on the assumption
that elementary compounds are available in sufficient amounts, given a certain availability
of energy. I assume, therefore, a close coupling between energy and material flows. Many
aspects of this basic assumption will be discussed, and certainly examples exist where it
does not make sense.

The reasoning boils down to the following: Food is conceived as material that bears
energy. It is partially converted into energy upon entry into the individual (i.e. through the
outer membrane in bacteria, membrane of feeding vacuole in ciliates, gut wall in animals; I
am not using the term ‘conversion’ in the sense of nuclear physics but in a conceptual sense).
Energy can be reconverted into material constituting the individual. These conversions
come with an overhead cost to be paid, and rules for conversion can be derived, while the
first and second laws of thermodynamics are observed. The material aspect of energy will be
discussed, of course, but it is important to realize here that there is a close link with material
flows. For example, proteins in food are first decomposed into amino acids, and amino acids
are polymerized to proteins again. A similar process applies to carbohydrates and lipids,
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which together with proteins constitute the main materials of life. The decomposition
of many types of source materials into a limited number of types of central metabolites
before polymerization into biomass is known as the ‘funnel’ concept. The rich diversity of
the catabolic machinery, especially among the prokaryotes, and the poor diversity of the
anabolic machinery was already recognized by Kluyver in 1926.

The role of energy in cellular metabolism, in particular the generation and use of atp,
is the main focus of bioenergetics [496]. This compound is called the energy currency
of the cell. Together with nadph, which provides reducing power, it drives the anabolic
processes. Compounds involved in the decomposition processes are important for the cell
in two respects: through the production of atp from adp, which is produced in anabolic
processes, and through the production of elementary compounds as a substrate for anabolic
processes [324]. The final stages of the catabolic processing of lipids, carbohydrates and
proteins all make use of same cellular machinery: the Krebs cycle. To some extent, these
substrates can substitute for each other with respect to the energy demands of the cell.
The cell chooses between the different substrates on the basis of their availability and its
need of particular substrates in anabolic processes.

After this introduction, it perhaps comes as a surprise that atp is not the main focus
in eco-energetics. This is because atp itself does not play a leading role in energy fluxes.
It has a role similar to that of money in your purse, while your bank account governs
your financial status. A typical bacterial cell has about 5 × 106

atp molecules, which
is just enough for 2 seconds of biosynthetic work [431]. The mean lifetime of an atp

molecule is about 0.3 seconds [289]. The cell has to make sure that the adenylate energy
charge (1

2
adp +atp) (amp+ adp+atp)−1 remains fairly constant (usually around 0.9,

but this matter is not settled yet). It does so by coupling endergonic (energy requiring)
and exergonic (energy releasing) reactions. If the energy charge is reduced, the energy
yield of the reaction atp→adp+p declines rapidly. The situation where the energy charge
as well as the concentration of amp+adp+ atp remain constant relates to the concept of
homeostasis, {38}. Cells keep their purses well filled, which makes the dynamics of the
purse contents less interesting. atp is part of the machinery by which energy is harvested
or mobilized.

The development of the chemiosmotic theory for the molecular mechanism of atp

generation has boosted biochemical research in cellular energetics and it is now a central
issue in all texts on molecular biology [507], although competing theories exist [434]. The
role of membrane-bound enzymes in the synthesis and membrane-mediated transport of
compounds gradually became important. The link between activity coupled to a surface
area and volume-based bulk (substrate, product) is a cornerstone in the deb theory for
the uptake and use of energy. It is through the ratio between membrane surface area and
cell volume, that body size exercises its influence on cellular processes.

Photoautotrophic plants form a major group of organisms where a close coupling be-
tween energy and material flows does not exist; they derive energy from light, but obtain
water, carbon dioxide and nutrients independently. Moreover, they are extremely adapt-
able in the relative size of organs, they require specific partitioning of body size to get
access to the nutrient and light uptake potential and to the maintenance costs, and the
fact that they are site-bound complicates population dynamics considerably. Thus they
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are not considered here, but I hope to deal with them in the future. Extensive literature
exists on the coupling between energy and nutrient flows in algae. This coupling is usually
modelled by writing the population growth rate as a product of terms for different limiting
factors. Such a presentation does not have a mechanistic counterpart at the individual
level and is, therefore, incompatible with my main objective. Although this book is about
chemoheterotrophs only, this does not mean that the present theory has nothing useful to
say about plants. The way energy reserves are treated here is closely related to the concept
of cell quota, as introduced by Droop [184]. Cell quota are intracellular pools of nutri-
ents, such as phosphate, nitrate etc. in algae. Droop proposed a model to describe pool
size in the equilibrium of chemostats. This idea has been extended by Nyholm [515,516]
to include transients. This model turns out to be a special case of the deb theory. An
important difference between nutrients and energy is that maintenance, using energy, is
not required for nutrients. No strict classification of resource uptakes is possible, but the
focus in this book is on those situations where it is sensible to study just one commodity:
energy.

Bacteria also take energy and nutrients independently and are thus left out. Chemo-
heterotrophic bacteria, i.e. bacteria that degrade organic compounds to gain energy, are
an exception under special conditions. The conditions are that they have unlimited access
to nutrients and are limited in the uptake of energy and I will include these bacteria under
these conditions.

I will assume that all essential compounds can either be obtained from food, or are
unrestrictedly available from the environment. Some rotifers, for example, take up vitamins
directly from the environment, independent of their algal food; the assumption being that
these vitamins are always available.

1.1.4 Population energetics

The strategy chosen makes it possible to deal indirectly with questions that relate to chemi-
cal conversions, see {192}, and preserves a relative simplicity which allows penetration into
the population level. The idea is this: If a population consists of individuals that take up
and use energy in a particular way, how will the population to which they belong behave
in a given environment? If populations are tied up in food chains or webs, how will these
structures change dynamically? What new phenomena play a role at the population level,
when compared with the individual level?

Except for work in the tradition of mathematical demography on which modern age-
structured population dynamic theory is based [125], most literature on population dy-
namics up to a few years ago dealt with unstructured populations, i.e. populations that
can be characterized by the number of individuals only. So all individuals are treated as
identical, they are merely counted. This also applies to microbiological literature, which
basically deals with microbial populations and not with individual cells. This has always
struck me as most unrealistic, because individuals have to develop before they can produce
offspring. The impact of a neonate on food supplies is very different from that of an adult.
In the chapter on population dynamics, {171}, I will show that neonates producing new
neonates can dominate the dynamics of unstructured populations. This absurdity makes
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one wonder to what extent unstructured population models have something useful to say
about real populations. Many modern views in ecology, e.g. concerning the relationship
between stability and diversity, are based on models for unstructured populations. I will
use arguments from energetics to structure populations, i.e. to distinguish different individ-
uals. This, however, complicates population dynamics considerably, and the first question
to be addressed is: does this increase in complexity balance the gain in realism? I know
only one route to an answer: try it and see!

1.2 The art of modelling

1.2.1 Strategies

Before I start to develop a theory for energetics, I think it is important to explain my
ideas about theories and models in general. It is certainly possible that you may disagree
with part of what follows, and it is helpful to know exactly where the disagreement lies.
The source of a disagreement is frequently at a point other than where it first became
apparent. I started this chapter pointing to growth curves as an example, because they
feed the hope that it is possible to build a quantitative theory that is not species-specific.
My primary interest, however, is not limited to growth curves, it is less concrete. How do
phenomena operating at different levels of organization relate to each other and how can
these relationships be used to cross-fertilize different biological specializations?

Let me state first that I do not believe in the existence of objective science. The type of
questions we pose, the type of observations we make, bear witness to our preconceptions.
There is no way to get rid of them. There is nothing wrong with this, but we should be
aware of it. When we look around us we actually see mirrors of our ideas. We can try to
change ourselves on the basis of what we see, but we cannot do without the projections
we impose on reality. Observations and statements span the full range from facts via
interpretation to abstract ideas. The more abstract the idea, the more important the
mirror effect. Let me give an example of something that is not very abstract. I spend a
long day looking for a particular plant species. At the end of the day luck strikes, I find
a specimen. Then I return home, using the same path, and shame, oh shame, this species
turns out to be quite abundant. What makes matters worse, I am quite experienced in this
type of activity. So, if someone maintains that he would not miss the plants, I am inclined
to think that he is simply not able to criticize his own methodology. (This example is
used in the hope that this book helps to develop a search image for valuable biological
observations that would go unnoticed otherwise.)

I do not believe in the existence of one truth, one reality. If such a ‘truth’ existed, it
would have so many partially overlapping aspects, that it would be impossible to grasp
them all simultaneously and recognize that there is just one truth. A consequence of this
point of view is that I do not accept a classification of theories into ‘true’ and ‘false’ ones.
In connection with this, I regard the traditional concepts of verification and falsification
as applied to theories as meaningless. I also think that theories are always idealizations,
so when we look hard, it must be possible to detect differences between theory-based
predictions and observations. Therefore, I have taught myself to live happily with the
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knowledge that, if there is only one reality and if theories can only be classified into ‘true’
or ‘false’ ones, all of them will be classified as ‘false’. As it is not possible to have the
concept ‘a bit true’, believers in one reality do not seem very practical to me. Perhaps you
judge this as cynical, but I do not see myself as a cynic. Discussions suggest that colleagues
with a quantitative interest are more likely to share this point of view than those with a
qualitative interest.

I classify theories on the basis of their usefulness. This classification is sensitive to the
specification of a purpose and to a ‘state of the art’. Theories can be most useful to detect
relationships between variables, but can lose their usefulness when the state of the art
develops. Theories can be useful for one purpose, but totally useless for another. When
theories produce predictions that deviate strongly from observations, they are likely to be
classified as useless, so I do not think that this pragmatism poses a threat to science in
the eyes of the apostles of Popper. Although it is satisfying to have no difference between
prediction and observation, small differences do not necessarily make a theory useless. It all
depends on the amount of difference and on the purpose one has. A ‘realistic’ description
then just means that observations and descriptions do not differ much. There will always
be the possibility that a well fitting description rests on arguments that will prove to be not
realistic in the end. Perhaps you think that this is trivial, but I doubt it. Take for instance
goodness of fit tests in statistics and how they are applied, e.g. in ecological journals. The
outcome of the test itself is not instructive, for the reasons given. It would be instructive,
however, to have a measure for the difference between prediction and observation that
allows one to judge the usefulness of the theory. Such measures should, therefore, depend
on the theory and the purposes one has; it would be a coincidence to find them in a general
text on statistics.

The sequence, ‘idea, hypothesis, theory, law’ is commonly thought to reflect an increas-
ing degree of reliability. I grant that some ideas have been tested more extensively than
others and may be, therefore, more valuable for further developments. Since I deny the
existence of a totally reliable proposition, because I do not accept the concept ‘true’, I can
only use this sequence to reflect an increasing degree of usefulness. It is, however, hard
and probably impossible to quantify this on an absolute scale, so I treat the terms in this
sequence more or less as synonyms. Each idea should be judged separately on its merits.

Mathematical models are statements written in a certain language. Mathematics as a
language is most useful for formulating quantitative relationships. Therefore, quantitative
theories usually take the form of mathematical models. This does not imply that all
models are theories. It all depends on the ideas behind the model. Ideally a model
results, mathematically, from a list of assumptions. When model predictions agree with
observations in a test, this supports the assumptions, i.e. it gives no reason to change them
and it gives reason to use them for the time being. As explained on {14}, the amount
of support such a test gives is highly sensitive to the model structure. If possible, the
assumptions should be tested one by one. From a strict point of view, it would then no
longer be necessary to test the model. Practice, however, teaches us to be less strict. I am
inclined to identify assumptions with theories.

A statement that is frequently heard from people with a distaste for models, is: ‘a
model is not more than you put into it’. Done in the proper way, this is absolutely right
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and it is the single most important aspect of the use of models. As this book illustrates,
assumptions, summarized in table 4.1, have far reaching consequences, that cannot be
revealed without the use of models. Put into other words: any mathematical statement is
either wrong or follows from assumptions. Few people throw mathematics away for this
reason.

The problem that everything depends on everything else in biology has strong impli-
cations for models that represent theories. When y depends on x, it is usually not hard
to formulate a set of assumptions, which imply a model that describes the relationship
with acceptable accuracy. This also holds for a relationship between y and z. When more
and more relationships are involved, the cumulative list of assumptions tends to grow and
it becomes increasingly difficult to keep them consistent. This holds especially when the
same variables occur in different relationships. It is sometimes far from easy to test the
consistency of a set of assumptions. For example: when a sink of material and/or energy
in the maintenance process is assumed for individuals, it is no longer possible to assume
a constant conversion of prey biomass into predator biomass at the population level. It
takes a few steps to see why; this will be explained in the section on yield, {181}.

Complexity concerning the number of variables is a major trap in model building. This
trap became visible with the introduction of computers, because they removed the technical
and practical limitations for the inclusion of variables. Each relationship, each parameter
in a relationship comes with an uncertainty, frequently an enormous one, in biology. With
considerable labour, it is usually possible to trim computer output to an acceptable fit
with a given set of observations. This, however, gives minimal support for the realism
of the whole, which turns simulation results into a most unreliable tool, e.g. for making
predictions in other situations. A model of the energetics of individuals can easily become
too complex for use in population dynamics. If it is too simple, many phenomena at the
individual level will not fit in. It will be difficult then to combine realism at the individual
level and coherence between levels of organization. The need for compromise, which is not
typical for energetics, makes modelling an art, with subjective flavours.

The only solution to the trap of complexity is the use of nested modules. Sets of closely
interacting objects are isolated from their environment and combined into a new object, a
module, with simplified rules for input-output relationships. This strategy is basic to all
science. A chemist does not wait for the particle physicist to finish his job, though the
behaviour of the elementary particles determines the properties of atoms and molecules
taken as units by the chemist. The same applies to the ecologist who does not wait for
the physiologist. The existence of different specializations testifies to the relative success
of the modular approach and still amazes me. The recently proposed hierarchy theory in
ecology [14,520], does basically the same within that specialization.

The problems that come with defining modules are obvious, especially when they are
rather abstract. The first problem is that it is always possible to group objects in different
ways to form new objects which then makes them uncomparable. The problem would be
easy if we could agree about the exact nature of the basic objects, but life is not that
simple. The second problem with modules lies in the simplification of the input-output
relationships. An approximation that works well in one circumstance can be inadequate
in another. When different approximations are used for different circumstances, and this
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is done for several modules in a system, the behaviour of the system can easily become
erratic and no longer contribute insight into the behaviour of the real thing. The principle
of reduction in science relates to the attempt to explain phenomena in terms of the smallest
feasible objects. I subscribe to a weaker principle: that of coherence. This aims to relate
the behaviour of modules to that of their components while preserving consistency.

If we accept community ecology as a feasible science, I see two research strategies for
riding this horse. The first one is to accept that species differ considerably in the way
they take up and use resources. This would mean modelling the energetics of each species,
stripping the model of most of its details in various ways, and then trying to determine
the common features in population dynamics that these simplified models and the full
model produce. I do not share the hope that different traits of individuals will indeed
result in similar dynamics of populations. The second strategy, which is followed here, is
to try to capture the diversity of the energetics of the different species into one model with
different parameter values and build theories for the parameter values. The simplification
step before the assemblage of populations into a community remains necessary.

1.2.2 Systems

The deb theory is built on dynamic systems. The idea behind the concept of a system is
simple in principle, but in practice, as in energetics, some general modelling problems arise
that can best be discussed here. A system is based on the idea of state variables, which are
supposed to specify completely the state of the system at a given moment. Completeness is
essential. The next step is to specify how the state variables change with time as a function
of a number of inputs and each other. The specification of change of state variables usually
takes the form of a set of differential equations, which have parameters, i.e. constants that
are considered to have some fixed value in the simplest case. Usually this specification also
includes a number of outputs.

Parameters are typically constant, but sometimes the values change with time. This
can be described by a function of time, which again has parameters that are now considered
to be constant. Physiological rates, for instance, depend on temperature. Parameters that
have the interpretation of a rate are, therefore, constant as long as the temperature does
not change. If the temperature changes, so do the rate parameters which then become
functions of time. As a side product of metabolism, heat is generated. In ectotherms, i.e.
animals that do not heat their body to a constant high temperature, heat production is
low, due to their usually low body temperature. The body temperature usually follows
that of the environment, and can thus be treated as a time function. The situation is more
complex in developing birds, which make the transition to the endothermic state some days
after hatching when they invest energy to keep body temperature at a fixed high level. As
the temperature of the hatchling is high due to breeding, metabolism is high and so is
heat production as a side product. On top of this, the bird starts to invest extra energy in
heating. Here, the state variables of the system interfere with the environment, but not via
input; this requires that body temperature is considered as an additional state variable.

The choice of the state variables is the most crucial step in the definition of a system.
It is usually a lot easier to compare and test alternative formulations for the change of
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state variables, than different choices of state variables. Models with different sets of state
variables are hardly comparable. The variables that are easy to measure or the ones that
will be used to test the model are not always the variables that should appear as state
variables. An example is metabolic rate, which is measured as the respiration rate, i.e.
oxygen consumption rate or carbon dioxide production rate. Metabolic rate is not chosen
as a primary variable or parameter in the deb theory. It only has the role of a derived
variable, which is nonetheless important. This point will doubtlessly generate controversy.
I will divide the metabolic rate into its different components, each of which follows simple
rules. The sum of these components is then likely to behave in a less simple way in non-
linear models. The same holds for, for example, dry weights, which I will decompose into
structural biomass and reserve materials. A direct consequence of such decompositions is
that experimental results that only include composite variables are difficult to interpret.
For mechanistic models, it is essential to use variables that are the most natural players in
the game. The relationship between these variables and those to be measured is the next
problem to be solved, once the model is formulated, cf. {36}.

Thermodynamics makes a most useful distinction between intensive variables, which are
independent of size, such as temperature, concentration, density, pressure, viscosity, molar
volume, molar heat capacity, etc., and extensive variables, which depend on size, such as
mass, heat capacity, volume. Extensive variables can sometimes be added in a meaningful
way if they have the same dimension, but intensive variables can not. Concentrations,
for example, can only be added when they relate to the same volume. Then they can be
treated as masses, i.e. extensive variables. When the volume changes, as body volumes do,
we face the basic problem that concentrations are the most natural choice for dealing with
mechanisms, while we need masses, i.e. absolute values to make use of conservation laws.
This is one of the reasons why one needs a bit of training in the application of the chain
rule for differentiation.

1.2.3 Physical dimensions

A few remarks on physical dimensions are needed here, because a test for dimensions is
such a useful tool in the process of modelling. Only a few texts deal adequately with them.

Models which do not have a match of dimensions over ‘=’ signs are meaningless. This
does not imply that models that treat dimension well are necessarily useful models. The
elementary rules are simple: addition and subtraction is only meaningful if the dimensions
are the same, but the addition or subtraction of variables with the same dimensions is
not always meaningful. Meaning depends on interpretation. Multiplication and division of
variables correspond with multiplication and division of dimensions. The simplification of
the dimension, however, should be treated with care. A dimension that occurs in both the
numerator and the denominator in a ratio does not cancel automatically. A handy rule of
thumb is that such dimensions only cancel if the sum of the variables to which they belong
can play a meaningful role in the theory. The interpretation of the variable and its role
in the theory always remains attached to dimensions. So the dimension of the biomass
density in the environment expressed on the basis of volume, is cubed length (of biomass)
per cubed length (of environment); it is not dimensionless. This argument is sometimes
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quite subtle. The dimension of the total number of females a male butterfly meets during
its lifetime is number (of females) per number (of males), as long as males and females are
treated as different categories. If it is meaningful for the theory to express the number of
males as a fraction of the total number of animals, the ratio becomes dimensionless.

The connection between a model and its interpretation gets lost if it contains tran-
scendental functions of variables that are not dimensionless. Transcendental functions,
such as logarithm, exponent, sinus, frequently occur in models. pH is an example, where
a logarithm is taken of a variable with dimension number per cubed length (ln{#l−3}).
When it is used to specify environmental conditions, no problems arise, it just functions
as a label. However, if it plays a quantitative role, we must ensure that the dimensions
are cancelled correctly. For example, take the difference between two pH-values. This
difference is dimensionless: pH1 − pH2 = ln{#1l

−3} − ln{#2l
−3} = ln{#1l

−3#−1
2 l3} . In

linear multivariate models in ecology, the pH sometimes appears together with other en-
vironmental variables, such as temperature, in a weighted sum. Here dimension rules are
violated and the connection between the model and its interpretation is lost.

Another example is the Arrhenius relationship, cf. {44} where the logarithm of a rate
is linear in the inverse of the absolute temperature: ln v̇(T ) = α− βT−1, where v̇ is a rate,
T the absolute temperature and α and β are regression coefficients. At first sight, this
model seems to violate the dimension rule for transcendental functions. However, it can
also be presented as v̇(T ) = v̇(∞) exp{TAT−1}, where TA is a parameter with dimension
temperature and v̇(∞) is the rate at very high temperatures. In this presentation, no
dimension problem arises. So, it is not always easy to decide whether a model suffers from
dimension problems.

A further example is the allometric function: ln y(x) = α+β ln x, or y(x) = αxβ, where
y is some variable and x has the interpretation of body weight. At first sight, this model
also seems to violate the dimension rule for transcendental functions. Huxley introduced
it as a solution of the differential equation dy

dx
= β y

x
, cf. {252}. This equation, however,

does not suffer from dimensional problems, neither does its solution y(x) = y(x1)(
x
x1

)β.
This function has three rather than two parameters. It can be reduced to two parameters
for dimensionless variables only. The crucial point is that in most body size scaling rela-
tionships, a natural reference value x1 does not exist for weights. The choice is arbitrary.
This differs from the Arrhenius example, where the choice for the unit of temperature
does not influence the relationship. The allometric function violates the dimension rule
for transcendental functions and should, therefore, not be used in models that represent
theories. Models that violate dimension rules are bound to be purely empirical. Although
this has been stated by many authors, the use of allometric functions is so widespread in
energetics that it almost seems obligatory.

Many authors who use allometric functions are well aware of this problem. In discus-
sions, they argue that they just give a description that does not pretend to be explanatory.
However, they frequently use it in models that claim to be explanatory at another point.
For me, this is walking in marshy country, which is why I have been explicit in my point of
view on theories, where there is no useful role for allometric functions. I accept that they
offer a description that is sparse in parameters and frequently accurate. I also understand
the satisfaction that a log-log plot can give by the optical reduction of the frequently huge
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scatter. I think, however, that they are an obstacle to understanding what is going on.
I will show that energetics is in no need of allometric functions and that they are at the
root of many problems. One problem is that as soon as two groups of species are found
to differ in the scaling parameter β, they can no longer be compared on the basis of their
parameter values, because the dimensions of the parameter α differ. (The dimensions of
α will even have a statistical uncertainty.) This seems most paradoxical to me, because
many authors use allometric functions specifically for the purpose of comparing species.

The comparison of different systems that share common principles can be a most pow-
erful tool in biology. I give two examples, which will be discussed later, {81,85}.

Individuals of some species, such as humans, loose their ability to grow. Cartilage
tissue is replaced by bone, which makes further growth impossible. Is this the reason for
the cessation of growth? This question cannot be answered by studying these species,
because they stop growing and also change cartilage to bone. The answer should be ‘no’, I
think, because it is possible to formulate a model for growth that applies to these species
as well as to species that continue to grow, such as fish. Growth in mammals ceases even
if they would not lose the ability to grow, and cartilage is replaced, possibly to obtain a
mechanically better structure.

Another example is the egg shell of birds, which limits the diffusion of oxygen and,
therefore, the development of the embryo, according to some authors [579]. A frequently
used argument is the strong negative correlation between diffusion rates across the egg
shell and diffusion resistance, when different egg sizes are compared, ranging from kolibries
to ostriches. Again I think that the shell does not limit the development of the embryo,
because it is possible to formulate a model for embryo development that applies to birds
as well as to animals that do not have egg shells. The physical properties of the egg shell
are well adapted to the needs of the embryo, which causes the observed correlation.

The crux of the argument is that the same model applies to different systems and that
the systems can be compared on the basis of their parameters. If one or more parameters
cannot be compared for different species, because they have different dimensions, a most
useful type of argument is lost and this is why allometric functions spoil the argument.

I shall frequently use dimensionless variables, rather than the original ones which bear
dimensions. Although this procedure is standard in the analysis of properties of models,
my experience is that many biologists are annoyed by it. I will, therefore, explain briefly
the rationale behind this usage.

The first reason for working with dimensionless variables is to simplify the model and
get rid of as many parameters as possible. This makes the structure of the model better
visible, and, of course, is essential for understanding the range of possible behaviours of
the model when the parameter values are changed. The actual values of parameters are
known with a usually high degree of uncertainty and they can vary a lot.

The second reason is to detect the parameter combinations that can actually be esti-
mated on the basis of a given set of observations. In the model y(x) = y(x1)(

x
x1

)β, the
parameters x1, y(x1) and β cannot be estimated at the same time from a set of observa-
tions {xi, yi}, no matter how extensive the set is. When all parameter values are wanted,
we need different, rather than more, observations. In many cases, knowledge about the
values of all parameters is not necessary for the use of the model. One intriguing aspect
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is that it is not only impossible, but it is also not necessary to know the value of any
parameter that has energy in its dimension, when the purpose is to test the energy-based
model against observations that do not contain energies. On dimensional grounds, it is
obvious that all estimatable parameters are composed of ratios or products of parameters
that contain energy in their dimension, such that the energy dimension drops out. This
holds for all models that treat physical dimensions well, irrespective of their realism. Some
remarks on the ability to test a model must be made in this context.

The most rigorous way to test a model is to test all assumptions one by one. This is
usually impossible, but this does not turn the model into a useless one. A weaker test
can be based on consequences of the model. It always remains possible that different
sets of assumptions have exactly or practically the same consequences. It is, therefore, a
weaker test. One can reduce the collection of different sets of assumptions by testing more
consequences in different circumstances. When a model survives all these tests, it means
an increase in usefulness for further developments. If a model does not have consequences
that can be tested, it is simply useless and does not deserve discussion. It is important to
realize, however, that testability comes in gradations.

The third reason for working with dimensionless variables is that numerical methods for
integration and parameter estimation usually involve appropriate choices of step lengths,
norm values and the like. When the step length is not dimensionless, it is dependent on the
units of measurement in which the parameter are expressed, which is most inconvenient.

1.2.4 Statistics

The amount of support which a successful test of a model gives depends on the model
structure and has an odd relationship with the ability to estimate parameters: the better
one can estimate parameters, the less support a successful test of a model gives. This is
a rather technical, but vital point in work with models. I will try to make this clear with
a simple model that relates y to x, and which has a few parameters, to be estimated on
the basis of a given set of observations {xi, yi}. We make a graph of the model for a given
interval of the argument x, and get a set of curves if we choose the different values of the
parameters between realistic boundaries. Two extremes could occur, with all possibilities
in between:

• The curves have widely different shapes, together filling the whole
x, y-rectangular plot. In this case one particular curve will probably
match the plotted observations, which determines the parameters
in an accurate way, but a close match gives little support for the
model; if the observations are totally different, another curve, with
different parameter values will have a close match.

• The curves all have the same shape and are close together in the
x, y-rectangular plot. If there is a close match with the observations,
this gives substantial support for the model, but the parameter
values are not well determined by the observations. All curves with
different parameter values fit well.
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The polynomial is an example of the first category, the model for embryonic growth on
{83} is an example of the second. The choice of the structure of the model is of course
not free; it is dictated by the assumptions. I mention this problem to show that testability
is a property of the theory and that nice statistical properties can combine with nasty
theoretical ones and vice versa. It is essential to make this distinction.

The properties of parameter estimates also depend on the way the parameters are intro-
duced. In the regression of y on x, the estimators for parameters a and b in the relationship
y = x2(a + bx) are strongly negatively correlated when in the observations {xi, yi}ni=1 all
xi > 0; the mathematically totally equivalent relationship y = x2(c+ b(x−∑

i x
3
i /
∑

i x
2
i ))

suffers much less from this problem. Replacement of the original parameters by appropri-
ately chosen compound parameters can also reduce correlations between parameter esti-
mates.

An increase in the number of parameters usually allows models to assume any shape in
a graph. This is closely connected with the structural property of models just mentioned.
So a successful test against a set of observations gives little support for such a model, unless
the set includes many variables as well. A fair comparison of models should be based on
the number of parameters per variable that is described, not the absolute number.

Observations show scatter, which reveals itself if one variable is plotted against another.
It is such an intrinsic property of biological observations that deterministic models should
be considered as incomplete models. Only complete models, i.e. models that describe ob-
servations which show scatter, can be tested. The standard way to complete deterministic
models is to add ‘measurement error’. The definition of a measurement error is that, if
the measurements are repeated frequently enough, the error will disappear in the mean
of these observations. Such models are called regression models: y

i
(xi) = f(xi|pars) + ǫi.

They are characterized by a deterministic part, here symbolized with the function f , plus
a stochastic part, ǫ. The latter term is usually assumed to follow a normal probability
density, with mean 0 and a fixed variance, which is one of the parameters of the model.
The interpretation of scatter as measurement error originates from physics. It is usually
not realistic in biology, where many variables can be measured accurately in comparison
with the amount of scatter. The observations just happen to differ from model expec-
tations. When the scatter is large, the model is useless, despite its goodness of fit as a
stochastic model. A realistic way of dealing with scatter is far from easy and usually gives
rise to highly complicated models. Modellers are frequently forced to compromise between
realism and mathematical over-simplicity. This further degrades the strict application of
goodness of fit tests for models with unrealistic stochastic components.

For lack of better ready-to-use alternatives, the tests against observations in this book
will be based mainly on the regression method. This is most unsatisfactory, but such is
life. I will, however, discuss two alternatives: individuals with stochastic inputs, {121,257},
and individuals that have different parameter values, {112,210}; the motivation is that
behavioural components of the feeding process are notoriously erratic, thus contributing
significantly to the scatter, and individuals tend to deviate from each other in their in-
put/output behaviour. Observations from a single individual usually have less scatter than
those from different ones. The mathematics behind these alternatives is quite tedious, so
I rely mainly on computer simulation studies.
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I give estimates in this book for standard deviations for many parameter values that are
obtained from experimental results, to indicate accuracy. I follow this standard procedure
with some hesitation on two grounds. The first reason to doubt the usefulness is that
the value of the standard deviation is rather sensitive to the stochastic part of the model,
which might not be very realistic, as discussed. The second reason is that such standard
deviations do not account for correlations between parameters. A small standard deviation
for a parameter, therefore, does not necessarily mean that such a parameter is known
accurately, an error that is easy to make.



Chapter 2

Individuals

From a systems analysis point of view, individuals are special because at this organization
level it is relatively easy to make mass balances. This is important, because the conservation
law for mass and energy is one of the few hard laws available in biology. At the cellular and
at the population level it is much more difficult to measure and model mass and energy
flows. It will be argued on {245} that life started as an individual in evolutionary history
rather than as a particular compound, such as rna. The individual is seen as an entity
separated from the environment by physical barriers. Discussion should, therefore, start
at the level of the individual.

While developing the deb theory in the next chapter, I will present many tests against
experimental data. These tests require careful interpretation of data that makes use of the
material presented in this chapter, which introduces some general concepts that relate to
individuals.

2.1 Input/output relationships

Any systems model relates inputs to a system with outputs of that system, as a function
of its state. Although many formulations suggest that the output is the result of the state
of the system and its input, this directional causality is, in fact, a matter of subjective
interpretation. Input, state and output display simultaneous behaviour, without an ob-
jective, directional causality. The deb model for uptake and use of energy in terms of
input/output descriptions is neutral with respect to the interpretation in terms of ‘supply’
and ‘demand’. With the ‘supply’ interpretation, I mean that the lead is in the feeding
process, which offers an energy input to the individual. The available energy flows to-
wards different destinations, more or less as water flows through a river delta. With the
‘demand’ interpretation, I mean that the lead is in some process using energy, such as
maintenance and/or growth, which requires some energy intake. Food searching behaviour
is then subjected to regulation processes in the sense that an animal eats what it needs. I
think that in practice species span the whole range from ‘supply’ to ‘demand’ systems. A
sea-anemone, for example, is a ‘supply’ type of animal. It is extremely flexible in terms of
growth and shrinkage, which depend on feeding conditions. It can survive a broad range
of food densities. Birds are examples of a ‘demand’ system and they can only survive
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at relatively high food densities. The range of possible growth curves is thus much more
restricted.

Even in the ‘supply’ case, growth may be regulated carefully by hormonal control sys-
tems. Growth should not proceed at a rate beyond the possibility of mobilizing energy and
elementary compounds necessary to build new structures. Models that describe growth as
a result of hormonal regulation should deal with the problem of what determines hormone
levels. The answer invokes the individual level. The conceptual role of hormones is linked
to the similarity of growth patterns despite the diversity of regulating systems. In the deb

theory, messengers such as hormones are part of the physiological machinery by which an
organism regulates its growth. Their functional aspects can only be understood from other
variables and compounds.

Balance equations are extremely useful for the specification of constraints for the simul-
taneous behaviour of input, state and output of systems. The problem of unnoticed sources
of sinks can only be circumvented by precise book-keeping. The possibility of being able
to formulate balance equations will turn out to be the most useful aspect of the abstract
quantity ‘energy’, cf. {41}. The conservation law for energy was originally formulated by
von Mayer [461] in 1842. Precursors of the principle of conservation of energy go back as
far as Leibnitz in 1693 [118]. This law is known today as the first law of thermodynamics.
The law of conservation of mass was first described in a paper by Lavoisier in 1789.

2.2 State variables

Many models for growth have age as a state variable. Age itself has excellent properties
as a measuring-tape, because it has a relatively well defined starting point (here taken
to be the start of embryogenesis and not birth, i.e. the transition from the embryonic
state to the juvenile one). It can also be measured accurately. Some well-studied species
only thrive on abundant food supply, which results in well-defined and repeatable size-
age curves. This has motivated a description of growth in terms of age, where food is
considered as an environmental variable, like temperature, rather than a description in
terms of input/output relationships and energy allocation rules.

One frequently applied model was proposed by Gompertz in 1825:

W (t) = W∞ (W0/W∞)exp{−γ̇t}

where W (t) is the weight, usually the wet weight, of an individual of age t and γ̇ the
Gompertz growth rate. The individual grows from weight W0 asymptotically to weight
W∞. This is essentially an age-based model, which becomes visible from a compari-
son of alternative ways to express it as a differential equation: d

dt
lnW = −γ̇ ln W

W∞
or

d2

dt2
lnW = −γ̇ d

dt
lnW . The first equation states that the weight-specific growth rate de-

creases proportionally to the logarithm of weight as a fraction of ultimate weight. (Note
that the notation d

dt
lnW suggests a dimension problem, because it looks as if the argument

of a transcendental function is not dimensionless. Its mathematically equivalent notation
W−1 d

dt
W , shows that no dimension problem exists here.) It is hard to put a mechanism

behind this relationship. The second equation states that the change in weight-specific
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Figure 2.1: These talking gouramis, Trichopsis vittatus, come from the same brood and therefore
have the same age. They also grew up in the same aquarium. The size difference resulted from
competition for a limited amount of food chunks, which amplified tiny initial size differences.
This illustrates that age cannot serve as a satisfactory basis for the description of growth

growth rate decreases proportionally with the growth rate, which can be linked to a simple
aging mechanism where the ability to grow fades according to a first order process. In the
situation of abundant food, this model usually gives an acceptable fit. The problems with
this model and similar ones become apparent when growth has been measured at different
food availabilities.

Figure 2.1 shows two fish from the same brood, which have lived in the same 5 litre
aquarium. Their huge size difference shows that age-based growth models are bound to
fail. The mechanism behind the size difference in this case is the way of feeding, which
involved a limited number of relatively big food chunks for the whole brood. Initially, the
size differences were very small, but the largest animal always took priority over its smaller
siblings, which amplified the size differences. Similar results apply to prokaryotes, which
have a poor control over age-at-division at constant substrate density, but a high control
over size-at-division [398].

Apart from empirical reasons for rejecting age as a state variable for the description
of growth, it cannot play the role of an explanatory variable from a physical point of
view. Something that proceeds with age, such as damage caused by free radicals, cf.
{106}, can play that role. One will need an auxiliary model to show in detail how such a
variable depends on age. One of the problems with the Gompertz model and related ones
is that growth does not result from a difference between an uptake and a usage term. It
is formulated as an intrinsic property of the organism. The environment can only affect
growth via the parameter values.
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When feeding is conceived as input of energy, size must be one of the state variables. A
large individual eats much more than a small one, so it is hard to imagine a realistic model
for growth that does not have size as one of the state variables; however, many quantities
can be taken to measure size. Examples are volume, wet weight, dry weight, ash-free
dry weight, amount of carbon or energy etc. Originally I thought that, to some extent,
they were more or less exchangeable, depending on the species. Now, I am convinced that
volume is the only natural choice to measure size in the context of the present theory, where
surface areas play such an important role. A volume (organism), living in another volume
(environment), is bound to communicate with it over a surface area. The deb theory
makes use of the interpretation of the ratio of size and surface area in terms of length.
Weights remain of considerable practical interest for several reasons, the most important
ones relating to the implementation of mass balances. The relationships between size
measures will be discussed in the next section.

Size alone is not sufficient to describe the process of energy uptake and cannot be used
with any degree of accuracy. Energy reserves should be considered as well, even in the
most simple models. There are several reasons for this.

The first one is the existence of maintenance, i.e. a continuous drain of energy necessary
to keep the body going. Feeding on particles, even if these particles are molecules, implies
that there are periods in which no particles arrive. The capacity of a digestive system
cannot realistically be made big enough to smooth out the discrete arrival process, in
order to ‘pay’ the steady costs for maintenance. Other costs are paid as well in the absence
of any food input. Spectacular examples of prolonged action without food intake are the
European, North American and New Zealand eels Anguilla, which cease feeding at a certain
moment. Their alimentary canal even degenerates, prior to the 3000 km long journey to
their breeding grounds, where they spawn. The male emperor penguin Aptenodytes forsteri

breeds its egg in Antarctic midwinter for two months and feeds the newly hatched chick
with milky secretions from the stomach without access to food. The male loses some 40%
of its body weight before assistance from the female arrives.

The second argument for including storage is that individuals react slowly to changes
in their feeding conditions. Again, this cannot be described realistically with the digestive
system as a buffer because its relaxation time is too short.

The third argument is that well-fed individuals happen to have a different (chemical)
body composition than individuals in poor feeding conditions. The type of difference
depends on the species, as will be discussed later. Originally I thought that, as long as
food density is constant, one can do without storage. This is why the first version of the
deb model [416], did not have energy storage. However, when growth at different food
densities is compared and storage levels depend on food density, one should include storage
even under these simple conditions.

Size and stored energy should play a role in even the simplest model for the uptake and
use of energy. Several other state variables, such as the content of the digestive system,
energy density of the blood etc., will be necessary to describe the finer details of some
physiological processes, but they need not play a significant role at the population level.
For the purpose of the analysis of population dynamics and the contribution of aging
therein, it makes sense to introduce age as an auxiliary third state variable. It also proves
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Figure 2.2: The sample survivor function
(see glossary) of shape coefficients for Eu-
ropean birds (left) and Neotropical mam-
mals (right). The lengths include the tail
for the birds, but not for mammals. Data
from Bergmann and Helb [58] and Em-
mons and Feer [203]. The fitted survivor
functions are those of the normal distribu-
tion.

necessary to distinguish life stages to catch qualitative differences in energetics, cf. {49}.

2.3 Size and shape

2.3.1 Length/surface area/volume relationships

The shape that organisms can take resists any accurate description when different species
are compared. For an understanding of energetics two aspects of size and shape are rel-
evant, as will be explained later: surface areas for acquisition processes and volumes for
maintenance processes. Shape defines how these measures relate to each other. Measure-
ments of lengths and weights are usually easy to obtain in a non-destructive way, so the
practical problem has to be solved of how these measurements are related to surface areas
and volume.

Volume is rather difficult to measure for some species. As a first crude approximation,
wet weights, Ww, i.e. the weight of a living organism without adhering water, can be
converted to volumes, V , by division through a fixed specific density [dw], which is close
to 1 g cm−3. So Ww = [dw]V or [Ww] = [dw], where [dw] is here taken to be a (fixed)
parameter. If an organism does not change its shape during development, an appropriately
chosen length measure, L, can be used to obtain its volume. The length is multiplied by
a fixed dimensionless shape coefficient dm and the result is raised to the third power.
So V = (dmL)3. The shape coefficient, defined as volume1/3 length−1, is specific for the
particular way the length measure has been chosen. Thus the inclusion or exclusion of a
tail in the length of an organism results in different shape coefficients. A simple way to
obtain an approximate value for the shape coefficient belonging to length measure L is on
the basis of the relationship dm = (Ww

[dw]
)1/3L−1.

The following considerations help in getting acquainted with the shape coefficient. For
a sphere of diameter L and volume L3π/6, the shape coefficient is 0.806 with respect
to the diameter. For a cube with edge L, the shape coefficient takes the value 1, with
respect to this edge. The shape coefficient for a cylinder with length L and diameter Lφ is
(π

4
)1/3(L/Lφ)−2/3 with respect to the length.
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Table 2.1: The means and coefficients of variation of shape coefficients of European birds and
mammals and Neotropical mammals.

Taxon source number mean cv mean cv
tail included tail excluded

European birds [203,105] 418 0.186 0.14
European mammals [94] 128 0.233 0.27 0.335 0.28
Neotrop. mammals [58] 246 0.211 0.41 0.328 0.18

The shapes of organisms can be compared in a crude way on the basis of shape coeffi-
cients. Figure 2.2 shows the distributions of shape coefficients among European birds and
Neotropical mammals, they fit the normal distribution closely. Summarizing statistics are
given in table 2.1, which includes European mammals as well. Some interesting conclu-
sions can be drawn from the comparison of shape coefficients. They have an amazingly
small coefficient of variation, especially in birds including sphere-like wrens and stick-like
flamingos; which probably relates to constraints for flight. Mammals have somewhat larger
shape coefficients than birds, because they tend to be more spherical and this possibly re-
lates to differences in mechanics. The larger coefficient of variation indicates that the
constraints are perhaps less stringent than for birds. The spherical shape is more efficient
for energetics because cooling is proportional to surface area and a sphere has the smallest
surface area/volume ratio, namely 6/Lφ. When the tail is included in the length, European
mammals have somewhat larger shape coefficients than Neotropical mammals, but the dif-
ference is absent when the tail is excluded. Neotropical mammals tend to have longer tails,
which is probably due to the fact that most of them are tree dwellers. The temperature
differences between Europe and the Neotropics do not result in mammals in Europe being
more spherical to reduce cooling.

These considerations should not obscure the practical purpose of shape coefficients: to
convert shape-specific length measures to volumetric lengths, i.e. cubic roots of volumes.
Each parameter that has length in its dimensions is sensitive to the way that lengths have
been measured (in- or excluding extremities, etc.). As long as the comparison is made
between bodies of the same shape, there is no need for concern, but as soon as different
shapes are compared, it is essential to convert length to volumetric length, the rationale
being that a comparison made on the basis of unit volumes of organisms is made on the
basis of cells.

2.3.2 Isomorphism

Isomorphism is an important property which applies to the majority of species on earth.
It refers to conservation of shape as an individual grows in size. The shape can be any
shape and the comparison is only between shapes that a single individual takes during its
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development. Two bodies of a different size are isomorphic if it is possible to transform
one body into the other by a simple geometric scaling in three dimensional space: scaling
involves only multiplication, translation and rotation. This implies, as Archimedes already
knew, that if two bodies have the same shape and if a particular length takes value L1

and L2 in the different bodies, the ratio of their surface areas is (L1/L2)
2 and that of their

volumes (L1/L2)
3, irrespective of their actual shape. It is, therefore, possible to make

assertions about the surface area and the volume of the body relative to some standard, on
the basis of length only. One only needs to measure the surface area or volume if absolute
values are required. This property will be used extensively.

The significance of the relationship between length, surface area and volume for iso-
morphs does not show up in the first place, in the context of practical measurement, but
for the body itself.

These relationships play an essential role in the
communication between the extensive variable
body size and intensive variables such as concen-
trations of compounds and reaction rates between
compounds. Secreting organs ‘know’ their vol-
ume relative to body volume by the build up of
the concentration of their products in the body.
Each cell in the body ‘knows’ its volume by the
ratio between its volume and the surface area of
its membranes. One mechanism is that most en-
zymes only function if bound to a membrane, with
their substrates and products in the cell volume
as illustrated. The functional aspect is that the
production of enzymes is a relatively slow process,
a handicap if a particular transformation needs to
be accelerated rapidly. Most enzymes can be con-
ceived of as fluffy, free floating structures, with
performance depending on the shape of the outer
surface of the molecule and the electrical charge
distribution over it.

If bound to a membrane, the outer shape of the enzyme changes into the shape required
for the catalysis of the reaction specific to the enzyme. Membranes thus play a central role
in cellular physiology [249,292,763]. Many pathways require a series of transformations and
so involve a number of enzymes. The binding sites of these enzymes on the membrane are
close to each other, so that the product of one reaction is not dispersed in the cytosol before
being processed further. The product is just handed over to the neighbouring enzyme in
a process called piping. Interplay between surface areas and volumes is basic to life, not
only at the level of the individual, but also at the molecular level.

Most species are approximately isomorphic. It is not difficult to imagine the physio-
logical significance of this. Process regulating substances in the body tend to have a short
lifetime to cope with changes, so such substances have to be produced continuously. If
some organ secretes at a rate proportional to its volume (i.e. number of cells), isomor-
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phism will result in a constant concentration of the substance in the body. The way the
substance exercises its influence does not have to change with changing body volume in
order to obtain the same effect in isomorphs.

Exoskeletons

Isomorphism itself poses no constraints on shape, but if organisms have a permanent exo-
skeleton, then stringent constraints on shape exist and as most animals with a permanent
exoskeleton actually meet these constraints, it is helpful to work them out. This subsection
can be skipped without loss of continuity.

A grasshopper remains isomorphic and has an exoskeleton, but it grows by moulting,
thus the exoskeleton is not permanent and isomorphism poses no constraints in this case.
The same holds for an organism which resembles a sphere, such as a sea urchin; it cannot
have a permanent (rigid) exoskeleton, because the curvature of its surface changes during
growth. A cylindrical organism that grows in length only, is not isomorphic. A cylindri-
cal organism that grows isometrically has only its caps as a permanent exoskeleton; thus
this includes only the caps, i.e. two growing disks separated by a growing distance. The
permanent exoskeleton generally represents a (curved) surface in three dimensional space,
which can be described in a simple way using logarithmic spirals. The idea of the logarith-
mic spiral or spira mirabilis (in the plane) goes back to Descartes’ studies of Nautilus in
1638 and to Bernoulli in 1692. The function has been used by Thompson [713], Rudwick
[616,617] and Raup [584,585] to describe the shape of brachiopods, ammonites and other
molluscs. I will rephrase their work in modern mathematical terms and extend the idea a
bit.

A natural starting point for a description of the isomorphic permanent exoskeleton
is the mouthcurve. This is a closed curve in three dimensional space that describes the
‘opening’ of the permanent exoskeleton (shell). This is where the skeleton synthesizing
tissue is found. The development of the exoskeleton can, in most cases, be retraced in
time to an infinitesimally small beginning, giving the permanent exoskeleton just the one
‘opening’. This method avoids the problem of the specification of the shape of an invisibly
small object. To follow the mouth curve back in its development, we introduce a dummy
variable l, which has the value 0 for the present mouth curve and −∞ at the start of devel-
opment. By placing the start of development at the origin, the test on isomorphism of the
developing exoskeleton is reduced to mapping one exoskeleton to another by multiplication
and rotation only (so no translation). We can always orient the exoskeleton such that the
rotation is around the x-axis. Let R(l) denote the rotation matrix

R(l) =







1 0 0
0 cos l sin l
0 − sin l cos l







The closed mouthcurve m at an arbitrary value for the dummy variable l, can be described
by

m(l) = cl/2πR(−l)m(0) (2.1)
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where c is a constant describing how fast the mouth curve reduces in size when the ex-
oskeleton rotates over an angle 2π. If c is very large, it means that the exoskeleton does not
rotate during its reduction in size. Size reduction relates in a special way to the rotation
rate to ensure (self) isomorphism. It follows from the requirement that for any two points
m0 and m1 on the mouthcurve, the distance ‖m1(l + h) − m0(l)‖ depends on l in a way
that does not involve the particular choice of points. The rotation matrix is here evalu-
ated at argument −l, because most gastropods form left handed coils. For right handed
coiling l, rather than −l, should be used. The mouth curve, together with the parameter
c determine the shape of the exoskeleton.

An arbitrary point on the mouth curve will describe a logarithmic spiral to the origin.
To visualize this, it helps to realize that a simple function such as the standard circle is
given by f(l) = (sin l, cos l), where the dummy variable l takes values between −∞ and
∞. A graphical representation can be obtained by plotting sin l against cos l. Similarly,
the logarithmic spiral with the vertex at the origin through the point m(0) ≡ (m1, 0,m3)
is given by

f(l) = cl/2π(m1,m3 sin−l,m3 cos−l) (2.2)

It lies on a cone around the x-axis
with vertex at the origin, and tan-
gent m3/m1 of the diverging angle
with respect to the x-axis. For in-
creasing l, the normalized direction
vector of the spiral from the vertex,
(m1,m3 sin−l,m3 cos−l)/‖m‖, with

‖m‖ =
√

m2
1 +m2

3, describes a circle
in the y, z-plane at x-value m1/‖m‖.

x-axis

m

m3

m1

y-axis

z-axis

Until now, no explicit reference to time has been made. If the length measure of the
animal follows a von Bertalanffy growth pattern, i.e. 1 − exp{−γ̇t} for t ∈ (0,∞), cf.
{81}, the relationship cl/2π = 1 − exp{−γ̇t} results. So, l = 2π

ln c
ln{1 − exp{−γ̇t}}. I will

argue on {81} that this is realistic when food density and temperature remain constant. In
winter, when growth ceases in the temperate regions and calcification partially continues
in molluscs, a thickening of the shell occurs, which is visible as a ridge ringing the shell.
If the gradual transitions between the seasons can be neglected, these ridges will be found
at l = 2π

ln c
ln{1 − exp{−γ̇i}}, i = 1, 2, 3, .., when the unit of time is one growth season. In

principle, this offers the possibility of determining the von Bertalanffy growth rate γ̇ from
a single shell found on the sea shore.

The mouth curve in living animals with a permanent exoskeleton frequently lies more
or less in a plane, which reduces the specification of the three dimensional mouth curve to a
two dimensional one, plus the specification of the plane of the mouth curve, which involves
two extra parameters. The exoskeleton can always be oriented such that the plane of the
mouth curve is perpendicular to the x, y-plane and the mouth opening is facing negative
y-values.
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Let p ≡ (p1, p2, 0) denote a point in the
plane of the mouth curve, such that this
plane is perpendicular to the vector p

and p2 ≤ 0. (Remember that the axis
of the spiral is the x-axis with the ver-
tex at the origin so that the orientation
of the exoskeleton is now completely
fixed.) The mouth curve n in the plane
is now measured using the point p as
origin. If the mouth curve is exactly
in a plane, a series of two coordinates
suffice to describe the exoskeleton to-
gether with c, p1 and p2.
If it is not exactly in a plane, we can interpret the plane as a regression plane and still use
three coordinates, where the y-values are taken to be small. The relationship between n

measured in the coordinate system with the plane of the mouth curve as x, z-plane and p

as origin with the original three dimensional mouth curve m is:

m = p +







−p2/‖p‖ −p1/‖p‖ 0
p1/‖p‖ −p2/‖p‖ 0

0 0 1





n (2.3)

More specifically, if the mouth curve is a circle with radius r and the centre point at
(q1, 0, q3), we get n(φ) = (q1 + r sinφ, 0, q3 + r cosφ), for an arbitrary value of φ between 0
and 2π. This dummy variable just scans the circle. The 6 parameters c, p1, p2, q1, q2 and
r completely fix both shape and size of all isomorphic exoskeletons with circular mouth
curves. If only the shape is of interest, we can choose r as the unit of distance, which leaves
5 free parameters for a full specification.

This class of morphs is too wide because it includes physically impossible shapes. The
orientation of the mouth curve should be such that a mouth opening results and the shape
may not ‘bite’ itself when walking along the spiral. This constraint can be translated
into the constraint that the intersections of the exoskeleton with the x, z-plane should not
intersect each other. The intersections of the mouth curve with the x, z-plane are easy
to construct, given points on the mouth curve. When the point m1 ≡ (m1,m2,m3) on
the mouth curve m(0) spirals its way back to the vertex, it intersects the x, z-plane at
cli/2πR(li)m1, with li = iπ − arctanm2/m3 for i = 0,−1,−2, · · ·.

The distinction Raup [584] made between a generating curve and a biological one
is purely arbitrary and has neither biological nor geometric meaning; Raup raises the
problem that realistic values for the parameters he uses to characterize shape tend to
cluster around certain values. Schindel [634] correctly pointed out that this depends on
the particular way of defining parameters, and he used the intersection of (2.1) with the
x, z-plane to characterize shape and showed that realistic values for parameters of this
curve did not cluster. Any parameterization, however, is arbitrary unless it follows the
growth mechanism. This shape of permanent exoskeletons is dealt with here to show that
the shape is a result of the isomorphic constraint.
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Nautilus has a fixed number of septa per revolution. This is to be expected as it makes a
septum as soon as the end chamber in which it lives exceeds a given proportion of its body
size. (The fact that the septa in subsequent revolutions frequently make contact implies
that Nautilus somehow knows the number π.) These septa cause the shell to be no longer
isomorphic in the strict sense, but to be what can be called periodically isomorphic, by
which I mean that isomorphism no longer holds for any two values of l, but for values that
differ by a certain amount. Many gastropods are sculptured at the outer surface of their
shell; this sculpture is formed by the mantle curling around the shell edge. The distance
from the shell edge and the height of the sculpture relates to the actual body size, the
result being a shell that is also periodically isomorphic. Sculpture patterns that do not
follow the mouth curve, but follow the logarithmic spirals, do not degrade isomorphism.
Some shells of fully grown ammonites and gastropods have a last convolution that deviates
in shape from the previous ones, showing a change in physiology related to life stage; this
will be discussed later, {83,150}.

Most shapes are simple and correspond to special cases where the mouth curve lies in
a plane. For p1 = 0, the mouth curve lies in a plane parallel to the x, z-plane; shapes such
as Planorbis and Nautilus result if the mouth curve is symmetrical around the x, y-plane.
A growing sheet is obtained when p1 → 0 and p2 = 0 so that the mouth curve lies in the
y, z-plane. Age ridges can still show logarithmic spirals (in the plane), depending on the
value of c. Figure 2.3 gives a sample of possible shapes. Although the shell of Spirula is
internal rather than external, this does not spoil the argument.

From an abstract point of view, the closed mouth curve can secrete exoskeletons to
either side and no formal restrictions exist for the parameters describing their surfaces.
(The biological reality is that two mouth curves are lined up and can be moved apart to let
the animal interact with the environment.) Animals such as bivalves have two logarithmic
spirals sharing the same mouth-curve, one turns clockwise, one anti-clockwise. Many
gastropods also have a second exoskeleton, the plane-like operculum, which is so small
that it easily escapes notice. Gastropods of the genera Berthelinia, Julia and Midorigai

have two valves, much like the bivalva. As illustrated in figure 2.4, more complex shape
are possible when the mouth curve is branched.

2.3.3 Changing shapes

Huxley [345] described how certain parts of the body can change in size relative to the
whole body, cf. {252}. He used allometric functions to describe this change and pointed
to the problem that if some parts change in an allometric way, other parts can not. From
an energetics point of view, the change in relative size of some extremities is not very
important. The total volume is of interest because of maintenance processes, and certain
surface areas for acquisition processes. The fact that wings, for instance, have a delayed
development in birds is of little relevance to whole body growth. The basic problem is
in the relationship between the size measure and the volume that has to be maintained.
Reserve materials allocated to reproduction contribute substantially to the trunk length of
the larvacean Oikopleura, but do not require maintenance. I will show on {147} how such
lengths can be used to study growth and reproduction investment simultaneously.
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Patella, c→ ∞, p2 = 0

Nautilus, c = 3, p1 = 0, p2 → 0

Spirula, c = 5, p1 = 0, p2 → 0
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Lymnaea, c = 2, p1 = 0, p2 → 0

Mytilus, c = 104, p1 → 0, p2 = 0

Ensis, c = 105, p1 → 0, p2 = 0

Figure 2.3: A sample of possible shapes of isomorphs with permanent exoskeletons. The mouth
curves are shown at equal steps for the dummy argument (Lymnaea, Spirula) or for time. Illumi-
nate well and evenly to obtain the stereo effect. Hold your head about 50 cm from the page with
the axis that connects your eyes exactly parelell to that for the figures. Do not focus at first on
the page but on an imaginary point far behind the page. Try to merge both middle images of the
four you should see this way. Then focus on the merged image. If this fails, try stereo glasses.
If the grey is in front, rather than at the background, you are looking with your right eye to the
left picture. Prevent this with a sheet of paper placed between your eyes and the page. About
10% of people actually look with one eye only and thus fail to see depth. If necessary, test this
by raising one finger in front of your nose and counting the number of raised fingers that you see
while focusing at infinity.
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Figure 2.4: The goose barnacle (Scalpellum

scalpellum) has an exoskeleton with a large num-
ber of components, each belonging to the fam-
ily (2.1); it is an example of a branched mouth
curve. Tetrahedrons provide an example of
permanent exoskeletons with three branching
points in the mouth curve and cubes with eight.
If the (branched) mouth curve is a globular
network, the exoskeleton can even resemble a
sphere.

Some species such as echinoderms and some insects change shape over different life-
stages. Some of these changes do not give problems because food intake is sometimes
restricted to one stage only. If the shape changes considerably during development, and if
volume has been chosen as the basis for size comparisons, the surface area related processes
should be corrected for these changes in shape. A convenient way to do this is by means
of the dimensionless shape correction function M(V ), which stands for the actual surface
area relative to the isomorphic one for a body with volume V , where a particular shape
has been chosen as the reference. The derivation of this function will be illustrated for
two important examples that will occur throughout the book: filamentous hyphae of fungi
and rod-shaped bacteria. These organisms are both very important from a biological point
of view and they serve to illustrate the important notion of 0D- and 1D-isomorphs.

If a filament can be conceived as a cylinder with variable length, and thus variable
volume V , but a fixed diameter Lφ, its surface area equals A(V ) = 4V L−1

φ if the caps
are excluded. Suppose now that the cylinder grows isomorphically from the start. The
surface area of the isomorphic cylinder, i.e. a cylinder that has a diameter proportional to
its length, is proportional to V 2/3. The constant of proportionally depends on the choice
of a reference volume, say Vd. The isomorphic surface area is thus Ad(V/Vd)

2/3, where Ad
denotes the surface area of a cylinder with volume Vd. So the shape correction function
for filaments becomes

M(V ) =
4V L−1

φ

4VdL
−1
φ (V/Vd)2/3

= (V/Vd)
1/3 (2.4)

It is not essential that the cross section through a filament is circular, it
can be any shape, as long as it does not change during growth.
The important aspect is that growth is isomorphic in one direction. So it must be possible
to the orient the body such that the direction of growth is along the x-axis, while no growth
occurs along the y- and z-axes. The different body sizes can be obtained by multiplication
of the x-axis by some scalar l. By doing so, both the surface area and the volume are
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Figure 2.5: Left: The kinetoplastid Trypanosoma does not grow in the longitudinal direction,
along which it divides. The change in shape is like a 2D-isomorph. Right: The blue-green
bacterial colony Merismopedia is only one cell layer thick. Although this sheet also grows in
two dimensions, it is a 1D-isomorph. The arrangement of the cells requires an almost perfect
synchronization of the cell cycli.

multiplied by l, so A = AdV/Vd, if the surface area at V = 0 is negligibly small. Division
by the isomorphic surface area Ad(V/Vd)

2/3 results in the shape correction function for
filaments. Filaments are therefore 1D-isomorphs, while the isomorphs of the previous
subsection are in fact 3D-isomorphs.

Several unicellulars divide longitudinally, such as members of sev-
eral classes of the phylum Zoomastigina (Opalinita, Retortamonadida,
Choanomastigotes, Kinetoplastida) and some filamentous bacteria (spiro-
chetes [333]). The notorius Trypanosoma, which cause sleeping sick-
ness, are among these unicellulars; see figure 2.5. Some are filamentous, but do in some
respects just the opposite of the above mentioned filaments; they grow in diameter rather
than length. To illustrate the concept of the shape correction function, I will derive here the
shape correction function for this growth pattern, assuming that growth perpendicular to
the longitudinal axis of the body is isomorphic and that no growth occurs in the longitudinal
direction.

Thus it is possible to orient the body with its axis of no growth along the x-axis and
multiply both the y- and z-axes by some scalar to obtain different body sizes. There are
no restrictions in shape, as long as growth in the y, z-plane is isomorphic and for each
x, y-value there are a limited number of z-values. The body need not be rotationally
symmetric, it can taper towards its ends. Multiplying the y- and z-axis by some value l
results in a multiplication of the surface area of the body by l and of the volume by l2. (To
see this, one should realize that surface area can be written as A =

∫ Ld
0 Lc(x) dx, where

Lc(x) denotes the circumference of the cross section through the body at x, and Ld the
length of the body in the longitudinal direction. Multiplying the y- and z-axes by some
value l results in a multiplication of Lc(x) with l, while Ld remains untouched. Likewise,
volume can be written as V =

∫ Ld
0 Ac(x) dx, where Ac(x) denotes the surface area of the

cross section at x, which is multiplied by l2.) For some reference volume Vd for l = 1, we



32 2. Individuals

have thus l =
√

V/Vd, or A = Ad
√

V/Vd, where Ad denotes the surface area of a body with

volume Vd. The surface area of a 3D-isomorph is Ad(V/Vd)
2/3, so that the shape correction

function for 2D-isomorphs is

M(V ) = Ad
√

V/Vd(Ad(V/Vd)
2/3)−1 = (Vd/V )1/6 (2.5)

This correction function for 2D-isomorphs decreases with the cubic root of a length mea-
sure, while for 1D-isomorphs (filaments) it increases with a length measure.

A subtlety of this reasoning can be illustrated by sheets, i.e. flat bodies
that only grow in two dimensions, with a constant, but small, height.
The archaebacterium Methanoplanus fits this description.
Several colonies, such as the sulphur bacterium Thiopedia, the blue-green bacterium Meris-

mopedia and the green alga Pediastrum also fall into this category; see figure 2.5. How
sheets grow in two dimensions does not matter: they may change wildly in shape during
growth. Height must be small to neglect the contribution of the sides to the total sur-
face area. The surface area of the sheet relates to its volume as A(V ) = 2V L−1

h , where
Lh denotes the height of the sheet and the factor 2 accounts for the upper and lower
surface area of the sheet. Division by the isomorphic surface area A(Vd)(V/Vd)

2/3 gives
M(V ) = (V/Vd)

1/3, as for filaments, i.e. 1D-isomorphs. This may come as a surprise since
sheets have much in common with 2D-isomorphs, where height Lh plays the same role as
longitudinal length Ld. The important difference is that for x = 0 and x = Lh, there are
infinitely many z-values for appropriately chosen y-values, a case that has been excluded
for 2D-isomorphs. This suggests an obvious route for mixtures of 1D- and 2D-isomorphs:
thick sheets that grow isomorphically in two dimensions. So the upper and lower surface
areas behave as a 1D-isomorph, while the sides behave as a 2D-isomorph.

This conclusion invites a examination of the contribution of the caps
in filaments. This can best be done via the introduction of biofilms,
conceived as super-organisms, which resemble sheets, but in some ways
they do the opposite; they grow in height rather than in the direction
of the sheet, but the increase in surface area is negligibly small. A biofilm on a plane
can be conceived formally as a 0D-isomorph. Its surface area is just Ad, while that of
a 3D-isomorph is still Ad(V/Vd)

2/3, which leads to the shape correction function for 0D-
isomorphs

M(V ) = (Vd/V )2/3 (2.6)

Films relate to sheets as 1D-isomorphs relate to 2D-isomorphs. Films frequently occur in
combination with 1D-isomorphs, as will be shown.

Cooper [137] argues that at constant substrate density Escherichia grows
in length only, while the diameter-length ratio at division remains con-
stant for different substrate densities.
(For the use of the term ‘density’, see the remark under (3.3).) This mode of growth and
division is typical for most rod-shaped bacteria, and most bacteria are rod-shaped. Shape
and volume at division, at a given substrate density, are selected as a reference. The cell
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then has, say, length Ld, diameter δLd, surface area Ad and volume Vd. The fraction δ is
known as the aspect ratio of a cylinder. The index d will be used to indicate length, surface
area and volume at division at a given substrate density. The shape of the rod shaped
bacterium is idealized by a cylinder with hemispheres at both ends and, in contrast to a

filament, the caps are now included. Length at division is Ld =
(

4Vd

(1−δ/3)δ2π

)1/3
, making

length L = δ
3

(

4Vd

(1−δ/3)δ2π

)1/3
+ 4V

πδ2

(

(1−δ/3)δ2π
4Vd

)2/3
. Surface area becomes A = L2

d
π
3
δ2 +

4V
δLd

. The surface area of an isomorphically growing rod equals Ad(V/Vd)
2/3. The shape

correction function is the ratio of these surface area’s. If volume, rather than length, is
used as an argument the sought, dimensionless, correction function becomes

M(V ) =
δ

3

(

Vd
V

)2/3

+

(

1 − δ

3

)

(

V

Vd

)1/3

(2.7)

When δ = 0.6, the shape just after division is a sphere as in cocci, so
this is the upper boundary for aspect ratio δ. This value is obtained
by equating the volume of a cylinder to that of a sphere with the same
diameter. When δ → 0, the shape tends to a filament.

The shape correction function for rods can now be conceived as a
weighted sum of those for a 0D- and a 1D-isomorph, with a simple ge-
ometric interpretation of the weight coefficients. A cylinder with blunt
caps has the shape correction function

M(V ) =
δ

δ + 2

(

Vd
V

)2/3

+
2

δ + 2

(

V

Vd

)1/3

(2.8)

which is again a weighted sum of correction functions for 0D- and 1D-isomorphs. For the
aspect ratio δ → ∞, the shape can become arbitrary close to a 0D-isomorph. The exact
geometry of the caps is thus of less importance for surface area/volume relationships. Rods
are examples of static mixtures of a 0D- and a 1D-isomorph, i.e. the weight coefficients do
not depend on volume. Crusts are examples of dynamic mixtures and will be discussed on
{145}.
The table right summarizes the shape correc-
tion functions for isomorphs of different di-
mensions. The power of the scaled volumes
has an odd relationship with the dimension of
isomorphy. Mixtures of 1D- and 0D- or 2D-
isomorphs can resemble 3D-isomorphs, de-
pending the weight coefficients and the range
of values for the scaled volume.

Dim M(V )

0 (V/Vd)
−2/3

1 (V/Vd)
1/3

2 (V/Vd)
−1/6

3 (V/Vd)
0

2.3.4 Weight/volume relationships

In the discussion about shape coefficients, {21}, the crude relationship Ww = [dw]V was
used to relate wet weight to structural biovolume. This mapping in fact assumes home-
ostasis, see {38}, without a decomposition of the organism into a structural and a storage
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component. Almost all of the literature is based on this relationship or the similar one for
dry weights: Wd = [dd]V .

For some purposes in energetics, such relationships between volumes and weights are
far too crude. One needs a more refined definition of size to distinguish structural body
volume from energy reserves. The necessity of making this distinction originates, among
other things, from the quantification of metabolic costs. These costs are not paid for
reserve materials; this is most obvious for freshly laid bird eggs. Such eggs are composed
almost entirely of reserve materials and use practically no oxygen, as will be discussed
later, {84,103}.

Some convenient size measures, such as weight, suffer more from the contribution of
reserves than others. For example, energy allocated to reproduction, but temporarily stored
in a buffer, will contribute to weight, but not to structural body volume. Energy reserves
replace water in many aquatic species [553,788], but in the human species, for instance,
energy reserves are often (painfully) visible. Energy reserves generally contribute more to
dry weight than to wet weight [248]. While wet weight is usually easier to measure and can
be obtained in a non-destructive way, dry weight has a closer link to chemical composition
and mass balance implementations. I will show on {192} how to separate structural body
mass from reserves and determine the relative abundances of the main elements for both
categories on the basis of dry weight.

The relationship between wet weight Ww and dry weight Wd and structural body vol-
ume, V , non-allocated energy reserves E, and energy reserves allocated to reproduction
EṘ is

Ww = [dwv]V + [dwe](E + EṘ)/[Em] (2.9)

Wd = [ddv]V + [dde](E + EṘ)/[Em] (2.10)

where [Em] denotes the maximum non-allocated reserve energy density as discussed in the
next chapter. Its occurrence here is just to obtain the dimension weight volume−1 for the
density [dwe] and it is part of the tactic to avoid measurement of energies if not strictly
required. If food is ad libitum, the energy reserve E will be found to evolve to [Em]V in the
deb theory, so that the energy reserves will then contribute [dwe]V to wet weight. Under
this condition weight is thus proportional to volume, apart from the possible contribution
of reserves allocated to reproduction. If energy reserves replace water and the specific
density of the energy reserves equals that of water, we have [dwe] = 0. If their specific
density is less than that of water because of a high lipid content, for instance, [dwe] can
be negative if the reserves still replace water. The conversion coefficients [d∗∗] have fixed
values, due to homeostasis for the structural biomass and the reserves, see {38}.

Although this relationship between weight and structural biovolume is more accurate
than a mere proportionality, it is by no means ‘exact’ and it depends again on the species.
The gut contents of earthworms, shell of molluscs, exoskeleton of crustaceans and calcareous
skeleton of corals do not require maintenance and for this reason they should be excluded
from biovolume and weight. In the finer details, all species pose specific problems for
the interpretation of size measurement. The contribution of inorganic salts to the dry
weight of small marine invertebrates is frequently substantial. Figure 2.6 illustrates the
interpretation problem in the measurement of ash-free dry weight in relation to length in
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Figure 2.6: The ash-free dry weight and the length of the cheatognat Sagitta hispida. Data from
Reeve [589,588]. The curve through the lengths is L(t) = L∞ − (L∞ − L0) exp{−γ̇t}.

cheatognats. Length measurements follow the expected growth pattern closely at abundant
food, while the description of weight seems to require an ad hoc reasoning. Although
quickly said, this is an important argument in the use of measurements within a theoretical
context: if an explanation that is not species-specific competes with a specific one, the
first explanation should be preferred if the arguments are otherwise equally convincing.
Since energy reserves contribute to weight and are sensitive to feeding conditions, weights
usually show much more scatter, in comparison to length measurements. This is illustrated
in Figure 2.7.

The determination of the size of an embryo is complicated by the extensive system of
membranes the embryo develops in order to mobilize stored energy and materials and the
decrease in water content during development [766]. In some species, the embryo can be
separated from ‘external’ yolk. As long as external yolk is abundant, the energy reserves
of the embryo without that yolk, if present at all, will on the basis of deb theory turn out
to be a fixed fraction of wet and dry weight, so that the embryo volume is proportional
to weight. Uncertainty about the proportionality factor will hamper the comparison of
parameter values between the embryonic stage and the post-embryonic one.

The aqueous fraction of an organism is of importance in relation to the kinetics of
toxicants. The aqueous weight is the difference between wet weight and dry weight, so
Wa = Ww −Wd. It can be written as Wa = [dwa]V , for

[dwa] = [dwv] − [ddv] + ([dwe] − [dde])
E + EṘ
[Em]V

(2.11)

The contribution of the last term, which stands for that of the reserves to the volume-
water weight conversion, is probably small in most cases. The volume occupied by water
is Va = Wa/da, where da stands for the specific density of water, which is close to 1 g cm−3.
The aqueous fraction of structural body volume is thus Va/V = [dwa]/da and typically
takes values between 0.7 and 0.9.

It is possible to use variations in weight relative to some measure of length to indicate
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Figure 2.7: The weight to the power 1/3 and the head length of the long-nosed bandicoot
Perameles nasuta. Data from Lyne [444]. The curves are again L(t) = L∞−(L∞−L0) exp{−γ̇t}.

variations in energy reserves. This has been done for birds [552], and fish. There exists a
series of coefficients to indicate the nutritional condition of fish, e.g. (weight in g)×(length
in cm)−1, which is sometimes used with a factor 1, 10 or 100. It is known as the condition
factor, Hile’s formula or the ponderal index [7,240,318,343].

The problems energy reserves pose for the finer details of the definition of size are
not restricted to weights. They also affect the relationship between total volume and
structural volume, in a way comparable to wet weights for species that do not interchange
water for energy reserves. I see structural volume and energy reserves as rather abstract
quantities that define the state of an organism. deb theory specifies how the behaviour of
the organism depends on its state. In addition to that, we need theories that relate these
abstract quantities to things we can measure in order to substantiate the claim that deb

theory is about the living world. This subsection presents such an auxiliary theory of how
weights (things we can measure) relate to the (abstract) state variables structural volume
and energy reserves. This mapping rests on a key concept of deb theory: homeostasis.
An intimate relationship thus exists between the (deb) theory that is based upon abstract
quantities and the auxiliary theory that relates abstract quantities to measurements. Later,
{103,192}, I will show that this relationship is even more intimate for the auxiliary theory
that relates respiration measurements to (abstract) energy fluxes. The reason for discussing
the relationship between weight and structural volume and energy reserves in a chapter
prior to the developing the deb theory is to stress the distinction between ‘core’ theory of
abstract variables and auxiliary theories of relationships with measurements. If the core
theory is no longer useful, the auxiliary theories should be thrown away automatically.
However, it is possible to change to other auxiliary theories, without changing the core
theory.

The relationship between volume, reserves and mass will be worked out further in the
section on mass-energy coupling, {192}.
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2.3.5 C-mole/volume relationships

The microbiological tradition is to express the relative abundances of the elements hydro-
gen, oxygen and nitrogen in dry biomass relative to that of carbon and to conceive the
combined compound so expressed as a kind of abstract ‘molecule’ that can be counted
and written as CHnHW

OnOW
NnNW

. For each C-atom in dry biomass, there are typically
nHW = 1.8 H-atoms, nOW = 0.5 O-atoms and nNW = 0.2 N-atoms for a randomly chosen
micro-organism [608]. This gives a ‘molecular weight’ of wW = 24.6 g mol−1, which can
be used to convert dry weights into what are called ‘C-moles’. The relative abundances of
elements in biomass-derived sediments largely remain unaltered on a geological time scale,
apart from the excretion of water. In the geological literature the Redfield ratio C:N:P
= 105:15:1 is popular [587], or for silica bearing organisms such as diatoms, radiolari-
ans, silico-flagelates and (some) sponges C:Si:N:P = 105:40:15:1. This literature usually
excludes hydrogen and oxygen, because their abundances in biomass-derived sediments
change considerably during geological time. Other bulk elements in organisms are S, Cl,
Na, Mg, K and Ca, while some 14 other trace elements play an essential role, as reviewed
by Fraústo da Silva and Williams [231]. The ash that remains when dry biomass is burnt
away is rich in these elements. Since ash-weight is typically some 5% of dry weight, I will
here include the first four most abundant elements only, but the inclusion of more elements
is straightforward. As stated before, some taxa require special attention on this point.

As for weight densities, the chemical composition of biomass cannot be taken constant
for most purposes in energetics, {192}. If a ‘molecule’ of structural biomass is denoted by
CHnHV

OnOV
NnNV

and of energy reserves by CHnHE
OnOE

NnNE
, the relative abundances in

dry biomass are for [E] ≡ E/V given by

n∗W =
n∗V [dmv] + n∗E[dme][E]/[Em]

[dmv] + [dme][E]/[Em]
(2.12)

where ∗ stands for H, O or N and [dmv] and [dme] denote the conversion coefficients from
structural biovolume and energy volume to C-mole. These conversion coefficients have
simple relationships with those from volume to dry weight, because the ‘molar weight’ of
structural biovolume and energy reserves are given by

wV ≃ [ddv]/[dmv] = 12 + nHV + 16nOV + 14nNV gram mol−1

wE ≃ [dde]/[dme] = 12 + nHE + 16nOE + 14nNE gram mol−1

since the contribution of the other elements to dry weight is negligibly small. The problem
of uncovering the relative abundances n∗V and n∗E from measurements of n∗W , will be
discussed on {192}.

As is standard in the microbiological literature, the concept of C-mole will be extended
to (simple) substrates, the difference from an ordinary mole being that it always has at most
1 C-atom. For reasons of consistency of notation, substrate density X0 will be expressed on
a volume per volume basis, while dmxX0 gives substrate as C-mole per volume. The same
strategy will be used for products that are produced by micro-organisms; [dmp] converts
volume of product into mole of product.
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2.4 Homeostasis

The compounds that cells use to drive metabolism require enzymes for their chemical
transformation. Compounds that react spontaneously are excluded. In this way cells
achieve full control over all transformations, because they synthesize enzymes, consisting
of protein, themselves. No reaction runs without the assistance of enzymes. The properties
of enzymes depend on their micro-environment. So homeostasis, i.e. a constant chemical
composition, is essential for full control. Changes in the environment in terms of resource
availability, both spatial and temporal, require the formation of reserve pools to ensure a
continuous supply of essential compounds for metabolism. This implies a deviation from
homeostasis. The cells solution to this problem is to make use of polymers that are not
soluble. In this way these reserves do not change the osmotic value. In many cases cells
encapsulate the polymers in membranes, to reduce interference even further, at the same
time increasing access, as many cellular activities are membrane bound.

Reserve materials can be distinguished from materials of the structural biomass by
a change in relative abundance if resource levels change. This defining property breaks
down in case of extreme starvation when structural materials are degraded as well as when
reserves are exhausted. An example of this is the break down of muscle tissue in mammals
such as ourselves, which must be considered as structural material. The distinction between
reserves and structural materials is meant to accommodate the fact that some materials
are more mobile than others. deb theory builds on a two-way classification and in fact
assumes homeostasis implicitly for structural biomass and reserve separately, via two other
assumptions. Homeostasis is assumed for the structural materials because the volume-
specific energy costs for growth are assumed to be constant, as explained in the next
chapter. The assumption that the energy content of reserve materials is just proportional
to the amount of reserve material, without any labels relating to their composition, in fact
implies the assumption of homeostasis for reserve materials as well, and because the amount
of reserves can change relative to the structural materials, the chemical composition of the
whole body can change. That is, it can change in a particular way. This is a consequence of
the choice of energy as a state variable rather than the complete catalogue of all compounds.

Storage and structural compounds differ in the way in which they are non-permanent
in organisms. Storage materials are continuously used and replenished, while structural
materials, and in particular proteins, are subjected to continuous degradation and recon-
struction. Most proteins (enzymes) have a fragile, tertiary structure, which results in
very short mean, functional lifetimes. Energy costs for protein turnover are included in
maintenance costs. The deb model assumes no maintenance for energy reserves.

The two-way classification of compounds into permanent (structural biomass) and dy-
namic (reserves) will doubtlessly prove to be too simplistic on biochemical grounds. It is,
however, a considerable improvement on the one-way classification, which is standard at
present, in the field considered in this book. The consequences of a two-way classification
for the interpretation of measurements and for the evaluation of population dynamical
properties are complicated enough.

The reserve dynamics within the deb model will work out such that homeostasis applies
for the whole organism (including structural biomass and reserves) from birth to death, if
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food density does not change and reserves are at equilibrium. Realistic or not, any attempt
to deviate from this property will soon break down with insurmountable problems of tying
measurements of body size to the abstract variables structural biomass and reserves. This,
of course, would degrade the testability of such a theory and so its usefulness.

2.4.1 Storage materials

Storage material can be classified into several categories; see table 2.2. These categories do
not point to separate dynamics. Carbohydrates can be transformed into fats, for instance.
Most compounds have a dual function as a reserve pool for both energy and elementary
compounds for anabolic processes. For example, proteins stores supply energy, amino acids
and nitrogen. Ribosomal rna (rrna) catalyzes protein synthesis. In rapidly growing cells
such as those of bacteria in rich media, rrna makes up to 80% of the dry weight, while
the relative abundance in slowly growing cells is much less. For this reason, it should
be included in the storage material. I will show how this point of view leads to realistic
descriptions for peptide elongation rates, {250}, and growth rate related changes in the
relative abundance of nitrogen, {192}. There is no requirement that storage compounds
be inert.

Waxes can be transformed into fats (triglycerides) and play a role in buoyancy e.g. of
zooplankton in the sea [55]. By increasing their fat/wax ratio, they can ascend to the
surface layers, which offer different food types (phytoplankton), temperatures and currents.
Since surface layers frequently flow in directions other than deeper ones, they can travel
the earth by just changing their fat/wax ratio and stepping from one current into another.
Wax ester biosynthesis may provide a mechanism for rapidly elaborating lipid stores from
amino acid precursors [627].

Unsaturated lipids, which have one or more double bonds in the hydrocarbon chain, are
particularly abundant in cold water species, compared with saturated lipids. This possibly
represents a homeo-viscous adaptation [654].

The amount of storage materials depends on the feeding conditions in the (recent)
past, cf. {72}. Storage density, i.e. the amount of storage material per unit volume of
structural biomass, tends to be proportional to the volumetric length for different species,
if conditions of food (substrate) abundance are compared, as explained on {218} and tested
empirically on {224}. This means that the maximum storage density of bacteria is small.
Under conditions of nitrogen limitation for instance, bacteria can become loaded with
energy storage materials such as polyphosphate or polyhydroxybutyrate, depending on the
species. This property is used in biological plastic production and phosphate removal from
sewage water. Intracellular lipids can accumulate up to some 70% of the cell dry weight in
oleaginous yeasts, such as Apiotrichum [582,785]. This property is used in the industrial
production of lipids. The excess storage is due to the uncoupling of energy and mass
fluxes in bacteria and these conditions have been excluded from the present analysis. Only
situations of energy limitation are dealt with.
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Table 2.2: Some frequently used storage materials in heterotrophs.

phosphates

pyrophosphate bacteria
polyphosphate bacteria (Azotobacter)

carbohydrates

β-1,3-glucans
leucosin Chrysomonadida, Prymnesiida

chrysolaminarin Chrysomonadida

paramylon Euglenida

α-1,4-glucans
starch Cryptomonadida, Dinoflagellida, Volvocida

glycogen blue green bacteria, protozoa, yeasts, molluscs
amylopectin Eucoccidiida, Trichotomatida, Entodiniomorphida

trehalose fungi, yeasts

lipoids

poly β hydroxybutyrate bacteria
triglyceride oleaginous yeasts, most heterotrophs
wax sea water animals

proteins most heterotrophs
ovalbumin egg-white protein
casein milk protein (mammals)
ferritin iron storage in spleen (mammals)
cyanophycine blue green bacteria
phyocyanin blue green bacteria

ribosomal rna all organisms



2.5. Energy 41

Figure 2.8: Some storage deposits are really eye-catching.

2.4.2 Storage deposits

Lipids, in vertebrates, are stored in cell vacuoles in specialized adipose tissue, which occurs
in rather well defined surface areas of the body. The cells themselves are part of the
structural biomass, but the contents of the vacuole is part of the reserves. In molluscs
specialized glycogen storage cells are found in the foot [308]. The areas for storage deposits
are usually found scattered over the body and therefore appear to be an integral part of
the structural body mass, unless super-abundant; see figure 2.8. The occurrence of massive
deposits is usually in preparation for a poor feeding season. The rodent Glis glis is called
the ‘edible doormouse’, because of its excessive lipid deposits just prior to dormancy, {131}.
(Stewed in honey and wine, doormice were a gourmet meal for the ancient Romans.)

In most invertebrate groups, storage deposits do not occur in specialized tissues, but
only in the cells themselves at an amount that relates to requirements. So reproductive
organs tend to be rich in storage products. The mesoglea of sea anemones, for instance, has
mobile cells that are rich in glycogen and lipid, called ‘glycocytes’, which migrate to sites of
demand during gametogenesis and directly transfer the stored materials to e.g. developing
oocytes [654]. Glycogen that is stored for long-term typically occurs in rosettes and for
short-term in particles [322,654].

2.5 Energy

Energy fluxes through living systems are difficult to measure and even more difficult to
interpret. Let me mention briefly some of the problems.

Although it is possible to measure the thermodynamic energy content of food through
complete combustion, this only shows that the organism cannot gain more energy from
food, since combustion is not complete. Food is degraded to a variety of elementary
compounds, some of which are used for anabolism. Another problem is that of digestion
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efficiency. The difference between the energy content of food and faeces is just an upper
boundary for the influx, because there are energy losses in the digestion process. Part of
this difference is never actually used by the organism, but is used by e.g. the gut flora.
Another part becomes lost by enhanced respiration coupled to digestion, especially of
proteins, called ‘specific dynamic action’ or ‘heat increment of feeding’.

Growth involves an energy investment, which is partially preserved in new biomass. On
top of the energy content of the newly formed biomass, energy has been invested to give it
its structure. Part of this energy is lost during growth and can be measured as dissipating
heat. This heat can be considered as an overhead of the growth process. The energy that
is fixed in new biomass is partly present as energy bearing compounds. Cells are highly
structured objects and the information contained in their structure is not measured by
bomb calometry.

Thermodynamics of irreversible or nonequilibrium processes offers a framework to pin-
point the problem, cf. [281,421] for instance. While bomb calometry measures enthalpy,
Gibbs free energy is the more useful concept to quantify the energy performance of individ-
uals. Enthalpy and Gibbs free energy are coupled via the concept of entropy: the enthalpy
of a system equals its Gibbs free energy minus the entropy times the absolute temperature.
This basic relationship was formulated by Gibbs in 1878. The direct quantification of en-
tropy requires the complete specification of the biochemical machinery, which is exactly
what we try to avoid. (Dörr [177], for instance, gives an entropy reduction of 0.05 eV
≃ 5 kJ mol−1 associated with the spatial fixation of one single amino acid group of a chain
molecule at 25 ◦C.) Gibbs relationship can be used to measure entropy indirectly in sim-
ple systems such as micro-organisms growing on well defined substrates via enthalpy and
free energy. Since such free energies for micro-organisms are measured at the population
level, a detailed discussion is postponed till {201}. Although this discussion opens the
way to determine the entropy of living systems, I did not yet attemp to obtain numerical
estimates, unfortunately. Existing ideas still range from entropy values larger than that of
substrate (succinic acid) [42] to very low values [434].

All these problems about the measurement and interpretation of energy hamper di-
rect experimental testing of assumptions about energy flows. It is possible, however, to
circumvent this problem to some extent in a stunningly simple way: by not measuring
energies! By refraining from direct testing of assumptions about energies, one would think
that theories about energy fluxes are not testable and, therefore, useless. The consequences
of such assumptions for quantities that do not represent energies, however, are testable.
Many testable consequences are presented and actually tested in this book. Tests on con-
sequences of assumptions on energy are weaker tests, which becomes apparent as soon as
one or more consequences are found to be not realistic enough. It can be quite a puzzle
to identify which of the assumptions about energy is the least useful one. The procedure,
however, allows one to include overheads in parameter values without the obligation to
take the complete machinery apart for all species.

Despite the difficulties in interpretation of energy fluxes, many attempts have been
made to measure them. A relatively successful method is through the measurement of
respiration. One such empirical relationship is given by Brafield and Llewellyn [85] for
aquatic animals:
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heat loss in J = (11.16 mg O2 cons.) + (2.62 mg CO2 prod.) − (9.41 mg NH3 prod.)
Blaxter [73] advises replacement of the last term by −(5.93 mg N) − (3.39 mg CH4) for
mammals and by −(1.2 mg N) for birds. The justification of these conversions to energy
rests on the idea of homeostasis. This makes the relationship between energy fluxes and gas
exchange to some extent species-specific. The ratio between carbon dioxide production and
oxygen consumption on a molar basis is known as the respiration quotient (RQ). Complete
combustion of fat gives a respiration coefficient of 0.71, starch gives 1.0 and meat protein
gives 0.82 [324]. The respiration coefficient thus gives (partial) information about the
compounds that are combusted. If the composition of the combusted material remains
the same, so that the respiration coefficient is constant, the oxygen consumption rate is
proportional to the energy used.

Von Bertalanffy [64] related the respiration rate to the rate of anabolism. I cannot fol-
low this reasoning. At first sight, synthesis processes are reducing by nature, which makes
catabolism a better candidate for seeking a relationship with respiration. In the stan-
dard static budget studies, respiration rates are identified with routine metabolic costs.
Routine metabolic costs are a lump sum including the maintenance of concentration gradi-
ents across membranes, protein turnover, regulation, transport (blood circulation, muscle
tonus), and an average level of movement. The Scope For Growth (sfg) concept rests on
this identification. The idea behind this concept is that energy contained in faeces and the
energy equivalent of respiration are subtracted from energy derived from food, the remain-
der being available for growth [46]. In the deb model, where energy derived from food is
added to the reserves, the most natural candidate for a relationship with respiration is the
rate at which the reserves are used.

This interpretation is also not completely free of problems, even if the respiration
measurements are done on animals that are not digesting at the time. Some of the energy
used from the reserves is not lost, but is fixed in the structural biovolume. This introduces
some double counting. However, it seems realistic to assume that this flow is small in
comparison to the overheads of the anabolic processes. This is a rather crucial point in
the interpretation of respiration rates. Although respiration rates are measured over short
periods (typically a couple of minutes) and the actual growth of the body is absolutely
negligible, the energy invested in the growth process is by no means negligibly small.
Parry [531] estimates the cost of growth between 17 and 29% of the metabolism of an
‘average’ ectotherm population. The respiration rate includes routine metabolic costs as
well as costs for growth [619]. This interpretation is, therefore, incompatible with the sfg

concept. Since the deb model does not use respiration rates as a primary variable, the
interpretation problems concerning respiration rates only play a role in testing the model.

In the next chapter, I will argue that routine metabolic costs are proportional to struc-
tural biovolume, {76}, heating costs to surface area, {78}, and growth costs to volume
increase, {80}. I will show that these assumptions result in a respiration rate that is a
weighted sum of surface area and volume in steady state conditions for the reserves. This
is, for all practical purposes, numerically indistinguishable from the well known Kleibers
rule, that takes respiration to be proportional to weight to the power 0.75 or length to the
power 9/4; see figure 2.9. There are three major improvements in comparison to Kleibers
rule: this model does not suffer from dimensional problems, it provides an explanation
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Figure 2.9: The respiration rate of Daph-

nia pulex with few eggs at 20 ◦C as a func-
tion of length. Data from Richman [595].
The deb model based curve 0.0336L2 +
0.01845L3 as well as the standard allomet-
ric curve 0.0516L2.437 have been plotted
on top of each other, but they are so sim-
ilar that this is hardly visible. Looking
hard, you will notice that the line width
varies a little.

Figure 2.10: The Arrhenius plot for the
development time for eggs of the water-
flea Chydorus sphaericus, i.e. the time be-
tween egg laying and hatching. Data from
Meyers [482].

rather than a description and it accommodates species that deviate from Kleibers rule,
such as endotherms. This will be discussed later in somewhat more detail, {103}.

2.6 Temperature

All physiological rates depend on the temperature of the body. For a species-specific range
of temperatures, the description proposed by Arrhenius in 1889, see e.g. [260], usually fits
well:

k̇(T ) = k̇(T1) exp
{

TA
T1

− TA
T

}

(2.13)

where T is the absolute temperature (in Kelvin), T1 a chosen reference temperature, TA a
parameter known as the Arrhenius temperature and k̇ a (physiological) reaction rate. So,
when ln k̇ is plotted against T−1, a straight line results with slope TA; see figure 2.10.

Arrhenius based this formulation on the van’t Hoff equation for the temperature coef-
ficient of the equilibrium constant and amounts to k̇(T ) = k̇(∞) exp{−Ea

RT
}, where k̇(∞) is

known as the frequency factor, R is the gas constant 8.31441 J K−1 mol−1, and Ea is called
the activation energy. Justification rests on the collision frequency which obeys the law of
mass action, i.e. it is proportional to the product of the concentrations of the reactants.
The Boltzmann factor exp{−Ea

RT
} stands for the fraction of molecules that manage to obtain
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Figure 2.11: The Arrhenius
plot for reproduction, inges-
tion, von Bertalanffy growth
and Weibull aging of Daphnia

magna; from [415]. The Ar-
rhenius temperature is 6400
K. ⋄ males, 2 females. Food:
the algae Scenedesmus sub-

spicatus (open symbols) or
Chlorella pyrenoidosa (filled
symbols). The ingestion and
reproduction rates refer to 4
mm individuals.

the critical energy Ea to react.

Eyring [260] studied the thermodynamical basis of the Arrhenius relationship in more
detail. He came to the conclusion that this relationship is approximate for bimolecular
reactions in the gas phase. His absolute rate theory for chemical reactions proposes a more
accurate description where the reaction rate is proportional to the absolute temperature
times the Boltzmann factor. This description, however, is still approximate [260,320].

The step from a single reaction between two types of particles in the gas phase to
physiological rates where many compounds are involved and gas kinetics do not apply is,
of course, enormous. If, however, each reaction depended in a different way on temperature,
cells would have a hard time coordinating the different processes when the temperature
fluctuated. The Arrhenius relationship seems to describe the effect of temperature on
physiological rates with acceptable accuracy in the range of relevant temperatures. Due to
the somewhat nebulous application of thermodynamics to describe how physiological rates
depend on temperature, I prefer to work with the Arrhenius temperature, rather than the
activation energy. I even refrain from the improvement offered by Eyring’s theory, because
the small correction does not balance the increase in complexity of the interpretation of
the parameters for biological applications.

Figure 2.11 shows that the Arrhenius temperatures for different rates in a single species
are practically the same, which again points to the regulation problem an individual would
experience, if they were different. Obviously, animals cannot respire more without eating
more.

In chemistry, activation energy is known to differ widely between different reactions.
Processes such as the incorporation of 14C-leucine into protein by membrane-bound rat-
liver ribosomes have an activation energy of 180 kJ mol−1 in the range 8-20 ◦C and 67
kJ mol−1 in the range 22–37 ◦C. The difference is due to a phase transition of the membrane
lipids, [723] after [10]. Many biochemical reactions seem to have an activation energy in
this range [680]. This supports the idea that the value of activation energy is a constraint
for functional enzymes in cells.

Table 2.3 gives Arrhenius temperatures for several species. The mean Arrhenius tem-
perature, TA, is somewhere between 10000 and 12500 K, which is consistent for the embryo
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development of 35 species [790] and the von Bertalanffy growth of 250 species [410]. The
value is in the upper range of values usually applied. This is due to the fact that many
experiments do not allow for an adaptation period. The problem is that many enzymes
are changed a little when temperature changes. This takes time, depending on species and
body size. Without an adaptation period, the performance of enzymes adapted to one tem-
perature is measured at another temperature, which usually results in a lower Arrhenius
temperature being measured.

At low temperatures, the actual rate of interest is usually lower than expected on the
basis of (2.13). If the organism survives, it usually remains in a kind of resting phase,
until the temperature comes up again. For many sea water species, this lower boundary
is between 0 and 10 ◦C, but for terrestrial species it can be much higher; caterpillars of
the large-blue butterfly Maculinea rebeli, for instance, cease growth below 14 ◦C [200].
The lower boundary of the temperature tolerance range frequently sets boundaries for
geographical distribution. Reef building corals only occur in waters where the temperature
never drops below 18 ◦C.

At high temperatures, the organism usually dies. At 27 ◦C, Daphnia magna grows very
fast, but at 29 ◦C, it dies almost instantaneously. The tolerance range is sharply defined at
the upper boundary. Nisbet [509] gives upper temperature limits for 46 species of protozoa,
ranging from 33 to 58 ◦C. The width of the tolerance range depends on the species; many
endotherms have an extremely small one. Thermophilic bacteria and organisms living in
deep ocean thermal vents thrive at temperatures of 100 ◦C or more.

Sharpe [644,651] proposed a quantitative formulation for the reduction of rates at low
and high temperatures, on the basis of the idea that the rate is controlled by an enzyme
that has an inactive configuration at low and high temperatures. The reaction to these
two inactive configurations is taken to be reversible with rates depending on temperature
in the same way as the reaction that is catalized by the enzyme, however the Arrhenius
temperatures might differ. This means that the reaction rate has to be multiplied by the
fraction of enzyme that is in its active state, which is assumed to be at its equilibrium
value. This fraction turns out to be

(

1 + exp
{

TA,L
T

− TA,L
TL

}

+ exp
{

TA,H
TH

− TA,H
T

})−1

(2.14)

where TL and TH relate to the lower and upper boundaries of the tolerance range and TA,L
and TA,H are the Arrhenius temperatures for the rate of decrease at both boundaries. All
are taken to be positive and all have dimension temperature. We usually find TA,H ≫ TA,L.
The fraction of enzyme that is active is close to 1 between TL and TH for realistic values
of these four temperatures.

Many extinctions are thought to be related to changes in temperature. This is the
conclusion of an extensive study by Prothero, Berggren and others [571] on the change in
fauna during the middle-late Eocene (40–41 Ma ago). This can most easily be understood
if the ambient temperature makes excursions outside the tolerance range of a species. If a
leading species in a food chain is a victim, many species that depend on it will follow. The
wide variety of indirect effects of changes in temperature complicate a detailed analysis
of climate-related changes in faunas. Grant and Porter [270] discuss in more detail the
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Table 2.3: Arrhenius temperatures as calculated from literature data on the growth of ectother-
mic organisms. The values for the mouse cells are obtained from Pirt [557]. The other values
were obtained using linear regressions.

species range TA type of source
(◦C) (K) data

Escherichia coli 23–37 6590 pop. growth [491]
Escherichia coli 26–37 5031 pop. growth [350]
Escherichia coli 12–26 14388 pop. growth [350]
Psychrophilic pseudomonad 12–30 6339 pop. growth [350]
Psychrophilic pseudomonad 2–12 11973 pop. growth [350]
Klebsiella aerogenes 20–40 7159 pop. growth [722]
Aspergillus nidulans 20–37 7043 pop. growth [724]
9 species of algae 13.5–39 6842 pop. growth [264]
mouse tissue cells 31–38 13834 pop. growth [751]
Nais variabilis 14–29 9380 pop. growth [366]
Pleurobrachia pileus 5–20 10000 Bert. growth [275]
Mya arenaria 7–15 13000 Bert. growth [18]
Daphnia magna 10–26.5 6400 Bert. growth [410]
Ceriodaphnia reticulata 20–26.5 6400 Bert. growth [410]
Calliopius laeviusculus 6.5–15 11400 Bert. growth [151]
Perna canaliculus 7–17 5530 lin. growth [317]
Mytilus edulis 6.5–18 8460 lin. growth larvae [679]
Cardium edule & C.glaucum 10–30 8400 lin. growth larvae [385]
Scophthalmus maximum 8–15 15000 lin. growth larvae [360]
25 species of fish 6–29 11190 embryonic period [467]
Brachionus calyciflorus 15–25 7800 embryonic period [282]
Chydorus sphaericus 10–30 6600 embryonic period [482]
Canthocampus staphylinus 3–12 10000 embryonic period [629]
Moraria mrazeki 7–16.2 13000 embryonic period [629]
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Table 2.4: The von Bertalanffy growth rate for the waterfleas Ceriodaphnia reticulata and Daph-

nia magna, reared at different temperatures in the laboratory both having abundant food. The
length at birth is 0.3 and 0.8 mm respectively.

Ceriodaphnia reticulata Daphnia magna

temp growth s.d. ultimate s.d. growth s.d. ultimate s.d
rate length rate length

◦C a−1 a−1 mm mm a−1 a−1 mm mm

10 15.3 1.4 4.16 0.16
15 20.4 4.0 1.14 0.11 25.9 1.3 4.27 0.06
20 49.3 3.3 1.04 0.09 38.7 2.2 4.44 0.09
24 57.3 2.6 1.06 0.01 44.5 1.8 4.51 0.06
26.5 74.1 4.4 0.95 0.02 53.3 2.2 4.29 0.06

geographic limitations for lizards set by temperature, if feeding during daytime is only pos-
sible when temperature is in the tolerance range, which leads to constraints on ectotherm
energy budgets.

As a first approximation it is realistic to assume that all physiological rates are affected
by temperature, so that a change in temperature amounts to a simple transformation
of time. Accelerations, such as the aging acceleration that will be introduced on {107},
must thus be corrected for temperature differences by application of the squared factor, so
k̈(T ) = k̈(T1) exp{−2TA(T−1

1 − T−1)}. It will be argued, {81}, that ultimate size results
from a ratio of two rates, so it should not depend on the temperature if all rates are affected
in the same way. Table 2.4 confirms this for two species of daphnids cultured under well
standardized conditions and abundant food [410]. This is consistent with the observation
by Beverton, see appendix to [126], that the walleye Stizostedion vitreum matures at 2
years at the southern end of its range in Texas and at 7 or 8 years in northern Canada,
while the size at maturation of this fish is the same throughout its range.

Ultimate sizes are, however, frequently found to decrease with increasing temperature.
The reason is usually that the feeding rate increases with temperature, so at higher tem-
peratures, food supplies are likely to become limited, which reduces ultimate size. I will
discuss this phenomenon in more detail in relation to the Bergmann rule, {132}. For a
study of the effects of temperature on size, it is essential to test for the equality of food
density. This requires special precautions.

A common way to correct for temperature differences in physiology is on the basis of
Q10 values, known as van’t Hoff coefficients. The Q10 is the factor that should be applied
to rates for every 10 ◦C increase in temperature: k̇(T ) = k̇(T1)Q

(T−T1)/10
10 . The relationship

with the Arrhenius temperature is thus Q10 = exp{10TA

TT1
}. Because the range of relevant

temperatures is only from about 0 to 40 ◦C, the two ways to correct for temperature
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differences are indistinguishable for practical purposes. If the reference temperature is
20 ◦C, or T1 = 293 K, Q10 varies from 3.49 to 2.98 over the full temperature range for
TA = 10000 K.

2.7 Life-stages

Three life-stages are to be distinguished: embryo, juvenile and adult. The triggers for
transition from one stage to another and details of the different stages will be discussed
later, {97}. This section serves to introduce the stages.

The first stage is the embryonic one, which is defined as a state early in the development
of the individual, when no food is ingested. The embryo relies on stored energy supplies.
Freshly laid eggs consist, almost entirely, of stored energy, and for all practical purposes,
the initial volume of the embryo can realistically be assumed to be negligibly small. At
this stage it hardly respires, i.e. it uses no oxygen and does not produce carbon dioxide.
(The shells of bird eggs initially produce a little carbon dioxide [77,294].) In many species,
this is a resting stage. Although the egg exchanges gas and water with the environment, it
is a rather closed system. Foetal development represents an exception, where the mother
provides the embryo with reserve material, such as in the placentals and some species
of velvet worm Peripatus. Complicated intermediates between reproduction by eggs and
foetuses exist in fishes [781,782], reptiles and amphibians [71,555,684]. The evolutionary
transition from egg to foetus occured many times independently. From the viewpoint of
energetics, foetuses are embryos because they are not taking food. The digestive system
is not functional and the embryo does not have a direct impact on food supplies in an
ecological sense. The crucial difference from an energetics point of view is the supply of
energy to the embryo. In lecithotrophic species, nutrients are provided by the yolk of the
ovum, whereas in matrotrophic species nutrients are provided by the mother as the foetus
grows, not just in vitellogenesis. The fact that eggs are kept in the body (viviparity)
or deposited into the environment (oviparity) is of no importance. (The difference is of
importance in a wider evolutionary setting, of course.) As in eggs, a number of species of
mammal have a developmental delay just after fertilization, called diapause [656].

The second stage is the juvenile one, in which food is taken but as yet resources are
not allocated to the reproductive process. In some species, the developing juvenile takes a
sequence of types of food or sizes of food particles. Most herbivores, for instance, initially
require protein rich diets which provide nitrogen for growth, cf. {60}. Some species, such as
Oikopleura, seem to skip the juvenile stage. It does not feed as a larva, a condition known
as lecithotrophic, and it starts allocating energy to reproduction at the same moment as
feeding. The larva is a morphologically defined stage, rather than an energy defined stage.
If the larva feeds, it is here treated as a juvenile, if not, it is considered to be an embryo.
So, the tadpole of the mouth-breeding frog Rheobatrachus, which develops into a frog
within the stomach of the parent, should for energy purposes be classified as an embryo,
because it does not feed. Parthenogenetic aphids have a spectacular mode of reproduction:
embryos producing new embryos [383] cf. {171}. Since aphids are oviviparous, females
carry daughters and grand daughters at the same time. The juvenile stage is lacking and
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the embryo stage overlaps with the adult one.

The word mammal refers to the fact that the young usually receive milk from the
mother during the first stage after birth, called the baby stage. The length of the baby
stage varies considerably. If adequate food is available, the guinea-pig Cavia can do without
milk [656]. At weaning the young experience a dramatic change in diet and frequently
the growth rate drops substantially. Few biochemical conversions are required for milk to
become building blocks for new tissue. The baby, therefore, represents a transition stage
between embryo and juvenile. The baby stage relates to the diet in the first instance, cf.
{60}, and not directly to a stage in energetic development, such as embryo and juvenile.
This can best be illustrated by the stoat Mustela erminea. Although blind for some 35–45
days, the female offspring reaches sexual maturity when only 42–56 days of age, before
they are weaned. Copulation occurs whilst they are still in the nest [384,656].

Asexually propagating unicellulars take food from their environment, though they do
not reproduce in a way comparable to the production of eggs or young by most multicel-
lulars. For this reason, I treat them as juveniles in this energetics classification of stages.
Although I realize that this does not fit into standard biological nomenclature, it is a logical
consequence of the present delineations. I do not know of better terms to indicate energy
defined stages, which points to the absence of literature dealing with the individual-based
energetics of both micro-organisms and multicellulars. This book will show that both
groups share enough features to try to place them into one theoretical framework. Some
multicellulars, such as some annelids and triclads, propagate also by division. Some of
them sport sexual reproduction as well, causing the distinction between both groups to
become less sharp and the present approach perhaps more amenable. Some authors think
that ciliates stem from multicellulars that have lost their cellular boundaries. This feature
is standard in fungi and acellular slime molds. Some bacteria have multicellular tendencies
[650]. So no sharp separation exists between unicellulars and multicellulars.

The eukaryotic cell cycle is usually partitioned into the interphase and the mitotic
phase, which is here taken to be infinitesimally short. The interphase is further partitioned
into the first gapphase, the synthesis phase (of dna) and the second gapphase. Most cell
components are made continuously through the interphase, so that this distinction is less
relevant for energetics. The second gapphase is usually negligibly short in prokaryotes.
Since the synthesis phase is initiated upon exceeding a certain cell size, size at division
depends on growth conditions and affects the population growth rate. These phenomena
will be discussed in detail.

Holo-metabolic insects are unique in having a pupal stage between the juvenile and
adult one. It closely resembles the embryonic stage from an energetics point of view,
cf. {151}. Pupae do not take food and start the synthesis of (adult) tissue from tiny
imaginal disks. A comparable situation occurs in phyla such as echinoderms, bryozoans,
sipunculans and echiurans, where the adult stage develops from a few undifferentiated cells
of the morphologically totally different larva. Williamson [771] gave intriguing arguments
for interpreting this transition, called cataclysmic metamorphosis, as evidence that the
larval stage has been acquired later in phylogeny from, sometimes, unrelated taxa. In
some cases, the larval tissues are resorbed, so converted to storage materials, in other cases
the new stage develops independently. When Luidia sarsi steps off its bipinnaria larva as a
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tiny starfish, the relatively large larva swims actively for another 3 months, [702] in [771].
Some jelly fishes (Scyphomedusae) alternate between an asexual stage, small sessile polyps,
and a sexual stage, large free swimming medusae. Many parasitic trematods push this
alternation of generations into the extreme. From an energetic perspective, the sequence
embryo, juvenile is followed by a new sequence, embryo, juvenile, adult, with different
values for energy parameters for the two sequences. The coupling between parameter
values is discussed on {217}.

The third stage is the adult one, which allocates energy to the reproduction process.
The switch from the juvenile to the adult stage, puberty, is here taken to be infinitesimally
short. The actual length differs from species to species and behavioural changes are also
involved. The energy flow to reproduction is continuous and usually quite slow, while
reproduction itself is almost instantaneous. This can be modelled by the introduction of a
buffer, which is emptied or partly emptied upon reproduction. The energy flow in females
is usually larger than that in males, and differs considerably from species to species.

Most animal taxa have two sexes, male and female, but even within a set of related taxa,
an amazing variety of implementations can occur. Some species of mollusc and annelid for
instance, are hermaphrodite, being male and female at the same time; some species of fish
and shrimp for instance, are male during one part of their life and female during another
part; some have very similar sexes while other species show substantial differences between
male and female; see figure 2.12. The male can be bigger than the female, as in many
mammals, especially sea elephants, or the reverse can occur, as in spiders. Males of some
fish, rotifers and some echiurans are very tiny, compared to the female, and parasitize in
or on the female or do not feed at all. The latter group combines the embryo stage with
the adult one, not unlike aphids. As will be explained in the chapter on the comparison
of species on {217}, differences in ultimate size reflect differences in values for energy
parameters. Parameter values, however, are tied to each other, because it is not possible
to grow rapidly without eating a lot (in the long run). Differences in energy budgets
between sexes are here treated in the same way as differences between species.

In some species a senile stage exists, where reproduction diminishes or even ceases.
This relates to the process of aging and is discussed on {105}. An argument is presented
for why this stage cannot be considered as a natural next stage within the context of deb

theory.
The summary of the nomenclature used here reads:

-

embryo juvenile adult

fertilization birth weaning puberty
baby
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Figure 2.12: Sexual dimorphy can be extreme. The male of the southern sea elephant Mirounga

leonina is ten times as heavy as the female, while the parasitic males of the angler fish Haplophryne

mollis are just pustules on female’s belly.



Chapter 3

Energy acquisition and use

This chapter discusses the mechanistic basis of different processes which together constitute
the Dynamic Energy Budget (deb) model. The next chapter will summarize and simplify
the model and evaluate consequences at the individual level. Tests against experimental
data are presented during the discussion to examine the realism of the model formulations,
and also to develop a feeling for the numerical behaviour of the model elements. The next
chapter presents additional tests that involve combinations of processes. The sequential
nature of human language does not do justice to the many interrelationships of the pro-
cesses. These interrelationships are what makes the deb model more than just a collection
of independent sub-models. I have chosen here to follow the fate of food, ending up with
production processes and aging. This order fits ‘supply’ systems, but for ‘demand’ systems,
another order may be more natural. The relationships between the different processes is
schematically summarized in figure 3.1.

The details and logic of the energy flows will be discussed in this chapter, and a brief
introduction will be given below.

Food is ingested by an animal, transformed into faeces and egested. Energy derived
from food is taken up via the blood, which has a low capacity for energy but a high trans-
portation rate. Blood exchanges energy with the storage, and delivers energy to somatic
and reproductive tissues. A fixed part, κ, of the utilization rate, i.e. the energy delivered by
the blood, is used for (somatic) maintenance plus growth, the rest for development and/or
reproduction. The decision rule for this fork is called the κ-rule. Maintenance has priority
over growth, so growth ceases if all energy available for maintenance plus growth is used
for maintenance. Energy used for development in embryos and juveniles is similarly parti-
tioned into maintenance of a certain degree of maturation and an increase in the degree of
maturity. The energy spent on increasing the degree of maturity in juveniles is allocated
to reproduction in adults.

Substrate is taken up and processed by unicellulars (including prokaryotes) in a way
conceptually comparable to food by animals, although defecation and utilization share
partly the same machinery to mobilize energy. The coupling between mass and energy
fluxes, particularly relevant to micro-organisms, is discussed on {192}.

53
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Figure 3.1: Energy fluxes through a heterotroph. The rounded boxes indicate sources or sinks.
Rates 3, 7, 8, 9 and 10 also contribute a bit to heating, but this is not indicated in order to
simplify the scheme.
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3.1 Feeding

Feeding is part of the behavioural repertoire and, therefore, notoriously erratic compared
with other processes involved in energetics. The three main factors that determine feed-
ing rates are body size, food availability and temperature. If different types of food are
available, many factors determine preferences, e.g. relative abundances, size and searching
patterns, which relate to experience and nutritional aspects. For some species it is sensible
to express food availability per surface area of environment, for others food per volume
makes more sense, and intermediates also exist. Body size of the organism and spatial
heterogeneity of the environment hold the keys to the classification. Food availability for
krill, which feed on algae, is best expressed in terms of biomass or biovolume per volume of
water, because this links up with processes that determine filtering rates. The spatial scale
at which algal densities differ is large with respect to the body size of the krill. Baleen
whales, which feed on krill, are intermediate between surface and volume feeders because
some dive below the top layer, where most algae and krill are located, and sweep the entire
column to the surface; so it does not matter where the krill is in the column. Cows and
lions are typically surface feeders and food availability is most appropriately expressed in
terms of biomass per surface area.

These considerations refer to the relevance of the dimensions of the environment for
feeding, be it surface or volume. The next section discusses the relevance of the size of the
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organism for feeding. The significance of food density returns in the section on functional
response.

3.1.1 Feeding methods

The methods organisms utilize to get their meal are numerous; some sit and wait for the
food to pass by, others search actively. Figure 3.2 illustrates a small sample of methods,
roughly classified with respect to active movements by prey and predator. The food items
can be very small with respect to the body size of the individual and rather evenly dis-
tributed over the environment, or it can occur in a few big chunks. This section mentions
briefly some feeding strategies and explains why feeding rates tend to be proportional to
the surface area, when a small individual is compared to a large one of the same species.
(Comparisons between species will be made in a separate chapter, {217}.)

Bacteria, floating freely in water, are transported even by the smallest current, which
implies that the current relative to the cell wall is effectively nil. Thus bacteria must obtain
substrates through diffusion, {141}, or attach to hard surfaces (films) or each other (flocs)
to profit from convection, which can be a much faster process. Some species develop more
flagellae at low substrate densities, which probably reduces diffusion limitation (Dijkhuizen,
pers. com.). Uptake rate is directly proportional to surface area, when the carriers that
bind substrate and transport it into the cell have a constant frequency per unit surface
area of the cell membrane [5,114]. Arthrobacter changes from a rod shape into a small
coccus at low substrate densities to improve its surface area to volume ratio. Caulobacters
do the same by enhancing the development of stalks under those conditions [560].

Some fungi, slime molds and bacteria glide over or through the substrate releasing
enzymes and collecting elementary compounds via diffusion. Upon arrival at the cell
surface, the compounds are taken up actively. The bakers’ yeast Saccharomyces cerevisiae

typically lives as a free floating, budding unicellular, but under nitrogen starvation it
can switch to a filamentous multicellular phase, which can penetrate solids [329]. Many
protozoans engulf particles (a process known as phagocytosis) with their outer membrane
(again a surface), encapsulate them into a feeding vacuole and digest them via fusion with
bodies that contain enzymes (lysosomes). Such organisms are usually also able to take up
dissolved organic material, which is much easier to quantify. In giant cells, such as the
Antarctic foraminiferan Notodendrodes, the uptake rate can be measured directly and is
found to be proportional to surface area [161]. Ciliates use a specialized part of their
surface for feeding, which is called the ‘cytostome’; isomorphic growth here makes feeding
rate proportional to surface area again.

Marine polychaetes, sea anemones, sea lilies and other species that feed on blind prey
are rather apathetic. Sea lilies simply orient their arms perpendicular to an existing current
(if mild) at an exposed edge of a reef and take small zooplankters by grasping them one by
one with many tiny feet. The arms form a rather closed fan in mild currents, so the active

Figure 3.2: A small sample of feeding methods classified with respect to the moving activities of
prey and predator.
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prey and predator inactive

prey inactive
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predator inactive

prey and predator active
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Figure 3.3: Filtration rate as function of
shell length, L, of the blue mussel Mytilus

edulis at constant food density (40×106 cells
l−1 Dunaliella marina) at 12 ◦C. Data from
Winter [774]. The least squares fitted curve
is {Ḟ}L2, with {Ḟ}= 0.041 (s.d. 6.75×10−4)
l h−1 cm−2.

Figure 3.4: Lettuce intake as a function of
shell length, L, in the pond snail Lymnaea

stagnalis at 20 ◦C [788]. The weighted least
squares fitted curve is {İ}L2, with {İ} = 2.81
(s.d. 0.093) cm2 d−1 cm−2.

area is proportional to the surface area of the animal. Sea-gooseberries stick plankters to
the side branches of their two tentacles using cells which are among the most complex in
the animal kingdom. Since the length of the side branches as well as the tentacles are
proportional to the length of the animal, the encounter probability is proportional to a
surface area.

Filter feeders, such as daphnids, copepods and larvaceans, generate water currents of a
strength that is proportional to their surface area [100], because the flapping frequency of
their limbs or tails is about the same for small and large individuals [565], and the current
is proportional to the surface area of these extremities. (Allometric regressions of currents
gave a proportionality with length to the power 1.74 [90], or 1.77 [196] in daphnids. In
view of the scatter, they are in good agreement to a proportionality with squared length.)
The ingestion rate is proportional the current, so to squared length. Allometric regressions
of ingestion rates resulted in a proportionality with length to the power 2.2 [468], 1 [566],
2.4–3 [163], 2.4 [529] in daphnids. This wide range of values illustrates the limited degree of
replicatability of these type of measurements. This is partly due to the inherent variability
of the feeding process, and partly to the technical complications of measurement. Feeding
rate depends on food density, as will be discussed, {63}, while most measurement methods
make use of changes of food densities so that the feeding rate changes during measurement.
Figure 3.11 illustrates results obtained with an advanced technique that circumvents this
problem [209].

The details of the filtering process differ from group to group. Larvaceans are filterers
in the strict sense, they remove the big particles first with a coarse filter and collect the
small ones with a fine mesh. The collected particles are transported to the mouth in a
mucous stream generated by a special organ, the endostyle. Copepods take their minute
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food particles out of the water, one by one with grasping movements [732]. Daphnids
exploit centrifugal force and collect them in a groove. Ciliates, bryozoans, brachiopods,
bivalves and ascidians generate currents not by flapping extremities, but by beating cilia
on part of their surface area. The ciliated part is a fixed portion of the total surface area
[227], and this again results in a filtering rate proportional to squared length; see figure
3.3.

Some surface feeding animals, such as crab spiders, trapdoor spiders, mantis, scorpion
fish and frogs, lay an ambush for their prey, who will be snatched as soon as they arrive
within reach, i.e. within a distance that is proportional to the length of a leg or jaw or
tongue. The catching probability is proportional to the surface area of the predatory
isomorphs. When aiming at prey having rather keen eye sight, they must hide or apply
camouflage.

Many animals search actively for their meal, be it plant or animal, dead or alive.
The standard cruising rate of surface feeders tends to be proportional to their length,
because the energy investment in movement as part of the maintenance costs tends to be
proportional to volume, while the energy costs for transport are proportional to surface
area; see {63}. Proportionality of cruising rate to length also occurs if limb movement
frequency is more or less constant [570]. The width of the path searched for food by
cows or snails is proportional to length if head movements perpendicular to the walking
direction scale isomorphically. So feeding rate is again proportional to surface area, which
is illustrated in figure 3.4 for the pond snail.

The duration of a dive for the sperm whale Physeter macrocephalus, which primarily
feeds on squid, is proportional to its length, as is well known to the whalers [752]. This can
be understood, since respiration rate of this endotherm is about proportional to surface
area, as I will argue on {103}, and the amount of reserve oxygen proportional to volume
on the basis of a homeostasis argument. It is not really obvious how this translates into
feeding rate, if at all; large individuals tend to feed on large prey, which tend occur less
frequently than small prey and depends on depth. Moreover, time investment in hunting
can depend on size as well. If the daily swimming distance during hunting would to be
independent of size, the searched water volume is about proportional to surface area for a
volume feeder such as the sperm whale. If the total volume of squid per volume of water is
about constant, this would imply that feeding rate is about proportional to surface area.

The amount of food parent birds feed per nestling relates to the requirements of the
nestling, which is proportional to surface area; figure 3.5 illustrates this for chickadees.
This is only possible if the nestlings can make their needs clear to the parents, by crying
louder.

Catching devices, such as spider or pteropod webs and larvacean filter houses [13],
have effective surface areas that are proportional to the surface area of the owner.

All these different feeding processes relate to surface areas in comparisons between dif-
ferent body sizes within a species at a constant low food density. At high food densities, the
encounter probabilities are no longer rate limiting, but digestion and other food processing
activities involving other surface areas, for example the mouth opening and the gut wall.
The gradual switch in the leading processes becomes apparent in the functional response,
i.e. the ingestion rate as function of food density, {63}.
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Figure 3.5: The von Bertalanffy growth curve applies to the black-capped chickadee, Parus

atricapillus (left figure, data from Kluyver [392,671]. Brood size was a modest 5.) The amount
of food fed per male (•) or female (◦) nestling in the closely related mountain chickadee, P.

gambeli, is proportional to weight2/3 (right figure), as might be expected for individuals that
grow in a von Bertalanffy way. Data from Grundel [277,671]. The last five data points were not
included in the fit, because of transition to independent food gathering behaviour.

3.1.2 Selection

Details of growth and reproduction patterns can only be understood in relation to selection
of food items and choice of diet. The reverse relationship holds as well, especially for
‘demand’ systems. I will, therefore, mention some aspects briefly.

Many species change their diet during development in relation to their shifting needs
with an emphasis on protein synthesis during the juvenile period and on maintenance
during the adult one. Mammals live on milk during the baby stage, cf. {50}. The male
emperor penguin Aptenodytes and mouth-brooding frog Rhinoderma darwinii provide their
young initially with a secretions from the stomach. Plant eating ducks live on insects dur-
ing the first period after hatching. The first hatching tadpoles of the alpine salamander
Salamandra atra live on their siblings inside the mother, where they are also supported
by blood from her reproductive organs, and the 1–4 winners leave the mother when fully
developed. The same type of prenatal cannibalism seems to occur in the coelacanth Latime-

ria [715], and several sharks (sand tiger sharks Odontaspidae, mackerel sharks Lamnidae,
thresher sharks Alopiidae [581]). Some species of poison dart frog Dendrobates feed their
offspring with unfertilized eggs in the water-filled leaf axils of bromeliads, high up in the
trees [187,188]. Many juvenile holo-metabolic insects live on different types of food than
adults. Many wasps, for instance, are carnivorous when juvenile, while they feed on nectar
as adults. Prickleback fish change from being carnivorous to being herbivorous at some
stage during development [167].

Some species select for different food items in different seasons apart from changes in
relative abundances of the different food sources. This is because of the tight coupling be-
tween feeding and digestion. The bearded tit Panurus biarmicus is a spectacular example;
it lives on the seed of Typha and Phragmites from September to March and on insects in
summer [676,754]. This change in diet comes with an adaptation of the stomach which
is much more muscular in winter when it contains stones to grind the seeds. Once con-
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verted to summer conditions, the bearded tit is unable to survive on seeds. The example
is remarkable because the bearded tit stays in the same habitat over the seasons. Many
temperate birds change habitats over the seasons. Divers, for instance, inhabit fresh water
tundra lakes during the breeding season and the open ocean during winter. Such species
also change prey, of course, but the change is usually not as drastic as the one from insects
to seeds.

When offered different food items, individuals can select for type and size. Shelbourne
[652] reports that the mean length of Oikopleura eaten by plaice larvae increased with the
size of the larvae. Copepods appear to select the larger algal cells [695]. Daphnids do not
collect very small particles, < 0.9 µm cross-section [266], or large ones, > 27 and > 71
µm, the latter values were measured for daphnids of length 1 and 3 mm respectively [112].
Kersting and Holterman [381] found no size-selectivity between 15–105 (and probably 165)
µm3 for daphnids. Selection is rarely found in daphnids [601], or in mussels [226,767].

The relationship between feeding rates and diet composition gives a clue as to which
processes actually set the upper limits to the ingestion rate. An indication that the maxi-
mum ingestion rate is determined by the digestion rate comes from the observation that the
maximum ingestion rate of copepods feeding on diatoms expressed as amount of carbon is
independent of the size of the diatom cells, provided that the chemical composition of the
cells is similar [235]. The maximum ingestion rate is inversely related to protein, nitrogen
and carbon content fed to the copepod Acartia tonsa [338]. The observation that the
maximum ingestion rate is independent of cell size on the basis of ingested volume [247],
points to the capacity of gut volume as the limiting factor.

These remarks should make it clear that the quantitative details of the feeding process
cannot be understood without some understanding of the fate of the food. This involves
the digestion process in the first place, but a whole sequence of other processes follow.
Regulation of (maximum) ingestion depends by definition on the need in ‘demand’ sys-
tems, which is especially easy to observe in species that lose the ability to grow, such as
birds and mammals. Temporarily elevated food intake can be observed in birds preparing
for migration or reproduction or in mammals preparing for hibernation or in pregnant
mammals [731]. For simplicity’s sake, these phenomena will not be modelled explicitly.

Prokaryotes show a diversity and adaptability of metabolic pathways which is huge in
comparison to that of eukaryotes. Many bacteria, for example, are able to synthesize all the
amino acids they require, but will only do so if they are not available from the environment.
The fungus Aspergillus niger only feeds on cellulose if no compounds are available that
are easier to decompose. Another example is growth on glucose limited media. Figure
3.6 illustrates that prolonged exposure to limiting amounts of glucose eventually results
in substantially improved uptake of glucose from the environment. The difference can
amount to a factor of 1000. The outer membrane is adapted to this specialized task and
may jeopardize a rapid change to other substrates. This adaptation process takes many
cell division cycles, as is obvious from the measurement of population growth rates, which
itself takes quite a few division cycles.

The relationship between food quality and physiological performance is taken up again
in the discussion on food intake reconstructions {137} and on dissipating heat {201}.
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Figure 3.6: The population growth rate of Escherichia coli on glucose limited media. Schulze
and Lipe’s culture [645], left, had been exposed to glucose limitation just prior to the experiment,
while that of Senn [648], right, had been pre-adapted for a period of three months.

3.1.3 Feeding and movement costs

As feeding methods are rather species-specific, costs for feeding will also be species-specific,
if they contribute substantially to the energy budget. I will argue here that costs for
feeding and movements that are part of the routine repertoire are usually insignificant
with respect to the total energy budget. For this reason this subsection does not do justice
to the voluminous amount of work that has been done on the energetics of movements, a
field that is of considerable interest in other contexts. Alexander [9] has recently given a
most readable and entertaining introduction to the subject of energetics and biomechanics
of animal movement. Differences in respiration between active and non-active individuals
give a measure for the energy costs of activity. The resting metabolic rate is a measure
that excludes active movement. The standard or basal metabolic rate includes a low level
of movement only. The field metabolic rate is the daily energy expenditure for free ranging
individuals. Karasov [371] found that the field metabolic rate is about twice the standard
metabolic rate for several species of mammal, and that the costs for locomotion ranges
from 2–15% of the field metabolic rate. Mammals are amoung the more active species.
The respiration rate associated with filtering in animals such as larvaceans and ascidians
was found to be less than 2% of the total oxygen consumption [223]. The circumstance
that energy investment into feeding is generally small, makes it unattractive to introduce
many parameters to describe this investment. Feeding costs can be accommodated in two
ways within the deb theory without introduction of new parameters, and this subsection
aims to explore to what extent this accommodation is realistic.

The first way is when the feeding costs are proportional to the feeding rate. They
then show up as a reduction of the energy gain per unit of food. One can, however, argue
that feeding costs per unit of food should increase with decreasing food density, because
of the increased effort to extract it from the environment. This type of costs can only be
accommodated without complicating the model structure if these costs cancel against an
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increased digestion efficiency, due to the increased gut residence time, cf. {247}.
The second way to accommodate feeding costs without complicating the model struc-

ture is when the feeding costs are independent of the feeding rate and proportional to body
volume. They then show up as part of the maintenance costs, cf. {76}. This argument
can be used to understand that feeding rates for some species tend to be proportional to
surface area if transportation costs are also proportional to surface area, so that cruising
rate is proportional to length, {59}. In this case feeding costs can be combined with costs
for other types of movement that are part of the routine repertoire. A fixed (but generally
small) fraction of the maintenance costs then relates to movement.

Schmidt-Nielsen [638] calculated 0.65 ml O2 cm−2 km−1 to be the surface area-specific
transportation costs for swimming salmon, on the basis of Brett’s work [91]. (He found
that transportation costs are proportional to weight to the power 0.746, but respiration
was not linear with speed. No check was made for anaerobic metabolism of the salmon.
Schmidt-Nielsen obtained, for a variety of fish, a power of 0.7, but 0.67 also fits well.) Fedak
and Seeherman [213] found that the surface area-specific transportation costs for walking
birds, mammals and lizards tend to be about 5.39 ml O2 cm−2 km−1 ≃ 0.03 Wh cm−2 km−1.
(They actually report that transportation costs are proportional to weight to the power
0.72 as the best fitting allometric relationship, but the scatter is such that 0.67 fits as
well.) This is consistent with data from Taylor et al. [703] and implies that the costs for
swimming are some 12% of the costs for running. Their data also indicate that the costs
for flying are between swimming and running and amount to some 1.87 ml O2 cm−2 km−1.

The energy costs of swimming are frequently taken to be proportional to squared speed
on sound mechanical grounds [422], which questions the usefulness of the above mentioned
costs and comparisons because the costs of transportation become dependent on speed. If
the inter-species relationship that speed scales with the square root of volumetric length, see
{223}, also applies to inter-species comparisons, the transportation costs are proportional
to volume if the travelling time is independent of size.

The energy required for walking and running is found to be proportional to velocity
for a wide diversity of terrestrial animals including mammals, birds, lizards, amphibians,
crustaceans and insects [244]. This is quite a relief, as otherwise temperature would be
a significant variable, to mention just one problem, affecting rates in a different way and
making movements a complicated variable to handle at the population and the community
level; the energy costs for walking or running a certain distance are independent of speed
and just proportional to distance.

3.1.4 Functional response

The feeding or ingestion rate, İ, of an organism as a function of food or substrate density,
X, expressed as number of items per surface area or volume, is described well by the
hyperbolic functional response

İ = f İm with f ≡ X

K +X
(3.1)

where K is known as the saturation coefficient or Michaelis constant, i.e. the density at
which food intake is half the maximum value, and İm the maximum ingestion rate. This
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Figure 3.7: The ingestion rate, İ of
an individual (female) rotifer Brachionus

rubens, feeding on the green alga Chlorella

as a function of food density, X, at 20 ◦C.
Data from Pilarska [554]. The curve is
the hyperbola İ = İm

X
K+X , with İm =

15.97 (s.d. 0.81) 105cells d−1 and K =
1.47 (s.d. 0.26) 105cells d−1. The stippled
curve allows for an additive error in the
measurement of the algal density of 34750
cellsml−1.

functional response has been proposed by Holling [332] as type II, and is illustrated in
figure 3.7. It applies to ciliates feeding on organic particles (phagocytosis), algae filtering
daphnids, mantis catching flies, substrate uptake by bacteria, or the enzyme mediated
transformation of substrates. Although these processes differ considerably in detail, some
common principle gives rise to the hyperbolic function. This can be explained on the basis
of a simple model for feeding, that will be generalized subsequently.

Suppose that the handling of a particle takes a certain time τ and that particles arriving
during handling are ignored. (‘Handling’ is used here in a wide sense, for feeding animals
it might refer to the act of catching and eating as well as to decomposing the particles in
the gut or the transfer of products across the gut wall.) Suppose further, that particles
do not interfere with each other. So the number of particles arriving in a unit of time
is Poisson distributed with a parameter proportional to the particle density, X, say ḞX.
Here Ḟ relates to a filtering rate or the speed of an animal relative to prey particles, a
rate that is taken to depend on mean particle density only, and not on particle density
at a particular moment. The time between subsequent arrivals, ti, is then exponentially
distributed, with mean (ḞX)−1. The time between the end of a handling period and the
next arrival is again exponentially distributed with mean (ḞX)−1. (To see this, one should
make use of a defining property for an exponentially distributed variable y, that y and
y| y > y are identically distributed, i.e. φy| y>y(t+ y) = φy(t).) The time required to eat N

particles is thus given by t = Nτ +
∑N
i=1 ti if one starts observations at a randomly chosen

arrival of a particle. The mean ingestion rate, İ = N/Et, is thus İ = (τ + (ḞX)−1)−1 =
τ−1X((τ Ḟ )−1 + X)−1, which is hyperbolic in the density X. The saturation coefficient
is inverse to the product of the handling time and the filtering (or searching) rate, i.e.
K = (τ Ḟ )−1. The maximum ingestion rate is inverse to the handling time. (The ingestion
rate is here taken to be the ratio of a fixed number of particles eaten and the measured
time it takes the animal to do this. If the feeding period is fixed, rather than the number
of particles eaten, the mean ingestion rate might, in principle, deviate from the hyperbolic
function. Moreover, we make sure that the particle density does not change during the
observation period.)

This derivation can be generalized in different ways without changing the model. Each
arriving particle can have an attribute that stands for the catching probability. The i-th
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particle has some fixed probability pi of being caught upon encounting an animal, if the
animal is not busy handling particles, and probability 0 if it is. It is not essential that
the handling time is the same for all particles; this can be conceived as a second attribute
attached to each particle, but it must be independent of food density. The condition of
zero catching probability when the animal is busy can be relaxed. Metz and van Batenburg
[476,477] and Heijmans [301], tied catching probability to satiation, which is thought to
relate to gut content in mantis. An essential condition for hyperbolic functional responses
is that catching probability equals zero if satiation (gut content) is maximal.

Another generalization is from one server, i.e. the individual handling the particles, to
a large but fixed number of identical servers handling particles simultaneously, but without
interfering with each other. The term ‘server’ stems from an extensive theory of applied
probability calculus, known as queueing theory, that deals with this type of problem.
See for instance [625,662]. Think of a server as an active site (enzyme molecules) in a
membrane, of particles as substrate molecules and of catching as adsorption. If θ stands
for the fraction of busy servers, then the change of this fraction due to arrivals is given
by d

dt
θ = k̇aX(1 − θ), where the adsorption rate constant, k̇a, plays exactly the same role

as the filtering or searching rate Ḟ . The change of the fraction of busy servers due to
termination of handling is proportional to the number of busy servers, so it is given by
d
dt
θ = k̇dθ, where the desorption rate constant, k̇d, is just inverse to the mean handling time

τ . In equilibrium, the fraction θ does not change, so k̇aX(1− θ) = k̇dθ, or θ = X/(K+X),
with K = k̇d/k̇a. We assume here that the absorption and desorption process is rapid with
respect to the changes in the particle density X.

The fraction of occupied sites as a function of the density of adsorbable particles (i.e.
partial pressure in gas), is called the adsorption isotherm in physical chemistry. If the sites
operate independently, as here, and so give rise to a hyperbolic function, this isotherm is
called the Langmuir isotherm [24]. The adsorption rate of particles is found easily by
substituting the Langmuir isotherm into the change of the busy fraction of servers:

k̇aX(1 − θ) = k̇aX
(

1 − X

K +X

)

=
k̇dX

K +X

So the adsorption rate depends hyperbolically on the particle density in equilibrium. The
saturation coefficient has the interpretation of the ratio of the desorption and the adsorption
rate constants and the maximum adsorption rate of particles equals the number of servers
times the desorption rate. If the desorbed particles are transformed with respect to the
adsorbed ones, the process stands for an enzyme mediated transformation of substrate
into product. The simple kinetics discussed here are called Michaelis–Menten kinetics.
The condition of constant particle density can be somewhat relaxed; if the total number of
particles, N , is really large with respect to the number of servers (a condition formulated
by Briggs and Haldane [92]), or if the rate of product formation k̇d is really small (a
condition formulated by Michaelis and Menten [483]), or if K times the number of servers
is really small with respect to (K + N)2, (a more general condition formulated by Segel
[647]), the reaction still follows Michaelis–Menten kinetics.

Although the details of feeding and adsorption processes differ considerably, from a
more abstract point of view the mechanisms are closely related. What is essential is that
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a busy period exists and that, if more servers are around, they operate identically and
independently.

It is entirely possible that the hyperbolic response also arises from completely different
mechanisms. A most interesting property of the hyperbolic function is that it is the only
one with a finite number of parameters that maps into itself. For instance, an exponential
function of an exponential function is not again an exponential function. A polynomial (of
degree higher than one) of a polynomial is also a polynomial, but it is of an increasingly
higher degree if the mapping is repeated over and over again. The hyperbolic function
of a hyperbolic function is also a hyperbolic function. (Note that the linear response
function is a special case of the hyperbolic one.) In a metabolic pathway each product
serves as a substrate for the next step. Neither the cell nor the modeller needs to know the
exact number of intermediate steps to relate the production rate to the original substrate
density, if and only if the functional responses of the subsequent intermediate steps are of
the hyperbolic type. If, during evolution, an extra step is inserted in a metabolic pathway
the performance of the whole chain does not change in functional form. This is a crucial
point because each pathway has to be integrated with other pathways to ensure the proper
functioning of the individual as a whole. If an insert in a metabolic pathway simultaneously
required a qualitative change in regulation at a higher level, the probability of its occurrence
during the evolutionary process would be remote.

A most useful property of the hyperbolic functional response is that it has only two
parameters which serve as simple scaling factors on the food density and ingestion rate
axis. So if food density is expressed in terms of the saturation coefficient, and ingestion
rate in terms of maximum ingestion rate, the functional response no longer has dimensions
or parameters.

Filter feeders, such as rotifers, daphnids and mussels, reduce filtering rate with increas-
ing food density [226,565,603,604], rather than maintaining a constant rate, which would
imply the rejection of some food particles. They reduce the rate by such an amount that
no rejection occurs due to handling (processing) of particles. If all incoming water is swept
clear, the filtering rate is found from Ḟ (X) = İ/X, which reaches a maximum if no food
is around (temporarily), so that Ḟm = {İm}V 2/3/K, and approaches zero for high food
densities. The braces stand for ‘surface area-specific’, thus {İm} ≡ İmV

−2/3, stands for
the maximum surface area-specific ingestion rate, which is considered as a parameter that
depends on the composition of the diet. An alternative interpretation of the saturation
coefficient in this case would be K = İm/Ḟm = {İm}/{Ḟm}, which is independent of the
size of the animal, as long as only intraspecific comparisons are made. It combines the
maximum capacity for food searching behaviour, only relevant at low food densities, with
the maximum capacity for food processing, which is only relevant at high food densities.

Mean ingestion rate for an isomorph of volume V at food density X thus amounts to

İ = {İm}fV 2/3 with f ≡ X

K +X
(3.2)

where {İm} stands for the maximum surface area-specific ingestion rate, expressed in vol-
umetric length. When starved animals are fed, they often ingest at a higher rate for some
time [753], but this is usually a fast process which will be neglected here. Starved daphnids
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for instance are able to fill their guts within 7.5 minutes [247].
The ingestion rate, or substrate uptake rate for filaments and rods are found from (3.2)

by multiplication of {İm} with the shape correction function (2.4) or (2.7), which leads to

İ = [İm]fV for filaments

İ = [İm]f
(

δ
3
Vd +

(

1 − δ
3

)

V
)

for rods
(3.3)

for [İm] ≡ {İm}V −1/3
d . Since food for rods and filaments in cultures usually consists of a

simple organic compound, it is standard to quantify uptake rate in gram or mole, rather
than in volume as is done here. The choice of unit is free and to some extent arbitrary, the
present one being motivated by the study of food chains, see {212}, where the conversion
from food to structural biomass urges symmetry. Likewise, I will use the term ‘substrate
density’, rather than ‘substrate concentration’ to stress the relationship with food density
and to cover insoluble substrates as well.

An important source of deviations from the hyperbolic functional response will be
discussed on {144}.

3.1.5 Food deposits and claims

Any description of the feeding process that is not species-specific can only be roughly
approximative at best. In this subsection I want to point briefly to some important types
of feeding behaviour that are likely to cause deviations from the hyperbolic functional
response: stocking food and claiming resources via a territory. The importance of these
types of behaviour is at the population level, where the effect is strongly stabilizing for
two reasons. The first is that the predator lives on deposits if prey is rare, which lifts the
pressure on the prey population under those conditions. The second one is that high prey
densities in the good season do not directly result in an increase in predator density. This
also reduces the predation pressure during the bleak seasons. Although the quantitative
details will not be worked out here because of species-specificity, I want to point to this
behaviour as an introduction to other smoothing phenomena that will be covered. The
deb model differs from almost all other models in dealing with such phenomena, so these
remarks serve to point to the necessity of including smoothing phenomena in realistic
models.

Many food deposits relate to survival during winter, frequently in combination with
dormancy, cf. {131}. In the German, Dutch and Scandinavian languages, the word ‘ham-
ster’ is the stem of a verb for stocking of food in preparation for adverse conditions. This
rodent is famous for the huge piles of maize it stocks in autumn. The English language has
selected the squirrel for this purpose. This type of behaviour is much more widespread,
for example in jays; cf. figure 3.8.

Many species defend territories just prior to and during the reproductive season. Birds
do it most loudly. The size of the territories depends on bird as well as food density. One
of the obvious functions of this behaviour is to claim a sufficient amount of food for the
peak demand when the young grow up. The behaviour of stocking and reclaiming of food
typically fits ‘demand’ systems and is less likely to be found in ‘supply’ systems.
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Figure 3.8: The great grey shrike Lanius excubitor, also known as the ‘nine-killer’ in Dutch,
hoards throughout the year, possibly to guard against bad luck when hunting. Many other
shrikes do this as well.

3.2 Digestion

Details of the digestion process are discussed on {247} because they do not bear directly
on the specification of the deb model. Logic of arguments requires, however, that some
aspects of the digestion process should be discussed here.

3.2.1 Smoothing and satiation

The capacity of the stomach/gut volume is specific to a species. It depends strongly on
type of food specialized on. Fish feeding on plankters, i.e. many small constantly available
particles, have a low capacity, while fish such as the swallower, that feed on rare big chunks
of food, have high capacities. It may wait weeks for new chunks of food; see figure 3.9. The
stomach/gut volume, which is still ‘environment’ rather than animal, is used to smooth
out fluctuations in nutritional input to the organism. Organisms attempt to run their
metabolic processes under controlled and constant conditions. Food in the digestive tract
and reserves inside the organism together make it possible for regulation mechanisms to
ensure homeostasis. Growth, reproductive effort and the like do not depend directly on
food availability but on the internal state of the organism. This even holds, to some extent,
for those following the ‘supply’ strategy, where energy reserves are the key variable. These
reserves rapidly follow the feeding conditions.

If the food in the stomach, Xs, follows a simple first order process, the change of
stomach contents is

d

dt
Xs = {İm}V 2/3

(

X

K +X
− Xs

[Xsm]V

)

(3.4)
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Figure 3.9: The 2 m paddlefish Polyodon spathula feeds on tiny plankters, while the 18 cm black
swallower Chiasmodon niger can swallow fish bigger than itself. They illustrate extremes in buffer
capacities of the stomach.

where [Xsm] is the maximum food capacity density of the stomach. The derivation is as
follows. A first order process here means that the change in stomach contents can be
written as d

dt
Xs = İ − α̇Xs, where the proportionality constant α̇ is independent of the

input, given in (3.2). Since food density is the only variable in the input, α̇ must be
independent of food density X, and thus of scaled functional response f . If food density
is high, stomach content converges to its maximum capacity İm/α̇ = {İm}V 2/3α̇−1. The
assumption of isomorphism implies that the maximum storage capacity of the stomach is
proportional to the volume of the individual. This means that we can write it as [Xsm]V ,
where [Xsm] is some constant, independent of food density and body volume. This allows
one to express α̇ in terms of [Xsm], which results in (3.4).

The mean residence time in the stomach is thus ts = V 1/3[Xsm]/{İm}, and so it is
proportional to length and independent of the ingestion rate. First order dynamics implies
complete mixing of food particles in the stomach, which is unlikely if fermentation occurs.
This is because the residence time of each particle is then exponentially distributed, so a
fraction 1 − exp{−1} = 0.63 of the particles stays less time in the stomach than the mean
residence time, and a fraction 1− exp{−1

2
} = 0.39 less than half the mean residence time.

This means incomplete, as well as ‘too complete’, and thus wasteful fermentation.

The extreme opposite of complete mixing is plug flow, where the variation in residence
times between the particles is nil in the ideal case. Pure plug flow is not an option for a
stomach, because this excludes smoothing. These conflicting demands probably separated
the tasks of smoothing for the stomach and digestion for the gut to some extent. Most
vertebrates do little more than create an acid environment in the stomach to promote
protein fermentation, while actual uptake is via the gut. Plug flow of food in the gut, Xg,
can be described by

d

dt
Xg(t) = t−1

s (Xs(t) −Xs(t− tg)) (3.5)

where tg denotes the gut residence time and ts the mean stomach residence time. This
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equation follows directly from the principle of plug flow. The first term t−1
s Xs(t), stands

for the influx from the stomach and follows from (3.4). The second one stands for the
outflux, which equals the influx with a delay of tg. Substitution of (3.4) and (3.2) gives
d
dt
Xg(t) = İ(t) − İ(t − tg) + d

dt
Xs(t − tg) − d

dt
Xs(t). Since 0 ≤ Xs ≤ [Xsm]V , d

dt
Xs → 0 if

[Xsm] → 0. So the dynamics of food in the gut reduces to d
dt
Xg(t) = İ(t) − İ(t − tg) for

animals without a stomach.

Some species feed in meals, rather than continuously, even if food is constantly available.
They only feed when ‘hungry’ [178]. Stomach filling can be used to link feeding with
satiation. From (3.4) it follows that the amount of food in the stomach tends to X∗

s =
f [Xsm]V , if feeding is continuous and food density is constant. Suppose that feeding starts
at a rate given by (3.2) as soon as food in the stomach is less than xs0X

∗
s , for some value

of the dimensionless factor xs0 between 0 and 1, and feeding ceases as soon as food in the
stomach exceeds xs1X

∗
s , for some value of xs1 > xs0. The mean ingestion rate is still of

the type (3.2), where {İm} now has the interpretation of the mean maximum surface area-
specific ingestion rate, not the one during feeding. A consequence of this on/off switching
of the feeding behaviour is that the periods of feeding and fasting are proportional to a
length measure. This matter is taken up again on {121}.

3.2.2 Gut residence time

The volume of the digestive tract is proportional to the whole body volume in strict
isomorphs. This has been found for e.g. ruminant and nonruminant mammals [162]
(≃ 11%) and for daphnids [209] (≃ 2.5% if the whole space in the carapace is included).
If the animal keeps its gut filled to maximum capacity, [Xgm]V say, and if the volume
reduction due to digestion is not substantial, this gives a simple relationship between gut
residence time of food particles tg, ingestion rates İ, and body volume V :

tg = [Xgm]V/İ =
V 1/3[Xgm]

f{İm}
(3.6)

This is exactly what has been found for daphnids [209], see figure 3.10, and mussels [286].
Copepods [127] and carnivorous fish [358] seem to empty their gut at low food densities,
which leads to a gut residence time of V 1/3[Xgm]/{İm}, if the throughput is at maximum
rate.

Since ingestion rate, (3.2), is proportional to squared length, the gut residence time
is proportional to length for isomorphs. For filaments such as worms, which have a fixed
diameter, ingestion rate is proportional to cubed length, (3.3), so gut residence time is
independent of body volume.

Daphnids are translucent, which offers the possibility of studying the progress of digestion
as a function of body length.
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Figure 3.10: Gut volume is proportional
to cubed length (right) and gut residence
time is proportional to length (lower left),
while the latter depends hyperbolically on
food density (lower right), as illustrated
for daphnids. The first two figures relate
to D. magna feeding on the green alga
Scenedesmus at 20 ◦C. Data from Evers
and Kooijman [209]. The third one re-
lates to D. pulex of 2 mm feeding on the
diatom Nitzschia actinastroides at 15 ◦C.
Data from Geller [247].

The photograph of D. magna on the
right shows the sharp transition be-
tween the chlorophyll of the green
algae and the brown-black digestion
products, which is typical for high
ingestion rates. The relative posi-
tion of this transition point depends
on the ingestion rate, but not on the
body length. Even in this respect
daphnids are isomorphic. At low in-
gestion rates, the gut looks brown
from mouth to anus. The paired di-
gestive caecum is clearly visible just
behind the mouth.
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3.3 Assimilation

In animal physiology it is standard to call the enthalpy of ingested food the ‘gross’ energy
intake [441]. It is used to quantify the energy potential for the individual. In microbial
physiology and biochemistry [37], the more appropriate free energy content of consumed
substrate is used for the same purpose, cf. {201}. The difference obviously relates to the
poor thermodynamical definition of food of complex chemical nature. The term ‘digestible’
energy is used for gross energy minus energy in faeces. Then comes ‘metabolisable’ energy,
which is taken to be digestable energy minus energy in urine and in released methane gas,
followed by ‘net’ energy, which is metabolisable energy minus energy lost in heat increment
of feeding. The term ‘assimilated’ energy will here be the free energy intake minus free
energy in faeces and in all losses in relation to digestion. The energy in urine is treated
somewhat differently and tied to the process of maintenance, cf. {77}.

The assimilation efficiency of food is here taken to be independent of the feeding rate.
This makes the assimilation rate proportional to the ingestion rate, which seems to be
realistic, cf. figure 7.1. I will discuss later the consistency of this simple assumption with
more detailed models for enzymatic digestion, {247}. The conversion efficiency from food
into assimilated energy is written as {Ȧm}/{İm}, where {Ȧm} is a diet-specific parameter
standing for the maximum surface area-specific assimilation rate. This notation may seem
clumsy, but the advantage is that the assimilated energy that comes in at food density X
is now given by {Ȧm}fV 2/3, where f = X/(K + X) and V the body volume. It does not
involve the parameter {İm} in the notation, which turns out to be useful in the discussion
of processes of energy allocation in the next few sections.

The conversion from substrate to energy in bacteria is substantially more efficient under
aerobic (oxygen rich) conditions than under anaerobic ones, while metabolic costs are not
affected by oxygen availability [417]. This means that the parameter {Ȧm} and not {İm}
is of direct relevance to the internal machinery, cf. {201}.

3.4 Storage dynamics

Energy crossing the gut wall enters the blood or body fluid and is usually circulated
through the body rapidly. It therefore does not matter where in the gut uptake takes
place. Residence time in the digestive tract is usually short compared to that in the energy
reserves, which means that for most practical purposes, the effect of digestion can simply
be summarized as a conversion of ingested food, İ = {İm}fV 2/3, into (assimilated) energy,
Ȧ = {Ȧm}fV 2/3. Blood has a low uptake capacity for energy (or nutrient), but a high
transportation rate; it is pumped through the body many times an hour. The changes of
energy in blood, Ebl, and in reserves, E, are coupled by d

dt
Ebl = Ȧ − d

dt
E − Ċ where Ċ

denotes the energy consumed by the body tissues and is called the utilization or catabolic
rate. The change of energy reserves can be positive or negative. Since the energy capacity of
blood is small, the change of energy in blood cannot have a significant impact on the whole
body. It therefore seems safe to assume that d

dt
Ebl ≃ 0, which means that d

dt
E = Ȧ− Ċ as

a first approximation.
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The reserve density, [E] ≡ E/V , is assumed to follow simple first order dynamics

d

dt
[E] =

{Ȧm}
V 1/3

(

f − [E]

[Em]

)

(3.7)

where [Em] is the maximum energy reserve density. Its derivation is completely analogous
to (3.4). A first order process for the reserve density means that it can be written as
d
dt

[E] = Ȧ/V − α̇[E], where the proportionality constant α̇ is independent of food density

X. At high food density, the reserve density converges to its maximum Ȧm(V α̇)−1 =
{Ȧm}V −1/3α̇−1. Because of the homeostasis assumption for energy reserves, the maximum
capacity must be independent of body volume, so it can be written as a constant [Em],
independent of both food density and body volume. This allows one to express α̇ in terms
of the maximum capacity [Em], which gives (3.7).

An essential difference between stomach and reserves dynamics is that the first is in
absolute quantities, because it relates to bulk transport, while the latter is in densities
because it relates to molecular phenomena. (One cannot simply divide by body volume in
(3.4) to turn to densities because body volume depends on time. One should, therefore,
correct for growth to observe the mass conservation law.) Note that the requirement of
homeostasis for energy density overrules the interpretation of reserve dynamics in terms of
a simple mechanism where reserve ‘molecules’ react with the catabolic machinery at a rate
given by the law of mass action. (Due to the concept of homeostasis, the density of the
catabolic machinery is constant.) The organism has to adjust the reaction rate between
reserves and the catabolic machinery during growth to preserve homeostasis. These ad-
justments are small, as long as dilution of energy density by growth is small with respect to
the use of energy, i.e. if d

dt
lnV ≪ V −1/3{Ȧm}[Em]−1. In practice, this condition is always

fulfilled, which is not surprising because growth can only be high if the use of energy is
really high. This naive picture of the mechanism can be made much more realistic without
disturbing the first order kinetics.

Since inflow of energy is over a surface area and use over a volume, use of energy
density is inversely proportional to length. This too corresponds closely with processes at
the molecular level. Since energy reserves should not interfere with osmolarity, they are
formed from insoluble polymers which are frequently further separated from the body fluid
by membranes and confined to particular surface areas of the body, both macroscopically,
e.g. around the gut, and microscopically. The bigger the body, the less accessible the energy
reserves expressed as density. Many consequences of these extremely simple dynamics for
the reserves will be tested against observations in this book. Direct testing is hampered by
the problem of measuring energy fluxes inside organisms. Tests on the basis of respiration
rates are probably the most direct ones feasible. Some auxiliary theory has to be developed
first.

A consequence of the assumption of a first order dynamics for energy reserves is that
the utilization rate must obey

Ċ = Ȧ− d

dt
([E]V ) = Ȧ− V

d

dt
[E] − [E]

d

dt
V = [E](v̇V 2/3 − d

dt
V ) (3.8)



74 3. Energy acquisition and use

where v̇ ≡ {Ȧm}/[Em]; as v̇ will show up time and again, I have given it a name, energy

conductance, as a result of one of many discussions with Roger Nisbet. Its dimension is
length per time and stands for the ratio of the maximum surface area-specific assimilation
rate and the maximum volume-specific reserve energy density. The inverse, v̇−1, has the
interpretation of a resistance. It is remarkable that the biological use of conductance
measures seems to be restricted to plant physiology [362,511]. An important property of
utilization rate is that it does not depend directly on the assimilation rate and, therefore,
not on food density. It only depends on the volume of the organism and energy reserve.

The storage residence time in (3.7) is thus V 1/3[Em]/{Ȧm}, which must be large with
respect to that of the stomach, V 1/3[Xsm]/{İm} and the gut, V 1/3[Xgm]/{İm}, to justify
neglect of the smoothing effect of the digestive tract.

If the energy reserve capacity, [Em], is extremely small, the dynamics of the reserves
degenerates to [E] = f [Em], while both [E] and [Em] tend to 0. The utilization rate then
becomes Ċ = {Ȧm}fV 2/3. This case has been studied by Metz and Diekmann [479].

3.5 The κ-rule for allocation

Some animals, such as birds, reproduce after having obtained their final size. Others,
such as daphnids continue growth after onset of reproduction. Daphnia magna starts
reproducing at a length of 2.5 mm, while its ultimate size is 5 to 6 mm, if well-fed. This
means an increase of well over a factor 8 in volume during the reproductive period. Figure
3.11 illustrates a basic problem for energy allocation rules that such animals pose. It
becomes visible as soon as one realizes that a considerable amount of energy is invested
in reproductive output. The volume of young produced exceeds 1

4
of that of the mother

each day, or 80% of the utilization rate [595]. The problem is that growth is not retarded
in animals crossing the 2.5 mm barrier; they also do not feed much more but they simply
follow the surface area rule with a fixed proportionality constant at constant food densities.
It seems unlikely that they digest their food much more efficiently, so where does the energy
allocated to reproduction come from?

A solution to this problem can be found in development. Juvenile animals have to
mature and become more complex. They have to develop new organs and install regulation
systems. Increase in size (somatic growth) of the adult does not include an increase in
complexity. The energy no longer spent on development in adults is spent on reproduction.
Growth continues smoothly at the transition from development to reproduction. This
suggests the ‘κ-rule’ : a fixed proportion κ of energy utilized from the reserves is spent on
growth plus maintenance, the remaining portion, 1−κ on development plus reproduction.
The background and rationale of the κ-rule is as follows.

At separated sites along the path that blood follows, somatic cells and ovary cells pick
up energy. The only information the cells have is the energy content of the blood and
body size, cf. {23}. They do not have information about each others activities in a direct
way. This also holds for the mechanism by which energy is added to or taken from energy
reserves. The organism only has information on the energy density of the blood, and on
size, but not on which cells removed energy from the blood. This is why the parameter
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Figure 3.11: Ingestion in the waterflea
Daphnia magna as a function of body
length at 20 ◦C and abundant food (right),
its reproduction (below) and body length
(below right) as functions of age. Compar-
ison of the quadratic feeding curve (right)
and the von Bertalanffy growth curve (be-
low right) leads to the question: where
did the substantial reproductive energy
come from in animals crossing the 2.5 mm
barrier? The answer leads to the κ-rule.
Original data and from [209].

κ does not show up in the dynamics of energy density. The activity of all carriers which
remove energy from the body fluid and transport it across the cell membrane depends,
in the same way, on the energy density of the fluid. Both somatic cells and ovary cells
may use the same carriers, but the concentration in their membranes may differ so that κ
may differ from the ratio of ovary and body weight. This concentration of active carriers
is controlled, e.g. by hormones, and depends on age, size and environment. Once in a
somatic cell, energy is first used for maintenance, the rest is used for growth. This makes
maintenance and growth compete directly, while development and reproduction compete
with growth plus maintenance at a higher level. The κ-rule makes growth and development
parallel processes that interfere only indirectly, as has been discussed by Bernardo [60],
for instance.

If conditions are poor, the system can block allocation to reproduction, while mainte-
nance and growth continue to compete in the same way. This will be discussed further in
the next chapter. I will show that Huxley’s allometric model for relative growth closely
links up with the κ-rule on {252}.

It is important to realize that although the fraction of utilized energy spent on mainte-
nance plus growth remains constant, the absolute size of the flow tends to increase during
development at constant food densities, as does the energy flow to maintenance plus growth.

The κ-rule solves quite a few problems from which other allocation rules suffer. Al-
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though it is generally true that reproduction is maximal when growth ceases, a simple
allocation shift from growth to reproduction leaves similarity of growth between different
sexes unexplained, since the reproductive effort of males is usually much less than that
of females. The κ-rule implies that size control is the same for males and females and
for organisms such as yeasts and ciliates which do not spend energy on reproduction, but
do grow in a way that is comparable to species that reproduce; see figure 1.1. A strong
support for the κ-rule comes from situations where the value for κ is changed to a new
fixed value. Such a simple change affects reproduction as well as growth and so food intake
in a very special way. Parasites such as the trematod Schistosoma in snails harvest all
energy to reproduction and increase κ to maximize the energy flow they can consume,
as will be discussed on {243}. Parasite induced gigantism, coupled to a reduction of the
reproductive output, is also known from trematod infested chaetognats [499], for instance.
The daily light cycle also affects the value for κ in snails; see {128}. The effect of some
toxic compounds can be understood as an effect on κ, as will be discussed in the chapter
on ecotoxicity, {282}. I will show how the κ-rule can be derived from a number of other
assumptions that lend themselves to direct experimental testing on {119}.

3.6 Maintenance

Maintenance stands for a collection of processes necessary to ‘stay alive’. More precisely,
maintenance energy is defined as the (mean) energy requirement of an organism, excluding
the production processes of growth, reproduction and development. Maintenance costs are
species-specific and depend on the size of the organism and on body temperature. Mainte-
nance processes include the maintenance of concentration gradients across membranes, the
turnover of structural body proteins, a certain (mean) level of muscle tension and move-
ment, and the (continuous) production of hairs, feathers, scales. I do not include heating
of endotherms in maintenance for convenience, although it is a process necessary to stay
alive and will be treated accordingly. As explained in the discussion on the κ-rule, {74},
development is excluded from maintenance, as it relates (partly) to a type of production
process. The maintenance part of development is referred to as maturity maintenance, and
will be discussed in the section on development, {97}. To distinguish maturation mainte-
nance from other maintenance costs, the latter will be called costs for somatic maintenance,
if necessary.

The notion of maintenance costs for advanced taxa is probably as old as man himself.
Duclaux [186] was the first to recognize in 1898 that maintenance costs should be separated
from production costs to understand the energetics of micro-organisms. The next reference
to maintenance costs for micro-organisms stems from Sherris et al. [653] in 1957, in relation
to motility. In the early 1960s maintenance costs for micro-organisms received considerable
attention [310,380,455,466,533,556].

As is customary, I use the term ‘metabolism’ or ‘respiration’ to cover non-maintenance
processes as well. The realization that respiration includes growth leads, I think, to the
solution of a long standing problem: the acceptance that maintenance energy is propor-
tional to biovolume, while metabolism or respiration is about proportional to volume to
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the power 3
4
. I will discuss this further in the section on respiration, {103}.

The idea that maintenance costs are proportional to biovolume is simple and rests
on homeostasis: a metazoan of twice the volume of a conspecific has twice as many cells,
which each use a fixed amount of energy for maintenance. A unicellular of twice the original
volume has twice as many proteins to turn over. Bacteria, which grow in length only, have
a surface area that is a linear function of cell volume. The energy spent on concentration
gradients, which is coupled to membranes is, therefore, proportional to volume. Protein
turnover seems to be low in prokaryotes [397]. Eukaryotic unicellular isomorphs are filled
with membranes, and this ties the energy costs for concentration gradients to volume. (The
argument for membrane-bound food uptake works out differently in isomorphs, because
feeding involves only the outer membrane directly.) Working with mammals, Porter and
Brand [567] argued that proton leak in mitochondria represents 25% of the basal respiration
in isolated hepatocytes and may contribute significantly to the standard metabolic rate of
the whole animal.

The energy costs for movement are also taken to be proportional to volume if averaged
over a sufficiently long period. Costs for muscle tension in isomorphs are likely to be
proportional to volume, because they involve a certain energy investment per unit volume
of muscle. In the section on feeding, I discussed briefly the energy involved in movement,
{63}, which has a standard level that includes feeding. This can safely be assumed to
be a small fraction of the total maintenance costs. Sustained powered movement such
as in migration requires special treatment. Such activities involve temporarily enhanced
metabolism and feeding. The occasional burst of powered movement hardly contributes
to the general level of maintenance energy requirements. Sustained voluntary powered
movement seems to be restricted to humans and even this seems of little help in getting
rid of weight!

Energy lost in excretion products is here included in maintenance costs, because the
excretion of nitrogen is the most important component. This flux is tied to protein turnover,
the costs of which are also included in maintenance. Products directly derived from food
can also be excreted. These products are linked to the feeding process and should, therefore,
show up in the value for {Ȧm}. Such a partitioning of products complicates the analysis of
excretion fluxes and the practical significance is limited because the energy flux involved
in excretion is usually very small. Microbial product formation is discussed on {189}.

Maintenance costs are here taken to be independent of the growth rate. Tempest and
Neijssel [707] argued that the concentration gradients of potassium and glutamic acid can
involve a substantial energy requirement in prokaryotes. However, the concentrations of
these compounds vary markedly with growth rate so that this energy drain is not taken to
be part of maintenance here, but as part of the overhead costs of the growth process. The
high costs for patassium gradients is at odds with Ling’s association-induction hypothesis
[434], which states a.o. that virtually all K+ in living cells exists in an absorbed state. The
mechanism is via a liquid crystal type of structure for the cytoplasm [102].

Some species have specific maintenance costs, such as daphnids which produce moults
every other day at 20 ◦C. The synthesis of new moults occurs in the intermoult period
and is a continuous and slow process. The moults tend to be thicker in the larger sizes.
The exact costs are difficult to pin down, because some of the weight refers to inorganic
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compounds, which might be free of energy cost. Larvaceans produce new feeding houses
every 2 hours at 23 ◦C [214], and this contributes substantially to organic matter fluxes
in oceans [11,12,157]. These costs are taken to be proportional to volume. The inclusion
of costs for moults and houses in maintenance costs is motivated by the observation that
these rates do not depend on feeding rate [214,407], but only on temperature. Euryhaline
fishes have to invest energy for osmoregulation in waters that are not iso-osmotic. The
cichlid Oreochromis niloticus is iso-osmotic at 11.6 ppt and 29% of the respiration rate at
30 ppt can be linked to osmoregulation [780]. Similar results have been obtained for brook
trout Salvelinus fontinalis [237].

The maintenance costs Ṁ , are thus taken to be proportional to volume

Ṁ = [Ṁ ]V (3.9)

and the volume-specific costs for maintenance, [Ṁ ], can be partitioned into a variety of
processes that together are responsible for these costs.

As stated on {39}, no maintenance costs are paid over reserves. The empirical justifica-
tion can most easily be illustrated by the absence of respiration in freshly laid eggs, which
consist almost entirely of reserves; see figure 3.14. Note, however, that costs for turnover of
reserves are covered by overheads in assimilation and utilization. Although the difference
between turnover costs for reserves and structural biomass is subtle, eggs show that the
turnover costs for reserves are not equivalent with maintenance for reserves, since they do
not respire when freshly laid.

3.7 Homeothermy

Heat comes free as a side product of all uses of energy, cf. {201}. In ectotherms, this heat
simply dissipates without increasing the body temperature above that of the environment
to any noticeable amount as long as the temperature is sufficiently low. If the environmental
temperature is high, as in incubated bird eggs just prior to hatching, metabolic rates are
high as well, releasing a lot more free energy in the form of heat and increasing the body
temperature even further, cf. {135}. This is called a positive feedback in cybernetics.
The rate of heat dissipation obviously depends on the degree of insulation and is directly
related to surface area. A small number of species, known as endotherms, use energy for
the purpose of keeping their body temperature at a predetermined high level, 34 ◦C in
monothremes, 37 ◦C in most mammals, 39 ◦C in non-passerine birds, 41 ◦C in passerine
birds. Mammals and birds change from ectotherms to endotherms during the first few
days of their juvenile stage. Some species temporarily return to the ectothermic state or
partly so in the night (kolibries) or during hibernation (rodents, bats) or torpor (tenrecs,
cf. {131}). Not all parts of the body are kept at the target temperature, especially not
the extremities. The naked mole rat Heterocephalus glaber (see figure 3.12) has a body
temperature that is almost equal to that of the environment [441] and actually behaves
as an ectotherm. Huddling in the nest of this colonial species plays an important role in
thermoregulation [778]. Many ectotherms can approach the state of homeothermy under
favourable conditions by walking from shady to sunny places, and back, in an appropriate
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Figure 3.12: The naked mole rat Hetero-

cephalus glaber (30 gram) is one of the few
mammals that are essentially ectother-
mic. They live underground in colonies
of some 60 individuals. The single breed-
ing female suppresses reproductive devel-
opment of all ‘frequent working’ females
and of most ‘infrequent working’ females,
a social system that reminds us of termites
[442].

way. In an extensive study of 82 species of desert lizards from three continents, Pianka
[551] found that body temperature Tb relates to ambient air temperature Te as

Tb = 311.8 + (1 − β)(Te − 311.8)

where β stands for the species-specific thermoregulatory capacity, spanning the full range
from perfect regulation, β = 1 for active diurnal heliothermic species, to no regulation,
β = 0 for nocturnal thigmothermic species. The target temperature of 311.8 K or 38.8
◦C varied somewhat between the different sub-groups and is remarkably close to that
of mammals. Other species can raise their temperature over 10 ◦C above that of the
environment (bumble bees, moths, tuna fish, mackerel shark). These examples do make
clear that energy investment into heating is species-specific and that the regulation of body
temperature is a different problem.

The ‘advantages’ of homeothermy are that enzymes can be used that have a narrow
tolerance range for temperatures and that activity can be maintained at a high level in-
dependent of environmental temperature. At low temperatures ectotherms are easy prey
for endotherms. Development and reproduction are enhanced, which opens niches in areas
with short growing seasons that are closed to ectotherms. The costs depend on the envi-
ronmental temperature, insulation and body size. If temperature is high and/or insulation
is excellent and/or body size is large, there may be hardly any additional costs for heating;
the range of temperatures for which this applies is called the thermo-neutral zone. The
costs for heating, Ḣ, due to losses by convection or conduction can be written as

Ḣ = {Ḣ}V 2/3 (3.10)

Heat loss is not only proportional to surface area but, according to Newton, also to the
temperature difference between body and environment. This is incorporated in the con-
cept of thermal conductance {Ḣ}/(Te − Tb), where Te and Tb denote the temperature of
the environment and the body. It is about 5.43 J cm−2 h−1 ◦C−1 in birds and 7.4-9.86
J cm−2 h−1 ◦C−1 in mammals, as calculated from [311]. The unit cm−2 refers to volumetric
squared length, not to real surface areas which involve shape. The values represent crude
means in still air. The thermal conductance is roughly proportional to the square root of
wind speed.
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This is a simplified presentation. Birds and mammals moult at least twice a year, to
replace their hair and feathers which suffer from wear, and change the thick winter coat for
the thin summer one. Cat owners can easily observe that when their pet is sitting in the
warm sun, it will pull its hair into tufts, especially behind the ears, to facilitate heat loss.
Many species have control over blood flow through extremities to regulate temperature.
People living in temperate regions are familiar with the change in the shape of birds in
winter to almost perfect spheres. This increases insulation and generates heat from the
associated tension of the feather muscles. These phenomena point to the variability of
thermal conductance.

There are also other sources of heat exchange, through ingoing and outgoing radiation
and cooling through evaporation. Radiation can be modulated by changes in colour, which
chameleons and tree frogs apply to regulate body temperature [441]. Evaporation obvi-
ously depends on humidity and temperature. For animals that do not sweat, evaporation
is tied to respiration and occurs via the lungs. Most non-sweaters pant when hot and lose
heat by enhanced evaporation from the mouth cavity. A detailed discussion of heat bal-
ances would involve a considerable number of coefficients [492,677], and would obscure the
main line of reasoning. I will, therefore, refrain from giving these details. It is important
to realize that all these processes are proportional to surface area, and so affect the heating
rate {Ḣ} and in particular its relationship with the temperature difference between body
and environment.

3.8 Growth

Growth can now be derived on the basis of (3.8), (3.9), (3.10) and the κ-rule; see {74}.
The κ-rule states that

κĊ = [G]
d

dt
V + Ṁ + Ḣ (3.11)

where [G] denotes the volume-specific costs for growth, which are taken as fixed in view
of homeostasis of the structural biomass. These costs thus include all types of overhead
costs, not just the costs for synthesis. There are no costs for heating for ectotherms, so
Ḣ = 0 for them. Substitution of (3.8), (3.9) and (3.10) gives

d

dt
V = v̇

V 2/3[E]/[Em] − V 2/3(Vh/Vm)1/3 − V/V 1/3
m

[E]/[Em] + g
(3.12)

Note that growth does not depend on food density directly. It only depends on reserve
density and body volume. The energy parameters combine in the compound parameters
Vh, Vm, g and v̇. The compound parameters will appear frequently in the sequel, so they
are best introduced here. To aid memory, it is useful to give them names.

The maintenance rate constant ṁ ≡ [Ṁ ]/[G] was introduced by Marr [455] and
publicized by Pirt [556], and stands for the ratio of costs for maintenance and biovolume
synthesis. It has dimension time−1. It remains hidden here in the maximum volume Vm,
but it will frequently play an independent role.
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The quantity g ≡ [G]/κ[Em] is called the (energy) investment ratio and stands for the
costs for new biovolume relative to the maximum potentially available energy for growth
plus maintenance. It is dimensionless.

Vm ≡ ( v̇
gṁ

)3 = (κ{Ȧm}/[Ṁ ])3 stands for the maximum volume ectotherms can reach.

(Endotherms cannot reach this volume because they loose energy through heating.) The
comparison of species is based on this relationship between maximum volume and energy
budget parameters and is the core of the relationship between body size and physiological
variables together with the invariance property of the deb model, to be discussed later,
{217}.

The heating volume Vh ≡ ({Ḣ}/[Ṁ ])3 stands for the reduction in volume endotherms
experience due to the energy costs for heating. It can be treated as a simple parameter as
long as the environmental temperature remains constant. If the temperature changes slowly
relative to the growth rate, the heating volume just a function of time. If environmental
temperature changes rapidly, body temperature can be taken to be constant again while
the effect contributes to the stochastic nature of the growth process, cf. {121}. Note that
(3.12) shows that the existence of a heating volume is not an extra assumption, but a
consequence of the volume-bound maintenance costs and the surface area-bound input
and heating costs.

If food density X and, therefore, the scaled functional response f are constant, and if
the initial energy density equals [E] = f [Em], energy density will not change. Volumetric
length as a function of time since hatching where V (0) ≡ Vb, can then be solved from
(3.12)

d

dt
V 1/3 =

v̇

3(f + g)

(

f − (Vh/Vm)1/3 − (V/Vm)1/3
)

(3.13)

V 1/3(t) = V 1/3
∞ − (V 1/3

∞ − V
1/3
b ) exp{−tγ̇} or (3.14)

t(V ) =
1

γ̇
ln
V 1/3
∞ − V

1/3
b

V
1/3
∞ − V 1/3

(3.15)

I will follow tradition and call this curve the von Bertalanffy growth curve despite its earlier
origin and von Bertalanffy’s contribution of introducing allometry, which I reject; see {12}.
The von Bertalanffy growth rate equals

γ̇ ≡ (3/ṁ+ 3fV 1/3
m /v̇)−1 (3.16)

and the ultimate volumetric length

V 1/3
∞ ≡ fV 1/3

m − V
1/3
h (3.17)

Time t in (3.14) is measured from hatching or birth. (Note that time and age are not the
same.) The von Bertalanffy growth curve results for isomorphs at constant food density
and temperature and has been fitted successfully to the data of some 270 species from
many different phyla; see table 6.2 and [410]. The gain in insight since Pütter’s origi-
nal formulation in 1920 is in the interpretation of the parameters in terms of underlying
processes. It appears that heating costs do not affect the von Bertalanffy growth rate γ̇.
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Figure 3.13: The left figure shows the length-at-age data of the waterflea Daphnia magna for
various densities of the green alga Chlorella at 20 ◦C with von Bertalanffy growth curves. Data
from [407]. The inverses of the estimated von Bertalanffy growth rates have been plotted against
estimated ultimate lengths (right). The expected relationship is γ̇−1 = 3/ṁ + 3dmL∞/v̇. The
least squares fitted line gives estimates for v̇/dm of 2.29 mm d−1 and for ṁ of 4.78 d−1, both of
which seem to be too high in comparison with other species. Frequent moulting may contribute
to the maintenance costs and so to the high estimate for the maintenance rate coefficient ṁ.

Being a rate, high temperature does elevate it, of course. Food density affects both the
von Bertalanffy growth rate and the ultimate volume. The inverse of the von Bertalanffy
growth rate is a linear function of the ultimate volumetric length; see figure 3.13. This
is consistent with the Pütter’s original formulation, which took this rate to be inversely
proportional to ultimate length, as has been proposed again by Gallucci and Quinn [242].

The requirement that food density is constant for a von Bertalanffy curve can be relaxed
if food is abundant. This is due to the hyperbolic functional response. As long as food
density is higher than 4 times the saturation coefficient, food intake is higher than 80% of
the maximum possible food intake, which makes it hardly distinguishable from maximum
food intake. Since most birds and mammals have a number of behavioural traits aimed at
guaranteed adequate food availability, they appear to have a fixed volume-age relationship.
This explains the popularity of age-based models for growth in ‘demand’ systems. In the
next chapter I will discuss deviations from the von Bertalanffy growth curve that can be
understood in the context of the present theory.

In contrast, at low food densities, fluctuations in food density soon induce deviations
from the von Bertalanffy curve. This phenomenon will be discussed further in the section
on genetics and parameter variation, {112}.

Maximum volumetric length is reached at prolonged exposure to high food densities,
where f = 1, which gives V 1/3

∞ = V 1/3
m − V

1/3
h . If the juvenile period ends upon exceeding

volume Vp, the length of this period is t(Vp) at constant food density, as given in (3.15).

In the discussion on population dynamics, it will become important to distinguish
time, t, from age, a. The age at the end of the juvenile period, so at puberty, is thus
ap = ab + t(Vp), if ab stands for the age at birth and fertilization initializes age.

Growth ceases, i.e. d
dt
V = 0, if [E] = ({Ḣ} + [Ṁ ]V 1/3)/κv̇. If the energy density drops

even further, some organisms, such as protozoa and coelenterates, shrink. Even animals
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with a skeleton, such as shrews of the genus Sorex, can exhibit a geographically varying
winter size depression, known as the Dehnel phenomenon [250]. Molluscs seem be to able
to reduce shell size [179]. Some animals only deviate from the κ-rule in situations of
prolonged starvation, that is, they still follow first order dynamics for the use of energy
reserves, pay maintenance (and heating) costs, the rest being spent on development and/or
reproduction, whereas others deviate from first order dynamics for the utilization of energy,
(3.7). These species only pay maintenance (and heating) costs, so

d

dt
[E] = f{Ȧm}V −1/3 − [Ṁ ] − {Ḣ}V −1/3 (3.18)

where V remains fixed. At constant food density, thus constant energy uptake rate, this
dynamics implies that energy density either increases to the no-growth boundary or de-
creases to zero. Pond snails are a beautiful example of a species that follows both strategies
for energy expenditure, depending on day length. When in a long day/short night cycle,
they reproduce continuously, but they cease to do so in a short day/long night rhythm.
This will be discussed further in the next chapter, {128}. Although food availability does
not influence growth directly, it does so indirectly via reserve energy. Moreover, the maxi-
mum surface area-specific assimilation rate {Ȧm}, and so energy conductance v̇, relate to
the food-energy conversion. Many herbivores, such as chickens, eat animal products in the
early juvenile period to gain nitrogen, which they need for the synthesis of proteins. They
experience a shift in diet during development. Mammals feed milk to their offspring, this
needs little conversion and induces growth rates that cannot be reached with their later
diet. Growth curves show a sharp kink at weaning.

Animals that have non-permanent exoskeletons (arthropods, insects) have to moult to
grow. The rapid increase in size during the brief period between two moults, relates to
uptake of water or air, not to synthesis of new structural biomass, which is a slow process
occurring during the intermoult period. This minor deviation from the deb model (see
figure 3.11 and [409]) relates more to size measures than to model structure.

3.8.1 Embryonic growth

The deb model takes the bold view that the only essential difference between embryos
and juveniles is that the former do not feed. Although information on parameter values
is still sparse, it indicates that no (drastic) changes of values occur at the transition from
the embryonic to the juvenile state. I will first discuss eggs, which do not take up energy
from the environment. (See [113] for an excellent introduction to eggs, with beautiful
photographs.) Subsequently, I will deal with foetuses, which obtain energy reserves from
the mother during development.

The idea is that the dynamics for growth, (3.12), and reserve density, (3.7), also apply
to embryos in eggs in absence of food intake. The scaled functional response is thus taken
to be f = 0. The dynamics for the reserve density then reduces to

d

dt
[E] = −v̇[E]V −1/3 (3.19)
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The initial volume is practically nil, so V (0) = 0. This makes the energy density infinitely
large, so [E](0) = ∞. The (absolute) initial energy is a certain amount, [E](0)V (0) = E0,
which, however, is not considered to be a free parameter. Its value is determined from the
condition of the energy reserves at hatching. Hatching occurs at age ab, say, and initial
energy density [Eb], so [E](ab) = [Eb]. The just-born juvenile still needs some energy
reserves to cope with its metabolic needs. If all utilized energy is used for maintenance
at hatching, a lower boundary for reserve energy density follows from [Ṁ ]Vb = v̇[Eb]V

2/3
b ,

giving [Eb] = [Ṁ ]V
1/3
b /v̇.

If food density is constant, the energy density will change from the one at hatching,
called [Eb], to f [Em] in juveniles. If energy density at hatching is about equal to f [Em],
the growth curve will follow a von Bertalanffy curve. For initial energy densities less
than f [Em], growth will be retarded compared to the von Bertalanffy growth curve; the
opposite holds for initial densities larger than f [Em]. Although the deviation from the von
Bertalanffy growth curve will not last long, because the relaxation time for energy density
is proportional to length, which is small at hatching, it is tempting to take the initial energy
density to be equal to that of the mother at egg laying. This results in von Bertalanffy
growth at constant food density even just after hatching, and it does not require additional
parameters.

Tests on the realism of the initial condition that [Eb] equals [E] of the mother at
egg laying are conflicting for daphnids. The triglycerides component of energy density is
visible as a yellow colour and as droplets. I have observed that well-fed, yellow mothers
of Daphnia magna give birth to yellow offspring, and poorly fed, glassy mothers give
birth to glassy offspring. This is consistent with observations of Tessier et al. [710].
Later observations by Tessier as well as by Lisette Enserink, however, indicate an inverse
relationship between food density and energy reserves at hatching. An increase of energy
investment per offspring can also result in larger offspring rather than an increased reserve
density at hatching. Large bodied offspring at low food availability has been described for
the terrestrial isopod Armadillium vulgare [96]. Because of the relationship with energy
costs for egg production, and so with reproduction rate, this response to resource depletion
has implications for population dynamics. It can be viewed as a mechanism that aims to
ensure adequate food supply for the existing individuals. The condition that energy density
at hatching equals that of the mother at egg formation is made here for reasons of simplicity
and theoretical elegance. No theoretical barriers exist for other formulations within the
context of the deb theory. Such formulations are likely to involve species-specific empirical
or optimization arguments, however, which I have tried to avoid as much as possible.

Embryo development provides excellent opportunities to test the model for the dy-
namics of energy reserves, because of the huge change of energy density, which avoids the
pathological conditions starving individuals face. As embryos do not feed, data on their
development do not suffer from a major source of scatter.

The goodness of fit is remarkable, as illustrated in figure 3.14, where data on weight,
yolk and respiration have been fitted simultaneously by Cor Zonneveld [790]. The total
number of parameters is 5 excluding, or 7 including, respiration. As will be discussed later,
{103}, respiration is taken to be proportional to the utilization rate. This makes up only 2.5
parameters per data set and thus approaches a straight line for simplicity when measured



3.8. Growth 85

this way. The examples are representative of the data collected in table 3.1, which gives
parameter estimates of some 40 species of snails, fish, amphibians, reptiles and birds. The
model tends to underestimate embryo weight and respiration rate in the early phases of
development. This is partly due to deviations in isomorphism, the contributions of extra-
embryonic membranes (both in weight and in the mobilization of energy reserves), and the
loss of water content during development. The estimates for the altricial birds such as the
parrot Agapornis should be treated with some reservations, because neglected acceleration
due to temperature increase during development substantially affects the estimates, as
discussed on {135}.

The values for the energy conductance v̇, as given in table 3.1, are in accordance with
the average value for post-embryonic development, as given on {224}, which indicates that
no major changes in energy parameters occur at birth. The maintenance rate constant
ṁ for reptiles and birds is about 0.08 d−1 at 30 ◦C, implying that the energy required to
maintain tissue during 12 days at 30 ◦C is about equal to the energy necessary to synthesize
the tissue from the reserves. The maintenance rate constant for fresh water species seems
to be much higher, ranging from 0.3 to 2.3 d−1. Data from Smith [670] on the rainbow
trout Salmo irideus, now called S. gairdnerii, result in 1.8 d−1 and figure 3.13 gives over
10 d−1 for the waterflea Daphnia magna at 30 ◦C. The costs for osmosis might contribute
to these high maintenance costs, as has been suggested on {78}.

Table 3.1 shows that about half of the reserves are used during embryonic development.
The deviating values for altricial birds are artifacts, due to the mentioned acceleration
of development by increasing temperatures. Congdon et al. [133] observed that the
turtles Chrysemus picta and Emydoidea blandingi have 0.38 of the initial reserves at birth.
Respiration measurements on sea birds by Pettit et al. [545] indicate values that are
somewhat above the ones reported in the table. The extremely small value for the soft
shelled turtle, see also figure 3.14, relates to the fact that these turtles wait for the right
conditions to hatch, where they have to run the gauntlet as a cohort at night from the
beach to the water, where a variety of predators are waiting for them.

The general pattern of embryo development in eggs is characterized by unrestricted
fast development during the first part of the incubation period (once it has started the
process) due to unlimited energy supply, at a rate that would be impossible to reach if
the animal had to refill reserves by feeding. This period is followed by a retardation of
development due to the increasing depletion of energy reserves. Due to the goodness of
fit of the model in species that do not possess shells, retardation is unlikely to be due
to limitation of gas diffusion across the shell, as has been frequently suggested for birds
[579]. Such a limitation also fails to explain why respiration declines in some species after
its peak value, here beautifully illustrated with the turtle data.

Large eggs, so large initial energy supplies, thus result in short incubation times if eggs
of one species are compared. Crested penguins, Eudyptes, are known for egg dimorphism
[749]; see figure 3.15. They first lay a small egg and, some days later a 1.5 times bigger
one. As predicted by the deb model, the bigger one hatches first, if fertile, in which case
the parents cease incubating the smaller egg, because they are only able to raise one chick.
They continue to incubate the small egg only if the big one fails to hatch. This is probably
an adaptation to the high frequency of unfertilized eggs or other causes of loss of eggs
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Figure 3.14: Yolk-free embryo weight (⋄), yolk weight (×), and respiration rate (+) during
embryo development, and fits on the basis of the deb model. Data sources are indicated.

pond snail Lymnaea stagnalis [335]

sea trout Salmo trutta [273] American racer Coluber constrictor [523]

Australian crocodile Crocodylus johnstoni [452,765]



3.8. Growth 87

New Guinea soft-shelled turtle Carettochelys insculpta [755]

Laysan albatross Diomedea immutabilis [544]
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Table 3.1: Survey of re-analyzed egg data, and parameter values standardized to a temperature
of 30 ◦C, taken from [790]. *1* Whitehead, pers. comm., 1989 ; *2* Thompson, pers. comm.,
1989; ‘galac.’, stands for galactogen content.

species temp. type of data v̇30 ṁ30 Eb/E0 reference
◦C mm d−1 d−1

Lymnaea stagnalis 23 ED, galac, O 0.80 2.3 0.55 [335]

Salmo trutta 10 ED, YD 3.0 0.31 0.37 [273]

Rana pipiens 20 EW, O 2.5 0.87 [25]

Crocodylus johnstoni 30 EW, YW 1.9 0.060 0.31 [452]
29, 31 O [765]

Crocodylus porosus 30 EW, YW 2.7 0.024 0.19 [756]
30 O *1*

Alligator mississippiensis 30 EW, YW 2.7 0.34 [160]
30 O [716]

Chelydra serpentina 29 ED, YD 1.9 0.35 [523]
29 O [251]

Carettochelys insculpta 30 EW, YW, O 1.9 0.040 0.08 [755]
Emydura macquarii 30 EW, O 1.6 0.14 0.35 [716]
Caretta caretta 28-30 EW, O 3.0 0.65 [3,2]
Chelonia mydas 28-30 EW, O 3.0 0.57 [3,2]
Amphibolurus barbatus 29 ED, YD 0.92 0.061 0.47 [524]
Coluber constrictor 29 ED, YD 1.4 0.69 [525]
Sphenodon punctatus 20 HM, O 0.85 0.062 0.25 *2*

Gallus domesticus 39 EW, O, C 3.2 0.039 0.34 [610]
Gallus domesticus 38 EW, C 3.4 0.52 [77]
Leipoa ocellata 34 EE, YE, O 1.7 0.031 0.55 [743]
Pelicanus occidentalis 36.5 EW, O 3.2 0.10 0.77 [38]
Anous stolidus 35 EW, O 2.0 0.11 0.59 [546]
Anous tenuirostris 35 EW, O 1.8 0.20 0.59 [546]
Diomedea immutabilis 35 EW, O 2.5 0.069 0.57 [544]
Diomedea nigripes 35 EW, O 2.5 0.049 0.58 [544]
Puffinus pacificus 38 EW, O 0.92 0.084 0.61 [4]
Pterodroma hypoleuca 34 EW, O 1.9 0.20 [544]
Larus argentatus 38 EW, C 2.7 0.15 0.56 [182]
Gygis alba 35 EW, O 1.4 0.53 [543]
Anas platyrhynchos 37.5 EW 2.5 0.10 0.67 [569]

37.5 O [372]
Anser anser 37.5 EW 4.1 0.039 0.23 [609]

37.5 O [741]
Coturnix coturnix 37.5 EW, O 1.7 0.49 [741]
Agapornis personata 36 EW, O 0.8 0.79 [107]
Agapornis roseicollis 36 EW, O 0.84 0.81 [107]
Troglodytes aëdon 38 EW, O 1.4 0.82 [378]
Columba livia 38 EW 2.7 0.80 [373]

37.5 O [741]

EW: Embryo Wet weight YW: Yolk Wet weight ED: Embryo Dry weight
EE: Embryo Energy content YE: Yolk Energy content YD: Yolk Dry weight
O: Oxygen consumption rate C: Carbon dioxide prod. rate HW: Hatchling Wet weight
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Figure 3.15: Egg dimorphism occurs
standard in crested penguins (genus Eu-

dyptes). The small egg is laid first, but it
hatches later than the big one, which is 1.5
times as heavy. The deb theory explains
why the large egg requires a shorter incu-
bation period. The illustration shows the
Snares crested penguin E. atratus.

(aggression [749]), which occurs in this species.
Incubation periods only decrease for increasing egg size if the structural biomass of the

hatchling is constant. The incubation period is found to increase with egg size in some
beetle species, lizards and marine invertebrates [128,206,660]. In these cases, however, the
structural biomass at hatching also increased with egg size. This is again consistent with
the deb theory, although it does not explanain the variation in egg sizes.

Foetal development differs from that in eggs in that energy reserves are supplied contin-
uously via the placenta. The feeding and digestion processes are not involved. Otherwise,
foetal development is taken to be identical to egg development, with initial reserves that
can be taken to be infinitely large, for practical purposes. At birth, the neonate receives
an amount of reserves from the mother, such that the reserve density of the neonate equals
that of the mother. So the approximation [E] = ∞ for the foetus can be made for the
whole gestation period and the dynamics of the reserve density (3.19) no longer applies,
because the foetus lives on the reserves of the mother. In other words: unlike eggs, the
development of foetuses is not restricted by energy reserves. Initially the egg and foetus
develop in the same way, but the foetus keeps developing at an unrestricted rate till the end
of the gestation time, while the development of the egg becomes retarded, due to depletion
of the reserves. The approximation [E] = ∞ reduces the growth equation (3.12) to

d

dt
V = v̇V 2/3 so (3.20)

V (t) = (v̇t/3)3 (3.21)

This growth curve was proposed by Huggett and Widdas [341] in 1951. Payne and Wheeler
[536] explained it by assuming that the growth rate is determined by the rate at which
nutrients are supplied to the foetus across a surface that remains in proportion to the total
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Figure 3.16: Foetal weight development in mammals.

house mouse, Mus musculus impala, Aepyceros melampus

surface area of the foetus itself. This is consistent with the deb model, which gives the
energy interpretation of the single parameter.

The fit is again excellent; see figure 3.16. It is representative for the data collected in
table 3.2 taken from [790]. A time lag for the start of foetal growth has to be incorporated,
and this delay may be related to the development of the placenta, which possibly depends
on body volume as well. The long delay for the grey seal Halichoerus probably relates
to timing with the seasons to ensure adequate food supply for the developing juvenile.
Variations in weight at birth are primarily due to variations in gestation period, not in
foetal growth rate. For comparative purposes, energy conductance v̇ is converted to 30
◦C, on the assumption that the Arrhenius temperature is TA = 10200 K and the body
temperature is 37 ◦C for all mammals in the table. This is a rather crude conversion
because the cat, for instance, has a body temperature of 38.6 ◦C. Weights were converted
to volumes using a specific density of [dw] = 1 g cm−3.

One might expect that precocial development is rapid, resulting in advanced develop-
ment at birth and, therefore, comes with a high value for the energy conductance. The
values collected in table 3.2, however, do not seem to have an obvious relationship with
altricial-precocial rankings. The precocial guinea-pig and alpaca as well as the altricial hu-
mans have relatively low values for the energy conductance. The altricial-precocial ranking
seems to relate only to the relative volume at birth Vb/Vm.

Egg costs

The embryo thus develops from state (a, [E], V ) = (0,∞, 0) to state (ab, [Eb], Vb). The
costs for growth and maintenance together with κ determine the energy costs for an egg,
E0. These costs and the incubation time thus follow from specifications at hatching. This
back reasoning is necessary because the initial volume is taken to be infinitesimally small,
which makes the initial reserve density infinitely large.

The derivation of the costs for an egg is a bit technical, I am afraid, due to the non-
linearity of the dynamics. We will need the costs to go from an energy flux allocated
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Table 3.2: The estimated energy conductance, v̇, and its value corrected for a temperature of 30
◦C, and the time lag for the start of development, tl, for mammalian embryos.

Species v̇ (cv) v̇30 tl (cv) reference
(race) mm d−1 mm d−1 d

Homo sapiens 0.84
males 0.180 (0.3) 26.8 (2.0) [758]
females 0.179 (0.4) 26.5 (2.9)

Oryctolagus cuniculus 0.560 (0.9) 2.6 10.7 (1.5) [432]
small litters 0.602 (1.5) 11.5 (2.4) [34]
large litters 0.571 (1.5) 11.5 (2.4) [34]

0.504 (5.6) 10.4 (10) [36]
Lepus americanus 0.573 (3.1) 2.7 13.1 (4.2) [79]
Cavia porcellus 0.269 (3.3) 1.1 15.7 (8.3) [180]

0.239 (2.3) [346]
Cricetus auratus 0.570 (2.1) 2.6 9.29 (1.3) [573]
Mus musculus 0.333 (0.1) 1.5 8.45 (0.1) [448]
Rattus norvegicus 2.5

wistar 0.487 (0.5) 11.4 (0.3) [217]
albino 0.531 (0.8) 12.2 (0.5) [688]

0.525 (0.2) 11.8 (0.2) [341]
albino 0.568 (3.3) 12.7 (2.1) [16]
albino 0.542 (3.1) 12.4 (2.0) [222]

Clethrionomys glareolus 0.374 (9.3) 1.8 8.29 (11) [140]
Aepyceros melampus 0.316 (1.2) 1.4 39.4 (3.8) [210]
Odocoileus virginianus 0.296 (6.7) 1.3 34.9 (28) [605]

0.274 (1.6) 25.1 (8.5) [733]
Dama dama 0.345 (6.4) 1.7 9.94 (46) [21]
Cervus canadensis 0.336 (3.1) 1.5 24.9 (19) [494]
Lama pacus 0.120 (7.6) 0.56 7.47 (83) [218]
Ovis aries 1.9

welsh 0.482 (5.6) 43.9 (12) [341]
merino 0.341 (8.6) 14.9 (71) [450]

0.346 (4.6) 15.2 (32)
0.433 (4.4) 33.3 (13) [130]

karakul 0.436 (3.7) 31.0 (13) [193]
0.403 (2.6) 27.5 (8.2) [365]

hampshire × 0.382 (1.5) 20.4 (7.9) [775]
Capra hircus 0.339 (6.5) 1.7 24.3 (29) [199]

0.365 (4.5) 31.3 (14) [35]
Bos taurus 0.475 (2.6) 2.3 59.5 (7.5) [776]
Equus caballus 0.370 (11) 1.8 37.0 (81) [481]
Sus scrofa 0.266 (0.6) 4.73 (12) [750]

Yorkshire 0.283 (0.9) 5.49 (16) [729]
Large white 0.383 (1.3) 23.6 (4.2) [562]
Essex 0.321 (4.8) 14.1 (30)

Felix catus 0.371 (1.2) 1.8 18.8 (2.3) [139]
Pipistrellus pipistrellus 0.97

1978 0.237 (1.9) 9.95 (2.9) [575]
1979 0.181 (3.5) 13.7 (4.7)

Halichoerus grypus 0.375 (10) 1.8 145 (9.2) [314]
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to reproduction to a reproductive rate. You will not miss a lot if you skip the rest of
this section, if you are ready to accept the result that egg costs do not involve any new
parameters. Costs for breeding by the parent are not included in this derivation.

The first step to derive the costs for an egg is to get rid of a number of parameters by
turning to the dimensionless variables scaled energy density e = [E]/[Em], scaled volumetric
length l = (V/Vm)1/3 and scaled time τ = tṁ. Substitution into (3.19) and (3.12), reduces
the coupled differential equations to

d

dτ
e = −ge

l
and

d

dτ
l =

g

3

e− l

e+ g
(3.22)

The ratio of these equations gives the Bernoulli equation

dl

de
= − l

3e

e− l

e+ g
or

dx

de
=

ex− 1

3e(e+ g)
(3.23)

where x ≡ l−1 is only introduced because the resulting equation in x is of a solvable linear
first order with variable coefficients. Its solution is

x(e) = v(e)

(

∫ e

eb

−de1
3(e1 + g)e1v(e1)

+ x(eb)

)

(3.24)

with v(e) = exp{
∫ e

eb

de1
3(g + e1)

} =

(

g + e

g + eb

)1/3

Substitution of l = x−1 gives

1

l
=

(

g + e

g + eb

)1/3




1

lb
− (g + eb)

1/3

3g4/3

∫ e
e+g

eb
eb+g

s−1(1 − s)1/3 ds



 (3.25)

Assume that the condition at hatching is fixed at eb and lb and let l → 0 and e→ ∞ such
that [Em]Vmel

3 = E0, say, which has the interpretation of the energy reserves in a freshly
laid egg. Solving E0 gives for e0 ≡ E0

[Em]Vm

e0 =





1

lb(g + eb)1/3
−
B g

eb+g
(4

3
, 0)

3g4/3





−3

(3.26)

where Bx(a, b) ≡
∫ x
0 y

a−1(1− y)b−1 dy is the incomplete beta function. Its two term Taylor
expansion in [G] around the point [G] = 0 gives

e0 ≃
26e4b

(4eb/lb − 1)3
+

4eb/lb − 16/7

(4eb/lb − 1)4
g26e3b (3.27)

Incubation time

The incubation time can be found by separating variables in (3.22) and substituting in
(3.25). After some transformation, the result is

ab =
3

ṁ

∫ xb

0

dx

(1 − x)x2/3(α−Bxb
(4

3
, 0) +Bx(

4
3
, 0))

(3.28)
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where xb ≡ g
eb+g

and α ≡ 3gx
1/3
b /lb. Its two term-Taylor expansion in [G] around the point

[G] = 0 gives after tedious calculation

ab ≃
3
√

2

ṁ
u3

(

eb
g

+
1

4
− 9

28
u4

)(

1

2
ln
u2 + u

√
2 + 1

u2 − u
√

2 + 1
+ arctan

u
√

2

1 − u2

)

+
9

7ṁ
(u4+ln{1+u4})

(3.29)
where u stands for (4eb/lb − 1)−1/4. I owe you an apology for writing out such a threatful
expression; the essence, however, is that no new parameters show up and that (3.29) can
readily be implemented in computer code.

Foetal costs and gestation time

The energy costs for the production of a neonate is found by the addition of costs for
development, growth and maintenance plus energy reserves at birth, i.e. [Eb]Vb. Expressed
as a fraction of the maximum energy capacity of an adult, these costs are

e0 = (
∫ ab

0
Ċ(t) dt+ [Eb]Vb)([Em]Vm)−1

Substitution of the κ-rule, κĊ = [G] d
dt
V + [Ṁ ]V , and the growth curve (3.21) results in

e0 = l3b (g + eb + lb3/4) (3.30)

This expression does not include the costs for the placenta. These costs can easily be taken
into account if they happen to be proportional to that of the rest of the foetuses; see {100}.

Gestation time (excluding any time lag) is

ab = 3lb/gṁ = 3V
1/3
b /v̇ (3.31)

3.8.2 Growth for non-isomorphs

The above derivation assumes isomorphism, but it can easily be extended to include chang-
ing shapes. The surface areas of organisms that change shape, such as filaments and rods,
have to be corrected for this change by multiplying parameters containing surface area,
{İm} and {Ȧm} and thus v̇ and Vm, by the shape correction function M(V ). These or-
ganisms are ectothermic, so {Ḣ} = 0. For filaments, the shape correction function (2.4)
transforms the change of energy density (3.7) and the growth rate (3.12) into

d

dt
[E] = [Ȧm](f − [E]/[Em]) (3.32)

d

dt
V = ν̇

[E]/[Em] − (Vd/Vm)1/3

g + [E]/[Em]
V (3.33)

where Vd is the volume at division, and Vm is defined by V 1/3
m = v̇

gṁ
. The length-specific

energy conductance ν̇ is just an abbreviation for ν̇ ≡ v̇V
−1/3
d . It has dimension time−1.

Likewise, the notation [Ȧm] ≡ {Ȧm}V −1/3
d is introduced. If substrate density X and,
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therefore, the scaled functional response f are constant long enough, energy density tends
to [E] = f [Em] and volume as a function of time since division becomes for V (0) = Vd/2

V (t) =
1

2
Vd exp{tγ̇f} or (3.34)

t(V ) = γ̇−1
f ln{2V/Vd} (3.35)

with γ̇f ≡ ν̇ f−(Vd/Vm)1/3

f+g
. The time taken to grow from Vd/2 to Vd is thus t(Vd) = γ̇−1

f ln 2.
Exponential growth can be expected if the surface area at which nutrients are taken

up is proportional to volume. For filaments, this happens when the total surface area, or
a fixed fraction of it, is involved. If uptake only takes place at tips, the number of tips
should increase with total filament length to ensure exponential growth. This has been
found for the fungi Fusarium [725], and Penicillium [506,558], which do not divide; see
figure 3.17. The ascomycetous fungus Neurospora does not branch this way [201]; it has
a mycelium that grows like a crust, see {145}.

Exponential growth of individuals should not be confused with that of populations. As
will be discussed in the chapter on population dynamics, all populations grow exponentially
at resource densities that are constant long enough, whatever the growth pattern of indi-
viduals. This is due to the simple fact that the progeny repeats the growth/reproduction
behaviour of the parents. Only for filaments it is unnecessary to distinguish between the
individual and the population level. This is a characteristic property of exponential growth
of individuals and will be discussed on {162}.

The same derivation for growth can be made for rods on the basis of the shape correction
function (2.7):

d

dt
[E] = [Ȧm]

(

δ

3

Vd
V

+ 1 − δ

3

)(

f − [E]

[Em]

)

(3.36)

d

dt
V = ν̇

δVd
3V∞

[E]/[Em]

g + [E]/[Em]
(V∞ − V ) (3.37)

where V∞ ≡ Vd
δ
3
( [Em]

[E]
( Vd

Vm
)1/3 − 1 + δ

3
)−1 and, as before, V 1/3

m ≡ v̇
gṁ

. If substrate density X
and, therefore, the scaled functional response f are constant long enough, energy density
tends to [E] = f [Em] and volume as a function of time since division becomes

V (t) = V∞ − (V∞ − Vd/2) exp{−tγ̇r} (3.38)

where γ̇r ≡ Vdfν̇δ/3
V∞(f+g)

. The interpretation of V∞ depends on its value.

• If V∞ = ∞, i.e. if f(1 − δ/3) = (Vd/Vm)1/3, the volume of rods grows linearly at rate
ν̇f
f+g

Vd
δ
3
. This is frequently found empirically [29].

• If 0 < V∞ <∞, V∞ is the ultimate volume if the cell ceased to divide but continued to
grow. For these values, V (t) is a convex function and is of the same type as V (t)1/3

for isomorphs, (3.14). Note that volume, and thus cubed length, grows skewly S-
shaped for isomorphs. When V∞ is positive, the cell will only be able to divide when
V∞ > Vd, thus when f > (Vd/Vm)1/3.



3.8. Growth 95

Figure 3.17: deb-based growth curves for cells of filaments and rods. The larger the aspect
ratio, δ, the more the growth curve turns from the exponential to the satiation type, reflecting
the different surface area to volume relationships.

Fusarium graminearum, δ = 0 [725] Bacillus cereus, δ = 0.2 [131]

Escherichia coli, δ = 0.28 [423] Streptococcus faecalis, δ = 0.6 [489]

• If δ = 0, V∞ = 0 and the rod behaves as a filament, which grows exponentially.

• For V∞ < 0, V (t) is a concave function, tending to an exponential one. The cell no
longer has an ultimate size if it ceased to divide. V∞ is then no longer interpretated
as ultimate size, but this does not invalidate the equations.

The shape of the growth curve, convex, linear or concave, thus depends on substrate density
and the aspect ratio. Figure 3.17 illustrates the perfect fit of growth curves (3.38) with
only three parameters: volume at ‘birth’, Vd/2, ultimate volume, V∞, and growth rate,
γ̇r. The figure beautifully reveals the effect of the aspect ratio; the larger the aspect ratio,
the more important the effect of the caps, so a change from 1D-isomorphic behaviour to a
0D-isomorphic behaviour.

The time required to grow from Vd/2 to V at constant substrate density is found from
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(3.38):

t(V ) =
(f + g)V∞
fν̇Vdδ/3

ln
V∞ − Vd/2

V∞ − V
(3.39)

At the end of the cell cycle, the cell has to synthesize extra cell wall material. Since
the cell grows in length only, the growth of surface material is directly tied to that of
cytoplasm material. Straightforward geometry shows that the change in surface area A is
given by d

dt
A = (16π 1−δ/3

δVd
)1/3 d

dt
V . So the energy costs for growth can be partitioned as

[G] = [GV ]+{GA}(16π 1−δ/3
δVd

)1/3, where {GA} denotes the energy costs for the material in a

unit surface area of cell wall and [GV ] that for the material in a unit volume of cytoplasm.

For reasons of symmetry, it is more elegant to work with [GA] ≡ {GA}V −1/3
d rather than

{GA}. The dimensions of [GV ] and [GA] are then the same: energy per volume. At the end
of the cell cycle, when cell volume is twice the initial volume, the surface material should
still increase from A(Vd) to 2A(Vd/2) = (1 + δ/3)A(Vd). This takes time, of course. If all
incoming energy not spent on maintenance is used for the synthesis of this material, the
change in surface area is given by d

dt
A = ν̇

gA
(fA − Vd/V

1/3
m ), where gA ≡ [GA]/κ[Em]. So

A(t) = (A(0)− Vd/fV
1/3
m ) exp{tf ν̇/gA}+ Vd/fV

1/3
m . The time it takes for the surface area

to reach (1 + δ/3)V
2/3
d , starting from A(0) = V

2/3
d , equals

tA =
gA
fν̇

(

ln 2 + ln
V∞ − Vd/2

V∞ − Vd

)

(3.40)

For the time interval between subsequent divisions, t(Vd) must be added, giving

td =
gA
fν̇

ln 2 +

(

gA
fν̇

+
(f + g)V∞
fν̇Vdδ/3

)

ln
V∞ − Vd/2

V∞ − Vd
(3.41)

The extra time for cell wall synthesis at the caps does not play a role for filaments, as
their caps are comparatively small. It also does not play a significant role in unicellular
eukaryotic isomorphs, because they do not have cell walls to begin with. The cell volume
is full of membranes in these organisms, so the amount of membranes at the end of the cell
cycle does not need to increase as abruptly as in bacteria, where the outer membrane and
cell wall (if present) are the only surfaces. Comparable delays occur in ciliates for instance,
where the cell mouth does not function during and around cell division.

Cooper [138] and Koch [398] argued that weight increase of bacterial cells is always of
the exponential type, apart from minor contributions of cell wall, dna, etc. If the activity
of the carriers for substrate uptake is constant during the cell cycle, an implication of this
model is that carriers should be produced at a rate proportional to the growth rate, and
consequently to cell volume rather than to surface area. This would increase the number
of carriers per unit of surface area of active membrane during the cell cycle. At the end
of the cell cycle the number of carriers per unit of surface area should (instantaneously)
drop by a factor of (1 + δ/3)−1 due to the production of new membrane without carriers
that separates the daughter cells. This factor amounts to 5/6 = 0.83 for cocci and 1 for
1D-isomorphs. The factor stands for the ratio of the surface area of a body with volume
Vd and two times the surface area of a body with volume Vd/2; so it is 2−1/3 = 0.79 for
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3D-isomorphs and 2−1/2 = 0.71 for 2D-isomorphs. To my knowledge, such a reduction
has never been demonstrated. The carrier density is assumed to be constant in the deb

theory. If the carrier density in the membrane is constant in case of exponential growth
(in non-1D-isomorphs), the carrier activity should increase during the cell cycle. This
requires the loss of homeostasis and/or complex regulation of carrier activity. In the deb

theory, the carrier activity is constant during the cell cycle. Although exponential growth
of the cell seems an attractively simple model at first sight, theory to tie the growth rate
to nutrient levels no longer comes naturally for such an extreme ‘demand’ type of system.
Moreover, phenomena such as the small cell size in oligotrophic oceans, the growth of
stalks in Caulobacter, the removal of disused dna need other explanations than given in
this book. Another point is of course, that if bacteria increase their weight exponentially,
they would deviate from unicellular eukaryotes in this respect, where exponential growth
is obviously untenable, cf. figure 1.1. The problem should then be adressed of what makes
prokaryotes fundamentally different from eukaryotes in terms of energetics.

3.9 Development

Now that growth has been specified, the utilization rate for isomorphs can be evaluated
from (3.8) and (3.12). It amounts to

Ċ =
g[E]

g + [E]/[Em]
(v̇V 2/3 + ṁV

1/3
h V 2/3 + ṁV ) (3.42)

Energy allocation to development is (1− κ)Ċ. Comparison of growth and reproduction at
different food levels points to a problem: the volume at the first appearance of eggs in the
broodpouch of daphnids seems to be independent of food density. It appears to be almost
fixed; see figure 3.18. Let this volume be called Vp, where subscript p refers to puberty
(transition juvenile/adult). The same holds for the volume at hatching, Vb, say, where
subscript b refers to birth (transition embryo/juvenile). The problem is that the total
energy investment in development depends on food density. Indeed, if feeding conditions
are so poor that the ultimate volume is less than Vp, the cumulated energy investment into
development becomes infinitely large, if the organism survives long enough. This seems to
be highly unrealistic.

Horst Thieme [711] proposed a solution to this problem: split the energy allocated to
development into two fluxes, the increase of the state of maturity and the maintenance of
a certain degree of maturity. For a special choice of the maturity maintenance costs the
total energy investment into the increase of the state of maturity does not depend on food
density for ectotherms. This can be seen most easily from (3.11), when both sides are
multiplied by (1 − κ)/κ to obtain the investment into development

(1 − κ)Ċ =
1 − κ

κ
Ṁ +

1 − κ

κ
[G]

d

dt
V (3.43)

for juvenile ectotherms (V < Vp and Ḣ = 0). If the first term of the right hand side
corresponds to maturity maintenance costs, the second one for the increase of the state of
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Figure 3.18: The carapace length of the
daphnid Daphnia magna at 20 ◦C for 5
different food levels at the moment of egg
deposition in the brood pouch. Data from
Baltus [32]. The data points for short ju-
venile periods correspond with high food
density and growth rate. They are diffi-
cult to interpret because length increase
is only possible at moulting in daphnids.

maturity only depends on size, not on food density. Since the individual does not become
more complex after attaining size Vp, the energy flow to maintain a certain degree of
maturity must then be min{V, Vp}[Ṁ ]1−κ

κ
. It can be thought to relate to the maintenance

of regulating mechanisms and of concentration gradients, such as those found in Hydra,
that are responsible for the maintenance of the head/foot differentiation [258].

It took me quite a while to accept the existence of maturity maintenance as inevitable.
Although the concept sounds a little esoteric, there are two hard observations in support
of its existence. The first one concerns an experiment where food density is held constant
at two levels, just below and above the food density that gives an ultimate size V∞ = Vp.
For ectotherms, such as daphnids, (3.17) implies that this food density is found from
f = (Vp/Vm)1/3 ≡ lp, so X = Klp/(1 − lp). If maturity maintenance did not exist, animals
kept at the lower food density would never reproduce, while those at the higher food density
would reproduce at a rate that might be substantial, depending on κ. Substitution of
V = Vp into (3.11) shows that the energy investment into development and/or reproduction
tends to 1−κ

κ
[Ṁ ]Vp, which amounts to 4[Ṁ ]Vp for κ = 0.2, which is realistic for daphnids.

This substantial difference in reproductive output as a result of a tiny difference in feeding
rates has never been observed.

The second observation that points to the existence of maturity maintenance concerns
pond snails, where the day/night cycle affects the fraction of utilized energy spent on
maintenance plus growth [788], such that κ at equal day/equal night, κmd, is larger
than that at long day/short night, κld. Apart from the apparent effects on growth and
reproduction rates, volume at the transition to adulthood is also affected. If the cumulated
energy investment into the increase of maturity does not depend on the value for κ and if
the maturity maintenance costs are 1−κ

κ
Ṁ , the expected effect is

Vp,ld

Vp,md
= κld(1−κmd)

κmd(1−κld)
, which

is consistent with the observations on the coupling of growth and reproduction investments
to size at puberty [788]. Some species, such as birds, only reproduce well after the growth
period. The giant petrel wanders seven years over Antarctic waters before it starts to
breed for the first time. From a mathematical point of view, growth is asymptotic, so it is
possible to choose Vp to be so close to V∞ that the desired result is described adequately.
This must be rejected, however, because it seems most unrealistic to have a model where
decision rules depend on such small differences in volume in a world that is full of scatter.
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The introduction of costs for maintaining a certain degree of maturity solves this problem,
because the model is then energy-structured as well as size-structured. A transition from
embryo to juvenile and from juvenile to adult occurs if the cumulative investment to
increase the state of maturity exceeds specified amounts. If growth has almost ceased,
this cumulative investment increases linearly, it therefore has no asymptote. The rate of
increase of cumulated investment can be substantial, even if body size hardly increases, so
this rule causes no problems for species that separate growth and reproduction in time.

There is, however, a problem connected with this introduction of maturity maintenance:
it is hard to see why it should have just the value 1−κ

κ
Ṁ ; it is a fact that it produces

the observed fixed-volume transition in daphnids and pond snails, but one would like to
understand why. One solution might be to interpret 1−κ

κ
as the basic parameter and try

to explain why the relative allocation to development plus reproduction takes a value that
relates to the costs of development. I still find this an unsatisfactory point in the theory.
Of course, it is possible to introduce a free parameter for the maturity maintenance costs
and use volume at first maturation for the estimation of its value, which then proves to be
close to Ṁd = 1−κ

κ
Ṁ , because this value produces a volume that is independent of food

density. If this free parameter has a different value, variations in volume at first maturation
will result when food density varies, as has been observed for some species, according to
the review by Bernardo [60]. Its introduction has the serious drawback that evaluation of
the length of incubation and juvenile period become cumbersome, which causes problems
especially at the population level. The fixed size transition should then be replaced by a
fixed cumulative energy transition.

Note that growth and development are parallel processes in the deb model, which
links up beautifully with the concepts of acceleration and retardation of developmental
phenomena such as sexual maturity [267]. These concepts are used to describe relative
rates of development in species that are similar in other respects.

In embryos and juveniles, the energy spent on somatic maintenance and the main-
tenance of a certain degree of maturation can be combined, because both can be taken
proportional to volume. The difference between the two only shows up in adults that
still increase in size. Somatic maintenance remains proportional to size, while maturation
maintenance stays constant at constant temperature. The same holds for the energy spent
on growth and the increase of the degree of maturity. In embryos and juveniles, they can
be combined, because both are taken proportional to volume increase. This means that
for non-adults the κ-rule is not of quantitative relevance, and the model simplifies to the
one for micro-organisms with respect to the use of energy.

Whether or not unicellulars and particularly prokaryotes invest in cell differentiation
during the cell cycle is still open to debate. Dworkin [192] gives a review of development in
prokaryotes and points to the striking similarities between myxobacteria and cellular slime
molds and Actinomyceta and some fungi. A most useful aspect of the κ-rule is that this
matter need not first be resolved, because this investment only shows up in the parameter
values and not in the model structure. As stated in the introduction to this chapter,
the energy invested in development according to the κ-rule can only be deduced from the
transition to the adult state in metazoans. The utilization rate for rods can be obtained
in the same way as for isomorphs: application of the shape correction function (2.7) to v̇
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in (3.42). This amounts to

Ċ =
g[E]

g + [E]/[Em]

(

ν̇
δ

3
Vd +

(

ṁ+ ν̇

(

1 − δ

3

))

V

)

(3.44)

The utilization rate for filaments can be found by application of the shape correction
function (2.4) to v̇ in (3.42), which leads to

Ċ =
g[E]

g + [E]/[Em]
(ṁ+ ν̇)V (3.45)

It can also be obtained by letting δ → 0 in (3.44). Since both growth and maintenance are
proportional to volume for filaments, the utilization rate is also proportional to volume.

3.10 Propagation

Organisms can achieve an increase in numbers in many ways. Sea anemones can split off
foot tissue that can grow into a new individual. This is not unlike the strategy of budding
yeasts. Colonial species usually have several ways of propagating. Fungi have intricate
sexual reproduction patterns involving more than two sexes. Under harsh conditions some
animals can switch from parthenogenic to sexual reproduction, others develop spores or
other resting phases. It would not be difficult to fill a book with descriptions of all the
possibilities. I will confine the discussion to the two most common modes of propagation:
via egg and foetus or vegetatively, via division.

3.10.1 Reproduction

Energy allocation to reproduction equals the allocation to development plus reproduction
minus the costs to maintain the state of maturity

(1 − κ)Ċ − 1 − κ

κ
[Ṁ ]Vp (3.46)

This is a continuous energy investment. The costs for egg (or foetus) development are
fully determined, as has been discussed in the section on embryonic growth, {83}. The
costs for the production of an egg can be written as E0/q, where the dimensionless factor q
between 0 and 1 relates to the overhead involved in the conversion from the reserve energy
of the mother to the initial energy available for the embryo. Since these types of energy
reserves are chemically related, the overhead is likely to be small in most cases so that q
is close to 1. This might seem an odd way to introduce this overhead, but q can also be
interpreted as an egg survival probability, which can be further modulated by predation
and toxic compounds, as discussed in later chapters. This is practical because egg survival
is frequently governed by different processes than survival of later stages. Substitution of
utilization rate (3.42) into (3.46) leads to a mean reproduction rate for ectotherms of

Ṙ =
q

e0Vm
(1 − κ)

(

g[E]/[Em]

g + [E]/[Em]
(v̇V 2/3 + ṁV ) − gṁVp

)

(3.47)
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where the relative energy costs for embryo development e0 are given in (3.26). Under no-

growth conditions, i.e. when [E]
[Em]

≤ ( V
Vm

)1/3, individuals can no longer follow the κ-rule,
because the allocation to maintenance would no longer be sufficient. Maintenance has
priority over all other expenses. Individuals that still follow the storage dynamics (3.8)
under no-growth conditions, must reproduce at mean rate (Ċ − Ṁ − 1−κ

κ
[Ṁ ]Vp)q/E0, so

Ṙ =
q

e0Vm
gṁ

(

[E]

[Em]
V 1/3
m V 2/3 − κV − (1 − κ)Vp

)

+

(3.48)

At the border of the no-growth condition, i.e. when [E]
[Em]

= ( V
Vm

)1/3, both expressions for
the reproduction rate are equal, so there is no discontinuity for changing energy reserves.

At constant food density where [E] = f [Em], the reproduction rate is according to
(3.47) proportional to

Ṙ ∝ V 2/3 +
ṁ

v̇
V − g + f

f

ṁ

v̇
Vp (3.49)

where the third term is just a constant. Comparison of reproduction rates for different
body sizes thus involves three compound parameters, i.e. the proportionality constant, the
parameter ṁ/v̇ and the third term, if all individuals experience the same food density
for a long enough time. Figure 3.19 illustrates that this relationship is realistic, but that
the notorius scatter for reproduction data is so large that access to the parameter ṁ/v̇
is poor. The fits have been based on guestimates for the maintenance rate coefficient,
ṁ = 0.011 d−1, and the energy conductance, v̇ = 0.433 mm d−1 at 20 ◦C. Note that
if the independent variable is a length measure rather than structural body volume, the
shape coefficient dm = V 1/3L−1 has to be introduced since the guestimate for the energy
conductance is expressed in volumetric length. For some length measure L, we have

Ṙ ∝ L2 +
ṁ

v̇
dmL

3 − g + f

f

ṁ

v̇
dmL

3
p (3.50)

The practical significance of this remark is in the comparison between species, which will
be discussed later, {217}. The main reason for the substantial scatter in reproduction data
is that they are usually collected from the field, where food densities are not constant, and
where spatial heterogeneities, social interactions, etc., are common.

The reproduction rate of spirorbid polychaetes has been found to be roughly propor-
tional to body weight [312]. On the assumption by Strathmann and Strathmann [694]
that reproduction rate is proportional to ovary size and that ovary size is proportial to
body size (an argument that rests on isomorphy), the reproduction rate is also expected to
be proportional to body weight. They observed that reproduction rate tends to scale with
body weight to the power somewhat less than one for several other marine invertebrate
species, and used their observation to identify a constraint on body size for brooding inside
the body cavity. The deb theory gives no direct support for this constraint; an allometric
regression of reproduction rate against body weight would result in a scaling parameter
between 2/3 and 1, probably close to 1, depending on parameter values.

The maximum (mean) reproduction rate for ectotherms of maximum volume Vm =
(v̇/gṁ)3 amounts to

Ṙm =
q

e0
(1 − κ)gṁ(1 − Vp/Vm) (3.51)



102 3. Energy acquisition and use

Figure 3.19: Reproduction rate as a function of body length for two randomly selected species.
The data sources and deb-based curves are indicated. The parameter that is multiplied by L3 in
both fits has been guestimated on the basis of common values for the maintenance rate coefficient
and the energy conductance, with a shape coefficient of dm = 0.1 for the goby and of dm = 0.5
for the frog. Both the other parameters represent least squares estimates.

rock goby Gobius paganellus [487]
0.120(L2 + 0.0026L3 − 16.8)

green frog Rana esculenta [280]
0.124(L2 + 0.0128L3 − 32.5)

All these expressions only refer to mean reproduction rates. Individuals are discrete
units, which implies the existence of a buffer, where the energy allocated to reproduction
is collected and converted to eggs at the moment of reproduction. The translation of
reproduction rate into number of eggs in figure 3.19 assumes that this accumulation is over
a period of one year. The energy content of the buffer is denoted by EṘ.

Some species reproduce when enough energy for a single egg has been accumulated,
others wait longer and produce a large clutch. There is considerable variation in the way
the reproduction buffer is handled. If the reproduction buffer is used completely, the size
of the clutch equals the ratio of the buffer content and the energy costs for one young,
qEṘ/E0, where E0 is given in (3.26). This resets the buffer. So after reproduction EṘ = 0
and further accumulation continues from there. That is to say, if the bit of energy that was
not sufficient to build the last egg will be lost. Fractional eggs do not exist. In the chapter
on population dynamics, {171,207}, I will show that this uninteresting detail substantially
affects dynamics at low population growth rates, which occur most frequently in nature.
If food is abundant, the population will evolve rapidly to a situation in which food per
individual is sparse and reproduction low if harvesting processes do not prevent this.

The strategies for handling this buffer are species-specific and are affected by environ-
mental variables. Most species are able to synchronize the moment of reproduction with
seasonal cycles such that food availability just matches the demand of the offspring. Clutch
size in birds typically relates to food supply during a two-month period prior to egg laying
and tends to decrease if breeding is postponed in the season [475]. The laying date is
determined by a rapid increase in food supply. Since feeding conditions tend to improve
during the season, internal factors must contribute to the regulation of clutch size. These
conclusions result from an extensive study of the energetics of the kestrel Falco tinnuncu-
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lus by Serge Daan and co-workers [171,458,474]. I see reproductive behaviour like this,
for species that cease growth at an early moment in their life span, as variations on the
general pattern that the deb theory is aiming to grasp. Aspects of reproduction energetics
for species that cease growth, are worked out under the heading ‘imago’ on {151}.

3.10.2 Division

If propagation is by division, the situation is comparable to the juvenile stage of species
that propagate via eggs. The volume at division corresponds to the transition from juvenile
to adult, so Vd = Vp. Donachie [175] pointed out that in fast growing bacteria the initiation
of dna duplication occurs at a certain volume Vp, but it requires a fixed and non-negligible
amount of time tD for completion. This makes the volume at division, Vd, dependent on
the growth rate, so indirectly on substrate density, because growth proceeds during this
period. The mechanism (in eukaryotic somatic cells) of division at a certain size is via
the accumulation of cdc25 and cdc13 mitotic inducers, which are produced coupled to cell
growth. (The name for the genes ‘cdc’ stands for cell devision cycle.) If these inducers

exceed a threshold level, p34cdc2 protein kinase is activated and mitosis starts [493,498].

During mitosis, p34cdc2 is deactivated and the concentration of inducers resets to zero.
This mechanism indicates that for shorter inter-division periods, the cell starts a new dna

duplication cycle when its volume exceeds 2Vp, 4Vp, 8Vp etc. The inter-division time for
Escherichia coli can be as short as 20 minutes under optimal conditions, while it takes
an hour to duplicate the dna. In a dynamic environment, where (3.36) and (3.37) are
supposed to apply, the implementation of this trigger is not simple. At constant substrate
densities, the scaled cell length at division, ld ≡ (Vd/Vm)1/3, and the division interval,
t(ld) ≡ td, can be obtained directly. When i is an integer such that 2i−1 < Vd/Vp ≤ 2i, Vd
can be solved from

tD = it(Vd) − t(2i−1Vp) (3.52)

Figure 3.20 illustrates the derivation.
The volume at division Vd can be found numerically when (3.15), (3.35) or (3.39) is

substituted for t(V ) into (3.52), for isomorphs, filaments or rods, respectively.

3.11 Respiration

Respiration, i.e. the use of oxygen or the production of carbon dioxide, can be taken to
represent the total metabolic rate in an organism. Initially, eggs hardly use oxygen, but
oxygen consumption rapidly increases during development; see figure 3.21. In juveniles and
adults, oxygen consumption is usually measured in individuals that have been starved for
some time, to avoid interpretation problems related to digestion. (For micro-organisms this
is not possible without a substantial decrease of reserves.) As mentioned in the introductory
chapter, the conceptual relationship between respiration and use of energy has already
undergone some changes in history. Von Bertalanffy identified it with anabolic processes,
while the Scope For Growth concept, {43}, relates it to catabolic processes. In the deb

model, the most natural identification is with the total use of energy from the reserves,
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Figure 3.20: A schematic growth curve of a cell, where
the fat part is used in steady state. This is the situation
for i = 2, the number of forks switching between 1 and 3.
If Vd/Vp = 2i, equation (3.52) reduces to tD = it(2iVp) =
it(Vd), with t(2i−1Vp) = 0, which means that the time re-
quired to duplicate dna is exactly i times the division inter-
val. So, during each cell cycle, a fraction i−1 of the genome
is duplicated, which implies that 2i−1 dna duplication forks
must be visible during the cell cycle. At the moment that
the number of forks jumps from 2i − 1 to 2i+1 − 1, the cell
divides and the number of forks resets to 2i − 1. This is
obviously a somewhat simplified account, as cell division is
not really instantaneous. If Vd/Vp 6= 2i, the age of the cell
at the appearance of the new set of duplication forks some-
where during the cell cycle is t(2i−1Vp), which thus has to be
subtracted from it(Vd) to arrive at the genome duplication
time.
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(3.42), with a fixed conversion factor from oxygen to energy use. This is consistent with the
assumption of a constant chemical composition for the reserves. It is also consistent with
the observation that respiration rate increases with reserve density [389], while reserves
themselves do not use oxygen. Moreover, it explains the reduction of respiration during
starvation; see {128}.

At constant food density, the proportionality between respiration and use of energy
from the reserves implies that the respiration rate can be written as a weighted sum of a
surface area and a volume. Figure 2.9 shows that it is indistinguishable from the standard
allometric relationship. Apart from avoiding dimension problems, the surface area related
costs for heating in endotherms, which have given rise to Rubner’s surface law, also fit much
more naturally. As mentioned above, this point of view solves the long standing problem
of why the volume-specific respiration of ectotherms decreases with increasing size, when
organisms of the same species are compared. This problem has been identified as one of the
central problems of biology [777]. Many theories have been proposed, see e.g. [590] for a
discussion, but all use too specific arguments to be really satisfactory; heating (but many
species are ectothermic), muscle power (but movement costs are relatively unimportant),
gravity (but aquatic species escape gravity). Peters [542] even argued to cease looking
for a general explanation. The deb theory, however, does offer a general explanation: the
overhead for growth. A comparison of different species will be covered in a later chapter,
{217}, where it will be shown that interspecies comparisons work out a bit differently.

The proportionality of respiration with the utilization rate is not, however, completely
free from conceptual problems. This mapping gives double counts of energy flows at two
places: energy that is fixed in structural biomass during growth and energy reserves de-
posited in eggs (by females). It is essential to realize that the costs for synthesis [G]
include overheads. So [G] is larger than, and I think much larger than, the energy content
of the structural biomass. On the other hand, the energy content of organisms, which is
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Figure 3.21: The water stick insect Ranatra lin-

earis deposits its eggs in floating decaying plant
material, where oxygen availability is usually
poor. The eggs are easily spotted by the special
respiratory organs that peek out of the plant.
Just prior to hatching, eggs typically need a lot
of oxygen, cf. figure 3.14.

frequently measured [147,527,540,512,572], includes energy reserves. These two problems
complicate the interpretation of such measurements in terms of energy parameters.

The use of respiration measurements to estimate the parameters of the deb model is
limited. Respiration is taken proportional to utilization, so that it follows from (3.42)
that the respiration rate is proportional to V + V 2/3V 1/3

m (lh + g) at constant food density.
Respiration is thus a weighted sum of volume and surface area. If respiration data are
available for different body sizes of a particular species of ectotherm, so that lh = 0, the
ratio of the weight coefficient for volume2/3 and that for volume stands thus for gV 1/3

m =
v̇
ṁ

= {Ȧm}[G]

[Em][Ṁ ]
, which has the dimension of length. Four original parameters are combined

into this compound parameter. The two coefficients of the ratio are negatively correlated
in a statistical sense, which implies that respiration data give poor access to the value of
the compound parameter.

The maintenance rate coefficient ṁ can be estimated easily if growth data together with
respiration data are collected at a constant food density. The κ-rule implies that the respi-
ration rate of ectotherms is proportional to energy allocation to growth plus maintenance,
so according to (3.11) the respiration rate is proportional to d

dt
V + ṁV . The observation

that respiration is proportional to a weighted sum of volume and change in volume goes
back to the study of Smith [670] in 1957 on eggs of salmon. At constant food density,
the change in volume is of the von Bertalanffy type, which makes respiration proportional
to 3γ̇(V 1/3

∞ V 2/3 − V ) + ṁV . This gives five parameters to be estimated from two data
sets on respiration and growth : Vb, V∞, γ̇, a proportionality constant for respiration and
the maintenance rate coefficient, ṁ. This gives 2.5 parameters per data set, which seems
acceptable if the scatter is not too large.

In the section on mass-energy coupling, {192}, it will be shown how the respiration
rates for micro-organisms can be tied to energy fluxes in a more rigorous way. I expect
that the overheads for growth are much smaller for them, compared to animals, but I
cannot substantiate this.

3.12 Aging

Since age is not a state variable, the steady shift in properties due to the poorly understood
process of aging is only of secondary relevance to the deb model. In a number of situations,
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however, one should consider life span which has well recognized roots in energetics. The
frequently observed correlation between life span and the inverse volume-specific metabolic
rate for different species (see e.g. [638]) has guided a lot of research. The impressive work
of Finch [219] gives well over 3000 references. Animals tend to live longer at low food levels
than at high ones. The experimental evidence, however, is rather conflicting on this point.
For example, Ingle [349] found such a negative relationship, while McCauley [463] found a
positive one for daphnids. This is doubtlessly due to the fundamental problem that death
can occur for many reasons, such as food related poisoning, that are not directly related
to aging. Some species such as salmon, octopus, Oikopleura die after (first) reproduction,
cf. {149}. This cause, like many other causes of death, does not relate to aging. On
approaching the end of the life span, the organism usually becomes very vulnerable, which
complicates the interpretation of the life span of a particular individual in terms of aging.
Experiments usually last a long time, which makes it hard to keep food densities at a fixed
level and to prevent disturbances.

In a first näıve attempt to model the process of aging, it might seem attractive to
conceive the senile state, followed by death as the next step in the sequence embryo,
juvenile, adult, and then tie it to energy investment into development just as has been
done for the transitions to the juvenile and adult stages. This is not an option for the deb

model, since at sufficiently low food densities, the adult state is never entered, even if the
animal survives for nutritional reasons. This means that it would live for ever, as far as
aging is concerned. Although species exist with very long life spans (excluding external
causes of death [219]), this does not seem acceptable. Attempts to relate hazard rates
directly to the accumulation of hazardous compounds formed as a spin off of respiration,
such as oxidized lipids, have failed to produce realistic age-specific mortality curves: the
hazard rate increases too rapidly for a given mean life span. See [388,518] for reviews
on the role of secondary products from metabolism in aging. The same holds for the
hazard tied to damage to membranes, if this damage accumulates at a rate proportional
to volume-specific respiration. Accurate descriptions of survival data where aging can be
assumed to be the major cause of death seem to call for an extra integration step, which
points to dna.

It has been suggested that free radicals, formed as a spin off of respiration, cause
irreparable damage to the dna in organisms [288,287,719]. The specific activity of antiox-
idants correlates with life span within the mammals [219]. The structure of the antioxidant
enzyme manganese superoxide dismutase has recently been solved [621]. Although too
unspecific to be of much help for molecular research, for energetics purposes the free radical
hypothesis specifies just enough to relate the age-specific survival probability, and so life
span, to energetics. The idea is that the hazard rate is proportional to damage density,
which accumulates at a rate proportional to the concentration of changed dna, while dna

changes at a rate proportional to utilization rate. Although it is not yet possible to draw
firm conclusions on this point, this mechanism does provide the extra integration step that
is required for an accurate description of data. It is further assumed that the cells with
changed dna do not grow and divide, while the density of affected cells is reduced owing to
the propagation of the unchanged cells. This assumption is supported by the recent iden-
tification of gene chk1 [748], whose products are involved in the detection of dna damage;
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damaged dna prevents entry into mitosis by controlling the activity of the protein that is
produced by cdc2, cf. {103}. Because of the uncertainty in the coupling with molecular
processes, I prefer to talk about damage and damage inducing compounds, rather than
wrong proteins (or their products) and dna. This idea can be worked out quantitatively
as follows.

Let [Q] ≡ Q/V denote the concentration of damage inducing compounds (changed
dna), which accumulate from value 0 in an embryo of age 0. Its dynamics can be obtained
via the chain rule for differentiation: d

dt
[Q] = V −1 d

dt
Q− [Q] d

dt
lnV and amounts to

d

dt
[Q] = dQ

Ċ

V
− [Q]

d

dt
lnV (3.53)

where dQ is the contribution of the volume-specific utilization rate to the compounds per
unit of energy. The second term stands for the dilution through growth, where cells with
changed dna become mixed with cells with unchanged dna.

Substitution of (3.11) gives for ectotherms

d

dt
[Q] =

dQ
κ

[G]
d

dt
lnV +

dQ
κ

[Ṁ ] − [Q]
d

dt
lnV (3.54)

The concentration of damage inducing compounds as a function of time for ectotherms
thus equals

[Q](t) =
dQ
κ

[G]

(

1 − V (0)

V (t)

)

+
dQ
κ

[Ṁ ]

V (t)

∫ t

0
V (t1) dt1 (3.55)

As explained in the section on embryonic growth, {83}, the initial volume, V (0), is infinites-
imally small. The accumulated damage during the embryonic stage, however, is usually
negligibly small. The high generation rate of damage inducing compounds is balanced by
the high dilution rate through growth. The fact that the embryonic period is usually a
very small fraction of the total life span ensures that one does not lose much information
by starting from the moment of hatching.

Damage (wrong protein) accumulates at a rate proportional to the concentration of
damage inducing compounds, so the damage density is proportional to

∫ t
0 [Q](t1) dt1. The

hazard rate, ḣ(t), is finally taken to be proportional to the damage density, which leads to:

ḣ(t) = p̈a

∫ t

0

(

1 − V (0)

V (t2)
+

ṁ

V (t2)

∫ t2

0
V (t1) dt1

)

dt2 (3.56)

The proportionality constant p̈a, here called the aging acceleration, absorbs both propor-
tionality constants leading to this formulation of the age dependent hazard rate and is
proportional to dQ[G]/κ. This most useful property means that only a single parameter is
necessary to describe the aging process.

The hazard rate relates to the survival probability according to the differential equation
d
dt

Prob{a† > t} = −Prob{a† > t}ḣ(t) or ḣ(t) = − d
dt

ln Prob{a† > t}. The survivor
probability is thus

Prob{a† > t} = exp{−
∫ t

0
ḣ(t1) dt1} (3.57)
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Figure 3.22: The growth curves of female (3) and male daphnid (2)Daphnia magna at 18 ◦C
and the observed hazard rates. Data from MacArthur and Baillie [445]. The growth curves are
of the von Bertalanffy type with common length at birth. The hazard rates are fitted on the basis
of the damage genesis discussed in the text, with a common aging acceleration of 2.587 × 10−5

d−2. The difference in the hazard rates is due to the difference in ultimate lengths.

The mean life span equals Ea† =
∫∞
0 Prob{a† > t} dt =

∫∞
0 exp{− ∫ t0 ḣ(t1) dt1} dt. This haz-

ard rate thus ties aging to energetics, which explains for instance why dormancy prolongs
life span, cf. {131}.

Figure 3.22 shows that the fit with experimental data for male and female daphnids
is quite acceptable, in view of the fact that the combined hazard curves have only one
free parameter p̈a (so half a parameter per curve). The differences in survival probability
of male and female daphnids can be traced back to difference in ultimate size (i.e. in the
surface area-specific maximum assimilation rate {Ȧm}).

It is instructive to compare this model with that of Weibull where Prob{a† > t} ≡
exp{− ∫ t0 ḣ(t1) dt1} = exp{−(ṗW t)

β}. The model was first proposed by Fisher and Tippitt
[220] in 1928 as a limiting distribution of extreme values, and Weibull [757] has used it
to model the failure of a mechanical device composed of several parts of varying strength,
according to Elandt-Johnson and Johnson [198]. The (cumulative) hazard increases allo-
metrically with time. Like many other allometrically based models for physiological quan-
tities, it is attractively simple, but fails to explain, for instance, why the sexes of Daphnia

have different shape coefficients β [415]. As long as both parameters of the Weibull model
can be chosen freely, i.e. if only one data set is considered, it will be hard to distinguish it
from the deb-based model. See figure 3.23. The maintenance rate coefficient in the fit is
here considered as a free parameter, so both curves then have two free parameters. This
is done because the available estimate for the maintenance rate coefficient on the basis of
egg development as reported in table 3.1 is rather far out of range. The resulting estimate
of ṁ = 0.073 d−1 at 20 ◦C is much more realistic, which in itself lends strong support to
my interpretation. It can be shown that the Weibull model with shape parameter 3 results
if the growth period is short relative to the mean life span, {154}.

The Gompertz model for survival Prob{a† > t} = exp{β(1 − exp{ṗGt})} is also fre-
quently used as a model for aging; see e.g. [779]. It can be mechanistically underpinned
by a constant and independent failure rate for a fixed number of hypothetical critical ele-
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Figure 3.23: The survival probability and the growth curve of the pond snail Lymnaea stagnalis

at 20 ◦C. Data from Slob and Janse [664] and Bohlken and Joosse [76,788]. The fitted growth
curve is the von Bertalanffy one, giving an ultimate length of 35 mm and a von Bertalanffy
growth rate of γ̇ = 0.015 d−1. The survival curve was used to estimate both the maintenance
rate constant, ṁ = 0.073 d−1 and the aging acceleration p̈a = 2.563 × 10−6 d−2. The Weibull
curve with shape parameter 3.1 is plotted on top of the deb model to show that both curves are
hard to distinguish in practice.

ments. Death strikes if all critical elements cease functioning. The curvature of the survival
probability then relates to the number of critical elements, which Witten [779] found to
be somewhere between 5 and 15. Their nature still remains unknown. A property of this
model is that the hazard rate does not approach zero for neonates (or embryos), which does
not seem to be consistent with data [664]. Finch [219] favours the empirical description
of aging rates given by the Gompertz model because its property of a constant mortality
rate doubling time, ṗ−1

G ln 2, provides a simple basis for comparison of taxa.

The present formulation allows for a separation of the aging and energy based parame-
ters. The estimation of the ‘pure’ aging parameter in different situations and for different
species will hopefully reveal patterns that can guide the search for more detailed molecular
mechanisms; however, many factors may be involved, cf. {154}. It has been suggested in
the literature that the neural system may be involved in setting the aging rate. The fact
that brain weight in mammals correlates very well with respiration rate [330], makes it
difficult to identify factors that determine life span in more detail. The mechanism may
be again via the neutralization of free radicals.

An indication for this pathway can be found in the age-specific survival probability
for humans, see figure 3.24, which can be described well by a Weibull distribution with
shape parameter 6.8. Compared with the data on ectotherms, we have here an extremely
low hazard rate for the young ages, which increases rapidly after the age of 50 years. This
pattern suggests that the system that is involved in the neutralization of free radicals is itself
subjected to aging, while for ectotherms it is not necessary to build in this complication.
As explained in the next chapter, {151}, a constant neutralization probability, combined
with low mortality during growth, leads to survival curves which are close to the Weibull
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Figure 3.24: The survival curve for humans:
white males in the USA in the period 1969-1971.
Data from Elandt and Johnson [198]. The fitted
empirical survival curve is q exp{−ṗt− (ṗW t)β},
with q = 0.988, ṗ = 0.0013 a−1, ṗW = 0.01275
a−1 and β = 6.8. The parameter q relates to
neonate survival and ṗ to death by accident.

curve with shape parameter 3. Aging as a result of free radicals is partially supported
by the observation that the life spans of both ectotherms and endotherms correlate well
with the specific activity of antioxidants [219]. It should be noted that if we compare an
endotherm with a body temperature of 40 ◦C with that of an otherwise similar ectotherm
at 20 ◦C, we should expect a 10 times shorter life span, on the basis of an Arrhenius
temperature of 10000 K. Endotherms, therefore, have a problem to solve, which possibly
involves additional mechanisms to remove free radicals.

One of the many questions that remain to be answered is how aging proceeds in animals
that propagate by division rather than by eggs. Unlike eggs, they have to face the problem
of initial damage. It might be that such animals have (relatively few) undifferentiated cells
that can divide and replace the damaged (differentiated) ones. A consequence of this point
of view is that the option to propagate by division is only open to organisms where the
differentiation of specialized cells is not pushed to the extreme. If aging affects all cells
at the same rate, it becomes hard to explain the existence of dividing organisms. This
is perhaps the best support for the damage interpretation of the aging process. Theories
that relate aging, for instance, to the accumulation of compounds as an intrinsic property
of cellular metabolism, should address this problem. The same applies to unicellulars. If
accumulated damage carries over to the daughter cells, it becomes hard to explain the
existence of this life style. The assumption of the existence of cells with and without
damage seems unavoidable. Organisms that live in anaerobic environments cannot escape
aging, because other radicals will occur that have the same effect as oxygen. Note that if
one follows the fate of each of the daughter cells, this theory predicts a limited number of
divisions until death occurs, so that this event itself gives no support for aging theories built
on cellular programming. Only the variation in this number can to some extent be used
to choose between both approaches. The present theory can be worked out quantitatively
for unicellulars as follows.

Since unicellulars cannot dilute changed dna with unchanged dna and cannot com-
pensate for its effect, the hazard rate for unicellulars must equal ḣ(t) = dQĊ/V , where dQ
is the net hit frequency per unit of energy density. (Note that the range of the cell volume
is (Vd/2, Vd), so that the volume-specific respiration rate is restricted, while for embryos,
where V is assumed to be infinitesimally small initially, it does not have a boundary. Di-
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lution by growth solves this problem for embryos.) From (3.45) it follows that the hazard
rate for filaments is

ḣ(E) = dQ(ν̇ + ṁ)
g[E]

g + [E]/[Em]
, thus (3.58)

ḣ(e) = ṗae
1 + g

e+ g
(3.59)

where ṗa ≡ dQ[Em]g ν̇+ṁ
1+g

represents the maximum aging rate and e ≡ [E]/[Em] the reserve
density as a fraction of the maximum capacity. At constant substrate densities, the scaled
energy reserve density, e, equals the scaled functional response, f , so the hazard rate is
constant and independent of the age of the filament. The hazard rate for rods is likewise
found from (3.44):

ḣ(e, l) = ṗae
1 + g

e+ g

((ld/l)
3 − 1) δ/3 + 1 + ld/g

1 + ld/g
(3.60)

For the hazard rate of unicellular isomorphs we obtain from (3.42)

ḣ(e, l) = ṗae
1 + g

e+ g

1 + g/l

1 + g/ld
(3.61)

In contrast to filaments, rods and isomorphs experience a reduction of the hazard rate
during the cell cycle.

If dna is changed, the cell will cease functioning. This gives a lower boundary for
the (population) growth rate because the population will become extinct if the division
interval becomes too long. To prevent extinction (in the long run) the survival probability
to the next division should be at least 0.5, so the lower boundary for substrate density
can be found from Prob{a† > td} = exp{− ∫ td0 ḣ(t) dt} = 0.5. Substitution of (3.60) and
(3.39) leads to the lower boundary for the substrate density for rods, which must be found
numerically. It is tempting to relate this aging mechanism, which becomes apparent at low
substrate densities only, to the occurrence of stringent responses in bacteria, as described
by, for example, Cashel and Rudd [122]. This will be discussed further when populations
are considered, {165}.

It is intriguing to realize that the present mechanism for aging implies that organisms
use free radicals to change their dna. Although most changes are lethal or adverse, some
can be beneficial to the organism. Using a selection process, the species can exploit free
radicals for adaptation to changing environments. By increasing the specific activity of
antioxidants, a species can prolong the life span of individuals in non hostile environments,
but it reduces its adaptation potential as a species if the environment changes. This trait
defines an optimal specific activity for antioxidants that depends on the life history of
the organism and the environment. Large body size, which goes with a long juvenile
period, as will be discussed on {234}, requires efficient antioxidants to ensure survival
to the adult state. It implies that large bodied species have little adaptation potential,
which is further reduced by the long generation time; this makes them vulnerable from
an evolutionary perspective. It is possibly one aspect of the extinction of the dinosaurs,
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although not all of them were large and they may have been endothermic. Endotherms
appear to combine a high survival probability of the juvenile period with a high aging rate,
thus having substantial adaptation potential during the reproductive phase; they reach
this by a reduction of the efficiency of antioxydants during puberty.

The present formulation assumes that growth ceases as soon as dna is changed. The
background is that many genes are involved in the synthesis of one or more compounds
that are essential to structural body mass and so to growth. A few genes are involved
in suppressing unregulated growth of cells in multicellular organisms. If such genes are
affected, tumors can develop. This theory can, therefore, also be used to work out the
age-dependent occurrence rate of tumors as well as the growth rate of tumors, cf. {252}.

The energy parameters can be tied to the accumulated damage to account for the well
known phenomenon that older individuals eat less and reproduce less than younger ones
with the same body volume. Senescence can be modelled this way. This role of age in
energetics is not worked out here to keep the model as simple as possible.

3.13 Genetics and parameter variation

The parameter values undoubtedly have a genetically determined component, which can to
some extent be modulated phenotypically. As has hopefully been made clear, the processes
of feeding, digestion, maintenance, growth, reproduction and aging are intimately related.
They involve the complete cellular machinery. Although mechanisms for growth which
involve just one gene, have been proposed [176], the deb theory makes it likely that
thousands are involved. This restricts the possibilities of population genetic theories to
deal with auxiliary characters that do not have a direct link to energetics. (This is not
meant to imply that such theories cannot be useful for other purposes.) In the context of
quantitative genetics, some instructive points should be mentioned here. For this purpose
a particular property of the deb model, which I call the invariance property (just to have
a name to refer to), should be discussed first. This property is at the basis of body size
scaling relationships to be discussed later. These relationships express how species-specific
characters depend on body size.

The invariance property of the deb model is that two species with parameter sets
that differ in a very special way behave identically with respect to energetics as long as
food density is strictly constant. So they will have exactly the same energy dynamics,
volume and reproduction ontogenies, and so on, for all life stages. The derivation of the
relationship between both parameter sets is simple when two individuals are compared
with the same body volume and with a maximum surface area-specific ingestion rate that
differ by a factor z, so {İm}2 = z{İm}1. To behave identically, the ingestion rates must
be equal: İ2 = İ1. Since their volumes are equal, V2 = V1, (3.2) implies that f2 = f1/z or
K2 = zK1 + (z − 1)X. Since the assimilation rates must be the same, Ȧ2 = Ȧ1, it follows
that {Ȧm}2 = z{Ȧm}1. They must have the same storage dynamics, so (3.7) implies
[Em]2 = z[Em]1. Identical growth defined by (3.12) implies that the other parameters
should be the same, so Vb,2 = Vb,1, Vp,2 = Vp,1, Vh,2 = Vh,1, κ2 = κ1, [Ṁ ]2 = [Ṁ ]1,
[G]2 = [G]1 and p̈a,2 = p̈a,1.
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If food density is not strictly constant, but fluctuates a little, both species behave in a
different manner as far as energy is concerned. This is due to the non-linear relationship
between the scaled functional response f and food density X. The change of f with
respect to X is d

dX
f = K(K+X)−2 = (1− f)2/K. So if f approaches 1, the change in the

ingestion rate, and so in the energy reserve density, becomes negligibly small. This overall
homeostasis is probably selectively advantageous, because it implies that regulation systems
have a much easier job to coordinate the various processes of energy allocation, which allows
for optimization. The mechanism is not unlike the restriction of the tolerance range for
temperature of enzymes of homeotherms relative to heterotherms. The invariance property
has an interesting consequence with regard to selection processes. At a constant food
density, the (constant) surface area-specific ingestion rate, surface area-specific assimilated
energy, and reserve energy density can be regarded as achieved physiological characters.
Small fluctuations in food density drive selection to a (genetic) fixation of these characters
as the maximum possible ones: {İm} → {İ}, {Ȧm} → {Ȧ} and [Em] → [E]. This
phenomenon is known as ‘dwarfing’.

The parameter values for different individuals are likely to differ somewhat. Differences
in ultimate volume at constant food density testify to this basic fact. To what extent
this has a genetic basis is not clear, but the heredity of size in different races of dogs and
transgenic mice and turkeys reveals the genetic basis of growth and size. Since only a tiny
fraction of available dna in eukaryotic cells is in active use, one can easily imagine that
changes in the pieces that are used, or in the intensity with which the active parts are used,
can result in changes in energy parameters. These regulation processes can be subjected to
phenotypic influence and to factors located in the cytoplasm, and so to maternal effects. An
important statistical consequence of this point of view is that parameter estimates can in
principle no longer be based on means: the mean of von Bertalanffy curves with different
parameters is not a von Bertalanffy curve. This problem obviously grows worse with
increasing scatter. The modelling of parameter variation can easily introduce a considerable
number of new parameters. To select just one or two parameters to solve this problem seems
arbitrary. An attractive choice might be to conceive the factor z, just introduced, to be
a stochastic variable, which couples four energy parameters. This introduces stochasticity
only at fluctuating food densities.
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Chapter 4

Analysis of the DEB model

The purpose of this chapter is to summarize the core of the deb model and to evaluate
combinations of primary processes and their consequences. The last chapter treated them
one by one, as far as possible. Now the models for these processes will gain colour as the
processes change together in a variable environment. To avoid repetition and to reveal the
strength of a model that treats dimensions well, this summary will be made in terms of
dimensionless quantities. Although some tests of evaluations are presented on the basis of
data collected from the literature, adequate tests require experimental programs specifically
designed to test the theory.

4.1 Summary of the deb model

The assumptions on which the deb model in its simplest form is based are collected in table
4.1. The primary variables and parameters are listed table 4.2. The formulation focuses on
volumes of isomorphs. Organisms that change in shape can be covered by multiplication
of all surface area related parameters with an appropriate, dimensionless, shape correction
function of volume, in the equations for ingestion and change in volume and reserves.

Although accumulated damage is the natural state variable (together with volume), it
is mathematically equivalent to age (together with volume) in the present model for aging.
Because age does not require an identification with molecular processes, it is preferred here.
Let us focus on individuals that cut their energy expenses to somatic maintenance only,
under non-growth conditions, and do not shrink. The equations for the scaled quantities
that define the input/output relationships for ectotherms are according to (3.2), (3.7),
(3.12), (3.56) and (3.47):

ingestion I(x, l) = (l > lb)ımfl
2 with f =

x

1 + x
(4.1)

reserve dyn.
d

dτ
e = (e ≥ l)

g

l
((l > lb)f − e) + (e < l)g((l > lb)

f

l
− κ) (4.2)

length dyn.
d

dτ
l =

g

3

(e− l)+

e+ g
(4.3)
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Table 4.1: The assumptions that lead to the deb model as formulated for multicellular animals
and modified for unicellulars.

1 Body volume, stored energy density and accumulated damage are the state variables.

2 Three life stages can exist: embryos, which do not feed, juveniles, which do not reproduce,
and adults. The transition between stages depends on the cumulated energy invested in
maturation.

3 The feeding rate is proportional to surface area and depends hyperbolically on food density.

4 Food is converted to energy at a fixed efficiency and added to the reserves.

5 The dynamics of energy density in reserve is a first order process, while maximum density is
independent of the volume of the individual and homeostasis is observed.

6 A fixed fraction of energy, utilized from the reserves, is spent on somatic maintenance plus
growth, the rest on maturity maintenance plus maturation or reproduction.

7 Somatic and maturity maintenance are proportional to body volume, but maturity maintenance
does not increase after a given cumulated investment in maturation.

7a Heating costs for endotherms are proportional to surface area.

8 Costs for growth are proportional to volume increase.

9 The energy reserve density of the hatchling equals that of the mother at egg formation, the
embryo beginning at an infinitesimally small size.

9a Foetuses develop in the same way as embryos in eggs, but at a rate unrestricted by energy
reserves.

9b Unicellulars divide a fixed time after initiation of dna duplication, which occurs upon
exceeding a certain volume.

10 Under starvation conditions, individuals always give priority to somatic maintenance and
follow one of two possible strategies:

10a They do not change the reserve dynamics (so continue to reproduce).

10b They cease energy investment in reproduction and maturity maintenance (thus changing
reserves dynamics).

10c Most unicellulars and some animals shrink during starvation, but do not gain energy from
this.

11 Aging related damage accumulates in proportion to the concentration of damage inducing
compounds, which accumulate in proportion to the volume-specific metabolic rate. For
unicellulars damage is lethal, therefore it does not accumulate.

12 Apart from ‘accidents’, the hazard rate is proportional to accumulated damage, but death
occurs if somatic maintenance costs can no longer be paid.
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Table 4.2: The primary variables and parameters of the deb model, secondary compound
parameters and dimensionless representations. The abbreviation ‘spec’ stands for surface area-
or volume-specific.

variable symbol dim. dim.less equivalent variable symbol dim. dim.less equivalent

food density X L3l−2 or 3 x ≡ X/K volume V L3 l ≡ (V/Vm)1/3

storage density [E] eL−3 e ≡ [E]/[Em] age a t τ ≡ aṁ

parameter symbol dim parameter symbol dim

saturation coeff. K L3l−2 or 3 spec.max.ingestion {İm} L3L−2t−1

spec.max.assimilation {Ȧm} eL−2t−1 max.energy density [Em] eL−3

spec.maintenance [Ṁ ] eL−3t−1 spec.growth costs [G] eL−3

partition fraction κ - aging acceleration p̈a t−2

rel. reprod. overhead q - volume at birth Vb L3

volume at puberty Vp L3 spec.heating costs {Ḣ} eL−2

aspect ratio δ - spec.wall growth costs {GA} eL−2

dna duplication time tD t aging rate ṗa t−1

Arrhenius temp TA T volume at division Vd L3

comp. parameter symbol dim comp. parameter symbol dim

energy conductance v̇ ≡ {Ȧm}/[Em] Lt−1 maintenance rate coef. ṁ ≡ [Ṁ ]/[G] t−1

investment ratio g ≡ [G]
κ[Em]

- max. volume Vm ≡ (κ
{Ȧm}

[Ṁ ]
)3 L3

heating volume Vh ≡ ({Ḣ}/[Ṁ ])3 L3 scaled aging accel. pa ≡ p̈a/ṁ2 -

scaled birth length lb ≡ (Vb/Vm)1/3 - scaled puberty length lp ≡ (Vp/Vm)1/3 -

scaled heating length lh ≡ (Vh/Vm)1/3 - scaled division length ld ≡ (Vd/Vm)1/3 -

scaled ingestion rate ım ≡ {İm}V 2/3
m /ṁ L3 scaled reprod. rate qR ≡ qg(1 − κ) -

spec. energy cond. ν̇ ≡ v̇V
−1/3
d

t−1

hazard h(τ) =
pa

(e > 0)

∫ τ

0



1 −
(

l(0)

l(τ2)

)3

+
∫ τ2

0

(

l(τ1)

l(τ2)

)3

dτ1



 dτ2 (4.4)

reproduction R(e, l) = (e ≥ l)(l > lp)
qR
e0

(

g + l

g + e
el2 − l3p

)

(4.5)

where I, h, and R stand for İ, ḣ, and Ṙ with ṁ−1 as the unit of time, while e0 is given in
(3.26). The 7 parameters of this set of equations, which fully determine feeding, growth,
survival and reproductive behaviour, are: lb, lp, ım, g, κ, pa and qR. The conversion to
(unscaled) time, food and body volume involves 3 additional parameters. Since all rates
are thought to depend on temperature in the same way, as a first approximation, the choice
of ṁ−1 as the unit of time makes the dimensionless system independent of temperature.
The respiration and reproduction rates are given in figure 4.1 as functions of scaled reserves
and length.

At constant food density, the scaled length of an individual (including endotherms) as
a function of scaled age is

l(τb + τ) = f − lh − (f − lh − lb) exp

{

−τ/3
1 + f/g

}

(4.6)
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Figure 4.1: Stereo view of respiration (upper) and reproduction (lower) rates in ectotherms that
cease reproduction during starvation, as fractions of their maxima. The rates (z-axis) are given
as functions of scaled length (x-axis) and scaled functional response (y-axis). Chosen parameters:
lb = 0.1, lp = 0.2, g = 0.1 and κ = 0.666.

The symbol lh is defined as lh ≡ (Vh/Vm)1/3 and stands for the reduction in ultimate scaled
length, due to the energy drain used for heating. Note that age is initialized at the start of
embryonic development, not at birth. The length of the juvenile period at constant food
density on the basis of (4.6) is

τp − τb = 3

(

1 +
f

g

)

ln

{

f − lh − lb
f − lh − lp

}

(4.7)

This expression can be of importance in life history studies. The ability of a bird to fly
and to take part in migration, for instance, relates to a cumulative energy investment into
development in a way similar to the ability to reproduce. The expression, therefore, gives
the time the animal is bound to the breeding site.

Growth in volume is at a maximum if d2

dτ2 l
3 = 0. This occurs if f = 1 and l = (1−lh)2/3
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and amounts to

max
d

dτ
l3 =

4

27

g

1 + g
(1 − lh)

3 (4.8)

While growth in length only decreases after birth, growth in volume first increases and
then decreases, which results in a sigmoid volume-time curve. Later in this chapter, I will
discuss deviations from this pattern.

The adjustments that an individual must make during growth in the rate constants for
the first order dynamics of the energy reserves (not as density) to maintain homeostasis
are small if d

dt
lnV ≪ V −1/3{Ȧm}[Em]−1; this condition becomes 0 ≪ l + lh + g in the

scaled symbols.
For filaments, the scaled dynamics for length and energy density amount to

d

dτ
l =

g

3

l

ld

e− ld
e+ g

(4.9)

d

dτ
e = g(f − e)/ld (4.10)

Similarly we have for rods:

d

dτ
l =

g

3

l

ld

e

e+ g

(

δ

3

l3d
l3

− ld
e

+ 1 − δ

3

)

(4.11)

d

dτ
e =

g

ld

(

δ

3

l3d
l3

+ 1 − δ

3

)

(f − e) (4.12)

4.1.1 Equivalent assumptions

Assumptions about storage dynamics and the κ-rule can only be tested directly if energy
flows in individuals are measured, which is a difficult task. This problem can be solved
by replacing assumptions 5 and 6 by three other assumptions that are mathematically
equivalent for isomorphs.

At constant food density:

• growth is of the von Bertalanffy type after birth

• the ultimate length is proportional to the (scaled) functional response

• the inverse of the von Bertalanffy growth rate is linear in the (scaled) functional response

The demonstration of the equivalence is somewhat technical; this subsection can be
skipped without loss of continuity. The significance of the exercise is to show that some
assumptions and consequences are interchangeable, which is important for judging the
testability of the deb model. The strategy to prove the equivalence is first to assume that
food density is constant (from birth) and then use the property of dynamic systems that
the behaviour of a system only depends on the value of the state variables, that is on the
position in the state space and not on the trajectory through the state space.

Suppose that κ can be any function of the state variables [E] and V and that food
density is constant. The task is to show that it is constant with respect to these variables.
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It is always possible to write the sum of the energy spent on growth plus maintenance as
[G] d

dt
V + [Ṁ ]V = κ([E], V )Ċ with Ċ = Ȧ − d

dt
E. This formulation acknowledges that at

each time increment the individual decides how much of the utilized energy it allocates to
growth plus maintenance.

Von Bertalanffy growth can be written as d
dt
V = ρ̇V 2/3 − 3γ̇V , where ρ̇ as well as γ̇ are

independent of V . At constant food density X, the reserves after birth can be written as
a function E of volume V and the scaled input f = X/(K +X), so d

dt
E = d

dt
V ∂

∂V
E. This

allows for the solution of ∂
∂V
E: ∂

∂V
E = α1+β1V 1/3

α2+β2V 1/3 with α1 = {Ȧm}f− ρ̇(f)[G]/κ, α2 = ρ̇(f),

β1 = −[Ṁ ]/κ+ 3γ̇(f)[G]/κ and β2 = −3γ̇(f).
The concept ‘state variable’ implies that the change in the state variables only depends

on the values of the state variables; the dynamics of the reserves, therefore, do not depend
directly on allocation, so d

dκ
∂
∂V
E = 0 for all values of V . It follows that

d

dκ

∂

∂V
E =

c0 + c1V
1/3 + c2V

2/3

(α2 + β2V 1/3)2
(4.13)

with c0 = α2
2
d
dκ

(α1/α2), c1 = β2
2
d
dκ

(α1/β2) + β2
1
d
dκ

(α2/β1) and c2 = β2
2
d
dκ

(β1/β2), has
to vanish for all values of V , so that d

dκ
(α1/α2) = 0 and d

dκ
(β1/β2) = 0. This gives

d
dκ
ρ̇(f) = ρ̇2(f)[G]/(f{Ȧm}κ2) and 3 d

dκ
γ̇(f) = 9γ̇2(f)[G]/(κ[Ṁ ]) − 3γ̇(f)/κ. Solution of

these differential equations gives ρ̇(f) = {Ȧm}f
[G]/κ+ ∂

∂V
E

and 3γ̇(f) = [Ṁ ]/κ

[G]/κ+ ∂
∂V

E
. Since ρ̇ and γ̇

are independent of V , ∂
∂V
E is also independent of V , so E has the form E = χ(f)+ψ(f)V .

Growth does not depend on assimilation energy directly, which implies that ∂
∂V
E, which

is equal to ψ(f), in ρ̇ and γ̇ has to be replaced by E/V −χ(f)/V ; this is only independent
of f and V for χ(f) = 0. So we have E = ψ(f)V or [E] = ψ(f). Similarly, f in ρ̇ has to be
written as a function of E, so f is replaced by ψ−1([E]), where ψ−1 is the inverse function

of ψ, i.e. ψ−1(ψ(f)) ≡ f . We now obtain d
dt
V = ρ̇V 2/3 − 3γ̇V = V 2/3{Ȧm}ψ−1([E])−V [Ṁ ]/κ

[G]/κ+[E]
.

Since volume and storage are the only state variables on which growth depends, the
values in the past should be irrelevant. We can, therefore, apply the equation to fluctuating
food densities as long as the values of the state variables are within the domain that
can be reached at constant food densities. The dynamics of the volume-specific storage
d
dt

[E] = V −1 d
dt
E −EV −2 d

dt
V can now be inferred from the balance equation d

dt
E = Ȧ− Ċ

and the κ-rule. It is d
dt

[E] = {Ȧm}V −1/3(f − ψ−1([E])).
Since 1/γ̇ is linear in f , ψ is linear in f . The conservation law for energy also dictates

that γ̇ = 0 if f = 0, which makes ψ proportional to f , say ψ(f) = [Em]f . This implies
that ψ−1 is proportional to [E] and vice versa. In other words the volume-specific storage
obeys a simple first order process if and only if γ̇−1 is linear in f .

4.1.2 State space

Like all system theoretical models, it is possible to represent the individual as a point
in the three dimensional state space spanned up by scaled length, scaled energy reserve
density and accumulated damage. As time passes, the point moves through the state space.
Individuals appear at birth in the plane through l = lb, and disappear at death. In a
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population there are many individuals around, so many points are moving simultaneously
through the state space for individuals. The next chapter discusses the possibility of
following them, {206}. This section serves as an introduction for the population level.

Since damage only serves to remove individuals in the deb model, the discussion can be
restricted to scaled length and scaled reserve density. Figure 4.2 summarizes the movements
through the state space for isomorphs, rods and filaments, for three levels of functional
response. This representation is known as a direction field, where the length of the line
segments represents the rate of movement.

4.1.3 Scatter structure of weight data

For simplicity’s sake, the processes of feeding and growth have been modelled determin-
istically, so far. This is not very realistic, as (feeding) behaviour especially is notoriously
erratic. This subsection discusses growth if feeding follows a special type of random pro-
cess, known as an alternating Poisson process or a random telegraph process. Because
of the resulting complexity, I rely here on computer simulation studies. Some analytical
properties of this input process are studied on {264}, in relation to the behaviour of one
compartment models.

Suppose that feeding occurs in meals that last an exponentially distributed time interval
t1 with parameter λ̇1, so Prob{t1 > t} = exp{−tλ̇1}. The mean length of a meal is then
λ̇−1

1 . The time intervals of fasting between the meals is also exponentially distributed,
but with parameter λ̇0. Food intake during a meal is copious so f = 1, while f = 0
during fasting. The mean value for f is Ef = λ̇0(λ̇0 + λ̇1)

−1. This on/off process is
usually smoothed out by the digestive system, but let us here assume that this is of minor
importance. According to (4.2) and (4.3), growth in scaled length of juveniles (that are
able to shrink) is given by

d

dτ
e =

g

l
(f − e) and

d

dτ
l =

g

3

e− l

e+ g

where τ is the scaled time, tṁ, as before. Only one parameter, g, is involved in this
growth process, and two others, λ0 and λ1, occur in the description of the on/off process
of f . (Note that the λ’s do not have dots, because we now work in scaled time, which is
dimensionless.) The process is initiated with l(0) = lb and e(0) equals the scaled energy
density of a randomly chosen adult.

Figure 4.3 shows the results of a computer simulation study, where scaled weight relates
to scaled length and scaled energy density, according to (2.9) as

Ww([dwv]Vm)−1 = (1 + e[dwe]/[dwv])l
3

At this moment, I do not understand mathematically why the deterministic growth curve
is a bit above the mean of (500) random growth curves. The resemblance of the scatter
structure with experimental data is striking, see for instance figure 2.7. This does not
imply, however, that the feeding process is the only source of scatter. Differences of pa-
rameter values between individuals are usually important as well. The results do suggest
a mechanism behind the generally observed phenomenon that scatter in weights increases
with the mean.
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isomorphs rods filaments

f = 1

f = 0.5

f = 0

Figure 4.2: The direction field for the deb model for isomorphs, rods and filaments and three
values for the functional response f . The length of the line segments equals the change of the
state variables during a period ṁ−1. The diagonal line represents the isocline d

dt l = 0; the fat dot
is an absorbing state. The parameters are g = 0.03, ld = 0.8 (rods and filaments) and δ = 0.6
(rods only). Shrinkage during starvation is allowed in all cases, to facilitate comparison.
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Figure 4.3: Computer simulated scaled weight1/3 is plotted against scaled time in the left figure,
if feeding follows an alternating Poisson process. The shade areas give frequency intervals of 99,
90 and 50%, the drawn curve gives the mean and the dotted one gives the deterministic growth
curve, if feeding is constant at the same mean level. The coefficient of variation is given in the
right figure. The parameters are λ0 = 11.666, λ1 = 5, g = 1, lb = 0.05 and [dwe]/[dwv] = 0.5.

4.1.4 Yield

The conversion of one form of biomass into another is basic to the population and ecosystem
levels. It is, therefore, introduced here at the level of individuals, as conversion efficiency
can be most easily studied at this level. Food is converted to faeces, to the biovolume of
the individual and, for females, to the biovolume of offspring.

A yield factor measuring (gross) conversion efficiency is defined as the ratio of the
produced biovolume and the food ingested. (The term ‘yield’ is frequently used in the
microbiological literature; in eco-physiology it is known as the gross production efficiency.)
This measure does not account for energy reserves. In relation to conversions in food
chains, the energy reserves of prey obviously contribute to its nutritional value so that
exclusion of reserves restricts the usefulness of yield coefficients. A problem hampering
the inclusion of reserves in efficiency measures is the artificial conversion of reserve energy
to biovolume or vice versa. This conversion is artificial because growth takes time and,
therefore, maintenance is intrinsically involved; thus this conversion depends on the energy
uptake capacity of the organism. This is why large bodied species are more efficient than
small species: their absolute growth rate is higher (as will be discussed in the chapter on
comparison of species, {217}), so that less energy is lost in maintenance processes. (Large
endotherms are, additionally, more efficient than small ones because of the relatively smaller
amount of heat loss due to a more favourable volume/surface area ratio. This efficiency is
widely recognized.) Biovolume of offspring should not be added at egg production, because
the embryo is assumed to have a negligibly small volume. The mother has already paid
for development to the juvenile stage, so it seems natural to add biovolume at birth to the
volume increase of the mother. The time delay caused by incubation is neglected in the
yield factor. The only satisfactory way to include energy reserves is on the basis of free
energy. This is feasible for micro-organisms, see {201}, but difficult for animals where food
and faeces are hard to define thermodynamically; this hampers access to the free energy
of structural biomass and reserves.
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The yield factor, with dimension volume biomass per volume food, is thus defined by

Yi = (
d

dt
V + ṘVb)/İ (4.14)

This measure only makes sense in situations of constant food density, where the reserve
density does not change. At fluctuating food density it is possible that growth and re-
production allocation occurs without ingestion, which makes the measure meaningless.
Considered as a function of food density and volume, this yield factor only depends on
the partition coefficient κ, the energy investment ratio g, and a proportionality constant,
v̇/{İm}, standing for the ratio of energy yield of a unit volume of ingested food and the
maximum stored energy density. The latter proportionality constant, which has dimension
volume biomass per volume food, converts a dimensionless yield factor yi, into Yi. For
ectotherms that also reproduce under no-growth conditions, this scaled yield factor is for
yi ≡ Yi{İm}/v̇ given by

yi(l, f) =
f − l + (l > lp)(1 − κ)q

(

f(g + l) − (f + g)l3p/l
2
)

l3b/e0

f(f + g)
(4.15)

for l ≤ f

= (l > lp)q(f − κl − (1 − κ)l3p/l
2)l3b/fe0 (4.16)

for l > f

where e0, given in (3.26), is the energy invested in an egg as a fraction of the maximum
stored energy in an individual of maximum volume. This scaled yield factor is illustrated
in figure 4.4.

The maximum scaled yield is

yi,max = l−1
b

(

1 +
√

1 + g/lb

)−2

(4.17)

which is reached for l = lb and f = lb +
√

l2b + glb. For lb → 0 and f → 0, yi,max → g−1,
which means that an animal of zero volume would spend no energy on development or
energy storage; it will just convert all energy it can obtain from food into biomass. It also
means that all real world animals, for which l > 0 holds, are much less efficient converters.

Although (4.15) and (4.16) look rather massive, it is surprising that they do not contain
parameters such as the maintenance cost, except in a hidden form in the scaling of length
as a fraction of maximum length. The yield has a very weak local maximum for (female)
adults. The volume and functional response at this local maximum must be obtained
numerically from (4.15).

The yield factor (4.15) and (4.16), from now on called instantaneous yield, has a limited
use for studies at a longer time scale, because of its instantaneous nature. It will (rapidly)
change in time, because the animal changes its volume. The non-instantaneous yield factor,
Yn, defined by the ratio of the cumulated biomass production from birth onwards and the
cumulated amount of ingested food is more informative. For yn ≡ Yn{İm}/v̇, we have

yn(l, f) =
l3 − l3b + l3b

∫ t(l)
0 Ṙ(t) dt

gṁf
∫ t(l)
0 l2 dt

(4.18)
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Figure 4.4: Stereo view of the instantaneous yield factor, above, and the non-instantaneous one,
below, for a female ectotherm as a function of length and, in depth, functional response (or stored
energy density). Parameters: lb = 0.133, lp = 0.417, g = 0.033 and κ = 0.3. The figures show
that the conversion efficiency from food into biomass rapidly decreases for increasing body size
till some plateau where the decrease in growth is compensated by the increase in reproduction.
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where l(t) = f − (f − lb) exp{−tgṁ/3
f+g

} and t(l) = 3f+g
gṁ

ln{f−lb
f−l }. Substitution of these

functions and of (4.5) for the reproduction rate Ṙ into (4.18) reveals that the integration
can readily be carried out and made explicit. The result is not a nice small formula, but
a line filling one, illustrated in figure 4.4.

The animal, whose functional response remains constant from birth onwards, will obey
l < f . This restriction was not necessary for yi, which allows that an animal first grows
to a large volume at abundant food and then stays at a low food density for a sufficiently
long time for the amount of stored energy to be adapted. At l = lb, the non-instantaneous
yield equals the instantaneous one, conceptually. For l = f , they are also equal, because
the animal here does not change volume for an infinitely long period. Fig.4.4 points to the
counter intuitive result that yield at high food densities is a bit lower than at moderate
ones. One would think that growth is fastest at high food densities, so that relatively
little energy is lost through maintenance. The result can be explained by increasing energy
investment in storage. Is it just coincidence that laboratory cultures of many species of
animals do better at 70% of the ad libitum amount of food?

The non-instantaneous yield factor will prove to be identical to conversion efficiency at
the population level, if we harvest at a fixed age. See next chapter, {181}.

4.2 Changing and poor feeding conditions

4.2.1 Step up/down

The difference between age-based and size-based models becomes apparent in situations of
changing food densities. As long as food density remains constant, size-based models can
always be converted into age-based ones, which makes it impossible to tell the difference.

Figure 4.5 shows the result of an experiment with Daphnia magna at 20 ◦C, exposed to
constant high food densities with a single instantaneous switch to a lower food density at 1,
2 or 3 weeks. The reverse experiment with a single switch from low to high food densities
has also been done, together with continuous exposure to both food densities. Figure 3.13
has already shown that the maintenance rate coefficient ṁ and energy conductance v̇ can
be obtained by comparison of growth at different constant food densities. These compound
parameters, together with ultimate and maximum lengths and the common length at birth
have been obtained from the present experiment without a switch. These five parameters
completely determine growth with a switch, both up and down, leaving no free parameters
to fit in this situation. The excellent fit gives strong support to the deb theory.

4.2.2 Mild starvation

If a growing individual is starved for some time, it will (like the embryo) continue to grow
(at a decreasing rate) till it hits the non-growth boundary of the state space (e = l).
Equation (3.25) describes the e, l-path. Depending on the amount of reserves, the change
in volume will be small for animals not far from maximum size. Strömgren and Cary
[696] found that mussels in the range of 12–22 mm grew 0.75 mm. If the change in size is
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a

Figure 4.5: Length-at-age for the water-
flea Daphnia magna at 20 ◦C feeding at a
high (•) and a low (◦) constant density of
the green alga Chlorella pyrenoidosa (a),
and with a single interchange of these two
densities at 1 (b,e), 2 (c,f) or 3 (d,g) weeks.
The curves b to g describe the slow adap-
tation to the new feeding regime. They
are completely based on the 5 parameters
obtained from a, so no additional param-
eters were estimated. From [410].

b e

c f

d g
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Figure 4.6: Growth rate in the starved mus-
sel Mytilus edulis at 21.8 ◦C. Data from
Strömgren and Cary [696]. The parame-
ter estimates (and standard deviations) are
g
e(0) = 12.59(1.21), ṁ = 2.36(0.99) 10−3 d−1

and v̇ = 2.52(0.183) mm d−1.

Figure 4.7: The oxygen consumption rate
(•) and the carbon dioxide production rate
(◦) in starved Daphnia pulex of 1.62 mm at
20 ◦C. Data from Richman [595]. The expo-
nential decay rate is 0.23 (0.032) d−1.

neglected, the scaled reserve density changes as e(τ) = e(0) exp{−gτ/l} and the growth of

scaled length is d
dτ
l = g

3
exp{−gτ/l}−l/e(0)
exp{−gτ/l}+g/e(0) . Figure 4.6 confirms this prediction.

Respiration during starvation is proportional to the use of reserves; see {103}. It
should, therefore, decrease exponentially in time at a rate of v̇V −1/3 if size changes can
be neglected. See (3.7). Figure 4.7 confirms this prediction for a daphnid. If a shape
coefficient of [dm] = 0.6 is used to transform the length of the daphnid into a volumetric
one, the energy conductance becomes v̇ = 0.6×1.62×0.23 = 0.22 mm d−1. This value seems
to be somewhat small in comparison with the mean energy conductance of many species,
cf. {224}. The next section suggests an explanation in terms of changes in allocation rules
to reproduction during starvation.

4.2.3 Prolonged starvation

If the reserve density drops below the non-growth barrier e = l, a variety of possible phys-
iological behaviours seems to occur, depending on the species and environmental factors.
Deviation from the κ-rule is necessary, because the standard allocation to growth plus
maintenance is no longer sufficient for maintenance, even if growth ceases. Pond snails
seem to continue energy allocation to reproduction during prolonged starvation under a
light/dark 16:8 cycle (summer conditions, denoted by LD), but they cease reproduction
under a 12:12 cycle (spring/autumn conditions, denoted by MD) [76,788]. This makes
sense because under summer conditions, an individual can expect high primary produc-
tion rates, so if it has consumed a plant, it will probably find another one in the direct
neighbourhood. Under spring/autumn conditions, however, it can expect a long starvation
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period. By ceasing allocation to reproduction, it can increase its survival period by a factor
of two; see figure 4.9. Another aspect is that offspring have a remote survival probability if
there is no food around. They are more vulnerable than the parent, as follows from energy
reserve dynamics. These dynamics can be followed on the basis of the assumption that LD
snails do not change the rule for utilization of energy from the reserves, and both MD and
LD snails do not cut somatic maintenance.

If starvation is complete and volume does not change, i.e. f = 0 and l is constant, the
energy reserves will be e(t) = e(0) exp{−gṁt/l}; see (3.22). Dry weight is a weighted sum
of volume and energy reserves, so according to (2.10) for LD snails we must have

Wd(l, t) = Vml
3([ddv] + [dde]e(0) exp{−gṁt/l}) (4.19)

if the buffer of energy allocated to reproduction is emptied frequently enough (EṘ small).
For MD snails, where e(t) = e(0) − ([Ṁ ]/[Em])t, dry weight becomes

Wd(l, t) = Vml
3([ddv] + [dde]e(0) − [dde]([Ṁ ]/[Em])t) (4.20)

So dry weight of LD snails decreases exponentially and that of MD snails linearly. Figure
4.8 confirms this. It also supports the length dependence of the exponent.

When storage levels become too low for maintenance, some species can decompose
their structural biomass to some extent. If feeding conditions then become less adverse,
recovery may be only partial. The distinction between structural biomass and energy
reserves fades at extreme starvation. The priority of storage materials over structural
biomass is perhaps even less strict in species that shrink during starvation. Species with
(permanent or non-permanent) exoskeletons usually do not shrink in physical dimensions,
but the volume-specific energy content nonetheless decreases during starvation.

If we exclude the possibility of prolonging life through decomposition of structural body
mass and if death strikes when the utilization rate drops below maintenance level, the time
till death by starvation can be evaluated.

In animals such as LD snails, that do not change storage dynamics, the utilization rate,
− d
dt

[E], equals the maintenance rate, [Ṁ ] for [E]/[Em] = V 1/3[Ṁ ]/{Ȧm} or e = κl. Since

e(t) = e(0) exp{−ṁtg/l}, death strikes at t† = l
ṁg

ln e(0)
κl

. This only holds if length increase
is negligibly small.

In animals such as MD snails, which change storage dynamics to d
dt
e = [Ṁ ]/[Em] or

e(t) = e(0) − t[Ṁ ]/[Em], death strikes when e = 0, that is at t† = e(0)[Em]/[Ṁ ] = e(0)
κṁg

.

This only holds as long as there is no growth, so e(0) < l. In practice, this is a more
stringent condition than the previous one. The first part of the starvation period usually
includes a period where growth continues, because e > l. This complicates the analysis of
starvation data, as illustrated in the following example. In a starvation experiment with
MD snails, individuals were taken from a standardized culture and initially fed ad libitum

for 4 days prior to complete starvation. If we assume that food density in the culture has
been constant, so e(0) = fc, say, with fc being about 0.7, and f = 1 during the 4 days prior
to the starvation experiment, the change in length is negligibly small. The initial storage
density is e(0) = 1− (1− fc) exp{−4ṁg/l}, according to (3.7). The time till growth ceases
is found again from (3.7) and the boundary condition l = e(0) exp{−tṁg/l}. (Although
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Figure 4.8: Dry weight during starvation of LD (left) and MD (right) pond snails Lymnaea

stagnalis at 20 ◦C. The left figure gives dry weights (z-axis) as a function of starvation time
(x-axis) and length (y-axis: 1.6–3.3 cm). In the right figure, the length of the MD pond snails
was 3 cm. From [788]. The surface and curve are fitted deb-based expectations.

Figure 4.9: Survival time during starvation of LD (left) and MD (right) pond snails as a function
of length. From [788]. The data points × in the right figure are not included in the deb-based
fit. These large individuals had deformations of the shell.
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length increase is negligibly small, energy allocation to growth can be substantial.) After
a period l(κṁg)−1 death will strike, so

t† =
l

ṁg

(

1

κ
+ ln

{

l−1 (1 − (1 − fc) exp{−4ṁg/l})
}

)

(4.21)

Figure 4.9 confirms model predictions for the way survival time depends on length in LD
and MD snails, and shows that MD snails can prolong life by a factor of two by not
reproducing during starvation. In contrast to the situation concerning embryonic growth,
this confirmation gives little support to the theory, because the shape of the survival time-
length curve is very flexible for the LD case, although there are only two free parameters.
The upper size class of the MD snails has been left out of the model fit, because the shape
of their shell suggested a high age, which probably affected energy dynamics.

4.2.4 Dormancy

Some species manage to escape adverse feeding conditions (and/or extreme temperature
or drought) by switching to a torpor state where growth and reproduction are ceased
and maintenance (and heating) costs strongly reduced. The finding that metabolic rate
in homeotherms is proportional to body weight during hibernation [375], suggests that
maintenance costs are reduced by a fixed proportion.

As heating is costly, a reduction in the elevation of body temperature saves a lot of
energy. Bats and kolibries reduce their body temperature in a daily cycle. This probably
relates to the relatively long life span of bats (for their size) [219]. Although most bird
embryos have a narrow temperature tolerance range, swifts survive significant cooling. This
relates to the food gathering behaviour of the parents. Dutch swifts are known to collect
mosquitoes above Paris at a distance of 500 km, if necessary. During hibernation, not only
is the body temperature reduced, but other maintenance costs as well.

Hochachka and Guppy [323] found that the African lungfish Protopterus and the South
American lungfish Lepidosiren reduce maintenance costs during torpor in the dry season,
by removing ion channels from the membranes. This saves energy expenses for maintaining
concentration gradients over membranes, which proves to be a significant part of the routine
metabolic costs. This metabolic arrest also halts aging. The life span of lungfish living
permanently submerged, so always active, equals the cumulative submerged periods of
lungfish that were regularly subjected to desiccation. This is consistent with the deb

interpretation of aging.

If maintenance cannot be reduced completely in a torpor state, it is essential that
some reserves are present, {41}. This probably explains how individuals frequently survive
adverse conditions as freshly laid eggs because the infinitesimally small embryo requires
little maintenance. It only has to delay development. The start of the pupal stage in holo-
metabolic insects is also very suitable for inserting a diapause in order to survive adverse
conditions, {151}.
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4.2.5 Determination of sex

The determination of sex in some species is coupled to dormancy in a way that can be
understood in the context of the deb model. Daphnids use special winter eggs, packed in
an ephippium. The diploid female daphnids usually develop diploid eggs that hatch into
new diploid females. If food densities rapidly switch from a high level to a low one and the
energy reserves are initially high, the eggs hatch into diploid males, which fertilize females
that now produce haploid eggs [665]. The fertilized eggs, the ‘winter eggs’, develop into
new diploid females. The energy reserves of a well-fed starving female are just sufficient
to produce males, to wait for their maturity, and to produce winter eggs. The trigger for
male/winter egg development is not food density itself, but change of food density. If food
density drops gradually, females do not switch to the sexual cycle [405], cf. figure 5.12.
Sex determination in species such as daphnids is controlled by environmental factors, so
that both sexes are genetically identical [109,299]. Technicians from the TNO laboratories
informed me that a randomly assembled cohort of neonates from a batch moved to one
room proved to consist almost exclusively of males after some days of growth, while in
another cohort from the same batch moved to a different room all individuals developed
into females as usual. This implies that sex determination in Daphnia magna, and probably
in all other daphnids and most rotifers as well, can be affected even after hatching. More
observations are needed. Male production does not seem to be a strict prerequisite for
winter egg production [391]. Kleiven, Larsson and Hobæk [391] found that crowding and
shortening of day length also affect male production in combination with a decrease in food
availability at low food densities.

The switch to sexual reproduction as a reaction to adverse feeding conditions frequently
occurs in unrelated species, such as slime molds, myxobacteria, oligochaetes (Nais) and
plants.

4.2.6 Geographical size variations

The energy constraints on distribution, apart from barriers to migration, consist primarily
in the availability of food in sufficient quantity and quality. The second determinant is
temperature which should be in the tolerance range for the species for a long enough period.
If it drops below the lower limit, the species must possess adequate avoidance behaviour
(migration, dormancy) to survive.

The minimum food density for survival relates to metabolic costs. If an individual is able
to get rid of all other expenses, mean energy intake should not drop below [Ṁ ]V +{Ḣ}V 2/3

for an individual of volume V , so the minimum ingestion rate, known as the maintenance

ration, should be {İm}
{Ȧm}([Ṁ ]V + {Ḣ}V 2/3). For a 3 mm daphnid at 20 ◦C this minimum

ingestion rate is about 6 cells of Chlorella (diameter 4 µm) per second [404]. The minimum
scaled food density X/K is xs = lh+l

1/κ−lh−l .
This minimum applies to mere survival for an individual. For prolonged existence,

reproduction is essential to compensate at least for losses due to aging. The ultimate
volumetric length, fV 1/3

m − V
1/3
h , should exceed that at puberty, V 1/3

p , which leads to the

minimum scaled food density xR = lh+lp
1/κ−lh−lp .
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Several factors determine food density. It is one of the key issues of population dynam-
ics, which is discussed in the next chapter, {159}. The fact that von Bertalanffy growth
curves frequently fit data from animals in the field indicates that they live at relatively con-
stant (mean) food densities. In the tropics, where climatic oscillations are at a minimum,
many populations are close to their ‘carrying capacity’, i.e. the individuals produce a small
number of offspring, just enough to compensate for losses. It also means that the amount
of food per individual is small, which reduces them in ultimate size. Towards the poles,
seasonal oscillations divide the year into good and bad seasons. In bad seasons, popula-
tions are thinned, so in the good seasons a lot of food is available per surviving individual.
Breeding periods are synchronized with the good seasons, which means that the growth
period coincides with food abundance. So food availability in the growth season generally
increases with latitude [424]. The effect is stronger towards the poles, which means that
body size tends to increase towards the poles for individuals of one species. Figure 4.10
gives two examples. Other examples are known from, for instance, New Zealand including
extinct species such as the moa Dinornis [110]. Note that size increase towards the poles
also comes with a better ability to survive starvation and a higher reproduction rate, traits
that will doubtlessly be of help in coping with harsh conditions.

Geographical trends in body sizes can easily be distorted by regional differences in soils,
rainfall or other environmental qualities affecting (primary) production. Many species or
races differ sufficiently in diets to hamper a geographically based body size comparison.
For example, the smallest stoats are found in the north and east of Eurasia, but in the
south and west of North America [384]. The closely related weasels are largest in the
south, both in Eurasia and in North America. Patterns like these can only be understood
after a careful analysis of the food relationships. Simpson and Boutin [659] observed that
muskrats Ondatra zibethicus of the northern population in Yukon Territory were smaller
and have a lower reproduction rate, than the southern population in Ontario. They could
relate these differences to feeding conditions, which were better for the southern population,
this time.

Bergmann [57] observed the increase in body size towards the poles in 1847, but he ex-
plained it as an effect of temperature. Large body size goes with small surface area-volume
ratios, which makes endotherms more efficient per unit body volume. This explanation has
been criticized [471,641,646]. It is indeed hard to see how this argument applies in detail.
Animals do not live on a unit of body volume basis, but as a whole individual [471]. It
is also hard to see why the argument applies within a species only and why mice, foxes
and bears can live together in the Arctic. The tendency to increase body size towards the
poles also seems to occur in ectotherms, which needs another explanation. The deb theory
offers an alternative explanation for the phenomenon because of the relationship between
food availability and ultimate body volume. Temperature alone works in the opposite di-
rection within this context. If body temperature has to be maintained at some fixed level,
individuals in the Arctic are expected to be smaller while living at the same food density,
because they have to spend more energy on heating, which reduces their growth potential.
The effect will, however, be small since insulation tends to be better towards the poles.

It is interesting to note that species with distribution areas large enough to cover
climatic gradients generally tend to split up in isolated races or even subspecies. The dif-
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Figure 4.10: The brown kiwi Apteryx australis in subtropical north of New Zealand is heavier
than in the temperate south. The numbers give ranges of weights of male and female in grams,
calculated from the length of the tarsus using a shape coefficient of dm= 1.817 g1/3 cm−1. Data
from Fuller [239]. A similar gradient applies to the platypus Ornithorhynchus anatinus in Aus-
tralia. The numbers give the mean weights of male and female in grams as given by Strahan
[693]. The deb theory relates adult weights to food availability and so to the effect of seasons.
This interpretation is supported by the observation that platypus weights increase with seasonal
differences at the same latitude in New South Wales. The seasons at the three indicated sites are
affected by the Great Dividing Range in combination with the easterly winds.

ferences in ultimate size have usually become genetically fixed. This is typical for ‘demand’
systems where regulation mechanisms set fluxes at predefined values which are obtained
through adaptation. Within the deb theory this means that the parameter values are
under genetic control and that the minimum food level at which survival is possible is well
above the level required for maintenance. The matter will be taken up again on {238}.

4.3 Reconstruction problems

The deb model is simple enough to allow reconstructions of body temperature and/or
food intake from growth observations and knowledge of some energy parameters. This
subsection and the following one illustrate how this can be done. The spin off is a warning
against jumping to conclusions in cases where essential information for the interpretation
of data is lacking.
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4.3.1 Temperature reconstruction

The body temperature of endotherms can be well above the environment temperature.
Cooling can complicate model testing and/or parameter estimation. Altricial birds pro-
vide an excellent case to illustrate the problem of the energy interpretation of growth
measurements in the case of an unknown body temperature. This section offers partial
solutions to the interpretation problem.

Birds usually become endothermic around hatching; precocial species usually make
the transition just before hatching, and altricial ones some days after. The ability to
keep the body temperature at some fixed level is far from perfect at the start, so the body
temperature depends on that of the environment and the behaviour of the parent(s) during
that period. Unless insulation is perfect, the parents cannot heat the egg to their own body
temperature. There will be a few degrees difference, but this is still a high temperature,
which means that the metabolic rate of the embryo is high. So it produces an increasing
amount of heat as a byproduct of its general metabolism before the start of endothermic
heating.

This process of pre-endothermic heating can be described by: d
dt
Tb = dT Ċ−k̇be(Tb−Te),

where Tb is the body temperature of the embryo, Te the temperature of the environment,
dT the heat generated per unit of utilized energy and k̇be the heat flux from the egg to
the environment. The latter is here taken to be independent of the body size of the
embryo, because the contents of the egg are assumed to be homogeneous with respect to
the temperature. (The Brunnich’s guillemot seems to need a 40 ◦C temperature difference
between one side of the egg and the other to develop [591].) Energy conductance and the
maintenance rate coefficient depend on temperature according to the Arrhenius relationship
with an Arrhenius temperature of 10000 K. Figure 4.11 illustrates the development of the
lovebird Agapornis, with changing body temperature. The curves are hardly different
compared with a constant temperature, but the parameter values differ substantially. The
magnitude of the predicted temperature rise depends strongly on the parameter values
chosen. The information contained in the data of figure 4.11 did not allow a reliable
estimation of all parameters; the temperature difference of 4 ◦C is arbitrary, but not
unrealistic.

It is interesting that the red-headed lovebird, A. pullaria from Africa, and at least 11
other parrot species in South America, Australia and New Guinea breed in termite nests,
where they profit from the heat generated by the termites. Breeding Golden-shouldered
parrots, Psephotus chrysopterygius, in captivity failed frequently, until it became known
that one has to heat the nest to 33 ◦C for some days before hatching and for two weeks
after.

The significance of this exercise is the following: the least squares fitted curves remain
almost exactly the same for a constant temperature and a changing one, but the parameter
estimates for e.g. energy conductance differ considerably. It follows that these data are not
suitable for estimating energy parameters unless the temperature is known as a function
of time. This holds specially for altricial birds because they hatch too early to show the
reduction in respiration rate that gives valuable information about parameter values. The
few studies on bird development that include temperature measurements indicate that
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Figure 4.11: Embryo weight and respiration ontogeny in the parrot Agapornis personata. Data
from Bucher [107]. The curves are deb model predictions accounting for a temperature increase
of 4 ◦C during development; see text. The temporary respiration increase at day 23 relates to
hatching. It is not part of the model.

the temperature change during incubation is not negligibly small. Drent [182] found an
increase from 37.6 to 39 ◦C in the precocial herring gull Larus argentatus.

The change in body temperature also causes deviations from the simplest formulation
of the deb model after hatching in some species. My conjecture is that they are the
main cause of the (empirical) logistic growth curve fitting better than the von Bertalanffy
curve for birds living at food abundance; as body temperature is measured in only a few
exceptional studies, it makes sense to study the inverse argument. Given the observed
growth pattern and the deb model, can the body temperature ontogeny be recovered at
abundant food?

At abundant food, (3.13) reduces to d
dt
l = γ̇(1 − l), where the von Bertalanffy growth

rate γ̇ = ṁ
3

g
1+g

is now considered not as a constant but as a function of time, since the
temperature and thus the maintenance rate coefficient ṁ change. Integration gives

l(t) = 1 − (1 − l(0)) exp
{

−
∫ t

0
γ̇(t1) dt1

}

with (4.22)

γ̇(t) = γ̇∞ exp{TA(T−1
∞ − Tb(t)

−1)} (4.23)

where γ̇∞ is the ultimate growth rate when the body temperature is kept constant at
some target temperature in the range 39 – 41 ◦C, or T∞ = 312 (non-passerines) or 314 K
(passerine birds). Body temperature is thus given by

Tb(t) =

(

1

T∞
− 1

TA
ln

d
dt
l

γ̇∞(1 − l)

)−1

(4.24)

Given an observed growth and size pattern, this equation tells us how to reconstruct the
temperature. The reconstruction of body temperature, therefore, rests on the assumption
of (time inhomogeneous) von Bertalanffy growth (4.22) and an empirical description of the
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observed growth pattern. It is a problem, however, that both the growth rate and the length
difference with its asymptote 1 vanish, which means that their ratio becomes undetermined
if inevitable scatter is present. General purpose functions such as polynomials or splines
to describe size-at-age are not suitable in this case.

A useful choice for an empirical description of growth is

d

dt
l =

γ̇∞
k

(l−k − 1)l or (4.25)

l(t) = (1 − (1 − l(0)k) exp{−γ̇∞t})1/k (4.26)

because it covers both von Bertalanffy growth (shape parameter k = 1), and the frequently
applied logistic growth (k = −3) and all shapes in between. For the shape parameter k = 0,
the well known Gompertz curve arises: l(t) = l(0)exp{−γ̇t}. Nelder [504] called this model
the generalized logistic equation. It was originally proposed by Richards [592] to describe
plant growth. The graph of volume as a function of age is skewly sigmoid with an inflection
point at V/V∞ = (1 − k/3)3/k for k ≤ 3. Substitution of (4.25) into (4.24) gives

Tb(t) =

(

1

T∞
− 1

TA
ln

1

k

1 − l−k

1 − l−1

)−1

(4.27)

Note that if growth is of the von Bertalanffy type, so k = 1, this reconstruction amounts to
Tb(t) = T∞, which does not come as a surprise. This interpretation of growth data implies
that the growth parameters of the logistic, Gompertz and von Bertalanffy growth curves
are comparable in their interpretation and refer to the target body temperature. The deb

theory gives the physiological backgrounds. Figure 4.12 gives examples of reconstructions,
which indicate that the body temperature at hatching can be some 10 ◦C below the target
and it increases almost as long as growth lasts. The reconstruction method has been
tested on several data sets where the body temperature has been measured during growth
[789]. It has been found to be quite accurate given the scatter in the temperature data.
Figure 4.12 gives one example. Although the Arrhenius temperature can be estimated
from combined weight/temperature data, its value proved to be poorly defined.

An important conclusion from this exercise is that deviations from von Bertalanffy
growth at food abundance in birds can be explained by changes in body temperature.

4.3.2 Food intake reconstruction

Many data sets on growth in the literature do not provide adequate information about
food intake. Sometimes it is really difficult to gain access to this type of information
experimentally. The blue mussel Mytilus edulis filters what is called ‘particulate organic
matter’ (POM). Apart from the problem of monitoring the POM concentration relevant
to a particular individual, its characterization in terms of nutritional value is problematic.
The relative abundances of inert matter, bacteria and algae change continuously. In the
search for useful characterizations, it can be helpful to invert the argument: given an
observed size and temperature pattern can the assimilation energy be reconstructed in
order to relate it to measurements of POM? The practical gain of such a reconstruction is
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Great skua, Catharacta skua

γ̇∞ = 0.111(0.009) d−1, k = −1.159(0.326)
Long-tailed skua, Stercorarius longicaudus

γ̇∞ = 0.267(0.035) d−1, k = −2.538(0.804)

Manx shearwater, Puffinus puffinus

γ̇∞ = 0.114(0.008) d−1, k = −2.483(0.467)
Guillemot, Uria aalge

γ̇∞ = 0.125(0.037) d−1, k = −0.883(1.707)

Figure 4.12: The empirical, generalized, logistic growth curves have been fitted to measured
data for some birds. The von Bertalanffy growth rate γ̇∞ at the ultimate body temperature and
shape parameter k are given. On the basis of these fits the body temperature was reconstructed,
on the assumption that T∞ = 312 K and TA = 10000 K. The shaded areas around the body
temperature curves indicate the 95% confidence interval based on the marginal distribution for k.
The reconstruction method is tested on the guillemot data (lower right figure) where measured
body temperatures were available. The bars indicate the standard deviation. Both temperature
parameters, T∞ = 312.3(2.32) K and TA = 8225(16300) K, have been estimated from the com-
bined weight/temperature data. Data from Furness, de Korte in [241], Thompson in [99] and
[449] respectively.
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Figure 4.13: The reconstruc-
tion of the scaled functional re-
sponse since the first of August
from mean length-time data for four
length classes of the mussel Mytilus

edulis as reported by Kautsky [374]
(upper four curves). The recon-
struction (the curve in the middle
with two peaks) is based on a cu-
bic spline description of the mea-
sured temperature (lower curve and
capricious line) and the parameter
values Lm = 100 mm, g = 0.13,
ṁ15 = 0.03 d−1 and TA = 7600 K.

in the use of correlation measures to determine the nutrition value of bacteria, alga, etc.
Since the correlation coefficient is a linear measure, a direct correlation between bacteria
numbers and mussel growth, for instance, only has limited value because assimilation and
growth are related in a complex way, whereas bacteria numbers and assimilation are related
linearly.

Kautsky [374] measured mussels from 4 size classes kept individually in cages (diameter
10 cm) at a depth of 15 m in the Baltic at 7 ◦/◦◦. Suppose that (the mean) food density
changes slowly enough to allow an approximation of the energy reserves with e = f . The
growth equation (3.13) then reduces to

d

dt
l =

(f(t) − l)+

3(f(t) + g)
gṁ15(T (t) > T0) exp

{

TA

(

1

288
− 1

T (t)

)}

(4.28)

where ṁ15 is the maintenance rate coefficient at the chosen reference temperature of 15 ◦C
= 288 K and T0 is at the lower end of the tolerance range. The next step is to choose cubic
spline functions to describe the observed temperature pattern T (t) and the unobserved
scaled functional response f(t). The reconstruction of f(t) from length-time data then
amounts to the estimation of the knot values of the spline at chosen time points, given
realistic choices for the growth parameters. Figure 4.13 shows that the simultaneous least
squares fit of the numerically integrated growth description (4.28) is acceptable in view of
the scatter in the length data (not shown), which increases in time in the upper size class
in the original data. The scaled functional response (i.e. the hyperbolically transformed
food abundance in terms of its nutritional value) appears to follow the temperature cycle
during the year. Such a reconstructed food abundance can be correlated with POM and
chlorophyll measurements to evaluate their significance for the mussel.

If food intake changes too fast to approximate the reserve density with its equilibrium
value, the reserve density should be reconstructed as well. Such a reconstruction will be
illustrated with the penguin as an example. Figure 4.14 shows that von Bertalanffy growth
makes sense for penguins, which indicates that body temperature is constant and food is
abundant. The deviation at the end of the growth period probably relates to the refusal
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Figure 4.14: Weight ontogeny of the small adelie penguin Pygoscelis adeliae (left) and the large
emperor penguin Aptenodytes forsteri (right). Data from Taylor [705] and Stonehouse [685].
The adelie data follow the fitted von Bertalanffy growth curve, which suggests food abundance
during the nursery period. The cubic spline through the emperor data is used to reconstruct
food intake fV 2/3 = İ/{İm}. [dwv] = 0.3 g cm−3, [dwe] = 0.7 g cm−3, g = 0.1, v̇ = 0.6 cm d−1,
lh = 0.01, Vm = 6000 cm3, e0 = 0.6.

of the parents to feed the chicks in order to motivate them to enter the sea. The small
bodied adelie penguin manages to synchronize its breeding cycle with the local peaks in
plankton density in such a way that it is able to offer the chicks abundant food. Typically
there are two such peaks a year in northern and southern cold and temperate seas. The
plankton density drops sharply when the chicks are just ready to migrate to better places.
This means that a larger species, such as the king penguin, is not able to offer its chicks
this continuous wealth of food, because its chicks require a longer growth period (see the
chapter on comparison of species for an explanation, {217}). So they have to face the bleak
period between plankton peaks. (Food for king penguins, squid and fish, follows plankton
in abundance.) The parents do not synchronize their breeding season with the calendar;
they follow a 14 to 17 month breeding cycle [658]. The largest living penguin, the emperor
penguin, has also to use both plankton peaks for one brood, which implies a structural
deviation from a simple von Bertalanffy growth curve.

Given weight-time data, food intake can be reconstructed on the basis of the deb

theory. The relationship between (wet) weights, volumes and energy reserves according to
(2.9) for juveniles (where EṘ = 0) is [Ww] = [dwv] + [dwe]e and is thus not considered to
be a constant. Growth according to (3.12) and (3.7) is given by

d

dt
Ww = [Ww]

d

dt
V + [dwe]V

d

dt
e (4.29)

= v̇V 2/3

(

[Ww]

e+ g

(

e− lh − (V/Vm)1/3
)

+ [dwe](f − e)

)

(4.30)
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Solution of f and substitution of (3.7) gives

f = e+
[Ww]2/3

v̇[dwe]W
2/3
w

d

dt
Ww − [Ww]/[dwe]

g + e



e− lh −
(

Ww

Vm[Ww]

)1/3


 (4.31)

d

dt
e =

[Ww]/[dwe]

Ww

d

dt
Ww − v̇

[Ww]/[dwe]

g + e



(e− lh)

(

[Ww]

Ww

)1/3

− V −1/3
m



 (4.32)

The steps to reconstruct feeding are as follows: first fit a cubic spline through the weight
data, which gives Ww(t) and so d

dt
Ww(t). Use realistic values for e(0), [dwv], [dwe], g, Vm, lh

and v̇ and recover e(t) through numerical integration of (4.32) and then f(t) by substitution.
Figure 4.14 gives an example. The peaks in the reconstruction will probably be much
sharper if stomach contents of the chick are taken into account. This reconstruction can
be useful in cases where feeding behaviour that is hard to observe directly is studied and
knowledge concerning energetics from captive specimens is available. The significance of
this example is to show that the deb theory hardly poses constraints for growth curves in
general. The simple von Bertalanffy growth curve only emerges under the conditions of
constant food density and temperature.

4.4 Special case studies

The purpose of this section is to show that some biological details, that seem to falsify the
deb theory at first sight, can still be understood within the context of the theory; However,
they require careful analysis of data. Blind application will soon lead to inconsistencies
between theory and data. This section focuses on the interpretation of data.

4.4.1 Diffusion limitation

The purpose of this subsection is to show why small deviations from the hyperbolic func-
tional response can be expected under certain circumstances, and how the functional re-
sponse should be corrected.

Any submerged body in free suspension has a stagnant water mantle of a thickness that
depends on the roughness of its surface, its electrical properties and on the turbulence in
the water. The uptake of nutrients by cells that are as small as that of a bacterium can be
limited by the diffusion process through this mantle [396]. Logan [436,437] related this
limitation to the flocculation behaviour of bacteria at low food densities. The existence of a
diffusion limited boundary layer is structural in Gram-negative bacteria such as Escherichia

[394], which have a periplasmic space between an inner and outer membrane. The rate of
photosynthesis of aquatic plants [668] and algae [600] can also be limited by diffusion of
CO2 and HCO−

3 through the stagnant water mantle that surrounds them. Since diffusion
limitation affects the functional response, it is illustrative to analyze the deviations in a
bit more detail. For this purpose I will reformulate some results that originate from Best
[68] and Hill and Whittingham [319] in 1955.
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Suppose that the substrate density in the environment is constant and that it can be
considered as well mixed beyond a distance r1 from the centre of gravity of a spherical cell
of radius r0. Let X1 denote the substrate density in the well mixed environment and X0

that at the cell surface. The aim is now to evaluate uptake in terms of substrate density
in the environment, given a model for substrate uptake at the cell surface.

The build-up of the concentration gradient from the cell surface is fast compared with
other processes, such as growth; the gradient is here assumed to be stationary. The mass
flux over a sphere with radius r according to Fick’s diffusion law is proportional to the
substrate density difference in the adjacent inner and outer imaginary tunics (i.e. 3D-
annulus). Together with the conservation law for mass this leads to what is known as

the Laplace’s equation d
dr

(

r2 d
dr
X
)

= 0. The boundary condition X(r1) = X1, determines

the solution X(r) = X1 − (X1 − X0)
1−r1/r
1−r1/r0 . The mass flux at r0 is according to Fick’s

law 4πr2
0Ḋ

d
dr
X(r0), where Ḋ is the diffusivity. It must be equal to the uptake rate İ =

İmX0/(K + X0). This gives the relationship between the density at the cell surface and
the density in the environment as a function of the thickness of the mantle

X0 =
1

2
Xc +

1

2

√

X2
c + 4X1K (4.33)

with Xc ≡ X1 −K− İm
4πḊr0

(

1 − r0
r1

)

. Since the cell can only ‘observe’ the substrate density
in its immediate surroundings, X0 must be taken as the argument for the hyperbolic
functional response and not X1. If X1 ≪ K, X0 is about proportional to X1, but for large
X1, (small) deviations from hyperbolic responses are to be expected. Note that for large
diffusivities X0 → X1, as might be expected. For relatively thick water mantles, especially,
it is not important that the cell is spherical. The approximate relationship V ≃ r3

0π4/3
will be appropriate for most rods.

For Gram-negative bacteria, which have an inactive outer membrane with a limited
permeability for substrate transport, the relationship between the substrate density at the
active inner membrane and that in the well-mixed environment is a bit more complicated.
On the assumption that the substrate flux through the outer membrane is proportional to
the difference of substrate densities on either side of the outer membrane, the permeability
affects the last factor in the expression for Xc. The substrate density Xc in (4.33) is

given by Xc ≡ X1 −K − İm
4πḊr0

(

1 − r0
r1

+ r0Ḋ
r22Ṗ

)

, where r2 is the radius at which the outer

membrane occurs and Ṗ is the permeability of that membrane (dimension length.time−1).
The periplasmic space is typically some 20–40% of the cell volume [503], so that r0/r2 ≃
0.89. If r2Ṗ ≫ Ḋ, the resistance of the outer membrane for substrate transport is negligible.
Figure 4.15 illustrates how substrate density decreases towards the inner membrane.

Increasing water turbulence and active motion by flagellas will reduce the thickness
of the water mantle. Its effect on mass transfer is usually expressed by the Sherwood
number, which is defined as the ratio of mass fluxes with and without turbulence. If
X1 ≪ K, the Sherwood number is independent of substrate density, and amounts to
(

1 + İm
4πḊKr0

) (

1 + İm(1−r0/r1)

4πḊKr0

)−1
. For larger values of X1, the Sherwood number becomes

dependent on substrate density and increasing turbulence will less easily increase mass
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Figure 4.15: Substrate density as a function of
the distance from the cell centre for a Gram-
negative bacterium. The inner membrane is at
distance r0, the outer membrane at distance r2

and beyond distance r1, the medium is com-
pletely mixed. Four different choices for sub-
strate densities X1 in the medium have been
made, to illustrate that the higher X1, the more
the substrate density at the inner membrane X0

is reduced.

Figure 4.16: Stereo view of the substrate uptake rate of a cell in suspension relative to that in
completely stagnant water, as a function of the substrate density in the medium (x-axis) and the
thickness of the water mantle (y-axis). Parameter choice: İm = 4πḊKr0

transfer, because uptake will be rate limiting; see figure 4.16. This probably defines the
conditions for producing sticky polysaccharides which result in the development of films
of bacteria on hard substrates or of flocs. If a cell attaches itself, it looses potentially
useful surface area for uptake, but increases mass transfer via convection. Although the
quantitative details for the optimization of uptake can be rather complex, the qualitative
implication that cells usually occur in free suspension when substrate densities are high,
and in flocs when they are low can be understood from Sherwood numbers.

Since diffusivity is proportional to (absolute) temperature, see e.g. [24], and uptake
rates tend to follow the Arrhenius relationship, {44}, the temperature dependence of dif-
fusion limited uptake is likely to depend on temperature in a more complex way.

It is conceivable that slowly moving or sessile animals exhaust their immediate sur-
roundings in a similar way to that described here for bacteria in suspension, if the transport
of food in the environment is sufficiently slow. Trapping devices suffer from this problem
too [355]. Patterson [534] showed by changing the flow rate that the physical state of
the boundary layer surrounding the symbiosis of coral and algae directly affects nutrient
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transfer. The shape, size and polyp-wall thickness of scleractinian corals could be related to
diffusion limitation of nutrients. Some processes of transport can be described accurately
by diffusion equations, although the physical mechanism may be different [517,663]. For
K ≪ İm(4πḊr0)

−1, the functional response approaches Holling’s type I [332], also known
as Blackman’s response [72], where ingestion rate is just proportional to food density up
to some maximum. This response is at the root of the concept of limiting factors, which
still plays an important role in physiology. This exercise thus shows that the two types of
Holling’s functional response are related and mixtures are likely to be encountered.

4.4.2 Growth of 0D- and 2D-isomorphs

As mentioned in the subsection on changing shapes on {31}, 2D-isomorphs grow in diam-
eter, not in length, which leads to the shape correction function M(V ) = (Vd/V )1/6. The
growth equation for 2D-isomorphs can be obtained from (3.12) by multiplying v̇ and Vm
by M(V ), because they contain the surface area dependent parameter {Ȧm}, and putting
Vh = 0, assuming that they are ectothermic. This leads to

d

dt
V =

v̇

e+ g

(

(Vd/V )1/6eV 2/3 − V −1/3
m V

)

(4.34)

d

dt
l = γ̇(e

√

ld/l − l) (4.35)

where γ̇ = ṁg
3(e+g)

represents the von Bertalanffy growth rate and l = (V/Vm)1/3 the scaled

(volumetric) length, as before. If substrate density is constant for a long enough time, so
e = f , scaled length is given by

l(t) =
(

f
√

ld −
(

f
√

ld − l
3/2
b

)

exp{−tγ̇3/2}
)2/3

(4.36)

t(l) =
2

3γ̇
ln
f
√
ld − l

3/2
b

f
√
ld − l3/2

(4.37)

where lb is the scaled length at birth, i.e. just after division at t = 0. Division into two
equal daughters implies that ld = 21/3lb. Figure 4.17 shows that the growth curves are
more convex than the von Bertalanffy one, which makes it easier to test whether uptake
is coupled to surface area in unicellulars as well. The expected growth curves for rods are
so close to exponential that this test is hardly feasible for rods. Experimental data to test
this idea are not available, but I hope that this account inspires someone to have a look.

The shape correction function for 0D-isomorphs, such as biofilms, is M(V ) = (Vd/V )2/3,
so that the growth equation becomes

d

dt
V =

v̇

e+ g
(eV

2/3
d − V −1/3

m V ) (4.38)

d

dt
l3 = γ̇(el2d − l3) (4.39)
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Figure 4.17: Expected growth curves for 0D-
and 2D-isomorphs compared with those for 3D-
isomorphs at constant substrate densities. Pa-
rameters: lb = 0.1, f = 0.7 and 0.9 and ld =
lb2

1/3

At constant substrate or food density, where e = f , the growth curve is

l(t) =
(

fl2d − (fl2d − l3b ) exp{−tγ̇}
)1/3

(4.40)

t(l) = γ̇−1 ln
fl2d − l3b
fl2d − l3

(4.41)

Crusts

Crusts, i.e. biofilms of limited extent that grow on hard surfaces, are mixtures of 0D-
isomorphs in the center and 1D-isomorphs in the periphery where the new surface is cov-
ered. Bacterial colonies on an agar plate, conceived as super-organisms, are among crusts.
When crusts grow, an increasing proportion of the biomass behaves as a 0D-isomorph.
With an extra assumption about the transfer of biomass from one mode of growth to the
other, the growth of the crust on a plate is determined and can be worked out as follows
for constant substrate density.

Suppose that biomass in the outer annulus of diameter Lǫ of the circular crust is growing
exponentially in an outward direction, while it is building up a layer of thickness Lǫ. This
biomass thus behaves as a 1D-isomorph. All other biomass is growing as a 0D-isomorph.
When the crust has diameter Lr(t), the volume of the 1D-isomorph is

π

4
Lǫ(L

2
r(t) − (Lr(t) − Lǫ)

2) =
π

4
L2
ǫ(2Lr(t) − Lǫ)

In a period dt, the 1D-isomorph increases by γ̇f dt times this volume, see (refeqn:Vf),
which must be equal to the volume π

4
Lǫ(L

2
r(t + dt) − L2

r(t)), if the layer has thickness Lǫ.
Since ν̇ = ṁg/ld, the volume-specific growth rate of a 1D-isomorph relates to the von
Bertalanffy growth rate as γ̇f = 3γ̇(f/ld − 1). This leads to d

dt
Lr = µ̇Lǫ(1−Lǫ/2Lr), from

which it follows that the diameter of the crust is growing linearly in time for Lǫ ≪ Lr.
This linear growth in diameter has been observed experimentally by Fawcett [212], and
the linear growth model originates from Emerson [201] in 1950 according to Fredricson et

al. [232]. Figure 4.18 shows that this linear growth applies to lichen growth on moraines.
Richardson [594] discusses the value of gravestones for the study of lichen growth, because
of the reliable dates. Lichen growth rates are characteristic for the species, so that the
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Figure 4.18: The lichens As-

picilia cinerea (above) and Rhi-

zocarpon geographicum (below)
grow almost linearly in a period
of more than three centuries on
moraine detritus of known age
in the European Alps. Data
from Richarson [594]. Linear
growth is to be expected from the
deb model, when such lichens are
conceived as dynamic mixtures of
0D- and 1D-isomorphs.

diameter distribution of the circular patches can be translated into arrival times, which
can then be linked to environmental factors, for instance.

If substrate transport in the vertical direction on the plate is sufficient to cover all
maintenance costs, and transport in the horizontal direction is small, the growth rate of
the 0D-isomorph on top of an annulus of surface area dA is

d

dt
V =

f{Ȧm} dA− [Ṁ ]V

[G] + [Em]f

The denominator stands for the volume-specific costs for structural biomass and reserves.
Division by the surface area of the annulus gives the change in height Lh

d

dt
Lh =

f{Ȧm} − [Ṁ ]Lh
[G] + [Em]f

= 3γ̇(fV 1/3
m − Lh) or

d

dt
lh = 3γ̇(f − lh)

with the scaled height lh ≡ LhV
−1/3
m . The initial growth rate in scaled height is 3γ̇(f − lǫ).

The parameter lǫ ≡ LǫV
−1/3
m can be eliminated, on the assumption that the growth rate in

the outward direction equals the initial growth rate in the vertical direction, which gives
lǫ = 2ld for ld ≪ f . For ld ≪ lr with lr ≡ LrV

−1/3
m , the end result amounts to

lh(t, lr) = f − (f − 2ld) exp

{

lr/2

f − ld
− 3γ̇t

}

(4.42)

The scaled height of the crust is thus growing asymptotically to f , so that the total volume
increases as πf(ldµ̇t)

2. Different crust shapes can be obtained by accounting for horizontal
transport of biomass and diffusion limitation of food transport to the crust.

Growth in thickness of a biofilm on a plane, which behaves as a 0D-isomorph, is thus
similar to that of a spherical biofilm on a small core in suspension, which behaves as a
3D-isomorph. Films are growing in a von Bertalanffy way in both situations, if growth
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Figure 4.19: The larvacean
Oikopleura grows isomorphi-
cally; during its short life it
accumulates reproductive ma-
terial at the posterior end of
the trunk. The energy in-
terpretation of data on total
trunk lengths should take ac-
count of this.

via settling of suspended cells on the film is not important. Note that if maintenance is
small, so that asymptotic depth of the film is large, increase in diameter is linear with time,
so that volume increases as time3, as has been found for foetuses in (3.21) by a different
reason. This mode of growth is called the ‘cube root’ phase by Emerson [201], who found
it applicable to submerged mycelia of the fungus Neurospora.

The spatial expansion of geographical distribution areas of species, such as the musk
rat in Europe, and of infectious diseases, cf. [82,83,300], closely resembles that of crusts.
Although these population phenomena differ in many respects from the growth of crusts as
(super) individuals, the reason why the expansion proceeds at a constant rate is basically
the same from an abstract point of view: material in the border area grows exponentially
and the inner area hardly contributes to the expansion.

4.4.3 Reproduction measurement from length data

Larvaceans of the genus Oikopleura are an important component of the zooplankton of all
seas and oceans and have an impact as algal grazers comparable with that of copepods.
Oikopleura sports an heroic way of reproduction which leads to instant death. During its
week-long life at 20 ◦C and abundant food, it accumulates energy for reproduction which is
deposited at the posterior end of the trunk; see figure 4.19. Except for this accumulation of
material for reproduction, the animal remains isomorphic. The total length of the trunk,
Lt, including the gonads, can be partitioned into the true trunk length, L, and the length
of the gonads, LR. Since the reproduction material is deposited on a surface area of the
trunk, the length of the gonads is about proportional to the accumulated investment of
energy into reproduction divided by the squared true trunk length. Fenaux and Gorsky
[215] provided data where both the true and the total trunk length have been measured
under laboratory conditions. This gives the possibility of testing the consequences of the
deb theory for reproduction.

Let eṘ(t1, t2) denote the cumulative investment of energy into reproduction between t1



148 4. Analysis of the DEB model

Figure 4.20: The total trunk length, Lt (2 and upper curve, left), the true trunk length, L (3
and lower curve, left) and the dry weight (right) for Oikopleura longicauda at 20 ◦C. Data from
Fenaux and Gorsky [215]. The deb-based curves account for the contribution of the cumulated
energy, allocated to reproduction, to total trunk length and to dry weight. The parameter
estimates (and standard deviations) are Lm= 822 (37) µm, lb = lp= 0.157 (0.006), ṁ= 1.64
(0.14) d−1, g= 0.4, VRqR= 0.0379 (0.0083) mm3, excluding the last Lt data point. Given these
parameters, the weight data give ddl= 0.0543 (0.0131) g cm−3, ddr= 15.2 (4.20) µg, the last data
point is excluded.

and t2, as a fraction of the maximum energy reserves [Em]Vm, then (4.5) gives for adults

eṘ(t1, t2) = ṁqR

∫ t2

t1

(

g + l(t)

g + e(t)
e(t)l2(t) − l3p

)

dt (4.43)

Oikopleura has a non-feeding larval stage and starts investing in reproduction as soon as
it starts feeding, so Lb = Lp. It thus lacks a juvenile stage in the present definition,
and the larva should be classified as an embryo. The total trunk length then amounts to
Lt(t) = L(t) + VReṘ(0, t)/L2(t). The volume VR is a constant that converts the scaled
cumulative reproductive energy per squared trunk length into the contribution to the total
length. At abundant food, the true trunk length follows the von Bertalanffy growth curve
L(t) = Lm− (Lm−Lb) exp{− tgṁ

3(1+g)
} and e(t) = 1, where Lm denotes the maximum length,

i.e. Lm = V 1/3
m /dm. If the data set {ti, L(ti), Lt(ti)}ni=1 is available, the 5 parameters Lb,

Lm, ṁ, g and VRqR can be estimated in principle. Dry weight relates to trunk length
and reproductive energy as Wd(t) = [ddl]L

3(t) + ddreṘ(0, t), where the two coefficients give
the contribution of cubed trunk length and cumulative scaled reproductive energy to dry
weight. If dry weight data are available as well, there are 7 parameters to be estimated
from three curves.

Figure 4.20 gives an example. The data appear to contain too little information to
determine both ṁ and g, so either ṁ or g has to be fixed. The more or less arbitrary
choice g = 0.4 is made here. The estimates are tied by the relationship that ṁg

1+g
is almost

constant. The high value for the maintenance rate coefficient ṁ probably relates to the
investment of energy into the frequent synthesis of new filtering houses.
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4.4.4 Suicide reproduction

Like Oikopleura, salmon, eel and most cephalopods die soon after reproduction. The distri-
bution of this type of behaviour follows an odd pattern in the animal kingdom. Tarantula
males die after first reproduction, but the females reproduce frequently and can survive for
20 years. Death does not follow the Weibull-type aging pattern and probably has a different
mechanism. Because the (theoretical) asymptotic size is not approached in cephalopods,
they also seem to follow a different growth pattern. I believe, however, that early death,
not the energetics, makes them different. The arguments are as follows.

The surface area in von Bertalanffy growth is almost linear in time across a fairly broad
range of surface areas not close to zero or the asymptote. This has led Berg and Ljunggren
[56] to propose an exactly linear growth of the surface area for yeast until a certain threshold
is reached; see figure 1.1. Starting from an infinitesimally small size, which is realistic for
most cephalopods, the volume increases with cubed time: V (t) = ( v̇ft

3(f+g)
)3. Over a small

trajectory of time, this closely resembles exponential growth, as has been fitted by Wells
[761], for instance.

Squids show a slight decrease in growth rate towards the end of their lives (2 or perhaps
3 years [697]), just enough to indicate the asymptotic size, which happens to be very
different for female and male in Loligo pealei. It will be explained in the section of primary
scaling relationships, {218}, that the costs for growth [G] in the von Bertalanffy growth

rate γ̇ = [Ṁ ]/3
[G]+κ[Em]f

hardly contributes in large bodied species because it is independent

of asymptotic length, while maximum energy density is linear therein. So γ̇ ≃ [Ṁ ]
3κ[Em]f

.

The product γ̇V 1/3
∞ ≃ v̇/3 should then be independent of ultimate size. On the basis of

data provided by Summers [697], the product of ultimate length and the von Bertalanffy
growth rate was estimated to be 0.76 and 0.77 dm a−1 for females and males respectively.
The equality of these products supports the interpretation in terms of the deb model.
The fact that the squids die well before approaching the asymptotic size only complicates
parameter estimation.

A large (theoretical) ultimate volume goes with a large maximum growth rate. If the
maximum growth rates of different species are compared on the basis of size at death,
the octopus Octopus cyana grows incredibly quickly, as argued by Wells [761]. Assuming
that the maximum growth rate is normal, however, a (theoretical) ultimate volume can
be inferred by equating γ̇V 1/3

∞ for the octopus to that for the squid, after correction of
temperature differences. Summers did not indicate the temperature appropriate for the
squid data, but on the assumption that it has oscillated between 4 and 17 ◦C and that
TA = 12500 K, the growth rate has to be multiplied by 9.3 to arrive at the temperature that
Wells used, i.e. 25.6 ◦C. The data of Wells indicate a maximum growth rate of 4

9
γ̇Vm = 25.5

dm3 a−1. The ultimate volume is thus
(

9×25
4×9.3×0.77

)3/2
= 22 dm3 for the octopus. This is

three times the volume at death.
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Figure 4.21: Length-at-age of man, de
Montbeillard’s son, in the years 1759-
1777. Data from Cameron [120]. The
curve is the von Bertalanffy one with
an instantaneous change of the ultimate
length from 177(4.6) cm to 201(8.2) cm
and of the von Bertalanffy growth rate
from 0.123(0.0093) a−1 to 0.285(0.094)
a−1 at the age of 13(0.215) a.

4.4.5 Changing parameter values

As discussed in the sections on diet and starvation, {60,128}, some species can change
energy allocation through κ. Two further examples are given here.

Changes at puberty

Growth curves suggest that some species, e.g. humans, change the partition coefficient κ
and the maximum surface area-specific assimilation rate {Ȧm} at puberty in situations
of food abundance; see figure 4.21. These changes amount to changes in the ultimate
length and the von Bertalanffy growth rates via Lm = (κ{Ȧm}/[Ṁ ] − V

1/3
h )/dm and γ̇ =

[Ṁ ](3[G]+κ[Em])−1. Suppose that the volume-specific maintenance costs [Ṁ ], the volume-
specific growth costs [G], and the heating volume Vh do not change at puberty. Table 3.1
suggests that ṁ ≡ [Ṁ ]/[G] will be about 0.1 d−1 at 37 ◦C. If a man of 180 cm weighs
75 kg and if half this weight is structural biomass, the shape coefficient is approximately
dm = 0.19. For V

1/3
h is 10 cm, the observed changes in ultimate length and the von

Bertalanffy growth rate correspond with a change by a factor 2.8 for {Ȧm} and by a factor
0.426 for κ. This analysis can only be provisional. Deviations from strict isomorphism
may affect estimates.

Changes in response to the photoperiod

The allocation of energy to reproduction in the pond snail Lymnaea stagnalis depends on
the photoperiod, as has been discussed under ‘prolonged starvation’, {128}. The photope-
riod also effects the allocation under non-starvation conditions. This is obvious from the
ultimate length. Snails kept under a 12:12 cycle (MD conditions) have a larger ultimate
length than under a 16:8 cycle (LD conditions) [788]. MD snails also have a smaller von
Bertalanffy growth rate and a smaller volume at puberty, cf. {98}, but MD and LD snails
are found to have the same energy conductance of v̇ ≃ 1.55 mm d−1 at 20 ◦C. This is a
strong indication that the photoperiod only affects the partition coefficient κ.
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Figure 4.22: The wet weight develop-
ment of the male pupa of the green-veined
white butterfly Pieris napi at 17 ◦C un-
til eclosion, after having spent 4 months
at 4 ◦C. Data from Forsberg and Wik-
lund [225]. The fitted curve is Ww(t) =
130.56 − (7.16+t

0.104 )3, with weight in mg and
time in days, as is expected from the deb

theory.

4.4.6 Pupa and imago

Insects that develop pupae do not grow in the adult stage, called the imago. They are thus
much less flexible in their allocation of energy. The use of energy in the pupal stage strongly
suggests the embryo development pattern, or, more specifically, the foetal development
pattern since the energy reserves at eclosion are usually quite substantial so that there is
hardly any growth retardation due to reserve depletion. This resemblance to a development
pattern is not a coincidence because the adult tissue develops from a few tiny imaginal
disks, the structural biomass of the caterpillar being first converted to reserves for the
pupa. So the initial structural volume of the pupa is very small indeed. Since no energy
input from the environment occurs until development is completed, pupal weight decreases,
reflecting the use of energy. This can be worked out quantitatively as follows.

As discussed under foetal development, growth is given by d
dt
V = v̇V 2/3, so that, if

temperature is constant, V 1/3(t) = V
1/3
0 + v̇t, where V0 represents the structural volume of

the imaginal disks. The energy in the reserves decreases due to growth, maintenance and
development, so that

E(t) = E0 −
[G]

κ
V (t) − [Ṁ ]

κ

∫ t

0
V (t1) dt1 (4.44)

= E0 −
[G]

κ
(V

1/3
0 + v̇t)3 − [Ṁ ]

4κv̇
(V

1/3
0 + v̇t)4 +

[Ṁ ]

4κv̇
V

4/3
0 (4.45)

Together with the contribution of the structural volume, this translates via (2.9) into the
wet weight development

Ww(t) =
[dwe]E0

[Em]
− (g[dwe] − [dwv])(V

1/3
0 + v̇t)3 − [dwe]

4V
1/3
m

(

(

V
1/3
0 + v̇t

)4 − V
4/3
0

)

(4.46)

Tests against experimental data quickly show that the contribution of the third term,
which relates to maintenance losses, is too small to be noticed. So the weight-at-time
curve reduces to a three parameter one. It fits the data excellently; see figure 4.22. Just
as in foetuses, the start of the development of the pupa can be delayed, in a period known
as the diapause. The precise triggers that start development are largely unknown.
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Figure 4.23: The survival curves of the
female fruitfly Drosophila melanogaster at
25 ◦C and unlimited food. Data from
Rose [612]. The fitted survival curve is
exp{−(ṗit)

3} with ṗi = 0.0276 (0.00026)
d−1.

Imagos do not grow, so if the reserve dynamics (3.7) still applies, the catabolic rate
reduces to Ċ = {Ȧm}V 2/3e. If food density is constant or high, and aging during the
pupate state is negligible, the change in damage inducing compounds is

d

dt
[Q] = dQ[Ċ] = dQ{Ȧm}V −1/3f =

dQ
κ

[G]ṁf/l

where l ≡ (V/Vm)1/3 and V 1/3
m ≡ κ{Ȧm}/[Ṁ ] as before. Note that, in this case, Vm cannot

be interpreted as the maximum body volume and κ cannot be interpreted as a partition
coefficient. Energy derived from food is spent on (somatic plus maturity) maintenance at a
constant rate (at constant temperature) in imagos; the rest is spent on reproduction. The
loss of the interpretations for Vm and κ is not a problem; the term [Ṁ ]/κ represents the
sum of the somatic and maturity volume-specific maintenance costs, so V 1/3

m represents the
ratio of the maximum surface area-specific assimilation rate and the volume-specific total
maintenance costs.

The hazard rate and the survival probability simplify to

ḣ(t) =
t2

2
p̈aṁf/l (4.47)

Prob{a† > ap + t|a† > ap} = exp
{

−1

6
t3p̈aṁf/l

}

= exp
{

−(ṗit)
3
}

(4.48)

for ṗi ≡ (1
6
p̈aṁf/l)

1/3 having the interpretation of an aging rate. This is thus the Weibull
model with a fixed shape parameter of 3. The mean age at death as an imago then
equals Γ(1

3
)(3ṗi)

−1 ≃ 0.54(p̈aṁf/l)
−1/3, where Γ stands for the gamma function Γ(x) ≡

∫∞
0 tx−1 exp{−t} dt.

Experimental results of Rose, figure 4.23, suggest that this is realistic. He showed that
longevity can be prolonged in female fruitflies by selecting offspring from increasingly older
females for continued culture [612]. It cannot be ruled out, however, that this effect has
a simple nutrient/energy basis with little support for evolutionary theory. Selection for
digestive deficiency also results in a longer life span. Reproduction, feeding, respiration
and, therefore, aging rates must be coupled due to the conservation law for energy. This is
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Figure 4.24: The reproduction rate (left figure) of the carabid beetle Notiophilus biguttatus

feeding on a high density (stippled graphs) of springtails at 20/10 ◦C (densely stippled) and at 10
◦C (sparsely stippled) and a lower density (drawn graph) at 20/10 ◦C. The survival probability
of these cohorts since eclosion is given in the right figure. Data from Ger Ernsting, personal
communication and [205]. The survival probability functions (right) are based on the observed
reproduction rates with estimated parameter p̈ae0(qgl3)−1 = 0.63(0.02) a−2 for high food level
and high temperature, 0.374(0.007) a−2 for low food level and high temperature, 0.547(0.02)
a−2 for high food level and low temperature. The contribution of maintenance costs to aging is
determined from respiration data. A small fraction of the individuals at the high food levels died
randomly at the start of the experiments.

beautifully illustrated with experimental results from Ernsting [205], who collected carabid
beetles Notiophilus biguttatus from the field shortly after eclosion, kept them at a high and
a low level of food (springtail Orchesella cincta) at 16 h 20 ◦C:8 h 10 ◦C, and measured
survival and egg production. A third cohort was kept at 10 ◦C at a high feeding level. He
showed that the respiration rate of this 4–7 mg beetle is linear in the reproduction rate:
0.84 + 0.041Ṙ in J d−1 at 20/10 ◦C and 0.57 + 0.051Ṙ at 10 ◦C. This linear relationship is
to be expected for imagos on the basis of the above mentioned interpretations. It allows a
reconstruction of the respiration rate during the experiment from reproduction data and a
detailed description of the aging process. This is more complex than the Weibull model,
because metabolic activity was not constant, despite standardized experimental conditions.
The quantitative details are as follows.

The catabolic rate is partitioned into the maintenance and reproduction costs as

Ċ = Ṁ/κ+ ṘE0/q = (ṁ+ Ṙe0(gql
3)−1)[G]V/κ

where the scaled egg cost e0 is given in (3.26). This gives the hazard rate and survival
probability

ḣ(t) =
1

2
p̈aṁt

2 +
p̈ae0
qgl3

∫ t

0

∫ t1

0
Ṙ(t2) dt2 dt1

Prob{a† > ap + t|a† > ap} = exp

{

−1

6
p̈aṁt

3 − p̈ae0
qgl3

∫ t

0

∫ t1

0

∫ t2

0
Ṙ(t3) dt3 dt2 dt1

}
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Although e0 depends on the reserve energy density of the beetle, and so on feeding be-
haviour, variations will be negligibly small for the present purpose since food dependent
differences in egg weights have not been found. The low temperature cohort produced
slightly heavier eggs, which is consistent with the higher respiration increment per egg.
The estimation procedure is now to integrate the observed Ṙ(t) three times and to use the
result in the estimation of the two compound parameters 1

6
p̈aṁ and p̈ae0(qgl

3)−1 of the
survivor function from observations.

Figure 4.24 confirms this relationship between reproduction, and thus respiration, and
aging. The contribution of maintenance in respiration is very small and could not be
estimated from the survival data. The mentioned linear regressions of respiration data
against the reproduction rate indicates, however, that qgṁl3/e0 = 0.84/0.041 = 20.4 d−1

at 20/10 ◦C or 0.57/0.051 = 11 d−1 at 10 ◦C. This leaves just one parameter p̈ae0(qgl
3)−1 to

be estimated from each survival curve. The beetles appear to age a bit faster per produced
egg at high than at low food density. This might be due to eggs being more costly at high
food density, because of the higher reserves at hatching. Another aspect is that at high
food density, the springtails induced higher activity, and so higher respiration, by physical
contact. Moreover, the substantial variation in reproduction rate at high food density
suggests that the beetles had problems with the conversion of energy, that is allocated to
reproduction, to eggs, which led to an increase in q and a higher respiration per realized
egg. Note that these variations in reproduction rate are hardly visible in the survival curve,
which is due to triple integration. The transfer from the field to the laboratory seemed to
induce early death for a few individuals at the high food levels. This is not related to the
aging process but, possibly, to the difference from field conditions.

The Weibull model for aging with a fixed shape parameter of 3 should not only apply to
holometabolic insects, but to all ectotherms with a short growth period relative to the life
span. Gatto [245] found, for instance, a perfect fit for the bdelloid rotifer Philodina roseola

where the growth period is about 1/7-th of the life span. Notice that constant temperature
and food density are still necessary conditions for obtaining the Weibull model.

The presented tests on pupal growth and survival of the imago support the applicability
of the deb theory to holometabolic insects, if some elementary facts concerning their life
history are taken into account. This suggests new interpretations for experimental results.

4.4.7 Food induced aging acceleration

Some data sets, such as that of Robertson and Salt on the rotifer Asplanchna girodi feeding
on the ciliate Paramecium tetraurelia [606] and figure 4.25, indicate that the hazard
rate increases sharply with food density. Although the shapes of the hazard curves are
well described by (3.56), this equation does not predict the extreme sensitivity to food
density. This particular data set shows that aging acceleration is linear in the food density,
which suggets that something that is proportional to food density affects the build-up of
damage inducing compounds or the transformation of these compounds into damage. One
possibility is nitrite derived from the lettuce used to culture the ciliates; nitrite is known
for its mutagenic capacity [328], cf. {284}. This argument can only be speculative, but
it might not be unrealistic because if the medium in which the ciliates have been cultured
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Figure 4.25: The hazard rates for the rotifer Asplanchna girodi for different food levels: 20
(3) 30 (△) 60 (2) 120 (▽) and 240 (1) paramecia rotifer−1 d−1 at 20 ◦C. Data from Robertson
and Salt [606]. The one-parameter hazard curves were based on the scaled food densities as
estimated from the ultimate volumes (3, right), which gave f= 0.877, 0.915, 0.955, 0.977, 0.988.
The resulting five aging accelerations are plotted in the right figure (△). They proved to depend
linearly on food density, with an intercept that is consistent with the aging acceleration found
for daphnids.

contained such a factor, it is likely that it builds up in the rotifer proportionally to the
concentration in the environment. The hazard rate at zero food density should reveal the
‘pure’ aging acceleration p̈a. For this reason the intercept of the linear relationship was
chosen at 3.27 × 10−5 d−2. This is the temperature corrected value that has been found
for daphnids in figure 3.22. The data are consistent with this interpretation but it will be
unsatisfactory as long as the aging modifying factor has not been identified.

4.4.8 Segmented individuals

Figure 4.26 shows that von Bertalanffy growth also applies to isomorphic annelids living in
rich culture media; however, some thread-like annelids grow in length only, so their change
in shape corresponds to that of filaments. The water nymph Nais elinguis is an example
of an aquatic oligochaete with such a small diameter (0.19 mm, aspect ratio δ = 0.02)
that no advanced circulation system is necessary to ensure adequate gas exchange. Its
segmentation restricts mass exchange in the longitudinal direction to the extent that the
assumptions for the digestion process can be tested on the basis of growth performance in
an intriguing way. The digestion process will be discussed on {247} more detail. It will be
assumed here that the assimilation energy input decreases linearly with length to zero at
the posterior end of the body, so the reserve density in the anterior part is higher than in
the posterior part. Water nymphs usually propagate asexually by division, which implies
that the freshly separated anterior part has a relatively high initial reserve density, and
thus high initial growth, while the opposite holds for the posterior part. The deb theory
provides the tools to evaluate this difference in growth quantitatively [583].
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Let l◦ denote a dimensionless length measure of the worm, which takes value 0 at
the posterior end and value 1 at the anterior end. The (total) assimilation energy that
comes in equals

∫ 1
0 Ȧ(l◦) dl◦, which for filaments is given by [Ȧm]fV ; see (3.3). Since

Ȧ(l◦) according to the digestion model, {247}, is proportional to l◦, the proportionality
constant can be found from the equation [Ȧm]fV ∝ ∫ 1

0 l
◦ dl◦, which results in Ȧ(l◦)dl◦ =

2[Ȧm]fV l◦dl◦. The reserve energy dynamics at l◦ are thus found by substitution of 2fl◦

for f into (3.32), which gives d
dt
e(l◦) = ν̇(2fl◦ − e(l◦)). Growth according to (3.33) is now:

d
dt
V = ν̇V

∫ 1
l◦=0

e(l◦)−(Vd/Vm)1/3

e(l◦)+g
dl◦.

Worms such as Nais typically live in sludge from sewage treatment plants, so food is
always abundantly available. The main variable is not food abundance, but food quality,
which relates to the value of {Ȧm}, while f = 1. If food quality changes slowly, the
equations for the energy reserve density and body volume can be solved explicitly. The
result is

e(l◦, t) = 2fl◦ − (2fl◦ − e(l◦, 0)) exp{−ν̇t} (4.49)

V (t) = V (0) exp

{

ν̇
∫ t

0

∫ 1

0

e(l◦, t1) − (Vd/Vm)1/3

e(l◦, t1) + g
dl◦ dt1

}

(4.50)

A peculiar consequence is that now the initial storage density for the anterior and the
posterior part of the just divided worm differ. If the worm divides when its energy density
is already at its equilibrium value e(l◦) = 2fl◦, the initial energy density of the anterior
part is e(l◦, 0) = 2f(l◦d + l◦(1 − l◦d)), while that of the posterior part is e(l◦, 0) = 2fl◦dl

◦,
where l◦d is the value for l◦ where the division occurs. Nais appears not to divide into two
equally long parts; the anterior part is usually somewhat longer. More in particular, the
initial volume is given by V (0) = (1 − l◦d)Vd for the anterior part and V (0) = l◦dVd for
the posterior one. Note that since ingestion İ = [İm]fV is linear in the body volume for
filaments, see (3.3), it drops sharply at division. This relates to the gut residence time
for food particles, which is constant (so independent of length or volume). The fit with
measured data is quite acceptable; see figure 4.27. The population dynamical consequences
are evaluated on {173}.
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Figure 4.26: Weight-at-age curve for the
isomorphic earthworm Dendrobeana veneta

at 20 ◦C and abundant food. The adults
produce 1 cocoon a week in this medium.
Data provided by Hans Bos (pers. comm.).
The data points represent means of 100 indi-
viduals. The ultimate wet weight1/3 is 1.453
(0.024) g1/3 and the von Bertalanffy growth
rate γ̇ = 0.033 (0.002) d−1.

Figure 4.27: The sludge eating filamentous
water nymph Nais elinguis divides into an
anterior part (3) which is somewhat longer
than the posterior one (2) and has a higher
initial storage density due to incomplete mix-
ing along the longitudinal axis. This gives
the anterior part an advantage in terms of
growth. Data by Christa Ratsak [583].
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Chapter 5

Living together

The primary purpose of this chapter is to evaluate the consequences of the deb model for
individuals at the population level if extremely simple rules are defined for the interaction
between individuals and the energy balance of the whole system.

Most models of population dynamics treat individuals as identical objects, so that a
population is fully specified by total number or total biomass. Such populations are called
non-structured populations. This obviously leads to attractive simplicity. I will discuss
some doubts about their realism on {160}, doubts that can be removed by turning to
structured populations. Structured populations are populations where the individuals dif-
fer from each other by one or more characteristics, such as age, which affect feeding, survival
and/or reproduction. The deb model provides an attractive, albeit somewhat complicated,
structure. I will show the connection between non-structured and deb-structured popu-
lations step by step. The introduction of a structure does not necessarily lead to realistic
population models due to the effects of many environmental factors that typically operate
at population level: spatial heterogeneity, seasonality, erratic weather, climatic changes,
processes of adaptation and selection, subtle species interactions and so on. The occurrence
of infectious diseases is perhaps one of the most common causes of decline and extinction of
species, which typically operates in a density-dependent way. This means that population
dynamics, as discussed in this chapter, still has to be embedded in a wider framework
to arrive at realistic descriptions of population dynamics. The subject of this book is re-
stricted to phenomena that have a direct bearing on the set of simple mechanisms for the
uptake and use of energy listed in table 4.1.

The interaction between individuals of the same species is here restricted to feeding on
the same resource. This point of view might seem a caricature in the eyes of a behavioural
ecologist. The general idea, however, is not to produce population models that are as
realistic as possible, but to study the consequences of feeding on the same resource. A
comparison is then made with non-structured populations dynamics and with real world
populations to determine the pay-off between realism and model complexity. If deb-
structured population dynamics predictions are not realistic, while the deb model is at the
individual level, this will give a key to factors that will be of importance in this situation.
The basic energetics must be right before the significance of the more subtle factors can
be understood. My fear is that most of the factors shown to be relevant will be specific
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for a particular species, a particular site and a particular period in time. This casts
doubts on the extent to which general theory is applicable and on the feasibility of systems
ecology. The main application of population dynamics theory here concerns a mental
exercise pertaining to evolutionary theory, with less emphasis on direct testing in real
world populations. The theory should, however, be able to predict population behaviour
in simplified environments, such as those found in laboratory set-ups, in bio-reactors and
the like, so that it has potential practical applications.

The significance of the population level for biological insight at all organization levels
is manifold. It not only sets food availability and predation pressure for each individual,
but it also defines the effect of all changes in life history which is pertinent to evolutionary
theory. All other individuals belong to the environment of the particular individual, whose
fitness is being judged. Fitness, whatever its detailed meaning, relates to the production
of offspring, thus it changes the environment of the individual. This is one of the reasons
why fitness arguments, which are central to evolutionary theories, should always involve
the population level.

5.1 Non-structured populations

The chemostat, a popular device in microbiological research, will be used to make the
transition from the intensively studied non-structured populations to deb-structured pop-
ulations. In a chemostat, food (substrate) is supplied at a constant rate to a population.
Food density in the inflowing medium is denoted by Xr and the medium is flowing through
the chemostat at throughput rate ṗ times the volume of the chemostat Vc. Together with
the initial conditions (food and biovolume density) these controls determine the behaviour
of the system, in particular the food (substrate) density X0 and the biovolume density X1

as functions of time. The index 0 in the notation for food density is added for reasons of
symmetry with X1: the biovolume density of predators, i.e. the ratio of the sum of the
individual volumes and the volume of the chemostat, Vc. So X1 =

∑N
i=1 Vi/Vc, if there are

N individuals in the population.

Batch cultures, which do not have a supply of food other than that initially present,
are a special case of chemostat cultures, where ṗ = 0. I start with the Lotka–Volterra
model, which was and probably still is the standard predator/prey model in ecology. In a
sequence of related models, the effect of the stepwise introduction of biological detail that
leads to deb-structured populations will be studied.

The chemostat as a model can also be realistic for particular situations outdoors. An
important difference between chemostat models and many population dynamical models
is that food (substrate) does not propagate in the formulation here, while exponential or
logistic growth is the standard assumption in most literature. The reason is that I want to
stick to mass and energy balance equations in a strict way. The growth rate of food should,
therefore, depend on its resource levels, which should be modelled as well. In the section
on food chains, {212}, higher trophic levels, X2, X3 · · · will be introduced, not lower ones.
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5.1.1 Lotka–Volterra

The Lotka–Volterra model assumes that the predation frequency is proportional to the
encounter rate with prey (here substrate), on the basis of what is known as the law of mass
action, i.e. the product of the densities of prey and predator. It can be thought of as a
linear Taylor approximation of the hyperbolic functional response around food density 0:
f = X0

K+X0
≃ X0/K for X0 ≪ K. The ingestion rate is taken to be proportional to body

volume, as is appropriate for filaments, so that the sum of all ingestion rates by individuals
in the population is found by adding the volumes of all individuals and applying the same
proportionality constant.

The Lotka–Volterra model for chemostats with throughput rate ṗ is

d

dt
X0 = ṗXr − [İm]

X0

K
X1 − ṗX0 (5.1)

d

dt
X1 = Y [İm]

X0

K
X1 − ṗX1 (5.2)

where Y stands for the yield factor, i.e. the conversion efficiency from prey to predator
biomass; this is taken to be constant here. This model does not account for maintenance

or energy reserves, so that in the context of the deb model we have Y = κ{Ȧm}
[G]{İm} , with

[Ṁ ] = 0 and [Em] = 0. At the individual level, this model implicitly assumes that the
feeding rate is proportional to the volume of the individual. This aspect corresponds with
the filament case of the deb model; see (3.3). The analysis of the population dynamics
can best be done with the dimensionless quantities τ ≡ tṗ, [Im] ≡ [İm]/ṗ, xr ≡ Xr/K,
x0 ≡ X0/K, x1 ≡ X1/K. These substitutions turn (5.1) and (5.2) into

d

dτ
x0 = xr − [Im]x0x1 − x0 (5.3)

d

dτ
x1 = Y [Im]x0x1 − x1 (5.4)

The equilibrium is found by solving x0 and x1 from d
dτ
x0 = d

dτ
x1 = 0. The positive solutions

are x∗0 = (Y [Im])−1 and x∗1 = Y xr − [Im]−1. The yield factor in this model, has a double
interpretation. It stands for the conversion efficiency from food into biomass at both the
individual level (this is how it was introduced in the previous chapter) and the population
level. To see this, one has to realize that food influx is at rate ṗKxr and food output is at
rate ṗKx∗0 = ṗK

Y [Im]
at equilibrium. So total food consumption is ṗK(xr − 1

Y [Im]
). Biomass

output is ṗKx∗1 = ṗK(Y xr − [Im]−1). The conversion efficiency at the population level

thus amounts to ṗK(Y xr−[Im]−1)
ṗK(xr−(Y [Im])−1)

= Y . This is so simple that it seems trivial. That this
impression is false soon becomes obvious when we introduce more elements of the deb

machinery; the conversion efficiency at the population level then behaves differently from
that at the individual level for non-filaments.

The linear Taylor approximation around the equilibrium of the coupled system (5.3)
and (5.4) equals for xT ≡ (x0, x1) and x∗T ≡ (x∗0, x

∗
1)

d

dτ
x ≃

(

−[Im]x1 − 1 −[Im]x0

Y [Im]x1 Y [Im]x0 − 1

)

x=x
∗

(x − x∗) (5.5)
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≃
(

−Y [Im]xr −Y −1

Y 2[Im]xr − Y 0

)(

x0 − 1
Y [Im]

x1 − Y (xr − 1
Y [Im]

)

)

(5.6)

The eigenvalues of the matrix with coefficients, the Jacobian, are −1 and −Y [Im]xr + 1,
so that this system does not oscillate. See Edelstein-Keshet [195], and Yodzis [786] for
valuable introductions to this subject, and Hirsch and Smale [321], Ruelle [618], and
Arrowsmith and Place [22,23] for more advanced texts. Mathematical texts on nonlinear
dynamics systems are now appearing at an overwhelming rate [52,181,278,352,714], es-
pecially with a focus on ‘chaos’, but simple biological problems still seem too complex to
analyze analytically. Figure 5.1 compares the dynamics of the Lotka–Volterra model with
other simplifications of the deb model.

Although this model cannot produce oscillations, with a minor change it can, by feeding
the outflowing food (substrate) back into the bio-reactor. This is technically a simple
operation. Most microbiologists even neglect the small outflow in open systems in their
mass balances. The situation is covered by deletion of the third term in (5.3), i.e. −x0.

The eigenvalues of the Jacobian then become −1
2
Y [Im]xr± 1

2

√

(Y [Im]xr)2 − 4Y [Im]xr. For

Y [Im]xr < 4, the eigenvalues are complex, thus the system is oscillatory.

5.1.2 Monod, Marr–Pirt and Droop

If the hyperbolic functional response is used in the Lotka–Volterra model, rather than the
linear Taylor approximation, we arrive with some reconstructions of the original formu-
lations at the well-known model of Monod. Marr [455] and Pirt [556] extended this
model to account for maintenance, while Droop [183,184] extended it in another way to
account for (nutrient) reserves. Maintenance or reserves have been introduced directly at
the population level, however, which presents the problem of reconstructing the implicit
assumptions at the individual level. This problem can most easily be solved with the deb

model for filaments, (3.3), (3.32) and (3.33).

The energy reserve density follows the functional response according to a first order
process; see (3.32). So, if e1 and e2 denote the scaled energy density of two particular
individuals, the difference decays exponentially with a relaxation time of ν̇−1, because
d
dt

(e1 − e2) = −ν̇(e1 − e2). Even if substrate density changes so rapidly that the energy
reserve density is not at its equilibrium, and even if the initial energy densities of the
individuals differ, the energy reserve densities of all individuals soon follow the same time-
curve. It follows that d

dt
X1 ∝ ∑

i
d
dt
Vi ∝

∑

i Vi. So the change of the sum of the volumes
equals the sum of the changes of each volume, which are simple functions of volumes in
the deb model for filaments; see (3.33). The structured population of filaments collapses
to a non-structured one. In order to compare its dynamics with classic models, I now
assume that the specific energy conductance is large enough with respect to changes of
food density, d

dt
lnX0 ≪ ν̇, meaning that the energy reserves are close to their equilibrium

value e = f . This condition will be removed in the subsection on deb filaments on {166}.
The result is now that reconstructions of the models of Marr–Pirt, Droop and Monod are
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Lotka–Volterra Monod

0 x∗
0 x0

0

x∗
1

x1

0 x∗
0 x0

0

x∗
1

x1

Marr–Pirt Droop

0 x∗
0 x0

0

x∗
1

x1

0 x∗
0 x0

0
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1
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0 x∗
0 x0

0

x∗
1

x1 Equilibrium values for x0 and x1

and parameters

model x∗
0 x∗

1 xr Yg [Im] g ld

Lotka 0.39 8.17 10 0.85 3 - -
Monod 0.65 7.95 10 0.85 3 - -
Marr 0.97 6.12 10 0.85 3 - 0.1
Droop 1.82 4.23 10 0.85 3 1 -
deb 4.25 2.37 10 0.85 3 1 0.1

Figure 5.1: The direction fields and isoclines for the deb model for filaments in a chemostat with
reserves at equilibrium, and the various simplifications of this model. The lengths and directions
of the line segments indicate the change in scaled food density x0 and scaled biovolume x1. The
isoclines represent x0, x1-values where d

dτ x0 = 0 or d
dτ x1 = 0. All parameters and variables are

made dimensionless, as indicated in the text. Figure 5.3 gives the direction field when the reserves
are not in equilibrium.
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special cases of the deb model for filaments. It reads

d

dτ
x0 = xr − [Im]fx1 − x0 (5.7)

d

dτ
x1 = Y [Im]fx1 − x1 (5.8)

with f = x0

1+x0
. The yield factor Y is only constant in the Monod model. The growth

dynamics for filaments, (3.33), can be used to show that the conversion efficiency equals

[Ṁ ] 0 6= 0 0 6= 0
[Em]

Monod Marr–Pirt Monod Marr–Pirt

0 κ[Ȧm]

[G][İm]

κ[Ȧm]

[G][İm]

f−ld
f

Yg Yg
f−ld
f

Droop deb for fil. Droop deb for fil.

6= 0 κ[Ȧm]

[G][İm]

g
f+g

κ[Ȧm]

[G][İm]

g
f
f−ld
f+g

Yg
g

f+g
Yg

g
f
f−ld
f+g

In the microbiological literature, Yg is known as the ‘true’ yield, i.e. the yield excluding
maintenance losses. In the Lotka–Volterra and the Monod model, the (actual) yield equals
the ‘true’ yield, Y = Yg, but in the Marr–Pirt, Droop and deb models we find that Y < Yg
and that Y is a function of food density, while Yg is a constant. The conversion from food
into biomass cannot be constant for models allowing for maintenance; this is obvious if one
realizes that maintenance has priority over growth. So if feeding conditions are poor, a
larger fraction of the available energy is spent on maintenance, compared with good feeding
conditions.

The biologically interesting equilibrium values x∗0 and x∗1 can easily be obtained from
(5.7) and (5.8), but the result is line filling. The linear Taylor approximation in the
equilibrium for the Monod case is:

d

dτ
x ≃







−xr+x∗20

x∗0+x∗20
− 1
Yg

xr−x∗0
[Im]x∗20

0





 (x − x∗) (5.9)

The eigenvalues of the Jacobian are −1 and − 1
Yg [Im]

(xr − 1
Yg [Im]−1

)(Yg[Im] − 1)2, so that

the system does not oscillate. The linear Taylor approximation of the functional response
is accurate for small equilibrium values of food density, and thus a high value for Yg[Im],
which means that the Monod and the Lotka–Volterra models for the chemostat are very
similar. The Monod model has less tendency to oscillate than the Lotka–Volterra model.
This becomes visible if the substrate is fed back to the bio-reactor. (Thus we omit the
term −x0 in (5.7).) Contrary to the Lotka–Volterra model, the eigenvalues of the Jacobian
cannot become complex, so that the system cannot oscillate.

the direction field of the deb model for filaments in which energy reserves are allowed
to deviate from their equilibrium values. The functional response in the equilibrium of the
Monod model is only 0.4, for the chosen parameter values, which results in a close similarity
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with the Lotka–Volterra model. The direction fields of the Marr–Pirt and Droop models
are rather similar, so that the effect of the introduction of maintenance and reserves are
more or less the same. When introduced simultaneously, as in the deb model, the effect
is enhanced. Note that the isocline d

dτ
x0 = 0 hits the axis x1 = 0 at x0 = xr, which is

just outside the frame of the picture for the deb model, but far outside for the Lotka–
Volterra model. For very small initial values for x0 and x1, the direction fields show that
x0 will first increase very rapidly to xr, without a significant increase of x1, then the
d
dt
x0 = 0-isocline is crossed and the equilibrium value x∗0, x

∗
1 is approached with strongly

decreasing speed. This means that x0 falls back to a very small value for Lotka’s model,
but much less so for the deb model. The most obvious difference between the models is
in the equilibrium values, where x∗1 ≫ x∗0 in Lotka’s model, but the reverse holds in the
deb model. The other models take an intermediate position. The approach of x0, x1 to
the equilibrium value closely follows the d

dt
x0 = 0-isocline if x1 > x∗1 in all models. The

speed in the neighbourhood of the isocline is much less than further away from the isocline,
and the differences in speed are larger for Lotka’s model than for the deb model. These
extreme differences in speed mean that the numerical integration of this type of differential
equations needs special attention.

5.1.3 Death

The usefulness of the chemostat in microbiological research lies mainly in the continuous
production of cells that are in a particular physiological state. This state depends on the
dilution rate. In equilibrium situations, this rate is usually equated to the population
growth rate. The implicit assumption being made is that cell death plays a minor role. As
long as the dilution rate is high, this assumption is probably realistic, but if the dilution
rate is low, its realism is doubtful. Low dilution rates go with low substrate densities and
long interdivision intervals. In the section on aging, the hazard rate for filaments has been
tied to the respiration rate and so, indirectly, to substrate densities in (3.59). The law
of large numbers tells that the hazard rate can be interpreted as a mean (deterministic)
death rate for large populations. The dynamics for the dead biovolume, x† reads

d

dt
x† = ḣx1 − ṗx† (5.10)

with ḣ denoting the hazard rate. It can easily be seen that in the equilibrium, we must

have that ṗx∗† = ḣx∗1, so the fraction of dead biovolume equals
x∗†

x∗1+x∗
†

= ḣ
ṗ+ḣ

. The dynamics

of the biomass should account for this loss, thus

d

dt
x1 = Y [İm]fx1 − (ṗ+ ḣ)x1 (5.11)

Substitution of the expression for the hazard rate and the yield and the condition d
dt
x1 = 0

leads to the equilibrium value for f : g(ṁ+ṗ)
ν̇−ṗ−ṗa(1+g)

. Back-substitution into the hazard rate
and the yield finally results in

x∗†
x∗1 + x∗†

=
ṁ+ ṗ

ṁ+ (ṁ+ µ̇◦
m)ṗ/ṗa

(5.12)
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Figure 5.2: The fraction of dead cells depends
hyperbolically on the population growth rate,
and increases sharply for decreasing population
growth rates. The three curves correspond with
ṁ/µ̇m = 0.05, ṗa/µ̇m = 0.01 (lower), ṁ/µ̇m =
0.1, ṗa/µ̇m = 0.01 (middle) and ṁ/µ̇m = 0.05,
ṗa/µ̇m = 0.1 (upper curve). For high growth
rates, the dead fraction is close to ṗa/µ̇m, which
will be very small in practice. The curves make
clear that experimental conditions are extremely
hard to standardize at low growth rates.

where µ̇◦
m = ν̇−ṁg

1+g
is the gross maximum population growth rate. (The net maximum

population growth rate is µ̇m = µ̇◦
m − ṗa and ṗ ≤ ṗm ≤ µ̇m ≤ µ̇◦

m, cf. (5.54). Since
most microbiological literature does not account for death, and saturation coefficients are
usually small, these different maximum rates are usually not distinguished. The concept
‘population growth rate’ is introduced on {169}.) Figure 5.2 illustrates how the dead
fraction depends on the population growth rate.

The significance of the fraction of dead cells is not only of academic interest. Since it
is practically impossible to distinguish the living from the dead, it can be used to ‘correct’
the measured biomass for the dead fraction to obtain the living biomass, {189}.

In the section on aging, {105}, I speculated that prokaryotes might not die instanta-
neously, but first switch to a physiological state called ‘stringent response’. The fraction
(5.12) can then be interpreted as the fraction of individuals that is in stringent response.
A typical difference between both types of cells is the intracellular concentration of ppGpp,
which is usually expressed per gram of total biomass. This quantification implicitly as-
sumes that all cells in the population behave in the same way physiologically, rather than
that the population can be partitioned into cells that are in stringent response and cells
that are not. Which presentation is the more realistic remains to be studied.

5.1.4 deb filaments

Figure 5.1 gives the direction fields of the various simplifications of the deb model and
figure 5.3 gives The full deb model for filaments in chemostats is in need of an auxiliary
equation for energy reserves, which amounts to the following three coupled equations:

d

dτ
x0 = xr − [Im]fx1 − x0 (5.13)

d

dτ
e = Yg[Im]g(f − e) (5.14)

d

dτ
x1 = Yg[Im]g

e− ld
e+ g

x1 − x1 − pa
1 + g

e+ g
ex1 (5.15)

These coupled equations can be reduced to one integro-differential equation by integration
of d

dτ
e and d

dτ
x1, and substitution of the results into the differential equation for x0. This
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Figure 5.3: Stereo view of the direction field and isoclines for the deb model for filaments in a
chemostat. The parameter values are the same as in figure 5.1 and the projection of this direction
field on the x, y-plane reduces to the direction field given in figure 5.1, where the reserves have
been set at equilibrium.

is of little help, however, because this equation also has to be solved numerically.
The direction field of this model is given in figure 5.3. Mortality is excluded, pa = 0, to

facilitate comparison with the situation where reserves are in equilibrium; see figure 5.1.
A special case of conceptual interest can be solved analytically. This case relates to

batch cultures, where no input or output (of substrate or biomass) exists, the biomass just
developing on the substrate that is present at the start of the experiment. If the saturation
coefficient, the maintenance costs and aging rate are small, deb filaments will show a
growth pattern which might be called expo-logistic. Initially they will grow exponentially
and after a certain time (which corresponds to the depletion of the substrate) they switch
to logistic growth, depleting their reserves. The biomass-time curve is smooth, even at the
transition from one mode of growth to the other.

Worked out quantitatively, we get the following results. The functional response f is
initially 1, since K is small with respect to X0. If the inoculum is from a culture that
did not suffer from substrate depletion, we have e = 1 and X1(t) = X1(0) exp{µ̇mt},
so the population growth rate is maximal, i.e. µ̇m = (ν̇ − ṁg)(1 + g)−1. The substrate
concentration develops as X0(t) = X0(0)− ∫ t0 [İm]X1(t1) dt1. It becomes depleted at t0, say,
where X0(t0) = 0. Substitution gives

X0(t) = X0(0)(exp{µ̇mt0} − exp{µ̇mt})(exp{µ̇mt0} − 1)−1

where depletion occurs at time t0 = 1
µ̇m

ln
{

1 + X0(0)
X1(0)

µ̇m

[İm]

}

. The reserves then decrease

exponentially, i.e. e(t0 + t) = exp{−ν̇t}. The biovolume thus behaves as X1(t0 + t) =

X1(t0) exp
{

∫ t
0
ν̇e(t0+t1)−ṁg
e(t0+t1)+g

dt1
}

. For small maintenance costs, ṁ → 0, this reduces to

X1(t0+t) = X1(t0)
1+g

exp{−ν̇t}+g . This is the solution of the equation d
dt
X1 = ν̇

(

1 − X1(t)
X1(0)

g
1+g

)

X1,
the well known logistic growth equation. If the maintenance costs are not negligibly small,
the integral for X1(t) has to be evaluated numerically. Biovolume will first rise to a maxi-
mum and then collapse at a rate that depends on the maintenance costs. This behaviour
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offers the possibility to determine these costs experimentally. The quantitative evalua-
tion can easily be extended to include fed batch cultures for instance, which have food
(substrate) input and no output of food or biomass, but this does involve numerical work.

Similar biovolume-time curves can also arise if the reserve capacity rather than the
saturation coefficient is small. If maintenance and aging are negligible as before, the batch
culture can be described by d

dt
X0 = −[İm]fX1 and d

dt
X1 = Yg[İm]fX1. We must also have

X1(t) = X1(0) + Yg(X0(0) −X0(t)). Substitution and separation of variables gives

[İm]Ygt =
KYg
X1(∞)

ln
X1(t)(X1(∞) −X1(0))

X1(0)(X1(∞) −X1(t))
+

1

2
ln
X1(t)

X1(0)

Although this expression looks very different from the corresponding one for small
saturation coefficients, the numerical values are practically indistinguishable, as shown in
figure 5.4, where both population growth curves have been fitted to data on Salmonella.
The only way to distinguish a difference is in the simultaneous fit for both biomass and
substrate. This illustrates the rather fundamental problem of model identification for
populations, even in such a simple case as this with only 4 free parameters. (To reduce
the number of free parameters, maintenance and aging were taken to be negligible for both
special cases.) Although Salmonella is a rod shaped bacterium, it is treated here as a
filament because of its small aspect ratio; full treatment of rods is much more complicated,
as shown later in this chapter. The conclusion to be drawn is that these data are not very
informative and models for individual dynamics are soon too complicated to be of much
help with the interpretation.

If other information is available to allow a choice between various possibilities, such as
in the case of very efficient histidine uptake by deficient Salmonella strains, cf. {284}, the
growth of batch cultures can be used to estimate the reserve capacity. This has been done
in figure 5.5 to illustrate that under particular circumstances, the deb model implies mass
fluxes, as discussed in more detail on {192}.

5.1.5 Realism

Filaments have the unique property that they grow proportionally to their volume as indi-
viduals, which makes them an ideal paradigm for the connection between non-structured
populations and structured ones. The definition of an individual is hard to make for fil-
aments and, in the deb model, of no importance; it indeed makes no difference if the
population consists of one single large filament or many small ones. For isomorphs this
the situation is different, of course. The simplicity of non-structured population dynamics
comes with several unrealistic phenomena that have the potential to devalue any conclusion
about real world populations. I will discuss some of them on {171,171,174}.

5.2 Structured populations

It is not my intention to review the rapidly growing literature on structured population dy-
namics, but for those who are unfamiliar with the topic, some basic notions are introduced
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Figure 5.4: A batch culture of Salmonella ty-

phimurium strain TA98 at 37 ◦C in Vogel and Bon-
ner medium with glucose, (excess) histidine and bi-
otin added. Two models have been fitted and plot-
ted: one assumes that the saturation coefficient is
negligibly small, but the reserves capacity is sub-
stantial, while the other does the opposite. Only
the substrate density will tell the difference (stip-
pled curves), but this is not measured. Parame-
ters (s.d.): ν̇ = 18.6 (0.37) d−1, g = 0.355 (0.063),
X0(0)/[İm] = 0.020 (0.0036) d or X1(∞) = 1.28
(0.02), Y K = 1.31 (0.86), Y [İm] = 23.6 (11.5).

Figure 5.5: Batch cultures of a histidine defi-
cient strain of S. typhimurium, with initially only
0, 0.5, 1 or 5 µg histidine ml−1 in the medium,
cease growth due to histidine depletion. The fit is
based on the assumption of negligible maintenance
requirements for histidine, which implies that the
extinction plateau is a linear function of the added
amount of histidine. The parameters (s.d.) are
[İm] = 8 (0.44) µg his ml−1 h−1, ν̇ = 5.3 (1.2) h−1

and g = 7.958 (0.00205). One extinction unit corre-
sponds with 7.56×108 cellsml−1, so that the yield is
Yg = ν̇

[İm]g
= 0.0834 ml µg his−1. This corresponds

with 1.1× 10−10g his cell−1 = 3.15× 105 molecules
his cell−1 with a maximum of 4×104 molecules his-
tidine in the reserve pool.

below to help develop intuition. See DeAngelis and Gross [159], Ebenman and Persson
[194], Heijmans [303],  Lomnicki [439] and Metz and Diekmann [478] for reviews.

5.2.1 Stable age distributions

If food density is constant or high (with respect to the saturation coefficient), the distri-
bution of individual states in the population, such as age and volume, stabilizes, while the
numbers grow exponentially. This distribution can be evaluated in a relatively simple way,
which makes it possible to evaluate statistics such as the mean volume and its variance,
mean life span, etc. Situations may occur where the individual states change cyclically, so
that such a stable distribution does not exist. The distribution of individual states has a
limited practical value, because it only holds at prolonged constant food densities. How
long food density must remain constant for state distributions to stabilize is hard to tell in
specific cases and impossible in general. The main value of stable distributions lies in find-
ing practical approximations for the behaviour of population models based on individuals.
The derivation of stable state distributions is most easy via the stable age distribution,
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which I will explain briefly. A more extensive treatment is given by Frauenthal [230].
Let n(a, t) da denote the number of females at time t with an age somewhere in the

interval (a, a+ da), where da is an infinitesimally small time increment. The total number
of individuals is thus N(t) =

∫∞
0 n(a, t) da. Individuals that have age a at t must have

been born at t − a and must be still alive to be counted in n, so we have the recursive
relationship n(a, t) = n(0, t−a)Prob{a† > a}, where n(0, t)da denotes the number of births

in (t, t+da). The birth rate relates to the reproduction rate as n(0, t) =
∫∞
0 n(a, t)Ṙ(a) da,

where Ṙ(a) is the reproduction rate of an individual of age a. If we substitute the birth
rate into the recursive relationship, we arrive at the integral equation

n(0, t) =
∫ ∞

0
n(0, t− a)Prob{a† > a}Ṙ(a) da (5.16)

Rather than specifying the number of births before the start of the observations at t = 0,
we specify the founder population n(a, 0) = n0(a) and write

n(0, t− a) = n0(a− t)/Prob{a† > a− t} for a > t

The integral in (5.16) can now be partitioned and gives what is known as the renewal
equation

n(0, t) =
∫ t

0
n(0, t−a)Prob{a† > a}Ṙ(a) da+

∫ ∞

t

Prob{a† > a}
Prob{a† > a− t}n0(a−t)Ṙ(a) da (5.17)

The second term thus relates to the contribution of the individuals that were present in
the founder population. Depending on the survival probability and age-dependent repro-
duction rate, its importance decreases with time. Suppose that it is negligibly small at
some time t1 and that the solution of (5.17) is of the form n(0, t) = n(0, 0) exp{µ̇t}, for
some value of µ̇ and n(0, 0). Substitution into (5.17) gives for t > t1:

n(0, 0) exp{µ̇t} =
∫ t1

0
n(0, 0) exp{µ̇(t− a)}Prob{a† > a}Ṙ(a) da or (5.18)

1 =
∫ t1

0
exp{−µ̇a}Prob{a† > a}Ṙ(a) da (5.19)

The latter equation is known as the characteristic equation. It is possible to show that,
under some smoothness restrictions on reproduction as a function of age, this equation has
exactly one real root for the population growth rate µ̇1. The other roots are complex and
have a real part smaller than |µ̇1|. The general solution for n(0, t) is a linear combina-
tion

∑

i ni(0, 0) exp{µ̇it}. For large t, the exponential exp{µ̇1t} will be dominant, so the
asymptotic solution will be n1(0, 0) exp{µ̇1t}; because the other roots are of little practical
interest, the index will be dropped and µ̇ is thus taken to be the dominant root. The
smoothness restrictions on Ṙ(a) are violated if, for instance, reproduction is only possible
at certain particular ages. In this case, the information about the age distribution of the
founder population is not lost.

The stable age distribution, i.e. the distribution of the ages of a randomly taken indi-
vidual, a, is defined by φa(a) da ≡ n(a, t)da/N(t) for t→ ∞. As before, we have for large
t

n(a, t) = n(0, t− a)Prob{a† > a} = n(0, 0) exp{µ̇(t− a)}Prob{a† > a}
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As N(t) ≡ ∫∞
0 n(a, t) da serves only to normalize the distribution, we get the simple rela-

tionship between the age distribution and the survivor probability of the individuals

φa(a) =
exp{−µ̇a}Prob{a† > a}

∫∞
0 exp{−µ̇a1}Prob{a† > a1} da1

(5.20)

Note that a is defined for the population level, while a† is the age at which a particular
individual dies, so it is defined for the individual level. For a stable age distribution, the
adage ‘older and older, rarer and rarer’ always holds. The mean age in the population is
thus

Ea =
∫ ∞

0
aφa(a) da =

∫∞
0 a exp{−µ̇a}Prob{a† > a} da
∫∞
0 exp{−µ̇a}Prob{a† > a} da (5.21)

5.2.2 Reproducing neonates

There is no way to prevent neonates from giving rise to new neonates in unstructured
populations. This artifact of the formulation can dominate population dynamics at lower
growth rates. Comparison with a simple age-structured population, where individuals
reproduce at a constant rate after an certain age ap, can illustrate this.

In a constant environment, any population grows exponentially given time, structured
as well as non-structured. (Real populations will not do so because the environment will
soon change due to food depletion.) Let N(t) denote the number of individuals at time t.
The numbers follow N(t) = N(0) exp{µ̇t}, where the population growth rate µ̇ is found
from the characteristic equation

1 =
∫ ∞

0
Prob{a† > a}Ṙ(a) exp{−µ̇a} da (5.22)

Suppose that death plays a minor role, so Prob{a† > a} ≃ 1, and that reproduction is

constant after age ap, so Ṙ(a) = (a > ap)Ṙ, where, with some abuse of notation, Ṙ in the
right argument is taken to be a constant. Substitution into (5.22) gives

exp{−µ̇ap} = µ̇/Ṙ (5.23)

This equation ties the population growth rate µ̇ to the length of the juvenile period and
the reproduction rate. It has to be evaluated numerically. For unstructured populations,
where ap = 0 must hold, the population growth rate equals the reproduction rate, µ̇ = Ṙ.
For increasing ap, µ̇ falls sharply; see figure 5.6. This means that neonates giving birth to
new neonates contribute significantly in unstructured populations.

5.2.3 Discrete individuals

The formulation of the reproduction rate such as Ṙ(a) = (a > ap)Ṙ treats the number
of individuals as a continuous variable. Obviously, this is unrealistic, because individuals
are discrete units. It would be more appropriate to gradually fill a buffer with energy
allocated to reproduction and convert it to a new individual as soon as enough energy has
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Figure 5.6: For a constant reproduction rate Ṙ
in the adult state, the population growth rate
depends sensitively on the length of the juve-
nile period, as shown in the upper curve. The
unit of time is Ṙ−1 and mortality is assumed
to be negligible. The lower curve also accounts
for the fact that individuals are discrete units
of biomass. The required accumulation of re-
productive effort to produce such discrete units
reduces the population growth rate even further,
especially for short juvenile periods. Note that
the effect of food availability is not shown in this
figure, because it only affects the chosen unit of
time.

been accumulated. In that case, the reproduction rate becomes Ṙ(a) = (a = ap + i/Ṙ)/da,
for i = 1, 2, · · ·. It is zero almost everywhere, but at regular time intervals it switches to
∞ over an infinitesimally small time interval da, such that the mean reproduction rate as
an adult over a long period is Ṙ as before. Giving death a minor role, the characteristic
equation becomes

1 =
∞
∑

i=1

exp{−µ̇(ap + i/Ṙ)} = exp{−µ̇/Ṙ− µ̇ap}
(

1 − exp{−µ̇/Ṙ}
)−1

(5.24)

In analogy with (5.23) this can be rewritten as

exp{−µ̇ap} = exp{µ̇/Ṙ} − 1 (5.25)

to reveal the effect of individuals being discrete units rather than continuous flows of
biomass; see figure 5.6. The effect is most extreme for ap = 0, where µ̇ = Ṙ ln 2, which is a
fraction of some 0.7 of the continuous biomass case. If young are not produced one by one,
but in a litter, which requires longer accumulation times of energy, the discreteness effect
is much larger. For a litter size n and a reproduction rate of Ṙ(a) = (a = ap + in/Ṙ)n/da,
the population growth rate is n−1 ln{1 +n} times the one for continuous biomass with the
same mean reproduction rate and negligibly short juvenile period.

The effect of the discrete character of individuals is felt most strongly at low repro-
duction rates. Since populations tend to grow rapidly into a situation where reproduction
drops sharply due to food limitation, this problem is rather fundamental. Reproduction,
i.e. the conversion of the energy buffer to offspring, is usually triggered by independent
factors (a two-day moulting cycle in daphnids, seasonal cycles in many other animals). If
reproduction is low, details of buffer handling become dominant for population dynamics.
Energy that is not sufficient for conversion into the last young dominates population dy-
namics. Whether it gets lost or remains available for the next litter makes quite a difference
and, unfortunately, we know little about what exactly does happen.
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5.2.4 Differing daughters

When a naidid divides into two new individuals, an anterior piece and a posterior one,
the difference between both individuals is visible until the time they divide again. If the
anterior pieces reach a certain length at division Ld in a time tda and the posterior ones
in a time tdp with tda < tdp, then there will be less anterior pieces than posterior ones
in a growing population. The section on segmented individuals, {155}, explains why the
latter is to be expected and relates the interdivision time to the process of food uptake and
digestion. If Na denotes the number of anterior pieces, Np the number of posterior ones
and N+ the total number of individuals after some time, the relationship

1 = (Na/N+)tda/tdp +Na/N+ (5.26)

exists between the fraction of anterior pieces and the relative interdivision times. It can
be used to estimate tda/tdp for instance, from an observation on Na/N+. This is quite a
help, because a direct observation of a complete cycle is difficult in practice.

This relationship can most easily be derived by focusing on the special case where
tdp = ktda for k = 1, 2, · · ·. We choose the unit of time such that tda = 1. The number of
anterior pieces after the i-th division , Na,i, then follows the generalized Fibonacci series

Na,i = Na,i−1 +Na,i−k for i ≥ k (5.27)

with Na,0 = Na,1 = · = Na,k = 1. The number of posterior pieces equals Np,i = Na,i+k−1 and
the total number of individuals N+,i = Na,i+k. Fibonacci (Leonardo de Pisa, 1175–1250)
noted that this series is asymptotically a geometrical one, Na,i = αNa,i−1. The multiplier
α is found from the equation αk = αk−1 +1. Fibonacci studied the series for k = 2 and it is
believed that Kepler was, in 1611, the first to recognize the connection between the series
and the golden mean α = (1 +

√
5)/2 for k = 2; he used it to study ‘phyllotaxis’ [195].

The multiplier α relates to the population growth rate as µ̇ = t−1
da lnα, so that the

population growth rate can be found from

1 = exp{−µ̇tda} + exp{−µ̇tdp} (5.28)

This result can be obtained for arbitrary choices of tda and tdp, via a formulation in terms
of partial differential equations, worked out on {180}.

The division intervals for anterior and posterior naidids obviously depend on their initial
lengths. Figure 5.7 shows that for the model described under ‘segmented individuals’,
{155}, the population growth rate is maximized if the new anterior part is somewhat
larger than the posterior one, which is actually what has been observed in most individuals
[583]. For extremely short anterior parts, the population growth rate rises again, but this
is probably unrealistic because the complete physiological machinery has to be contained
and because the morphological changes to produce a new head must then occur in a very
short period.

These generalizations to differing daughters obviously also apply to unicellulars such as
budding yeasts, for instance, where the differences are large enough to call the daughters
still mother and baby. The buds leave scars on the mother cell, which contribute to the
difference.
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Figure 5.7: The population growth rate of a
segmented deb filament as a function of the ra-
tio of the length of the posterior daughter and
the mother. The parameters are realistic for
Nais elinguis at 20 ◦C: ṁ = 0.05 h−1, ν̇ = 0.126
h−1, g = 1.76 and Ld = 7.19 mm. The ob-
served length ratio is about 0.4. For poorer food
qualities, so smaller values of ν̇, the effect of
the length ratio on the population growth rate
becomes larger, but the optimal ratio does not
change much.

5.2.5 Maintenance

It is difficult to incorporate the notion of maintenance into a non-structured population
model in a satisfactory way because maintenance is a property of individuals that depends
on their size, while non-structured population models do not specify sizes. It is built into
the popular family of logistic population growth models in an implicit way. The logistic
model originates from Pearl [537] in 1927; Emlen [202] has evaluated evolutionary aspects
of population dynamics based on the logistic family. The core is the differential equation

d

dt
N ∝ N(1 −N/N∞) (5.29)

where the ultimate number of individuals in the population, N∞, is treated as a parameter.
It is known as the ‘carrying capacity’, where food supply is just sufficient to maintain
the population. Reproduction is then just enough to compensate for the (usually minor)
losses and almost all food is used for maintenance by the individuals. As food is not
modelled explicitly, no use of balance equations for energy can be made and the relationship
with actual populations must for this reason remain somewhat vague. To follow food
consumption more closely, it is necessary to introduce food density explicitly. Logistic
population growth should be treated as an empirical description. In the discussion on
filaments, {167}, it has been shown that batch cultures can grow in an almost logistic
manner for different reasons (energy reserves, saturation coefficients); this illustrates that
different individual traits can work out similarly at the population level.

5.3 deb-structured populations

5.3.1 Population growth rates

The relationship between population growth rate and division interval can be obtained as
follows. When the substrate density is constant for a sufficiently long period and death
has little effect, the population of dividing individuals will grow exponentially at rate
µ̇ = a−1

d ln 2, where the division interval ad tends to some fixed value at constant food
densities. This relationship, which is well known in microbiology, is obvious if one realizes
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that starting from a single, just divided, individual in an environment that has not changed
over a long period, the development of the population in terms of cell numbers is given by
N(t) = 2t/ad = exp{µ̇t} if the observations are done at t = 0, ad, 2ad, · · ·. From a strict
point of view, the development of cell numbers in continuous time is a step function. If we
start from a large population rather than a single individual, the cell numbers will be close
to N(t) = N(0)2t/ad = N(0) exp{µ̇t}, but not exactly so, due to the deterministic nature
of the growth and division process. This preserves information about the age distribution
of the founder population, as explained on {170}. In practice more than enough scatter is
found in almost all aspects of the growth and division process. We can, therefore, assume
for practical purposes that information about the founder population rapidly fades, even
without formulating these stochastic processes explicitly.

The relationship between population growth rate and the division interval can also
be obtained from a formulation that allows for the production of neonates by letting the
mother cell disappear at the moment of division, where two baby cells appear. Thus
we write Prob{a† > a} = (a ≤ ad) and Ṙ(a) da = 2(a = ad). Substitution into the
characteristic equation (5.22) gives 1 = 2 exp{−µ̇ad}.

The division interval ad is given in (3.15), (3.39) or (3.35). Substitution gives the
expressions for the population growth rates at constant substrate densities and for their
relative values with respect to the maximum population growth rate that are collected in
figure 5.8. The scaled length at division, ld, is a function of f , due to the fixed period
required to duplicate dna. It has to be solved numerically from (3.52), but for most
practical purposes, it can probably be treated as a constant. For small aspects ratios, δ, the
expressions for rods reduce to that for filaments, while for an aspect ratios of δ = 0.6 rods
resemble isomorphs. The table in figure 5.8 therefore illustrates how the population growth
rate of dividing deb isomorphs reduces stepwise to well known classic models. It also
illustrates why many microbiologists do not like models that explicitly deal with substrate
density; the saturation coefficient for uptake is usually very small for most combinations of
micro-organisms and substrate types, and the saturation coefficient for population growth
is even smaller, so that problems arise in measuring such low densities. Natural populations
of micro-organisms tend either to grow at the maximum rate, or not to grow at all. This
on/off behaviour is a major obstacle in the analysis of population dynamics.

The population growth rate is plotted against the substrate concentration for the rods
Escherichia coli and Klebsiella aerogenes in figure 3.6 and 5.9, and for the isomorph Col-

pidium also in figure 5.9. The curves closely resemble simple hyperbolic functions, which
indicates that these curves contain little information about some of the parameter values
of the individual-based deb model, particularly the energy investment ratio g. Since the
goodness of fit is quite acceptable, the modest conclusion can only be that these population
responses give little reason to change assumptions about the energy behaviour of individ-
uals. Figure 5.9 also illustrates that the scatter in population responses tends to increase
dramatically with body size. There has been substantial debate about the goodness of fit
of hyperbolic functions to this type of data.

It should be noted that if the saturation coefficient is small, small systematic additive
errors in the determination of low substrate levels have a substantial effect on the goodness
of fit, as illustrated in these figures. Measurement errors as small as 12 and 80 ng glucose
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Figure 5.8: The population growth rate µ̇ for dividing organisms as it simplifies when expressed
as a fraction of its maximum µ̇m and small maintenance costs [Ṁ ] and/or storage capacity [Em].
The last three rows in the ‘filaments’-column correspond to the models by Marr–Pirt, Droop and
Monod. These models are graphically compared with the deb model for filaments in the figure
below. The symbols l1 and V1 stand for ld and Vd for f = 1.
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Figure 5.9: The population growth rate as a function of the concentration of substrate or
food. The left figure concerns the rod Klebsiella aerogenes feeding on glucose at 35 ◦C. Data
from Rutgers et al. [623]. The right figure concerns the isomorphic ciliate Colpidium campylum

feeding on suspensions of Enterobacter aerogenes at 20 ◦C. Data from Taylor [706]. The dotted
curve in the left figure accounts for a small additive error in the measurement of the concentration
of glucose.

per litre convert the drawn curves into the better fitting dotted ones. In view of the
technical difficulties in obtaining such measurements under these experimental conditions
and the possible existence of absorbed glucose, I am inclined to consider this goodness of fit
problem of academic interest only. Moreover, it may be recalled that diffusion limitations
cause deviations from the hyperbolic functional response; see {141}.

If propagation is via eggs, the population growth rate in constant environments has to
be evaluated numerically from the characteristic equation (5.22).

5.3.2 Stable age and size distributions

Volume distribution has an intimate relationship with the growth of dividing individuals, as
has been widely recognized [131,170,293,456,745]. It can most easily be expressed in terms
of its survivor function. If death plays a minor role, (5.20) gives the stable age distribution
for Prob{a† > a} = (a < ad) with ad = µ̇−1 ln 2. The survivor function of the stable age
distribution is thus: Prob{a > a} ≡ ∫ ad

a φa(a1) da1 = (a < µ̇−1 ln 2)(2 exp{−µ̇a} − 1). The
stable age distribution only exists at constant food densities, where volume increases if
age increases. It was first derived by Euler in the 18-th century [398]. The remarks on
the need for scatter for stability of age distributions also apply to size distributions. See
Diekmann et al. [168,169] or a more technical discussion.

If growth is deterministic and division occurs at a fixed size and the baby cells are of
equal size, no stable age distribution exists. If there is some scatter in size at division, a
stable age distribution exists, unless growth is exponential [53], because the information
of the age distribution of the founder populations never gets lost. If sisters do not have
exactly the same size, a stable age distribution exists, even if growth is exponential. The
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age distribution has a weaker status, that of an eigenfunction: if the founder population
has this particular age distribution, the age distribution will not change, while all other age
distributions for the founder population will change cyclically with period ad. In practice,
however, scatter in growth rate and size of baby cells will be more than sufficient for a
rapid convergence to the stable age distribution.

The survivor function of the stable volume distribution is

Prob{V > V } = Prob{a > t(V )} = 2 exp{−µ̇t(V )} − 1

where t(V ) is the age at which volume V is reached. The probability density is thus

φV (V ) dV = (V ≥ Vd/2)(V ≤ Vd)2µ̇ exp{−µ̇t(V )} dt (5.30)

For isomorphs, t(V ) is given in (3.15). Since scaled length, l, has a monotonous relationship
with volume; we have Prob{l > l} = Prob{V > V }. The survivor function of the stable
length distribution for isomorphs that divide at scaled length ld becomes:

Prob{l > l} = 2
1+ln f−l

f−ld2−1/3
/ ln

f−ld2−1/3

f−ld − 1 (5.31)

The same can be done for rods, which leads to

Prob{l > l} = 2
ln

1−ld/f

(1−ld/f−δ/3)(l/ld)3+δ/3
/ ln

2(1−ld/f)

1−ld/f+δ/3 − 1 (5.32)

and for filaments

Prob{l > l} = (l1/l)
3 − 1 (5.33)

These relationships can be important for testing assumptions about the growth process by
means of the stable length distribution. Actual stable length distributions reveal that the
scaled length at division, ld, is not identical for all individuals, but has some scatter, which
is close to a normal distribution [399]. Unlike what has been derived previously for Nias,
it is now assumed that the size-age curve does not depend on the size of the baby cell. As
soon as a small baby cell has grown to the size of a larger baby cell, the rest of their growth
curves are indistinguishable. Let φV b

denote the probability density of the number of baby
cells of volume V , i.e. cells of an age less than an arbitrarily small period ∆t, and φV d

the
probability density of the number of mother cells of volume V , i.e. cells which will divide
within the period ∆t. A practical way to determine φV b

(V ) dV and φV d
(V ) dV empirically

is to make photographs at t and t+ ∆t of the same group of cells and select cells that are
divided at t + ∆t, but not at t. The photograph at t can be used to obtain φV d

(V ) dV
and that at t+ ∆t to obtain φV b

(V ) dV . When N denotes the total number of cells in the
population, the number of cells with a volume in the interval (V, V + dV ) is NφV (V ) dV .
Painter and Marr [528] argued that the change in this number is given by

d

dt
NφV = 2

d

dt
NφV b

− d

dt
NφV d

−N
∂

∂V

(

φV
dV

dt

)

(5.34)
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The first term stands for the increase due to birth, the second one for loss due to division
and the third term for loss due to growth. Since the stable volume distributions do not
depend on time and d

dt
N = µ̇N , some rearrangement of terms gives

∂

∂V

(

φV
dV

dt

)

= µ̇
(

2φV b
− φV d

− φV
)

This is a linear inhomogeous differential equation in φV (V ), with solution

φV (V ) =
dt

dV
µ̇ exp{−µ̇t(V )}

∫ V

Vmin

exp{µ̇t(V1)}(2φV b
(V1) − φV d

(V1)) dV1 (5.35)

where Vmin is the smallest possible cell volume and, since φV (Vmax) = 0, µ̇ satisfies [745]
∫ Vmax

Vmin

exp{µ̇t(V1)}(2φV b
(V1) − φV d

(V1)) dV1 = 0 (5.36)

The connection with the previous deterministic rules for division can be made as follows.
When mother cells divide into two equally sized baby cells, we have φV b

(V ) = 2φV d
(2V ).

So, φV b
(V ) dV = (V = Vd/2) and φV d

(V ) dV = (V = Vd) when division always occurs at
Vd. Substitution into (5.35) gives (5.30) and into (5.36) gives t−1

d ln 2, as before. When
division always occurs at Vd, so φV d

(V ) dV = (V = Vd), but the sizes of the baby cells are
Va and Vp, this gives φV b

(V ) dV = (V = Va)/2+(V = Vp)/2 with Va+Vp = Vd and Va < Vp
cf. {173}. Substitution into (5.35) gives

φV (V ) dV = (V ≥ Va)(V ≤ Vd)µ̇ exp{µ̇(t(Va) + t(Vp)(V ≥ Vp) − t(V ))} dt
and substitution into (5.36) gives (5.28).

If φV d
is log-normal and V b = V d/2, we do not have any problems with tails when

V∞ < 0, i.e. when all individuals will eventually divide. Although µ̇ has to be obtained
numerically from (5.36), a very good approximation is still µ̇t(Vd) = ln 2. Substitution into
(5.35), together with (3.39) gives for rods:

φV (V ) =
∫ V

0
H(V1)

(

2 exp

{

−(ln 2V1/Vd)
2

2σ2

}

− exp

{

−(lnV1/Vd)
2

2σ2

})

d lnV1(5.37)

H(V1) ≡ ln 2√
2πσ2

exp
{

(ln 2)
(

ln V∞−V
V∞−V1

) (

ln V∞−Vd/2
V∞−Vd

)−1
}

(V∞ − V ) ln V∞−Vd/2
V∞−Vd

(5.38)

Although this expression looks massive, it has only three parameters: Vd, V∞ and σ2.
Additional knowledge of δ can be used to determine gṁ

v̇f
from V∞ and knowledge of µ̇ can

be used to determine f+g
fv̇

.
Figure 5.10 gives the stable length distribution for Escherichia coli, together with the

model fit with a log-normal distribution for the length at division, as in (5.37). Since the
curves approach the x-axis very closely for large cell lengths, the approximation µ̇ = t−1

d ln 2
has been appropriate. Although the goodness of fit is quite acceptable and only three
parameters occur, the one relating to the growth process, V∞, is not well fixed by the
data. Again, the conclusion must be that this population response is consistent with what
can be deduced from the individual level, but population behaviour gives poor access to
individual behaviour.
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Figure 5.10: The probability density of the length of E. coli B/r A (left) and K (right) at a
population growth rate of 0.38 and 0.42 h−1 respectively at 37 ◦C. Data from Koppes et al. [420].
For an aspect ratio of δ = 0.3, the three parameters are Vd = 0.506 µm3, V∞ = −0.001 µm3 and
σ2 = 0.026 and Vd = 2.324 µm3, V∞ = −1 µm3 and σ2 = 0.044. Because of the relatively large
variance of the volume at division, these frequency distributions give poor access to the single
parameter that relates to the growth process V∞.

Differing daughters

The derivation of the stable size distribution is much simpler if an individual of volume Vd
divides into Va and Vp, with Vp < Va and Va + Vp = Vd, as has been discussed for Nais on
{173}. Unlike the details of the Nais-case, the anterior and posterior parts are assumed to
follow the same growth curve in this derivation, which serves as an exercise for techniques
that will be used later, {206}. See Heijmans [302] for a more extensive study of this
subject.

Suppose that we have a chemostat with throughput rate ṗ and let n(t, V ) dV denote
the number of individuals at time t with a volume somewhere in the interval (V, V + dV ).
This number decreases by growth and by wash out, so

∂

∂t
n(t, V ) = − ∂

∂V

(

n(t, V )
dV

dt

)

− ṗn(t, V ) (5.39)

The conservation law for mass leads to the boundary conditions

n(t, Vp)
dV

dt

∣
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∣

∣
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∣

∣
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∣

Vd

and
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∣

∣

∣

V +
a

= n(t, V −
a )
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∣

∣

∣

∣

V −
a

+ n(t, Vd)
dV

dt

∣

∣

∣

∣

∣

Vd

where V −
a denotes a number infinitesimally smaller than Va and V +

a a number infinitesi-
mally larger than Va. The stable volume distribution is found for t → ∞ from φV (V ) ≡
n(∞, V )/

∫

V n(∞, V ) dV , where µ̇ = ṗ. The population growth rate is given by µ̇ =
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φV
dV
dt

∣

∣

∣

Vd

. When (5.39) is devided by
∫

V n(∞, V ) dV and for t→ ∞, so that ∂
∂t
n(t, V ) = 0,

we get
∂

∂V

(

φV
dV

dt

)

= −µ̇φV (5.40)

with boundary conditions

φV
dV
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= µ̇ and φV
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V +
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= φV
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∣
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∣

V −
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+ µ̇

The solution of the stable volume distribution is

φV (V ) = µ̇
dt

dV
exp{−µ̇t(V )} for Vp ≤ V < Va

= µ̇(1 + exp{µ̇t(Va)})
dt

dV
exp{−µ̇t(V )} for Va ≤ V < Vd

The requirement that
∫

V φV (V ) dV = 1 leads to the value for µ̇ as given by (5.28), after
substitution of t(Vp) = 0, t(Vd) = tdp and t(Vd) − t(Va) = tda.

5.3.3 Mean size of individuals

For the purpose of testing the deb theory and estimating the parameters, it is easier in
practice to measure mean length, rather than length at division. Mean volume and mean
surface area are also necessary for theoretical purposes, for instance to relate the number
of individuals to total biovolume, or to study the impact of the predator on prey. In the
steady state of exponential population growth, these statistics are easy to obtain via the
stable age distribution, particularly if death plays a minor role.

For dividing individuals with an age between 0 and ad, the stable age distribution is
given by φa(a) da = 2µ̇ exp{−µ̇a} da = 2 ln 2

ad
2−a/ad da. For reproducing immortal individu-

als, the stable age distribution is φa(a) da = µ̇ exp{−µ̇a} da. The expected value of scaled
length to the power i amounts to E li =

∫

φa(a)l(a)i da. Substitution of (4.6) or (3.38) gives
the results collected in table 5.1.

Note that the mean length increases less steeply with increasing substrate density or µ̇
than length at division, because the mean age reduces. Figure 5.11 shows that the mean
volume of rods depends on population growth rate in the predicted way.

5.4 Yield at the population level

The conversion efficiency of food into biomass is almost always taken as a constant in non-
structured population models, as well as in structured ones that do not take maintenance
into account. I expect that this will prove to be the most crucial difference between these
models and structured population models that do take account of maintenance. The Marr–
Pirt model and its descendants are the only non-structured population models I know of
that account for maintenance. I have shown that it is a special case of the deb model
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Table 5.1: Size statistics for individuals in populations growing at rate µ̇ with a scaled functional
response f .

rods

EV = V∞

(

1 −
(

1 + ln
V∞ − Vd/2

V∞ − Vd
/ ln 2

)−1
)

dividing isomorphs, with α ≡ f−ld/ 3√2
f−ld

El = f − f − (22/3 − 1)ld
1 + lnα/ ln 2

El2 = f2 − 4f(f − lb)
1 − 1

2α

1 + lnα/ ln 2
+ 2(f − lb)

2 1 − 1
2α2

1 + 2 lnα/ ln 2

El3 = f3 − 6f2(f − lb)
1 − 1

2α

1 + lnα/ ln 2
+ 6f(f − lb)

2 1 − 1
2α2

1 + 2 lnα/ ln 2
− 2(f − lb)

3 1 − 1
2α3

1 + 3 lnα/ ln 2

reproducing isomorphs, with γ̇ ≡ (3/ṁ + 3fV
1/3
m /v̇)−1

El2 = f2 − 2f
f − lb

1 + γ̇/µ̇
+

(f − lb)
2

1 + 2γ̇/µ̇

El3 = f3 − 3f2 f − lb
1 + γ̇/µ̇

+ 3f
(f − lb)

2

1 + 2γ̇/µ̇
− (f − lb)

3

1 + 3γ̇/µ̇

for filaments, where phenomena at individual level can be directly related to those at the
population level. Generally, however, the conversion efficiencies of food into biomass are
different for these levels. This fact is not at all specific for the deb model; all individual-
based models are likely to imply this difference.

The conversion efficiency has been evaluated for the individual level in the previ-
ous chapter, {123}. This section treats conversion efficiency at the population level for
parthenogenetically reproducing female ectotherms in spatially homogeneous equilibrium
situations, cf. [411]. The discussion can, however, be easily extended to cover a fixed sex
ratio. This will give more insight when the conversion of food into biomass is evaluated in
combination with food and biomass density in a chemostat environment. In this situation
food density is only indirectly under experimental control via the concentration in the in-
flowing medium Xr, and via the throughput rate ṗ. Outflowing food is fed back into the
bio-reactor. Let us take the substrate influx, ṗXr, to be constant, as it is in a situation of
constant primary production in a given environment, or in a sewage treatment plant with
a constant influx of sewage water (i.e. the substrate for the microbial community). We
take individuals out of the bio-reactor at probability rate ṗ per individual and study what
happens if we increase ṗ, if we compare steady state situations only. For the purpose of
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Figure 5.11: The mean volume of E.

coli as a function of population growth
rate at 37 ◦C. Data from Trueba [726].
For a chosen aspect ratio δ = 0.28, a
maintenance rate coefficient ṁ = 0.05 h−1

and an investment ratio g = 1, the least
squares estimates (with s.d.) of the vol-
ume at the start of the dna replication is
Vp=0.454(0.069) µm3, the time required
for division is tD = 1.03(0.081) h and the
energy conductance v̇ = 31.3(32) µm h−1.

conceptual clarity, death is once again assumed to play a minor role, so that the conversion
process of food into biomass is subjected to the harvesting process only.

Before analysing the conversion process via the yield factor in more detail, it is helpful
to point out the fundamental difference between the population and the individual level.
If we do not harvest at all and only supply food to the bio-reactor, the population will
eventually grow to a size where food input just matches the maintenance needs of the
individuals. In this situation no individual is able to grow or reproduce (otherwise we would
not have a steady state). The conversion efficiency is then zero. Figure 5.12 illustrates
this situation for experimental Daphnia populations. If we increase the harvesting rate, we
increase conversion efficiency, at least initially. This illustrates that the conversion process
is controlled by the way the population is sandwiched between food input and harvesting.
Individual energetics only set the constraints.

In many field situations, the harvesting rate will not be set intentionally. The process
of aging can be considered, for instance, as one of the ways of harvesting resulting from
intrinsic causes, but this does not affect the principle. The present aim is to study the
behaviour of the yield factor in steady state situations, so µ̇ = 0, and compare the different
life styles: filaments, rods and isomorphs, propagating via division and eggs. For this
purpose, we strip the population of as many details as possible and think of it in terms of
the diagram given in figure 5.13

The yield factor can be obtained in a two-step procedure. First, the equilibrium sub-
strate density is obtained from the characteristic equation with µ̇ = 0:

1 =
∫ ∞

0
Prob{a† > a}Ṙ(a) da (5.41)

which thus gives the food density at which each individual can, on average, just replace
itself before being harvested. When the age at division is ad and Ṙ(a) da = 2(a = ad)
we get Prob{a† > a} = (a < ad) exp{−ṗa} for dividing individuals. For these organisms,
(5.41) reduces to exp{−ṗad} = 0.5 or ad = ṗ−1 ln 2 and the stable age distribution is
φa(a) = (a < ṗ−1 ln 2)2ṗ exp{−ṗa}. For reproducing individuals, the survivor function is
Prob{a† > a} = exp{−ṗa} and the stable age distribution is simply φa(a) = ṗ exp{−ṗa}.
The reproduction rate is given in (3.47). Note that if we harvest randomly, which results
in an exponential survivor function, we may as well assume that the individuals stay in the
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Figure 5.12: Populations of daphnids, Daphnia

magna fed a constant supply of food, the green alga
Chlorella pyrenoidosa at 20 ◦C, grow to a maximum
number of individuals that is directly proportional to
food input [405]. From this experiment, it can be con-
cluded that each individual requires 6 algal cells per
second just for maintenance. No deaths occurred be-
fore day 24. A reduction of food input to 30 × 106

cells day−1 after day 24, resulted in almost instant
death if the populations were at carrying capacity.
The 240×106 cells day−1 population was still growing
when the food supply was suddenly reduced, so the en-
ergy reserves were high, and it produced many winter
eggs. The daily food supply related to the cumulated
number of winter eggs as

240 120 60 30 12 6 106 cells d−6
38 1 3 1 0 0 wintereggs

food faeces

biovolume

maintenance losses

Figure 5.13: The population, quantified as
the sum of the volumes of the individuals, con-
verts food into faeces, while extracting energy.
Part of this energy becomes lost in maintenance
processes and part of it is deposited in losses,
i.e. the cumulated harvest. The harvesting ef-
fort determines the allocation rules and sets the
population size and so its impact on resources.

population and that the population is growing exponentially at rate ṗ. This symmetry of
the role of µ̇ and ṗ in the characteristic equation becomes lost if we harvest in a non-random
way.

The second step is to find the equilibrium number of individuals from the balance
equation for food:

ṗXr =
N
∑

i=1

İi = {İm}fNEV 2/3 (5.42)

which simply states that all supplied food is eaten by the population, because we do not
harvest food. The ingestion rates for filaments, rods and isomorphs are given in (3.3)
and (3.2). Substitution results in the balance equations collected in table 5.2. The mean
volume and surface area that occur in these equations are given in table 5.1.

The yield factor, i.e. the ratio of the harvested biomass to the supplied food, is

Y =

∫

a ḣ(a)φa(a)V (a) da

{İm}f
∫

a φa(a)V 2/3(a) da
(5.43)
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Table 5.2: The food balance equation, the throughput rate ṗ, and the scaled yield, y ≡ Y {İm}/v̇,
as functions of the scaled functional response, f ≡ X0/(X0 + K).

filaments:

ṗXr = N [İm]fEV

ṗ

ν̇
=

f − ld
f + g

y =
1

f

f − ld
f + g

rods:

ṗXr = N [İm]f

(

δ

3
Vd + (1 − δ

3
)EV

)

ṗ

ν̇
= f

ld/f − 1 + δ/3

f + g
ln 2

(

ln
ld/f − 1 − δ/3

2ld/f − 2

)−1

y =
1

f + g



1 +
ld
f

ln
{

1 + δ/3
1−ld/f

}

/ ln 2 − 1

ld/f − 1 + δ/3





−1

dividing isomorphs, lb = ld2
−1/3, lp = ld, α ≡ f−lb

f−lp :

ṗXr = N{İm}fEV 2/3

ṗ

ν̇
=

ln 2

lnα

lp/3

f + g

y =
ln 2

lnα

1

3(f + g)

El3

fEl2

reproducing isomorphs, α ≡ f−lb
f−lp :

ṗXr = N{İm}fEV 2/3

ṗ

ν̇
=

ṗ

γ̇

lp/3

f + g
with ṗ/γ̇ implicit from :

e0/3

(1 − κ)q
=

f + g

αṗ/γ̇
f3 − l3p

ṗ/γ̇
− f2 f − lb

α1+ṗ/γ̇

2g + 3f

1 + ṗ/γ̇
+ f

(f − lb)
2

α2+ṗ/γ̇

g + 3f

2 + ṗ/γ̇
− (f − lb)

3

α3+ṗ/γ̇

f

3 + ṗ/γ̇

y =
ṗ/γ̇

3(f + g)

El3

fEl2
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For random harvesting, this reduces to X1/Xr. The total biomass in the bio-reactor is
X1 = NEV . Since we assumed that ṗXr is constant, Xr increases if ṗ decreases and
visa versa. If ṗ → 0, the biomass approaches X1 = ṗXr([İm]ld)

−1 = ṗXrV
1/3
m /{İm}. For

increasing harvesting rates, the biomass in the bio-reactor will decrease. The biomass
density as a fraction of its maximum equals

x =
1

f

∫

a Prob{a† > a}l3(a) da
∫

a Prob{a† > a}l2(a) da
(5.44)

=
{İm}
ṗXr

NEV (5.45)

For random harvesting, this reduces to x = X1{İm}gṁ(v̇ṗXr)
−1 = ygṁ/ṗ = yldν̇/ṗ, where

y stands for the dimensionless scaled yield y ≡ Y {İm}/v̇. For isomorphs, this amounts to
x = E l3(fE l2)−1.

Table (5.2) gives the formula for filaments, rods and dividing and reproducing ectother-
mic isomorphs. For the purpose of producing a figure like 5.14, it is easier to choose values
for the scaled functional response and solve the corresponding harvesting rate, rather than
the other way around. It serves as an entry in figure 5.14 and its range from lb to 1 is
known beforehand, while the maximum harvesting rate must be obtained numerically. To
aid the comparison of the different life styles, energy investment in wall material as well
as the time for dna duplication have been neglected for the rods, and incubation time has
been neglected for reproducing isomorphs.

Figure 5.14 shows that all four yield factors, total biovolumes and food densities are
quite comparable, despite the differences at the individual level. The three types of dividing
organisms are especially hard to distinguish. The difference between filaments and rods has
been maximized in the figure, by taking the aspect ratio to be equal to its maximum value
δ = 0.6, the value for cocci. Most rods will resemble filaments even more closely. If the
dna duplication time for rods is not negligibly small, the yield factor has less tendency to
decrease at high harvesting rates. The comparison of reproducing and dividing organisms is
hampered by the problem of selecting appropriate parameter values. The role of κ remains
hidden in the compound parameters ld and g for dividing organisms, while it becomes more
explicit in the reproduction rate. The problem is how realistic is it to take the costs of
development as equal in both cases. The scaled length at birth is taken to be equal to the
scaled length just after division, in figure 5.15; again, it is not obvious how the comparison
can best be done.

Figure 5.15 does make clear, however, that the yield factor is far from constant, due
to the priority of the maintenance rate, which is incorporated in the scaled length ld. The
yield factor appears to have a maximum value at moderate harvesting efforts. The main
reason for the lower yield factors at the very high harvesting rates lies in the quality of
the individuals. The yield factor measures volume only and neglects the fact that energy
reserve density increases with increasing food availability and so with increasing harvesting
efforts. It should be noted that the maximum sustainable harvesting effort occurs at a
substantial total biovolume. When applied in fisheries for example, the massage is that
it is very difficult to judge the maximum ‘safe’ harvesting quota on the basis of standing
crops.
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Figure 5.14: Stereo view of the scaled yield factor y as a function of the scaled total biovolume
x of the population and the scaled functional response f for populations subjected to constant
food input and different harvesting efforts at steady state. The four curves relate from low to high
maxima to dividing filaments, rods and isomorphs, and reproducing isomorphs (right curve). The
parameter values are ld = lp = 0.133 21/3, g = 0.033, δ = 0.6 (rods only), κ = 0.3 and lb = 0.133
(reproducing isomorphs only).

Figure 5.15: Stereo view of the yield factor for reproducing isomorphs subjected to random and
age-specific harvesting. Parameters: lb = 0.133, lp = 0.417, g = 0.033 and κ = 0.3.
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Figure 5.15 also shows that low harvesting rates go with high biomass densities; this
partly explains the global distribution of standing crops. Primary production depends
mainly on irradiation, which has a limited variation from the poles to the equator. This
means that food input is more or less constant. Harvesting rate depends on temperature,
and this means that the rate is reduced in the polar areas. The high biomass densities
found in the polar regions are a direct consequence of this.

Random harvesting is one particular way to select individuals. In some situations,
it makes sense to study the effect of harvesting only individuals that are larger than a
particular size (i.e. older than a particular age in equilibrium situations). The aging process,
for example, harvests older individuals at a higher rate. Random harvesting is compared
with age-specific harvesting in figure 5.15. If the individuals are harvested at age a†,
the stable age distribution of the population becomes φa(a) = (a < a†)/a†. The scaled
functional response in the equilibrium situation of harvesting at age a† must again be found
from the characteristic equation (5.41), with the survivor function for the individuals:
Prob{a† > a} = (a < a†) . The scaled biomass again equals x = E l3(fE l2)−1. The scaled
yield factor equals the non-instantaneous yield factor as introduced for individuals, (4.18),

because each individual only replaces itself in equilibrium situations. So
∫ t(l)
0 Ṙ(t) dt =

1, which reduces (4.18) to yn =
l(a†)

3

gṁf
∫ t(l)

0
l2 dt

=
l(a†)

3/3

(g+f)fγ̇a†El2 . The difference between the

present yield and that at the individual level is that in the latter instance we had direct
experimental control over food density, while in the former it was indirect. Age-specific
harvesting proves to be almost the same as random harvesting (as a continued process).
This remarkable result thus indicates that it matters little how we select individuals for
harvesting; a more realistic incorporation of the aging process will have the same result.

If we allow three ways of harvesting simultaneously, i.e. random, partial numbers of
neonates and complete numbers of a cohort of a specific age, the maximum yield is ob-
tained by harvesting neonates as well as individuals of a certain age, while not harvesting
randomly. The age at maximum yield with additional harvesting of neonates is the same as
without harvesting neonates. Since the way of selecting individuals hardly affects the yield
factor, this result is of little practical value. Its significance lies in the result obtained by
Beddington and Taylor [51], that maximum sustainable yield in a population of constant
size, on the basis of a discrete time Leslie model, is obtained by complete removal of one
age class, and the partial removal of a second one. Although I did not study all possi-
ble choices for the survival function, it seems that this result also applies to the present
continuous time model with interaction between individuals.

It should be noted that the discussion in this section is a bit too simple. A stable age
distribution does not exist for at least part of the appropriate range of parameter values
for reproducing isomorphs [415]. The deb model appears to generate cycles in fed batch
situations, which could be partly reduced by allowing a small scatter among parameter
values between different individuals as will be discussed later in this chapter, {210}. When
stable age distributions do not exist, the analytical analysis of the yield factor becomes
extremely complicated. Computer simulations indicated that the mean conversion factor
closely follows the expected value based on the above mentioned analysis.

A few remarks must be made on behalf of the comparison of these results with the
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extensive literature on conversion efficiencies. See e.g. Getz and Haight [252], who use age-
structured discrete-time models in the context of forestry and fisheries, and van Straalen
[692], who surveyed concepts relating to turnover rates in age-structured continuous time
models. Studies that involve real populations usually consider effects of experimental or
man-induced harvesting efforts only. So they exclude ‘naturally’ occurring losses, which
usually remain unknown. The practical significance of such an approach is obvious, because
these natural loss rates are hard to control experimentally and the primary interest is
usually to evaluate the effect of (commercial) harvesting programs. I did not make this
distinction because the effects of these programs depend on the naturally occurring loss
rates within the context of the deb model.

Another basic difference from most of the literature is that the present evaluation of
conversion efficiency allows for the interaction between individuals with regard to compe-
tition for food. By this I mean that if individuals are harvested at an increasing rate, their
numbers are likely to reduce, which means higher food availability and so a higher growth
rate for the remaining individuals. This feedback is rarely taken into account, because most
models are age-structured, implying a fixed relationship between size and age, independent
of food supply. The realism of this feedback is illustrated by the fact that most species of
whales now tend to produce young at an earlier age than in the past when they were much
more abundant.

5.4.1 Product and weight yield for deb filaments

The product formation rate, such as that for penicillin, is of considerable practical and
commercial interest. Microbial product formation is also the basis of many intriguing
symbiontic relationships between organisms. The bacterium Vibrio alginolyticus excretes
tetrodotoxin, which is used by chaetognats and the blue ringed octopus Hapalochlaena

maculata to capture prey via sodium channel blocking. The tetraodontid fish Fugu vermic-

ularis and the starfish Astropecten polyacanthus receive some protection against predators
from this toxin [718]. This subsection deals with the conversion of substrate into biomass
and products of deb filaments in chemostats on the basis of C-moles. It serves as an
introduction to the subsection on mass-energy coupling.

Chemostats have two basic control variables: throughput rate, ṗ, and substrate density
in the supply, Xr. (Note that for reasons of consistency of notation, substrate density is
expressed as volume of substrate per volume of environment; the coefficient dmx converts
it to moles.) To show how production rates depend on these control variables, we start
from (5.13) – (5.15) in unscaled form and append product formation in the deb model for
filaments.

Micro-organisms can produce products via several routes. If the deb model still applies
in the strict sense, the mere fact that product formation costs energy implies that product
formation must be a weighted sum of the energy fluxes assimilation, maintenance and
growth investment. The energy drain to product formation can then be considered as
overhead costs in these three processes. The necessity to tie product formation to all the
three energy fluxes in general becomes obvious in a closer analysis of fermentation; see
{195}. If product formation is independent of one or more energy fluxes, mass balance
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equations dictate that more than one product must be made under anaerobic conditions
and that the relative amounts of these products must depend on the population growth rate
in a very special way. Note that in the Monod case, maintenance and reserves are absent,
so that assimilation is proportional to growth investment, which leaves just a single energy
flux available to couple to product formation. In the Marr–Pirt case, reserves are absent, so
that assimilation is proportional to maintenance plus growth investment, which leaves two
energy fluxes available to couple to product formation. Maintenance and reserves together
allow for a three dimensional base for product formation.

The change in product density becomes

d

dt
P =

[dPA]

[Em]
[Ȧm]fX1 +

[dPM ]

[Em]

[Ṁ ]

κ
X1 +

[dPG]

[Em]

[G]

κ

d

dt
X1 (5.46)

The maximum reserve capacity [Em] is introduced just to convert energy fluxes to volume
fluxes, so that the parameters [dP∗] convert volumes to moles. The last term refers to
product formation coupled to the rate of synthesis of structural biomass. Since both
assimilation and maintenance are proportional to biomass, product formation is a weighted
sum of biomass X1 and growth d

dt
X1 in steady state situations. This rate of product

formation was proposed by Leudeking and Piret [433] in 1959. They studied lactic acid
fermentation by Lactobacillus delbruekii. Leudeking–Piret kinetics has proved extremely
useful and versatile in fitting product formation data for many different fermentations [29].

In a chemostat with a throughput rate ṗ and a density Xr of substrate in the supply
flow, the dynamics of the substrate, reserves, biomass and product density are

d

dt
X0 = ṗXr − [İm]fX1 − ṗX0 with f ≡ X0/(K +X0) (5.47)

d

dt
e = ν̇(f − e) (5.48)

d

dt
X1 =

(

ν̇e− gṁ− ṗae(1 + g)

e+ g
− ṗ

)

X1 (5.49)

d

dt
P = [dPA]ν̇fX1 + [dPM ]ṁgX1 + [dPG]g

ν̇e− ṁg

e+ g
X1 − ṗP (5.50)

where ν̇ relates to the ‘true’ yield and the maximum gross population growth rate as
ν̇ = g[İm]Yg = gṁ+ µ̇◦

m(1 + g). In equilibrium we have

e = f =
g(ṁ+ ṗ)

ν̇ − ṗ− ṗa(1 + g)
(5.51)

X1 =
Xrṗ

[İm]f

(

1 − fK/Xr

1 − f

)

(5.52)

P

X1

= [dPA]
ν̇f

ṗ
+ [dPM ]

ṁg

ṗ
+ [dPG]

g

ṗ

ν̇f − ṁg

f + g
(5.53)

This equilibrium only exists if the throughput rate ṗ is less than the maximum one

ṗm =
ν̇ − ṗa(1 + g) − gṁ(1 +K/Xr)

1 + g(1 +K/Xr)
(5.54)
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otherwise biomass washes out completely. If the concentration of substrate in the feed
is large in comparison with the saturation coefficient, the maximum throughput rate ap-
proaches the maximum net population growth rate. If the death rate is small at the same
time, the maximum throughput rate approaches the maximum gross population growth
rate µ̇◦

m = ν̇−ṁg
1+g

.
Since structural biovolume cannot be measured directly, total biomass expressed as

C-moles has a practical value; see {37}. Analogous to (2.10), the living biomass density is
W1 = ([dmv] + [dme]e)X1. (It is a density because X1 is a density.) In equilibrium, where
e = f , (5.12) can be applied to find the total biomass in a chemostat, including the dead

filaments. We have to multiply X1 by ṗaṁ+ṗ(µ̇◦m+ṁ)
ṗ(ṁ+µ̇m−ṗa)

to arrive at the total biomass.
The molar yield of a quantity is the ratio of its production rate in moles and the

molar uptake, which equals dmx[İm]fX1 = dmxṗ(Xr − X0). The index m in mY is used
to distinguish yields on the basis of C-moles from that on the basis of volume. The yield
of dry weight, mYW1 ≡ ṗW1

dmxṗ(Xr−X0)
, and product mYP ≡ ṗP

dmxṗ(Xr−X0)
per mole of substrate

that has been taken up then amounts to

mYW1 =
[dmv] + [dme]f

dmx[İm]f

ṗaṁ+ ṗ(µ̇◦
m + ṁ)

µ̇◦
m − ṗa + ṁ

(5.55)

mYP =
[dPA]

dmx[İm]
ν̇ +

[dPM ]

dmx[İm]

ṁg

f
+

[dPG]

dmx[İm]

g

f

ν̇f − ṁg

f + g
(5.56)

These equations can be used to optimize reactor performance, if the financial costs and
benefits for substrate, biomass and products are known.

If death is negligible, so ṗa = 0 and µ̇◦
m = µ̇m = ν̇−ṁg

1+g
and ṗ = µ̇ at equilibrium, the

molar yields of reserves, structural biomass, total biomass and product reduce to

mYE = tEµ̇ mYX1 = tX1

µ̇
g
ν̇−µ̇
ṁ+µ̇

mYW1 = mYE + mYX1 mYP = tPAν̇ + (tPMṁ+ tPGµ̇) ν̇−µ̇
ṁ+µ̇

(5.57)

where time parameters

( tX1 tE tPA tPM tPG ) ≡ (dmx[İm])−1( [dmv] [dme] [dPA] [dPM ] [dPG] )

are introduced to simplify the notation; they can readily be estimated from measurements,
as will be shown in the next subsection. The practical application is to get rid of the
parameter [İm], which is usually difficult to obtain because of its association with conversion
coefficients.

Use of the time parameters tX1 and tE allows for a simple expression for the biomass
density in terms of the molecular weights of structural biomass and energy reserves at
constant substrate density:

W1 = ([dmv] + [dme]f)X1 = dmx(wX1tX1/f + wEtE)µ̇(Xr −X0) (5.58)

where biomass density W1 is expressed in C-mole per volume.
Parameter values can depend on properties of the substrate, such as the chemical po-

tential µ̃X0 . Since [Ȧm]/dmx[İm] stands for the assimilation energy per C-mole of substrate,
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Figure 5.16: The molar yield of biomass corrected
for a fixed population growth rate of µ̇ = 0.2 h−1

is proportional to the chemical potential of sub-
strate, expressed per C-mole in combustion reference.
Data from Rutgers [622] for Pseudomonas oxalaticus

(•) and from van Verseveld, Stouthamer and others
[473,735,736,737,738] for Paracoccus denitrificans (◦)
under aerobic conditions with NH+

4 as nitrogen source,
corrected for a temperature of 30 ◦C. No product, or a
negligible amount, is formed during these experiments
[735].

it seems reasonable to assume that [Ȧm] is proportional to the chemical potential of sub-
strate. If we tie the maximum reserve capacity [Em] to [Ȧm], see {218} for arguments, the
specific energy conductance ν̇ would become independent of the chemical potential and
the molar yield of biomass mYW1 would become proportional to the chemical potential for
a fixed value of µ̇ via [Em] in g and in [dme]. This is confirmed in figure 5.16.

5.4.2 Mass-energy coupling

Some microbiologists find a description of input-output relationships of individuals hard
to accept on the basis of energy fluxes that cannot be measured directly. They prefer a
description in terms of mass fluxes, which are of interest in their own right. A rigorous
derivation of the respiration rate can be made on the basis of mass balance equations. In
the first chapter, {4}, I discussed the problem that detailed descriptions of mass fluxes
pose. A crude description, however, is feasible and instructive. The deb model allows
for such a crude description, because it assumes homeostasis for both structural biomass
and (energy) reserves. The significance of the discussion in this subsection is that the
partitioning of biomass into a structural and a reserve component poses no fundamental
problems in the analysis of mass fluxes. On the contrary, mass flux analysis can be used
to decompose the biomass into both components in a unique way and to partition mass
fluxes over uptake, maintenance and growth. One of the major advantages of the present
approach is that it is no longer necessary to assume that the composition of biomass is
fixed. It can depend on the nutritional state (in a special way).

Macro-chemical reaction equation

I will illustrate the construct for filaments in steady state and follow the microbiological
tradition of expressing mass in C-moles; see {37}. The death rate is assumed to be small,
just to simplify the expressions. The discussion will be restricted to growth on a single
energy substrate, or on a mixture of substrates with fixed relative uptake preferences. So
we are seeking a specification of the macro-chemical reaction equation

E-substrate,X0

CHnHX0
OnOX0

N
n+X0
nNX0

+
N-substrate,N

mYNHnHN
OnON

Nn+N
nNN

+
oxygen,O
mYOO2

k̇→
biomass,X1

mYX1CHnHX1
OnOX1

NnNX1
+
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+
reserves,E

mYECHnHE
OnOE

NnNE
+

carbonate,C
mYCCHO−1

3 +
water,A
mYHH2O +

protons,+

mY+H+1 +
product,P

mYPCHnHP
OnOP

Nn+P
nNP

The symbols N , O, C, A and + will be used as names for the different compounds, as
indicated. For the moment I assume that the n’s are known, but on {196} I will solve the
problem to obtain n∗E and n∗X1 from observations on n∗W1 , where ∗ stands for H, O, or
N and W1 for total biomass, including the structural and reserve components. The yield
coefficients for supplied compounds are taken to be negative, while yield coefficients for
produced compounds are taken positive. Some of the yield coefficients, such as for water,

mYA, can for this reason be both positive and negative, depending on substrate type and
organism, but most of the yield coefficients usually have one sign only. The five yields that
relate to ‘minerals’ and electric charge will be solved from the mass balance equations,
while the deb model specifies the ones corresponding to biomass, reserves and products,
see (5.57), as well as the transformation rate. The method of determining the coefficients
on the basis of the deb model is simple if one realizes that the coefficients represent molar
yields. The description will include more than one product.

From energy to mass

The balance equations for the four elements and the electric charge can be expressed
conveniently as

















1 0 0 0 0
1 2 0 nHN 1
3 1 2 nON 0
0 0 0 nNN 0
−1 0 0 n+N 1


























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
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mY+

















= −

















1 1 1 1 1 · · ·
nHX0 nHX1 nHE nHP1 nHP2 · · ·
nOX0 nOX1 nOE nOP1 nOP2 · · ·
nNX0 nNX1 nNE nNP1 nNP2 · · ·
n+X0 0 0 n+P1 n+P2 · · ·







































mYX0

mYX1

mYE
mYP1

mYP2

...























(5.59)
Each column of both matrices gives the elemental composition of a compound in the macro-
chemical reaction equation. Inclusion of more elements, such as phosphorus and sulfur,
only appends extra rows. By definition we have mYX0 ≡ −1. The following notation is
introduced to prevent losing one’s way in the jungle of coefficients

YT
M ≡

(

mYC mYA mYO mYN mY+

)

(5.60)

YT
D ≡

(

−1 mYX1 mYE mYP1 mYP2 · · ·
)

(5.61)

u ≡

















1 0 0 0 0
1 2 0 nHN 1
3 1 2 nON 0
0 0 0 nNN 0
−1 0 0 n+N 1

















−1

n ≡

















1 1 1 1 1 · · ·
nHX0 nHX1 nHE nHP1 nHP2 · · ·
nOX0 nOX1 nOE nOP1 nOP2 · · ·
nNX0 nNX1 nNE nNP1 nNP2 · · ·
n+X0 0 0 n+P1 n+P2 · · ·

















(5.62)

The deb model specifies YD, see (5.57), which is indicated by the index D. The five
remaining yield coefficients YM can be solved from the mass balance equations (5.59).
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The solution of the yield coefficients for the ‘minerals’ reads

YM = −unYD (5.63)

For NH+
4 as N-substrate, the matrix u becomes

u =

















1 0 0 0 0
1 2 0 4 1
3 1 2 0 0
0 0 0 1 0
−1 0 0 1 1

















−1

=

















1 0 0 0 0
−1 1

2
0 −3

2
−1

2

−1 −1
4

1
2

3
4

1
4

0 0 0 1 0
1 0 0 −1 1

















(5.64)

The matrix u of coefficients has an odd interpretation in terms of reduction degrees. The
third row, i.e. the one that relates to oxygen yield, represents the ratio of the reduction
degree of the elements C, H, O, N and the electric charge and that of O2, which is −4.
That is to say, N-atoms count for −3 in these reduction degrees, whatever their real values
in the rich mixture of components that are present. The third row of un thus represents
the ratio of the reduction degrees of X0, X1, E and P and that of O. Sandler and Orbey
[626] discuss the concept of generalized degree of reduction.

The rate of the macro-chemical reaction is the total ingestion rate, expressed as number
of ‘molecules’ per time, so k̇ = dmx[İm]fX1 or dmxµ̇(Xr−X0) in a chemostat at equilibrium.
Via (5.51) this amounts to

k̇ = dmxµ̇

(

Xr −K
g(ṁ+ µ̇)

ν̇ − µ̇− g(ṁ+ µ̇)

)

where µ̇ and Xr are the control variables of the chemostat.
These expressions show that the deb model fully specifies the macro-chemical equation.

Respiration

The mass flux consideration now allows a more rigorous interpretation of the respiration
rate in terms of energy fluxes. More specifically, it is possible to associate oxygen, carbon
dioxide and other mass fluxes with the three energy fluxes, assimilation, maintenance and
growth investment, as has been done for products in (5.57):

mY∗ = t∗Aν̇ + (t∗Mṁ+ t∗Gµ̇)
ν̇ − µ̇

ṁ+ µ̇
(5.65)

where ∗ stands for C, A, O, N , +, X0, X1 or E. An important difference between ‘mineral’
products and the other masses is that the time parameters for ‘mineral’ products are not
free parameters; their values are fully determined by the mass balance equations. The time
parameters can be found by equating (5.65) to (5.63). The result is

tM ≡

















tCA tCM tCG
tAA tAM tAG
tOA tOM tOG
tNA tNM tNG
t+A t+M t+G

















= −un























tX0A tX0M tX0G

tX1A tX1M tX1G

tEA tEM tEG
tP1A tP1M tP1G

tP2A tP2M tP2G
...

...
...























≡ −un tD (5.66)
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The first three rows of tD are:







tX0A tX0M tX0G

tX1A tX1M tX1G

tEA tEM tEG





 =







−ν̇−1 0 0
0 0 tX1/g
tE −tE −tE





 (5.67)

The derivation is simple after converting (5.65) and (5.63) to second degree polynomials in
µ̇, via multiplication with (ṁ+µ̇), and equating the three polynomial coefficients separately.
The matrix notation of the time parameters can be used to rewrite (5.65) as

tM









ν̇
ṁ ν̇−µ̇

ṁ+µ̇

µ̇ ν̇−µ̇
ṁ+µ̇









= YM and tD









ν̇
ṁ ν̇−µ̇

ṁ+µ̇

µ̇ ν̇−µ̇
ṁ+µ̇









= YD

The interpretation of the time parameters can, for instance, be illustrated for reserves.
Reserves are supplied via assimilation and used via maintenance and growth investment,
with equal weights for all the three energy fluxes. The absolute values of tEA, tEM and
tEG are therefore the same, they only differ in sign. Assimilation and maintenance do not
contribute to growth investment, thus tX1A = tX1M = 0, while tX1G is positive. Substrate
is used at a rate that depends on assimilation, but maintenance and growth do not affect
substrate directly, so tX0M = tX0G = 0.

The significance of the decomposition of the mass fluxes into three components that
relate to energy fluxes is in mass conversions in transient, i.e. non-equilibrium, situations.
Although yield coefficients change in value when death is introduced, the time parameters
are unaffected. The dynamics of product density (5.46) also describes uptake of oxygen
and production of carbonate and protons by substituting t∗Admx[İm] for [dPA], t∗Mdmx[İm]
for [dPM ] and t∗Gdmx[İm] for dPG, with ∗ standing for O, C or +. The result for oxygen
consumption, for instance, is

(dmx[İm]X1)
−1 d

dt
O = tOAν̇f + tOMṁg + tOGg

ν̇e− ṁg

e+ g

Fermentation

Fermentation is an anaerobic process in which organic compounds act as electron donor
as well as electron acceptor. Usually several products are made rather than just one.
These products can be valuable substrates under aerobic conditions, but under anaerobic
conditions mass balances force organisms to leave them untouched. Cellulose is fermented
to products such as acetate, propionate, butyrate and valerate in cows [632], which micro-
organisms cannot use as substrates under anaerobic conditions (much to the benefit of the
cow!).

Under anaerobic conditions we have mYO = 0. Substitution of this value in (5.65) shows
that this translates into the three constraints

0T = ( tOA tOM tOG )
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where the time parameters are given in the third row of (5.66). The practical implemen-
tation of these constraints in non-linear regressions is via Lagrange multipliers, which can
be found in standard texts on calculus. An interesting consequence of these constraints
is that there are no free parameters for product formation if just one product is made.
Mass balances then fully determine how this product is tied to the three energy fluxes. If
tPiM = tPiG applies, (5.65) shows that product formation is linear in the population growth
rate, which reduces the number of constraints to two. This special case corresponds with
production associated with assimilation and the κ-rule for energy allocation to production
processes.

From mass to energy

Let us now consider the inverse problem: what information about the parameter values
of the deb model can be obtained from observations about the coefficients of the macro-
chemical reaction? A practical point is that elements associated with the energy reserves
are not separable from those associated with structural biomass. This makes the relative
abundances of the elements dependent on the population growth rate. If we assume that
these relative abundances have been measured, it is possible to substitute

mYW1CHnHW1
OnOW1

NnNW1
= mYX1CHnHX1

OnOX1
NnNX1

+ mYECHnHE
OnOE

NnNE
(5.68)

with mYW1 = mYX1 + mYE and n∗W1 = mY
−1
W1

(mYX1n∗X1 + mYEn∗E), where ∗ stands for H,
O, N or +.

For the special case that n∗X1 = n∗E = n∗W1 , which is in fact the standard assumption
in the microbiological literature, and for NH+

4 as N-substrate, (5.63) together with (5.64)
give a simple relationship between the molar yields of biomass and oxygen if no products
are formed:

mYO = −
(

−1 −1
4

1
2

3
4

1
4

)

















1 1
nHX0 nHW1

nOX0 nOW1

nNX0 nNW1

n+X0 n+W1

















(

−1

mYW1

)

This result follows directly from the mass balance equation and does not use any model
assumption on resource uptake and use. The only assumption is that of constant biomass
composition. In view of the interpretation of the third row of u, the result can be rewritten
as γX0 mYX0 = γO mYO + γW1 mYW1 , where γ∗ represents the reduction degree of X0, O or
W1. This result is well known from the microbiological literature [306,608]. Figure 5.17
compares the measured oxygen yield with the yield that has to be expected on the basis
of this relationship and measured values of biomass yields mYW1 , for a wide variety of
organisms and 15 substrates that differ in nHX0 and nOX0 , but all have nNX0 = 0. The
substantial scatter shows that the error of measurement is large and/or that the biomass
composition is not equal for all organisms and is not independent of the growth rate. It is
thus assumed here that, in general, n∗X1 6= n∗E and that n∗W1 depends on the population
growth rate µ̇.
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Figure 5.17: The expected molar yield for oxy-
gen as a function of the measured value based
on the assumption of a constant and common
biomass composition of nHW1 = 1.8, nOW1 = 0.5
and nNW1 = 0.2 for a wide variety of bacte-
ria (•), yeasts (⋄), fungi (2) and the green alga
Chlorella (△). The expectation is based on mea-
sured yields for biomass. Data gathered from
the literature by Heijnen and Roels [306] on
aerobic growth on a wide variety of substrates
without product formation and NH+

4 as nitrogen
substrate.

Just as for products and ‘minerals’, biomass and reserve yields can be decomposed into
components associated with assimilation, maintenance and growth such as

mYW1 = tW1Aν̇ + (tW1Mṁ+ tW1Gµ̇)
ν̇ − µ̇

ṁ+ µ̇

with
(

tW1A tW1M tW1G

)

=
(

tX1A tX1M tX1G

)

+
(

tEA tEM tEG
)

So instead of measured values for mYX1 and mYE and known values for nHX1 , nOX1 ,
nNX1 , nHE, nOE and nNE, we now have measured values for mYW1 , nHW1 , nOW1 and nNW1 .
The parameters that should be estimated now include nHX1 , nOX1 , nNX1 , nHE, nOE and
nNE. The identification of the parameters that can be estimated is a bit more complicated
than usual, particularly if no products are produced. The nature of the problem can best
be illustrated with a simple model that relates an observed variable y to different values of
a known variable x. If this model is y = abx, where a and b are parameters, they cannot
both be estimated. Only the product ab can be estimated. The same problem occurs here
in a more complicated situation.

Parameter identification

The identification of estimable (compound) parameters is rather straightforward, if dif-
ferent values of µ̇ have been considered. The expression for mYW1 can be written out as

mYW1 = µ̇
ṁ+µ̇

(ν̇tX1/g+ṁtE−µ̇(tX1/g−tE)). This presentation reveals that three parameters

can be estimated from mYW1(µ̇), namely p1 ≡ ṁ, p2 ≡ ν̇tX1/g+ ṁtE, p3 ≡ tX1/g− tE. The
expression for mYW1n∗W1 can be written out in the same way, where ∗ stands for H, O or N .
This identifies p4,5,6 ≡ n∗X1 ν̇tX1/g+n∗EṁtE and p7,8,9 ≡ n∗X1tX1/g−n∗EtE as estimatable
parameters. These are rather complicated functions of the parameters of interest, but it is
possible to change to functions of these identifiable parameters that relate in a simpler way
to the parameters of interest. One possible choice is p1 = ṁ, p2 + p1p3 = (ṁ + ν̇)tX1/g,
p3 = tX1/g − tE, p4,5,6+p1p7,8,9

p2+p1p3
= n∗X1 and p4,5,6 − p3

p4,5,6+p1p7,8,9

p2+p1p3
= (n∗X1 − n∗E)tE. This

seems to be the set of estimatable parameters that relate to the original ones in the most
simple way. If the maximum population growth rate µ̇m = ν̇−ṁg

1+g
and the scaled functional
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response at which no growth occurs, f0 = ld = ṁg/ν̇, see (4.9), is known as well, all
parameters can be estimated.

This discussion on estimation is given because if you try to estimate more parameters
than is possible from data using, for instance, a non-linear regression technique, the com-
puter program that you use will report trouble. The problems can have many sources and
in the more complex situations it is not always easy to identify the troubles as an invariance
problem. The standard way to obtain parameter values with this method is to start with
‘dreaming up’ values that are hopefully ‘close’ to the least squares estimates. Some values,
however, are more accurately known in advance than others. The second step is to obtain
least squares estimates of the lesser known parameters, keeping the values of the better
known parameters fixed at their initially guessed values. Then one proceeds to involve
more and more parameters in the estimation procedure. Troubles will start somewhere
during this procedure, as soon as the set of parameters that is involved in the estimation
contains an invariance problem. If the sum of squared deviations from model expectations
is minimized with a Newton Raphson or related method, a domain error will occur because
the iteration matrix has determinant zero, so that its inverse does not exist. Such an error
will also occur if the initial guesses are totally out of range.

Examples

Examples of application are based on the work of Paul Hanegraaf [285], and are given
in figure 5.18 for the prokaryote Klebsiella under aerobic conditions that does not make
products and in figure 5.19 for the yeast Saccharomyces under anaerobic conditions that
makes three types of product. Mortality is assumed to be unimportant in both examples.
The deb model describes the macro-chemical equation very well. Although the total
number of parameters is large in both examples, the numbers of parameters per data set
are only 1.1 and 1.5, respectively. Note that the abundance of nitrogen in the total biomass
increases a bit for increasing population growth rates, which implies that, in this case, the
energy reserves are richer in nitrogen than the structural biomass.

In the first data set, the values for ν̇ and g are poorly defined, while ṁ is fixed accu-
rately. This should not come as a surprise after the discussion on estimation. The relative
abundance of the elements suggests that ribosomal rna is an important component of the
reserves in the prokaryote example, in view of the high population growth rate. This will
be discussed further on {250}. Yeasts appear to be relatively rich in proteins when they
grow fast, but their maximum growth rate is about half that of Klebsiella.

Application of (5.66) allows a partitioning of oxygen consumption and carbon dioxide
production over the three energy fluxes:

Klebsiella Saccharomyces

assimilation tOA = −0.145 h tCA = 0.060 h tOA = 0 h tCA = 0.604 h
maintenance tOM = −0.287 h tCM = 0.310 h tOM = 0 h tCM = 0.065 h
growth invest. tOG = −0.028 h tCG = 0.068 h tOG = 0 h tCG = 0.005 h
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Figure 5.18: Relative abundances (left figure) of the elements H (◦), O (3) and N (2) in the
biomass and the molar yield (right figure) of biomass, △ mYW1 , carbon dioxide, ▽ mYC , water, ◦
mYA, oxygen, 3 mYO, ammonia, 2 mYN , and protons, 1 mY+, as functions of population growth
rate for Klebsiella aerogenes growing on glycerol at 35 ◦C. Data from Esener et al. [207,208].
The curves are based on expectations of the deb model for filaments. For the chosen values
of µ̇m = 1.2 h−1 and f0 = 0.01, the estimated parameters and their standard deviations are

ν̇ = 2.7 (3.7) h−1 g = 1.2 (3.1) ṁ =0.022 (0.00064) h−1

tX1 = 0.29 (0.34) h tE = 0.31 (0.34) h
nHX1= 1.641 (0.0038) nOX1= 0.38 (0.0038) nNX1= 0.195 (0.0026)
nHE = 1.646 (0.008) nOE = 0.43 (0.63) nNE = 0.36(0.17)
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Relative abundances of the elements
H (◦), O (3) and N (2) in the biomass.

Densities of substrate (glucose, 3) and
biomass (dry weight, 2)

Densities of products
ethanol, △, glycerol, ▽, pyruvate, 1

Weight-specific consumption/prod. rates
of glucose, 2, CO2, 3 and ethanol, △

Figure 5.19: All these functions of population growth rate of Saccharomyces cerevisiae at 30
◦C and a glucose concentration of 30 g l−1 in the feed have been fitted simultaneously. The
observation that the maximum throughput rate is 0.34 h−1 has also been used. Data from
Schatzmann [631]. The curves are based on expectations of the deb model, with parameters
(and standard deviations)

ν̇ = 0.461 (0.008) h−1 g = 0.385 (0.022) ṁ = 0.0030 (0.0007) h−1

tX1 = 0.098 (0.004) h tE = 0.211 (0.006) h K = 1.79 g l−1

nHX1= 1.70 (0.011) nOX1= 0.637 (0.011) nNX1= 0.071 (0.011)
nHE = 1.55 (0.022) nOE = 0.572 (0.020) nNE = 0.205 (0.021)
ethanol glycerol pyruvate
tP1A = 1.698 (0.011) h tP2A = 1.561 (0.022) h tP3A = 0.0066 (0.00004) h
tP1M= 0.637 (0.011) h tP2M= 0.572 (0.020) h tP3M= 0.0013 (0.0018) h
tP1G = 0.071 (0.011) h tP2G = 0.205 (0.021) h tP3G = −0.0077 (0.00006) h
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Comparisons in the vertical direction are relatively straightforward. Under aerobic con-
ditions, maintenance contributes most in carbon dioxide production, while under anaerobic
conditions assimilation is most important. Oxygen consumption associated with mainte-
nance is 10 times that associated with growth investment, while the ratio only amounts
to 4.5 for carbon dioxide. The respiration ratio, −mYC/mYO decreases a bit for increasing
population growth rate. Since both oxygen and carbon dioxide yields are hyperbolic func-
tions of the population growth rate, the respiration ratio is also a hyperbolic function of
the population growth rate.

In the second data set, three products are made by the yeast: glycerol (nHP1 = 8/3,
nOP1 = 1), ethanol (nHP2 = 3, nOP2 = 0.5) and pyruvate (nHP3 = 4/3, nOP3 = 1).
The description of product formation involves 3 time-parameters per product minus 3
constraints, making 2 parameters per product. A negative time parameter means that
the product is consumed, rather than produced, in the corresponding energy flux. So it
is possible that compounds are produced at a rate proportional to one energy flux and
consumed at a rate proportional to another energy flux. No theoretical problems occur as
long as there is an overall net production.

The curves in figure 5.19 are based on the following equations: for element composition
n∗W1 see (5.68) with yields mYX1 and mYE in (5.57), for substrate density X0 = Kf(1−f)−1,
with f = g ṁ+µ̇

ν̇−µ̇ , for biomass W1 see (5.58), for product densities P∗ = (Xr−X0)mYP∗ with

mYP∗ in (5.57), for maximum throughput rate ν̇−ṁg(1+K/Xr)
1+g(1+K/Xr)

, for weight-specific uptake rate

for glucose µ̇(Xr − X0)/W1 and for weight-specific production of carbon dioxide µ̇(Xr −
X0)/W1 and of ethanol mYP1µ̇(Xr −X0)/W1.

The experimental data do not obey the mass balance for carbon and oxygen in detail.
Measurements of the volatile ethanol seem to be less reliable. The mass balance-based
model fit of figure 5.19 suggests that the measured values represent 75% of the real ones,
when the measurement error is considered as a free parameter. The saturation coefficient
K was poorly fixed by the data, the chosen value should be considered as an educated
guess.

Note that the maintenance rate coefficient ṁ for Klebsiella at 35 ◦C is about ten times
that for Saccharomyces at 30 ◦C. The maintenance rate coefficient for fungi is usually found
to be much smaller in the literature [61], which Bulthuis [111] explained by the fact that
fungi make a lot of protein at high population growth rates, which costs a lot of energy. As
the maintenance rate coefficient is the ratio of maintenance and growth costs, this reduces
the maintenance rate coefficient for fungi. Since protein density is coupled to the growth
rate, however, the assumption of homeostasis dictates that most protein must be conceived
as part of the reserves, so that the costs for synthesis of structural biomass is not higher
for this reason.

5.4.3 Dissipating heat

In special situations, heat that dissipates from bioreactors can have a direct practical
interest. The significance of dissipating heat for fundamental science is, however, in the
access it gives to the free energy of structural biomass as well as of reserves. These free
energies are required for an access to entropy of biomass. Although there are several ways
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to measure entropies of pure chemical compounds, the indirect route via dissipating heat is
probably the only one available for living biomass. The setting within a thermodynamical
framework is essential for various reasons, and a more rigorous definition of the concept
‘energy’ itself is just one of them. This subsection shows how the free energies of structural
biomass and reserves can be obtained from measurements.

Many microbiological studies assume that the relative abundances of the elements are
independent of feeding conditions. In the deb theory this would mean that the relative
abundances in the structural biomass and the energy reserves are the same. This allows
the application of statistics such as 1 C-mole of biomass has a dry-weight of Wd = 24.6 g,
the mean degree of reduction is 4.2, the mean Gibbs free energy is −67 kJ C-mol−1 (pH
=7, 1 bar at 25 ◦C, thermodynamic reference) or +474.6 kJ C-mol−1 (pH=7, combustion
reference) [305]. Since biomass composition is not constant, such crude statistics are of
limited value and a more subtle approach is necessary to quantify dissipating heat.

The dissipating heat is usually related to oxygen consumption, by a fixed conversion of
519 (±13) kJ(mol O2)

−1 [29]. This choice is not fully satisfactory for the lack of a mech-
anistic underpinning and because it is obviously not applicable to anaerobic conditions.
The correlation between dissipating heat and carbon dioxide production has been found
to be reduced by variations in type of substrate [136]. Heijnen [304] related dissipating
heat to C-moles of formed biomass. This choice is problematic because of maintenance.
If substrate density is low enough, no new biomass will be produced but heat will still
dissipate. Within the context of the deb model, the only satisfactory choice is to relate
dissipating heat to the three energy fluxes assimilation, maintenance and growth invest-
ment, just as has been done for mass fluxes. The conservation law for energy tells exactly
how heat dissipation is coupled to these energy fluxes, so no new model parameter shows
up. The details are as follows.

The amount of dissipating heat depends on the chemical potentials of all compounds in
the bioreactor. The first problem to consider is that the chemical potential of a compound
itself depends on the concentration of that compound and on the concentration of all other
compounds in the bioreactor. Although complex, this problem is well defined, except for
living biomass. One of the reasons is that the concept ‘concentration’ does not extend to
compounds tied into biomass, because these compounds are not homogeneously distributed
in the environment, nor in the cell. This is the reason why I use the term ‘density’. Figure
5.19 shows that biomass density hardly depends on the throughput rate. In practice,
this also holds for most other compounds, except for the concentration of substrate. If
changes in concentrations affect chemical potentials substantially, the chemical potential
for substrate will be the first point to check. The extremes of the concentration of substrate
are found for throughput rate ṗ = 0, where X0 = Kgṁ

ν̇−gṁ according to (5.51), and for
throughput rate ṗ = ṗm, where X0 = Xr if death is negligible. The chemical potential of a
compound depends on its concentration X as µ̃ = µ̃ref +RT lnX/Xref, where R = 8.31441
JK−1mol−1 is the gas constant. It is just an unhappy coincidence that this standard
notation for chemical potentials reminds us of population growth rates, with which it has
nothing to do. The maximum relative effect of differences in concentrations of substrate
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on the chemical potential is

µ̃X0,max − µ̃X0,min

µ̃X0,ref

=
RT

µ̃X0,ref

ln

{

ν̇ − gṁ

gṁ

Xr

K

}

In the example of figure 5.19, where the chemical potential of glucose is 2856 kJ mol−1 in
the combustion frame of reference, the maximum relative effect amounts to 0.00777, which
is negligibly small in view of many other uncertainties. Although the effect of changes
in concentrations should be tested in each practical application, in this section I will not
explicitly correct chemical potentials for differences in concentrations.

The second problem to consider is the free energy of structural biomass. I shall here
treat it as some (unknown) constant, but the assumption that it is a constant which does
not depend on the population growth rate is hard to substantiate. The mean age of the cells
is inversely proportional to the population growth rate, cf. {177}, which means that the
cumulated energy invested into development, cf. {97}, decreases with increasing population
growth rate. This investment in development may reduce entropy during the cell cycle and
so affects free energy.

Let ∆H denote the heat dissipation per C-mole of substrate that has been taken up,
and collect the chemical potentials (free energies) of the various components in the vectors

µ̃µTM ≡ ( µ̃C µ̃A µ̃O µ̃N µ̃+ ) (5.69)

µ̃µTD ≡ ( µ̃X0 µ̃X1 µ̃E µ̃P1 µ̃P2 · · · ) (5.70)

just as for yields in (5.60) and (5.61). The chemical potentials of organic compounds are
expressed in C-moles. The energy balance equation now reads

0 = ∆H + µ̃µTMYM + µ̃µTDYD (5.71)

Substitution of (5.63) gives for the heat yield

∆H = (µ̃µTMun − µ̃µTD)YD (5.72)

which can again be decomposed into contributions from the three energy fluxes as has
been done for the mass fluxes in (5.46). Let κHA, κHM and κHG denote the fraction of the
energy fluxes of uptake, maintenance, and growth investment that is dissipated as heat;
see figure 5.20. The heat yield can be written as the ratios of the energy fluxes and the
substrate uptake rate in moles

∆H = κHAµ̃X0 +
κHM [Ṁ ]X1

dmx[İm]fX1

+
κHG[G] d

dt
X1

dmx[İm]fX1

(5.73)

= κHAµ̃X0 +
κHM [Ṁ ]

dmx[İm]f
+

κHG[G]

dmx[İm]f

ν̇e− ṁg

e+ g
(5.74)

∆H/µ̃E = tHAν̇ + tHM
ṁg

f
+ tHG

g

f

ν̇e− ṁg

e+ g
(5.75)

= tHAν̇ + (tHMṁ+ tHGµ̇)
ν̇ − µ̇

ṁ+ µ̇
in equilibrium (5.76)
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Figure 5.20: The partitionning of the energy
fluxes of uptake, maintenance and growth in-
vestment in a filament. The size of the fluxes
depends on substrate density, body size and
amount of reserves, but the partitionning is
fixed. The κ’s in vertical direction add to 1.
The stippled box indicates the organism.
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For ∗ standing for C, A, O, N or +, we have

κEA = − µ̃EtEA
µ̃X0

tX0A
κX1G = − µ̃X1

tX1G

µ̃EtEG

κPiA = − µ̃Pi
tPiA

µ̃X0
tX0A

κPiM = − µ̃Pi
tPiM

µ̃EtEM
κPiG = − µ̃Pi

tPiG

µ̃EtEG

κ∗A = − µ̃∗t∗A
µ̃X0

tX0A
κ∗M = − µ̃∗t∗M

µ̃EtEM
κ∗G = − µ̃∗t∗G

µ̃EtEG

κHA = − µ̃EtHA
µ̃X0

tX0A
κHM = − µ̃EtHM

µ̃EtEM
κHG = − µ̃EtHG

µ̃EtEG

where µ̃E = [Em]/[dme] is the chemical potential of the reserves and

( tHA tHM tHG ) ≡ tE( κHA/κEA κHM κHG )

where κEA ≡ [Ȧm](dmx[İm]µ̃X0)
−1 denotes the fraction of energy that has been taken up

as substrate that arrives in the reserves as assimilation energy.
The time parameters are given by

µ̃E( tHA tHM tHG ) = (µ̃µTMun − µ̃µTD)tD (5.77)

where the matrix tD is defined in (5.66). The derivation is analogous to that of (5.66);
substitute the yield coefficients (5.57) in (5.72) and equate (5.72) to (5.76), multiply by
ṁ + µ̇ to convert the equation to second degree polynomials in µ̇ and equate the three
polynomial coefficients to each other. So, given the chemical potentials of all compounds,
(5.76) together with (5.77) gives the dissipating heat. Note that (5.77) represents three
equations that are independent of µ̇, while (5.71) represents infinitely many equations,
because it still depends on µ̇. The introduction of the time parameters, therefore, reduces
complexity considerably.

Relationship (5.77) can be used to obtain the chemical potentials µ̃X1 and µ̃E from
measurements of ∆H as function of µ̇. Non-linear regression will provide estimates for
µ̃EtHA, µ̃EtHM and µ̃EtHG, since ν̇ and ṁ in (5.76) can be obtained from mass fluxes,
as has been demonstrated in the previous subsection. The practical implementation is
to consider tHA, tHM , tHG, µ̃X1 and µ̃E all as free parameters and the three equations
(5.77) as constraints on the parameter values. Lagrange multipliers can be used to deal
with these constraints. In the combustion frame of reference, we have µµTM = 0. If no
products are formed, (5.77) reduces to tHM = tE and µ̃X1 = µ̃E(tHM − tHG)g/tX1 and
µ̃E = µ̃X0 ν̇

−1(tHA + tHM)−1.
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Figure 5.21: The amount of dissipating heat
at maximum population growth rate is linear in
the free energy per C-mole of substrate on the
basis of combustion reference (pH = 7). Data
from Rutgers [622] and Heijnen and van Dijken
[305,304] for Pseudomonas oxalaticus, growing
aerobically at 30 ◦C on a variety of substrates.

The chemical potential for the total biomass is µ̃W1 = (µ̃X1 mYX1 + µ̃E mYE)mY
−1
W1

. This
chemical potential depends on population growth rate via (5.55) and (5.65). Although the
estimation of the chemical potential for biomass is laborious, application of these equations
solves the problem in principle.

The estimation procedure can be simplified by making use of the empirical finding that
heat dissipation is proportional to oxygen consumption for all µ̇. So ∆H mY

−1
O is constant

at value µ̃h ≃ 519 kJ(mol O2)
−1. Substitution of the proposition that ∆H = µ̃h mYO into

(5.72), which resulted from the energy balance equation, requires that

µ̃µTD = (µ̃huO∗ + µ̃µTMu)n

where uO∗ denotes the third row of u, i.e. the one that corresponds to oxygen. The chemical
potentials µ̃X1 and µ̃E are elements 2 and 3 of µ̃µD. The first element, µ̃X0 , can be used
to fix µ̃h = (µ̃X0 − µ̃µTMun∗X0)(uO∗n∗X0)

−1. Although these relationships are attractively
simple, the basis is empirical only and should therefore be treated with some caution.

When different substrates are compared, the dissipating heat tends to increase with
the free energy of substrate. The molar yield of biomass at a fixed population growth
rate was found to be proportional to the free energy of substrate if the maximum volume-
specific assimilation rate [Ȧm] and the maximum reserve capacity [Em] are proportional to
the free energy per C-mole of substrate, see on {191}. The dissipating heat at maximum
population growth rate is approximately linear in the free energy per C-mole of substrate
if the combustion reference is used. This frame of reference is necessary because a high
free energy of substrate corresponds with a high degree of reduction, which requires more
oxygen to release the energy. In the combustion reference, this extra use of oxygen does
not affect the relationship between free energy of substrate and heat dissipation. The
approximate linearity of this relationship is easy to infer, in absence of product formation,
when µ̇ = µ̇m = ν̇−ṁg

1+g
is substituted in YD in (5.72); the result is

YT
D = ( −1 tEµ̇m tX1µ̇m tP1Aν̇ + tP1Mṁg + tP1Gµ̇mg · · · )

Since ν̇ is independent of the chemical potential, and g is inversely proportional to it,
the maximum population growth rate will tend to ν̇ for increasing values for the chemical
potential. If no products are formed, YT

D has only three elements; tE is via [dme] and [Em]
proportional to the chemical potential of the substrate µ̃X0 , which itself is the first element
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of µ̃µD in (5.72). This is why ∆H is linear in µ̃X0 . This is confirmed by the data of Rutgers
[622]; see figure 5.21.

The idea that type of substrate and environmental conditions affect the substrate/energy
conversion [İm]/[Ȧm] (and [Em]) but nothing else, is consistent with analyses of data from
Pirt [556], who plotted the inverse of the yield against the inverse of the population
growth rate and obtained the linear relationship formulated by Marr [455]. According
to the deb theory for filaments with small reserve capacities [Em], this relationship is
1
Y

= [İm]

[Ȧm]
[G] + [İm]

[Ȧm]

[Ṁ ]
µ̇

. As Pirt noted, this relationship is linear in µ̇−1, but the slope

depends on the substrate-energy conversion [Ȧm]/[İm]. Pirt found a wide range of 0.083
to 0.55 h−1 on a weight basis for two species of bacteria growing on two substrates, aero-
bically and anaerobically. The ratio of the slope and the intercept equals the maintenance
rate coefficient, ṁ ≡ [Ṁ ]/[G], which does not depend on the substrate-energy conversion.
Pirt’s data fall in the narrow range of 0.0393 to 0.0418 h−1 [406]. These findings support
the funnel concept, which states that a wide variety of substrates is decomposed to a lim-
ited variety of building blocks, which depends of course on the nature of the substrate and
environmental conditions; these products are then built into biomass, which only depends
on internal physiological conditions, subject to homeostasis.

Battley [41] argued that maintenance might follow from kinetic arguments, but that
thermodynamics arguments lead to a rejection of the concept. This subsection and the
previous ones show, however, that the coefficients of mass and energy balance equations
can be written as functions of kinetic parameters and that such equations by no means
exclude maintenance.

5.5 Computer simulations

As long as food density remains constant and stable age-distributions exist, it is possible
to study most phenomena analytically, as illustrated in the preceding sections. For many
purposes non-equilibrium situations should be considered, which requires computer simu-
lation studies. Two strategies can be used to follow population dynamics: the family-tree
method and the frequency method.

The family-tree method evaluates the changes of the state variables for each individual
in the population at each time increment. For this purpose, the individuals are collected
in a matrix, where each row represents an individual and each column the value of a
state variable. At each time increment rows can be added and/or deleted and at regular
time intervals population statistics such as the total volume of individuals are evaluated.
The amount of required computer time is thus roughly proportional to the number of
individuals in the population which must, therefore, be rather limited. This restricts the
applicability of this method for analytical purposes, because at low numbers of individuals
stochastic phenomena, such as those involved in survival, tend to dominate. The method is
very flexible, however, which makes it easy to incorporate differences between individuals
with respect to their parameter values. Such differences are realistic and appear to affect
population dynamics substantially; see {210}. Kaiser [367,368] used the programming
environment SIMULA successfully to study the population dynamics of individual dragon
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flies, mites and rotifers.
The frequency method is based on bookkeeping in terms of (hyperbolic) partial dif-

ferential equations. Several strategies exist to integrate these equations numerically. The
method of the escalator boxcar train, perfected by Andree de Roos [611], follows cohorts
of individuals through the state space. The border of the state space where individuals
appear at birth, is partitioned into cells, which are allowed to collect a cohort of neonates
for a specified time increment. The reduction of the number of individuals in the cohorts is
followed for each time increment, as the cohort moves through the state space. The amount
of computer time required is proportional to the number of cohorts, which relates to the
volume of the state space as measured by the size of the cells. The number of cells must
be chosen by trial and error. The escalator boxcar train is just one method of integrat-
ing the partial differential equation, but it appears to be an efficient one compared with
methods that use a fixed partitioning of the state space into cells that transfer numbers of
individuals among them.

A nasty problem of the (partial) differential approach for the description of population
dynamics is the continuity of the number of neonates if the reproduction rate is very small.
This situation occurs in equilibrium situations, if the loss rate is small. The top predators
especially are likely to experience very small loss rates. Details of the handling of energy
reserves to produce or not produce a single young prove to have a substantial effect on
population dynamics.

The formulation of population changes in terms of partial differential equations is as
follows for dividing isomorphs in chemostats. Let n(t, e, l) denote the density of individuals
having scaled energy density e and scaled length l at time t, so

∫ e2
e1

∫ l2
l1
n(t, e, l) dl de is the

number of individuals having a scaled energy density somewhere between e1 and e2 and a
scaled length somewhere between l1 and l2. The total number of individuals equals N(t) =
∫ 1
0

∫ 1
0 n(t, e, l) dl de, the mean scaled surface area is E l2(t) = N(t)−1

∫ 1
0

∫ 1
0 l

2n(t, e, l) dl de,
and the total biovolume is X1(t) = N(t)VmE l3, with E l3 = N(t)−1

∫ 1
0

∫ 1
0 l

3n(t, e, l) dl de.
The change of the density is given by the von Foerster equation [224,661] for two state
variables:

∂

∂t
n(t, e, l) = − ∂

∂l

(

n(t, e, l)
d

dt
l

)

− ∂

∂e

(

n(t, e, l)
d

dt
e

)

− (ṗ+ ḣ(e, l))n(t, e, l) (5.78)

where d
dt
e and d

dt
l are given in (3.22) and (4.3) and the hazard rate ḣ(e, l) in (3.61). This

hyperbolic partial differential equation has the boundary condition

n(t, e, lb)
d

dt
l

∣

∣

∣

∣

∣

l=lb

= 2n(t, e, ld)
d

dt
l

∣

∣

∣

∣

∣

l=ld

(5.79)

For division into two equal parts, we take lb = ld2
−1/3. Substitution of (4.2) and (4.3) gives

n(t, e, lb) = 2n(t, e, ld)
v̇e− gṁld
v̇e− gṁlb

(5.80)

This formulation ties fission to the growth process. The formulations of Sinko and Streifer
[661], and Metz and Diekmann [478], treat both processes as independent. Together with
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Figure 5.22: Computer simulation of a deb-
structured population of Daphnia magna, compared
to a real laboratory population at 20 ◦C with a sup-
ply of 5×107 cells Chlorella saccarophila d−1, starting
from 5 individuals. Data from Fitsch [221]. The pa-
rameter values have been obtained independenly from
observations of individuals. Parameters:

{İm} 5 × 104 cells mm−2 h−1 ṁg 0.33 h−1 g 0.033
K 3 × 105 cells ml−1 lb 0.133 lp 0.417
p̈a 1.1 × 10−6 h−2 cv 0.5 q 0.9

the partial differential equation and its boundary condition, the differential equation

d

dt
X0 = ṗ(Xr −X0) − {İm}V 2/3

m fNE l2 (5.81)

determines the fate of the food, which shows up in d
dt
e and d

dt
l. Since these equations

describe changes only, we also need the value of X0(0) and n(0, e, l) for all e and l for some
point t = 0 in time to evaluate the time path.

If the individuals propagate by reproduction rather than by division, (5.78) and (5.81)
still apply, but the hazard rate ḣ(e, l) is now given in (4.4) and the boundary condition
reads

n(t, e, ld) =
∫

e

∫

l
Ṙ(e, l)n(t− ab, e, l) dl de (5.82)

where the reproduction rate Ṙ is given in (4.5). A problem with this delay boundary
condition is that we now need to specify n(t, e, l) for all t between 0 and the incubation
time ab as the initial condition. A substantial simplification is obtained by just neglecting
this time delay and hoping that this will not affect population dynamics too much.

Figure 5.22 demonstrates that computer simulations of deb structured daphnids closely
match the dynamics of laboratory populations. The strength of the argument is in the fact
that the parameter values for individual performance have been obtained independently.

5.5.1 Synchronization

Computer simulations of fed-batch cultures of reproducing isomorphs reveal a rather unex-
pected property of the deb model. In these simulations the food supply to the population
is taken to be constant and the population is harvested by the process of aging and in a
random way. To reduce complicating factors as much as possible, only parthenogenetically
reproducing females are considered with parameter values that are realistic for Daphnia

magna feeding on the green alga Chlorella pyrenoidosa at 20 ◦C. Reproduction in daphnids
is coupled to moulting, which occurs every 2 to 3 days at 20 ◦C, irrespective of food avail-
ability. Just after moulting, the brood pouch is filled with eggs which hatch just before the
next moult. So the intermoult period is beautifully adapted to the incubation time and
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Figure 5.23: The number of individuals (—) and the total biovolume (· · ·) in a simulated batch
culture of daphnids subjected to aging as the only harvesting effort. The individuals accumulate
reproductive effort during the incubation time in the left figure, while they reproduce egg by
egg in the right one. The parameters are ṗXr = 7 units d−1, lb = 0.133, lp = 0.417, İm = 4.99
units d−1, κ = 0.3, ṁ = 10 d−1, g = 0.033, p̈a = 2.5 × 10−5 d−2.

the buffer for energy allocated to reproduction stays open during the intermoult period.
These details are followed in the simulation study because many species produce clutches
rather than single eggs.

Figure 5.23 shows a typical result of the population trajectory: the numbers oscillate
substantially at low random harvesting rates. Closer inspection reveals that the shape
of the cycles of numbers closely follows the survival function of the aging process. The
individuals appear to synchronize their life cycles, i.e. their ages, lengths and energy re-
serve densities, despite the fact that the founder population consisted of widely different
individuals. This synchronization is reinforced by the accumulation of reproductive effort
into clutches, but it also occurs with single-egg reproduction. The path individuals take in
their state space closely follows the no-growth condition. Growth in these populations can
only occur via thinning by aging and the resultant amelioration of food shortage. After
reaching adult volumes, the individuals start to reproduce and mothers are soon outcom-
peted by their offspring, because they can survive at lower food densities. This has indeed
been observed in experimental populations [268,709].

Having observed the synchronization of the individuals, it is not difficult to quantify
population dynamics from an individual perspective when we now know that the scaled
functional response cycles from f = lb to lp. Starting from a maximum N(0) = ṗXrg2ṁ2

{İm}l3
b
v̇2

at

time 0, the numbers drop according to N(t) = N(0) exp{− ∫ t0 ḣ(t1) dt1}, down to N(tn) =

N(0)(lb/lp)
3. The total biovolume is about constant at X1 = ṗXrV

1/3
m

κ{İm} ; see table 5.3. At the

brief period of take-over by the next generation, the population deviates a little from this
regime. It is interesting to note that growth and reproduction are fully determined by the
aging process in this situation. Length-at-age curves do not resemble the satiation curve
that is characteristic of the von Bertalanffy growth curve, they are more or less exponential.
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Table 5.3: Oscillations can affect crude population statistics. This table compares statistics for
computer simulations, on the assumption that either reproduction by clutches, or by eggs laid
one at a time, with statistics that assume the stable age distribution.

statistic clutch single-egg stable age

mean scaled functional response, f 0.355 0.340 0.452
mean scaled biomass density, x 1.095 0.99 0.943
mean number of individuals, N 87.0 55.3 18.3
scaled yield coefficient, y 0.214 0.186 0.120

Biovolume density and the yield are increased by the oscillatory dynamics, compared to
expectation on the basis of the stable age distribution.

If the harvesting effort is increased, the population experiences higher food densities and
the model details for growth and reproduction become important. The shape of the length-
at-age curves switches from ‘exponential’ to von Bertalanffy, the cycle period shortens, the
generations overlap for a longer period because competition between generations becomes
less important, and the tendency to synchronize is reduced. All these changes result from
the tendency of populations to grow to situations of food shortage if harvesting rates drop.

Similar synchronization phenomena are known for the bakers’ yeast Saccharomyces

cerevisiae [532,123]. It produces buds at soon the cell exceeds a certain size. This gives a
synchronization mechanism that is closely related to the mechanism for Daphnia.

5.5.2 Variation between individuals

Although it is not unrealistic to have fluctuating populations at constant food input [665],
the strong tendency of individuals to synchronize their life cycles seems to be unrealistic.
Yet the model describes the input-output relationships of individuals rather accurately. A
possible explanation is that at the population level some new phenomena play a role, such
as slightly different parameter values for different individuals. This gives a stochasticity
of a different type than that of the aging process, which is effectively smoothed out by
the law of large numbers. This way of introducing stochasticity seems attractive because
the replicatebility of physiological measurements within one individual generally tends to
be better than between individuals. The exact source of variation in energy parameters,
however, is far from obvious. This applies especially to parthenogenetically reproducing
daphnids, where recombination is usually assumed not to occur. Hebert [298] however, has
reported that (natural) populations of daphnids, which probably originate from a limited
number of winter eggs, can have substantial genetic variation. Branta [86] was able to
obtain a rapid response to selection in clones of daphnids, which could not be explained
by the occurrence of spontaneous mutations. Cytoplasmic factors possibly play a much
more important role in gene expression than is recognized at the moment. Koch [395] has
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Figure 5.24: The coefficient of variation of the
total number, length, surface area and volume of
individuals in the population as functions of the
coefficient of variation of the scatter parameter
that operates on the parameters of individuals.
The sharp initial reduction points to the limited
realism of strictly deterministic models.

discussed individual variability among bacteria.
In principle, it is possible to allow all parameters to scatter independently, but this

seems neither feasible nor realistic. High ingestion rates, for instance, usually go with
high assimilation rates and storage capacities. The parameter values of the deb model
for different species appear to be linked in a simple way, as discussed in the section on
parameter variation. We assume here that the parameters of the different individuals within
a species are also linked in this way but vary within a narrow range. The parameters for a
particular individual remain constant during its lifetime. In this way, we require only one
simple individual-specific multiplier operating on (some of) the original parameters of the
deb model to produce the scatter. The way the scatter appears in the scaled parameters
is even simpler [415].

Parameter variation between individuals has interesting effects on population dynam-
ics: a log-normally distributed scatter with even a small coefficient of variation is enough
to prevent death by starvation at the take-over of the new generation. Moreover, each gen-
eration becomes extinct only halfway through the period of the next generation and the
amplitude of the population oscillations is significantly reduced; see figure 5.23. This may
be quantified by its effect on the coefficient of variation for population measures, defined
as

cj =

(

1

tn

∫ tn

0

∑

i

lji (t) dt

)−1
√

√

√

√

1

tn

∫ tn

0

(

∑

i

lji (t) −
1

tn

∫ tn

0

∑

i

lji (t1) dt1

)2

dt (5.83)

for j = 0, 1, 2, 3. Integration is taken over one typical cycle of length tn and the summation
over all individuals in the population. For values larger than 0.2, the coefficient of vari-
ation of the scatter parameter barely depresses the variation coefficient of the population
measures further; see figure 5.24.

The oscillations are also likely to be less if one accounts for spatial heterogeneities. This
is realistic even for daphnids, because some of the algae adhere to the walls of the vessels and
some (but not all) daphnids feed on them [238,336]. The general features of the dynamics
of experimental populations are well captured by the deb model. Emphasis is given to
the competition for food, which Slobodkin considered to be the only type of interaction
operative in his experimental food limited populations. He suggested that the competition
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between different age-size categories was responsible for the observed intrinsic oscillations,
which is confirmed by this model analysis. Nelly van der Hoeven [327] has concluded,
on the basis of a critical survey of the literature on experimental daphnid populations
with constant food input, that some fluctuations are caused by external factors. Even
populations that tend to stabilize do so, however, by way of a series of damped oscillations,
while others seem to fluctuate permanently.

5.6 Chains

This section presents the first preliminary results that one has to obtain when aiming
at community dynamics. The general strategy is to link populations of deb-structured
individuals into food chains, and in the future into food webs, where the parameters of the
participating species are subjected to body size scaling relationships, as worked out in the
next chapter. This reduces the problem of community dynamics in principle, to that of
particle size distributions in taxon free communities, as reviewed by Damuth et al. [153].

In the previous section, the population was subjected to an experimentally controlled
harvesting rate. This approach allows an extension to food chains, where the predator
population, not the experimenter, sets the harvesting effort. We still have indirect access
to the prey population via the harvesting effort exercised on the predator population. The
total volumes of substrate, prey and predator will settle to equilibrium value (or a cyclic
pattern therein), as a result of the (still constant) substrate flux to the three step food
chain and the experimentally controlled harvesting rate. The coupling between the prey
and predator populations is given by

(ṗ1 − ṗ)X1 = {İm}1,2f1,2X2
EV 2/3

2

EV 2

with f1,2 ≡
X1

K2 +X1

(5.84)

where the indices refer to the species numbers and ṗ1 denotes the individual-specific pre-
dation rate, which is defined by this equation. The coupling between the substrate and
the prey population is given in exactly the same way. With only three trophic levels, we
have ṗ2 = ṗ.

Studying the dynamic behaviour of the food chain in the chemostat environment, Bob
Kooi [401,402] constructed ‘operating diagrams’. These diagrams give the dynamics of the
system as a function of the operating parameters, the rate of dilution ṗ and concentration
of food Xr. The results presented in the operating diagrams are based upon local stability
analysis based on standard techniques, which are not described here. The analyses assumed
that the energy reserves are at their equilibrium value. Numerical studies produced the
same results for filaments without constraints on energy reserves. The parameter values
were chosen equal those given by Nisbet et al. [510], who based them on an actual
substrate-bacterium-ciliate chain.

Nisbet et al. noted that the experimental system appears to be much more stable
than is predicted by the ‘Double Monod’ model, i.e. a special case of the deb model for
filaments with [Ṁ ]i = 0 and [Em] = 0, for i = 1, 2. They concluded that the introduction
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of maintenance, as proposed by Pirt, increased the range of operation parameters that give
stable chains; however, real world chains still appear to be more stable.

The results for filaments are summarized in figure 5.25, which compares the operating
diagrams for a chain extended from length 2, 3 to 4, with and without maintenance. The
results for dividing isomorphs are almost indistinguishable from these results for filaments.
This does not come as a surprise because the yield coefficients are almost the same; see
figure 5.14. The effect of an increase of energy reserves is that washout occurs at much lower
dilution rates if the other parameters remain the same. The area of the control variables
ṗ and Xr where the chain is stable increases substantially. Note, however, that this way
of comparing models is fit for theoretical analysis, but tells less about real systems. If
models with and without energy reserves are fitted to real systems, they are likely to differ
in parameters that do not relate to energy reserves. This is because they must produce
about the same output as a result of the fitting procedure.

All these results are based upon local stability analysis. Global dynamics in unstable
regions have been studied by numerical integration of the set of differential equations, by
a Runge–Kutta method starting from perturbed equilibrium. Hastings and Powell [295]
observed chaos in a three-species food chain that was closely related to the Double Monod
model. The main differences were that the substrate was growing logistically and that the
prey and predator died at widely different rates. The deb model showed no chaos, only
limit cycles for unstable regions, but we have no proof of its absence. We did, however, spot
another source of problems: the prey density can become extremely low in the limit cycles,
which severely complicates numerical analysis and hampers the biological interpretation.

The non-equilibrium dynamics of food chains can be rather complex and sensitively
depends on the initial conditions. Figure 5.26 illustrates results for a substrate-bacteria-
myxamoebae chain in a chemostat. Bob Kooi has been able to fit the experimental data to
the deb model for filaments with remarkable success. All parameters were estimated on the
basis of a weighted least squares criterion. The main dynamic features are well described
by the model. The myxamoebae decrease more rapidly in time than the throughput rate
allows by shrinking during starvation. The type of equilibrium of this chain is known
as a spiral sink, so that this chain ultimately stabilizes, and the period reduces with the
amplitude. The numerical integration of the set of differential equations that describe
the system has been a 4-th order Runge–Kutta method with a time step of 0.01 h. This
particular data set has been used to illustrate the application of catastrophe theory by
Saunders [630], who concluded that simple generalizations of the Lotka–Volterra model
cannot fit this particular dataset and his analyses strongly suggest that the feeding rate
for each individual myxamoeba is proportional to the product of the bacteria and the
myxamoebae densities. This implies an interaction between the myxamoebae and Bazin
and Saunders [47] suggested that the myxamoebae measure their own density via folic
acid. Although interactions cannot be excluded, the goodness of fit of the deb model
makes clear that it is not necessary to include interactions. The significance of realistic
descriptions without interaction is in the extrapolation to other systems; if species-specific
interactions would dominate systems behaviour, there can be hardly any hope for the
feasibility of community ecology.
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Figure 5.25: Operating diagrams for food chains of filaments of length 2, 3 and 4, in the
Monod model (no maintenance, no reserves, left column) and the deb model (right column).
The numbers give the highest level that can exist given the operating conditions; ‘s’ stands for
stable coexistence and ‘o’ for unstable or oscillatory coexistence. The stippled curves represent
bifurcation diagrams. The dark area indicates 2 solutions for the equilibrium, but the second
solution is complex valued with a positive real component, which means that the chain of full
length cannot exist in this solution. The parameter values are

V
1/3
d,1 = 0.63 µm y0,1 = 0.4 ν̇1 = 40 h−1 K0,1 = 8 mg l−1 g1 = 80 ṁ1 = 0.025 h−1

V
1/3
d,2 = 50.4 µm y1,2 = 0.6 ν̇2 = 0.2 h−1 K1,2 = 9 mg l−1 g2 = 1 ṁ2 = 0.001 h−1

V
1/3
d,3 = 100µm y2,3 = 0.6 ν̇3 = 0.0756 h−1 K2,3 = 10 mg l−1 g2 = 0.504 ṁ3 = 0.0075 h−1

Figure 5.26: A chemostat with a three-
step food chain of glucose X0, the bacterium
Escherichia coli X1 and the cellular slime mold
Dictyostelium discoideum X2 at 25 ◦C, through-
put rate ṗ = 0.064 h−1 and a glucose concentra-
tion of Xr = 1 mg ml−1 in the feed. Data from
Dent et al. [164].

The parameter values and equations are

X0(0) 0.433 mg ml−1

X1(0) 0.361 X2(0) 0.084 mm3 ml−1

e1(0) 1 e2(0) 1 -

K1 1.312 K2 0.173 µg
ml,

mm3

ml
g1 0.84 g2 4.07 -
ṁ1 0.002 ṁ2 0.159 h−1

ν̇1 0.652 ν̇2 1.853 h−1

[İm]1 0.619 [İm]2 0.261 mg
mm3 h, h−1

d

dt
X0 = ṗ(Xr − X0) −

X0X1[İm]1
K1 + X0

d

dt
X1 =

(

ν̇1e1 − ṁ1g1

e1 + g1
− ṗ

)

X1 −
X1X2[İm]2
K2 + X1

d

dt
X2 =

(

ν̇2e2 − ṁ2g2

e2 + g2
− ṗ

)

X2

d

dt
e1 = ν̇1

(

X0

K1 + X0
− e1

)

d

dt
e2 = ν̇2

(

X1

K2 + X1
− e2

)

glucose

E. coli

D. discoideum
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Figure 5.27: The most simple non-degenerated com-
munity consists of three components: primary pro-
ducers that gain energy from light and take up nu-
trients independently to produce biomass, consumers
that feed on producers and decomposers, to reconvert
to consumers, and decomposers that recycle nutrients
from producers and consumers. The community is
rather closed for nutrients, but requires a constant
supply of energy. Influx and efflux of nutrients largely
determine the long term behaviour of the community.

5.7 Communities

Although the deb theory has not yet been worked out to the extent that the dynamics
of communities can be analysed, a brief discussion of the salient features of communities
helps to clarify the aim and scope of such an exercise; as illustrated in figure 5.27 for the
most simple non-degenerated community one can imagine. The coupling between energy
and mass fluxes is most tight for the consumers, least tight for the producers, while the
decomposers take an intermediate position. The coupling for the consumers is via the
rather constant chemical composition of food. The consumers are usually organized in
food webs, i.e. branched food chains, as discussed in the previous section. If it is necessary
to distinguish groups within each component, competition must be considered, but the
outcome is greatly affected by spatial heterogeneities. The flux of organic matter through
food webs is mainly set by body size scaling relationships, to be discussed in the next
chapter. The main nutrients that usually affect standing crops most drastically are nitrogen
compounds and phosphate. Chemoautotrophy represents another energy source for some
communities. In terrestrial environments, water plays an essential role, both directly as a
‘nutrient’ for producers and indirectly in the influx and efflux of nitrogen and phosporus.

The type of problems that can be analysed successfully by community modelling relate
to a much larger scale in space and time than is relevant for individuals and populations.
Processes on totally different space/time scales combine poorly into one model. Just as it
has been a bad idea to model processes of growth on the basis of atp fluxes, cf. {5}, it is
a bad idea to model community processes on the basis of individuals. Generally, it even
will be disappointing to try to trace particular species in community models. A useful
field of applications of community models is in biogeochemistry on a regional or global
scale. A promising approach for community modelling in relation to the deb theory is via
application of yield factors in the description of population behaviour, in combination with
energy and mass conservation laws as on {192}. The gist of this approach is that the link
between properties of individuals and communities is still preserved, because yield factors
can be written as functions of energy parameters for individuals, as demonstrated in this
chapter.



Chapter 6

Comparison of species

The range of body sizes is enormous. A bacterium with full physiological machinery has
a volume of about 0.25 × 10−18 m3. Some parasitic forms are much smaller. The blue
whale has a volume of up to 135 m3. A sequoia may even reach a volume of 2000 m3, but
one can argue that it is not all living material. Ironically enough, the organism with the
largest linear dimensions is usually classified as a ‘micro-organism’: the fungus Armillaria

bulbosa is reported to occupy at least 15 hectares and exceeds 10 Mg or 10 m3 [669]. The
factor between the volumes of bacterium and whale is 5.4× 1020, that between the volume
a water molecule occupies in liquid water and that of a bacterium is ‘only’ 1010.

These differences in size reflect differences in physiological processes, which the deb

theory tries to capture. The deb model has structural body volume as a state variable. This
implies that parameters which occur in the description of the process of energy uptake and
use are independent of body volume of a particular individual. Ultimate body volume, and
in particular the maximum body volume, can be written as a simple compound parameter.
This is why (some) parameters of the deb model must have a (simple) relationship with
ultimate body volume. This powerful argument is so simple that it can easily be overlooked.
A comparison of the energetics of different species, ranging from bacteria to whales reduces,
in the deb theory, to a comparison of sets of parameter values. This is different from
comparison within a species, where we have only one set of parameter values, though
different body volumes. This chapter deals with theory of parameter values, which includes
body size scaling relationships, optimization problems and evolutionary aspects.

6.1 Body size scaling relationships

The standard way to study body size scaling relationships is allometric: apply linear
regression to the logarithmically transformed quantity of interest as a function of the
logarithm of total body weight [117,470,542,638]. I have already given my reservations with
respect to the physical dimensions, {12}, but I also object to the application of regression
methods. My objections have a deeper root than the presence of ‘measurement error’ in
the independent variable, which is usually the whole body wet weight. The dependent
variable, i.e. some quantity of interest, can be considered to be a compound parameter
for a particular species, and this can hardly be conceived of as a random variable. Each
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species of the (limited) set living on earth happens to have a particular value for the
quantity under consideration. This value is a result of evolutionary processes. Values of
related species are thus likely to be dependent in a statistical sense. Moreover, evolutionary
theory aims to explain a particular value while the application of regression methods implies
that you leave the deviation in the black box. The random deviation from the (allometric)
deterministic function, which regression analysis treats as ‘measurement error’, does not
have a meaningful biological interpretation. A consequence of this point of view is that
statistical tests on the ‘exact’ value of the scaling parameter must be considered to be
misleading.

I prefer a different approach to the subject of body size scaling relationships which is
implicit in the deb theory. Although the relationships are mostly not of the allometric
type if log-log plotted, straight lines approximate the result very well. To facilitate a
comparison with the literature, I will refer frequently to the allometric (dimensionless)
scaling parameter.

The tendencies discussed in the next few sections can be inferred on the basis of general
principles of physical and chemical design. On top of these tendencies, species-specific
adaptations occur that cause deviations from the expected tendencies. A general problem
in body size scaling relationships is that large bodied species frequently differ from small
bodied species in a variety of ways, such as behaviour, diet etc. These life styles require
specific adaptations, which hamper simple inter-species comparison. MacMahon [469]
applied elasticity arguments to deduce allometric scaling relationships for the shape of
skeletal elements. Godfrey et al. [263] demonstrated, for mammals, that deviations from
a simple geometrical upscaling of skeletal elements is due to size-related differences in life
styles.

6.2 Primary scaling relationships

The parameter values of the deb model tend to depend on maximum body volume in
a predictable way that does not use any empirical argument. This makes it possible to
predict how physiological quantities that can be written as functions of deb parameters
depend on maximum body volume. The core of the argument is that parameters that
relate to the physical design of the organism are all proportional to volumetric maximum
length, while the rest are size-independent. The latter parameters relate to molecular
processes, which are thus essentially density-based. Reaction rates as described by the law
of mass action depend on meeting frequencies between particles and do not depend on the
(absolute) size of the organism. The difference between physical design and density-based
parameters relates to the difference between intensive and extensive quantities.

The parameter values of a reference species number 1 with maximum body volume Vm,1
have an extra index to compare the parameter set with that of another species, number 2,
with maximum body volume Vm,2. The primary scaling relationships are given in table 6.1
and are compared with the relationships from the invariance property of the deb model.
This property is that parameter sets that differ in a special way that involves an arbitrary
factor z, result in identical energetics at strictly constant food densities, cf. {112}. A
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Table 6.1: The relationship between the parameters of the deb model for species 1 and 2 accord-
ing to the invariance property (upper panel) and according to the primary scaling relationships
(lower panel). The ratio of the ultimate volumetric body lengths of species 1 and 2 equals the
zoom factor z

K2 = K1z + X(z − 1) {İm}2 = {İm}1z [Ṁ ]2 = [Ṁ ]1 {Ḣ}2 = {Ḣ}1

V
1/3
b,2 = V

1/3
b,1 {Ȧm}2 = {Ȧm}1z [G]2 = [G]1 p̈a,2 = p̈a,1

V
1/3
p,2 = V

1/3
p,1 [Em]2 = [Em]1z κ2 = κ1 q2 = q1

K2 = K1z {İm}2 = {İm}1z [Ṁ ]2 = [Ṁ ]1 {Ḣ}2 = {Ḣ}1

V
1/3
b,2 = V

1/3
b,1 z {Ȧm}2 = {Ȧm}1z [G]2 = [G]1 p̈a,2 = p̈a,1

V
1/3
p,2 = V

1/3
p,1 z [Em]2 = [Em]1z κ2 = κ1 q2 = q1

striking resemblance exists between the relationships of parameter sets on the basis of the
primary scaling relationships and the invariance property. The only deviations are in the
parameters relating to physical design.

From the primary scaling relationships, other scaling relationships can be derived for
all processes to which the deb theory applies. Maximum volume itself is just one, though
eye catching, compound parameter. Maximum volume is a result of energy uptake and
use, not a factor determining these processes. Maximum volume can serve as a paradigm
to compare species: Vm,2 = (κ2{Ȧm}2/[Ṁ ]2)

3 = (κ1z{Ȧm}1/[Ṁ ]1)
3 = z3Vm,1. One possible

interpretation of the arbitrary zoom factor z is thus the ratio between the ultimate length
measures of two species. Although it is usual and convenient to study how physiological
quantities and life histories depend on body size, it is essential to realize that all, inclusive
of body size itself, depend on the coupled processes of energy uptake and use. Before I
discuss how many other compound parameters depend on body size, it is instructive to
review the primary parameters first.

Molecular biology stresses again and again the similarities of cells, independent of the
body size of the organism. It thus seems reasonable to assume that cells of equal size have
about the same maintenance costs. Since the maintenance of cells is probably a major
part of the maintenance of the whole individual, it seems natural that volume-specific
maintenance is independent of body size. The same holds for the costs of growth. The
values of [Ṁ ], {Ḣ}, [G], κ and p̈a for a particular growing individual could in principle
differ (a bit) for each time increment. The deb model, however, assumes that these process
parameters are constant. The assumption that they are independent of ultimate volume
is the only one that is consistent with the structure of the deb model.

Since κ and [Ṁ ] are independent of maximum body size, {Ȧm} has to be proportional
to the cubic root of the ultimate volume, because of the relationship V 1/3

m = κ{Ȧm}/[Ṁ ].
This relationship makes {Ȧm} a physical design parameter. The parameters {İm} and
[Em] are also physical design parameters, because the ratio of them with {Ȧm} relates to
density-based molecular processes. Since the deb model in fact assumes that digestion
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is complete (else digestion efficiency would depend on feeding level, cf. {247}), and the
ratio {Ȧm}/{İm} represents digestion efficiency, {İm} has to be proportional to {Ȧm}
and so to the cubic root of the ultimate volume as well. The same holds for the reserve
capacity parameter [Em], because the ratio {Ȧm}/[Em] stands for energy conductance. Like
digestion efficiency, it could in principle change (a bit) for each time increment in a growing
individual, but it is assumed to be constant in the deb model. Both ratios could have been
introduced as the primary parameters, which would turn maximum assimilation rate and
storage capacity into compound parameters. This is mathematically totally equivalent.
Such a construction would leave Vb, Vp, {İm} and K as the only parameters relating to the
physical design of the organism.

The body size dependence of the saturation coefficient is less easy to see, because
species differ so much in their feeding behaviour. At low food densities this constant can
be interpreted as the ratio of the maximum ingestion and filtering rates in a filter feeder
such as Daphnia. If maximum beating rate is size independent, as has been observed, the
filtering rate is proportional to surface area. Since the maximum specific ingestion rate
{İm} scales with a length measure, the saturation coefficient K should scale with a length
measure as well. More detailed modelling of the beating rate would involve ‘molecular’
density-based formulations for the filtering process, which turns the saturation coefficient
into a derived compound parameter. This is not attempted here, because the formulations
would only apply to filtering, while many species do not filter.

The life stage parameters, Vb and Vp, show an extremely wide range of variation among
different taxa. Huge fishes can lay very small eggs and thus have small values for Vb. For
example, the ocean sunfish Mola mola can reach a length of 4 m and can weigh more than
1500 kg, it can produce clutches of 3× 1010 tiny eggs. The other extreme within the bony
fishes is the oviviparous coelacanth Latimeria chalumnae, which can reach a length of 2 m
and a weight of 100 kg. It produces eggs with a diameter of 9 cm in clutches of some 26.
(If we include the cartilaginous fish, the whale shark Rhincodon typus wins with a 12–18 m
length, more than 8165 kg weight and eggs of some 30 cm.) The tendency of egg size to be
proportional to ultimate size only holds for related species at best, as within the squamate
reptiles [655]. This matter will be discussed further under r and K strategies, {239}.

The gist of the argument for primary scaling relationships is that they can be derived
from the structure of the deb model and they do not involve empirical arguments.

6.3 Secondary scaling relationships

This section gives examples of the derivation of body size scaling relationships of a variety
of eco-physiological phenomena that can be written as a compound parameter of the deb

model. The derivation follows the same path time and again and is worked out in detail
for respiration. Food density will be assumed to be constant or high.

Since the independent variable in body size scaling relationships is standard wet weight,
we should first consider how wet weight relates to the primary parameter values. From
(2.9) it follows for [E] = [Em] that Ww = ([dwv] + [dwe](1 + EṘ/[Em]))V . The ultimate
volumetric length is (κ{Ȧm} − {Ḣ})/[Ṁ ], see (3.17) for f = 1, so that the ultimate wet
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weight equals
Ww,∞ ≃ ([dwv] + [dwe])(κ{Ȧm} − {Ḣ})3[Ṁ ]−3 (6.1)

at abundant food for isomorphs that have a negligibly small amount of reserves allocated to
reproduction. Wet weights are sensitive to body chemistry. The structural body mass and
in particular water content and type of reserve materials are different in unrelated species.
This hampers comparisons that include species as different as jelly fish and elephants. If
comparisons are restricted to related species, for example among mammals, the structural
volume-weight conversion [dwv] will be independent of body volume, while [dwe] increases
with volumetric length, because it includes the maximum reserve capacity [Em] in its
definition; see below (2.9). Since {Ȧm} increases with a volumetric length, while κ, {Ḣ}
and [Ṁ ] are independent of body volume, this means that the volume-specific wet weight
[Ww] ≡ Ww/V increases with body volume for two reasons. The first is the increasing
contribution of energy reserves, the second is the decreasing effect of volume reduction due
to heating. The last reason only applies to endotherms, of course.

To simplify the argument, the ultimate weight of ectotherms at high food densities is
in the rest of this section taken to approximate the maximum body volume after division
by [dw] = 1 g cm−3. This has also been done for endotherms, and although this is even less
correct, as explained, the tendencies are crude enough to legitimise this approximation.

6.3.1 Respiration

Respiration rate should be discussed first for historical reasons; see the chapter 1. The
scaling parameter has been found to be 0.66 for unicellulars, 0.88 for ectotherms and 0.69
for endotherms [548]. The exact value differs among authors taking their data from the
literature. The variations are due, in part, to differences in the species included and in
the experimental conditions under which respiration rates were measured. For crustaceans
Vidal and Whitledge [739] present values of 0.72 and 0.85, and Conover [134] gives
0.74. If species ranging from bacteria to elephants are included, the value 0.75 emerges.
It has become an almost magic number in body size scaling relationships. Few authors
make the distinction between intraspecies, cf. {103}, and interspecies relationships. Many
explanations have been proposed; some are based on muscle tension [469] or running
speed [570], for instance. As for intraspecies relationships, I find these explanations not
completely satisfactory, because mechanics plays only a minor role in energy budgets and
the argument is too specific, since it applies to a very much restricted group of species. As
mentioned, respiration rates are usually thought to reflect routine metabolic costs. It is no
wonder that the explanation for the scaling parameter being less than one for ectotherms
is still a hot issue. I hope to have made it clear by now that costs other than routine
metabolic costs contribute to respiration as well, which makes it possible that respiration
scales with a parameter less than one, while routine metabolic costs scale with a parameter
one.

If we compare individuals with the same parameter set, (3.42) shows that the respiration

rate is proportional to a weighted sum of surface area and volume: (v̇+ ṁV
1/3
h )V 2/3 + ṁV

at constant food density. This is nothing new. If we compare different parameter sets the
construction is as follows. Step one is to set the energy density and the body volume equal
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to their maximum values [Em] and Vm, and write the quantity of interest out using the
primary parameters. Step two is to multiply each primary parameter value that relates to
physical design by the zoom factor; see table 6.1. Step three is to study how the respiration
rate depends on maximum body volume V ≡ z3Vm,1 by variation of the zoom factor z. For
this purpose, the substitution z = (V/Vm,1)1/3 is made. Starting from (3.42), the three
steps result in

Ċm =
[G]/κ

[G]/κ[Em] + 1





(

{Ȧm}
[Em]

+
[Ṁ ]

[G]
V

1/3
h

)(

{Ȧm}
[Ṁ ]/κ

)2

+
[Ṁ ]

[G]

(

{Ȧm}
[Ṁ ]/κ

)3




Ċm,2 =
[G]1/κ1

[G]1/κ1[Em]1z + 1





(

{Ȧm}1z

[Em]1z
+

[Ṁ ]1
[G]1

V
1/3
h,1

)(

{Ȧm}1z

[Ṁ ]1/κ1

)2

+
[Ṁ ]1
[G]1

(

{Ȧm}1z

[Ṁ ]1/κ1

)3




=
[Ṁ ]1
κ1

(v̇1/ṁ1 + V
1/3
h,1 )z2V

2/3
m,1 + z3Vm,1

g1/z + 1

Ċm,V =
[Ṁ ]1
κ1

(v̇1/ṁ1 + V
1/3
h,1 )V2/3 + V

V−1/3v̇1/ṁ1 + 1

The interpretation of V is the maximum body volume of a species and is a compound
parameter, not a state variable. The respiration rate is thus approximately proportional
to a weighted sum of volume2/3 and volume1 if g1 ≪ z. So it relates to body volume in
almost, but not exactly, the same way as it does within a species.

The respiration rate will appear almost as a straight line in a double-log plot against
body volume, the slope being somewhere between 0.66 and 1, depending on the species
that have been included. Surface-bound heating costs dominate in endotherms, so a plot
that includes them will be close to a line with slope 0.66. The slope for the Bathyergidae,
a family of rodents that are practically ectothermic, is found to be close to 1 [442], as
expected.

6.3.2 Feeding

Maximum ingestion rate

The maximum ingestion rate for an individual of volume V is İm = {İm}V 2/3, so İm,V =

{İm}1V
−1/3
m,1 V . The maximum ingestion thus scales allometrically with body volume, but

with a scaling parameter of .66 for intra-species comparisons and 1 for inter-species com-
parisons. Farlow [211] gives an empirical scaling parameter of 0.88, but value 1 also fits
the data well. For endotherms especially, a scaling parameter of somewhat less than 1 is
expected for weight as the independent variable, because of the increase in volume-specific
weight, as explained. In a thorough study of scaling relationships, Calder [117] coupled the
inter-specific ingestion rate directly to the respiration rate, without using an explicit model
for energy uptake and use. The present deb-based considerations force one to deviate from
intuition.
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Gut capacity

Within a species, isomorphy implies a gut capacity that is a constant fraction of body
volume. This must also hold for inter-species comparisons, as long as body design and
diet are comparable and this has been found for birds and mammals [117]. The mean
gut residence time of food particles is thus independent of body size as a consequence,
because ingestion rate is proportional to body size, while it was found to be proportional
to a length measure for intra-species comparisons.

Maximum filtering rate

The filtering rate is maximal at low food densities. If particle retention is complete, it
is given by Ḟm = İm/K = V 2/3{İm}/K. So, Ḟm,V = V2/3{İm,1}/K1. This was found by
Brendelberger and Geller [90].

Speed

Since biomechanics is not part of the deb theory, this is not the right place for a detailed
discussion on Reynolds and Froude numbers, although interesting links are possible. Speed
of movement has only a rather indirect relationship with feeding or other aspects that bear
on energy budgets. A few remarks are, therefore, made here.

McMahon and Bonner [470] found that the speed of sustained swimming for species
ranging from larval anchovy, via salmon, to blue whales scales with the square root of
volumetric length; they underpinned this finding with mechanical arguments. Since the
energy costs for swimming are proportional to squared speed and to surface area, cf. {63},
the total costs for movement would scale with cubed length, or V , for a common travelling
time. This is consistent with the deb theory, where the costs for travelling are taken to be
a fixed fraction of the maintenance costs.

A similar result appears to hold for the speed of flying, but by a somewhat different
argument. The cruising speed, where the power to fly is minimal, is proportional to the
square root of the wing loading [708]. If a rough type of isomorphy applies, comparing
insects, bats and birds, wing loading, i.e. the ratio of body mass and wing area, scales with
length, so that cruising speed scales with the square root of length [470].

Arguments for why standard cruising rate for walking tends to be proportional to
length, have been given on {59,63}. If energy invested in movement is proportional to
volume and taken to be part of the maintenance costs, the intra- and inter-species scaling
relationships work out in the same way.

Maximum diving depth

Birkhead [93] found that the maximum diving depth for auks and penguins tend to be
proportional to volumetric length. This can be understood if diving depth is proportional
to the duration of the dive; the latter is proportional to length, cf. {59} by the argument
that respiration rate of these endotherms is about proportional to surface area and oxygen
reserves to volume.
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Minimum food density

The minimum food density at which an isomorph of body volume V can live for a long
time is found from the condition that energy derived from ingested food just equals the

maintenance costs, so İ{Ȧm}/{İm} = Ṁ , or f† =
X†

K+X†
= [Ṁ ]

{Ȧm}V
1/3. The solution is

X† = V 1/3K[Ṁ ]/{Ȧm}
1−V 1/3[Ṁ ]/{Ȧm} . At this food density, the individual can only survive, not reproduce.

For different species, we obtain the condition X†,V = V1/3K1[Ṁ ]1/{Ȧm}1

1−V 1/3
m,1 [Ṁ ]1/{Ȧm}1

. Minimum food

density, also called the threshold food density, is thus proportional to volumetric length.
An important ecological consequence is that at a given low food density, small individuals
can survive, while the large ones can not. This explains, for instance, why bacteria in
oligotrophic seas are so small.

This result only applies to situations of constant food density. If it is fluctuating,
storage capacity becomes important, which tends to increase with body size; see {128}.
The possibility of surviving in dynamic environments then works out to be rather complex.
Stemberger and Gilbert [681] found that threshold food density tends to increase with body
size for rotifers, as expected, but Gliwicz [261] found the opposite for cladocerans. This
result can be explained, however, by details of the experimental protocol. The threshold
food density was obtained by plotting the growth rate against food density and selecting
the value where growth is nil. Growth at the different food densities was measured from
two-day old individuals exposed to a constant food density for 4 days. The reserves at
the start of the growth experiment, which depend on culture conditions, will contribute
substantially to the result.

6.3.3 Growth

Maximum growth

As follows from (4.8), the maximum growth rate for different species equals

4

27

ṁ1g1

(V/Vm,1)1/3 + g1

(V1/3 − V
1/3
h,1 )3

and is thus about proportional to volume2/3. This fits Calow and Townsend’s data very
well [119].

Von Bertalanffy growth rate

The von Bertalanffy growth rate at high food density is γ̇V = (3/ṁ1 + 3V1/3/v̇1)
−1 for

different species. It decreases almost linearly with volumetric length. This is consistent
with empirical findings; see figure 6.1. The parameters and data sources are listed in table
6.2. This table is so extensive because the fit with the von Bertalanffy growth curve is used
to support the argument that it is possible to formulate a theory that is not species-specific,
{1}. If one collects growth data from the literature, an amazingly large fraction fits the
von Bertalanffy curve despite the fact that most data sets are from specimens collected
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in the field. Since it is hard to believe that food density has been constant during the
growth period, this suggests that food has been abundant; this is relevant for population
dynamics.

If the von Bertalanffy growth rate is plotted against maximum volumetric length, the
scatter is so large that it obscures their relationship. This is largely due to differences
in body temperature. A fish in the North Sea with a yearly temperature cycle between
3 and 14 ◦C grows much slower than a passerine bird with a body temperature of 41
◦C. This is not due to fundamental energy differences in their physiology. If corrected to
a common body temperature according to the Arrhenius relationship with an Arrhenius
temperature of 12500 K, the expected relationship is revealed and the differences between
fishes and birds disappear. Since temperature had not been measured in most cases, I
had to estimate them in a rather crude way. For most molluscs and fish data I used
general information on local climate and guessed water temperatures (which depend on
the, frequently unknown, depth). The body temperatures of birds and mammals have
also been guessed. Uncertainties about temperature doubtlessly contributed the most to
the remaining scatter. The corrected rates are not meant as predictions for actual growth
rates at this body temperature because most North Sea fish and birds will die almost
instantaneously if the temperature was realized. The average energy conductance, v̇, of
261 species at 37 ◦C appears to be 5.49 mm d−1, 0.885 mm d−1 at 25 ◦C, or 0.433 mm d−1

at 20 ◦C. This is the best evidence that the maximum storage capacity increases with
volumetric length, just as the maximum surface-specific assimilation rate does.

The contribution of maintenance in the von Bertalanffy growth rate is small for large
bodies, which explains that the von Bertalanffy growth rate is about proportional to V−1/3,
as Ricklefs [598] found for birds for instance.

Table 6.2: The von Bertalanffy parameters and their standard deviations as calculated by
non-linear regression. The shape coefficient converts the size measure used to volumetric length.
For shape coefficient 1, the data refer to wet weight, except for Saccharomyces, Actinophrys

and Asplanchna, where volumes were measured directly. The data for Mnemiopsis and Calanus

refer to dry weight. The other data are length measures, mostly total body length. Where the
standard deviation is not given, the parameters of the authors are given. Temperatures between
brackets were inferred from the location on earth. Where two temperatures are given, a sinusoidal
fluctuation between these extremes is assumed. In the column ‘sex’: f=female, m=male.
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species sex length s.d. shape rate s.d. location temp source
mm mm coeff a−1 a−1 NS EW ◦C
L∞ dm γ̇

Ascomyceta

Saccharomyces carlsbergensis 4.59e-32.16e-5 0.806 11830 318 lab lab 30 [56]
Heliozoa

Actinophrys spec. 0.0043 2.2e- 5 1 2891 368 lab lab [701]
Rhizopoda

Amoeba proteus 2.79 0.016 0.01 832.2 56.9 lab lab 23 [568]
Ciliata

Paramecium caudatum 2.969 0.062 1638 210 lab lab 17 [636]
Ctenophora

Pleurobrachia pileus fm 15.04 0.436 0.702 33.27 2.49 lab lab 20 [274]
Mnemiopsis mccradyi fm 8.851 0.927 3.90 11.61 1.88 lab lab 26 [589]
Rotifera

Asplanchna girodi f 0.2400 7.32e-4 1 193.7 4.92 lab lab 20 [606]
Annelida

Dendrobeana veneta fm 14.5 0.24 1 12.04 0.73 lab lab 20 Bos, pc
Mollusca

Aplysia californica fm 112.2 6.05 1 4.840 0.871 lab lab 18-20 [541]
Urosalpinx cinerea fm 30.94 1.31 0.397 0.8116 0.11 31S 152E -1-25 [229]
Achatina achatina fm 106.5 2.45 0.543 1.121 0.0770 5N 0E (25) [326]
Helix aspera fm 25.06 0.498 0.68 1.098 0.0960 lab lab (18-20) [154]
Patella vulgata fm 46.93 0.306 0.310 0.4296 7.91e-3 54N 4.40W (4-17) [783]
Monodonta lineata fm 21.92 0.130 0.716 0.6213 0.0171 52.25N 4.05W (4-17) [772]
Biomphalaria pfeifferi fm 7.538 0.0497 1 4.879 0.201 lab lab 25 [480]
Lymnaea stagnalis fm 15.37 0.0584 1 10.81 0.204 lab lab 20 [666]
Helicella virgata fm 9.888 0.215 1 3.316 0.163 35S 139E 11-16 [561]
Macoma baltica 21.57 0.154 0.423 3.00 0.0869 41.31N 70.39W 10.56 [259]
Cerastoderma glaucum 29.24 1.86 0.558 2.221 0.380 40.50N 14.10E 13-30 [351]
Venus striatula 37.76 25.1 0.471 0.1961 0.210 55.50N 4.40W 6-13 [17]
Ensis directus 142.2 0.187 0.5830 54.35N 8.45E 4-17 [700]
Mytilus edulis 95.92 2.02 0.394 0.1045 5.109e-3 53.36N 9.50W 7-17 [607]
Placopecten magellanicus 162.3 1.01 0.388 0.1671 2.842e-3 47.10N 53.36W 0-18 [447]
Perna canaliculus 191.2 10.6 0.394 0.3555 0.0342 36.55S 174.47E 17 [317]
Hyridella menziesi 74.62 2.05 0.400 0.1331 8.38e-3 (36.55S)(147.47E) [354]
Mya arenaria 91.31 0.407 0.1866 41.39N 70.42W (4-17) [101]
Loligo pealei f 455.3 39.5 0.398 0.4201 0.0551 41.31N 70.39W (4-17) [697]
Loligo pealei m 918.2 111 0.398 0.2122 0.0315 41.31N 70.39W (4-17) [697]
Brachiopoda

Terebratalia transversa 48.39 1.09 0.640 0.3140 0.0163 47.30N 122.5W (4-17) [526]
Crustacea

Daphnia pulex f 2.366 0.0192 0.526 44.25 2.10 lab lab 20 [595]
Daphnia longispina f 2.951 0.0260 0.520 61.32 2.92 lab lab 25 [349]
Daphnia magna f 5.136 0.0970 0.526 35.04 1.83 lab lab 20 [407]
Daphnia magna m 2.813 0.0440 0.526 66.80 5.11 lab lab 20 [407]
Daphnia cucullata f 1.049 0.0214 0.480 58.25 9.71 lab lab 20 [740]
Daphnia hyalina f 1.717 0.0399 0.520 47.52 5.93 lab lab 20 [740]
Ceriodaphnia pulchella f 0.7503 0.0122 0.520 39.89 5.04 lab lab 20 [740]
Ceriodaphnia reticulata f 1.038 0.0210 0.520 49.28 3.30 lab lab 20 [407]
Chydorus sphaericus f 0.4115 1.10e-3 0.560 52.63 0.969 lab lab 20 [740]
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Diaphanosoma brachyurum f 1.380 0.0198 0.520 46.50 3.72 lab lab 20 [740]
Leptodora kindtii f 8.632 0.204 0.300 26.96 2.64 lab lab 20 [740]
Bosmina longirostris f 0.5289 0.0215 0.520 38.73 6.50 lab lab 20 [740]
Bosmina coregoni f 0.4938 0.0104 0.520 66.90 9.59 lab lab 20 [740]
Calanus pacificus 6.295 1.02 0.215 8.863 1.89 lab lab 12 [522]
Dissodactylus primitivus f 11.02 0.410 0.635 1.025 0.0732 lab lab (18) [559]
Dissodactylus primitivus m 9.013 0.212 0.635 1.362 0.0742 lab lab (18) [559]
Euphasia pacifica 12.91 2.35 0.197 1.008 0.369 lab lab 10 [459]
Homarus vulgaris 186.6 6.99 0.939 0.05543 3.36e-3 lab lab 10 [315]
Cancer pagurus f 9.707 0.385 1 0.2711 0.0122 50.30N 2.45W (5-18) [54]
Cancer pagurus m 115.6 0.513 1 0.3513 0.0174 50.30N 2.45W (5-18) [54]
Dichelopandalus bonnieri 25.73 1.97 0.882 0.4795 0.0824 54N 4.40W (4-17) [6]
Gammarus pulex m 4.355 0.0570 1 3.300 0.177 lab lab 15 [698]
Gammarus pulex f 4.089 0.0554 1 2.218 0.123 lab lab 15 [698]
Calliopius laeviusculus 15.27 0.699 0.262 13.52 1.96 lab lab 15 [151]
Uniramia

Tomocerus minor 3.903 0.0848 0.351 6.600 0.379 lab lab 20 [364]
Orchesella cincta 3.652 0.0858 0.351 4.948 0.351 lab lab 20 [364]
Isotomata viridis 3.034 0.0751 0.351 6.52 0.469 lab lab 20 [364]
Entomobrya nivalis 1.981 0.0830 0.351 3.416 0.418 lab lab 20 [364]
Lepidocyrtus cyaneus 1.181 0.0666 0.351 9.840 2.17 lab lab 20 [364]
Orchesella cincta 1.281 0.0151 1 6.817 0.354 lab lab 20 [356]
Phaenopsectra coracina 1.745 0.147 1 2.388 0.779 63.14N 10.24E 4 [1]
Diura nanseni 2.782 0.0460 6.328 0.536 60.15N 6.15E 0-20 [26]
Capnia pygmaea 1.024 0.0967 2.493 0.663 60.15N 6.15E 1-20 [26]
Locusta migratoria 10.82 0.237 1 44.82 7.36 lab lab 23-36 [440]
Chironomus plumosus f 4.053 0.272 1 21.88 5.50 lab lab 15 [348]
Chironomus plumosus m 3.211 0.0415 1 52.74 4.77 lab lab 15 [348]
Cheatognata

Sagitta hispida fm 9.431 0.150 0.15 44.80 5.25 lab lab 21 [588]
Echinodermata

Lytechenus variegatus 46.10 0.147 0.70 3.913 0.199 18.26N 77.12W 26-29 [376]
Echinocardium cordatum 34.50 0.425 0.696 0.4590 0.0232 53.10N 4.15E 5-12 [189]
Echinocardium cordatum 36.70 0.375 0.696 0.5320 0.0259 53.40N 4.30E 5-14 [189]
Echinocardium cordatum 44.90 0.405 0.696 0.4960 0.0212 54.15N 4.30E 5-16 [189]
Tunicata

Oikopleura longicauda fm 0.829 0.049 0.520 56.56 6.62 lab lab 20 [215]
Oikopleura dioica 0.952 0.327 0.560 63.97 37.3 lab lab 20 [215]
Chondrichthyes

Raja montaqui fm 695.9 11.0 0.184 0.1874 0.0140 52-54N 3-7E (4-17) [331]
Raja brachyura 1589 213 0.184 0.1018 0.0261 52-54N 3-7E (4-17) [331]
Raja clavata f 1303 107 0.184 0.09297 0.0163 52-54N 3-7E (4-17) [331]
Raja clavata m 952.7 29.8 0.184 0.1557 0.0145 52-54N 3-7E (4-17) [331]
Raja erincea 542.9 32.6 0.184 0.2787 0.0542 41.05N 73.10W 1-19.1 [593]
Prionace glauca 4230 0.165 0.1100 48N 7W (5-18) [683]
Osteichthyes

Accipenser stellatus 2120 30.5 0.198 0.05396 1.46e-3 (45.10N)(28.30E)(4-23) [63]
Clupea sprattus 157.0 0.557 0.200 0.5847 4.60e-3 52.30N 2E (4-17) [347]
Coregonus lavaretus 397.3 8.39 0.203 0.3295 0.0221 54.35N 2.50W (5-15) [28]
Salvelinus willughbii f 385.4 72.9 0.225 0.2495 0.0973 54.20N 2.57W (5-15) [236]
Salvelinus willughbii m 328.9 12.7 0.224 0.3545 0.0366 54.20N 2.57W (5-15) [236]
Salmo trutta 585.8 18.0 0.216 0.4769 0.0411 53.15N 4.30W (4-17) [343]
Salmo trutta 576.2 20.6 0.240 0.2921 0.0253 57.40N 5.10W 5-12.8 [121]
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Salmo trutta 420.2 3.13 0.240 0.4157 0.0107 54.20N 2.57W (5-15) [143]
Oncorhynchus tschawytscha 155.2 11.9 1 0.9546 0.217 36S 147E (11-16) [115]
Thymallus thymallus 459.6 8.44 0.240 0.4656 0.0224 52.09N 2.41W (5-15) [307]
Esox lusius f 948.7 88.3 0.209 0.2101 0.0718 50.17N 3.39W (5-15) [87]
Esox lusius m 703.6 13.0 0.209 0.4016 0.0455 50.17N 3.39W (5-15) [87]
Esox masquinongy 2091 848 0.199 0.04503 0.0263 44N 79W (5-15) [495]
Rutilus rutilus 441.6 15.8 0.258 0.1661 0.0116 52.30N 0.30E (5-15) [142]
Leuciscus leuciscus 252.6 2.32 0.258 0.3329 0.0131 52.30N 0.30E (5-15) [142]
Barbus grypus 1036 25.2 0.206 0.1265 6.59e-3 35.75N 44.7E (17-30) [7]
Abramis brama 546.0 0.225 0.1142 53.15N 2.30W (5-15) [265]
Gambusia holbrookii f 61.72 2.34 0.250 0.9366 0.216 38.40N 9.40W (5-25) [228]
Poecilia reticulata f 50.58 1.14 0.252 1.667 0.0690 lab lab 21 [730]
Merluccius merluccius 1265 78.4 0.222 0.2075 0.0184 55.45N 5W (8-12) [27]
Lota lota 1009 60.3 0.193 0.09768 0.0103 53N 98W (5-15) [316]
Gadus merlangus f 898.6 12.2 0.222 0.08626 2.07e-4 54N 4.40W (8-12) [84]
Gadus merlangus m 772.8 9.03 0.222 0.08626 2.07e-4 54N 4.40W (8-12) [84]
Gadus morhua 1089 43.2 0.222 0.1308 9.26e-3 40N 60W 10 [400]
Gadus aeglefinus 106.5 1 0.2000 53-57N 0-7E (4-17) [69]
Atherina presbyter 124.0 3.20 0.238 1.091 0.109 51.55N 1.20W (5-18) [727]
Gasterosteus aculeatus 52.41 2.62 0.250 1.019 0.249 52.20N 3W (4-17) [363]
Pygosteus pungitius 41.28 1.03 0.200 1.777 0.468 52.20N 3W (4-17) [363]
Nemipterus marginatus 232.8 35.8 0.243 0.5047 0.227 6N 116E (26-30) [535]
Labrus bergylta 509.2 8.64 0.258 0.07170 3.30e-3 54N 4.40W (4-17) [172]
Ellerkeldia huntii 152.1 10.8 0.319 0.3350 0.0791 35.30S 174.40E (12-22) [361]
Lepomis gibbosus 61.86 9.04 1 0.1415 0.0342 45.40N 89.30W (5-15) [490]
Lepomis macrochirus 71.62 16.8 1 0.1292 0.0467 45.40N 89.30W (5-15) [490]
Perca fluviatilis 317.9 22.5 0.25 0.1615 0.0242 56.10N 4.45W 8-14 [649]
Tilapia species 129.6 20.7 1 3.542 1.10 31.30N 35.30E (37) [443]
Liza vaigiensis 746.3 31.8 0.258 0.1758 0.0147 17S 145E (18-27) [271]
Mugil cephalus 595.0 27.2 0.258 0.3350 0.0370 17S 145E (18-27) [272]
Valamugil seheli 635.3 35.0 0.258 0.2725 0.0291 17S 145E (18-27) [272]
Seriola dorsalis 1373 30.7 0.231 0.1155 5.72e-3 33N 118W (15-20) [43]
Ammodytes tobianus 140.9 1.98 0.147 0.7305 0.0595 50.47N 1.02W 5-18 [586]
Thunnus albacares 2745 636 0.266 0.1481 0.0509 0-10N 165E (26-30) [514]
Thunnus thynnus 3689 448 0.266 0.06623 0.0144 53-57N 0-7E (4-17) [721]
Coryphoblennius galerita 69.55 2.72 0.250 0.4011 0.0598 50.20N 4.10W (5-18) [488]
Pomatoschistus norvegicus 48.80 0.770 0.252 2.466 0.305 56.20N 5.45W (8-14) [257]
Gobio gobio 154.9 15.9 0.250 0.7519 0.495 51N 2.15W [451]
Gobio gobio 174.8 3.84 0.250 0.4165 0.0321 51.50N 8.30W (4-17) [379]
Gobius cobitis 213.9 14.9 0.295 0.2082 0.0385 48.45N 4W (5-18) [254]
Gobius paganellus 79.89 1.94 0.200 0.4790 0.0463 54N 4.40W (4-17) [487]
Lesueurigobius friesii 65.82 0.623 0.252 0.5628 0.0349 55.45N 5W 8-12 [501]
Lesueurigobius friesii 63.72 0.409 0.252 0.6826 0.0322 56.20N 5.45W (8-14) [255]
Blennius pholis 150.5 3.36 0.250 0.2464 0.0176 50.20N 4.10W (5-18) [488]
Arnoglossus laterna 93.55 3.06 0.200 0.4544 0.0895 56.15N 5.40W (8-14) [256]
Hypoglossus hypoglossus 632.7 54.7 1 0.04797 6.04e-3 59N 152W (3-14) [674]
Scophthalmus maximus f 669.4 14.2 0.266 0.2165 0.0298 53-57N 0-7E (3-14) [360]
Scophthalmus maximus m 495.3 6.93 0.272 0.3247 0.0222 53-57N 0-7E (3-14) [360]
Pleuronectes platessa 142.1 1 0.09500 53-57N 0-7E (4-17) [69]
Solea vulgaris 78.41 1 0.4200 53-57N 0-7E (4-17) [69]
Amphibia

Rana tigrina l 12.79 0.670 1 15.75 1.88 lab lab 30-33 [155]
Rana sylvatica 8.201 0.154 1 30.97 6.64 36.05N 81.50W 21-26 [770]
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Triturus vulgaris l 26.40 0.353 3.960 59.30N 10.30E -5-14 [174]
Triturus cristatus l 40.40 0.353 4.080 59.30N 10.30W -5-14 [174]
Reptilia

Emys orbicularis f 182.1 1.98 0.500 0.2707 0.0124 (22) [132]
Emys orbicularis m 161.8 1.56 0.500 0.3453 0.0172 (22) [132]
Vipera berus 539.0 33.0 0.075 0.3734 0.0657 (20) [234]
Eunectes notaeus f 3283 50.9 0.075 0.2552 0.0165 lab lab (20) [547]
Eunectes notaeus m 2946 94.5 0.075 0.2030 0.0251 lab lab (20) [547]
Aves

Eudyptula minor nov. 114.7 5.67 1 15.60 2.69 39.5 [386]
Pygoscelis papua 191.8 3.35 1 15.31 0.965 39.5 [744]
Pygoscelis antarctica 163.6 5.29 1 16.88 2.12 39.5 [744]
Pygoscelis adeliae 159.9 7.77 1 15.47 2.81 39.5 [744]
Pygoscelis adeliae 188.7 3.47 1 14.32 0.698 39.5 [705]
Aptenodytes patagonicus 250.0 1 8.508 0.164 39.5 [687]
Pterodroma cahow 63.16 0.465 1 62.96 1.55 39.5 [773]
Pterodroma phaeopygia 79.2 0.93 1 20.08 3.43 39.5 [290]
Puffinus puffinus 83.90 0.069 1 41.55 2.87 39 [99]
Diomedea exulans 229.1 1.02 1 5.541 0.176 39.5 [720]
Oceanodroma leucorhoa 41.53 0.282 1 26.37 1.58 39.5 [599]
Oceanodroma furcata 44.73 0.339 1 23.28 1.16 39.5 [75]
Phalacrocorax auritus 149.5 6.31 1 18.18 1.81 39.5 [190]
Phaethon rubricaudata 101.1 1.45 1 13.03 0.923 39.5 [166]
Phaethon lepturus 72.79 1.12 1 18.77 2.03 39.5 [166]
Sula sula 80.01 1.18 1 11.82 1.53 39.5 [166]
Sula bassana 172.7 2.50 1 12.41 0.639 39.5 [505]
Cionia cionia 158.0 6.10 1 18.36 2.35 39.5 [144]
Phoeniconaias minor 116.8 3.01 1 11.31 1.30 39.5 [62]
Florida caerulea 68.19 1.16 1 42.63 3.61 39.5 [762]
Anas platyrhynchos 117.3 0.330 1 17.75 0.410 39.5 [313]
Anas platyrhynchos 151.3 0.353 1 17.04 0.307 39.5 [313]
Anas platyrhynchos 145.5 1.94 1 10.26 0.680 39.5 [485]
Anas platyrhynchos 154.8 1.65 1 13.14 4.56 39.5 [615]
Anser anser 181.5 2.99 1 7.895 0.626 39.5 [485]
Buteo buteo f 103.7 1.17 1 27.57 1.34 39.5 [564]
Buteo buteo m 95.99 1.11 1 27.90 1.45 39.5 [564]
Falco subbuteo 66.16 0.689 1 46.77 3.57 39.5 [70]
Meleagris gallopavo 256.1 9.89 1 4.340 0.782 39.5 [129]
Meleagris gallopavo 296.2 26.2 1 3.657 1.18 39.5 [129]
Phasianus colchicus f 100.3 1.86 1 6.610 0.738 39.5 [485]
Phasianus colchicus m 118.8 4.25 1 5.004 0.746 39.5 [485]
Gallus domesticus f 136.5 1.24 1 4.625 0.209 39.5 [530]
Gallus domesticus m 153.5 2.22 1 4.522 0.305 39.5 [530]
Bonasia bonasia 85.17 2.68 1 7.807 0.740 39.5 [59]
Colinus virginianus 56.90 0.328 1 10.81 0.427 39.5 [613]
Coturnix coturnix 55.41 0.761 1 14.94 0.784 39.5 [95]
Rallus aquaticus 51.66 0.730 1 14.45 0.0882 39.5 [657]
Gallinula chloropus 67.05 1.20 1 20.00 1.72 39.5 [204]
Philomachus pugnax f 47.41 1.04 1 39.46 2.75 39.5 [633]
Philomachus pugnax m 59.94 2.18 1 29.09 2.97 39.5 [633]
Haematopus moquini 103.4 5.69 1 10.63 1.40 39.5 [325]
Chlidonias leucopterus 42.76 0.502 1 66.39 4.08 39.5 [370]
Sterna fuscata 57.94 0.364 1 22.21 1.07 39.5 [103]
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Sterna dougalli 50.15 1.12 1 33.97 3.77 39.5 [430]
Sterna hirundo 46.74 1.10 1 35.29 4.76 39.5 [430]
Rissa tridactyla 76.07 0.715 1 32.98 1.79 39.5 [460]
Larus argentatus 115.1 1.70 1 16.53 0.791 39.5 [675]
Catharacta skua 131.3 4.64 1 17.42 2.37 39.5 [686]
Catharacta skua 100.5 0.610 1 40.69 3.12 39 [241]
Catharacta maccormicki 104.8 0.310 1 60.29 3.18 39 [241]
Stercorarius longicaudus 83.90 0.069 1 41.55 2.87 30 [241]
Ptychoramphus aleuticus 59.66 0.373 1 23.73 0.913 39.5 [734]
Cuculus canoris 45.49 0.884 1 49.29 4.00 39.5 [784]
Cuculus canoris 50.26 1.45 1 38.56 3.68 39.5 [784]
Cuculus canoris 52.02 7.20 1 42.11 2.12 39.5 [784]
Cuculus canoris 52.44 1.40 1 39.91 3.60 39.5 [784]
Glaucidium passerinum f 42.36 0.309 1 46.98 2.02 39.5 [643]
Glaucidium passerinum m 41.86 0.484 1 41.57 2.51 39.5 [643]
Asio otus 64.94 0.596 1 36.54 1.77 39.5 [768]
Tyto alba 68.25 1.18 1 21.68 2.70 39.5 [276]
Strix nebulosa 98.26 0.960 1 16.43 0.730 39.5 [484]
Steatornis capensis 94.59 5.24 1 12.96 2.39 39.5 [673]
Apus apus 37.44 0.274 1 45.55 2.88 39.5 [760]
Selasphorus rufus 16.33 0.475 1 58.44 9.88 ≤ 41 [135]
Amazilia fimbriata 16.12 0.110 1 69.86 3.54 ≤ 41 [296]
Ramphastos dicolorus 70.11 1.89 1 28.52 4.01 39.5 [88]
Sturnus vulgaris 40.83 0.332 1 82.71 5.04 41 [764]
Bombycilla cedrorum 34.16 0.392 1 73.37 4.31 41 [596]
Petrochelidon pyrrhonota 31.19 0.520 1 69.64 6.40 41 [596]
Toxostoma curvirostre 36.62 0.695 1 49.82 3.62 41 [596]
Tyrannus tyrannus 35.53 0.673 1 59.43 4.60 41 [497]
Sylvia atricapilla 25.59 0.142 1 108.2 11.7 41 [67]
Garrulus glandarius 52.34 2.85 1 39.82 8.52 41 [382]
Campylorhynchus brunneicap. 32.79 0.200 1 65.85 6.70 41 [597]
Emberiza schoeniclus 25.88 0.238 1 138.7 12.1 41 [74]
Troglodytes aedon 22.29 1 105.9 41 [20]
Phylloscopus trochilus 22.41 0.576 1 76.78 8.86 41 [642]
Parus major 27.47 0.207 1 59.90 2.33 41 [31]
Parus ater 23.40 0.232 1 75.74 3.88 41 [438]
Montacilla flava 9.910 0.298 2.913 55.19 4.42 41 [173]
Agelaius phoeniceus f 35.94 0.951 1 75.16 7.58 41 [146]
Agelaius phoeniceus m 40.66 0.529 1 65.28 2.74 41 [146]
Gymnorhinus cyanocephalus 44.84 0.596 1 49.68 2.97 41 [40]
Eremophila alpestris 30.81 1.24 1 75.98 10.9 41 [48]
Mammalia

Macropus parma 148.6 0.615 1 2.736 0.0942 35.5 [462]
Macropus fuliginosus 261.6 34.8 1 2.397 0.910 35.5 [563]
Trichosurus caninus 137.8 1.06 1 1.754 0.561 35.5 [340]
Trichosurus vulpecula 139.3 1.34 1 3.715 0.184 35.5 [444]
Perameles nasuta 100.5 0.967 0.961 4.743 0.175 35.5 [444]
Setonix brachyurus 116.6 1 1.728 0.117 35.5 [728]
Suncus murinus f 26.58 0.160 1 30.92 1.37 37 [185]
Suncus murinus m 29.88 0.267 1 20.64 1.27 37 [185]
Sorex minutus 65.00 0.294 32.97 0.674 36 [344]
Desmodus rotundus 30.68 0.175 1 8.775 0.277 (35.5) [637]
Homo sapiens m 1648 58.5 0.244 0.1490 0.0158 37 [120]
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Lepus europaeus 148.3 1.60 1 5.034 0.530 37 [98]
Oryctolagus cuniculus 116.6 1.11 1 6.507 0.272 37 [728]
Notomys mitchellii 27.09 0.412 1 21.54 1.64 38 [145]
Notomys cervinus 23.85 0.456 1 23.94 3.00 38 [145]
Notomys alexis 27.43 0.382 1 20.03 1.24 38 [145]
Pseudomys novaehollandiae 24.88 0.101 1 13.00 0.386 38 [377]
Castor canadensis 234.4 1.64 1 5.117 0.365 38 [8]
Mus musculus 34.24 0.474 1 15.09 0.924 38 [530]
Mus musculus f 31.87 0.129 1 22.33 1.31 38 [530]
Mus musculus m 33.98 0.118 1 26.66 1.28 38 [530]
Rattus fuscipes 171.5 4.08 0.280 9.333 0.843 38 [704]
Rattus norvegicus 75.23 0.301 1 9.286 0.279 38 [530]
Tachyoryctes splendens 64.87 0.992 1 8.231 0.680 38 [576]
Balaenoptera musculus 37810 5420 0.188 0.05884 0.0208 37 [667]
Balaenoptera musculus f 26200 0.188 0.2240 37 [435]
Balaenoptera musculus m 25000 0.188 0.2160 37 [435]
Balaenoptera physalus f 22250 0.180 0.2220 37 [435]
Balaenoptera physalus m 2.1000 0.180 0.2221 37 [435]
Balaenoptera borealis f 15300 0.197 0.1337 37 [435]
Balaenoptera borealis m 14800 0.197 0.1454 37 [435]
Delphinapterus leucas f 3056 54.4 0.254 0.2700 0.0399 37 [253]
Delphinapterus leucas m 3589 86.5 0.254 0.1876 0.0227 37 [253]
Canus domesticus 387.2 1.46 1 4.168 0.120 37 [530]
Lutra lutra f 178.1 1.32 1 2.870 0.156 37 [682]
Lutra lutra m 197.7 1.38 1 2.692 0.143 37 [682]
Pagaphilus groenlandicus 486.4 7.44 1 0.4787 0.0673 37 [427]
Mirounga leonina m 5580 356 0.254 0.1492 0.0265 37 [428]
Mirounga leonina f 2933 42.7 0.254 0.3094 0.0480 37 [428]
Mirounga leonina m 1799 149 1 0.1185 0.0278 37 [106]
Mirounga leonina f 704.0 20.4 1 0.3661 0.0982 37 [106]
Leptonychotes weddelli 685.4 1 0.3001 0.0184 37 [106]
Loxodonta a.africana f 1392 14.5 1 0.1016 8.16e-3 37 [429]
Loxodonta a.africana m 1723 45.4 1 0.07173 7.81e-3 37 [429]
Rangifer tarandus f 470.2 1.84 1 1.263 0.0589 37 [465]
Rangifer tarandus m 534.4 4.39 1 1.000 0.0617 37 [465]
Bos domesticus f 815.4 3.66 1 0.9957 1.73e-3 38.5 [530]
Alces alces 712.6 12.7 1 0.5930 0.159 37 [309]

Minimum embryonic period

Because the deb model is volume-structured rather than age-structured, the length of
the various life stages is closely tied to growth. The gestation time is proportional to
volume1/3, excluding any delay in implantation. Weasels and probably armadillos are
examples of species that usually observe long delays, possibly to synchronize the juvenile
period with favourable environmental conditions. Figure 6.2 illustrates that the expected
scaling relationship is appropriate for 250 species of eutherian mammals. The mean energy
conductance was found to be 2 mm d−1 at some 37 ◦C. This is less than half the mean
temperature corrected value found from the von Bertalanffy growth rates of juveniles and
adults, a difference that must be left unexplained at this moment.
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Figure 6.1: The von Bertalanffy growth rate as a function of maximum volumetric length. The
left figure shows the rate as estimated from the original data, while the right figure gives the rates
corrected to a common body temperature of 25 ◦C. The markers refer to ▽ birds, 2 mammals,
△ reptiles and amphibians, ◦ fishes, × crustaceans, + molluscs, ⋄ others. The line has slope −1,
which is expected on the basis of the deb theory.

Figure 6.2: The gestation time of eutherian
mammals tends to be proportional to volumet-
ric length (line). Data from Millar [486]. The
times have been corrected for differences in rel-
ative birth weight, i.e. birth weight as a fraction
of adult weight, by multiplication of the ratio
of the mean relative birth weight1/3, 0.396, and
the actual relative birth weight1/3. The sym-
bols refer to ∗ Insectivora, + primates, ⋄ Eden-

tata, ◦ Lagomorpha, • Rodentia, × Carnivora,
2 Proboscidea, 1 Hyracoidea, △ Perissodactyla,
▽ Artiodactyla.

Incubation time (3.29) depends on volume in a more complex way, but it is also ap-
proximately proportional to body volume1/3, or alternatively to egg volume1/4; the scaled
egg costs e0 do not depend on body size, so that egg costs themselves E0 = e0[Em]Vm scale

with V4/3 or V ∝ E
3/4
0 so that ab ∝ V1/3 ∝ E

1/4
0 . Figure 6.3 gives the log-log plot for

the species that breed in Europe. These data are very similar to those of Rahn and Ar
[577], who included species from all over the world. Although the scatter is considerable,
the data are consistent with the expectation. Note that within a species, large eggs hatch
earlier than small ones, though one needs to look for species with egg dimorphism to find
a large enough difference between egg weights.

The tube noses Procellariiformes, incubate longer, while they also have relatively heavy
eggs, and so relatively large chicks. If corrected for this large volume at birth, their
incubation time falls within the range of other species. This correction has been done
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Figure 6.3: The incubation time for european breeding birds as a function of egg weight (left
figure). Data from Harrison [291]. The lines have a slope of 0.25. The tube noses (◦) sport long
incubation times. If corrected for a common relative volume at birth (right figure), this difference
largely disappears.

by calculating the egg weight first, from ([dw]π/6)(egg length)(egg breadth)2. (Data from
Harrison [291].) The weight at birth is about 0.57 times the initial egg weight [742]. The
scaled length at birth is about (Wb/W∞)1/3. (This is not ‘exact’ because of the weight-
volume conversion and the volume reduction due to heating.) Bergmann and Helb [58]
give adults weights. The incubation time is then corrected for differences in scaled length
at birth on the basis of (3.29) for small values of the investment ratio g and a common
value for the scaled length at birth, 0.38.

The application of the deb model has been useful in identifying the proper question,
which is not why the incubation time of tube noses is that long, but why they lay so
large an egg. The bird champion in this respect is the kiwi Apteryx, which produces eggs
of 350 g to 400 g , while the adult weight is only 2200 g. It has an incubation period
of a respectable 78 days. The relatively low incubation temperature of 35.4 ◦C extends
incubation in comparison to other birds, which usually incubate at 37.7 ◦C [116,117]. This
accounts for some 17-20 days extension with an Arrhenius temperature of 10000–12500 K,
however, most of this long incubation relates to the very large relative size of the egg. The
relative size of the egg itself is a result of the energy uptake and use pattern. This matter
will be taken up again in the discussion on strategies, {239}.

If one or more primary parameters are known, the value of a certain compound param-
eter such as the (minimum) incubation time can be predicted with much more accuracy.
On the basis of growth data for the cassin’s auklet during the juvenile phase, I predicted
an incubation period of 40 days [408], not knowing that it has been measured and actually
found to be 37–42 days [453]. It is more difficult to verify my prediction of an incubation
period for the hadrosaur of 145 days if it was ectothermic. This calculation accounted for
a birth length of 35 cm with an adult length of 700 cm [334], while the Nile crocodile
has a birth length of 20 cm, an adult length of 700 cm and an incubation period of 80–90
days [279]. If true, the hadrosaur must have been a very patient animal! This consid-
eration supports the hypothesis of e.g. Bakker [30] and Desmond [165], that dinosaurs
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Figure 6.4: The striped tenrec Hemi-

centetes semispinosus is a curious ‘in-
sectivore’ of 110 grams from the rain-
forests of Madagascar that feeds on
arthropods and earthworms and finds
its way about using sonar. Walking
in the forest, you can spot it easily by
its head shaking, not unlike that of an
angry lizard. Its juvenile period of 35
days is the shortest among mammals.
The gestation period is 58 days [197].

were endothermic. The high body temperature doubtlessly reduces the incubation time
considerably.

Reptilian champion in incubation time is the tuatara Sphenodon punctatus where the
4 g hatchling leaves the egg after 15 months. The low temperature, 20–25 ◦C, contributes
to this record.

The European cuckoo is a breeding parasite which parks each of its many eggs into the
nest of a ‘host’, which has an adult body weight of only 10% of that of the cuckoo. The
eggs of the host are one half to three quarters the size of that of the cuckoo. On the basis
of egg size alone, therefore, the cuckoo egg should hatch later than the eggs of the host,
while in fact it usually hatches earlier despite the later date of laying. If the relative size of
the egg with respect to the adult is taken into account, the deb theory correctly predicts
the observed order of hatching. The essence of the reasoning is that, since the cuckoo
is much larger than the host, the cuckoo uses the reserves at a higher rate (i.e. {Ȧm} is
larger), and, therefore, it grows faster in the absolute sense. Growth is so much faster that
the difference in birth weight with the chicks of the host is more than compensated. In
non-parasitic species of the cuckoo family, the eggs are much larger [784], which indicates
that the small egg size is an adaptation to the parasitic way of life. The extra bonus for
the European cuckoo is that it can produce many small eggs (about 20-25), which helps
to overcome the high failure rate of this breeding strategy.

Minimum juvenile period

The juvenile period at high food density for different species is

ap,V =
1

γ̇V
ln
V

1/3
m,1 − (Vh,1Vm,1/V)1/3 − V

1/3
b,1

V
1/3
m,1 − (Vh,1Vm,1/V)1/3 − V

1/3
p,1

It increases almost linearly with length. This relationship fits Bonner’s data, as given in
Pianka [78,550] very well, however, this data set uses actual lengths, rather than the more
appropriate volumetric ones.

The Guinness book of world records mentions the striped tenrec Hemicentetes semi-

spinosus, see figure 6.4, as the mammal with the shortest juvenile period [425]. The
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cuis Galea musteloides, a 300–600 g South American hystricomorph rodent, usually ovu-
lates at some 50 days, but sometimes does so within 11 days of birth [656,747]. Many
smaller mammals have a longer juvenile period, which points to the fact that body scaling
relationships only give tendencies and not reliable predictions.

6.3.4 Reproduction

Energy investment into an egg

For small values of the energy investment ratio g, the scaled energy investment e0 into a
single egg, as given in (3.27), is independent of maximum body volume, so that for the
unscaled energy investment E0 holds: E0,V = E0,1(V/Vm,1)4/3. This does not necessarily
translate into the egg weight being proportional to body weight4/3, because the energy con-
tent, i.e. the chemical composition, may also show scaling relationships. The larger species
also have to observe mechanical constraints, and small species can have problems with heat-
ing themselves during development. This may cause deviations from expected tendencies.
The volume of the hatching young is proportional to the maximum volume of the adult (if
corrected for the volume reduction due to heating in endotherms), according to primary
scaling relationships. The European birds have egg weights approximately proportional
to adult weights. Calder [117] and Rahn et al. [580] obtained egg weights proportional
to adult weights0.77; Birkhead [93] found that egg weight of auks is proportional to adult
weight0.72.

Water loss in eggs

The use of energy (stored in lipids etc.) relates to water that will evaporate from bird
eggs. Part of this water is formed by the oxidation of energy-rich compounds, and part of
it consists of the watery matrix in which the compounds are embedded for the purpose of
giving enzymes a correct environment and for transport of the products. The total loss of
water during the incubation period, therefore, reflects the total use of energy E0−Eb. Since,
like the energy investment into a single egg E0, the amount of energy at birth Eb = [Em]Vb
is also proportional to V4/3, the loss of water must be a fixed proportion of egg volume.
Rahn, Ar and Paganelli [578,19] found that it is some 15% of the initial egg weight. If
the use of energy relates to water loss directly, one would expect that the initial loss rate
is small and builds up gradually. The egg usually decreases linearly in weight, as Gaston
[243] found for the ancient murrelet Synthliboramphus antiqua. This is to be expected on
physical grounds, of course. The specific density of an egg can be used to determine the
length of time it has been incubated. This process of water loss implies that the water
content of the reserves changes during incubation, but its range is rather restricted. The
functional and physical aspects of water loss in eggs thus coincide beautifully.

Maximum reproductive rate

The maximum reproductive rate, as given in (3.51) is Ṙm,V = Ṙm,1(Vm,1/V)1/3 for the
different species. This is a beautiful example showing that the size relationships within a
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species work out differently from those between species. Within species comparisons show
that large individuals reproduce at a higher rate than small ones, while the reverse holds
for between species comparisons. Like most of the other scaling relationships mentioned
in this chapter, this only reflects tendencies allowing substantial deviations. The trade-off
between a small number of large young and a large number of small young is obvious.

The partition coefficient κ does not depend on body size, thus a small species spends
the same fraction of energy that it utilizes from its reserves on reproduction as a large
species. (That is, if the energy required for the maintenance of maturity is negligibly
small.) Most studies do not deal with dynamic models for energy allocation, however, but
with static ones. Such studies aim to describe the (instantaneous) allocation of resources to
the various end points, given an individual of a certain size. If we express the energy spent
on reproduction as a fraction of the energy taken up from the environment (at constant food
density), this fraction decreases with increasing body volume. This is because ingestion rate
increases with volume, see {222}, and utilized energy (respiration rate) with a weighted
sum of surface area and volume. This illustrates once again the importance of explicit
theories for the interpretation of data.

6.3.5 Survival

Starvation

In the section on prolonged starvation {128}, the time till death by starvation for an indi-
vidual with an initial scaled energy density of e(0) = l was found to be t† = v̇−1V 1/3 lnκ−1

or t† = v̇−1V 1/3κ−1 depending on its storage dynamics during starvation. In the first expres-
sion the individual does not change its storage dynamics, and in the second one it spends
energy on maintenance only. The corresponding survival times for different species are
thus t†,V = v̇−1

1 V1/3 lnκ−1
1 or t†,V = v̇−1

1 V1/3κ−1
1 . They are thus proportional to volume1/3.

Threlkeld [717] found a scaling parameter of 1/4, but 1/3 also fits the data well.
Constant food densities thus select for small body volume, because small volume aids

survival at lower food densities; fluctuating food densities select for large body volume,
because a large body volume gives better survival over prolonged starvation. Brook and
Dodson observed that in the absence of predators, the larger species of zooplankton dom-
inate. The deb theory suggests that the explanation does not lie in the size dependence
of threshold food density (because this would operate the other way round), but in the
length of periods during which no animal can find sufficient food. This has been confirmed
experimentally by Goulden and Hornig [269].

Life span

Growth never stops in the most elementary formulation of the deb model, but it is practical
to consider the moment at which body volume exceeds (1−ǫ)3V∞, as the end of the growth
period, for some chosen small fraction ǫ = 0.05, say. The length of the growth period at
constant food density is given in (3.15) and amounts to γ̇−1 ln ǫ(1− lb/f). It thus increases
with a volumetric length for different species, just as the juvenile period. The mean life
span of ectotherms with a relatively short growth period that die from aging is found from
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(4.48) to be 1
3
Γ(1

3
)(1

6
p̈aṁ)−1/3 for l = f . The mean life span is thus indepent of maximum

body volume of a species. Finch [219] concluded that the scanty data on life spans of
ectotherms do not reveal clear-cut relationships with body volume. Large variations in life
spans exist, both within and between taxa. The ratio of the growth period and the mean
life span is 5.55p̈1/3

a ṁ−2/3(1+f/g) ln ǫ(1−lb/f) and increases with volumetric length. If this
ratio approaches 1, life span tends to increase with maximum body volume in a sigmoid
manner.

In the section on aging, {105}, I discussed the coupling between effectiveness of an-
tioxidants, life spans and genetical flexibility. If aging allows long life spans, individuals
are likely to possess effective means of dealing with a threatening environment such as
avoidance behaviour for dangerous situations (learning), physiological regulation to ac-
commodate changes in diet, temperature and so on. This is likely to involve large brain
size and thus an indirect coupling between brain size and life span. The brain may also be
involved in the production of antioxidants or the regulation thereof, which makes the link
between brain size and life span more direct. Birds have larger brain to body weight ratios
than mammals and live twice as long. The life spans of both mammals and birds tend to
scale empirically with weight0.2 [117,219], which is close to volume1/3. Although I have
not worked out aging for endotherms quantitatively, this is consistent with the deb-based
expectation, because surface bound heating costs dominate respiration, and thus aging.
Brain size is found, empirically, to be approximately proportional to surface area in birds
and mammals [117]. Mammals tend to have higher volume-specific respiration rates than
birds [759], which contributes to the difference in mean life span and jeopardizes easy
explanations.

It must be stressed that these life span considerations relate to aging, though it is doubt-
ful that aging is a major cause of death under field conditions. Suppose that size and age
independent of death dominate under those conditions and that food web interactions work
out such that the population remains at the same level while food is abundantly available.
To simplify the argument, let us focus on species that have a size at first maturation close
to the ultimate size. The death rate can then be found from the characteristic equation
(5.22) for µ̇ = 0 and Prob{a† > a} ≃ exp{−ṗa} and Ṙ(a) ≃ (a > ap)Ṙm,V . Substitution

gives exp{−ṗVap,V} = ṗV/Ṙm,V . I have shown already that the age at first maturation ap,V
increases almost linearly with length, {234}, and the maximum reproduction rate Ṙm,V
decreases with length, {235}. The death rate ṗV must, therefore, decrease with length, so
that the life span ṗ−1

V increases with length.

These considerations help to explain the results of Shine and Charnov [655] that the
product of the von Bertalanffy growth rate and the life span, γ̇V/ṗV , is independent of body
size for snakes and lizards. Charnov and Berrigan [126] argued that the ratio of the juvenile
period and the life span is also independent of body size. They tried to understand this
empirical result from evolutionary arguments. Since the juvenile period is appoximately
proportional to length as well, {234}, the ratio with the life span is roughly independent
of body size. The present derivation also specifies the conditions under which the result is
likely to be found, without using evolutionary arguments.
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6.4 Tertiary scaling relationships

Primary and secondary scaling relationships follow directly from the invariance property
of the deb model. The class of tertiary scaling relationships invokes indirect effects via the
population level. The assumptions that lead to the deb model, table 4.1, must for tertiary
scaling relationships be supplemented with assumptions on individual interactions. The
chapter on ‘living together’ considers the most simple one: interaction is via the resource
only, {159}. This makes tertiary scaling relationships a weaker type. Body size scaling
relations are usually much less obvious at the community level [149], due to a multitude
of complicating factors. Nonetheless, they can be of interest for certain applications.

6.4.1 Abundance

Geographical distribution areas are frequently determined by temperature tolerance limits;
see {44}. Temperature and food abundance also determine species abundance in more
subtle ways.

Since both the maximum ingestion rate and maintenance costs are proportional to
body volume, abundance is likely to be inversely proportional to body volume, so N ∝
V−1. This has been found by Peters [542], but Damuth [152] gives a scaling of −0.76.
This relationship can only be an extremely crude one. Abundances depend on primary
production levels, positions in the food web, etc. Nee et al. [502] point to the relationships
between phylogenetic position, position in food webs and abundances in birds.

6.4.2 Distribution

High food densities go with large ultimate body sizes within a species. If different geo-
graphical regions which differ systematically in food availability are compared, geographical
races can develop in which these size differences are genetically fixed. Since high food den-
sities occur more frequently towards the poles and low food densities in the tropics, body
sizes between these races follow a geographical pattern known as the Bergmann rule; see
{132}.

It is tempting to extend this argument to different species feeding on comparable re-
sources. This is possible to some extent, but another phenomenon complicates the result.
Because of the yearly cycle of seasons, which are more pronounced towards the poles, food
tends to be more abundant towards to poles, but at the same time the length of the good
season tends to shorten. The time required to reach a certain size (for instance the one
at which migration is possible) is proportional to a volumetric length. This implies that
maximum size should be expected at the polar side of the temperate regions, depending
on parameter values, migratory behaviour, endothermism, etc. This probably holds for
species such as geese, that migrate to avoid bad seasons. Geist [246] reported a maximum
body weight at some 60◦ latitude and smaller weights both at higher and lower latitudes
for New World deer and races of wolves. He found a maximum body size for sheep at
some 50◦ latitude. Ectotherms that stay in the region can ‘choose’ the lower boundary
of the temperature tolerance range such that they switch to the torpor state as soon as
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the temperature drops to a level at which food becomes sparse. This reduces the growth
rate, of course, but not the ultimate body size. It then depends on harvesting mechanisms
whether or not the mean body size in a population is affected.

6.4.3 Population growth rate

Since the (maximum) reproduction rate decreases with a length measure and the juvenile
period increases with a length measure, the maximum population growth rate decreases
somewhat faster than a length measure, especially for the small species. A crude approxi-
mation is the implicit equation obtained from (5.23):

exp{−µ̇Vap,1(V/Vm,1)1/3} = (V/Vm)1/3µ̇V/Ṙm,1

For dividing isomorphs, the population growth rate is inversely proportional to the
division interval, which corresponds with a juvenile period from an energetics point of
view. This gives µ̇V = µ̇1(V/Vm,1)−1/3. Fenchel [216] obtained an empirical scaling of
weight−1/4 for protozoa.

6.5 Evaluation of strategies

Several comparisons of strategies have already been made to support statements during
model development and analysis. See for instance on {173,181}. This section presents
some additional strategies, that would have disrupted the flow of arguments if discussed
in other chapters.

6.5.1 r vs K strategy

The ecological literature is full of references to what is known as r and K strategies,
as introduced by MacArthur and Wilson [446]. The symbol r refers to the population
growth rate and K to the carrying capacity; these two parameters occur in the logistic
growth equation, which plays a central role in ecology. Under the influence of Pianka
[549], organisms are classified relative to each other with respect to a number of coupled
traits, the extremes being an ‘r-strategist’ and a ‘K-strategist’. Many of the coupled
traits mentioned by Pianka can now be recognized as direct results of body size scaling
relationships for eco-physiological characteristics. The search for factors in the environment
selecting for r or K strategies can as a first approximation be translated into that for factors
selecting for a small or large body size.

6.5.2 Small vs large eggs

Most optimization arguments lead to the uninspiring result that reproduction rate or pop-
ulation growth rate is maximized by producing an infinitely large number of infinitesimally
small young. No energy argument seems to forbid this possibility. It is hard to understand
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Figure 6.5: The energy costs of the production of an egg relative to that of a foetus (left) and
incubation time relative to gestation time (right), as a function of the investment ratio g and
scaled length at birth lb (plotted on the y-axis) at high energy density at birth, eb = 1.

why it pays to produce (few) large eggs. One possibility is in accounting for a changing spa-
tially heterogeneous environment. Reproduction is usually synchronized with a favourable
season, which is usually short. The reason why the crossbill breeds in midwinter in Scot-
land, for instance, is that it feeds its young with spruce seeds, which are mature early in
spring. This habitat is not always favourable for them; if the seeds are finished, they have
to move out. The same holds for ducks breeding in Iceland, where the adult starts to in-
cubate while there is still snow. When the chicks hatch, food is available, but not for long;
soon after they are able to fly, the conditions grow worse and they are forced to migrate
to the sea. These examples are obvious, but the principle is probably quite common. The
selection constraint is, therefore, a maximum period to complete development up to a stage
allowing for migration.

It is consistent with the structure of the deb model, that such a stage can be tied to
a certain body volume. That the time needed to reach such a volume is strongly reduced
by laying large eggs is obvious from the expression for the juvenile period. The fact that
birds with large eggs, such as shearwaters and the kiwi, also have long incubation times
does not devalue the argument. The deb model shows that the time till the chick reaches
a certain size would be even longer if the eggs were smaller. This insight is one of the
gains of formalized reasoning, where all relevant variables can be considered at the same
time. Another aspect to consider for endotherms is that small young have a hard time
maintaining a high body temperature.

6.5.3 Egg vs foetus

The ratio of the energy costs for egg and foetus production is shown in figure 6.5 in case
of high reserve density at birth, eb = 1. This figure also shows the ratio of the incubation
and gestation time. For very small investment ratios, g, the latter ratio becomes
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Figure 6.6: Stereo view of the division interval (z-axis) of cocci (upper surface), 2D-isomorphs
(middle surface) and 3D-isomorphs (lower surface) as a fraction of that of filaments and as a
function of the scaled functional response (f , x-axis) and scaled length at division (ld, y-axis).

with u ≡ (4eb/lb − 1)−1/4. For very small scaled lengths at birth, this ratio becomes

Bxb
(1

3
, 0)x

−1/3
b /3, with xb ≡ g

eb+g
. The development of the embryo in an egg is somewhat

retarded at the end of incubation, due to the diminishing reserves. This means that
the incubation period is somewhat longer than the corresponding gestation period and
that the cumulative costs at birth of an egg are somewhat higher than that of a foetus.
This comparison assumes that all parameters are equal. Another difference is that, when
breeding, the incubating individual is more restricted in its freedom than the pregnant
mother.

6.5.4 Changing shape and growth

The change in shape during growth has been taken into account by multiplying parameters
that involve surface areas in the growth equation by the appropriate shape correction
function, defined as the ratio of the real surface area and that of an isomorph, such that the
function has value 1 for the volume at division. The comparison of the effects of a change
in shape is on the basis of equal energetics at the moment of division, i.e. equal uptake
rate, equal maintenance costs, equal energy costs per unit of structural body volume, etc.
This basis allows a comparison of division intervals and so of population growth rates.
If γ̇ ≡ ṁg

3(f+g)
denotes the von Bertalanffy growth rate, substitution of V = Vd in (3.15),

(3.35), (3.39), (4.37) and (4.41) results for lb = 2−1/3ld in

γ̇td
γ̇td

=
=

ln f−ld/2
f−ld for 0D-isomorphs γ̇td = 2

3
ln f−ld2−1/2

f−ld for 2D-isomorphs
ld ln 2

3(f−ld)
for 1D-isomorphs γ̇td = ln f−ld2−1/3

f−ld for 3D-isomorphs

γ̇td = ld
3(ld−0.8f)

ln 0.6f−0.5ld
f−ld for cocci

Rods are between cocci and filaments (i.e. 1D-isomorphs), depending on the aspect ratio
δ. These scaled division intervals only depend on the scaled functional response f and
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the scaled (volumetric) length at division ld. Figure 6.6 shows that the division inter-
vals can be ordered into the sequence 3D-isomorphs, 2D-isomorphs, cocci, 1D-isomorphs,
where 3D-isomorphs have the shortest and 1D-isomorphs the longest division interval.
This does not come as a surprise because a baby 1D-isomorph has the same surface
area/volume ratio as the mother, while a baby 3D-isomorph is better off. The reason
to choose the mother as a reference rather than the baby is because it links up more
closely with the trigger of dna replication. The volume at the start of replication is the
only one that is fixed, although the growth rate dependence of the volume at division is
not taken into account here. The differences in division intervals hardly depend on the
values of f and ld, as long as the scaled length at division is small in comparision with
the scaled functional response. For small ld and f = 1, the division intervals relate as

0D-isom. : 1D-isom. : cocci : 2D-isom. : 3D-isom. = 2.16 : 1 : 0.92 : 0.89 : 0.85

6.5.5 Deletion of disused dna

Bacteria as a group are much more diverse in their metabolism than eukaryotes. Within
the α-subgroup of the purple non-sulphur bacteria, a wide variety of complex metabolic
pathways occurs, each involving a considerable number of genes [689]. This can only
be understood by assuming that the ancestor of this group possessed all the pathways
for, e.g. denitrification, aerobic and anaerobic photosynthesis, methylotrophy etc. During
evolution, most species lost one or more of these traits; This brings us to the problem of
to understand why it can be beneficial for species to cut out dna that is not used in a
particular environment rather than leaving it unused.

As shown in figure 6.7, the deb model offers an explanation; the population growth
rate decreases for increasing dna duplication time tD, particularly at high substrate levels.
As the growth process continues during dna duplication, the cell becomes larger the longer
the dna duplication period, if dna duplication is triggered once the cell reaches a certain
specific size. Since the uptake of substrate relates to surface area, and the surface area-
volume ratio grows worse the larger the cell, the cell is better off reducing the time required
to duplicate dna. The effect of the dna duplication time on the population growth rate
is less at low substrate levels, because the division intervals are extended under these
circumstances.

Cutting out disused dna is just one way to reduce the dna duplication time [691].
Another possibility is to maintain two chromosomes that are duplicated simultaneously,
as in Rhodobacter sphaeroides [699], or more frequently, to maintain megaplasmids [233,
359,689].

The evolutionary significance of a high population growth rate should probably be
found in the spatial and temporal heterogeneity of the environment. Useful substrates for
heterotrophs are usually rare. If a plant or animal dies, the locally present microbes will
grow at a high rate over a short period. If the subsequent selection processes thin randomly,
the most abundant species has the best opportunity of surviving till the next event at which
substrate becomes available. Since the ratio of the numbers grows exponentially at a rate
equal to the difference in the population growth rates, small differences can be significant
for long growth periods.
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Figure 6.7: Maximum population growth rate decreases for increasing dna duplication times.
The curves are for aspect ratio δ = 0, and 0.6. The aspect ratio is specified just prior to division
and is fixed. Cell shape and relative size are indicated just before and after division for δ = 0.1
and 0.6, at a doubling time of 0 and 1.5 h. Cell volume at division relative to the volume that
triggers dna duplication, Vd/Vp, is given in the right figure. Numerical studies show that the
figure is independent of parameter values for lp, g and ṁ, given maximum population growth
rate.

6.5.6 Fitness

The relative amount of effort spent on reproduction differs from one species to another.
Even within a species, it can depend on environmental conditions, as discussed for the light
cycle in the pond snail. A change in the partition coefficient κ not only affects the energy
allocated to reproduction, but also growth rate and, therefore, indirectly, ingestion rate,
the length of the embryo and juvenile stage, aging acceleration and, as a result, survival
probability. The intimate coupling between all these traits makes it essential to have rather
comprehensive models for energy uptake and use when in the evaluation the evolutionary
aspects of reproduction allocation.

This is one of the reasons why I am rather sceptical of evolutionary discussions that
neglect coupling of traits. Another reason is that it is not at all obvious to me what traits
precisely are favoured by evolution. Is it (mean) reproduction rate, the total number of
offspring an individual produces over a life time, the population growth rate, or efficiency
of conversion of food into biomass? The last criterion is seldom mentioned because this
efficiency is usually taken to be constant. Given a limited amount of available food, this
efficiency determines population numbers and is, therefore, most relevant in an evolutionary
perspective. I doubt that one criterion exists that applies in every case.

A necessary, but not sufficient, condition for a genome to propagate is that the species
survives. Thus, it must not be out-competed by other species in a dramatic way. Population
growth rate may be relevant here, if environmental conditions are sufficiently homogeneous
in space and time and the competitors more or less mixed. If, however, potential com-
petitors live separated with relatively short periods of local mixing followed by random
and drastic thinning, conversion efficiency from food to biomass is more relevant. Within
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Figure 6.8: The effect of different values for the fraction κ of catabolic energy spent on mainte-
nance plus growth in 3D-isomorphs at different but constant food densities on the total number of
young (left) and the population growth rate (right). The scaled functional response f is plotted
on the y-axis.

a population, the total amount of offspring from one individual seems most important as
long as everything else can be considered to be constant. This, however, cannot be true,
because offspring will affect resources. It might very well be, of course, that a large number
of offspring spoils the environment and its resources to such an extent that extinction be-
comes probable. How do we measure evolutionary success? Is the evolution of the always
rare and 200 Ma old tuatara less successful than the over-abundant human species which
will probably reproduce itself into extinction well before 3 Ma of age as a species? Must
the potential to generate new species be included into a measure for evolutionary success?

The aspects of propagation that make evolutionary sense depend on the scales of time
and space. A proper setting of the problem involves the ecosystem and global levels
of organization and are thus well beyond reach at the moment. Although I mistrust
the evolutionary relevance of most optimization considerations, the results are frequently
intriguing and inspiring. I will, therefore, evaluate how κ relates to various fitness measures
for ectothermic isomorphs.

The general idea is to take the set of parameters, appropriate for a certain species,
and study what mean number of total offspring and what population growth rate it would
have at constant food density, if the species had another value for κ. Not all parameters
are relevant. The minimum set is {κ1, lb1, lp1, g1, v̇, ṁ, p̈a1}, where the index 1 indicates
that the (compound) parameter depends on the value κ1. Figure 6.8 illustrates that at
high food levels, the optimal κ is about 0.6 for the total number of young and 0.2 for the
population growth rate. The difference is in the appearance of the first few young, which
dominates the population growth rate, but not the total number of young. For lower food
densities, the optimal value for κ is larger.
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6.6 Origin of life

Comparing species ultimately leads to speculations about the origin of life. Such specu-
lations are relatively straightforward in the context of the deb theory, because it is not
species-specific. Therefore, it probably also applies to the very first forms of life. So it
does not suffer from the problem that collections of species-specific models for energetics
have: if model 1 applies to species A and model 2 to species B, what model would apply
to the common ancestor of species A and B if changes during evolution are gradual? This
problem only has a solution if models 1 and 2 can be converted to each other in a contin-
uous way. This poses severe constraints on the structure of models that make sense in an
evolutionary context.

The very first cells probably did not have an advanced structure, so that they are
likely to have been isomorphically growing spheres. The cells probably also did not have
an advanced system for dividing into two equal parts. The surface tension of the (outer)
membrane prohibits the separation of very small daughter cells. In turbulent environments
protocells cannot grow to a large size before being torn apart into daughter cells that are
not very different in size. In less turbulent environments cells can grow to larger sizes,
while the daughter cells are able to differ more in size.

Homeostasis is a rather advanced trait which makes the job of regulation a much easier
one. It is likely that it took a long time to achieve this trait, so that the composition of
the protocells followed chemical changes in the environment more closely. Maintenance
costs consist primarily of maintaining concentration gradients across the membrane and of
replacing proteins and were probably low or absent in protocells.

The formation of bilayered membranes can occur and still does occur abiotically, espe-
cially on agitated surfaces of water, such as in coastal areas. Modern cells have phospholipid
membranes that are impermeable to most compounds and exchange material with the en-
vironment via ion channels, which are complex proteins (in organisms alive today). Such
exchange, therefore, requires a rather advanced machinery for protein synthesis which was
probably rna based. (Ling [434] argues, however, that uptake is largly determined by
properties of the cytoplasm and that membranes are not that impermeable.) Since the
discovery that rna can catalyze its own splicing in the absence of proteins [124], most
authors now agree that rna appeared earlier than proteins [513], even though the abiotic
synthesis of such complex rna has not been demonstrated. It is hard to see how rna

in the environment could have been of much significance. Its concentration as well as
that of its substrates (amino acids) were doubtlessly extremely low. The accumulation of
the products inside membranes of protocells could hardly have been of significance. The
situation is obviously much better for rna molecules captured in protocells with a mem-
brane, provided that the membrane is permeable for amino acids and other substrates.
The quantitative aspects of rna activity will be discussed in the next chapter on {250}.
dna appeared later to fulfill the function of an archive for rna.

Growth can occur abiotically via the accumulation of compounds in the membranes
from the environment. Originally these compounds were probably rarely subjected to
chemical transformation. If rna was present in the protocells that catalyzed transforma-
tions such that accumulation was enhanced, positive selection of such protocells would be
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a fact. The catalytic role of proteins then comes as a next step. The energy required for
transformations could obviously not have been derived from the respiratory chain because
of its complexity. According to de Duve [191], endogenic reactions were originally fuelled
by thioesters. Most authors assume an early occurrence of photochemical processes and
think that modern heterotrophs evolved from photo-autotrophs. The accumulation rate
of substrate at low concentrations was probably proportional to the surface area of the
membrane just as it still is. Protocells will have grown in the ‘cube root’ phase, see {147},
because maintenance processes were relatively unimportant.

I realize of course that this account is not very specific. A biochemical discussion is
outside the scope of this book. If this account is realistic, however, it gives weight to the
concept of the ‘individual’ being basic to eco-energetics.



Chapter 7

Suborganismal organization

The deb model has its roots in suborganismal organization, thus this level of organization
has been discussed already at several places in this book. The topics discussed related
directly to the model assumptions. It is tempting to explore the consequences of the model
for suborganismal processes that relate only indirectly to the model assumptions. To
what extent is it possible to build models for elements of suborganismal organization that
satisfy three requirements simultaneously: they must have a mechanistic basis, they must
be realistic and they must be consistent with the deb model. The general idea is that,
although the deb model appears to survive tests for the performance of individuals and
populations, the primary assumptions of the deb model may turn out to be inconsistent
with molecular phenomena.

A lot of work still has to be done to penetrate the lower levels of organization within
the context of the deb model, and in this chapter I report results that have been obtained
so far.

7.1 Digestion

Many studies of energy transformations assume that the energy gain from a food item does
not depend on the size of the individual or on the ingestion rate. The usefulness of this
assumption in ecological studies is obvious, and the deb model uses it as well. In view of
the relationship of gut residence time to both size and ingestion rate, this assumption needs
further study. The nutritional gain from a food particle may depend on gut residence time,
as has been observed by Richman and Schindler [595,635]. These findings are suspect for
two reasons. The first reason is that assimilation efficiencies are usually calculated per unit
of dry weight of consumer, while the metabolically inert energy reserves, which contribute
substantially to dry weight, tend to increase with food density. The second reason is that,
while the nutritional value of faecal pellets may decrease with increasing gut residence time,
it is not obvious whether the animal or the gut microflora gained from the difference. I will
discuss here to what extent a model for digestion based on described feeding behaviour can
be made consistent with the ‘constant gain’ assumption (see assumption 4 of table 4.1).

When animals such as daphnids are fed with artificial resin particles mixed through
their algal food, the appearance of these particles in the faeces supports the plug flow
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type of model for the digestion process, as proposed by Penry and Jumars [209,538,539].
The shape of the digestive system also suggests plug
flow. The basic idea is that materials enter and leave
the system in the same sequence and that they are per-
fectly mixed radially. Mixing or diffusion along the flow
path is assumed to be negligible. (This is at best a first
approximation, because direct observation shows that
particles sometimes flow in the opposite direction.)

Suppose that a thin slice of gut contents can be followed during its travels along the
cylinder-like digestive tract under conditions of constant ingestion rate. The small changes
in the size of the slice during the digestion process are ignored. The gut content of a 4 mm
D. magna is about 0.1 mm3, while the capacity is about 6.3×105 cells of Scenedesmus, see
figure 3.10, of some 58 µm3 per cell, which gives a total cell volume of 0.0367 mm3. The
cells occupy some 37% of the gut volume, which justifies the neglect of volume changes
for the slice. The volume of the slice of thickness Lλ is Vs = πLλL

2
φ/4, where Lφ is the

diameter of the gut, and πLλLφ is the surface area of the gut.

Suppose that the metabolizable energy in the food must be freed before it can be ab-
sorbed through the gut wall, which generally involves some chemical transformations. The
rate of freeing energy from the gut contents is taken to be proportional to the concentration
of enzymes which have been secreted by or via the gut wall. The activity period of the dif-
ferent types of enzyme will probably vary. If the whole gut wall is involved in the secretion
of enzymes and deactivation follows a simple first order process, the amount Sg of enzyme
in the slice will follow d

dt
Sg = {Ṡg}πLλLφ − k̇eSg, where {Ṡg} is the (constant) secretion

rate of enzyme per unit of surface area of gut wall and k̇e is the decay rate of enzyme
activity. The equilibrium concentration of enzyme is thus [Sg] ≡ Sg/Vs = 4{Ṡg}(Lφk̇e)

−1.
So the enzyme concentration is larger in smaller individuals because of the more favourable
surface area/volume ratio of the slice.

A simple Michaelis–Menten kinetics for the change in metabolizable energy density
locked in the food, Ef , gives d

dt
Ef = −k̇fff4{Ṡg}(Lφk̇e)

−1, where ff = Ef/(Kf + Ef ).

The parameter k̇f is a rate constant for digestion. If the absorption of absorbable energy
through the gut wall again follows Michaelis–Menten kinetics, the change of absorbable
energy density in the slice, Eg, is given by d

dt
Eg = k̇fff4{Ṡg}(k̇eLφ)−1 − k̇gfg4{C}/Lφ

where fg ≡ Eg/(Kg + Eg) and {C} is the number of carriers in a unit surface area of gut
wall. The parameter k̇g is a rate constant for absorption. This two-step double Michaelis–
Menten kinetics for digestion with plug flow has been proposed independently by Dade et

al. [150].

The conservation law for energy can be used to deduce that the total amount of energy
taken up from the slice equals the slice volume times (Ef (0) − Ef (tg) − Eg(tg)), where
Ef (0) denotes the metabolizable energy density at ingestion and tg the gut residence time.

To evaluate to what extent food density and the size of the organism affect digestion, it
is helpful to define a digestion and uptake efficiency of metabolizable energy, U = Ef (0)−
Ef (tg) − Eg(tg) and to let tg be the unit of time. So for t∗ = t/tg, E

∗
f (t∗) = Ef (t∗)/Ef (0)

and E∗
g (t

∗) = Eg(t
∗)/Eg(0), the equations for the change in energy locked into food and in
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absorbable energy become

d

dt∗
E∗
f = − k̇f4{Ṡg}tg

k̇eEf (0)Lφ

E∗
f

Kf/Ef (0) + E∗
f

(7.1)

d

dt∗
E∗
g =

k̇f4{Ṡg}tg
k̇eEg(0)Lφ

E∗
f

Kf/Ef (0) + E∗
f

− k̇g4{C}tg
Eg(0)Lφ

E∗
g

Kg/Eg(0) + E∗
g

(7.2)

The efficiency now becomes U = 1 − E∗
f (1) − E∗

g (1). For isomorphs, where gut diameter
Lφ is proportional to whole body length L, these equations imply that energy uptake
from food is independent of body size. Shorter gut residence time in small individuals
is exactly compensated by higher enzyme concentration. This is because the production
of short living enzymes is taken to be proportional to the surface area of the gut. An
obvious alternative would be a long living enzyme that is secreted in the anterior part of
the digestive system. If this part is a fixed proportion of the whole gut length the result
of size independence is still valid.

Efficiency depends on food density as long as digestion is not complete, i.e. if E∗
f (1) and

E∗
g (1) are not negligibly small. If absorption is a rapid process, so that E∗

g (1) ≃ 0, E∗
f (1) can

be solved implicitly from (7.1) via separation of variables. Substitution of U = 1 − E∗
f (1)

into this solution gives

U
Ef (0)

Kf

− ln{1 − U} =
k̇f4{Ṡg}tg
k̇eKfLφ

(7.3)

For a chosen value for efficiency U close to 1, (7.3) provides a constraint on parameter
values in order to achieve almost complete digestion. More specifically, it relates the rate
of enzyme secretion to the ingestion rate of food items with metabolizable energy density
Ef (0). So it relates ingestion rate to food quality.

If the saturation coefficient of the freeing process, Kf , is negligibly small, (7.1) reduces

to the zero-th order process d
dt∗
E∗
f = − k̇f4{Ṡg}tg

k̇eEf (0)Lφ
, giving

E∗
f (t∗) =

(

1 − k̇f4{Ṡg}tg
k̇eEf (0)Lφ

t∗
)

+

(7.4)

The energy density of gut contents thus decreases linearly with time (and distance). This
has been proposed by Hungate [342], who modelled the 42 hour digestion of alfalfa in
ruminants. Digestion is complete if k̇f4{Ṡg}t∗tg > k̇eEf (0)Lφ.

The above model can be extended easily to cover a lot of different enzymes in different
sections of the gut, without becoming much more complicated, as long as the additivity
assumptions of their mode of action and their products hold. Food usually consists of many
components that differ in digestibility. Digestion can only be complete for the animal in
question if the most resistent component is digested. If the digestion of each component
follows zero-order kinetics, the flux across the anterior gut wall is larger than across the
posterior gut wall. This situation is worked out for the freshwater oligochaete Nais elinguis,
which propagates through division into two parts, the anterior part growing faster than
the posterior one. This is to be expected if longitudinal mixing of compounds in the worm
is limited; see the section on segmented individuals, {155}.
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Figure 7.1: The assimilation rate as
a function of ingestion rate for mussels
(Mytilus edulis) ranging from 1.75 to 5.7
cm. Data from [44,45,81,387,297]. All
rates are corrected to 15 ◦C. The fitted
line is Ȧ = İ{Ȧm}/{İm} with {Ȧm}/{İm}
= 11.5 (s.d. 0.34) J mg POM−1.

Microflora is likely to play an important role in the digestion process of all herbivores,
including daphnids. It can provide additional nutrients by fermenting carbohydrates and
by synthesizing amino acids and essential vitamins. Daphnids are able to derive structural
body components and lipids from the cellulose of algal cell walls [640], though it is widely
accepted that daphnids, like almost all other animals, are unable to produce cellulase.
Endogenous cellulase production is only known from some snails, wood-boring beetles,
shipworms and thysanurans [441]. The leaf cutting ant Atta specifically cultures fungi,
probably to obtain cellulase [457]. Bacteria have been found in the guts of an increasing
number of crustaceans [500], but not yet in daphnids [640]. In view of the short gut
residence times for daphnids, it is improbable that the growth of the daphnid’s gut flora
plays an important role. Digestion of cellulose is a slow process and the digestive caecum
is situated in the anterior part of gut, it is thus probable that daphnids produce enzymes
that can pass through cell walls, because they do not have the mechanics to rupture them.

The existence of a maximum ingestion rate implies a minimum gut residence time. With
a simple model for digestion, it is possible to relate the digestive characteristics of food
to the feeding process, on the assumption that the organism aims at complete digestion.
The energy gain from ingested food is then directly proportional to the ingestion rate,
if prolonged feeding at constant, different, food densities is considered. See figure 7.1
from [286]. Should temperature affect feeding in a different way than digestion, the close
harmony between both processes would be disturbed, which would lead to incomplete
digestion under some conditions.

7.2 Protein synthesis

rna, mainly consisting of rrna, is an example of a compound known to be more abundant
in cells growing at a high rate [393]. This property is used to measure the growth rate
of fish, for example [108,339]. In prokaryotes, which can grow much faster, the increase
in rrna is much stronger. This section will, therefore, focus on prokaryotes. Within the
deb model, we can only account for this relationship when (part of the) rna is included
in the energy reserves. This does not seem unrealistic, because when the cell experiences a
decline in substrate density and thus a decline in energy reserves, it is likely to gain energy
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Figure 7.2: The concentration of rna as
a function of the population growth rate in
E. coli. Data from Koch [393]. The least
squares estimates of the parameters (with
s.d.) are αe = 0.44(0.05), αv = 0.087(0.005)
and [dde]/[ddv] = 20.7(5.4).

Figure 7.3: Elongation rate in E. coli for
δ = 0.3, ld = 0.24(0.019), g = 32.4(91.9).
Data from Bremer and Dennis [89]. Both
elongation rate and population growth rate
are expressed as fractions of their maximum
value of µ̇ = 1.73 h−1 with an elongation rate
of 21 aa s−1rib−1.

through the degradation of ribosomes [158]. It also makes sense, because the kinetics of
reserve energy density is assumed to be a first order one, which implies that the use of
reserves increases with their density. The connection between the abundance of rna, i.e.
the apparatus for protein synthesis, and energy density is, therefore, a logical one. No
assumption of the deb model implies that the energy reserves should be inert materials
with no other function than being reserves. The analysis of the data from Esener in the
section on mass-energy coupling, {192}, also points to the conclusion that rrna can be a
significant part of the reserves in bacteria.

The dynamics of rna is most easy to describe when rna constitutes a fixed fraction of
the energy reserves. This is also the simplest condition under which homeostasis for energy
reserves holds in sufficient detail to apply to rna. The rate of rna turnover is completely
determined by this assumption. It also has strong implications for the translation rate and
the total number of translations made from a particular rna molecule.

rna as a fraction of dry weight is given in figure 7.2. If the weight of rna is a fraction
αv of the dry weight of structural biomass and a fraction αe of the dry weight of the energy
reserves, the fraction of dry weight that is rna equals

WRNA/Wd =
αv[ddv]V + αe[dde]fV

[ddv]V + [dde]fV
=
αv + αef [dde]/[ddv]

1 + f [dde]/[ddv]

The parameters of figure 5.11 were used to relate µ̇ to f . This indicates that at least in
prokaryotes almost all rna is part of the reserves and about half the energy reserves consist
of rna.

The mean translation rate of a ribosome, known as the elongation rate, is proportional
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to the ratio of the rate of protein synthesis and the energy reserves, E. The rate of protein
synthesis is proportional to the growth rate plus part of the maintenance rate which is
higher, the lower the growth rate in bacteria [690]. The peptide elongation rate is plotted
in figure 7.3 for E. coli at 37 ◦C. If we neglect the contribution of maintenance to protein
synthesis, the elongation rate at constant substrate density is proportional to the ratio
of the growth rate d

dt
V and the stored energy [Em]fV . For a typical rod, i.e. a rod of

size EV given in table 5.1, substitution of (3.37) shows that the elongation rate should be
proportional to µ̇/f at population growth rate µ̇. It allows the estimation of the parameter
lb, which is hard to obtain in another way.

The life time of a compound in the reserves is exponentially distributed with a mean
residence time of (ν̇( δ

3
Vd

V
+ 1 − δ

3
))−1; see (3.36). The mean residence time thus increases

during the cell cycle. At division it is ν̇−1, independent of the (population) growth rate. The
total number of transcriptions of a ribosome, in consequence, increases with the population
growth rate. Outside the cell, rna is rather stable. The fact that the rna fraction of dry
weight depends on feeding conditions indicates that a rna molecule has a restricted life
span inside the cell.

7.3 Allometric growth and regulation

The bill of the guillemot Uria

aalge is just one example of non-

isomorphic growth. Although of

little energetical significance, the

κ-rule provides the structure to

describe such deviations.

In the development of the deb theory, only somatic and reproductive tissue have been
distinguished for the sake of simplicity. The assumption of isomorphy covers other tissue
as fixed fractions of the somatic tissue, conceived as a lumped sum. The elaboration
below makes explicit that the mechanism behind the κ-rule implies a particular type of
growth regulation. It also reveals the intimate connection between the κ-rule and allometric
growth.

In a bit more detail, the κ-rule (3.11) can be rephrased as

κi
Vi
V+

Ċ = [Gi]
d

dt
Vi + [Mi]Vi (7.5)

where Vi denotes tissue (or organ or part of body) i, and V+ ≡ ∑k
i=1 Vi is the total body

volume. Since blood flow is space-filling, the fraction Vi/V+ stands for the relative length
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Figure 7.4: Examples of allometric growth: log y = a + b log x. Left: The head length (from the
tip of the nose to the blow hole), with respect to total body length minus the head length in the
male blue whale, Balaenoptera musculus. The first 4 data points are from foetuses, where growth
is isomorphic (b = 1). Thereafter the head extends more rapidly (b = 1.65). Right: The weight of
the large chela with respect to that of the rest of the body in the male fiddler crab Uca pugnax.
Initially the chela grows rapidly (b = 1.63) until a rest of body weight of 850 mg, thereafter it
slows down a little (b = 1.23). Data from Huxley [345].

of the track followed by blood as it flows through tissue i. In the above, only somatic and
reproductive tissue were distinguished, so k = 2. Isomorphism implies that Vi/V+ remains
fixed, so κ = κ1V1/V+ has been taken, while d

dt
V1 = d

dt
V2. The extra uptake by reproductive

tissue did not result in enhanced growth of the reproductive tissue, but in production that
becomes lost for the body. If isomorphism is dropped as a condition and if more types

of tissue are to be distinguished, (7.5) can be written as [Gi]
d
dt
Vi = κi

V+
Ċ(1 − [Ṁi]V+

κiĊ
)Vi.

Allometrical growth of tissue i with respect to tissue j results, that is dVi

dVj
= κi[Gj ]

κj [Gi]
Vi

Vj
, if

[Ṁi]V+

κiĊ
is small.

Allometric growth with respect to total body volume occurs if the contribution of
tissue i to total body volume is insignificant, because V 6= ∑

i αiV
βi if βi 6= 1 for some

i, whatever the values of positive αi’s. Absolute growth requires specification of how
feeding and digestion (and heating for endotherms) depend on the volume and shape of
the different tissues. It is likely to become complex. Allometric growth of extremities
and skeletal elements frequently occurs, as illustrated in figure 7.4. Houck et al. [337]
used this growth as an argument to delineate taxa in Archaeopteryx. It is improbable,
however, that whole-organism energetics is seriously affected by these relative changes.
This paragraph only serves to illustrate that the mechanism behind allometric growth (of
appendages) is intimately connected to the κ-rule. Note that the dimensional problems that
are usually connected to allometric relationships, {12}, do not apply in this implementation
of allometric growth.

Isomorphs thus require growth regulation over the different body parts. Without con-
trol, allometric growth results. For isomorphs [Vi] ≡ Vi/V+ must remain fixed, so that
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d
dt
Vi = [Vi]

d
dt
V+ must hold. This implies for the deb model that the organism must accel-

erate or retard the growth of organ/tissue/part i by a factor [Vi]
dV+

dVi
≃ gi

∑

j[Vj]/gj, with

gi ≡ [Gi]
κi[Em]

. (The approximation holds for Ṁi << κiĊ.) The mechanism of control may be
via the density of carriers that transfer resources from the blood to the tissue. The carrier
density in membranes of large tissues/parts, should be less than that in small tissues/parts
for a particular value.

The acceleration/retardation factor demonstrates that the carrier density does not have
to change during growth. Other types of growth regulation are also possible. This discus-
sion is only about the effects of regulation, rather than its mechanism.



Chapter 8

Ecotoxicity

The first purpose of this chapter is to show how the deb model help us solve ecotoxicological
problems; in particular, I will show how it can be used to build physiologically underpinned
models for the uptake of (xenobiotic) compounds, for the characterization of their effects
on individual performance and for the translation of these effects to the population and
ecosystem level.

The need for physiological underpinning of the kinetics of compounds is felt in the ever
increasing size of the data base that is being built up at the moment for experimental
data on the kinetics of a wide variety of compounds in a wide variety of organisms. The
search for structures in this data set is essential for the interpretation of experimental
results, for predictions concerning unknown combinations of compounds and species, for
the design of informative experiments and for the filtering of less reliable data. The domain
of application also extends to the field of drugs: pharmaco-kinetics.

The need for a characterization of effects of compounds and their extrapolation to the
population and ecosystem level originates in the huge problems man is creating in his
environment at the moment. It is relatively easy to determine effects on individuals in the
laboratory, whereas the real problems are at the ecosystem level. This calls for models to
link them. The purpose is to analyse how bad a particular pollution event or situation is,
to set priorities for cleaning up the mess and to set norm values for maximum emission of
compounds into the environment for industry and transport. We can only be extremely
modest in our claims to understand long-term effects at the ecosystem level. This book
attempts to contribute to one particular aspect of what is needed. A lot of work still has
to be done.

The position I take with respect to the application of the deb theory to ecotoxicological
problems is that you can agree or disagree with the details of the deb theory, but you will
need something like it to enable the translation of effects on individuals to the population
level. A lot of attempts have been made and doubtlessly will be made to circumvent the
translation problem and to experiment directly with populations to measure effects at this
level. However, if you want to understand what is going on, you still need translation. For
a purely descriptive approach, you can do without translation to some extent, but a lot of
problems lie in wait for you. This is not the right place to discuss them at length; see e.g.
[409,412], but an important aspect is the substantial probability of what is known as an
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error of the second kind in statistics: there are effects, but you fail to spot them. In this
case, it is due to the erratic behaviour of populations and our limited biological knowledge
of how to experiment with them in a meaningful way.

The deb model has just the proper level of resolution for ecotoxicological applications.
This is no coincidence, I designed it specifically for this purpose. The treatment of ecotox-
icological application in this book can be justified for two other reasons. The first reason is
that the kinetics of a xenobiotic compound do not differ from that of any other compound
that is not regulated physiologically. The kinetics of physiologically regulated compounds
can only be studied satisfactorily in the light of the non-regulated ones. It therefore has a
bearing on mass exchange between organism and environment in general. Moreover, a lot
of plant-animal relationships closely resemble chemical warfare. The second reason is that
toxic compounds can affect particular energy allocations. This provides the opportunity to
use toxicological experiments as a tool to study the mechanisms behind energy allocation
patterns.

This chapter first discusses simple one-compartment uptake/elimination behaviour in
a variable environment as relevant, for example, to monitoring programs. It restates and
modestly extends the work of Thomann and Mueller [712] on this point. The physiological
change of the organism is at first neglected. This serves as an introduction to the next
section, which enlarges on physiological change with respect to size, energy reserves and
reproductive output and invokes the deb model. Then follows a link to lethal and sublethal
effects for individuals and effects at the population level.

8.1 One-compartment kinetics

To monitor the concentration of a pollutant in waterways, it sometimes makes sense to
determine the concentration of pollutant in mussels, [Q](t), which have been exposed in
such waterways, rather than to determine the concentration in the water, c(t). The first
argument is that of bio-availability. Not all of the chemically determined pollutant in the
water is actually available to organisms, due to the variety of chemical forms in which the
pollutant is present (e.g. ligands). Concentrations in tissues provide information which
is, therefore, more relevant to the problem of pollution. Another argument is that the
concentration of pollutant in the water may have some sharp peaks, which are easy to
miss with infrequent determinations. Mussels, in some way, integrate the concentration
in the environment in time. It should, therefore, still be possible to observe a trace of
such peaks in the concentrations found in the tissue by infrequent sampling, provided the
mussels do not close their valves during such peaks. Let us study this argument in more
detail, assuming that uptake is from the dissolved compound in the water and elimination
is from the aqueous fraction of the body.

Suppose that the concentration in the tissue follows a simple one-compartment process,
i.e.

d

dt
[Q] = [k̇da]c(t) − k̇a[Q] (8.1)

where k̇a is the transfer rate from the aqueous fraction of the body to the dissolved pool
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in the environment, called the elimination rate, and [k̇da] the reverse rate, the uptake
rate. The ratio [k̇da]/k̇a is known as the bioconcentration coefficient and can be less than
1. Although many texts treat the bioconcentration coefficient as a dimensionless one, it
actually has dimension environmental volume×(body volume)−1 because the sum of both
types of volume does not have a useful role to play. Most texts in fact use environmental
volume×(body dry weight)−1, or for soils environmental dry weight×(body dry weight)−1.
The uptake kinetics is the same as in the Lotka–Volterra model for the uptake of food, and
can thus be considered as a linear approximation of the hyperbolic functional response for
low concentrations.

If we know [Q](t) in sufficient detail, and if it is sufficiently smooth so that it can be
described by a cubic spline function for instance, we can reconstruct c(t) through

c(t) = (
d

dt
[Q](t) + k̇a[Q])/[k̇da] (8.2)

We need an explicit expression of [Q](t) in terms of c(t), however, because we want to
study the effects of rapidly changing concentrations in the water. The solution is found
from (8.1) to be

[Q](t) = [Q](0) exp{−tk̇a} + [k̇da]
∫ t

0
exp{−(t− t1)k̇a}c(t1) dt1 (8.3)

If c(t) is actually constant, (8.3) reduces to

[Q](t) = [Q](0) exp{−tk̇a} +
(

1 − exp{−tk̇a}
) [k̇da]

k̇a
c (8.4)

which is known as the accumulation curve.

8.1.1 Random increment input

The concentration in the environment is usually not constant. In experimental setups,
it can be evaluated using mass balances. In the environment, it follows some stochastic
process, which involves many factors. Some simple choices for such processes are discussed
in this and the next few subsections. These subsections can be skipped without loss of
continuity.

The purpose of the following subsections is to derive statistical properties of one-
compartment models with a stochastic input, as is realistic for an individual exposed in
the field to a xenobiotic. Different stochastic inputs will result in very similar statistical
properties. Knowledge of these properties can be helpful for the interpretation of data and
for the setup of monitoring programs.

The mathematically most simple type of stochastic input is when the continuous func-
tion c(t) is approximated by a step function which changes only at discrete time points ti,
i = 1, 2, · · ·, that are a fixed time interval td apart. That is, c(t) is constant over a time
interval (ti, ti+1], at value ci. The concentration in the tissue at the end of the interval is
given by

[Q]i+1 = [Q](ti + td) = r[Q]i + (1 − r)ci[k̇da]/k̇a (8.5)
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with [Q]i ≡ [Q](ti) and r ≡ exp{−tdk̇a}. Now we assume that the values ci represent
trials taken independently from some probability density function. This is reasonable for
the situation in a river, where the well-mixed water surrounding a mussel is completely
replaced in an interval of length td. This input process is called a random increment
process. The schedule (8.5) is known as a (first-order) stochastic difference equation or
an auto-regression process, because the new value for [Q] is a weighted sum of the old
values and an independent random variable. As these processes play such a central role in
the theory of stochastic processes, the description is first given in terms of auto-regression
processes, and afterwards in less conventional continuous time formulations. This reveals
differences in discrete time and continuous time formulations.

If we let the interval td shrink down to an infinitesimally short one, the stochastic
difference equation transforms into a stochastic differential equation. This can be seen by
subtracting [Q]i on both sides from (8.5), letting td → 0 and noting that limtd→0(1−r)/td =
k̇a. It then reduces to

d

dt
[Q] ≡ lim

td→0

[Q]i+1 − [Q]i

td
= [k̇da]c(t) − k̇a[Q] (8.6)

where c(t) follows what is known as a random increment process. When td → 0, we have
to reduce var ci at the proper rate to arrive at the variance of the increments, otherwise
the process does not have interesting properties. This remark only serves to point to
the relationship between auto-regressive processes and stochastic differential equations.
The discussion will be restricted to auto-regressive schemes to avoid measure theoretical
problems associated with that limiting process. These problems originate from details in
the definition of integration of functions, such as the realization of the process c(t) that is
discontinuous at infinitely many points.

The auto-regressive scheme can be expressed alternatively as a moving average scheme:

[Q]i+1 = ri+1[Q]0 + (1 − r)
[k̇da]

k̇a

i
∑

j=0

rjci−j (8.7)

The expected value for [Q]i+1 will be

E [Q]i+1 = ri+1E [Q]0 + (1 − r)
[k̇da]

k̇a
Eci

i
∑

j=0

rj (8.8)

Ultimately, i.e. for large i, this reduces to E [Q]i = Eci[k̇da]/k̇a. Thus, the ultimate mean
concentration in the tissue is just the mean concentration in the environment times the bio-
concentration coefficient [k̇da]/k̇a. This result corresponds with the deterministic situation
if c is constant. Then [Q](∞) = c[k̇da]/k̇a, as can be inferred directly from (8.4).

The variance of the concentrations in the tissue is obtained by taking variances at both
sides of (8.7), which leads to

var [Q]i = var ci

(

[k̇da]

k̇a

)2
1 − r

1 + r
(8.9)
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Similarly, the covariance equals cov ([Q]i, ci) = 0, so that both concentrations are uncor-
related.

The subsequent concentrations in the tissue are correlated, as opposed to the concen-
trations in the water. This is expressed by the auto-covariance function cov ([Q]i+h, [Q]i),
or the auto-correlation function cor ([Q]i+h, [Q]i) (both considered as functions in h), given
from (8.7) by

cov ([Q]i+h, [Q]i) = r|h|var [Q]i (8.10)

and

cor ([Q]i+h, [Q]i) =
cov ([Q]i+h, [Q]i)

var [Q]i
= r|h| (8.11)

We can also study how [Q]i+h depends on ci by looking at the (cross-)correlation function
cor ([Q]i+h, ci) which in this case can easily be derived to be

cor ([Q]i+h, ci) ≡
cov ([Q]i+h, ci)
√

var [Q]i var ci
=

√
1 − r2 rh−1 forh > 0 (8.12)

The cross-correlation function in figure 8.1 shows how the concentration in the tissue lags
behind concentration fluctuations in the water. The value r = 0.8 has been chosen in
(8.11) and (8.12). This smoothing also results in a gradually decreasing auto-correlation
function of [Q].

So far, we have studied the concentrations at time points htd, h = 0, 1, . . .. Since
the uptake/elimination process is in continuous time, the mean and variance of [Q](t) are
of more practical interest than those of [Q]i. These statistics are defined as E [Q](t) ≡
limt→∞ t−1

∫ t
0 [Q](t1) dt1 and var [Q](t) ≡ limt→∞ t−1

∫ t
0([Q](t1)−E [Q](t1))

2 dt1. To evaluate

them, it is helpful to note that [Q](t) = [Q]i
exp{−(t−ti)k̇a}−r

1−r + [Q]i+1
1−exp{−(t−ti)k̇a}

1−r for t ∈
(ti, ti+1]. From this expression, it is easy to see that t−1

d

∫ ti+1
ti [Q](t) dt = [Q]i+1−r[Q]i

1−r +
[Q]i−[Q]i+1

tdk̇a
. The second term disappears in the mean, so that the mean of [Q](t) equals that

of [Q]i. A similar evaluation of the variance results in

var [Q](t) = var ci

(

[k̇da]

k̇a

)2 (

1 − 1 − r

tdk̇a

)

(8.13)

Comparison with (8.9) reveals the effect of the inclusion of the time points between
0, td, 2td, . . . in the calculation of the variance. So the means of the discrete and the
continuous time process are the same, but the variances differ. Since the concentrations in
the water are constant within each time interval, the mean and variance of c(t) equal that
of ci. The auto-correlation function of c(t) equals

cor (c(t+ th), c(t)) = (|th| < td)(1 − |th|/td) (8.14)

It thus decreases linearly to zero at |th| = td.
The correlation coefficient between c(t) and [Q](t) proves to be

cor ([Q](t), c(t)) =

√

1 − 1 − r

tdk̇a
≡ ρ (8.15)
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while ci and [Q]i are uncorrelated.

The cross-correlation function turns out to be

cor ([Q](t+ th), c(t)) = 0 for th < −td

=
1

ρ
+

th
ρtd

+
r exp{−thk̇a} − 1

ρtdk̇a
for − td ≤ th < 0

=
1

ρ
− th
ρtd

+
1 − (2 − r) exp{−thk̇a}

ρtdk̇a
for 0 ≤ th < td

=
(1 − r)2

ρrtdk̇a
exp{−thk̇a} for th ≥ td (8.16)

It has a maximum at th = k̇−1
a ln(2 − r).

The auto-correlation function of [Q](t) can best be obtained via the relationship

2k̇a

[k̇da]
cov ([Q](t), [Q](t+ th)) = cov ([Q](t+ th), c(t)) + cov ([Q](t), c(t+ th)) (8.17)

which can be obtained directly by applying (8.1) and using the property that, ultimately,
we must have d

dt
cov ([Q](t), [Q](t+ th)) = 0. The result is

cor ([Q](t), [Q](t+ th)) =
1

ρ2
− |th|
ρ2td

+
r exp{|th|k̇a} − (2 − r) exp{−|th|k̇a}

2ρ2tdk̇a
for |th| ≤ td

=
(1 − r)2

2rρ2tdk̇a
exp{−|th|k̇a} for |th| > td (8.18)

An interesting consequence of (8.17) is that for the linear system (8.6), with any stochas-
tic input, holds:

var [Q](t) = cov ([Q](t), c(t))[k̇da]/k̇a (8.19)

This implies that the correlation coefficient between the concentrations in tissue and water
equals the ratio of their variation coefficients, thus

cor ([Q](t), c(t)) =
cv [Q](t)

cv c(t)
(8.20)

If the correlation coefficient between both concentrations is low, tissue smoothes out fluc-
tuating concentrations in the water effectively, so that a few samples from the tissue tell as
much as a large amount of samples from the water, as far as statistics is concerned. If the
scatter in the concentration in the water is high, it is easy to miss peaks, while traces of
such peaks are still measurable in the tissue. In practice however, behaviour of individuals,
such as closing of valves by mussels, may complicate the analysis.
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random increment

auto-regressive

alternating Poisson

Figure 8.1: A comparison of different stochastic inputs. The left column shows a small part of
a sample path of the concentrations in water and tissue, and the right shows the corresponding
correlation functions. The three input processes are described in the text. The concentrations are
normalized for zero mean and unit variance in the water (river). The line types of the figures in
both columns correspond. Drawn: tissue, dotted: water, sparsely dotted: inflowing water. The
dot-density of the cross-correlation curves is the mean of both variables.



262 8. Ecotoxicity

8.1.2 Auto-regressive input

The behaviour of concentrations in the water usually shows more ‘memory’. Suppose, we
have a lake of constant volume Vc, with an inflow and an outflow of water at rate k̇c per
unit of time. The quotient tc ≡ Vc/k̇c is known as the residence time of water in the lake.
If mixing is perfect, the concentration c in the lake depends on b in the inflowing water
according to a one-compartment process:

d

dt
c = (b(t) − c) /tc (8.21)

The solution, in analogy with (8.3), is:

c(t) = c(0) exp{−t/tc} +
1

tc

∫ t

0
exp{−(t− t1)/tc}b(t1) dt1 (8.22)

We will approximate b(t) the same way we did c(t). That is, b is constant over an interval
(ti, ti + td] at value bi. Then we have

ci+1 = sci + (1 − s)bi with s ≡ exp{−td/tc}

= si+1c0 + (1 − s)
i
∑

j=0

sjbi−j (8.23)

This is again an auto-regression scheme if the bi’s are independent and identically dis-
tributed.

In steady state we have, analogously with (8.7) and (8.9), Eci = Ebi and var ci =
var bi(1− s)/(1 + s). The main difference with the river situation is that subsequent values
for ci are now correlated. The auto-covariance function (see (8.10)) is given by

cov (ci+h, ci) = s|h|var ci (8.24)

or, in analogy with (8.18),

cov (c(t), c(t+ th))

var bi
= 1 − |th|

td
+
s exp{|th|/tc} − (2 − s) exp{−|th|/tc}

2td/tc
for |th| ≤ td

=
(1 − s)2

2std/tc
exp{−|th|/tc} for |th| > td (8.25)

so that var c(t) = ρ2
ARvar bi with ρAR ≡

√

1 − 1−s
td/tc

representing the correlation coefficient

cor([Q](t), c(t)).

The concentrations in the tissue can again be expressed as an auto-regressive or a
moving average scheme, via substitution of

c(t− ti) = ci exp{−(t− ti)/tc} + bi(1 − exp{−(t− ti)/tc})



8.1. One-compartment kinetics 263

in (8.3). The resulting scheme is:

[Q]i+1 = [Q]ir +
[k̇da]

k̇a − 1/tc
(ci − bi)(s− r) +

[k̇da]

k̇a
bi(1 − r)

= [Q]0r
i+1 +

[k̇da]

k̇a − 1/tc
(si+1 − ri+1)c0 +

+ (1 − r)
[k̇da]

k̇a

i
∑

j=0

bi−jr
j

(

1 − k̇a

k̇a − 1/tc

(

1 − 1 − s

1 − r

(

s

r

)j
))

(8.26)

The first two terms only refer to the initial concentration in the tissue and lake. Their
contribution becomes negligible in the long run.

The mean concentration in the tissue again equals E [Q]i = E [Q](t) = [k̇da]k̇
−1
a Eci. The

correlation function with the concentrations in the water can, for linear systems in general,
be obtained directly from the auto-correlation function of the input (the concentration in
the water in this case). From the definition of the correlation function and the general
solution (8.3), it follows for large t that

cor ([Q](t+ th), c(t)) = [k̇da]
∫ ∞

0
exp{−t1k̇a}cor (c(t), c(t+ th − t1)) dt1 (8.27)

The cross-covariance function between output and input is thus completely determined by
the auto-covariance function of the input for linear systems. The evaluation of (8.27) is
straightforward and results in:

cov ([Q](t+ th), c(t))k̇a/[k̇da]

=
(1 − s)2 exp{th/tc}
2s(1 + 1/tck̇a)td/tc

for th < −td

= 1 +
th
td

− 1

tdk̇a
− (2 − s) exp{th/tc}

2(1 + 1/tck̇a)td/tc
+

s exp{−th/tc}
2(1 − 1/tck̇a)td/tc

+

+
exp{−thk̇a}

1 − t2c k̇
2
a

r

tdk̇a
for − td ≤ th < 0

= 1 − th
td

+
1

tdk̇a
+

s exp{th/tc}
2(1 + 1/tck̇a)td/tc

− (2 − s) exp{−th/tc}
2(1 − 1/tck̇a)td/tc

+

− exp{−thk̇a}
1 − t2c k̇

2
a

2 − r

tdk̇a
for 0 ≤ th < td

=
(1 − s)2 exp{−th/tc}
2s(1 − 1/tck̇a)td/tc

+ exp{−thk̇a}
(1 − r)2

rtdk̇a
α for th ≥ td

cov ([Q](t+ th), [Q](t))k̇2
a/[k̇da]

2

= 1 − |th|
td

− (2 − s) exp{−|th|/tc}
2(1 − t−2

c k̇−2
a )td/tc

+
s exp{|th|/tc}

2(1 − t−2
c k̇−2

a )td/tc
+

− (2 − r) exp{−|th|k̇a}
2(1 − t2c k̇

2
a)tdk̇a

+
r exp{|th|k̇a}

2(1 − t2c k̇
2
a)tdk̇a

for |th| ≤ td
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=
(1 − s)2 exp{−|th|/tc}

2s(1 − t−2
c k̇−2

a )td/tc
+

(1 − r)2 exp{−|th|k̇a}
2r(1 − t2c k̇

2
a)tdk̇a

for |th| > td

These expressions illustrate that even the most simple stochastic process results in con-
siderable complexity. The cross-covariance function is not symmetrical in the delay th,

as illustrated in figure 8.1. It has a peak at th = (k̇a − 1/tc)
−1 ln

(

1−r
1−s

)2
s
r

2
tck̇a(tck̇a+1)

if it

happens to be larger than td.

8.1.3 Alternating Poisson input

The auto-regressive process has, because of its linearity, beautiful mathematical properties.
It is possible to evaluate important properties of the concentration in the tissue, without
specification of the distribution of the concentration in the inflowing water. The time
interval over which the concentration in the inflowing water is taken to be constant is,
however, a somewhat arbitrary element. It is, therefore, a good idea to compare the
results with those of a different stochastic process for concentration in the environment:
the alternating Poisson process.

Suppose that the environment can be partitioned into two types of patches. In one
type, the concentration of the compound is c0, in the other it is c1. Suppose that the
animal stays a period t0 in a patch with concentration c0, then a period t1 in a patch with
concentration c1, then again a time t0 in a patch with concentration c0, etc. Suppose next
that the residence times follow an exponential distribution, with parameters λ̇0 and λ̇1

respectively. So Prob{ti > t} = exp{−tλ̇i}, i = 0, 1. Think of it as an animal walking
randomly over a patchy soil, or an animal only exposed to the compound when feeding, or
a mussel exposed to a flow of badly mixed batches of water. The rates λ̇ relate to the size
of the patches, relative to the travelling rate of the animal. In particular, λ̇−1

i is the mean
residence time in a patch with concentration ci. Such a process is called an alternating
Poisson process or a random telegraph process (if c0 = 0).

The mean of the alternating Poisson process is Ec(t) = c0λ̇1/λ̇+ + c1λ̇0/λ̇+, where
λ̇+ ≡ λ̇0 + λ̇1. The variance is var c(t) = (c1 − c0)

2λ̇0λ̇1λ̇
−2
+ and the auto-correlation

function
cor (c(t), c(t+ th)) = exp{−|th|λ̇+} (8.28)

The mean concentration in the tissue is again E [Q](t) = [k̇da]k̇
−1
a Ec(t). This can be

seen directly from (8.1) by taking the expectation at both sides and using the property
that d

dt
EQ(t) = 0 at steady state. The probability density function of the concentration in

the tissue at steady state turns out to be the beta distribution

φ[Q]([Q]) =
Γ(λ̇+/k̇a)

Γ(λ̇0/k̇a)Γ(λ̇1/k̇a)
([Q] − c0[k̇da]/k̇a)

λ̇0/k̇a−1(c1[k̇da]/k̇a − [Q])λ̇1/k̇a−1 (8.29)

Jaques Bedaux derived this result in [50]. The variance equals var [Q](t) =
(

[k̇da]

k̇a

)2
var c(t)

1+λ̇+/k̇a
.

The correlation coefficient between the concentrations in the environment and in the
tissue turns out to be

cor ([Q](t), c(t)) =
√

1 + λ̇+/k̇a ≡ ρAP (8.30)
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The auto-variance function of the concentrations in the tissue and the cross-covariance
function with those in the environment are

cov ([Q](t+ th), c(t))

[k̇da]k̇−1
a var c(t)

=
exp{thλ̇+}
1 + λ̇+/k̇a

for th < 0 (8.31)

=
exp{−thλ̇+} − exp{−thk̇a}

1 − λ̇+/k̇a
+

exp{−thk̇a}
1 + λ̇+/k̇a

for th ≤ 0

cov ([Q](t), [Q](t+ th))

[k̇da]2k̇−2
a var c(t)

=
exp{−|th|λ̇+} − exp{−|th|k̇a}λ̇+/k̇a

(1 + λ̇+/k̇a)(1 − λ̇+/k̇a)
(8.32)

The cross-covariance function has a peak at th = (k̇a − λ̇)−1 ln 2ρ−2
AP .

For special choices for Ebi and var bi of the auto-regressive process of the last subsection,
the mean and variance of the concentration in the environment can be made identical. The
auto-covariance functions of both processes are close to each other for tc = λ̇−1

+ . Figure 8.1
illustrates the remarkable similarity of the auto- and cross-correlation functions in case of
auto-regressive and alternating Poisson inputs, dispite the substantial differences between
these stochastic processes.

8.2 deb-based kinetics

One-compartment models do not always give a satisfactory fit with experimental data. For
this reason more-compartment models have been proposed [148,262,353,624]; because of
their larger number of parameters, the fit is better, but an acceptable physical identification
of the compartments is usually not possible. These models, therefore, contribute little to
our understanding of kinetics as a process. A more direct link with the physiological
properties of the organism and with the lipophilicity of the compound seems an attractive
alternative, which does not, however, exclude more-compartmental models. As usual, the
problem is not so much in the formulation of those complex models but in the useful
application. Too many parameters can easily become a nuisance if few, scattered, data
are available. Changes in physiological conditions can easily lead to introduction of many
parameters. One reason to account for these changes is that they actually occur in many
uptake experiments. It is practically impossible to feed a cohort of blue mussels in a
two-month uptake/elimination experiment adequately in the laboratory; at the end of the
experiment, the lipid content is reduced substantially.

I will focus in this section on non-metabolized compounds. For terrestrial animals, the
usual uptake of xenobiotics from the environment is via food. Sometimes, uptake is via
the lung or directly via the surface. In the aquatic environment uptake directly from water
is especially important for hydrophilic organic compounds [104], and metals [80,81,602].
In aquatic animals that are chemically isolated from their environment, such as aquatic
insects, birds and mammals, the common uptake route is via food. Walker [746] gives a
discussion of uptake routes. Excretion can be through the surface directly, via excretion
products and via gametes.
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Figure 8.2: Uptake of a xenobiotic is via food
and/or directly from the environment. Elimi-
nation is directly into the environment, possibly
via faeces, and via reproductive output. Internal
partitioning into four compartments is taken to
be instantaneous. The exchange rate with the
environment is taken to be proportional to sur-
face area, apart from reproductive elimination.
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Accumulation of lipophilic compounds and partitioning between different organs can
be explained by the occurrence of stored lipids. Schneider [639] found large differences of
PCB concentrations in different organs of the cod, but the concentrations did not differ
when based on the phospholipid-free fraction of extractable lipids. Models for feeding con-
dition dependent kinetics have been proposed [283,284,426], but they have a large number
of parameters. The application of the deb model involves relatively few parameters, due
to one-compartment kinetics and instantaneous partitioning of the compound in the or-
ganism, as proposed by Barber et al. [33] and Hallam et al. [283]. The assumption
of instantaneous partitioning of compounds is supported by the study of the elimination
rate of 4,4′-dichlorobiphenyl (PCB15) in the pond snail Lymnaea stagnalis by Wilbrink et

al. [769], who found that elimination rates are equal for different organs. The fact that
structural biomass consists of organs differing in partition coefficients for the xenobiotic, is
covered by the assumptions of isomorphism, homeostasis and instantaneous partitioning.
The combination of these three assumptions implies that the concentration-time curve in
one organ can be obtained from that in another organ by application of a fixed multipli-
cation factor.

The basic idea is that changes in feeding conditions lead to changes in lipid content
and thus in the uptake rate of the compound from the environment. The physics of the
uptake process strongly suggests that it is proportional to the surface area of the organism;
it thus links up beautifully with the structure of the deb model. Indeed, the uptake
and elimination processes can still be described by a one-compartment model, but with
varying coefficients, rather than fixed ones as discussed in the last section. The changes in
physiological conditions thus result in changes in the uptake and elimination rates. One
of the side results is the relationship between the kinetics and size of the organism, which
is useful for the interpretation of data and the design of experiments. Figure 8.2 gives the
diagram of the flows of the compounds that are thought to exist.

8.2.1 Uptake and elimination

The presentation assumes that the exchange of the compound with the environment is
via the aqueous fraction of the organism. In combination with an instantaneous internal
partitioning of the compound, any other compartment as well as a combination of com-
partments can be selected for the exchange without any need to change the model. For
simplicity’s sake, suppose that the water content of the energy reserves contributes little
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to the wet weight. This means that [dwe]−[dde]
[dwv ]−[ddv ]

(e + eṘ) in (2.11) is small. The wet weight
per unit of volume can now be partitioned as

[Ww] = [ddv] + [dwa] + [dwe](e+ eṘ) (8.33)

The contribution of reproduction-energy to wet weight obviously depends on the species.
Mussels, for instance, spawn once in a year, and have such a pronounced cycle in volume-
specific dry weight, that the reproductive energy cannot be neglected. If the water content
of the energy reserves is not negligibly small, an alternative assumption that preserves
simplicity is that reserves replace water; this has been worked out in [414], but I expect
this difference to be of secondary interest only.

The amount of compound can likewise be partitioned as Q = Qv+Qa+Qe+QṘ over the
dry weight fraction of body volume, aqueous fraction of body volume, energy reserves and
reproductive energy, respectively. The instantaneous partitioning of the compound over
the four compartments can be symbolized as [dwa]

[ddv ]
Qv

Qa
= Pva and [dwa]

[dwe]e
Qe

Qa
= [dwa]

[dwe]eṘ

QṘ

Qa
= Pea,

where Pva and Pea are taken to be fixed partition coefficients, which only depend on the
nature of the compound and not on its concentration. Note that the concentrations in these
partition coefficients are based on compartment weight, not volume. Since the energy
reserves will have a relatively high lipid content in most species of animal, Pea > Pva
will hold for lipophilic compounds and Pea will be close to the octanol-water partition
coefficient, which is known for many compounds.

We can now relate the total number of moles of the compound in the organism, Q, to
that in the aqueous fraction, Qa:

Q = Qa

(

[ddv]

[dwa]
Pva + 1 +

[dwe]

[dwa]
Pea(e+ eṘ)

)

or (8.34)

[Q]

[Qa]
=

[ddv]

[dwa]
Pva + 1 +

[dwe]

[dwa]
Pea(e+ eṘ) ≡ Pwa (8.35)

Uptake is now taken to follow two routes, directly from the environment, where the com-
pound is present at concentration cd, and via food, where it is at concentration cx. Uptake
is taken to be proportional to surface area. The argumentation for food has been given on
{55}, and for direct uptake, the argumentation is extremely similar. The nature of the up-
take can be passive or active, but the rate is taken to be proportional to the concentration
in the environment and/or to food uptake. The reasoning is similar to the Lotka–Volterra
model for feeding; see {161}. If the elimination rate is proportional to the concentration
in the aqueous fraction, uptake kinetics follow one-compartment dynamics which reads

d

dt
Q = V 2/3({k̇da}cd + {k̇xa}fcx − k̇ad[Qa]) (8.36)

The application of the chain rule for differentiation gives for the concentration [Q] ≡ Q/V :

d

dt
[Q] =

{k̇da}
V 1/3

cd +
{k̇xa}
V 1/3

fcx − [Q]

(

k̇ad
V 1/3Pwa

+
d

dt
lnV

)

(8.37)
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where the partition coefficient Pwa is given in (8.35). It is instructive to compare this
formulation with the standard one, given by (8.1). The role of {k̇da}V −1/3 in (8.37) is most
similar to that of [k̇da], while k̇adV

−1/3 now plays the role of k̇a in (8.1). The interpretation
of this elimination rate k̇ad is thus different from k̇a, and has dimension length time−1,
rather than time−1; so it is in fact a conductance. This is the reason for giving them a
different index. The term d

dt
lnV in (8.37) represents the dilution rate due to growth, which

was omitted in the most simple formulation (8.1).
Since most measurements are done on the basis of weights, the kinetics of the variable

〈Q〉w = [Q]/[Ww] is of practical interest; it represents the number of moles per unit of wet
weight. Since d

dt
〈Q〉w = ( d

dt
[Q])/[Ww] − 〈Q〉w[dwe](

d
dt
e+ d

dt
eṘ)/[Ww], its dynamics is

d

dt
〈Q〉w =

{k̇da}cd + {k̇xa}fcx
[Ww]V 1/3

− 〈Q〉w
(

k̇ad
V 1/3Pwa

+
d

dt
lnV +

[dwe]

[Ww]
(
d

dt
e+

d

dt
eṘ)

)

(8.38)

Apart from the initial conditions, this specifies the dynamics in the period between the
moments of spawning or reproduction. At such moments, (wet) weight as well as the con-
tents of xenobiotic compounds have a discontinuity, because the buffer of energy allocated
to reproduction is emptied, possibly together with its load of xenobiotic compound. The
most simple assumption is to let the compound in that buffer transfer to the egg. If repro-
duction occurs at time tṘ, and if t−

Ṙ
denotes a moment just before tṘ, and t+

Ṙ
just after,

the ratio of the concentrations of compound equals

〈Q〉w(t+
Ṙ

)

〈Q〉w(t−
Ṙ

)
=

[ddv]Pva + [dwa] + [dwe]Pea(e+ eṘ)

[ddv]Pva + [dwa] + [dwe]Peae

[ddv] + [dwa] + [dwe]e

[ddv] + [dwa] + [dwe](e+ eṘ)
(8.39)

The first factor corresponds with the ratio of xenobiotic weights, the second factor with
the ratio of body weights. This result can be larger as well as smaller than 1, depending
primarily on the partition coefficient Pea. If the moments of reproduction are frequent
enough to neglect the contribution of eṘ to wet weight and compound load, d

dt
eṘ can be

replaced by e0Ṙ, which can be left out if the reproductive output is negligibly small. The
elimination route via reproduction can be very important for rapidly reproducing species.

It is also possible that no compound is transduced through the reproduction process,
as has been found for 4,4′-DCB in Lymnaea [769]. This implies a (sudden) increase of the
concentration at reproduction, which can induce toxic effects.

The change of concentration at reproduction has of course an intimate relationship
with the initial conditions for the offspring, which depend on the feeding conditions and the
loading of the mother. Experience with chronic toxicity tests shows that most effects occur
at hatching, which means that an egg must be considered to be rather isolated, chemically,
from its environment apart of course, from gas exchange. An extreme consequence is that
the amount of compound at egg formation is the same as that at hatching. This means
that the concentration at hatching relates to that of the mother just after reproduction as

〈Q〉w(ab) = 〈Q〉w(t+
Ṙ

)
PeaVm
PwaVb

e0 (8.40)

where the ratio Pwa is given in (8.35) and should now be evaluated at eṘ = 0.
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The number of parameters that relate to the kinetics of the compound amounts to
three exchange rates k̇ad, {k̇da} and {k̇xa}, which are present in even the most simple one-
compartment kinetics with two inputs, and two additional partition coefficients Pva and
Pea. On top of that, a number of parameters shows up that relate volumes to weights.
The third class of parameters is from the deb model via the expressions for d

dt
V , d

dt
e

and d
dt
eṘ. Not all parameters are required to fit the model to experimental data, but

it is obvious that additional physiological knowledge will help us interpret experimental
results, especially if the physiological condition changes during the experiment. Although
some of the physiological parameters can be estimated from uptake/elimination curves
in principle, an independent and more direct estimation is to be preferred. The least
restrictive assumption is that the change in size is small, so d

dt
V ≃ 0 and V is constant,

which depends on the length of the experiment relative to the growth rate. Then usually
the assumption d

dt
eṘ ≃ 0 follows for restrictiveness. The most restrictive variant will

usually be that d
dt
e = 0, in which case (8.38) reduces to a simple one-compartment kinetics

with constant coefficients. It shows that the exchange rates are inversely proportional to
the volumetric length of the organism.

Figures 8.3 and 8.4 illustrate the performance of the model to describe the uptake/elimi-
nation behaviour of the compounds hexachlorobenzene (octanol/water partition coefficient
logKow = 5.45 [620]) and 2-monochloronaphthalene (logKow = 3.90 [521]). The mussels
and fish were not fed during the experiment, which implies that their energy reserves
decreased during the experiment. The fish depleted its energy reserves faster, because it
was smaller than the mussel and its temperature was higher. As a result of the decrease
in reserves, the fish started to eliminate during the accumulation phase of the experiment.
The model successfully describes this phenomenon. The experiments were short enough to
assume that the size of the test animals did not change and that the energy allocation to
reproduction was negligibly small during the experiment. The concentration of xenobiotic
compounds in the water changed during accumulation. A cubic spline was, therefore, fitted
to these concentrations and used to obtain the concentrations in the wet weight.

8.2.2 Bioconcentration coefficient

The bioconcentration coefficient, BC, is an important concept in the kinetics of xenobiotics.
It is used among other things as a crude measure to compare xenobiotic compounds and
species and to predict effects. For aquatic species and hydrophilic compounds, it is usually
defined as the ratio of the concentration in the organism and in the water, which are both
taken to be constant. For terrestrial species and/or lipophilic compounds, it is usually
defined as the ratio of the concentration in the organism and in the food. The application
of the concept BC is a bit complicated in the present context, because the concentration
in the organism does not become stationary, due to growth and reproduction, even if the
concentration in the environment is constant, i.e. in water, food and at constant food
density. If the growth rate is low in comparison to the exchange rates, the compound
can be in pseudo-equilibrium, but its concentration still depends, generally, on the size
of the organism. On top of this, reproduction causes a cyclic change in concentration.
The oscillations become larger if the organism accumulates its reproductive output over a
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Figure 8.3: Measured concentration of hexachlorobenzene in water and in a starving 6.03 cm3

freshwater mussel Elliptio complanata at 20 ◦C during a 264 h uptake/elimination experiment.
Data from Russel and Gobas [620]. The least squares fitted curves are the cubic spline function
for concentrations in the water and the model-based expectation for the concentration in the wet
weight. From [414].

Figure 8.4: Measured concentration of 2-monochloronaphthalene in water and in a starving 0.22
cm3 female guppy Poecilia reticulata at 22 ◦C during a 168 h uptake/elimination experiment.
Data from Opperhuizen [521]. The least squares fitted curves are the cubic spline function for
the concentrations in the water and the model-based expectation for the concentration in the wet
weight. From [414].
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Figure 8.5: Bioconcentration coefficients for
PCB153 in aquatic organisms in the field, as
given in [414]. Data from Oliver and Niimi
[508,519] and from the Dutch Ministry of Pub-
lic Works and Transport. The curve repre-
sents the least squares fit of the linear relation-
ship between the BC and the volumetric length.
{k̇xa}Pxd{k̇da}−1V1/3= 46 mm.

longer time period. If food density is constant for a long enough period, we have e = f
and d

dt
e = 0. The ultimate concentration on the basis of wet weight then reduces for low

growth and reproduction rates to

〈Q〉w → {k̇da}cd + {k̇xa}fcx
[Ww]k̇ad

(

[ddv]

[dwa]
Pva + 1 +

[dwe]

[dwa]
Peaf

)

(8.41)

This expression can be used to predict how the bioconcentration coefficient depends on
body size if species are compared. Since {k̇xa} is proportional to {İm}, BC is expected to
be linear in the volumetric length. The trend in [Em] almost cancels out. If the ratio of
concentration in the food and that in the water equals some fixed partition coefficient, Pxd
say, then we should expect that BC ∝ {k̇da} + {k̇xa}Pxd is almost linear in the volumetric
length. Figure 8.5 illustrates that the BC for the highly lipophilic compound 2,4,5,2′,4′,5′

hexachlorobiphenyl (PCB153) for aquatic animals indeed depends on body size, and that
this can be explained on the basis of the present reasoning.

This expectation is thus based solely on differences in the uptake of the amount of
food. Especially in terrestrial habitats and more debatably in aquatic ones, accumulation
in the food chain occurs. Since top predators tend to have the largest body size, it can be
difficult to distinguish food chain effects from body size effects. Food chain effects operate
via the partition coefficient for food/water, Pxd, body size effects via the uptake rate via
food, {k̇xa}.

8.2.3 Metabolic transformations

If compounds are metabolized, the usual effect is that the products are less lipophilic than
the original compound, so Pea is reduced. In this way, the product will be eliminated
at a higher rate. Since the toxic effects of compounds can be tied to the concentration
in the organism, such a reduction obviously makes sense. It is tempting to couple the
rate of metabolic transformation to the overall catabolic rate of the organism, Ċ. Since
the catabolic rate is proportional to a weighted sum of a surface area and a volume, the
bioconcentration coefficient is likely to increase with body volume more steeply for such
compounds.
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I do not know of data that can be used to test this idea, so there seems no point in
working it out quantitatively. If the kinetics of the products and the original compound all
require the full set of parameters, one will need a lot of measurements. Data will hopefully
indicate which simplifying assumptions can be made. I mention this to point to the general
lack of data on kinetics in relation to physiological information and nutritional status.

8.3 Biological effects

Only two types of effects are of primary, ecotoxicological, interest: those that affect survival
and those that affect reproduction. These effects determine population dynamics, and thus
production and existence. Due to the coupling between the various processes of energy
uptake and use, many other effects of compounds have an indirect effect on reproduction.
For instance, the conservation law for energy implies that a reduction of food uptake has
indirect effects on reproduction. The deb model describes the routes that translate these
effects into an effect on reproduction. One is rather direct, via reduced reserves and the
κ-rule. Another is more indirect via reduced growth. Small individuals eat less than large
ones, so less energy is available for reproduction. Effects on growth and maintenance can
also be translated into an effect on reproduction on the basis of the deb model. These
types of effects relate directly to energetics. In steady state, their consequences can be
evaluated by changing one or more parameter values of the deb model. Such a study is
not very different from a more general one on the evolutionary implications of parameter
settings.

The environmental relevance of mutagenic effects is still in debate. A frequently heard
opinion from some industrialists is that mutagenic effects have no environmental impact
at all, stating that the direct effect on survival is negligibly small and the loss of gametes
does not count from an ecological point of view. The way aging is treated within the deb

model closely links up with mutagenic effects, particularly if the free radical mechanism is
correct. Mutagenic compounds have about the same effect on organisms as free radicals.
As a consequence, mutagenic effects can be studied by changing aging acceleration (in the
case of metazoans). The deb model offers the possibility of evaluating the consequences of
mutagenic effects along the same lines as the effects on energy fluxes. I have already men-
tioned the setting of aging acceleration as a compromise between the life span of individuals
and the evolutionary flexibility of the genome. The effects of changes in aging accelera-
tion must then be found over a time scale of many generations and involve interspecies
relationships. This makes such effects extremely hard to study, both experimentally and
theoretically. The lack of reliable models for this time scale makes it difficult to draw firm
conclusions. The fact that mutagenic compounds tend to be rather reactive and, therefore,
generally have a short life in the environment is part of the problem, perhaps makes them
less relevant to the problem of environmental pollution if emissions are incidentically only.

The significance of mutagenic effect on human health is widely recognized, particularly
in relation to the occurrence of tumours and cancer. The Ames test is frequently applied to
test compounds for mutagenic effects. The deb model offers a framework for interpreting
the sometimes unexpected results from these tests. The Ames test is discussed, for this
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reason, in a subsection of the section on effects on populations, as it is basically aimed at
this level of organization.

The environmental significance of teratogenic effects, i.e. effects on the development of
organisms, is even less recognized than the significance of mutagenic effects. Fortunately,
only a few compounds seem to have a teratogenic effect as their primary effect and these
fall outside the scope of this book.

8.3.1 Steady state effects on individuals

For many practical purposes of evaluating expected effects in natural or semi-natural sys-
tems where the concentration of a compound is at a certain (mean) level, it suffices to
model the effect by a change in one or more of the primary deb parameters. This is be-
cause the concentration in the organism will not change too much. The mode of action of
the compound determines which parameters are affected. The mode of action itself, unfor-
tunately, depends on the concentration; for example most compounds affect reproduction
directly or indirectly at low concentrations, but survival is affected at high concentrations.
This complicates the matter considerably. In the section on effects on populations, this
approach will be continued.

The analysis of effects as they show up in toxicity tests, and natural systems where
the concentration of compound changes considerably, should be carried out on a dynamic
basis. Most American work deals with river systems with discharges. Traveling down the
river, individuals experience a rapid change from an unpolluted environment to a polluted
one. The occurrence of effects relates directly to the uptake kinetics of the compound.
This process will be studied in the next subsection.

8.3.2 Dynamic effects on individuals

This subsection discusses the standard view on the characterization of lethal effects of
xenobiotics, and then proposes an alternative that aims to solve some of the problems that
are connected with this standard view.

An approach that has proven to be rather successful is to tie the occurrence of effects
to the concentration in the tissue. In combination with the idea of an instantaneous
partitioning of the compound over the different body fractions, as has been discussed in
the previous section, it no longer matters if the effects originate from the disfunctioning of
one or more particular organs, or of the whole body. If the concentration in one particular
organ exceeds some threshold, it will at the same time exceed another threshold in another
organ. This is of course no longer true if partitioning is a slow process with respect to the
uptake and elimination rate of the compound.

For some reason, not all individuals show effects of the same intensity at the same
time, if exposed to the compound in a certain concentration or at a certain dose. Part of
the differences can be explained by differences in physiological condition, lipid content and
size. It is possible to remove most but not all differences by strict standardization of the
test organisms. The standard view is that the individuals differ in threshold values. So
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Figure 8.6: A description of the occurrence of
effects (here survival) in terms of the uptake ki-
netics of the compound and a (fixed) distribu-
tion of threshold values for the individuals. At
a certain exposure period, the concentration in
the tissue reaches a certain level, which trans-
lates into an effect in a certain fraction of the
individuals
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the process is a fully deterministic one for a single individual, but a stochastic process for
a cohort. Figure 8.6 illustrates the concept.

Usual choices for the description of the distribution of the threshold values with respect
to effects on survival are the log-normal or the log-logistic distribution. The motivation
is empirical only. Since the threshold value remains unknown in practice, the survival
probability is related directly to the dose or the concentration in the environment. For the
log-logistic distribution of the concentration c† that causes death, this is

Prob {c† > c} = q0

(

1 +
(

c

cL50

)1/β
)−1

(8.42)

where cL50 is known as the LC50, the lethal concentration for 50% of the individuals,
or more precisely, the concentration at which the survival probability is half the survival
probability in the blank for a given exposure period. (This notation will appear unusual
in the eyes of toxicologists, but I want to observe the mathematical standard of using only
one character for one symbol.) The parameter β is a measure of the variance. The log-
normal distribution is most similar to the log-logistic one. If the variance for the normally
distributed variable ln{c†/cL50} is σ2, the mapping σ = βπ/

√
3 ≃ 1.8β results in equal

variances for both distributions and the mapping σ = β4/
√

2π ≃ 1.6β in equal slopes of
the plot of the survival probability against the concentration.

The parameter q0 stands for the survival probability in the blank, i.e. if c = 0. It is
assumed to be close to 1 and accounts for ‘accidental losses’. Usually, too little attention is
given to the actual nature of these losses. In many cases it reflects the condition of the test
organisms, in which case it is misleading to treat such a cause of death as independent from
the effects of the compound. The survival probability cannot be factorized into components
relating to either the blank mortality or the compound induced mortality. It is frequently
possible to obtain extremely low LC50 values by imposing some form of ‘stress’, such as
oxygen depletion.

Variations in the conditions of the test organisms are substantial, even in the best
standardized cultures. The chronic (21 days) toxicity test with daphnids (D. magna)
for dichromate is considered to be the best standardized test used on a routine basis to
check the condition of cultures in many toxicological laboratories. The standardization
includes almost all aspects of culture and test conditions. The ratio of the upper and the
lower boundary of the 95% confidence interval for the LC50.21d estimate is usually less
than 1.1. If data from the best skilled technicians are compared throughout the year in
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a single laboratory, the ratio between extreme values is about 2. If the results of round
robin tests are compared, the ratio is 5 to 10 for a compound as stable as dichromate. I
mention these figures to point out the practical limitations of modelling in this field. A
discussion about the statistical analysis of toxicity tests is outside the scope of this book;
see [49,403,404,413].

The standard description of the concentration-response relation can be extended to
the time domain by subjecting the concentration of toxicant in the tissue to a simple
uptake/elimination kinetics such as in (8.4) [403]. If a no-effect level c0 is introduced as
well, the survival probability at exposure time t and concentration c becomes in absence
of blank mortality

q(c, t) =



1 +

(

((1 − exp{−tk̇a})c− c0)+

cL50.∞ − c0

)1/β




−1

(8.43)

where cL50.∞ stands for the ultimate LC50. The LC50-time behaviour of this model is

cL50(t) = cL50.∞(1 − exp{−tk̇a})−1

so the LC50 decreases exponentially in time at a rate that equals the elimination rate of
the compound.

Figure 8.7 illustrates that the coupling of uptake kinetics to effects really works. The
example is for cadmium chloride solutions in fresh water with algae as the food for daphnids.
On alternate days, the solutions were refreshed and new algal food was supplied. The
cadmium had the tendency to adsorb to the algal cells, which settled slowly to the bottom
of the vessels and became no longer available to the daphnids. The concentration of
available cadmium thus follows a saw-like pattern as illustrated, and the concentration
in the tissue follows this pattern in a smooth way. If the settling kinetics is a simple
first order one, the ratio of the concentrations before and after refreshment, after a fixed
period, should be independent of the concentration after refreshment. The experimental
confirmation is illustrated in figure 8.7. The crucial point is that the disappearance rate
of the available cadmium could be estimated from the survival pattern of the daphnids,
which is a strong argument in favour of the coupling between uptake and effects.

A weak point in this approach is the empirical nature of the threshold distribution and
its existence in well standardized cultures. One would expect that full standardization leads
to fully deterministic effects. What are the causes of the variation between individuals?
It is unlikely that they differ that much in uptake/elimination kinetics. They are also too
similar in biochemistry to explain how the threshold concentrations can differ so much in
the rare cases of extreme standardization. Another weak point is that if survival probability
is plotted against the concentration, the slope of the sigmoid graph usually tends to increase
with exposure time. This is not possible with a fixed threshold distribution, which implies
that the slope does not change.

A solution to these problems can be found in a stochastic approach to the occurrence of
effects on a single individual, much along the same lines as is done for modelling of aging.
The survival of a single individual is then described in terms of a hazard rate that depends
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Figure 8.7: Stereo view of the survival probability of daphnids (D. magna, z-axis) as a function
of exposure time (x-axis) and the concentration of cadmium chloride, plotted 10 log transformed
in µg l−1 on the y-axis. The concentrations of available cadmium followed a saw-like pattern, due
to adsorption to settling algae. The lower left figure illustrates a first order settling kinetics and
a first order uptake/elimination behaviour for the concentrations in the tissue. The lower right
figure gives the analyses of the concentration in the water just before (x-axis) and 48 h after
(y-axis) refreshment. The line is not based on these points, but on an analysis of the mortality
pattern of the daphnids [403].
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on the concentration of the compound in the organism, i.e. the hazard rate is

ḣc ∝ ([Q]1 − [Q])+ and/or ḣc ∝ ([Q] − [Q]0)+ (8.44)

where [Q]1 and [Q]0 stand for the lower and the upper boundary of the concentrations of
compound that do not affect survival. The background of such boundaries is that evolution
takes place in a chemically varying environment. Organisms somehow managed to cope
with a concentration range for each component. If the concentration leaves this tolerance
range, effects will show up, just as with temperature. For xenobiotics, such as cadmium,
the lower boundary of the range is simply [Q]1 = 0. For copper, the lower boundary is
some value larger than zero, because organisms need a small amount of copper. Effects are
likely to occur at both low and high concentrations. As early as in 1969, Sprague [678]
pointed to the similarity of effects of oxygen shortage and the presence of toxic compounds
in fish. The consequences of this similarity did not receive proper attention, unfortunately.

The proportionality constant to describe the effect on the hazard rate probably differs
for shortages and excesses. This relates to differences in mechanisms. If the concentra-
tion exceeds the tolerance range substantially, it is likely that death will strike via other
mechanisms than for small excesses. This would restrict the applicability of the model
to relatively small ranges of concentration. In practice, however, very wide concentration
ranges are frequently used, as in range-finding tests on a routine basis. In the rest of this
subsection, I will assume that [Q]1 = 0 for simplicity’s sake.

For comparison, the standard approach in fact assumes that the hazard rate is pro-
portional to ([Q] > [Q]†), where [Q]† is the threshold and the proportionality constant is
extremely large. In the present proposal, the individuals do not have to differ any longer
to understand why they do not all die exactly at the same moment, because stochasticity
is in each of them. It remains possible that the individuals actually differ in parameter
values, which become visible as soon as the cultures are less standardized. In this respect
the problem is most similar to that of energetics.

The idea for hazard modelling can be worked out quantitatively as follows for a constant
concentration in the environment.

Because of the general lack of knowledge about relevant concentrations in tissue, those
in the environment will be used to specify the hazard rate. If the initial concentration in the
tissue is negligibly small and if the concentration of compound in the tissue follows a simple
first order (i.e. one-compartment) kinetics, the hazard rate at constant concentration c in
the environment is

ḣc = k̇†((1 − exp{−tk̇a})c− c0)+

The proportionality constant k̇† has the interpretation of a killing rate with dimension
(concentration time)−1. It is a measure for the toxicity of the compound with respect to
survival. The no-effect concentration c0 ≡ [Q]0k̇a/[k̇da] in the environment can be inter-
preted as the highest concentration that will never result in an effect, if the concentration
is constant. If c > c0, but constant, and if the initial concentration in the tissue is 0, effects
start to show up at t0 = −k̇−1

a ln{1 − c0/c}, the moment at which the concentration in
the tissue exceeds the no-effect concentration. In the absence of ‘natural’ mortality, the
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survival probability q for c > c0 and t > t0 is

q(c, t) = exp
{

k̇†k̇
−1
a c(exp{−t0k̇a} − exp{−tk̇a}) − k̇†(c− c0)(t− t0)

}

(8.45)

Although this equation looks rather massive, it only has three parameters which are of all of
practical interest: the no effect level, the killing rate and the elimination rate. The standard
approach (8.43) has four parameters. The slope parameter of the standard approach for
the analysis of dose-response relationships is missing, and it is generally ignored in practical
applications. This parameter only occurs in the hazard model after we conceive one or more
parameters as a random trial from some distribution (for instance the log-logistic one) to
allow for variation between individuals. Of course, this would complicate the access to the
parameters of interest. The models (8.43) and (8.45) are compared in figure 8.8. The more
elaborate description of the deb-based kinetics could be used to describe survival patterns
in more detail. Practical limitations are likely to ruin such an attempt if no measurements
for the concentration in the tissue are available. An appropriate experimental design
can usually avoid such complications. Figure 8.9 illustrates the application of (8.45) to
the results of some standard toxicity tests. Note that this formulation implies that the
concentration-response relationships become steeper for longer exposure periods.

An interesting special case concerns extremely small elimination rates, so k̇a → 0.
The accumulation process reduces to d

dt
[Q] = [k̇da]c, so that [Q](t) = [k̇da]ct if the initial

concentration in the tissue is negligibly small. The no-effect level (in the environment) is
now 0, because a very small concentration in the environment will result ultimately in a
very high concentration in the tissue. A no-effect level in the tissue, i.e. the upper boundary
of the tolerance range, still exists, of course, and is exceeded at t0 = [Q]0([k̇da]c)

−1. The
hazard rate amounts to ḣc = k̈†c(t− t0)+. The relationship between the killing acceleration
k̈† and the killing rate k̇†, in the case that k̇a 6= 0, is k̈† = k̇†k̇a. The survival probability is

q(c, t) = exp{−k̈†c(t2/2 − t20/2 − t0t)} (8.46)

For small no-effect levels in the tissue, so t0 → 0, this represents a Weibull distribution
with shape parameter 2. The only difference with the survival probability related to aging,
cf. {152}, is the extra accumulation step of products made by affected dna, which resulted
in a Weibull distribution with shape parameter 3.

In this special case, the full response surface in the concentration-exposure time-plane
is described by just one parameter, the killing acceleration k̈†. One step towards more
complex models is the introduction of the upper boundary of the tolerance range, via
[Q]0/[k̇da] in t0. Next comes the introduction of the elimination rate k̇a, which allows a new
parameter basis: k̇†, k̇a and c0. Then follow changes in the chemical composition (and size)
of the animal by introduction of the partition coefficients Pva and Pea, and/or a separation
of uptake routes via the dissolved fraction {k̇da} or via food {k̇xa}. Finally, we should allow
for metabolic transformations, which have not been worked out in this book. So the level
of complexity of the model can be fully trimmed to the need and/or practical limitations.
The more complex the model is, the more one needs to know (and measure) about the
behaviour of the compound in the environment, changes in the nutritional status of the
animals, growth, reproduction, etc. If experimental research and model-based analysis
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Figure 8.8: The survival probability as function of the concentration of toxicant (top) and
exposure time (bottum) for the standard log-logistic model (left) and the hazard model (right).
The log-logistic model is extended to include a no-effect level c0, while uptake/elimination follows
a simple one-compartment model with elimination rate k̇a in both models. The parameters
cL50.∞ and β of the log-logistic model have been chosen such that both models have the same
cL50 and cL25 values for exposure time k̇−1

a for the choice k̇† = k̇a/c0. This is the case when
cL50.∞ = 2.69c0 and β = 0.51. In the log-logistic model, some individuals will survive forever,
even if the concentration exceeds the no-effect level. In the hazard model, all individuals will
eventually die if the concentration exceeds the no-effect level.
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guppies (Poecilia reticulata) in dieldrin
k̇† = 0.038 l µg−1 d−1, k̇a = 0.712 d−1, c0 = 4.49 µg l−1

gammarids (Chaetogammarus marinus) in 3,4-dichloroaniline
k̇† = 0.40 l mg−1 d−1, k̇a = 0.335 d−1, c0 = 1.41 mg l−1

daphnids (Daphnia magna) in potassium dichromate
k̇† = 0.40 l mg−1 d−1, k̇a = 0.125 d−1, c0 = 0.26 mg l−1

Figure 8.9: Stereo view of the number of surviving individuals, z-axis, as a function of exposure
time, x-axis, to toxic compounds, y-axis. The expected number of surviving individuals is based
on the idea that the hazard rate is proportional to the concentration in the tissue that exceeds
the no-effect level under first order kinetics. Unpublished data, kindly provided by Ms Adema
(IMW–TNO laboratories)
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of results are combined in the proper way, one will probably feel an increasing need to
define precise experimental conditions and avoid complicating factors, such as uncontrolled
changes in exposure.

Besides a higher degree of theoretical elegance, this description of effects on survival
makes the theory on competing risks available for direct application to toxicity and links
up smoothly with standard statistical analyses of hazard rates; see for instance [39,141,
156,369,464]. The significance of a toxic stress for a particular individual depends on
other risks, such as aging and starvation. Similar to the treatment of yields, {123}, an
instantaneous and a non-instantaneous measure for this significance can be of practical
value. If ḣ stands for the hazard tied to aging as before, and ṗ for other risks, such as
predation, an obvious instantaneous measure for the significance of the toxic stress is

ḣc(ḣc + ḣ+ ṗ)−1

A useful non-instantaneous measure is the effect on the expected life span

1 − Ea†
Ea†|ḣc = 0

= 1 −
∫∞
0 exp

{

− ∫ t0(ḣc(t1) + ḣ(t1) + ṗ(t1)) dt1
}

dt
∫∞
0 exp

{

− ∫ t0(ḣ(t1) + ṗ(t1)) dt1
}

dt
(8.47)

In this way, both dimensionless measures are scaled between 0 and 1.
A consequence of the hazard-based model is that the hazard rate is higher than in the

blank as soon as the concentration in the tissue exceeds the no-effect level. This implies
that under those conditions the compound will kill the individual for sure if the exposure
is long enough and if the individual lives for a long enough period. This means that
the ultimate LC50 equals the no-effect level, which degrades the value of the LC50 as a
characteristic for the toxicity of a compound. The LC50-time curve can be obtained by
equating (8.45) to 0.5 and solving c numerically for choices of exposure times t. Figure 8.10
shows how the LC50 depends on the no-effect level and the exposure time. For increasing
no-effect levels, it takes longer for the LC50 to approach the no-effect level.

If a no-effect level is incorporated into the standard sigmoid concentration-response
relationship with a free slope parameter, estimation problems usually show up. The sig-
moid responses with and without a no-effect level are generally too similar to be told
apart on the basis of experimental results. The no-effect level is much better fixed by the
hazard-based model than by the standard model. The hazard-based model also has sigmoid
concentration-response relationships, but the slope is fully determined by the elimination
and killing rates. Contrary to the standard sigmoid model, the slope therefore contains
information about the no-effect level. Since the no-effect level has a much higher environ-
mental significance than the LC50, the overall conclusion can only be that (8.45) should be
preferred above the standard model. It should be realized however that it is an extremely
simple model. Compounds with more complex kinetics or metabolic effects will deviate
from this expectation. Application on a routine basis can still be valuable to trace this
more complex behaviour. In view of the objectives of routine testing of chemicals, minor
deviations do not matter.

The comparison of LC50 values for different species after a fixed exposure time to
some compound suffers from differences in the kinetics that are unrelated to the actual
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Figure 8.10: Stereo view of the LC50, cL50 on the z-axis, as a function the exposure time t on
the x-axis, and the no-effect level c0 on the y-axis. The hazard rate here equals k̇† times the
difference between the concentration in the tissue and the no-effect level, while the compound
follows a first-order kinetics with elimination rate k̇a. The three variables are made dimensionless
in the way indicated in the figure. Note that the exposure time does not start from 0 since the
LC50 is theoretically infinitely large there, apart from boundary conditions set by the chemical
properties of the compound.

toxicity. Large bodied species generally have higher LC50 values, not because they are
less sensitive, but because uptake is less rapid. This complicates the search for patterns
in toxicity. Killing rates suffer much less from these problems. The model in which the
LC50 is introduced is primarily inspired by experimental design and not by biological
mechanisms. The two models beautifully illustrate the importance of preconceptions in
research.

8.3.3 Effects on populations

In the chapter on population dynamics, it has been argued that many phenomena can be
understood on the assumption that individuals only interact via resources. This extremely
simple assumption on interactions allows, as a consequence, that population dynamics
can be deduced directly from the energetics of the individuals as a first approximation.
Consistent with this idea, we can try to understand effects at the population level in terms
of consequences of effects on individuals. This points to the relationship between individual
performance and population dynamics and it will lead to some unexpected conclusions
about the way effects on individuals show up at population level.

An extremely useful approach for understanding population effects is to focus on steady
states, where food density is constant. It implies that populations will (eventually) grow
exponentially at rate µ̇, say. As explained, this follows from the property that the offspring
repeat the survival and reproduction pattern of the parents. The relationship between food
density and µ̇ is given by the characteristic equation (5.22). The survival probability and
reproduction rate is given for deb isomorphs in (3.57) with (3.56) and (3.47) with (3.26),
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respectively. Given the set of energy parameters, µ̇ can vary from 0 to µ̇m, depending on
the food density. It cannot become negative in steady state, because the population will
then become extinct due to the discrete nature of numbers of individuals.

Suppose that the xenobiotic compound in a certain concentration affects just one energy
parameter. The compound causes a rise in the maintenance costs, for instance, or in the
costs for growth, etc. Suppose next, that the concentration of the compound is such that
the population growth rate at high food densities is reduced to some fraction of that in
the blank situation, say a fraction of 0.9. This thus corresponds with a particular change
in one parameter. Now we can study how µ̇ depends on food density, given the new set
of parameters, which differ from the original ones by a change in that single parameter,
and compare it with the corresponding µ̇ in the blank situation. This approach makes
it possible to compare effects of compounds with different modes of action. Figure 8.11
illustrates the result for ectothermic deb isomorphs. For effects on growth or reproduction,
the population growth rate is just a fixed fraction of that in the blank. For effects on
maintenance and survival, the effect becomes much more severe at low population growth
rates, thus at low food densities. Figure 8.12 illustrates that these differences can be
observed in experimental populations. The compound 3,4-dichloroaniline primarily affects
reproduction and the effect on µ̇ is practically independent of food density, while vanadium
primarily affects maintenance and µ̇ is much more affected at low food levels. For other
examples; see [405].

The difference in population effects can be understood intuitively as follows. If the
population is at its carrying capacity, µ̇ = 0, and reproduction and loss rates are both very
low, food availability completely governs the reproduction rate. All resources are used
for maintenance. Effects on maintenance, therefore, show up directly in this situation,
but effects on growth and reproduction remain hidden, unless the effect is so strong that
replacement is impossible. If the population is growing at a high rate, energy allocation
to maintenance is just a small fraction of available energy. Even considerable changes in
this small fraction will, therefore, remain hidden, but effects on production rates are now
revealed. This implies that at a constant concentration of compound in the environment,
the effect at the population level depends on food availability and thus is of a dynamic
nature. This reasoning does not yet use the more subtle effects of uptake via food as
opposed to those via the environment directly.

The effects at low population growth rates can be studied if the population is at its car-
rying capacity. If food supply to a fed batch culture is constant, the number of individuals
at carrying capacity is proportional to the food supply rate, cf. figure 5.12. If the loss rate,
and so the reproduction rate, is small, the ratio of the food supply rate and the number of
individuals is a good measure of the maintenance costs. Figure 8.13 illustrates that some
compounds, such as vanadium and bromide, affect these maintenance costs while others
don’t and ‘only’ cause death in this situation. It also shows that the effect is almost linear
in the concentration, as are the effects on survival, aging and mutagenicity, as we will see
in the next section.
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Figure 8.11: Population growth rate in a stressed situation is plotted against that in a blank
situation, when only one energy parameter is affected at the same time for reproducing isomorphs
(left) and dividing filaments (right). The effect of compounds with different mode of action is
standardized such that the maximum population growth rate is 0.9 times that in the blank.
Food density is assumed to be constant. Relative effects in isomorphs on growth [G], reserve
capacity [Em] and reproduction q are almost independent of the feeding conditions, while those
on assimilation {Ȧm}, maintenance [Ṁ ] and survival p̈a, are much stronger under poor feeding
conditions. The effect on the partitioning fraction κ is different from the rest and probably does
not correspond with an effect of a toxic compound. The relative effects in filaments are largely
comparable to those in isomorphs for growth and maintenance. Effects on assimilation [Ȧm],
coincide with effects on survival ṗa.

isomorphs filaments

8.3.4 Mutagenicity

The Salmonella test, also known as the Ames test, is a popular test for the mutagenic
properties of a compound [15,454]. It is discussed here because the results of the test can
sometimes only be understood if energy side effects are taken into account, for which the
deb model gives a useful framework. This section relies heavily on [328,418,419].

The test is carried out as follows. Bacteria (mutants of Salmonella typhimurium) that
cannot produce the amino acid histidine are grown on an agar plate with a small amount
of histidine but otherwise large amounts of all sorts of nutrients. When the histidine
becomes depleted, these histidine auxotrophs stop growing at a colony size of typically
8 to 32 cells. Histidine auxothrophic bacteria can undergo a mutation enabling them
to synthesize the necessary histidine themselves, as can the wild strain. They become
histidine-prototrophic and continue to grow, even if the histidine on the plate is depleted.
(They only synthesize histidine if it is not available in the environment.) Colonies that
contain histidine-prototrophs are called revertant colonies and can eventually be observed
with the naked eye when the colony size has thousands of cells. The number of revertant
colonies relates to the concentration of the compound that has been added to the agar
plate and its mutagenic capacity.

Liver homogenate of metabolically stimulated rats is sometimes added to simulate mu-
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Figure 8.12: Stereo view of the population growth rate of the rotifer Brachionus rubens (z-
axis) as a function of food density (y-axis) and concentration of toxic compound (x-axis): 3,4
dichloroaniline (above) and potassium metavanadate (below). Food density is in 1.36 × 109 cells
Chlorella pyrenoidosa per litre, temperature is 20 ◦C. The difference in shape of the response
surfaces is due to differences in mode of action of the compounds, as predicted by the deb theory.
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Figure 8.13: The ratio of the food supply rate to a population of daphnids and the number
of individuals at carrying capacity in fed-batch cultures as a function of the concentration of
compound at 20 ◦C. The crosses + refer to the occurence of mortality. Only compounds that
affect maintenance give a positive response.

sodium metavanadate sodium bromide 2,6-dimethylquinonoline

potassium dichromate 9-aminoacridine colchicine

tagenicity for vertebrates. The primary interest for mutagenicity is in human health prob-
lems, as explained. Vertebrates have many metabolic pathways that prokaryotes do not
have. Enzymes in this homogenate sometimes transform non-mutagenic compounds into
mutagenic ones, sometimes they do the opposite or have no effects at all.

Some initial histidine is necessary, because bacteria that do not grow and divide do not
seem to mutate, or, at least, the mutation is not expressed. This ties mutation frequency
to energetics. It is a most remarkable observation, with many consequences. Since mainte-
nance processes also involve some protein synthesis, one would think that mutations should
also be expressed if growth ceases, but observation teaches otherwise. If a compound is
both mutagenic and reduces growth, the moment of histidine depletion is postponed, so
that effective exposure time to the mutagenic compound is increased. Some brands of agar
contain small amounts of compounds that become (slightly) mutagenic after autoclavat-
ing. This gives a small mutagenic response in the blank. If a test compound only affects
growth and is not mutagenic at all, the number of revertant colonies will increase with the
concentration of test compound. Such responses make it necessary to model the combined
mutation/growth process for the interpretation of the test results.

The rest of this section gives a simple account, appropriate for deb filaments from
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a culture that resembles the (initial) growth conditions on the agar plate. For a more
detailed account; see [328]. A description for deb rods would be more accurate but also
more complex and would hide the message.

Suppose that the initial amount of histidine on a plate is just enough for the synthesis
of Nh cells. Figure 5.5 shows that the histidine reserves are small enough to be neglected.
If the inoculum size on the plate is N0, the number of cells develops initially as N(t) =
N0 exp{µ̇t}. Histidine thus becomes depleted at time th = µ̇−1 ln{1 + Nh/N0}. If the
mutation rate per unit of DNA is constant, say at value ṗm, the probability of at least one
mutation occurring in the descendants of one auxotrophic cell becomes for low mutation
rates

1 − exp
{

−ṗm
∫ th

0
(N(t)/N0) dt

}

= 1 − exp

{

− ṗmNh

µ̇N0

}

≃ ṗmNh

µ̇N0

(8.48)

The probability of back mutation is small enough to be neglected. The expected number
of revertant colonies is N0 times (8.48), so that the number of revertant colonies is hardly
affected by the inoculum size. The effect of an increase in the number of micro-colonies on
the plate is cancelled by the resulting reduction of exposure time.

A consequence of the assumption that the mutation frequency per unit of DNA is
constant is that the mutations are independent of each other. This means that the number
of revertant colonies on a plate follows a binomial distribution, which is well approximated
by the Poisson distribution for low mutation rates. (There are typically less than 100
revertant colonies with a typical inoculum size of 108 per plate.)

The significance of this expression is that the effect of inoculum size and the amount
of histidine become explicit. Variations in these variables, which are under experimental
control, translate directly into extra variations in the response. If a compound affects the
population growth rate, it also affects the expected number of revertant colonies. I refer
to the subsection on population growth rates, {282}, for a discussion of how individual
performance (substrate uptake, maintenance, growth) relates to population growth rates.
This defines how effects on individual performance translate into effects on population
growth rates. This remark not only applies to effects of the test compound, but also to
the nutritional quality of the agar.

The mutation rate is usually found to be proportional to the concentration of test
compound. This means that each molecule has a certain probability to cause a mutation.
Deviations from this relationship can usually be related to changes in the stability of the
compound on the plate. Many mutagenic compounds are rather reactive, so that the
concentration usually decreases substantially before th. Others, such as nitrite, diffuse
to the deeper layers of the agar plate and become less available for the bacteria in the
upper layer. It is easy to circumvent this problem by adding the compound to the (thick)
nutritive bottom layer when it is still liquid, rather than to the (thin) top layer. However,
this would increase the financial costs of the test. If metabolic activation is applied, the
concentrations of the original compound and the products are likely to become complex
compound-specific functions of time. One strategy for interpreting the test results is to
analyse and model time stability of compounds in the Ames test. A better strategy would
be to change the experimental procedure in such a way that these complexities do not
occur.
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Köpergrösse und dem Hungerzustand der
Tiere. Arch. Hydrobiol./ Suppl., 48:47–107,
1975.

[248] W. Geller and H. Müller. Seasonal variabil-
ity in the relationship between body length
and individual dry weight as related to food
abundance and clutch size in two coexisting
Daphnia. J. Plankton Res., 7:1–18, 1985.

[249] R.B. Gennis. Biomembranes. Molecular
structure and function. Springer-Verlag, 1989.

[250] M. Genoud. Energetic strategies of shrews:
ecological constraints and evolutionary impli-
cations. Mammal Review, 4:173–193, 1988.

[251] R.D. Gettinger, G.L. Paukstis, and W.H.N.
Gutzke. Influence of hydric environment
on oxygen consumption by embryonic turtles
Chelydra serpentina and Trionyx spiniferus.
Physiol. Zool., 57:468–473, 1984.

[252] W.M. Getz and R.G. Haight. Population Har-
vesting., volume 27 of Monographs in popula-
tion biology. Princeton University Press, 1989.

[253] W. Gewalt. Der Weisswal (Delphinapterus
leucas). Die Neue Brehm-Bücherei. A. Ziem-
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l’Académie Royale. Bull. Acad. R. Med.,
3:1094–1100, 1839.

[629] J. Sarvala. Effect of temperature on the du-
ration of egg, nauplius and copepodite devel-
opment of some freshwater benthic copepoda.
Freshwater Biol., 9:515–534, 1979.

[630] P.T. Saunders. An introduction to catastrophe
theory. Cambridge University Press, 1980.

[631] H. Schatzmann. Anaerobes Wachstum von
Saccharomyces cervisiae: Regulatorische As-
pekte des glycolytischen und respirativen Stof-
fwechsels. Diss. eth 5504, ETH, Zürich, 1975.
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Glossary

allometry The group of analyses based on a linear relationship between the logarithm
of some physiological or ecological variable and the logarithm of the body weight of
individuals

altricial A mode of development where the neonate is still in an early stage of development
and requires attention from the parents. Typical altricial birds and mammals are
naked and blind at birth. The opposite of altricial is precocial

anabolism The collection of biochemical processes involved in the synthesis of structural
body mass

Arrhenius temperature The value of the slope of the linear graph one gets if the loga-
rithm of a physiological rate is plotted against the inverse absolute temperature. It
has dimension temperature, but it does not relate to a temperature that exists at a
site

aspect ratio The dimensionless ratio between the length and the diameter of an object
with the shape of a cylinder (filaments, rods). The length of rods includes both
hemispheres

ATP Adenosine triphosphate is a chemical compound that is used by all cells to store or
retrieve energy via hydrolysis of one or two phosphate bonds

Bernoulli equation A differential equation of the type d
dx
y + f(x)y = g(x)ya, where a

is any real number and f and g arbitrary functions of x. Bernoulli found a solution
technique for this type of equation

catabolism The collection of biochemical processes involved in the decomposition of com-
pounds for the generation of energy and/or source material for anabolic processes

chemical potential The change in the total free energy of a mixture of compounds per
mole of substance when an infinitesimal amount of a substance is added, while tem-
perature, pressure and all other compounds are constant

coefficient of variation The dimensionless ratio of the (sample) standard deviation and
the mean. It is a useful measure for the scatter of realizations of a random variable
that has a natural origin. The measure is useless for temperatures measured in
degrees Celsius, for example
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combustion reference In this frame of reference, the chemical potentials of H2O, HCO−
3 ,

NH+
4 , H+ and O2 are taken to be 0. The chemical potentials of organic compounds in

the standard thermodynamical frame of reference (pH=7, 298 K, unit molarity) are
corrected for this setting by equating the dissipation free energy in both frames of
reference, when the compound is fully oxidized. The chemical potential of compound
CHxOyNz in the combustion frame of reference is expressed in the standard frame
of reference as µ̃chxoynz

= µ̃◦
chxoynz

+ 1
2
(2 − x + 3z)µ̃◦

h2o
− µ̃◦

hco
−

3

− (1 − z)µ̃◦
h

+ −
zµ̃◦

nh
+

4

+ 1
4
(4 + x− 2y − 3z)µ̃◦

o2

compound parameter A function of original parameters. It is usually a simple product
and/or ratio

cubic spline function A function consisting of a number of third degree polynomials
glued together in a smooth way for adjacent intervals of the argument. This is done
by requiring that polynomials that meet at a particular argument value xi, have the
same value yi, and the same first two derivatives at that point. The points xi, yi,
for i = 1, 2, · · · , n with n ≤ 4, are considered as the parameters of the cubic spline.
For descriptive purposes, splines have the advantage over higher order polynomials
because their global behaviour is much less influenced by local behaviour

DEB Initials of the Dynamic Energy Budget model or theory, that is discussed in this
book. The term ‘dynamic’ refers to the contrast with the frequently used static energy
budget models, where the specifications of the individual do not change explicitly in
time

ectotherm An organism that is not an endotherm

eigenvalue If a special vector, an eigenvector, is multiplied by a square matrix, the result
is the same as multiplying that vector by a scalar value, known as the eigenvalue.
Each square matrix has a number of different independent eigenvectors. This number
equals the number of rows (or columns). Each eigenvector has its own eigenvalue,
but some of the eigenvalues may be equal

endotherm An animal that usually keeps its body temperature within a narrow range by
producing heat. Birds and mammals do this for most of time that they are active.
Some other species (insects, tuna fish) have endothermic tendencies

enthalpy Heat content with dimension energy mole−1. The enthalpy of a system increases
by an amount equal to the energy supplied as heat if the temperature and pressure
do not change

entropy The cumulative ratio of heat capacity and temperature of a body when its tem-
perature is gradually increased from zero (absolute) temperature to the temperature
of observation. Its dimension is energy×(temperature mole)−1. The equivalent defi-
nition of the ratio of enthalpy minus free energy and temperature is more useful in
biological applications
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estimation The use of measurements to assign values to one or more parameters of a
model. This is usually done in some formalized manner that allows evaluation of the
uncertainty of the result

expectation The theoretical mean of a function of a random variable. For a function g
of a random variable x with probability density φx, its formal definition is Eg(x) ≡
∫

x g(x)φx(x) dx. For g(x) = x, the expectation of x is the theoretical mean

exponential distribution The random variable t is exponentially distributed with pa-
rameter ṙ if the probability density is φt(t) = ṙ exp{−ṙt}. The mean of t equals
ṙ−1

filament An organism with the shape of a cylinder that grows in length only. The aspect
ratio is so small that the caps can be neglected in its energetics

first order process A process that can be described by a differential equation where the
change of a quantity is linear in the quantity itself

flux An amount of mass or energy per unit of time. An energy flux is physically known
as a power

free energy The maximum amount of energy of a system that is potentially available
for ‘work’. In biological systems, this ‘work’ usually consists of driving chemical
reactions against the direction of their thermodynamic decay

functional response The ingestion rate of an organism as a function of food density

growth Increase in structural body mass, measured as an increase in volume in most
organisms. I do not include anabolic processes that are part of maintenance

hazard rate The probability per time increment that death strikes at a certain age, given
survival up to that age

heat capacity The mole-specific amount of heat absorbed by a substance to increase one
Kelvin in temperature. Heat capacity typically depends on temperature and has
dimension energy mole−1

heterotroph An organism that uses organic compounds as a source of energy

homeostasis The ability of most organisms to keep the chemical composition of their
body constant, despite changes in the chemical composition of the environment

isomorph An organism that does not change its shape during growth

large number law The strong law of large numbers states that the difference between
the mean of a set of random variables and its theoretical mean is small, with an
overwhelming probability, given that the set is large enough
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maintenance A rather vague term denoting the collection of energy demanding processes
that life seems to require to keep going, excluding all production processes. I also
exclude heat production in endotherms

mass action law The law that states that the meeting frequency of two types of particles
is proportional to the product of their densities, i.e. number of particles per unit of
volume

NADPH Nicotinamide adenine dinucleotide phosphate is a chemical compound that is
used by all cells to accept pairs of electrons

parameter A quantity in a model that describes the behaviour of state variables. It is
usually assumed to be a constant

parthenogenesis The mode of reproduction where females produce eggs that hatch into
new females without the interference of males

partition coefficient The ratio of the equilibrium concentrations of a compound dis-
solved in two immiscible solvents, which is taken to be independent of the actual
concentrations. The concentrations are here expressed per unit of weight of solvent
(not per unit of volume or per mole of solvent)

phylum A taxon that collects organisms with the same body plan

Poisson distribution A random variableX is Poisson distributed with parameter (mean)
λ if Prob{X = x} = λx

x!
exp{−λ}. If intervals between independent events are ex-

ponentially distributed, the number of events in a fixed time period will be Poisson
distributed

polynomial A polynomial of degree n of argument x is a function of the type
∑n
i=0 cix

i,
where c0, c0, ., cn are fixed coefficients

precocial A mode of development where the neonate is in an advanced state of develop-
ment and usually does not require attention from the parents. Typical precocial birds
and mammals have feathers or hair and gather food by themselves. The opposite of
precocial is altricial

probability density function A non-negative function, here called φ, belonging to a
continuous random variable, x for instance, with the property that

∫ x2
x1
φx(x) dx =

Prob{x1 < x < x2}

prokaryote An organism that does not have a nucleus, i.e. an eubacterium or archaebac-
terium

reduction degree A property of a molecule. Its value equals the sum of the valences of
the atoms minus the electrical charge
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relaxation time A characteristic time that indicates how long a dynamic system requires
to return to its equilibrium after perturbation. It is a compound parameter with
dimension time standing for the first term of the Taylor expansion of the differential
equation that describes the dynamics of the system, evaluated in its equilibrium

respiration quotient The ratio between carbon dioxide production and oxygen consump-
tion, expressed on a molar basis

rod A bacterium with the shape of a croquette or sausage, that grows in length only, at a
certain substrate density. It is here idealized by a cylinder with hemispheres at both
ends

state variable A variable which determines, together with other state variables, the be-
haviour of a system. The crux of the concept is that the collection of state variables
together with the input, determine the behaviour of the system completely

survivor function A rather misleading term standing for the probability that a given
random variable exceeds a specified value. All random variables have a survivor
function, even those without any connection to life span. It equals one minus the
distribution function. The term is sometimes synonymous with upper tail probability

taxon A systematic unit, which is used in the classification of organisms. It can be species,
genus, family, order, class, phylum, kingdom

Taylor expansion The approximation of a function by a polynomial of a certain degree
that is thought to be accurate for argument values around a specified value. The
coefficients of the polynomial are obtained by equating the function value and its
first n derivatives at the specified value, to that of the n degree polynomial

volumetric length The cubic root of the volume of an object. It has dimension length

weighted sum The sum of terms that are multiplied with weight coefficients before ad-
dition. If the terms do not have the same dimension, the dimensions of the different
weight coefficients convert the dimensions of weighted terms to the same dimension

zero-th order process A process that can be described by a differential equation where
the change of a quantity is constant

zooplankter An individual belonging to the zooplankton, i.e. a group of usually small
aquatic animals that live in free suspension and do not actively move far in the
horizontal direction
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Notation and symbols

Some readers will be annoyed by the notation, which sometimes differs from the one usual
in a particular specialization. One problem is that conventions in e.g. microbiology differ
from those in ecology, so not all conventions can be observed at the same time. The
symbol D, for example, is used by microbiologists for the dilution rate in chemostats, but
by chemists for diffusivity. Another problem is that most literature does not distinguish
structural biomass from energy reserves, which both contribute to e.g. dry weight. So the
conventional symbols actually differ in meaning from the ones used here. For the sake of
consistency, I even found it necessary to deviate sometimes from the notation I have used
myself in earlier papers. Originally I thought e.g. that it was possible to measure the size
of an individual in several more or less equivalent ways, such as volume or wet weight.
Now I see that this theory requires volume, which urges the use of V rather than W . Few
texts deal with such a broad spectrum of phenomena as this book. A consequence is that
any symbol table is soon exhausted if one carelessly assigns new symbols to all kinds of
variables that show up. A voluminous literature on population dynamics exists, where it is
standard to use the symbol l for survival probability. This works well as long as one does
not want to use lengths in the same text!

The following conventions are used to reduce this problem and to aid memory.

• Analogous to the tradition in chemistry, quantities which are expressed per unit of
biovolume have square brackets, [ ]. Quantities per unit of biosurface area have braces,
{ }. Quantities per unit of wet weight have angles, 〈 〉w. This notation is chosen to
stress that these symbols refer to relative quantities, rather than absolute ones. They
do not indicate concentrations in the chemical sense, because most of the compounds
concerned are not soluble. Parentheses, square brackets and braces around numbers
refer to equations, references and pages respectively. Parentheses around numbers
behind other numbers are standard deviations of estimated parameter values.

• Rates have dots, which merely indicate the dimension ‘per time’. Unless indicated
by an index or argument t, these rates are assumed to be constant in time. Dots,
brackets and braces are introduced to have an easy test for some dimensions and to
reduce the number of different symbols for related variables. If time has been scaled,
i.e. the time unit is some particular value making scaled time dimensionless, the dot
has been removed from the rate that is expressed in scaled time.

• Sometimes, an expression between parentheses has an index ‘+’. This means: take
the maximum of 0 and that expression, so (x − y)+ ≡ max{0, x − y}. The symbol
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‘≡’ means ‘is per definition’. It is just another way of writing, you are not supposed
to understand that the equality is true.

• Although the mathematical standard for notation should generally be preferred over
that of any computer language, I make one exception: the logic boolean, e.g. (x <
xs). It always comes with parentheses and stands for the number 1 if true or the
number 0 if false. It appears as part of an expression. Simple rules apply, such as
(x ≤ xs)(x ≥ xs) = (x = xs), or

∫ x
x1=−∞(x1 = xs) dx1/dx = (x ≥ xs) and

∫ x
x1=−∞(x ≥

xs) dx1 = (x − xs)+. The usual notation for the logic boolean is the Heavyside
function, which I consider clumsy, compared with this APL derived notation.

• The symbol ∗ as index is used to indicate that several other symbols can be substi-
tuted. It is known as ‘wildcard’ in computer science.

• Random variables are underscored. The notation x|x > x means: the random vari-
able x given that it is larger than the value x. It can occur in expressions for the
probability, Prob{}, or for the probability density function, φ().

• Vectors and matrices are printed in bold face.

• The SI system is used to present units of measurements. My experience is that most
American readers are unfamiliar with the symbol ‘a’ for year.

• The following operators occur:

d
dt
X|t1 derivative of X with respect to t evaluated at t = t1

∂
∂t
X|t1 partial derivative of X with respect to t evaluated at t = t1

Eg(x) expectation of a function g of the random variable x

var x variance of the random variable x: E(x− Ex)2

cv x coefficient of variation of the random variable x:
√

var x/Ex
cov (x, y) covariance between the random variables x and y: E(x− Ex)(y − Ey)

cor (x, y) correlation between x and y: cov (x, y)/
√

var x var y

xT the transpose of vector or matrix x

In the description of the dimensions in the list of symbols, the following symbols are used:
−
#
t

no dimension
number
time

L
l
m

length (of individual)
length (of environment)
mass

e
T

energy (≡ ml2t−2)
temperature

These dimension symbols just stand for an abbreviation of the dimension, and differ in
meaning from symbols in the symbol column. A difference between the dimensions l and L
is that the latter involves an arbitrary choice of the length to be measured (e.g. including
or excluding a tail). The morph interferes with the choice. The dimensions differ because
the sum of lengths of objects for which l and L apply, does not have any useful meaning.
The list below does not include symbols that are used in a brief description only. The page
number refers to the page where the symbol is introduced.
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symbol dimension page interpretation

a t {82} age, i.e. time since gametogenesis
ab t {82} age at birth (hatching), i.e. end of embryonic stage
ap t {82} age at puberty, i.e. end of juvenile stage
a† t {107} age at death (life span)

Ȧ e t−1 {72} assimilation rate

{Ȧm} eL−2t−1 {72} surface area-specific maximum assimilation rate

[Ȧm] eL−3t−1 {93} volume-specific maximum assim. rate: {Ȧm}V −1/3
d

Bx(a, b) - {92} incomplete beta function
c m l−3 {256} concentration of xenobiotic compound in the environment
cd ml−3 {267} concentration of xenobiotic compound in the water (dissolved)
cL50 ml−3 {274} value of c that results in 50% mortality: LC50
cx ml−3 {267} concentration of xenobiotic compound in food

Ċ e t−1 {72} rate of reserve energy utilization (catabolic rate)

dm - {21} shape (morph) coefficient: V 1/3L−1

dQ L3e−1 {107} amount of damage inducing compound per utilized energy unit
[dw] mL−3 {21} volume-specific weight (density): WwV −1 ≡ [Ww]
[dde] mL−3 {34} reserve-specific dry weight times the max. energy density [Em]
[ddv] mL−3 {34} structural volume-specific dry weight
[dme] #L−3 {37} number of C atoms per unit of reserve energy volume E[Em]−1

[dmv] #L−3 {37} number of C atoms per unit of structural body volume V
dmx #l−3 {37} conversion coefficient from volume to C-mole of substrate
[dP∗] #L−3 {190} C-moles of product per energy volume associated with energy flux ∗
[dwe] mL−3 {34} reserve-specific wet weight times the max. energy density [Em]
[dwv] mL−3 {34} structural volume-specific wet weight

Ḋ l2t−1 {142} diffusivity
e - {92} scaled energy density: [E] [Em]−1

e0 - {92} scaled energy costs for one egg/foetus: E0([Em]Vm)−1

eb - {92} scaled energy density at birth
eṘ - {147} scaled energy allocated to reproduction: EṘ([Em]Vm)−1

E e {72} non-allocated energy in reserve
[E] eL−3 {73} energy density: E V −1

E0 e {84} energy costs for one egg/foetus
[Eb] eL−3 {84} energy density at birth
Ef e l−3 {248} metabolizable energy density in the gut
Eg e l−3 {248} absorbable energy density in the gut
[Em] eL−3 {73} maximum energy density
EṘ e {34} energy in reserve with allocation reproduction

f - {63} scaled functional response: f = X
K+X = x

1+x

ff - {248} scaled functional response of digestion in the gut:
Ef

Kf+Ef

fg - {248} scaled functional response of absorption in the gut:
Eg

Kg+Eg

Ḟ l3t−1 {64} filtering rate

Ḟm l3t−1 {66} maximum filtering rate
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g - {81} energy investment ratio: [G]
κ[Em]

gA - {96} wall investment ratio: [GA]
κ[Em]

[G] eL−3 {80} volume-specific costs for growth

[GA] eL−3 {96} surface area-specific costs for bacterial cell wall times V
−1/3
d

[GV ] eL−3 {96} volume-specific costs for bacterial cytoplasm

ḣ t−1 {107} hazard rate

Ḣ e t−1 {79} heating rate in endotherms

{Ḣ} eL−2t−1 {79} surface area-specific heating rate: Ḣ V −2/3

∆H e#−1 {203} free energy that dissipates per mole of consumed substrate

ım L3 {115} scaled maximum ingestion rate: {İm}V 2/3
m ṁ−1

İ L3t−1 {63} ingestion rate: volume of food per time

{İm} L3L−2t−1 {66} surface area-specific max ingestion rate

[İm] L3L−3t−1 {67} volume-specific maximum ingestion rate: {İm}V −1/3
d

k̇ t−1 {194} rate of macro-chemical reaction

k̇a t−1 {256} xenobiotic elimination rate

k̇e t−1 {248} decay rate of enzyme activity

k̇f em−1t−1 {248} digestion rate constant

k̇g em−1t−1 {248} absorption rate constant in the gut

k̇† l3m−1t−1 {268} killing rate by xenobiotic compound

k̇ad L t−1 {268} xenobiotic conductance

[k̇da] l3L−3t−1 {257} volume-specific xenobiotic uptake rate from water

{k̇da} l3L−2t−1 {268} surface area-specific xenobiotic uptake rate from water

{k̇xa} l3L−2t−1 {277} surface area-specific xenobiotic uptake rate from food
K L3l−3 or 2 {63} saturation coefficient
Kf e l−3 {249} saturation coefficient of enzymatic digestion
Kg e l−3 {248} saturation coefficient of absorption

l - {92} scaled body length: (V V −1
m )1/3

lb - {92} scaled body length at birth: (VbV
−1
m )1/3

ld - {103} scaled cell length at division: (VdV
−1
m )1/3 = ṁg/ν̇

lh - {118} scaled heating length: (VhV
−1
m )1/3

lp - {98} scaled body length at puberty: (VpV
−1
m )1/3

L L {21} length: V 1/3d−1
m

Lb L {148} length at birth: V
1/3
b d−1

m

Ld L {33} length at cell division

Lp L {148} length at puberty: V
1/3
p d−1

m

Lm L {148} maximum length: V
1/3
m d−1

m

Lλ L {248} length of a slice of gut contents
Lφ L {248} diameter (cross section) of gut

ṁ t−1 {80} maintenance rate coefficient: [Ṁ ] [G]−1

Ṁ e t−1 {78} maintenance rate

Ṁd e t−1 {99} energy costs for maintaining maturity

[Ṁ ] eL−3t−1 {78} volume-specific maintenance rate: Ṁ/V

M(V ) - {30} shape (morph) correction function: real surface area
isomorphic surface area

n∗1∗2 # {192} number of atoms of element ∗1 present in compound ∗2
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n # {193} matrix of numbers n∗1∗2 that relate to organic compounds
n(a) da # {170} number of individuals of age in the interval (a, a + da)
N # {170} (total) number of individuals:

∫

a n(a) da
ṗ t−1 {160} individual-specific predation probability rate

ṗa t−1 {111} aging rate for unicellulars; compound parameter: dQ
[G]
κ

ν̇+ṁ
g+1

p̈a t−2 {107} aging acceleration; compound parameter ∝ dQ[G]/κ

ṗi t−1 {152} aging rate for imagos; compound parameter: (1
6 p̈aṁf/l)1/3

ṗm t−1 {190} max. throughput rate in a chemostat without complete washout
P #l−3 {190} (microbial) product density on the basis of moles
Pea - {267} partition coefficient for energy reserves/aqueous fraction
Pwa - {267} partition coefficient for total body mass/aqueous fraction
Pxd - {271} partition coefficient for food/water (dissolved fraction)
[Q] mL−3 {107} density of damage inducing or xenobiotic compounds
[Q]0 mL−3 {277} maximum density of xenobiotic compound that has no effects
〈Q〉w mm−1 {268} quantity of xenobiotic compound per unit of wet weight: [Q]/[Ww]
q - {100} survival probability of the embryonic stage
q(c, t) - {275} survival probability to a toxic compound

Ṙ # t−1 {100} reproduction rate, i.e. number of eggs or young per time

Ṙm # t−1 {101} max reproduction rate

{Ṡg} mL−2t−1 {248} surface area-specific secretion rate of enzyme by the gut wall
t t {25} time
tg t {69} gut residence time
td t {96} inter division period
tD t {103} DNA duplication time

tE t {191} time parameter for energy reserves: [dme](dmx[İm])−1

tṘ t {268} time at spawning
ts t {69} mean stomach residence time

tX1 t {191} time parameter for structural biomass: [dmv](dmx[İm])−1

t∗1∗2 t {194} time parameter for compound ∗1 associated with energy flux ∗2

tH∗ t {204} time parameter for dissipating heat associated with energy flux ∗
tM t {194} matrix of time parameters for ‘minerals’
tD t {194} matrix of time parameters for organic compounds
T T {44} temperature
TA T {44} Arrhenius temperature
Tb T {79} body temperature
Te Te {79} environmental temperature
u #−1 {193} inverse of matrix of n∗1∗2 for ‘minerals’

v̇ L t−1 {74} energy conductance: {Ȧm} [Em]−1

ν̇ t−1 {93} specific-energy conductance: {Ȧm}V −1/3
d [Em]−1 = [Ȧm][Em]−1

V L3 {21} structural body volume
Vb L3 {97} body volume at birth (transition embryo/juvenile)
Vd L3 {33} cell volume at division

Vh L3 {81} the volume reduction for endotherms due to heating: {Ḣ}3[Ṁ ]−3

Vm L3 {81} maximum body volume: (κ{Ȧm})3[Ṁ ]−3 = (v̇/ṁg)3

Vp L3 {97} body volume at puberty (transition juvenile/adult)
V∞ L3 {94} ultimate body volume
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V L3 {222} maximum body volume compared to reference: z3Vm,1
w m#−1 {37} molar weight
W1 #l−3 {191} (total) biomass density on the basis of C-moles
Wd m {34} dry weight of (total) biomass
Ww m {21} wet weight of (total) biomass
x - {161} scaled biovolume density: XK−1

X L3l−3 or 2 {63} biovolume density, usually food
[Xgm] L3L−3 {70} maximum volume-specific capacity of the gut for food
[Xsm] L3L−3 {69} maximum volume-specific capacity of the stomach for food

y - {124} scaled yield factor: Y {İm}v̇−1

Y L3L−3 {161} yield factor
Yi L3L−3 {124} instantaneous yield factor
Yn L3L−3 {124} non-instantaneous yield factor

mYW1 ##−1 {191} yield factor from substrate to biomass on the basis of C-moles

mYP ##−1 {191} yield factor from substrate to product on the basis of C-moles

mY∗ ##−1 {192} yield factor from substrate to compound ∗
YM ##−1 {193} matrix of yield factors from substrate to ‘minerals’
YD ##−1 {193} matrix of yield factors from substrate to organic compounds
z - {218} zoom factor to compare body sizes

γ̇ t−1 {81} von Bertalanffy growth rate: (3/ṁ + 3fV
1/3
m /v̇)−1 = ṁg/3(f + g)

Γ(x) - {152} gamma function
δ - {33} aspect ratio
κ - {53} fraction of utilized energy spent on maintenance plus growth
κ∗1∗2 - {203} fraction of energy of flux ∗2 that is fixed in compound ∗1

µ̇ t−1 {170} individual-specific population growth rate
µ̇m t−1 {166} (net) maximum individual-specific population growth rate
µ̇◦
m t−1 {166} gross maximum individual-specific population growth rate

µ̃∗ e#−1 {202} chemical potential of compound ∗
µ̃E e#−1 {202} free energy per C-mole of energy reserves: [Em]/[dme]
µ̃µM e#−1 {202} vector of free energies of ‘minerals’
µ̃µD e#−1 {202} vector of free energies of organic compounds, determined by deb

φx(x)dx - {170} probability density of x evaluated in x
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Subject index

accumulation curve, 257
adaptation, 39, 46, 61, 62, 111, 134, 218
age, 18, 82, 105, 131

acceleration, 107
mean, 171

allometric
coefficient, see coefficient
dimension, 12
elasticity, 218
function, 3, 13, 44, 58, 104
growth, see growth
regression, 217

aspect ratio, see fraction
assumptions, 116, 119
ATP, 5

biofilm, 32
blood, 53, 72, 74, 80, 252
buoyancy, 39

C-mole, 37
caecum, 71
carbohydrate, 39
carrying capacity, 133, 174
cdc2, 103, 107
cell cycle, 50, 103, 107
chaos, 213
chemical potential, 202
coefficient

allometric, 58, 63, 221
bioconcentration, 257, 269
condition, 36
maintenance rate, 80, 105, 139
partition, 266, 268
ponderal, 36
Redfield, 37
respiration, 43, 201
saturation, 63, 64, 66, 82
shape, 21, 22
Sherwood, 142
specific-density, 21
van’t Hoff, 48
variation, 211, 260

composition, 199, 200

computer simulation, 206
conductance

energy, see energy
thermal, 79

constant, see coefficient
convection, 79, 143
conversion

energy-respiration, 42
energy-young, 171
food-biomass, 123, 125, 161, 164, 181, 184,

187
food-energy, 72
instantaneous, 124
non-instantaneous, 124
product-mole, 37
reserve-mole, 37
substrate-energy, 206
substrate-product, 189, 199
substrate-weight, 189
volume-length, 22
volume-mole, 37
volume-surface area, 23, 30
volume-weight, 21, 33

correlation function, 259, 263, 264
coupling

aging-energetics, 112
energy-life history, 132
feeding-digestion, 60
fission-growth, 207
mass-energy, 4, 6, 192
moulting-incubation, 209
mutagenicity-energetics, 286
organization levels, 7
parameters, 113, 211
prey-predator, 212
support-estimate, 14
temperature-standing crop, 188
theory-measurements, 36
toxicity-energetics, 283
traits, 243
volume-surface, 5

covariance function, 259
crust, 145

345
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culture
batch, 167, 169
chemostat, 160
fed-batch, 168, 184, 188, 208

Dehnel phenomenon, 83
development, 74, 97

altricial, 85, 135
atricial, 90
precocial, 90
prokaryotic, 99

diet, 49, 83
diffusion, 13, 55, 141
digestion, 247
dimension, 11, 43, 161
dimorphy

egg, 85
sex, 51, 108

direction field, 122, 163, 167
distribution

beta, 264
binomial, 287
exponential, 64, 69
Gompertz, 108
log-logistic, 274
log-normal, 179, 274
normal, 15, 21, 22
Poisson, 64, 287
stable age, 169
stable size, 177, 180
Weibull, 108, 109, 152, 278

division, 103
DNA deletion, 242
dormancy, 131
dwarfing, 113

ectotherm, 10, 78
effect

dynamic, 273
mutagenic, 272, 284
nil level, 278
population, 282
survival, 277
teratogenic, 273
toxic, 272

efficiency
assimilation, 72
digestion, 247

egg
costs, 90
shell, 13
size, 239
winter, 132, 184

endotherm, 10, 78
energy, 4, 41

activation, 45
assimilation, 72, 120
charge, 5
conductance, 74
flow, 54
free, 203
Gibbs free, 202
investment ratio, 81

enthalpy, 42
entropy, 42, 201, 203
enzyme, 23, 38, 45, 55, 79
equation

balance, 17, 18, 202, 248
Bernoulli, 92
characteristic, 170, 175, 183
food balance, 174, 184, 185
Laplace, 142
macro-chemical, 192
mass balance, 142, 192
partial differential, 208
renewal, 170
stochastic difference, 258
stochastic differential, 258
van’t Hoff, 44
von Foerster, 207

error of second kind, 256
evaporation, 80
exoskeleton, 24, 29

factor, see coefficient, fraction
fat, 39, 84
feeding

filter, 58
method, 55
rate, see rate
vacuole, 55

fermentation, 195
Fibonacci series, 173
filament, 30
fitness, 160, 243
floc, 143
flux, see rate
food

chain, 212
density, 54
deposit, 67

fraction
aqueous, 35
aspect, 33
Boltzmann, 44
busy, 65
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death, 165
funnel concept, 5, 206

genetics, 112, 134
geography, 132, 147
gigantism, 76
golden mean, 173
growth, 80

allometric, 27, 253
at starvation, 126
competitive, 19
curve, 1, 95, 150
embryonic, 83, 86, 136
expo-logistic, 167, 169
exponential, 94, 157, 209
filaments, 94
foetal, 89, 90
generalized logistic, 137
Gompertz, 18, 137
isomorphic, 22
logistic, 136, 167
maximum, 118
non-isomorphic, 93
ridge, 25
rods, 94
scope for, 43
shifted, 126, 127
sigmoid, 119
von Bertalanffy, 2, 35, 36, 60, 75, 81, 98, 108,

109, 120, 140, 157
gut

capacity, 68, 70, 74, 141
flora, 42
residence time, see time
volume, 71

heat increment, 72
hibernation, 131
homeostasis, 38, 73, 80, 192
homeothermy, 78

index, see coefficient
individual, 17

segmented, 155
insulation, 79
invariance property, 81, 112, 218
isomorph, 22

0D, 32, 144
1D, 30
2D, 31, 144, 241

isotherm, 65

Jacobian, 162

kinetics, see process
Krebs cycle, 5

Lagrange multiplier, 196
law

conservation, see balance eq.
Fick, 142
large numbers, 165, 210
mass action, 44, 161

light cycle, 83, 128, 150
limiting factor, 144

maintenance, 20, 38, 76, 131
ration, 132

maturation, 53
maintenance, 98

membrane, 23, 38, 73, 75, 77
embryonic, 35, 85, 90

metamorphosis, 50
migration, 39, 77
model

comparison, 213
complexity, 9, 159
consistency, 9, 72, 219
continuity, 172, 207
regression, 15
strategy, 7
theory, 8
verification, 7, 14, 43, 175

moult, 77, 80, 83

NADPH, 5
nitrite, 154, 287
number, see coefficient

operating diagram, 212, 215
osmolarity, 73
osmosis, 78, 85
overhead, 42

parameter
compound, 80
density-based, 219
estimation, 13, 14, 135, 168, 197, 198
list, 117
physical design, 219
variation, 15, 112, 150, 210

period, see time
pH, 12
phagocytosis, 55, 64
plant, 5, 137
plug flow, 69, 247
population

deb filaments, 162, 166



348 Subject index

deb-structured, 174
equilibrium, 161, 186
interaction, 159
level, 160
logistic, 174, see growth
Lotka–Volterra, 160
stability, 162
statistics, 210
structured, 168
unstructured, 6, 159

ppGpp, 166
probability

survival, 107, 110, 152, 170, 278
process

alternating Poisson, 121, 264
auto-regressive, 258, 263
first order, 69, 73, 83, 92
Leudeking–Piret, 190
Michaelis–Menten, 65, 248
more-compartment, 265
moving average, 258, 263
one-compartment, 256, 262
random increment, 258
random telegraph, 121, 264
variable coefficient, 265
zero-th order, 249

product formation, 189, 200
propagation, 100
protein, 39

synthesis, see RNA

quota, 6
quotient, see coefficient

radiation, 80
radical, 106
rate

adsorption, 65
aging, 45, 111, 152
anabolic, 3, 43
assimilation, 250
beating, 59
catabolic, 3, 72, 97, 100, 104, 271
elimination, 257
elongation, 251
encounter, 65
excretion, 77
filtering, 58, 66
gut filling, 67
harvesting, 183, 184, 210

optimum, 188
hazard, 106, 108, 152, 155, 165, 277
heating, 76, 78, 135, 201

ingestion, 45, 54, 58, 60, 63, 67, 75
metabolic, 11, 43
moving, 59, 77
pop. growth, 62, 170, 174, 175, 177, 242, 243
rejection, 66
reproduction, 45, 75, 100, 118, 170
respiration, 11, 42, 44, 76, 84, 86, 103, 118,

136, 194
swimming, 63, 223
translation, 251
uptake, 257
utilization, see catabolic
von Bert. growth, 45, 48, 81, 82, 149, 225,

232
ratio, see coefficient
reconstruction, 134

concentration, 257
food intake, 137, 139, 140
temperature, 135, 138

regulation, 18
reproduction, 100

buffer, 102, 172
cumulated, 147, 148
suicide, 149

reserve
at birth, 84
composition, 198
density, 39, 73
dynamics, 72
energy, 20
for one egg, 90
for one neonate, 93
initial, 156
material, 38, 40

respiration, see rate
response

functional, 63, 64, 71, 139, 144
stringent, 111, 166

retardation, 99
ribosome, 251
RNA, 39, 198, 250, 251
rod, 33, 242, 243
rotation, 24
rule

κ, 53, 74, 105, 119, 244
allocation, 18
Bergmann, 48, 132, 134, 238
Kleiber, 3, 43, 44, 77, 221
surface, 3, 104

satiation, 68
selection and diet, 60
sex ratio, 182
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shape, 21, 30
sheet, 27, 32
shell, 24
shrink, 82, 129
size, 20

mean, 181–183
range, 217
scaling, 217

abundance, 238
allocation, 236
assimilation, 219
bioconcentration, 271
brain, 237
distribution, 238
diving depth, 223
filtering, 220, 223
gestation, 231, 232
growth, 224
growth costs, 219
gut capacity, 223
incubation, 231, 233
ingestion, 220, 222
initial, 235
life span, 236
maintenance, 219
max. volume, 219
min. food density, 224
pop. growth, 239
primary, 218, 219
puberty, 234
reproduction, 235
reserve capacity, 220
respiration, 221
saturation coefficient, 220
secondary, 220
speed, 223
starvation, 236
tertiary, 238
volume at birth, 220
water loss, 235
weight, 220

spatial heterogeneity, 211
specific dynamic action, 42
spiral, 25
stage, 49

adult, 51
baby, 50
embryo, 49
foetus, 49
imago, 151
juvenile, 49
larva, 50
mitotic, 50

pupal, 50, 151
senile, 51, 106

starvation, 82, 126, 130
state space, 120, 122
stereo image, 29, 118, 125, 143, 167, 187, 241,

276, 280, 282, 285
stochastic

input, 15
variable, see variable

storage, see reserve
strategy, 239

r–K, 239
allocation, 244
demand, 17, 82
egg size, 239
supply, 17
vivipary, 240

synchronization, 208

temperature, 10, 12, 44
Arrhenius, 44, 47, 90
body, 78, 135
tolerance range, 46, 79

thermo-neutral zone, 79
time

development, see incubation
duplication, 103, 175, 242, 243
gestation, 89
gut residence, 69–71, 249
handling, 64
incubation, 44, 84, 92
inter division, 96, 103, 175
juvenile, 82
life, 108, 131
starvation, 129, 130
wall synthesis, 96

tissue
adipose, 41
cartilage, 13
ovary, 74
reproductive, 53
somatic, 53, 74

transformation, 271, 286
triglycerides, see fat
tumor, 112

variable
dimensionless, 13
explanatory, 19
extensive, 11, 218
intensive, 11, 218
list, 117
state, 10, 18



350 Subject index

stochastic, 15, 64, 113, 217
vitamins, 6
volume

at birth, 81
at fertilization, 84
at puberty, 97
heating, 81
maximum, 81
ultimate, 81, 94, 149, 155

volumetric length, 22

wax, 39
weaning, 50, 83
weight, see conversion

ash-free dry, 35
dry, 34
molar, 37
wet, 21

yield, see conversion
yolk, 86


