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ABSTRACT

The standard model of the dynamic energy budget theory for metabolic organisation has variables and

parameters that can be quantified using indirect methods only. We present new methods (and software) to extract

food-independent parameter values of the energy budget from food-dependent quantities that are easy to

observe, and so facilitate the practical application of the theory to enhance predictability and extrapolation.

A natural sequence of 10 steps is discussed to obtain some compound parameters first, then the primary

parameters, then the composition parameters and finally the thermodynamic parameters; this sequence matches

a sequence of required data of increasing complexity which is discussed in detail. Many applications do not

require knowledge of all parameters, and we discuss methods to extrapolate parameters from one species to

another. The conversion of mass, volume and energy measures of biomass is discussed; these conversions are not

trivial because biomass can change in chemical composition in particular ways thanks to different forms of

homeostasis. We solve problems like ‘‘What would be the ultimate reproduction rate and the von Bertalanffy

growth rate at a specific food level, given that we have measured these statistics at abundant food?’’ and ‘‘What

would be the maximum incubation time, given the parameters of the von Bertalanffy growth curve?’’. We

propose a new non-destructive method for quantifying the chemical potential and entropy of living reserve and

structure, that can potentially change our ideas on the thermodynamic properties of life. We illustrate the

methods using data on daphnids and molluscs.

Key words: compound DEB parameters, mass-energy conversions, parameter identification, strong and weak

homeostasis, surface-area-volume relationships, chemical composition, energy, entropy.
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I. INTRODUCTION

Many biological quantities that are relatively easy to measure,
such as body mass and respiration rate, have contributions
from different processes, and are, therefore, not natural var-
iables in explanatory models. The variables that such models
have, such as reserve and structure, are typically not readily
measurable, which calls for auxiliary theory for how to
relate these variables to measurements. One of our own
motivations originates in the analysis of toxicity data, where
toxicants affect parameter values. Data from standardised
bioassays to assess toxicity typically lack information about
essential eco-physiological parameter values in the control,
so this knowledge must be gained from other experiments.
Our interest is in what type of data do we minimally need to
have access to these parameter values. Knowledge of eco-
physiological parameter values is also essential in the con-
text of ecosystem modelling, and again in the analysis of the
effects of toxicants at the ecosystem level (Brack et al., 2005).
The dynamic energy budget (DEB) theory for metabolic

organisation has all the essential components to deal with
energy and mass balances, stoichiometric constraints on
production and variable chemical composition of biomass
(Kooijman, 2000, 2001). A problem in the application,
however, is that many of the underlying processes are
interlinked intimately, which makes it hard to study the
various processes one by one. They need to be studied in
coherence. An obvious question is ‘‘Why do we need
difficult-to-quantify parameters of some model, and do not
work with the easy-to-measure quantities only?’’. One
application of the forward and backward translations of
easy-to-measure quantities to (compound) DEB parameters
that will be discussed is in solving problems like ‘‘What
would be the ultimate reproduction rate and the von
Bertalanffy growth rate at a specific food level, given that
we have measured it at abundant food?’’. Knowledge of the
compound DEB parameters are the key to the answer. This
is a special case of a more general problem that is behind
the words ‘‘quantities’’ versus ‘‘parameters’’. The difference

is that quantities depend on experimental conditions, such
as food availability, whereas parameters are constant (in
principle). This has important consequences for extrapolation
purposes and the understanding of biological phenomena.

This paper presents the required auxiliary theory for the
standard model in DEB theory; this standard model deals
with the metabolic organisation of an isomorph with
a single reserve and a single structure that feeds on a single
type of resource; see Nisbet et al., (2000) for an introduction.
Most animals fall into this category if we focus on simple
nutritional situations. To make our contribution practical,
the freely downloadable software package DEBtool can be
used to perform all computations mentioned herein in
a simple way. There is no need for the applied scientist to
understand the technical details of this paper to use the
software for the estimation of parameter values from data.

Sousa et al., (2008) discuss the conceptual step from
empirical patterns to formalised theory on metabolic
organisation. The present paper provides the practical tools
for this step using a minimum set of data. The aim is to
discuss a natural sequence of steps in obtaining parameter
values from data, starting with some compound parameters
(i.e. functions of primary parameters), then the primary
parameters themselves (which determine food uptake and
changes in the state variables structure, reserve and
maturity for a given trajectory of food density), then the
composition parameters (of food, biomass and products),
and finally the thermodynamic parameters. Many applica-
tions don’t require knowledge on all parameters, so the
sequence of steps can be followed partially only. For
instance, if we want to predict an aspect of organisms that
does not involve energy, we know a priori that there is no
need to know any of the parameters that has energy in its
dimension explicitly; it might be that ratios of energy
parameters need to be known, but information on a ratio is
weaker than that of the energy parameters themselves, and
so requires less effort to obtain it from data. We make the
relationship explicit between the strength of the data and
the information that we can squeeze out of it.
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We focus on the methodological and computational
aspects, and only briefly reflect on statistical aspects. Our
treatment is not meant to be exhaustive; auxiliary theory
will develop further, just like the core theory. We provide
some guidance in obtaining DEB parameters to supplement
Kooijman (2000) and Van der Meer (2006a). A particularly
nice application of the estimation of the parameter values of
a species is to compare the values with those that can be
expected on the basis of body size scaling relationships, that
are implied by DEB theory (see Section IV.1); the differ-
ences represent specific evolutionary adaptations.

Energy is a useful and popular concept for comparative
purposes, because using this concept seems to avoid the
complexities inherent in the many chemical compounds
organisms use. Although energy does facilitate comparison,
we here demonstrate, however, that we cannot avoid the
complexities inherent in chemical compounds and nutrition-
related changes in the chemical composition of biomass.
Although the quantification of thermodynamic parameters is
demanding, it is still feasible, and we hope that this paper will
motivate researchers to apply it to a selection of species.

First we discuss some basic problems that need to be
solved and specify the standard DEB model being explicit
on the model structure and the (primary) parameters that it
contains. We don’t show here how it follows from
mechanistically inspired assumptions, or why this model is
generic as well as biologically realistic. The latter topics are
discussed in e.g. Kooijman (2000); Van der Meer (2006b)
and (Sousa, Domingos & Kooijman, 2008). The following
section presents the estimation of metabolic parameters. It
is structured in a particular way, starting from a requirement
for less-demanding measurements to more elaborate ones;
the parameter estimates that are discussed in later sections
make use of estimates obtained earlier. We give numerical
examples for the application of our estimation procedure.
We then consider parameters that quantify the (variable)
chemical composition of biomass and the mass balance for
the individual organism. The method is illustrated using
data from the literature. We need this compositional
information before we finally deal with the estimation of
thermodynamic parameters. After looking forwards to more
elaborate estimation procedures, the last section presents
and discusses our conclusions.

II. PROBLEMS TO SOLVE

We first specify the problems for auxiliary theory that we
need to solve in this paper in more detail.

To account for metabolic memory and nutrition-related
changes in body mass composition, DEB theory partitions
biomass into reserve and structure. Reserve is not a set of
chemical compounds set apart for later use; reserve can
have active metabolic functions. It is the dynamics that
make the distinction between reserve and structure; being
synthesised from food and used for metabolic purposes,
reserve has an implied turnover, while structure is synthe-
sised from reserve and requires (somatic) maintenance for
turnover. There are no direct simple ways to quantify

reserve and structure separately. They both contribute to
body mass, for instance. The DEB theory is chemically (and
biologically) implicit, meaning that it does not specify par-
ticular chemical compounds. Each particular compound,
such as lipids, proteins and carbohydrates, can belong to re-
serve, to structure or to both, so how can we quantify these
compartments?

To specify life-history events, DEB theory uses maturity,
but there are also no direct methods to quantify maturity. Its
formal status is information, it does not represent a mass or
energy pool. DEB theory states that stage transitions (from
embryo to juvenile, from juvenile to adult) occur if maturity
reaches some threshold value, requiring a quantification of the
maturity, but how can this be obtained from measurements?

One of the most characteristic elements of DEB theory is
the k-rule which states that a fixed fraction k of the
mobilised reserve is allocated to somatic maintenance plus
growth (i.e. increase in the amount of structure), while the
rest is allocated to maturity maintenance and maturation (in
embryos and juveniles) or reproduction (in adults). A
pertinent question is how to measure k if we can’t quantify
reserve or maturity, and how to measure the maturity
maintenance rate if we can’t measure maturity? Only part
of the reserve allocated to growth is actually fixed into
structure, the rest (i.e. the overhead of growth) is converted
into products that are excreted into the environment. How
can we quantify the overhead costs? Most animals allocate
to reproduction via a buffer that can contribute considerably
to body mass. How should this buffer be quantified? In the
DEB theoretical context it is even not obvious how to
quantify somatic maintenance, because the basal respiration
rate has contributions from other components (such as the
overhead cost of growth).

These problems might seem to have no solutions at first
sight, but the DEB theory is built on a number of solid
principles that can be used here: strong and weak homeo-
stasis. Strong homeostasis means that reserve and structure
have a constant chemical composition, so any changes in
the composition of the whole organism can be traced back
to changes in the amount of reserve relative to that of
structure. Weak homeostasis means that at constant food
concentration, the body composition of the juvenile and the
adult remains constant (possibly after an adaptation period)
during growth and development. In combination with
strong homeostasis this means that the reserve density, i.e.
the ratio of the amounts of reserve and structure, remains
constant, despite growth.

Strong homeostasis implies that reserve and structure can
be quantified in terms of energy, volume as well as mass, see
Table 1. Mass is quantified in C-moles (i.e. the number of
C-atoms expressed as multiples of the Avogadro number;
we use the dimension symbol #); mass is also quantified in
gram (wet mass, dry mass, ash-free dry mass etc.). Although
moles and grams are both units of mass, they are not
equivalent. A (generalised) chemical compound whose mass
is quantified in (C-)moles cannot change chemical compo-
sition, but a body whose mass is quantified in grams can
(and actually does). Grams can only be converted easily to
C-moles if the chemical composition is constant and known,
but this rarely occurs in practice. There does not exist a
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single most useful quantity for energetics. We need length
because the feeding rate is linked to surface area. We need
mass, however, to deal with mass conservation and energy to
deal with energy conservation. DEB theory uses all of this.
With weak homeostasis we can assess the composition of

both reserve and structure by comparing the body com-
position at different food densities, without being able to
separate them physically. Weak homeostasis is only possible
if strong homeostasis of the various compartments (here
reserve and structure) applies. It fully specifies reserve
dynamics in combination with strong homeostasis (Sousa
et al., 2008). The combination of presence (in juveniles and
adults) and absence (in embryos) of weak homeostasis yields
important information about metabolic organisation. We
also show how starvation data can be used to replace (or
supplement) embryo data (see Section IV.8).
Parameter values are individual-specific in DEB theory,

which is essential in evolutionary contexts (Kooijman et al.,
2003; Kooijman & Troost, 2007). We here treat parameter
values as species-specific only, ignoring the relatively small
differences within a species.

III. SPECIFICATION OF THE STANDARD
DEB MODEL

This section summarises the standard DEB model. Fig. 1
presents the scheme of the standard DEB model and some
notation. The state variables are listed in Table 1; the
changes in the state variables are given in the Appendix.

Table 2 presents the primary parameters of the DEB model
using time, length and mass only. This choice of primary
parameters differs slightly from previous choices, e.g.
Kooijman (2000). We here selected the specific searching
rate f _Fmg rather than the half-saturation coefficient
K ¼ f _JEAmg=yEXf _Fmg, because it is closer to the mecha-
nism of the underlying feeding process. We use the maturity
maintenance rate coefficient _kJ rather than making an
assumption about the maturity maintenance costs that
causes that stage transitions also occur at fixed amounts of
structure (so eliminating the need to think about maturation
explicitly). This is because we want to allow for food-related
differences in the amount of structure at stage transitions
(birth, puberty). This also means that the maturity at birth
MH

b and at puberty MH
p
play explicit roles, rather than

structural volume at birth Vb and at puberity Vp. The
construct was avoided in the past, because these volumes
are generally difficult to obtain numerically. This problem
was, however, recently solved by Kooijman (2008). We here
use the energy conductance _v rather than the maximum
reserve capacity ½MEm� ¼ f _JEAmg= _v to have a better link
with the mechanism of reserve mobilisation, see Kooijman
& Troost (2007) for another recent gain in insight. We use
the yield of reserve on food yEX as a primary parameter
rather than the maximum specific feeding rate f _JXAmg ¼
f _JEAmg=yEX because this parameter is closer to the
biochemical machinery, and therefore more conserved from
an evolutionary perspective. Table 3 gives relationships
between length, mass and energy and frequently occurring
compound parameters on the basis of the chemical
potential for reserve �mE (in J mol–1) and the specific
structural mass [MV] (in mol cm–3). The parameter [MV]
(which converts cubic centimetres into C-moles) has
a similar status as a molecular mass (which converts moles
into grams) or a specific density (which converts cubic
centimetres into grams). Strong homeostasis makes these
conversions simple.

Compound parameters (such as K, g, _kM , Lm in Table 3)
are (simple) functions of primary parameters. They typically
have simple dimensions and are easier to extract from data
than the primary parameters. Many applications only
require knowledge of some compound parameters, so there
is frequently no need to know all primary parameters. The
somatic maintenance rate coefficient _kM ¼ ½ _JEM �yVE ½MV �
has the interpretation of the specific volume-linked somatic
maintenance cost relative to that of a unit of structure.

Table 1. The state variables of the standard dynamic energy
budget (DEB) model, expressed in three different ways. The
notation for energy in reserve EE ¼ E and volume of structure
VV ¼ V is simplified. Energy is assessed by multiplying mass
(in C-mole) by the chemical potential ( �mE and �mV ). Maturity is
quantified in invested reserve (in mass or energy). It does not
represent a mass or energy pool, but information; it hardly
makes sense to quantify it as volume, because there is no
conservation law for volume. L stands for structural length

Reserve E Structure V Maturity H

volume V V ¼ L3

mass M ME MV ¼ [MV]V MH

energy E E ¼ �mEME EV ¼ �mVMV EH ¼ �mEMH

Fig. 1. The standard dynamic energy budget (DEB) model with fluxes (moles per time) and pools (moles) that illustrate the balance
equations, equations (A1, A3, A4). Assimilation is zero during the embryo stage and becomes positive at the transition to the
juvenile stage (birth) if food is available. Age is zero at the start of the embryo stage. Reproduction is zero during the juvenile stage
and becomes positive at the transition to the adult stage (puberty), when further investment into maturation is ceased.
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Likewise the maturity maintenance rate coefficient _kJ is the
maturity maintenance cost relative to that of a unit of
maturity. But since we quantify maturity as the cumulative
investment of reserve, the cost of a unit of maturity is one by
definition.

The standard DEB model is specified mathematically
in Eq. (A1 – A5) of the Appendix for the rate of change in
the state variables. These equations can be considerably
simplified under specific conditions, such as constant food
density. These conditions can be created experimentally to

Table 2. The twelve primary parameters of the standard dynamic energy budget (DEB) model as represented in the
length-mass-time frame. The cubed meters in the specific searching rate refer to the environment, all other meters to structure.
Square brackets [ ] mean ‘‘per structural volume, curly braces { } mean ‘‘per structural surface area’’ and dots � mean ‘‘per time’’

Symbol Unit Description Process

f _Fmg m3d–1m–2 surface-area-specific searching rate feeding
f _JEAmg mol d–1m–2 surface-area-specific maximum assimilation rate assimilation
yEX mol mol–1 yield of reserve on food digestion
yVE mol mol–1 yield of structure on reserve growth
_v m d–1 energy conductance mobilisation
f _JETg mol d–1m–2 surface-area-specific somatic maintenance heating/osmosis
½ _JEM � mol d–1m–3 volume-specific somatic maintenance turnover/activity
_kJ d–1 specific maturity maintenance regulation/ immune defence
k - allocation fraction allocation
kR - reproduction efficiency egg formation
MH

b mol maturation at birth life history
MH

p
mol maturation at puberty life history

Table 3. Conversions and compound parameters. For descriptions of parameters and variables see Tables 1 and 2 and Fig. 1

Relationship Unit Description

K ¼ f _JEAmg
yEXf _Fmg

mol m–3 half-saturation constant

f _JXAmg ¼ f _JEAmg=yEX mol d–1m–2 maximum specific ingestion rate
MVm ¼ Lm

3[MV] mol maximum structural mass

½MEm� ¼ f _JEAmg=_v mol m–3 maximum reserve density
mH ¼ MH/MV mol mol–1 maturity density
mH

b ¼ MH
b/MV mol mol–1 maturity density at birth

mH
p ¼ MH

p
/MV mol mol–1 maturity density at puberty

mE ¼ ME/MV mol mol–1 reserve density
mEm ¼ [MEm]/[MV] mol mol–1 maximum reserve density

½Em� ¼ f _pAmg=_v J m–3 maximum reserve density

Lm ¼ k
f _JEAmg
½ _JEM � ¼ k

f_pAmg
½ _pM � ¼ _v

_kMg
m maximum structural length

LT ¼ f _pTg=½ _pM � m heating length

UE ¼ ME=f _JEAmg ¼ E=f _pAmg d m2 scaled reserve

UH ¼ MH=f _JEAmg ¼ EH=f _pAmg d m2 scaled maturity

f _pAmg ¼ �mEf _JEAmg J d–1 m–2 maximum specific assimilation energy flux

f _pTg ¼ f _JETg�mE J d–1 m–3 surface-area-specific maintenance energy flux

½ _pM � ¼ ½ _JEM ��mE ¼ _kM�mGV ½MV � J d–1 m–3 specific somatic maintenance energy flux

½ _pJ� ¼ ½ _JEJ��mE ¼ _kJEHL
[3 J d–1 m–3 specific maturity maintenance energy flux

_kM ¼ ½ _pM �=½EG� ¼ jEM yVE d–1 somatic maintenance rate coefficient
_JEJ ¼ _kJMH mol d–1 maturity maintenance mass flux

jEM ¼ ½ _JEM �=½MV � mol mol–1 d–1 specific somatic maintenance flux

½EG� ¼ �mE½MV �=yVE J m–3 energy cost per structural volume

�mE ¼ f _pAmg=f _JEAmg J mol–1 chemical potential of reserve

�mGV ¼ ½EG�=½MV � ¼ �mE=yVE J mol–1 energy-mass coupler for growth

g ¼ ½EG �
k½Em� ¼

_v½MV �
kf _JEAmgyVE

– energy investment ratio

f ¼ X/(K ] X ) – scaled functional response

e ¼ mE

mEm
¼ ME _v

L3f _JEAmg
– scaled reserve density

l ¼ L/Lm – scaled length
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obtain parameter values that can be applied under more
complex conditions. The parameter estimation steps focus
on constant food densities, while varying food densities are
discussed briefly in Section V. Consistency constraints apply
to parameter values, which are discussed briefly below. Not
all combinations of values make physical and physiological
sense.
The scaled functional response, i.e. the feeding rate as

a fraction of the maximum feeding rate of an individual of

that size, f ¼ _JXA
_JXAm

¼ _JEA
_JEAm

, is a function of food availability.

Exactly how only becomes important when we want to
make the step from compound to primary parameters and
have to use masses for the first time. This is discussed in
Section IV.6 and later.
If the scaled functional response remains constant, the

scaled reserve density becomes equal to the scaled func-
tional response, e ¼ f, and the scaled ultimate length be-
comes equal to the scaled reserve density, LN/Lm ¼ e.
Therefore, the food density that just covers maintenance
cost increases with the structural length. If the somatic and
maturity rate coefficients are equal, stage transitions not
only occur at fixed maturity levels, but also at fixed amounts
of structure. If this is the case, there is no need to deal
explicitly with maturity as a state variable. The Appendix
gives more details.
The volume-specific somatic maintenance flux ½ _JEM � and

surface-area-specific somatic maintenance flux f _JET g are
assumed to be constant (at constant temperature); but
f _JET g ¼ 0 in the embryo stage (MH < MH

b) of most
endotherms. Since f _JET g ¼ 0 in all stages of most species,
this paper does not discuss its estimation in detail. The
somatic maintenance cost is a component of the somatic
maintenance rate coefficient _kM , which appears in the early
steps. The maintenance cost itself is only discussed explicitly
in Section IV.7, since it has mass in its dimension.
The change in structural mass of the Appendix can be

converted to the change in structural length L ¼
(MV/[MV])

1/3 as

d

dt
L ¼ _rBðeLm [ L [ LT Þ

with _rB ¼ 1

3

_kMg

e] g
¼ 1

3

1

_k[1
M ] eLm= _v

: ð1Þ

where the quantity _rB is known as the von Bertalanffy
growth rate, see Fig. 3. Although it is constant at constant
food density, it is not a parameter in the DEB context
because its value depends on state variables (namely the
scaled reserve density e, and so on the amounts of reserve
ME and structure MV) and indirectly on food availability.
The von Bertalanffy growth rate plays an important role in
the early steps of the estimation of metabolic parameters;
the literature reports values for many species, Kooijman
(2000) provides them for 270 species. The heating length LT
is the length an organism remains smaller due to somatic
maintenance costs that are linked to the surface area
(heating in endotherms, osmosis in freshwater organisms).

These costs don’t affect the von Bertalanffy growth rate,
only the ultimate length.

The reserve density at birth mE
b equals that of the mother

at the moment of egg formation; it represents maternal
effect. This means, if the mother is living for some time at a
constant food level, which corresponds with some functional
response f, then the reserve density of the embryo at birth
equals mE

b ¼ fmEm. These initial conditions imply von
Bertalanffy growth at constant food availability right after
birth. Foetal development is a variant of egg development.
The initial amount of reserve is given in the Appendix and
the computational aspects are discussed in Kooijman
(2008).

Maturity at birth MH
b is a primary parameter. Length at

birth Lb and age at birth ab are functions of parameters and
the nutritional state of the mother, via f. To avoid mass in
the first estimation steps, we scale MH

b with the specific
maximum assimilation rate f _JEAmg, which results in a rather
abstract parameter Ub

H ¼ Mb
H=f _JEAmg with dimension time

times squared length. This ‘trick’ allows us to use statistics of
the embryo stage in the early steps of the estimation of
metabolic parameters; the way length at birth (or puberty)
relates to food density provides valuable information about
the maintenance ratio, i.e. the ratio of the maturity and the
somatic maintenance rate coefficients.

We must have that length at birth Lb and puberty Lp are
smaller than maximum length Lm, but not necessarily that
Lb < Lp; aphids are an example of organisms for which

Lp < Lb; they allocate to reproduction in the embryo
stage. DEB theory has no problems with such cases and
shows that we should think in terms of events in life histories
(e.g. switching on of assimilation, and allocation to
reproduction) rather than in terms of life stages.

DEB theory shows [see Eq. (A13)] that the age at birth
should be less than Lb=ðLN _rBÞ. If age at birth is close to this
value we have a large value for _kM and a small value for g
(see Fig. 2). A geometric interpretation of this constraint is
given in Fig. 3. For humans, we have a birth mass of 3.5 kg,
an adult mass of 70 kg, and a von Bertalanffy growth rate of
0.15 year–1, so the gestation time should be less than (3.5/
70)1/3/0.15 ¼ 2.5 year. A larger value would be inconsistent
with DEB theory for any combination of parameter values.
The relationship between foetal and egg development is
given in Kooijman (2000) (see also Section VI). The fact
that reserve contributes to mass is here not important,
because weak homeostasis implies that reserve makes up
a constant fraction of mass, as long as the baby and adult
experience similar food conditions.

Age zero is defined as the start of development, an event
that is not always easy to observe or to infer; sometimes the
age at birth seems to be longer than the maximum possible
value (e.g. in Armadillo spp.) because some species delay the
onset of development. In other species with an age at birth
exceeding the maximum value, the parameters of the
embryo stage differ from that in later stages, this can be
expected in species that exhibit metamorphosis, e.g.
anchovy Engraulis encrasicolus (Pecquerie, 2008). The stan-
dard DEB model no longer applies in this case and more
advanced DEB models should be used that take these
details into account.
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IV. ESTIMATION OF BUDGET PARAMETERS

The estimation of parameters can be structured naturally
into 10 steps. In step 1 we avoid the estimation of parameter
values and work with ‘circumstantial evidence’ using
knowledge of the maximum length of a species only. The
subsequent sequence of estimation steps starts with
observations on growth and reproduction at a single food
density (typically at abundant food, steps 2 and 3), and then
at several food densities (steps 4 and 5), (Table 4). It is
experimentally difficult to keep food constant at some low
value. Alternatively one could work at abundant food
(which does not need careful control to a constant density),
but reduce its nutritional quality by mixing it with an
indigestible compound, for example with silt for filtering
bivalves, see e.g. Kooijman (2006). DEB theory was
developed for dynamically changing food (and temperature)
conditions, and if food densities are measured as functions
of time, observations on growth and reproduction in
dynamic environments yield the required information on
all primary DEB parameters. This, however, involves
advanced methods for parameter estimation that are briefly

discussed in Section V. The 10 steps discussed in this section
assume that food density is constant; it is also conceptually
important to see what extra information on energetics can
be gained from comparison of food densities.

Although steps 1 to 5 use values of the scaled functional
response, this does not necessarily involve measurements on
feeding, since the scaled functional response equals the
scaled ultimate length, f ¼ LN/Lm, for instance. To obtain
the maximum length, we need observations at abundant
food. Steps 4 and 5 compare feeding, growth and re-
production at several food levels. For supply systems scaled
functional responses might be chosen rather far apart from
each other, which would contribute to the accuracy.
Demand systems, however, would not survive such large
differences.

Length measures are very popular in the literature,
possibly because they can be obtained in a non-destructive
way. Therefore, in steps 2 to 5 we discuss how particular
compound parameters can be obtained from data using
length and time only. Yet the detailed interpretation of
length measures requires some discussion. We here assume
that reserve contributes little to actual length (¼ the length
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Fig. 2. Dynamic energy budget (DEB) parameters as function of age at birth, ab, as obtained from DEBtool/animal/get_pars_r for
Haliotis tuberculata (solid curves) and Ruditapes philippinarum (dotted curves). The easy-to-observe quantities for Haliotis are for f ¼ 1:
Lb ¼ 0.115 mm, Lp ¼ 8 mm, LN ¼ 70 mm, _rB ¼ 0:0007 d–1, _RN ¼ 5�106 year–1 (Fred Jean, personal communication) and for
Ruditapes for f ¼ 0.5: Lb ¼ 0.045 mm, Lp ¼ 4.35 mm, LN ¼ 12.3 mm, _rB ¼ 0:00323 d–1, _RN ¼ 7�106 year–1 (Jonathan Flye Sainte
Marie, personal communication). All lengths are structural lengths and LN stands for the measured ultimate length. The upper
boundaries for the age at birth are the maximum possible ones for these data. The symbols are defined in Tables 2 – 3; superscrips
0, b and p indicate age zero, birth and puberty, respectively.
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that we can measure). So actual length is a proxy for
structure. Structure as well as reserve contribute to the
volume of the organism. Volumetric length is defined as the
cubic root of the volume, so reserve contributes to
volumetric length; since the specific density of organisms
does not change dramatically, volume is typically pro-
portional to wet mass. Structural length is the cubic root of
structural volume. Actual length depends on shape and how
the length measure is defined. The shape coefficient
represents the ratio of the structural length and the actual
length; we treat this as a parameter that needs to be
quantified (see step 8). For comparison purposes it makes
sense to use structural length, which is independent of

shape, but involves a shape coefficient (see step 8). The
assumption of isomorphy of the standard DEB model, i.e.
a lack of change in shape during growth, is made for
structural volume, not for volume.

We avoid the use of mass in the expressions until step 6,
since the interpretation of mass is linked to chemical
composition (that can change). We avoid the use of energy
in the expressions until step 10, because free energies and
entropy require knowledge of mass fluxes. We avoid the use
of information to quantify maturity in all steps, and use the
cumulated investment of mass of reserve in maturity
instead.

In step 6 we deal with feeding rates, forcing us to include
mass, as an introduction to step 7 where we obtain all
primary parameters. Steps 8 – 10 consider mass, energy
and entropy balances, the cornerstones of DEB theory,
which we typically need in more advanced applications,
which e.g. prepare for variations in composition of food and
food selection.

All rate parameters depend on temperature in ways that
are discussed in Kooijman (2000). The dependence of rates
on temperature involves the measurement of Arrhenius
temperatures (TA) (Kooijman, 2000). Arrhenius temper-
atures are typically high (TA ’ 12 kK) for species that
naturally experience small temperature changes (e.g. pelagic
species), and much lower for species in e.g. the intertidal
zone (TA ’ 6 kK). We here assume that environmental and
body temperature are constant, and if the temperatures for
two data sets differ, rates are corrected for this difference
using _rBðT2Þ ¼ _rBðT1ÞexpðTAðT[1

1 [ T[1
2 ÞÞ, for the von

Bertalanffy growth rate _rB, for instance. The Arrhenius
temperature is specific-specific and this correction is only
appropriate for temperature differences within a species-
specific temperature range. We have to correct all rate
parameters (f _Fmg, f _JEAmg, _v, f _JET g, ½ _JEM �, _kJ , see Table 2)
for differences in temperature. See Kooijman (2000) for
more advanced corrections for differences in temperature.

0
0

time since birth,

le
ng

th
,

L

Lb

L∞

Fig. 3. The von Bertalanffy growth curve d
dt
L ¼ _rBðLN [ LÞ,

with the geometric interpretation of the von Bertalanffy growth

rate _rB, and the maximum possible age at birth
Lb _r

[1
B

LN
in the

context of dynamic energy budget (DEB) theory. The tangent line
at t ¼ 0 intersects the asymptote (ultimate length LN) at the

inverse von Bertlanffy growth rate, _r[1
B ; the line from the origin to

this intersection point hits level length at birth Lb at time Lb

LN _rB
,

which is the maximum possible incubation time. a indicates ages,
ab age at birth.

Table 4. Quantities that need to be measured in the different steps to estimate dynamic energy budget (DEB) parameters
(see Section IV)

Symbol Unit Description Steps one food level several food levels

Lm m maximum length (at abundant food) 1
LN m ultimate length (von Bertalanffy) 2,3 4,5
Lb m length at birth (first feeding) 2,3 4,5
_rB d–1 von Bertalanffy growth rate 2,3 4,5
ab d age at birth 2,3 4,5
Lp m length at puberty 3 5
_RN d–1 reproduction rate at LN 3 5
_JXA mol d–1 feeding rate 6
ME

0 mol mass of a freshly laid egg 7
MW

b mol mass of a neonate (first feeding) 7
W0 g mass of a freshly laid egg 7
Wb g mass of a neonate 7
n*W # elemental composition 8
X mol m3 food density 9
W g mass 9
L m length 9
_pT] W dissipating heat 10
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(1) Step 1: Maximum body length only

The first natural question is: how can we avoid estimating
parameters? Parameter values are individual-specific. Within
a particular taxon, primary parameters probably vary less
than between taxa. This offers the possibility to estimate
parameters for a particular species using parameters of an-
other species and correcting for the difference in maximum
structural length. The body-size-corrected mean values
can be compared with parameter estimates from data to
detect evolutionary adaptations. Such adaptations especially
apply to life-history parameters (the specific maturities at
birth and puberty, see Cardoso, van der Veer & Kooijman
(2006), and much less to biochemical parameters, such as
the yield coefficients yEX and yVE (Table 2), because all
species use the same biochemical machinery. Part of the
variability in egg size and in (relative) length at birth among
species originates from variability of the maintenance ratio
Kooijman (2008).

DEB theory implies simple rules for the co-variation of
primary parameter values among species (Kooijman, 1986,
2000; Kooijman et al., 2007). For the choice of primary
parameters in Table 2, only three parameters vary system-
atically with maximum structural length Lm (see Table 3):
the maximum specific assimilation rate f _JEAmg, which is
proportional to Lm, and the maturity at birth MH

b and
puberty MH

p
, which are proportional to Lm

3. Therefore, the
mass-specific maturities mH

b ¼ MH
b/MVm and mH

p ¼ MH
p
/MVm

(with maximum structural mass MVm given in Table 3) are
independent of maximum structural length. All other
primary parameters do not vary systematically with
maximum structural length.

The practical application of these rules is as follows: given
f _JEAmg, MH

b and MH
p for a reference species of maximum

structural length Lm1, the parameters become zf _JEAmg,
z3MH

b and z3MH
p for zoom factor z ¼ Lm2/Lm1, where Lm2

is the maximum structural length of the species under
consideration. It is essential to work with structural lengths
here, unless the shapes of both species happen to be the
same. All other parameters are the same for both species.

Compound parameters can depend on Lm, and many
eco-physiological traits, such as respiration, can be written
as compound parameters. Table 5 gives values that can be
used to approximate the parameters discussed in the first
five steps. This co-variation of values of some primary
parameters explains why respiration (being the use of

dioxygen or the production of carbon dioxide or heat) varies
among species more or less allometrically with maximum
body mass to the power somewhere between 2/3 and 1,
and also explains why differences between taxa do exist. See
Van der Meer (2006b) for a discussion. Notice that we here
compared different species (so different parameter values),
which is, within the context of DEB theory, very different
from comparisons of different body sizes of a single
individual at different points in its life cycle (the same
parameter values, but different values of state variables).
Respiration again depends more or less allometrically on
body mass of an individual at different points in its life cycle,
and the allometric coefficient is again somewhere between
2/3 and 1, but the explanation for this is very different: the
allocation to growth and reproduction changes during the
life cycle.

(2) Step 2: Growth at a single food density

Suppose that only information on growth at one food level
is available, resulting in a scaled functional response f1 (i.e.
some value between 0 and 1). Food density does not need to
be constant, as long as it is abundant ( f1 ’ 1Þ. We have no
information about how length at birth depends on food
level, so we are forced to assume that the somatic and
maturity rate coefficients are equal, _kM ¼ _kJ , which implies
that stage transitions occur at a fixed length as well. This
assumption simplifies matters considerably; until puberty
we have UH ¼ L3ð1 [ kÞg= _v, which means that maturity
density, i.e. the maturity per amount of structure, remains
constant (even at varying food density) removing the need to
deal with maturity explicitly (until step 4, see Section IV.4).

The equations in the Appendix can then be used to make
the following map

ðLb; LN; ab; _rB at f1Þ/ðg; _kM ¼ _kJ ; _v;U
0
E ;U

b
EÞ ð2Þ

where U 0
E ¼ M0

E=f _JEAmg and Ub
E ¼ Mb

E=f _JEAmg are the
scaled reserves at age zero and at birth.

The inverse map can also be made

ðg; _kM ¼ _kJ ; _v; f1Þ/ðLb; LN; ab; _rB;U
0
E ;U

b
EÞ: ð3Þ

The functions ‘‘get_pars_g and ‘‘iget_pars_g in software
package DEBtool perform the required computations for
this map and its inverse. The function ‘‘elas_pars_g can be
used to compute the elasticity coefficients to study how
changes in the easy-to-measure quantities translate into
changes in the DEB parameters.

If the energy conductance _v, having dimension length per
time, is obtained using actual length measurements, the
resulting value is in terms of these length measurements.
Multiplication of _v by the shape coefficient converts it to
structural length per time; the values of the scaled initial
reserve UE

0 and the scaled reserve at birth UE
b should then be

multiplied by the squared shape coefficient. See also step 7
(Section IV.7).

Table 5. Typical parameter values that occur in steps 1 to 5
for a species of maximum structural length Lm in cm at 20°C

TA ¼ 12.5 kK Arrhenius temperature
_v ¼ 0:04 cm d–1 energy conductance
g ¼ 4/Lm energy investment ratio
_kM ¼ 0:015 d–1 somatic maintenance rate coefficient
_kJ ¼ 0:005 d–1 maturity maintenance rate coefficient
k ¼ 0.8 allocation fraction to soma
kR ¼ 0.95 reproduction efficiency
UH

b ¼ 4 10–8Lm
3 d cm2 scaled maturity at birth

UH
p ¼ 0.01Lm

3 d cm2 scaled maturity at puberty
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(3) Step 3: Growth and reproduction at a single
food density

Suppose now that we have information on both growth and
reproduction at a single scaled function response f1. We still
have no information about how length at birth and at
puberty depend on food level, so we are still forced to
assume _kM ¼ _kJ. We infer the scaled threshold values for
maturity at stage transitions from length at birth and
puberty at abundant food.
We assume that the losses in the overhead of reproduc-

tion are small, kR ’ 0:95, since reserve of the mother is
transformed into reserve of the offspring with the same
chemical composition, so little chemical work is involved.
The compound parameters that can be obtained from easy-
to-measure quantities at constant scaled functional response
are:

ðLb; Lp; LN; ab; _rB; _rNatf1Þ

/
given kRðk; g; _kJ ¼ _kM ; _v;Ub

H ;U
p
H ;U

0
E ;U

b
E ;U

p
EÞ ð4Þ

where the superscripts 0, b and p refer to age zero, burth
and puberty.
The equations in the appendix define this map. The

inverse map can also be made

ðk; g; _kJ ¼ _kM ; _v;Ub
H ;U

p
H ; f1Þ

/
given kRðLb; Lp; LN; ab; _rB; _RN;U 0

E ;U
b
E ;U

p
EÞ: ð5Þ

The functions ‘‘get_pars_r’’ and ‘‘iget_pars_r’’ in software
package DEBtool do the required computations for this
map and its inverse. Table 6 gives a numerical example.
The function ‘‘elas_pars_r’’ can be used to compute the
elasticity coefficients to study how changes in the easy-to-
measure quantities translate into changes in the DEB
parameters.

Note that the length at first allocation to reproduction, Lp,
is smaller than the length at the first reproduction event
because organisms start by depositing the allocated reserve
in a buffer and convert this deposited reserve later into
offspring. Various taxa use different environmental triggers
for handling this buffer.

Fig. 2 shows how the DEB parameters and quantities
depend on age at birth for Haliotis tuberculata and Ruditapes
philippinarum. The conclusion is that this age needs to be
known rather accurately, which is the reason why its use is
avoided in the next estimation step.

(4) Step 4: Growth at several food densities

If we have more than one food density, information is
available for how the food level affects the length at stage
transition, and this determines the maturity maintenance
rate coefficient _kJ relative to the somatic maintenance rate
coefficient _kM . So from this step in the parameter estimation
onwards, we no longer assume _kJ ¼ _kM , Within the context
of DEB theory there is no reason to believe that stage
transitions occur at fixed amounts of structure, although
empirical evidence indicates that this is not too unrealistic.
If _kJ 6¼ _kM , maturity density varies, even at constant food
density, which requires that maturity is explicitly included as
a state variable.

From this step onwards we don’t use the age at birth,
because it is typically rather difficult to access. A resting
stage can precede the development of the embryo (see
Section VI). From Eq. (A8) it is clear that _r[1

B is linear in f,
and the intercept and the slope can be used to obtain _kM
and _v, see Fig. 4. Kooijman (2000, Fig. 3.14) shows that this
perfectly matches data for Daphnia magna. Although the von
Bertalanffy growth rate _rB at several food densities has
information on the somatic maintenance rate coefficient
_kM , the information is weak only, and very weak if the
smallest scaled function response is not that small.

Table 6. A numerical example for the (unique) conversion
from easy-to-measure quantities to dynamic energy budget
(DEB) parameters and quantities. The scaled reserve at age
zero, UE

0, and at birth, UE
b, and puberty, UE

p
, are not parameters

and depend on food density; their values follow from the
conversion from easy-to-measure quantities to DEB parame-
ters, as well as from the reversed conversion. The scaled
functional response is assumed to be f ¼ 1 and the
reproduction efficiency kR ¼ 0.95. The assumption of fixed
amounts of structure at stage transition is made. For
a description of symbols see Tables 1 – 3; superscripts 0, b and
p indicate age zero, birth and puberty, respectively

Measured quantities DEB parameters DEB quantities

Lb ¼ 1.46 mm k ¼ 0.6 UE
0 ¼ 3.95 mm2d

Lp ¼ 1.98 mm g ¼ 2 UE
b ¼ 1.25 mm2d

LN ¼ 12.5 mm _kJ ¼ 0:1 d–1 UE
p ¼ 3.13 mm2d

ab ¼ 2.3 d _kM ¼ 0:1 d–1

_rB ¼ 0:022 d–1 _v ¼ 2:5 mm d–1

_RN ¼ 15 d–1 UH
b ¼ 1 mm2d

UH
p ¼ 2.5 mm2d

0

0
ultimate length,

in
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rs
e 

v.
 B
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Fig. 4. The inverse von Bertalanffy growth rate _r[1
B as

a function of ultimate length LN ¼ LðNÞ results in a straight
line with simple relationships with the somatic maintenance
rate coefficient _kM and the energy conductance _v; see Eq. (A8).
Since it is rarely possible to raise individuals at very low food levels,
the lowest LNis closer to maximum structural length Lm than to
zero, which means that the information on _kM is only weak.
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We can make the map

Lb; LN; _rB at f1

Lb; LN; _rB at f2

0
@

1
A/ g; _kJ ; _kM ; _v;Ub

H ;
U 0

E ;U
b
E at f1

U 0
E ;U

b
E at f2

0
@

1
A: ð6Þ

This map is over-determined, meaning that if (small)
errors in the easy-to-observe quantities are present, the map
is not exact and a minimisation of the weighted sum of
squared deviations should lead to the best map. This also
means that it is still possible to make the map even if some
of the quantities are missing. Notice that this map only
involves time and length, and neither mass in C-moles or
grams, nor energy ( Joules).

The inverse map can also be made

ðg; _kJ ; _kM ; _v;Ub
H ; f1; f2Þ/

Lb; LN; _rB;U
0
E ;U

b
E at f1

Lb; LN; _rB;U
0
E ;U

b
E at f2

0
@

1
A: ð7Þ

The map from easy-to-observe quantities on growth at
several food densities and its inverse are computed by
functions ‘get_pars_h’ and ‘iget_pars_h’ of software pack-
age DEBtool in toolbox ‘animal’ respectively. The functions
‘get_pars_i’ and ‘iget_pars_i’ do the same, assuming that
_kJ ¼ _kM . All routines can handle more than two food levels.

(5) Step 5: Growth and reproduction at several
food densities

If information on both growth and reproduction is available
for more than one food level, we can make the map

Lb; Lp; LN; _rB; _RN at f1

Lb; Lp; LN; _rB; _RN at f2

0
B@

1
CA

/
given kR

k; g; _kJ ; _kM ; _v;Ub
H ;U

p
H ;

U 0
E ;U

b
E ;U

p
E at f1

U 0
E ;U

b
E ;U

p
E at f2

0
B@

1
CA: ð8Þ

Like the previous map, this map is also over-determined.
Notice that this map only involves time, number and length,
and neither mass in or grams, nor energy ( Joules). Data
involved in this step do not determine the fraction of reserve
allocated to reproduction that is fixed in embryo’s, kR.

The inverse map can also be made

ðk; g; _kJ ; _kM ; _v;Ub
H ;U

p
H ; f1; f2Þ

/
given kR

Lb; Lp; LN; _rB; _RN;U 0
E ;U

b
E ;U

p
E at f1

Lb; Lp; LN; _rB; _RN;U 0
E ;U

b
E ;U

p
E at f2

0
@

1
A: ð9Þ

The function ‘‘get_pars_s’’ of software package DEBtool
in toolbox ‘‘animal’’ can be used to make the conversion from
easy-to-measure quantities to DEB parameters; the function
‘‘iget_pars_s’’ makes the inverse conversion and can be used
to test the results. Both directions of conversion yield the
scaled amounts of reserve at start, birth and puberty. The
functions ‘‘get_pars_t’’ and ‘‘iget_pars_t’’ do the same, but
assume that _kJ ¼ _kM , which simplifies matters considerably;
the function ‘‘get_pars_s’’ uses ‘‘get_pars_t’’ to obtain initial
estimates and uses a variety of algorithms (genetic algo-
rithms, followed by simplex and Newton-Raphson proce-
dures) to make the map. These computations are rather
complex.

DEB theory predicts that the reproduction rate varies
considerably if food density varies around low levels. This is
consistent with data, cf. Gurney & Nisbet (1998, Fig. 1.5b).
So if this actually happened in the data, a small weight
coefficient should be specified for such data; the DEBtool
routines allow assignment of weight coefficients. Table 7
illustrates an application where the reproduction rate at low
food levels is even ignored.

(6) Step 6: Food intake

Knowledge about food intake is especially relevant in
population dynamics studies to quantify the loss rates of
prey. DEB theory links food uptake

Table 7. A numerical example for the step from easy-to-measure quantities to dynamic energy budget (DEB) parameters and
quantities for two food levels. The data are for female Daphnia magna at 20°C (Kooijman, 2000). Again we used kR ¼ 0.95 and
weight coefficients 1 for Lb, 1 for Lp, 0.5 for LN, 2 for _rB, 0.1 for _RN. This choice combines the accuracy of the measurements and
the effect the numerical value should have on the result. Notice that data point _RN for f ¼ 0.7 is missing; it turns out that 4.0 d–1

should be expected with these data. The scaled reserve at age zero and at birth and puberty are not parameters, nor is the age at
birth. The reversed step can also be taken: from DEB parameters to easy-to-measure quantities and DEB quantities. This proves
that the steps are unique. The values for the DEB quantities follow from the conversion steps in both directions. All symbols are
defined in Tables 2 – 3; superscripts 0, b and p indicate age zero, birth and puberty, respectively

Measured quantities
DEB parameters

DEB quantities
f ¼ 1 f ¼ 0.7 f ¼ 1 f ¼ 0.7

Lb ¼ 0.77 mm 0.76 mm k ¼ 0.80 UE
0 ¼ 0.223 mm2d 0.183 mm2d

Lp ¼ 2.5 mm 2.3 mm g ¼ 0.422 UE
b ¼ 0.140 mm2d 0.098 mm2d

LN ¼ 4.48 mm 3.14 mm _kJ ¼ 1:70 d–1 UE
p ¼ 4.25 mm2d 2.97 mm2d

_rB ¼ 0:158 d–1 0.216 d–1 _kM ¼ 1:71 d–1 ab ¼ 0.80 d 0.83 d
_RN ¼ 14:7 d–1 – _v ¼ 3:24 mm d–1

UH
b ¼ 0.012 mm2d

UH
p ¼ 0.366 mm2d
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_JXA ¼ [f f _JXAmgL2 ð10Þ

to surface area. The scaled functional response is the
Holling type II, f ¼ X

X ]K
, for food density X and half-

saturation constant K. The maximum specific feeding rate
f _JXAmg can be obtained from measurements of the feeding
rate at several food densities and fitting a hyperbola. The
specific searching rate then follows from f _Fmg ¼ f _JXAmg=K ;
this rate will generally depend on food and environmental
details. We chose the specific searching rate f _Fmg as a
primary parameter, rather than the half-saturation constant
K, because it is closer to the underlying feeding mechanism,
and does not depend on the maximum size of a species
(K and f _JXAmg increase with the the maximum length of
a species). We take the flux _JXA to be negative to indicate
that food is disappearing ( d

dt
X < 0); we need this in Eq. (16)

in estimation step 9 (Section IV.9), where positive fluxes
indicate appearance.
We need information on the feeding process to make the

step to the primary DEB parameters.

(7) Step 7: From compound to
primary parameters

The mixture of primary and compound parameters men-
tioned above suffices for many applications already (e.g. to
predict growth and reproduction in different situations),
but other applications require more primary parameters
explicitly. We need to supplement the measured quantities
with other type of measurements (involving mass or energy)
to make the step to the primary parameters, if necessary.
The missing information to obtain the full set of primary

parameters for isomorphic ectotherms (f _JET g ¼ 0; see
Table 2) can be extracted from the amount of carbon in
a freshly laid egg ME

0 and in a neonate MW
b ¼ ME

b ] MV
b.

The map

ðf _JXAmg;K ;M0
E ;M

b
W ; k; g; _kJ ; _kM ; _v;Ub

H ;U
p
H Þ /

given kR

ðf _JEAmg; f _Fmg; yEX ; yVE ; _v; ½ _JEM �; _kJ ; k;Mb
H ;M

p
H ; ½MV �Þ

ð11Þ

is made by function get_pars_u of software package
DEBtool.
The logic behind this map is as follows. We first use the

information in ME
0 and obtain f _JEAmg ¼ M0

E=U
0
E , and then

yEX ¼ f _JEAmg=f _JXAmg, Mb
H ¼ f _JEAmg=Ub

H , M
p
H ¼ f _JEAmg=

U
p
H , M

b
E ¼ Ub

Ef _JXAmg. We then use the information in MW
b,

and obtain MV
b ¼ MW

b – ME
b, [MV] ¼ MV

bLb
–3, yVE ¼

_v½MV �ðkf _JEAmggÞ[1
, ½ _JEM � ¼ _kM ½MV �=yVE .

This completes the full set of primary parameters of the
standard DEB model in the absence of a somatic main-
tenance cost that is linked to surface area (ectotherms). We
now continue to determine conversion factors in preparation
of determining composition parameters in the next step.
If the mass of a freshly laid egg W0 and a neonate Wb are

known, we can obtain the molecular masses of reserve and
structure: wE ¼ W0/ME

0 and wV ¼ (Wb – wEME
b)/MV

b. On
the assumption that the specific density of structure is dV ¼
1 g cm–3 (i.e. that of water), the shape coefficient is

dM ¼ d[1
V W b

V L
[3
b . We can now convert actual lengths into

structural lengths and correct the primary parameters that
have length in their dimension: dM _v, d[2

M f _JEAmg, d[2
M f _Fmg,

d[3
M ½ _JEM �. The parameter [MV] is not a primary one
because it only converts one size-measure into another; it is
best to convert it to d[3

M ½MV � for comparative purposes.
At constant food density the mass of juveniles increases

proportional to cubed length (in the standard model), and
the proportionality constant relates to the (constant) reserve
density. The masses in adults are typically above this mass-
length curve, due to contributions of the buffer of reserve
that is allocated to reproduction. The deviation can be used
to quantify the size of this buffer, and to study the buffer
handling rules for the transformation of the allocated
reserve to offspring.

(8) Step 8: Composition parameters for biomass

The elemental composition of reserve and structure is
required if predictions about fluxes of specific compounds
(such as ammonia, carbon dioxide and dioxygen) are to be
made. The chemical index of element * of reserve, nE*, can
be known from a freshly laid egg. If the chemical indices of
a neonate, n*W, are known as well, the chemical index of
structure, i.e. the frequency of element * in structure,
relative to carbon, is given by

n�V ¼ n�Wmb
w ��n�Em

b
E for � ¼ H ;O;N ; . . . ð12Þ

where mW
b ¼ MW

b/MV
b and mE

b ¼ ME
b/MV

b.
This is just one of a series of related techniques to unravel

the composition of reserve and structure using measure-
ments of biomass. Suppose that we have the elemental
frequencies of two individuals of the same length (so the
same amount of structure) at two scaled functional re-
sponses. We can now use the knowlegde of DEB parameters
of step 7 to partition total biomass MW ¼ MV ] ME into
contributions from structure MV ¼ MW/(1 ] mE) with
mE ¼ ME=MV ¼ fmEm ¼ f

f _JEAmg
_v½MV � , see Table 3, and reserve

ME ¼ MW – MV. Moreover, if an organism has actual
length L and structural mass MV, the shape coefficient is
dM ¼ ðMV =½MV �Þ1=3=L.

We also have

MWn�W ¼ MV n�V ]MEn�E ð13Þ

so the chemical indices of reserve and structure of two
individuals with the same amount of structure are

n�E ¼ MW 1n�W 1 [ MW 2n�W 2

MW1
[ MW 2

;

n�V ¼ mW 1n�W 1 [ ðmW 1 [ 1Þn�E ð14Þ

for mW ¼MW/MV. This technique to compute the chemical
indices of reserve and structure can also be applied to
compounds rather than chemical elements. The contribu-
tion of the reproduction buffer in the mass (and composi-
tion) of adults should be taken into account, but for
juveniles we don’t have these complications.
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Knowledge about the chemical indices can be used to
determine the molecular masses of reserve and structure, so
to link grams and C-moles. A pertinent question is to
include or exclude water in mass and volume measure-
ments. If water replaces reserve in starving organisms (likely
in aquatic arthropods and other taxa with exoskeletons),
strong homeostasis can only apply when we exclude water.
In many other cases the inclusion of water is more handy.

The decrease of compounds during starvation can be
used to gain information on the composition of reserve and
structure, using the following reasoning.

We first try to understand the decrease of a compound C
in an organism during starvation, having measurements of
how the amount MC (in C-mol) changes in time t. At the
start of the experiment, the organism has amounts of
structure MV and reserve ME. Strong homeostasis prescribes
that the densities of the compound in reserve MCE/ME and
in structure MCV/MV remain constant. Suppose that reserve
mobilisation during prolonged starvation deviates from the
standard pattern and is just enough to cover the somatic
maintenance cost, growth is absent, allocation to maturity
mainteance and reproduction negligibly small. The amount
of structure MV remains constant, so if we focus on the mass
of some compound MC, e.g. protein, we have

MCðtÞ ¼ MCV ] ðMCE=MEÞðt0 � tÞjEMMV

¼ MC0 [ tjCMMV

with jCM ¼ ðMCE=MEÞjEM
and MC0 ¼ MCV ] jCMMV t0 ð15Þ

where MCV is the (constant) amount of compound C in
structure,MCE/ME the constant density of the compound in
reserve, jEM the (constant) specific rate of use of reserve for
somatic maintenance purposes and t0 the moment at which
all reserve is depleted. This shows that each compound can
decrease linearly at its own rate, even under the strong
homeostasis assumption.

It also shows that, if we only know how the compound
changes in time, we have access to MC0 and jCM, but not to
the more informative MCV and MCE (i.e. information on the
composition of structure and reserve).

We do have some relative information on the composi-
tion of reserve, if we know the time trajectories of several
compounds: jC1M=jC2M ¼ MC1E=MC2E . If we know when the
reserve is depleted (namely at time t0), we have access to the
composition of structure MCV/MV, since MC(t0) ¼ MCV, but
the individual will probably start to use structure to pay
maintenance cost during prolonged starvation (causing
deviations from a linear decrease). Moreover it is likely that
the reserve buffer that is allocated to reproduction is used
under extreme starvation. This makes it difficult to have
access to t0.

Suppose now that we have information for all compounds,
that is

P
i MCiV ¼ MV and

P
i MCiE ¼ ME . Although the

actual number of chemical compounds is formidable, they
can be grouped into a limited number of chemical categories
(e.g. proteins, lipids etc.). We have

P
i jCiM ¼ jEM , so jCiM=P

j jCjM ¼MCiE=ME . We also have
P

i MCi0¼MV ð1]jEM t0Þ,
so MV ¼

P
i MCi0 [ t0

P
i jCiMMV , which we know if we

have an estimate for t0. We obviously must have that
t0 <

P
i MCi0=

P
i jCiMMV . The composition of structure is

then found from MCiV =MV ¼ MCi0=MV [ t0 jCiM .
Fig. 5 and Table 8 give an example application. RNA

might also contribute to biomass, but is neglected here. We
treated the data as if it was referring to 100 g wet mass at
time zero.

Chemical compounds can be used as proxies for reserve
and structure. DNA probably belongs to the structure
because differences in nutrition do not translate into
differences in numbers of cells but in cell masses; the
amount of DNA per cell remains constant. For this reason
the amount of DNA can be used as a proxy for structure.
Ribosomal RNA is primarily associated with reserve in
yeast (Vrede et al., 2004) and probably in many organisms;
perhaps it is not associated with structure, which means that
rRNA can be used as a proxy for reserve. Yolk lipoproteins
can be used as proxy for the reserve buffer that is allocated
to reproduction (Stibor, 2002).

(9) Step 9: Fluxes of compounds and mass
balances

Knowledge of fluxes of compounds is essential to access
quantifications of energy and entropy (see Section IV.10),
since these more general measures need to be accessed via
(dynamic) material balances at the individual level. We also
need these balances to access the fraction of reserve
allocated to reproduction that is fixed in embryos, kR. For
these reasons we here summarise how these material fluxes
can be obtained. We take mass fluxes as positive if the
corresponding compounds appear in the environment, and
negative if they disappear.

The fluxes of organic compounds (food X, structure V,
reserve E, and faeces P) are given by

_JTO ¼ ð _JXA _JV _JE ] kR _JER _JPA Þ: ð16Þ
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Fig. 5. The amount of energy in starving Crassostrea gigas. Data
from Whyte, Englar & Carswell (1990). Parameters are pre-
sented in Table 8.
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Superscript T stands for transposition. Further, _JXA is
given in Eq. (10), _JV ¼ d

dt
MV is given in Eq. (A3), _JE ¼ d

dt
ME

is given in Eq. (A1), _JER is given in Eq. (A5), see Appendix,
and _JPA ¼ [ yPX _JXA where yPX is the (constant) yield of
faeces on food. At constant food density, where reserve
density is constant, the change in reserve is proportional to
the change in structure: d

dt
ME ¼ mE

d
dt
MV .

Once the chemical indices of reserve and structure are
known and the nitrogenous waste, e.g. ammonia or other
products, identified, the mineral fluxes _JM can be obtained
from the organic fluxes _JO using the mass balance equation

0 ¼ nM _JM ]nO _JO; ð17Þ

where _JM is the vector with the molar fluxes of the minerals
(carbon dioxide _JCO2

, water _JH2O, dioxygen
_JO2

, nitrogen
waste _JNwaste

), and the matrices nM and nO represent the
chemical indices of the mineral and organic compounds,
respectively.
Given values for par ¼ ðf _JEAmg; f _Fmg; yEX ; yVE ;

_v; ½JEM �; _kJ ; k; kR;Mb
H ;M

p
H ; ½MV �Þ, the result of step 7, see

Section IV.7) and for the chemical indices nM, nO (the
result of step 8, see Section IV.8), the map

ðX ;ME ;MV ;MH ;nM;nO; parÞ/ð _JM; _JOÞ ð18Þ

can be made with function ‘flux’ of software package
DEBtool, where food density X, mass of reserve ME and
structure MV, and mass of reserve invested in maturity MH

can be vectors rather than scalars. Step 8 showed how the
masses of reserve ME and structure MV can be obtained
from body masses. Maturity MH can be obtained from the
DEB parameters, and knowlegde of MV and the food
density X. So the present step does not provide new
parameter estimates, but shows how organic and mineral
fluxes can be obtained. This is an essential preparation for
the final step, the estimation of thermodynamic parameters,
and can also be used for checking consistency of parameter
estimates if (some of) the fluxes are measured and compared
with model predictions.
Knowledge of mineral fluxes can also be used to assess

some compound parameters directly. If contributions from

assimilation are excluded by pre-starving the subjects, the
respiratory quotient, i.e. the ratio of carbon dioxide
production to dioxygen consumption, varies in predictable
ways with length, which can be used to extract parameter
values. If it is independent of length, constraints on the
composition of reserve relative to that of structure apply as
evaluated in Kooijman (2000, p. 138). Similarly, if the ratio
of nitrogen-waste production to dioxygen consumption is
independent of length, another constraint on the compo-
sition of reserve and structure applies Kooijman (2000, p.
146). This also holds for the watering quotient, i.e. the ratio
of water production to dioxygen consumption. If all three
quotients are independent of length, the composition of
reserve and structure must be identical in terms of
elemental frequencies.

(10) Step 10: Thermodynamic parameters

Since they involve all aspects simultaneously, thermody-
namic parameters are perhaps also most informative. Yet
little is known about free energies and entropies, since
biochemical methods cannot be applied to access entropies
of living systems, and the first non-destructive method to
quantify entropy of living organisms has been developed
only very recently (Sousa et al., 2006) and applied to
microbial populations in a chemostat. The value of the
entropy of living biomass so obtained did differ from
Battley’s empirical rule (Battley, 1997) and destructive
methods. We expect that changes in entropy are especially
important in transients from anaerobic and aerobic
conditions and in large transients in pressure (deep ocean
to surface). We consider statements such as ‘‘Life shows
a tendency to maximise entropy production’’ as open claims
that still have to be substantiated. We here provid the
methodology to evaluate tendencies like these.

Strong homeostasis implies that the specific enthalpies,
chemical potentials and entropies of reserve and structure
are constant. The next subsections discuss how they can be
obtained as discussed in (Sousa et al., 2006) for microbial
populations in a chemostat. To our knowledge, this method
has not yet been applied to individual organisms. Our

Table 8. The parameter estimates from Fig. 4, conversions, and their translation into composition information for three choices
for the time at which the reserve is depleted; 1 cal ¼ 4.184 J; caloric values are from ((Kooijman, 2000) p. 137). �mC is the
specific chemical potential of (generalised) compound C, where C stands for total, protein, lipid or carbohydrate, MC0 is the initial
mass of compound C, _JCM is the rate at which compound C is used for maintenance, MCE is the mass of compound C in
reserve, MCV is the mass of compound C in structure. Other symbols are defined in Table 1

100 g wet mass Total Protein Lipid Carbohydrate

�mCMC0, kcal 64.81 30.54 16.80 16.87
�mC

_JCM , kcal/d 0.1042 0.0408 0.0200 0.0358
�mC , kJ/C-mol 401 616 516
MC0, C-mol 0.570 0.319 0.114 0.137
_JCM , mmol/d 0.426 0.136 0.290
MCE/ME, mol/mol 0.500 0.159 0.341
MCV/MV, mol/mol, t0 ¼ 200 d 0.546 0.191 0.263
MCV/MV, mol/mol, t0 ¼ 400 d 0.537 0.185 0.278
MCV/MV, mol/mol, t0 ¼ 600 d 0.531 0.181 0.288
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methods can be applied under anaerobic as well as aerobic
conditions if we replace dioxygen by the products that are
formed. DEB rules for product formation are discussed in
Kooijman (2000, p. 147). Under aerobic conditions,
simplifications apply, which we briefly discuss.

(a ) Step 10a: Enthalpy and dissipating heat

Given molar enthalpies for the minerals,
�hT
M ¼ ð �hCO2

�hH2O
�hO2

�hNwaste
Þ taken from the literature

(Table 9), molar enthalpies of the organic compounds,
�hT
O ¼ ð �hX �hV �hE �hP Þ can be obtained from the energy

balance equation

0 ¼ �hT
M _JM ]h[T

O _JO ] _pT]

¼ ð�hO [ �hMh[1
M nOÞT _JO ] _pT]; ð19Þ

by measuring the net heat dissipated heat by the organism,
_pT]. This net dissipating heat can be negative if heat from
the environment is required to keep the temperature of the
individual constant. Generally measurements of dissipating
heat at four different food levels are required to obtain the
four enthalpies for the organic compounds; if the enthalpies
of food X and faeces P are known then only measurements
of dissipated heat at two different food densities are required.

The dissipated heat can be estimated for other food
densities, knowing the enthalpies of organic compounds,
using the method of indirect calorimetry that establishes
a linear dependence between the mineral fluxes and the
dissipated heat [see also Kooijman (2000, p. 155)].

The specific enthalpy of biomass equals �hW ¼ mE
�hE ] �hV

mE ] 1
.

(b ) Step 10b: Chemical potentials and entropy

The specific chemical potential �m of a compound converts
a flux of this compound (in moles per time) into a flux of
Gibbs energy, for instance the assimilation energy flux is
_pA ¼ �mE

_JEA. The chemical potentials �m have to be
computed simultaneously with the molar entropies �s. Work
that is involved in changes in volumes is typically negligibly
small at the surface of the earth, but in the deep ocean, this
work has profound effects on energetics and biochemistry
(Gibbs, 1997; Sébert, 1997). Neglecting this effect, the
chemical potential and entropies of food �mX and �sX ,
structure �mV and �sV , reserve �mE and �sE , and faeces �mP and
�sP can be obtained with

0 ¼ ð�mM]T �sMÞT = _JM ] ð�mO]T �sOÞT _JO ] _pT]

¼ ðð�hM [ �mM [ T �sMÞ

n[1
M nO [ �hO ] �mO [ T �sOÞT _JO; ð20Þ

by measuring the temperature T of the organisms and
computing the organic and mineral flows at eight different
food densities (or four different food densities if molar
entropies and chemical potentials of food X and faeces P are
known), where �mM and �sM collect the values of the molar
chemical potentials and molar entropies for the four
minerals, while �mO and �sO perform this function for the
organic compounds, as before.

The rate of entropy production by the organism _s is
a measure of the amount of dissipation that is occurring. It
can be quantified for each food density if the temperature of
the organism and the entropies of the organic compounds
are known:

0 ¼ _s]
_pT]
T

] �sTM
_JM ] �sTO

_JO: ð21Þ

The chemical potentials of organic compounds are essen-
tial to obtain the energy parameters f _pAmg, [EG], f _pT g, ½ _pM �
and ½ _pJ �, see Table 3.

The specific entropy of biomass equals �sW ¼ mE�sE ]�sV
mE ] 1

(c ) Step 10c: Aerobic conditions

Formulae are simpler for aerobic conditions because for
most important reactions in aerobic biological systems TD�s
is very small compared to D�h and therefore the enthalpy of
the reaction D�h] is approximated using its Gibbs energy
D�m], since at constant temperature we have
D�m ¼ D�h [ TD�s ’ D�h (Garby & Larsen, 1995).

The entropies of the organic compounds �sO can be
obtained with

0 ¼ �sTM
_JM ] �sTO

_JO; ð22Þ

by computing the organic and mineral flows at four
different food densities (or two different food densities if
molar entropies of food X and faeces P are known) and
constant temperature.

The specific chemical potentials of the organic com-
pounds �mO can be computed with

0 ¼ _p+T] ] �mT
O
_JO ] �mT

M
_JM; ð23Þ

where _p+T] is the net heat release by all chemical reactions.
If the temperature of the organism is constant, the net heat
release _p+T] is equal to the net heat dissipated by the
organism _pT]. The computation can be performed by
measuring directly the dissipated heat _pT] ’ _p+T], at four
different food densities (or two different food densities if the
chemical potentials of food X and faeces P are known), that
is approximately equal to the total heat release by all
chemical reactions _p+T]. Alternatively the dissipated heat
can be obtained using indirect calorimetry.

Table 9. Formation enthalpies and absolute entropies of CO2,
H2O and O2 at 25

°C taken from Dean (1979). Formation
enthalpy and absolute entropy for NH3 at 25

°C taken from
Atkins (1990)

Formula State
Enthalpy Entropy
(kcal/mol) (cal/mol.K)

CO2 gas -94.05 51.07
H2O liquid -68.32 16.71
O2 gas 0 49.00
NH3 dissolved -19.20 26.63
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The rate of entropy production by the organism _s can be
quantified if the temperature of the organism is known:
_s ¼ [

_pT]
T
.

V. BEYOND THE TEN ESTIMATION STEPS

The sequence of estimation steps basically concerns
a mixture of statistics and observations. We did this because
sometimes this is the only information available, but in the
first place to reveal the logical relationships between these
quantities and DEB parameters. From a statistical point of
view, it is better to use data directly (Van der Meer, 2006a),
rather than via these statistics. This strategy also allows for
a wider choice of types of data that can be used to obtain
values for parameters. Data on embryo development, for in-
stance, can be used to extract the energy conductance _v and
the somatic maintenance rate coefficient _kM , see Kooijman
(2000, p. 101). Growth and reproduction at varying (but
measured) food densities can be used to extract parameter
values. The basic idea is to use all available information
simultaneously.
The regression routines of software package DEBtool can

handle an arbitrary number of data sets simultaneously
using algorithms, that vary from slow with a large domain
of attraction (genetic algorithms, Nead-Melder method), to
fast with a small domain of attraction (Newton-Raphson
method). It is easy to change from fixing parameters at
particular values to subjecting them to optimisation. The
routines allow for continuation, i.e. the resulting parameters
from one call can be used as a starting point for a next call.
Since the possibility always exists that the resulting
estimates correspond with a local minimum of the sum of
weighted squared deviations, rather than with a global
minimum, it is a good idea to try several values for initial
estimates, and select the result with the smallest deviation.
A basic problem in estimating parameters from several

data sets simultaneously is that it is less easy to figure out if
the combined data do determine the parameters that are
subjected to optimisation. A useful test is to check for non-
singularity using the Newton-Raphson method (a warning
appears for singularity); this test is not ‘‘waterproof ’’,
however. Moreover, a parameter might be determined by
the combined data, but very imprecisely only. The standard
deviations might indicate this (DEBtool has a function for
the covariance matrix of parameter estimates, from which
standard deviations are derived), but one should not con-
clude from a small standard deviation that the correspond-
ing parameter is precisely determined by the data; a mistake
that is easy to make. The simultaneous confidence interval
with highly correlated parameters might be large. Moreover
parameters might depend on each other in non-linear ways
that are poorly quantified by the correlation matrix. Profile
likelihood functions give a much more reliable idea about
the real confidence of parameter values (DEBtool has
functions for them), but the computation of these profile
likelihood functions can be demanding.
It is always a good idea to finalise the estimation with the

Newton Raphson method (because it is most accurate), and

to check the results graphically (DEBtool has facilities for this);
no formalised method can compete with the human eye.

Apart from optimising the goodness of fit we want to
have physiological consistency. These different criteria fre-
quently, but not always, coincide; a very unrealistic para-
meter value might give a slightly better fit than a realistic
one. As long as the fit is not too bad, realism is a stronger
criterion. Such an endpoint can be obtained using the
concept of sloppy constraints, where ‘‘pseudo observations’’
are fitted for particular parameters, simultaneously with
real observations. Choosing large weight coefficients in the
regression procedure that minimises the weighted sum of
squared deviations for the pseudo observations, the sloppy
constraints become real constraints and the parameters are
set to the ‘‘observed’’ values. By decreasing the weight
coefficients, we can allow deviations from these values; if the
weight coefficients equal zero, the ‘‘observation’’ is
completely ignored. This procedure has relationships with
Bayesian methods, but has a better biological foundation.
See the first estimation step (SectionIV.1) for the logic of this
procedure.

DEB theory can handle varying food conditions and
temperatures, which are inherent to seasonal forcing. The
implementation of the more advanced applications typically
requires some data-set-specific coding and is beyond the
scope of this paper.

VI. DISCUSSION

We made the balance explicit between research effort to
collect data and yielded information captured in parameter
values. This balance can improve the planning of research.
Although the DEB variables and their interactions cannot
be observed directly, indirectly they can. This shows that the
testability of theories can be somewhere between ‘‘yes’’ and
‘‘no’’. Body masses and respiration rates are frequently used
in energetics. Changes in body composition, however, mean
that these quantities have complex interpretations. We here
showed how to make use of these changes in composition;
the comparison of growth and reproduction at different
food levels is the key to metabolic organisation. For
example, observed differences in amounts of structure at
stage transitions under different food conditions can be used
to quantify the maturity maintenance rate coefficient _kJ .

Parameter values capture important biological informa-
tion about a species. It is not the purpose here to present
new information on particular species, but a little more
discussion might illustrate the general point. We found, for
instance, that female D. magna allocates a fraction 1 – k ¼
0.2 (see Table 7) of the utilised reserve to maturity
maintenance plus reproduction, while a fraction 0.46 would
maximise the ultimate reproduction rate ( _RN ¼ 47:5d–1

rather than the observed 14.7 d–1). We took into account
that the energy investment ratio g depends on k to arrive at
this conclusion. This sheds a new light on the applicability
of maximisation principles (Lika & Kooijman, 2003).
Moreover, we arrive at an incubation time of less than
a day, while the eggs are in the brood pouch during the
intermoult period, which lasts 1.5 - 2 d at 20°C. This
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suggests that the eggs are arrested in their development for
half a day at abundant food. We also derived a maximum
incubation time of Lb=ðLN _rBÞ ¼ 0:77=ð4:48�0:158Þ ¼
1:09 d (again at abundant food), which further supports
the existence of a delay in development because this
maximum does not depend on values of DEB parameters,
only on the structure of DEB theory.

Apart from the information that is in the parameter
values themselves, these values can be used to obtain more
information. For example, they can be used to reconstruct
food input from observations on growth (e.g. otolith data
from fish (Pecquerie, 2008)) and/or reproduction (e.g.
number of eggs in brood pouches in daphnids). See
Kooijman (2000) for examples. Multiple regression of
reconstructed food trajectories with measured quantities
(amounts of chlorophyll, particulate organic matter, total
organic matter) can then be used to assess the nutritional
significance of these quantities.

The present paper only deals with the standard DEB
model; the theory has been extended in many directions,
including varying food quality (e.g. Muller et al., (2001)) and
preferences Kooijman (2000), social interactions (Kooijman
& Troost, 2007), deviations from isomorphy Kooijman
(2000), more reserve and more structure compartments
(Leeuwen, Zonneveld & Kooijman, 2003). Practical appli-
cation should teach to what extent simple DEB principles
can be pushed into the extreme: models remain caricatures
of reality, especially if we deal with such complex systems
as living organisms. In practice, the principles should be
applied less strictly and with some care. Reserve can be
replaced by water during starvation, for instance, and the
chemical composition of yolk might differ (in detail) from
reserve in juveniles and adults. Small changes in shape
during growth do occur, and length must be defined care-
fully to avoid such problems.

It is likely that a new class of techniques based on isotope
analysis will soon be developed to supplement the methods
that are described here. Some results from doubly labelled
water are reported in Kooijman (2000). These techniques
will come with new possibilities to extract parameter values
in field situations, but they also have their own limitations
that are inherent to the links between levels of organisation;
these methods rely on pools of metabolites being well-
mixed, for instance.

The package DEBtool is freely downloadable from http://
www.bio.vu.nl/thb/deb/deblab/. Information about the
DEB research program and its results can be found at
http://www.bio.vu.nl/thb/deb/.

VII. CONCLUSIONS

(1) We present a recipe for how to obtain the twelve
parameter values of the standard dynamic energy budget
(DEB) model from observations that are (relatively) easy to
make; the freely downloadable software package DEBtool
offers computational support.

(2) The units of the parameters give information about
the type of measurements that are required to arrive at
parameter values.

(3) We showed that a natural sequence exists to convert
quantities that are ‘simple’ to measure stepwise to com-
pound and primary parameters of the standard DEB model,
and then to composition and thermodynamic parameters.

(4) The sequence of estimation steps reflects an increase
in information content that is captured in parameter values,
but also an increase in experimental effort that needs to be
invested to obtain the required data.

(5) Observations on growth and reproduction are
required to obtain the fraction of mobilised reserve that is
allocated to somatic maintenance plus growth.

(6) At constant food density, the standard DEB model for
body length as a function of time since birth reduces to the
von Bertalanffy growth curve. The inverse von Bertalanffy
growth rate increases linearly with the ultimate length for
different food levels; the slope relates to the energy
conductance and the intercept to the somatic maintenance
rate coefficient. Observations of growth at different food
levels are required to obtain these two parameters.

(7) Observations on length at birth and at puberty are
required for different food levels to obtain the maturity
maintenance rate coefficient. If these observations are not
available, this parameter should be set equal to the somatic
maintenance rate coefficient, with the implication that these
lengths do not depend on food level.

(8) Changes in chemical composition of biomass during
starvation or during growth at different food levels can be
used to obtain the chemical composition of reserve and
structure.

(9) The age at birth should be less than the ratio of the
relative length at birth and the von Bertalanffy growth rate,
ab < Lb=ðLN _rBÞ, to be consistent with DEB theory. The
measured age at birth typically includes a delay of the onset
of development.
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X. APPENDIX: CHANGES IN STATE VARIABLES
OF THE STANDARD DEB MODEL

The changes in mass of reserve ME and structure MV,
cumulative invested reserve mass in maturity MH and the
reproduction rate _R are

d

dt
ME ¼ _JEA [ _JEC with _JEA ¼ f f _JEAmgL2 and f

¼ 0 if MH < Mb
H ; ðA1Þ

_JEC ¼ f _JEAmgL2 ge

g] e
ð1] LT ] L

gLm
Þ with g

¼ _v½MV �
kf _JEAmgyVE

; ðA2Þ

d

dt
MV ¼ ðk _JEC [ _JEM [ _JET ÞyVE with _JEM

¼ ½ _JEM �L3 and _JET ¼ f _JET gL2; ðA3Þ

d

dt
MH ¼ ð1 [ kÞ _JEC [ _JEJ with _JEJ

¼ _kJMH for MH < M
p
H ; else

d

dt
MH ¼ 0; ðA4Þ

_R ¼ kR _JER=M
0
E with _JER

¼ ð1 [ kÞ _JEC [ _JEJ for MH ¼ M
p
H ; else

_R ¼ 0; ðA5Þ

where the scaled reserve density e ¼ mE

mEm
¼ ME _v

L3f _JEAmg
(dimen-

sionless) and the reserve density mE ¼ ME/MV ¼
ME(L

3[MV])
–1 (in mol mol–1) represent ratios of masses of

reserve and structure. Structural mass MV relates to
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structural length L as MV ¼ [MV]L
3, where [MV] is a con-

stant parameter. All fluxes are here taken to be non-negative.
Equations (A1, A3, A4) are basically just balance

equations that follow from the scheme in Fig. 1, where k
is the fraction of mobilised reserve that is allocated to
somatic maintenance plus growth, kR the fraction that is
allocated to reproduction and actually fixed in embryo
reserve and ME

0 the initial amount of reserve of an embryo
that is generated by a female. In the case of a male, the
interpretation ofME

0 is the mean amount of reserve invested
in sperm for a successful fertilisation.

The flux of mobilised reserve _JEC has an ultimate value for
ectotherms at constant food density (heating length LT ¼ 0,
body length L ¼ LN, scaled reserve density e ¼ f ), given by

_JECN ¼ f _JEAmgfL2
N: ðA6Þ

We need this in Eq. (A9). The rather complex expression
for the reserve mobilisation rate corresponds with a much
simpler one for the change in reserve density, and follows
mathematically from the assumption of weak homeostasis
(Kooijman, 2000); a mechanism is given in Kooijman &
Troost (2007). Eq. (A2) presents the reserve flux, rather than
the change in reserve density, because of its simpler links
with empirical data (e.g. with respiration).

(1) Changes of scaled state variables

To remove the unit ‘‘mole’’ from the system (and so one
degree of freedom), we work with scaled reserve
UE ¼ ME=f _JEAmg and scaled maturity UH ¼ MH=f _JEAmg.
Notice that dim(UE) ¼ dim(UH) ¼ tL2, where t stands for
time and L for length.

In the absence of surface-related maintenance costs,
f _JET g ¼ 0, we obtain

d

dt
L ¼ _rBðeLm [ LÞ with e ¼ _v

UE

L3
and ðA7Þ

_rB ¼
_kMg

3ðe] gÞ ¼
1=3

LN= _v] 1= _kM
;

Lð0Þ ’ 0 and LðabÞ ¼ Lb and LðNÞ ¼ LN;

ðA8Þ

_R ¼ ðð1 [ kÞSC [ _kJU
p
H ÞkR=U 0

E for

UH ¼ U
p
H else _R ¼ 0

with SC ¼
_JEC

f _JEAmg
¼ L2 ge

g] e

�
1]

L

gLm

�
and

U 0
E ¼ M0

E=f _JEAmg where _R ¼ _RN

for L ¼ LN; and SC ¼ eL2
N; ðA9Þ

d

dt
UE ¼ fL2 [ SC for UH>U

b
H else

d

dt
UE ¼[ SC with UEð0Þ ¼ U 0

E and UEðabÞ ¼ fL3
b = _v;

ðA10Þ

d

dt
UH ¼ ð1 [ kÞSC [ _kJUH for UH < U

p
H else

d

dt
UH ¼ 0

with UH ð0Þ ¼ 0 and UH ðabÞ ¼ Ub
H and UH ðapÞ ¼ U

p
H :

ðA11Þ

These equations also apply at time-varying food density,
but at constant food density we have e ¼ f in the juvenile
and adult stage. Deviations can occur if parameters vary in
time due to stress or change in temperature, for instance.
We did not make the substitution of e by f directly to make
clear that the use of reserve (that includes maintenance,
growth and reproduction) does not depend on food directly,
only via reserve. Hence, the history of food availability
matters.

(2) Initial reserve

It turns out (Kooijman, 2008) that the scaled amount of
reserve of an embryo at the start of its development equals

U 0
E ¼ M0

E

f _JEAmg
¼ _v[1

 
1

Lbðg]f Þ1=3
[

B g

g] f
ð4
3
; 0Þ

3g1=3 _v= _kM

![3

ðA12Þ
where Bxða; bÞ ¼

R x
0
ya[1ð1[yÞb[1

dy is the incomplete beta
function. Length and maturity at the start of the
development of the embryo are taken to be negligibly
small. So, the values of the state variables scaled maturity,
scaled reserve and length develop from (0, UE

0, 0) at the start
(age a ¼ 0) to ðUb

H ; f L
3
b= _v; LbÞ at birth (age a ¼ ab).

If _kJ ¼ _kM , length at birth Lb ¼
�

Ub
H
_v

gð1 [ kÞ

�1=3
is indepen-

dent of food availability and can be observed directly.
Otherwise, the (scaled) length at birth needs to be solved
numerically; an efficient procedure is presented in Kooijman
(2008).

(3) Age at birth

The age at birth is determined by eb (equals e of the mother
at egg laying), _kM , g and scaled length at birth lb ¼ Lb/Lm
Kooijman (2008), and simplifies for small g and large _kM ,
while _rB ¼ _kM g

3ðeb ] gÞ remains fixed

ab ¼
3

_kM

ðxb
0

dx

ð1[ xÞx2=3ð3gx1=3b l[1
b [Bxbð43;0Þ]Bxð43;0ÞÞ

’
g; _k[1

M small 1

3eb _rB

ðxb
0

dx

ð1[ xÞx2=3x1=3b ðl[1
b [ ðx4=3b [ x4=3Þ=ð4ebÞÞ

¼g; _k[1
M verysmall lb

3eb _rB

ðxb
0

dx

ð1[ xÞx2=3x1=3b

¼g; _k[1
M /0 lb

eb _rB

ðA13Þ
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where xb ¼ g

eb ] g
. The significance of this result is in the fact

that for fixed _rB , Lb and LN, g/0 while _kM/N if ab is
running from 0 to this upper boundary. See Fig. 3 for
a graphical interpretation. So, if in practice a value for ab is
found that is larger than lb

eb _rB
¼ Lb

LN _rB
(the latter equality

applies if the mother was in equilibrium with the same food
level), this value is inconsistent with DEB theory, and if it is
still used to estimate deb parameters, problems might be
expected. Notice, however, that age zero is the time when
development starts, which might be well after the
appearance of the egg.

(4) Simple situations

In the absence of growth, i.e. Eq. (A3) equals zero, the
catabolic flux reduces to _JEC ¼ ME _v=L. In the absence of
surface-related maintenance costs, f _JET g ¼ 0, the catabolic
flux just covers the somatic maintenance cost if
k _JEC ¼ ½ _JEM �L3. For scaled reserve density e ¼ ME/MEm,

this amounts to the reserve threshold e ¼ ½ _JEM �L
kf _JEAmg

. At

constant food density this reserve threshold translates to
the food intake threshold, since e ¼ f. Maturity can only
exceed the threshold at birth if during the development of

the embryo ð1 [ kÞ _JEC> _kJM
b
H , so if Mb

H < ð1 [ kÞM
b
E
_v

Lb _kJ
.

Substitution of the previous threshold gives the constraints
for viable eggs

f >
½ _JEM �Lb
kf _JEAmg

¼ lb ¼
Lb

Lm
and Mb

H <
1 [ k

k

½ _JEM �
_kJ

L3
b

¼ 1 [ k

k

jEM
_kJ
Mb

V ; ðA14Þ

where length at birth Lb is an implicit function of primary
parameters that is determined by the relationships just
discussed. If food is constant and _kM ¼ _kJ , Lb and Lp are
constant and there is no need to consider maturity explicitly.
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