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Preface

In this Preface I give a brief overview of what I have done during the
last four years. The primary aim of the work presented in this thesis was
to get a quantitative grasp of the process of chemical carcinogenesis with
aid of an innovative biologically-based modeling approach. This approach
mainly concerned extensions of the Dynamic Energy Budget (DEB) theory
to account for several aspects of tumor biology. From the terms DEB-theory
and tumor biology, the code-name DEBtum was coined. But, how did I get
involved in all this? Well, . . .

The first time I knew about the DEBtum project was in October 1998.
I was at the Department of Biochemistry and Molecular Biology in Granada,
surfing the internet looking for information on protein docking. I ended up
at a Russian web-site, where the only readable text was “Department of
Theoretical Biology, Vrije Universiteit, Amsterdam.” Before I even noticed,
I had already clicked on the link and saw a job vacancy “for a mathematician
with interest in biology.” Five months later I moved back to The Nether-
lands, which put an abrupt stop to a 21-year period in Spain.

My background is in Pure Mathematics (e.g., Differential Geometry) and
Biochemistry (e.g., Protein Engineering). As I had experience with neither
mathematical modeling nor cancer biology, I spent most of the first semester
in Amsterdam reading about these compelling topics. Soon I became aware
of some of the main problems in cancer risk assessment, such as low-dose ex-
trapolation and interspecies extrapolation of risk estimates. Among others,
these problems are succinctly discussed in Chapter I.

As one of the research objectives was to apply Bas Kooijman’s DEB-
theory in cancer biology, in the second semester I started to develop some
simple DEB-based models to describe the relation between exposure to a
chemical and tumor incidence. To facilitate the modeling process, I decided
to split up the process of chemical carcinogenesis into 4 steps, namely ki-
netics, tumor induction, tumor growth and effects. Using this same scheme,
I also compared the existing models for chemical carcinogenesis. This gave

ix



x PREFACE

rise to a first DEBtum-publication (Chapter II ). The aim of this article
was to provide, for the non-mathematician, a critical overview of models
dealing with processes involved in chemical carcinogenesis. Most of the ap-
proaches discussed share the following two inconveniences: (i) the modeling
effort is focused on a single step of the process of chemical carcinogenesis;
and (ii) a tumor is viewed as an independent group of cells rather than as
a part of a host organism.

While I was writing the review article, I programmed a computer tool
to efficiently analyze the results of carcinogenicity tests. I extensively used
this package to fit the classic models discussed in Chapter II to experimental
data from RIVM, TNO and NTP1 long-term studies. Chapter III deals
with some of the results achieved during this data-analysis period and in-
cludes, in addition, the results of confronting some existing methodology
with computer-simulated bioassays.

Once the review article was submitted for publication, I started to work
on a new research topic: mathematical modeling of aging. The aging pro-
cess influences the results of carcinogenicity studies in three ways: (a) the
chance to develop a tumor depends on age; (b) in most carcinogenicity tests
the presence of a tumor can only be detected after the death of the host
organism. The time to death (aging-mediated, tumor-mediated or sacri-
fice) thus determines the observed time-to-tumor; and (c) the incidence of
aging-mediated deaths affects the population size and, consequently, also
the number of new cases of cancer.

I formulated a model for aging in which aging-related physiological de-
cline is the result of the accumulation of oxidative damage caused by free
radicals. However, when I fitted the new model to experimental data, I was
not able to predict the relation between energy intake (food consumption)
and life expectancy. It took a long time before I discovered that the problems
came from the unexpected feeding behavior of laboratory rodents. Data on
food consumption from RIVM and TNO revealed that rats and mice con-
sume an almost constant amount of food during the study period. That is,
from the age of one month, food consumption seems to be independent of
body size. When I adapted the DEB-model to account for this observation,
I succeeded in fitting caloric restriction data. The manuscript describing
these results was rapidly accepted for publication (Chapter IV).

In the last phase of my research, I extended the DEB-based model to
account for tumor growth. The aim was to arrive at a tumor growth model in
which a tumor is part of its host organism. Because of the lack of adequate

1For the interpretation of the abbreviations, see page 169
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tumor growth data, I first developed a general model for the differential
growth of body parts. The tumor-growth model derived from the general
model is suited to explore the implications of possible interactions between
tumor and host. For instance, I investigated the influence of host age and
caloric intake on tumor behavior. With regard to the effects of the tumor
on the host, I focused on tumor-mediated loss of body weight. The results
of these investigations, which have been submitted for publication, appear
in this thesis as Chapter V.
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I

CANCER RISK ASSESSMENT

“When it comes to assessing the impact of chemicals on

human health, one has to peel the layers away carefully. We are

at the intersection of science, medicine, politics, and law, with a

strong flourish of human emotion thrown in to tangle the knot.

The answers do not come easily,” R.A. Freeze





Quantitative cancer risk assessment:
historical perspectives, basic concepts,
and current approaches and uncertainties

I.M.M. van Leeuwen (2003)

I.1 Introduction

In the year 2000, malignant tumors were responsible for 12% of the nearly
56 million deaths worldwide from all causes [214]. The World Cancer Report
(2003) also reveals that the number of new cases of cancer is expected to
grow by 50% over the next 20 years. Cancer is now globally emerging as a
major health problem, but it is far from being a new disease.

Malignant tumors were described in pictures and writings from many an-
cient civilizations, including those of Asia, South America, and Egypt [221].
Moreover, paleopathological studies [64, 266] have recently led to the iden-
tification of several bone tumors in Egyptian mummies dating 1500-500
B.C. and of an adenocarcinoma in the mummy of Ferrante I of Aragón,
King of Naples (1431-1494). Furthermore, as early as 400 B.C., Hippocrates
compared the long, distended veins radiating from some breast tumors to
the limbs of a crab, whence karkinos (καρκινoς) in Greek and cancer in
Latin [237].

Early cultures attributed the cause of cancer to various gods, and this
belief was held generally until the Middle Ages [221]. Hippocrates described
cancer as an imbalance between the black humor (from the spleen) and the
three bodily humors: blood, phlegm, and bile [221]. Although incorrect
this hypothesis was a big step forward, because it attributed the origin of
cancer to natural causes. Since then, cancer has been associated with the
natural process of aging [134, 201, 244] and with the action of several agents,
including radiation [139, 257], viruses [25, 59], natural compounds [32, 261]
and man-made chemicals [53, 174]. Table I.1 summarizes the major cancer
risk factors.

The hypothesis that some chemicals can cause cancer is at least as old
as Percival Pott’s (1775) epidemiological study. This English physician ob-
served that young men who had been chimney sweeps as boys had a high
chance to develop scrotum cancer [191]. He suggested that chimney soot
might be the causative agent. Since Pott identified this first putative car-

3



4 I. CANCER RISK ASSESSMENT

cinogenic agent, many chemicals have revealed to possess the ability to in-
duce tumors (see Appendix). The effects such compounds may cause are
shown in Table I.2. Nowadays, it has become mandatory to evaluate the
carcinogenic potency of chemical compounds before they are manufactured.
Such evaluations are intended to ensure that carcinogenic chemicals are ei-
ther not marketed or withdrawn from use.

Table I.1: The major cancer risk factors [214].

Tobacco smoking Radiations
Alcohol drinking Chronic infections
Occupational exposures Diet & nutrition
Environmental pollution Immunosuppression
Food contaminants Genetic susceptibility
Medicinal drugs Reproductive factors & hormones

Table I.2: Effects carcinogenic agents may cause.

Appearance of unusual tumors
Increase in the occurrence of normal tumors
Appearance of tumors earlier in life
Increased tumor multiplicity

I.2 Regulation and control of cancer risks

The evaluation of the toxicity and carcinogenicity of chemical compounds
is carried out world-wide according to guidelines proposed by regulatory
institutions (e.g., OECD, IARC, EU, USEPA). For a new chemical, risk
assessment involves the following steps:

• Occupational hazard identification: evaluation of the hazardous effect
of chemical substances on workers exposed due to their work condi-
tions.

• Ecotoxicological risk assessment: concerns the fate of chemical sub-
stances in the environment and their biological effects on organisms.

• Human risk assessment: evaluation of the hazardous effect of chemical
substances on the health of the human population. In the EU, new
chemicals are investigated according to a tonnage-triggered strategy
(see Table I.3). The specific tests (e.g., genotoxicity tests chosen)
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vary for pesticides, cosmetics, packing materials, food/feed additives,
drugs and veterinary drugs. As can be seen from Table I.3, long-
term carcinogenicity tests are mandatory for chemicals with an annual
production that exceeds 1,000 ton.

Table I.3: Human-tox tests, according to the EU regulations (J. van Benthem,
personal communication). kpa = kilograms per year; tpa = ton per year;
CA = chromosomal aberrations; LD50 = 50% lethal dose.

Toxicological test 10
–1
0
2
k
p
a

10
2
–1
0
3
k
p
a

1–
10

tp
a

10
–1
0
2
tp
a

10
2
–1
0
3
tp
a

>
10

3
tp
a

LD50 (1 route) X X X X X X
Skin irritation X X X X X
Eye irritation X X X X X
Skin sensibilization X X X X X
Mutagenicity (Ames test) X X X X
LD50 (2 routes) X X X X
Sub-acute tox (oral) X X X X
Mutagenicity (CA) X X X X
Additional mutagenicity (X) X X X
Fertility (X) X X
Teratogenicity (X) X X
Semi-chronic tox (X) X X
Toxico-kinetics X X
Chronic tox (X) X
Long-term carcinogenicity X
Fertility (2nd species) (X)
Teratogenicity (2nd species) (X)

Carcinogen risk assessment has been defined as “a scientific attempt to iden-
tify and estimate the true cancer risk associated with exposure to chemical
agents [238].” The process of carcinogen risk assessment is usually divided
into four steps [9, 54, 238].

1. Hazard identification: Qualitative identification of the carcinogenic
effect a substance has an inherent capacity to cause. It relies on an-
imal data, human data, and supporting data (e.g., pharmacokinetic
information and structure-activity relationships). Using these data,
chemicals are classified according to the available evidence of carcino-
genicity. There is no unanimity about how to classify. Three proposed
classification schemes are summarized in Table I.4.
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2. Dose-response assessment: Estimation of the relationship between
dose of, or level of exposure to, a substance and the incidence and
severity of the carcinogenic effect (see Table I.2). Incidence concerns
the number of new cases occurring. It can, for instance, be expressed
as the number of new cases per time unit divided by the population
size.

3. Exposure assessment: Determination of the emissions, pathways and
rates of movement of a substance and its transformation or degrada-
tion, in order to estimate concentrations/doses to which human pop-
ulations or environmental spheres (water, soil and air) are or may be
exposed.

4. Risk characterization: Estimation of the incidence and severity of the
carcinogenic effects likely to occur in a human population due to actual
or predicted exposure to a substance.

More than 100,000 chemicals are in commercial use and an estimated 2,000
new ones are introduced annually1. As quantitative risk assessment (QRA)
of exposure to each of these compounds would be an almost impossible
task [84], risk assessment is concerned with setting priorities. This is exem-
plified by the EU tonnage-triggered strategy shown in Table I.3. Another
example is the use of structurally related compounds as reference substances
for predicting risks. The USEPA has used the classification in categories A,
B or C (Table I.4) as a requisite for entering QRA. As a consequence of
setting priorities, only a small percentage of the chemicals in commercial
use have been fully tested for their effects on human health [65]. From the
perspective of human health, it is desirable that among the few fully tested
chemicals are those most likely to be carcinogenic.

1Information from [84] and the NTP web-site: http://ntp-server.niehs.nih.gov/

Downloaded 11 June 2003; Site updated 15 November 2002.
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Table I.4: Classification schemes for carcinogens.

Classification of carcinogens according to the USEPA (1986)
Category A Known human carcinogen. Proven human carcinogenic

substance (see Table I.5 for a list of the substances clas-
sified in this category).

Category B1 Probable human carcinogen. Suspected human carcino-
genic substance of potential relevance to humans.

Category B2 Probable human carcinogen. Proven animal carcino-
genic substance of potential relevance to humans.

Category C Possible human carcinogen. Suspected animal carcino-
genic substance of potential relevance to humans.

Category D Not classifiable as to human carcinogenicity. Substances
not-classifiable with regard to carcinogenicity.

Category E Evidence of non-carcinogenicity for humans. Negative
evidence.

Classification of carcinogens according to the IARC (1987)
Group 1 Carcinogenic to humans. Sufficient evidence of carcino-

genicity in humans.
Group 2A Probably carcinogenic to humans. Limited evidence in

humans and less than sufficient evidence in animals.
Group 2B Possibly carcinogenic to humans. Limited evidence

in humans and no sufficient evidence in animals; or
inadequate/non-existent evidence in humans and suffi-
cient evidence in animals.

Group 3 Not classifiable. Agents that are not categorized in any
other group.

Group 4 Probably not carcinogenic to humans. Evidence sug-
gesting no carcinogenicity in humans or inadequate
data; evidence suggesting no carcinogenicity in animals.

Classification of carcinogens according to the EU (2002)
Category I Human carcinogen.
Category II Probable human carcinogen.
Category IIIA Insufficient evidence to put in category II, but additional

data is unlikely to help.
Category IIIB Insufficient evidence to put in category II, but additional

data is needed.



8 I. CANCER RISK ASSESSMENT

I.3 Long-term carcinogenicity tests

Carcinogen risk assessment is usually carried out on the basis of long-term
rodent bioassays. In such bioassays, test animals are organized in dose-
groups that are exposed to different levels of the chemical of interest. Besides
the exposed animals, a control group of untreated animals is always included.
To mimic lifetime exposure of humans, the animals are exposed chronically
for a period of 2 years. To ensure statistically significant tumor incidences,
a reasonable number of animals and adequate dose levels are used.

This thesis pays special attention to the long-term carcinogenicity tests
carried out by the US National Toxicology Program (NTP). The NTP
was established in 1978 by the Department of Health and Human Services
(DHHS, USA) to coordinate toxicological testing programs within the De-
partment. Since its foundation, the NTP has evaluated the carcinogenic
potency of more than 400 chemicals in rat and mice. The experimental
results from these NTP carcinogenicity studies are publicly available from
the NTP-server via the internet2. Throughout this thesis, data from the
NTP long-term carcinogenicity study with 1,3-butadiene will be repeatedly
used as an example (Section III.2.1). Our interest for this particular study
primarily relies on the relevance of the carcinogenic chemical and on the rel-
atively large number of exposure levels described (6 dose-groups, including
control).

The end-points of carcinogenicity studies are primarily pre-neoplastic
lesions and neoplasms, but sometimes also include degree of malignancy,
time to tumor appearance, multiplicity of (pre-)neoplasia, and occurrence
of metastases [58]. “Negative results, in which animals do not have a greater
incidence of neoplasia than control animals, do not necessarily mean that
a chemical is not a carcinogen, inasmuch as the experiments are conducted
under a limited set of conditions. Positive results demonstrate that a chem-
ical is carcinogenic for laboratory animals under the conditions of the study
and indicate that exposure to the chemical has the potential for hazard to
humans [174].”

Figure I.1 illustrates the two manners in which the results of long-term
carcinogenicity tests are often summarized. The upper panel depicts, for
each dose-group, the adjusted cumulative incidence (ACI) of deaths with
malignant lymphoma as a function of exposure time. The ACI at time t
concerns an estimation of the probability that, in absence of competing

2http://ehp.niehs.nih.gov/ntp/docs/ntp.html

Downloaded 11 June 2003; Site updated 23 May 2003.
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causes of death, an animal dies bearing a lymphoma before time t. The lower
panel shows the eventual ACI at the end of the exposure period (2 years)
as a function of dose. Notice that in the lower panel the information on the
time course of tumor occurrence is lost.
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Figure I.1: Cumulative incidence of spontaneous deaths with malignant
lymphoma in female mice exposed to 1,3-butadiene. Kaplan-Meier ad-
justed tumor-bearing fractions. For further information, see Chapter III.
Data from the BUT-NTP study (Section III.2.1). Upper panel: Cumu-
lative incidence as a function of exposure time. For curves from right
to left, the administered 1,3-butadiene dose is 0, 6.25, 20, 62.5, 200 and
625 ppm, respectively. Data points (?) have been joined to distinguish
the 6 dose-groups. Lower panel: Cumulative incidence after a 2-year
(730 days) exposure period as a function of the level of exposure.
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I.4 Estimates of the carcinogenic potency

Several types of quantitative information on cancer risk can help decision-
makers. Examples are:

• NOAEL: No observed adverse-effect level. Exposure level at which
there are no statistically significant increases in the frequency or sever-
ity of the observed carcinogenic effect between the exposed and control
populations [52].

• ADI & TDI: Acceptable daily intake & tolerable daily intake. Both
concepts concern estimates of a dose without appreciable increase in
human risk. ADIs relate to chemicals that have been deliberately
added to a product, whereas TDIs concern contaminants whose pres-
ence in food or water does not serve, and has never served, any useful
purpose. The ADI (or TDI) of a chemical is usually calculated by
dividing the animal-derived NOAEL by an uncertainty factor (also
called assessment factor or safety factor), which has a default value of
100 [54].

• MTD: Maximum tolerated dose. The default MTD is the dose that
causes 10% decrement in body growth in the absence of other toxic
manifestations.

• TD50: Tumorigenic 50% dose. Dose that, if administered chronically
for the standard lifespan of the species, halves the probability of re-
maining tumorless through that period. Or equivalently, the daily
dose that will induce tumors in half of the animals that would have
remained tumor-free at zero dose [69].

• VSD: Virtually safe dose. Dose with a negligible increase in human
risk, such as 10−5 or 10−6 in a lifetime. It is generally calculated by
linear low-dose extrapolation (see Section I.5.4).

The NOAEL is an experimental end-point, as it corresponds to the highest
dose that does not cause any observable carcinogenic effect. It is, therefore,
very sensitive to the experimental set up and may lead to serious under-
estimation of the carcinogenic potency of a chemical. The TD50 and VSD
instead involve non-observed exposure levels and, therefore, entail assump-
tions on the behavior of the dose-response curve. To extrapolate or interpo-
late responses from the observed dose-response data, mathematical models
can be used. The extrapolation of responses below the lowest experimental
dose and the derivation of VSDs are the main topics of Section I.5.4.
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I.5 Uncertainties in carcinogen risk assessment

Vinyl chloride [53] and soot [191] have revealed to be carcinogenic first in
humans and later in animals. Obviously this is not a preferred sequence of
events, although the availability of epidemiological data significantly facil-
itates the estimation of the carcinogenic potency of a chemical in humans.
When animal studies are used for risk assessment, the relationship between
dose and response is first established in animals and, thereafter, the risk
for human health associated with the human exposure level is calculated.
During this process, investigators usually encounter one or more of the dif-
ficulties discussed in this Section.

Figure I.2: Skull of a skeleton with burning cigarette, 1886. Vin-
cent van Gogh (1853–1890). Oil on Canvas, 32 x 24.5 cm. Van
Gogh Museum, Amsterdam. About one-third of all cancer cases
in Europe and North America can be related to the presence of
carcinogens in cigarettes and other tobacco products [8, 214].

I.5.1 Exposure to chemical mixtures

Many human cancers can be related to exposures to chemical mixtures. The
best known example of a complex carcinogenic mixture is tobacco smoke
(Figure I.2). Diet and air pollution are other examples of chemical mix-
tures that have been associated with an increase in cancer incidence (see
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Table I.1). Despite the multifactorial origin of most tumors, environmental
exposures are usually studied individually. That is, long-term carcinogenic-
ity tests are carried out with a single chemical compound. To estimate
the risk associated with the joint action of several agents, multiplicative or
additive effects have been assumed [22, 114].

I.5.2 Intraspecies variability

Significant differences in response to a carcinogenic agent can be observed
among different individuals of the same species. Genetic and non-genetic
aspects underly this intraspecies variability. The relevance of the former as-
pects is best exemplified by the existence of heritable genetic disorders that
predispose to cancer. Genetic variation can lead to different levels of expres-
sion of enzymes involved, for instance, in DNA repair or in activation and
detoxication pathways. Gender-related variability in carcinogenic response
can be attributed to both endocrine and non-endocrine differences (e.g., Fig-
ure I.3). Among the non-genetic aspects involved in intraspecies variability
are nutrition, which may influence bioavailability and bioaccumulation, and
health status [52].
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Figure I.3: Survival of mice exposed to 0 and 200 ppm 1,3-butadiene.
Kaplan-Meier adjusted survivor-fractions: (?) female and (•) male mice.
The joined data points correspond to the control-groups. Data from the
BUT-NTP study (Section III.2.1). The same external dose of carcinogen
causes a sharper decrease in female than in male survival. This gender-
related variability may be due, for instance, to differences in effective
internal concentration or to differences in the harmful effect caused by
this concentration.
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Carcinogenesis is usually treated as a stochastic process in which muta-
tions and cell proliferation occur with a certain probability. The observed
time-dependent tumor incidence (e.g., Figure I.1) is the result of the in-
traspecies variability in carcinogenic response, the experimental error, and
the stochastic component of the carcinogenic process itself [210]. As can
be seen from Chapter II, most mathematical models for chemical carcino-
genesis assume implicitly that tumor incidence data can be explained by its
stochastic component alone. Indeed, only the so-called tolerance distribution
models (Section II.3.2.1) are based on differences in individual susceptibility.

I.5.3 The ‘mouse-to-man’ problem

The prediction of human responses from animal data is a major issue in
quantitative cancer risk assessment. As the species used for carcinogenicity
studies is often the mouse, this is known as the mouse-to-man problem. It
concerns interspecies scaling of physiological parameters and characteristics,
but often also implies extrapolations across routes of exposure, exposure
times, and tumor induction mechanisms.

I.5.3.1 Interspecies variability

Variability in the response of different species to a certain chemical com-
pound can, for instance, occur because of differences in uptake, distribu-
tion, accumulation, metabolism, excretion or target sensitivity [52]. The
most common explanation is that interspecies differences in susceptibility
reflect different levels of enzymes that activate or deactivate the putative
carcinogen [108]. Examples of compounds that differ significantly in their
carcinogenic potency among species are:

• Aflatoxins (CAS 1402-68-2, see Table I.5): induces hepatocellular car-
cinomas in rats, but not in adult mice [151, 175].

• 2-Fluorenylacetamide (CAS 53-96-3): a very potent carcinogen in one
strain of rats; not a carcinogen in another strain [151].

• Dimethylbenzanthracene (CAS 57-97-6): produces breast cancers in
Sprague-Dawley rats, but not in Wistar rats [108].

• 2-Naphthylamine (CAS 91-59-8, see Table I.5): much more carcino-
genic in humans and dogs than in rats [52].

• Sulfamethazine (CAS 57-68-1): induces thyroid follicular cell tumors
in rats and mice, but lacks any tumorigenic effect in monkeys [52].
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Because of the occurrence of interspecies variability, the extrapolation
of tumor incidence information from animal studies to humans must be
handled with caution.

I.5.3.2 Interspecies extrapolation

Leaving out of account some chemicals that revealed an extreme divergence
in carcinogenic potency among species (see examples above), it has been
suggested that “there are good interspecies correlations between the poten-
cies, allowing interspecies extrapolation [40].” Several methods have been
proposed to extrapolate physiological characteristics and carcinogenic po-
tencies, the default technique being allometric scaling.

The allometric equation [98] expresses the parameter of interest µ (e.g.,
TD50) as a power of body weight: µ = aW b, where W denotes body weight.
In a double logarithmic plot, the relation becomes linear: logµ = log a +
b logW . It is assumed that the value of b is equal for a wide range of
species and chemical compounds, whereas the value of a varies for different
chemicals. For a given chemical agent, the value of the parameter µ for
humans (µh) can then be obtained as follows:

µh = µr

(

Wh

Wr

)b

(I.1)

where µr is the known value of the same parameter in, for example, a rodent
species. The human value µh is thus calculated simply by multiplying µr
by the so-called relative sensitivity factor (Wh/Wr)

b, where the symbols Wh

and Wr represent the average human and rodent body weights, respectively.
Different values for the scaling factor b have been used. Among the most
common ones are [42, 49, 231]: (i) the body-weight scaling factor, b = 1;
(ii) the body-surface area scaling factor, b = 2/3; and (iii) Kleiber’s scaling
factor, b = 3/4.

Frequently only the measure of the carcinogenic potency is extrapolated
from animals to humans. The use of allometric scaling is then not war-
ranted, however. A carcinogenic potency estimate (e.g., TD50) is a complex
quantity that depends on an unknown number of physiological factors as
well as on other factors as the exposure time. The choice of one or another
scaling factor is thus hard to defend. Alternatively, using a mathematical
model for chemical carcinogenesis, such as those discussed in Chapter II,
the whole dose-response relationship can be extrapolated. In PBPK mod-
els (Section II.3.1), as the parameters have a biological interpretation, the
values of the kinetic parameters for rodents may be substituted by values
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relevant to humans [10, 154]. For models whose parameters have a less direct
empirical link, scaling rules must be defined for the set of model parame-
ters [177, 115]. An important condition for this approach is that scaling
relations for different parameters should be compatible with each other. For
instance, if two parameters that scale allometrically are proportional, they
share the same scaling factor. Moreover, concerning allometric scaling, it is
also important to notice that in general a sum of power functions is not a
power function. Indeed, if µ1 = a1W

b1 and µ2 = a2W
b2 with b1 6= b2, then

the parameter µ1 + µ2 does not scale allometrically. Compatible allometric
and non-allometric scaling rules are, for example, derived in [115].

I.5.4 Low-dose extrapolation

Besides deducing human carcinogenic responses from animal data, a funda-
mental problem in risk assessment is the evaluation of the risk associated
with the levels to which humans are actually exposed. For practical rea-
sons, such as improving the signal-to-noise ratio and reducing the number
of animals required [221, 238], long-term carcinogenicity tests are gener-
ally performed using relatively high doses. Consequently, the behavior of
the dose-response curve at levels of exposure below the lowest experimental
dose is unknown.

The simplest low-dose extrapolation method consists in drawing a
straight line from a point of departure to the origin (zero dose, zero ad-
ditional risk). Possible departure points are, for instance, (LOAEL3, corre-
sponding additional risk) or (TD50, 0.5). The USEPA uses (LED10, 0.1) as
default point of departure, where LED10 is the lower 95% confidence limit
on a dose that is estimated to cause a 10% increase in tumor incidence [234].
Alternatively, a mathematical model can be used to predict the carcinogenic
response in the non-observed low-dose region. It has been shown, however,
that different mathematical models can differ significantly in their risk pre-
dictions at low doses [54]. Currently, the model most frequently used to
carry out low-dose extrapolations is:

P (d) = 1− e−q0−q1d (I.2)

where P (d) is the probability that an individual exposed to a dose d for
its lifetime develops a tumor. As will be explained in Chapter II, this ex-
pression can be deduced from the one-hit model (Section II.3.2.3) as well as
from the LMS-model (Section II.3.2.4). After fitting the experimental ob-
servations, linear low-dose extrapolation is done on the basis of a line with

3Lowest observed adverse effect level
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slope α, where α is either an estimate of the q1 parameter or the 95% upper
confidence limit of this estimate (for further details, see Figure I.4).

The linear low-dose extrapolation method is used if a linear relationship
between dose and response seems reliable for the chemical of interest. This
kind of relationship implies that the risk associated with a dose unit is
independent of the exposure level. Deviations from this relationship may
occur if the mechanism by which an agent induces cancer at high doses is
not operative at lower doses [238]. Ames and Gold (1990), for instance,
argued that mutagenic carcinogens administered at high doses (e.g., MTD)
also stimulate cell proliferation, which enhances tumorigenesis. Moreover,
it has been observed that, at low doses of carcinogen, not only the risk per
dose unit decreases, but also the time delay until tumor appearance becomes
longer [71, 229]. In toxicological tests, with non-carcinogenic end-points,
dose-response curves sometimes present an U-shaped behavior (hormesis).
This observation led to the hypothesis that, for certain chemical agents, low
doses may have a beneficial effect whereas exposure to either a too low or a
too high dose may have adverse effects.
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Figure I.4: Low-dose extrapolation is required, for instance, to calcu-
late the virtually safe dose (VSD) associated with a certain acceptable
increase in risk (AIR). For genotoxic carcinogens, VSDs are often ob-
tained by linear low-dose extrapolation using equation I.2. VSD1 = vir-
tually safe dose calculated using a straight line with the estimated value
q̄1 as slope. VSD2 = virtually safe dose calculated using a line with the
95% upper confidence limit (UCL) of this estimated value as slope. The
VSD depends on the slope of the extrapolation line; the larger the slope,
the smaller the corresponding VSD.

The shape of the dose-response at low doses is strongly influenced by the
presence or absence of dose thresholds. According to the threshold hypoth-
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esis “there is a no-effect dose of carcinogen below which induction of cancer
cannot occur or occurs with an extremely low probability [151].” The con-
cept of threshold-dose relies on the argument that a single or just a few
molecules do not suffice to induce a carcinogenic response. For instance, as
long as the amount of carcinogenic compound does not overwhelm defense
mechanisms (e.g., detoxication and DNA repair), no response is expected.
As thresholds give rise to ‘hockey-stick shaped’ dose-response curves, the
tumor probability may be lower than expected from linear extrapolation.
Assuming the existence of a threshold-dose may thus have great impact on
the eventual risk estimate.

It has been proposed that carcinogens that act without directly causing
DNA damage (non-genotoxic agents) do have a dose threshold, whereas car-
cinogens that modify the genetic code (genotoxic agents) do not. Therefore,
use of the linear low-dose extrapolation method is usually restricted to geno-
toxic carcinogens, whereas the ADI/TDI approach (Section I.4) is usually
used only for non-genotoxic carcinogens. On the basis of the stochastic na-
ture of mutagenesis, it has been argued that a single molecule of a genotoxic
agent might cause a DNA mutation leading to malignant transformation. In
contrast, a certain concentration of non-genotoxic agent might be required to
interfere with processes under homeostatic control. For instance, it seems
hard to believe that a single molecule of non-genotoxic agent could suf-
fice to trigger cell proliferation by disturbing cell-cell communication. The
mechanistic distinction between two types of carcinogens has been criticized,
however. For instance, Waters et al. (1999) argued that many chemical car-
cinogens operate via a combination of both modes of action.

As the behavior of the dose-response curve at low doses is unknown, there
is no direct experimental evidence for or against the threshold hypothesis.
In the 1970’s, Littlefield’s group sought to figure out what happens at low
levels of 2-acetylaminofluorene (CAS 53-96-3). For this purpose, they ex-
posed more than 24,000 mice to seven different levels of carcinogen [140].
The conclusion from this mega-mouse study was that it is impossible to
distinguish between linear and non-linear dose-response curves even when a
large number of animals is used.
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Appendix

Table I.5: Agents, substances, mixtures, and medical treatments that have been
classified as known human carcinogens [175]. The second column indicates when
first included in Category A (See Table I.4)

CAS Listed Name or Synonym
1402-68-2 1980 Aflatoxins

2000 Alcohol beverage consumption
92-67-1 1980 4-Aminodiphenyl

1985 Analgesic mixtures containing Phenacetin
1980 Arsenic compounds, inorganic

1332-21-4 1980 Asbestos
446-86-6 1985 Azathioprine
71-43-2 1980 Benzene
92-87-5 1980 Benzidine

2002 Beryllium and beryllium compounds
542-88-1 1980 Bis(chloromethyl)ether
55-98-1 1985 Busulfan (1,4-butanediol dimethylsulfonate)
106-99-0 2000 1,3-Butadiene
7440-43-9 2000 Cadmium
10108-64-2 2000 Cadmium chloride
1306-19-0 2000 Cadmium oxide
10124-36-4 2000 Cadmium sulfate
1306-23-6 2000 Cadmium sulfide
305-03-3 1981 Chlorambucil
107-30-2 1980 Chloromethyl methyl ether

1980 Chromium hexavalent compounds
8007-45-2 1980 Coal tar

1980 Coke oven emissions
8001-58-9 1985 Creosote (coal)
8021-39-4 1985 Creosote (wood)
14464-46-1 2000 Cristobalite
50-18-0 1980 Cyclophosphamide
59865-13-3 1998 Cyclosporin A
56-53-1 1980 Diethylstilbestrol
1937-37-7 2000 Direct black 38
2602-46-2 2000 Direct blue 6

2000 Dyes that metabolize to Benzidine
2000 Environmental tobacco smoke

66733-21-9 1980 Erionite
2002 Estrogens, steroidal

75-21-8 2000 Ethylene oxide
775897-97-6 1980 Lead chromate

continued on next page
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continued from previous page

CAS Listed Name or Synonym
13909-09-6 1991 MeCCNU
148-82-3 1980 Melphalan
298-81-7 1985 Methoxsalen with ultraviolet A therapy

1980 Mineral oils
505-60-2 1980 Mustard gas
91-59-8 1980 2-Naphthylamine (2-aminonaphtalene)

2002 Nickel compounds
7280-37-7 1985 Piperazine estrone sulfate
14808-60-7 2000 Quartz, cristalline (respirable size)
10043-92-2 1994 Radon

2000 Silica, cristalline (respirable size)
2000 Smokeless tobacco

16680-47-0 1985 Sodium equilin sulfate
438-67-5 1989 Sodium estrone sulfate

2000 Solar radiation, sun-lamps, sun-beds
1980 Soots
2000 Strong inorganic acid mists containing sulfuric acid

7789-06-2 1980 Strontium chromate
2000 Tamoxifen
1980 Tars

1746-01-6 2001 TCDD
52-24-4 1998 Thiotepa (tris(1-aziridinyl)phosphine sulfide)
1314-20-1 1981 Thorium dioxide

2000 Tobacco smoking
15468-32-2 2000 Tridymite, cristalline (respirable size)

2002 Ultraviolet radiation, broad spectrum UV radiation
75-01-4 1980 Vinyl chloride

2002 Wood dust
13530-65-9 1980 Zinc chromate
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MODELING CHEMICAL
CARCINOGENESIS

“A statement that is frequently heard from people

with a distaste for models is: ‘a model is not more than
you put into it.’ Done in the proper way, this is absolutely

right and it is the single most important aspect of the

use of models,” S.A.L.M. Kooijman





From exposure to effect: a comparison
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carcinogenesis
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Abstract

Standardized long-term carcinogenicity tests aim to reveal the relationship
between exposure to a chemical and occurrence of a carcinogenic response.
The analysis of such tests may be facilitated by the use of mathematical
models. To what extent current models actually achieve this purpose is
difficult to evaluate. Various aspects of chemically induced carcinogenesis
are treated by different modeling approaches, which proceed very much in
isolation of each other. With this Chapter we aim to provide for the non-
mathematician a comprehensive and critical overview of models dealing with
processes involved in chemical carcinogenesis. We cover the entire process
of carcinogenesis, from exposure to effect. We succinctly summarize the bi-
ology underlying the models and emphasize the relationship between model
assumptions and model formulations. The use of mathematics is restricted
as far as possible with some additional information relegated to tables.

Keywords

Quantitative cancer risk assessment; Tumor incidence; Chemical carcinogen;
Mathematical model; Dose-response relationship.

II.1 Introduction

Despite improvements in prevention, diagnosis and treatment, cancer still
strikes one in three people, and one in four will eventually die of the dis-
ease [197]. This high incidence is primarily due to two risk factors, namely
cigarette smoking [143, 184] and dietary habits [67]. As these concern
lifestyle aspects which are in principle subject to personal choice, they can
be avoided at the individual level. This does not hold for other risk factors,
such as exposure to occupational or environmental agents. These factors

23
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constitute an unintentional risk that can only be avoided through decisions
made at the community level.

Since Pott (1775) conducted his historical study on chimney sweeps and
identified soot as a carcinogenic agent, extensive testimony has accumulated
with regard to the causal relationship between cancer incidence and expo-
sure to chemical compounds. Evidence that chemicals may cause cancer
has come, for instance, from experimental tests and epidemiological studies.
Nowadays, the carcinogenic effect of a compound is crucial to restrictions
on either its production or its emission into the environment. The success
of these restrictions might explain the assertion by Ames et al. (1997) that
food additives and industrial chemicals have had little impact on the overall
cancer incidence to date.

Primary prevention of cancer can be accomplished by reducing the num-
ber of carcinogens to which humans are exposed, and by reducing the levels
of exposure to carcinogens [229]. Clearly, these approaches rely on accurate
identification of carcinogens and on reliable quantification of their ability to
elicit a carcinogenic response. Both hinge on the adequacy of the tests de-
vised to estimate the carcinogenic potency of chemicals, and on the validity
of the conclusions derived from them. These issues are far from settled as the
often fierce debates about them illustrate. For two different reasons, society
needs a strategy to accurately evaluate the implications of carcinogenicity
tests for humans. From the perspective of human health, such a strategy is
essential to rule out risk-underestimates. From an economic point of view,
the avoidance of risk-overestimates averts costs associated with unnecessary
reduction of exposure levels.

The various tests devised to estimate carcinogenic potency differ in many
aspects, but they share a common feature: the analysis of their results is
facilitated by the establishment of a functional relationship between dose and
response [124]. The plethora of mathematical models used for this purpose
may at times be disconcerting to experimental scientists. Some modelers
have attempted to conciliate experimentalists with the models. Hanes and
Wedel (1985), for example, purport to “remove for the nonmathematician
some of the mystery as to the derivation of the formulas.” Even if they
accomplished this aim, they still only consider a small subset of models that
are currently in vogue. Other reviews are subject to similar restrictions
in scope. For instance, Van Ryzin (1980) only deals with dose-response
models for risk assessment, while Kopp-Schneider (1997) focuses on multi-
step models of tumor induction. None of these works covers the entire area
from exposure to effect. The most thorough overview of models involved in
the estimation of human cancer risk is by Moolgavkar et al. (1999). Due
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to its in-depth treatment of the topic, this book is less suited as a gentle
introduction to the field. In summary, we think that a general but succinct
overview for the non-mathematician is still lacking. The aim of the present
work is to provide such an overview.

The remainder of this Chapter is organized as follows. Section II.2 pro-
vides a brief description of the biology of chemical carcinogenesis as a four-
phase process. We realize that the informed reader will miss many important
findings. Their omission derives from the fact that these new findings are
not yet used by modelers; we only present a skeletal outline of chemical
carcinogenesis relevant for our overview. Section II.3 discusses a representa-
tive selection of mathematical models for chemical carcinogenesis, organized
according to the phases defined in Section II.2. In our experience, existing
explications of the models are either hard to find or hard to follow. There-
fore, we aim to make explicit the relationship between model assumptions
and model formulations. Finally, in Section II.4, we make some concluding
remarks that go beyond the individual models. Although in this Chapter we
focus on the conceptual basis of the various models, we cannot always ignore
mathematical formulations. Where these become cumbersome, they are con-
fined to tables. The reader not interested in the mathematical niceties may
skip these tables without loosing continuity.

In this Chapter we compare some 30 representative modeling approaches.
Understandably but regrettably, they do not share a common strategy with
respect to their mathematical notation. Different models may therefore use
the same symbol for unrelated concepts or variables. To minimize confusion
related to the notation, we were forced at times to choose a representa-
tion that deviates from the customary. In the few instances where we used
the same symbol for different concepts, the context should suffice to disam-
biguate its interpretation.

II.2 Chemical carcinogenesis

Theoretical studies on tumor biology are far outnumbered by experimental
studies. Yet models still abound: for this review, we studied some 100 papers
on a variety of models, as well as some monographs. To keep track of all these
studies, a natural first step is to contrive some classification. ECETOC’s
Monograph no. 24 (1996) classifies models for chemical carcinogenesis loosely
on the basis of their underlying statistical assumptions [54]. But as the
authors remark themselves, “The division between the models is somewhat
arbitrary as there is considerable overlap.” An alternative criterion classifies
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models as either descriptive or mechanistic. This criterion judges the amount
of underlying biology involved. From a mathematical point of view, models
can be classified as either deterministic (with a single outcome) or stochastic
(with more than one possible outcome). Kopp-Schneider (1997) classifies
stochastic models for tumor induction on the basis of their intended use,
level of biological detail and method used for their analysis. As the method
of analysis has only to do with the degree of mathematical complexity, we
do not find this criterion very informative.

As an alternative we organize models according to a division of the pro-
cess of chemical carcinogenesis, from exposure to effect, into four consecutive
phases. We briefly define the phases here, while in the subsections below
we provide further details. The first phase, referred to as kinetics, concerns
the relationship between exposure to a (pro)carcinogen and internal dose of
carcinogen. The second phase, referred to as tumor induction, comprises
the toxico-dynamic mechanisms through which the carcinogen induces the
transformation of normal cells into tumor cells. The third phase, referred
to as tumor growth, relates to the clonal expansion of a tumor. During this
phase, the tumor’s malignancy may increase (tumor progression). The last
phase, referred to as effects, involves the consequences of tumor development
for the organism.

Not all the models discussed in this Chapter have been developed with
the aim to contribute to a quantitative understanding of chemical carcino-
genesis. For instance, most tumor growth models have been developed with
the aim to improve cancer treatment, and have not yet been applied within
the context of chemical carcinogenesis. Nevertheless, tumor growth mod-
els naturally fit the scheme outlined above because it is only after a tumor
reaches a certain size that effects will become apparent. Many other models
unambiguously address one of the steps defined above. Hence the classifica-
tion seems to offer a framework to keep track of the heterogeneous collection
of models dealing with aspects of chemical carcinogenesis in its broadest
sense.

II.2.1 Exposure and kinetics

As defined above, kinetics concerns the relationship between the exposure
of an animal to a (pro)carcinogen and the internal dose of carcinogen at
a target tissue. Here we use ‘exposure’ in a general sense that includes
the exposure conditions. Kinetics constitutes an essential phase in chem-
ical carcinogenesis because it is the tissue dose that is responsible for the
carcinogenic response. For foreign chemicals, kinetics comprises four biolog-
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ical processes, namely uptake, distribution, metabolic transformation, and
elimination of the chemical compound.

Uptake consists of two subprocesses: intake and absorption. The result
of intake is that the chemical enters either the lung cavity or the gastroin-
testinal tract. The intake rate depends on the exposure conditions and on
the physiology of the animal. For instance, if administration of the chemical
is via food, the concentration of the chemical in food and the food inges-
tion rate determine the intake rate. Intake is bypassed when the chemical
is administered directly into the stomach (gavage). Furthermore, intake is
absent when the chemical is applied directly on the skin.

Once the chemical is in a body cavity or on the skin, absorption may take
place. The result of absorption is that the chemical actually enters the body.
Chemicals administered via injections bypass both intake and absorption.
There are two major absorption mechanisms, namely passive diffusion and
carrier-mediated transport. The latter mechanism is saturable, whereas the
former is not. The actual absorption rate, in contrast to the intake rate,
depends on physico-chemical properties of the chemical, such as charge and
molecular structure [194, 226]. As it also depends on characteristics of the
tissue involved (e.g., absorption surface-area), the uptake route is important
for the absorption rate. For instance, absorption from the lungs is usually
rapid.

Distribution involves partitioning of the chemical among different body
parts. It starts from the site where the chemical enters the body. Chemicals
absorbed from the gastrointestinal tract first pass through the liver, whereas
chemicals absorbed from the lungs directly enter the bloodstream. Conse-
quently, uptake via the lungs usually results in a quick distribution among
major organs [226]. Indeed, the site of entry is important for both the dis-
tribution rate and the final disposition of the chemical. Distribution of the
chemical out of the bloodstream into the target tissues depends on physico-
chemical properties of the chemical (e.g., lipophilicity) and on the relative
characteristics of the tissues (e.g., relative size and lipid content). As the
characteristics of the tissues vary with age, the same holds for partitioning
among body parts [240].

Living organisms have a wide range of enzymatic defense mechanisms
against toxic compounds. The enzymes involved usually convert lipophilic
chemicals into more hydrophilic and, therefore, easier excretable metabo-
lites. Environmental and occupational (pro)carcinogens are also subject to
enzymatic transformation [76, 157]. Metabolism of a carcinogen can give rise
to transformation into non-carcinogenic metabolites (detoxication). The ef-
fect of metabolic transformation on the carcinogenic response of chemicals
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is not always favorable, however. Indeed, metabolism of a pro-carcinogen
can give rise to an active carcinogen (activation).

Several organs, including skin, kidney, and lung, have the ability to
transform chemicals. However, the organ that has the largest capacity for
metabolic transformation is the liver [226]. As an effect of detoxication in the
liver, the carcinogenicity of a particular chemical is often less by oral inges-
tion than by other uptake routes. As an effect of activation in the liver, oral
ingestion of (pro)carcinogens often results in the development of tumors in
this organ. Thus, the uptake route influences metabolic transformation and,
therefore, carcinogenic response. This influence may even cause a chemical
to be carcinogenic only when uptake occurs via a particular route. A clear
example is the situation in which the gastrointestinal microflora transforms
a chemical into a potent carcinogen [70].

Detoxication of procarcinogens and carcinogens is clearly an important
determinant for the internal concentration and, thus, for the carcinogenic
response. Another important determinant is elimination of procarcinogens,
carcinogens, and their metabolites from the body. The major elimination
routes are urinary and biliary excretion. These routes can saturate, leading
to accumulation [226].

II.2.2 Tumor induction

In this subsection we briefly deal with the biological processes underlying
the transformation of normal cells into cancer cells. However, we neither
attempt to summarize the latest advances in cancer research, nor pretend
to deal with all the complexities of the genesis of the disease. Rather, we
focus on results used as assumptions in the mathematical models discussed
in Section II.3.2.

The current view of tumorigenesis, as expressed by Hanahan and Wein-
berg (2000), postulates that “tumor development proceeds via a process
formally analogous to Darwinian evolution, in which a succession of genetic
changes (. . . ) leads to the progressive conversion of normal cells into cancer
cells.” This model, first proposed by Nowel (1976), is illustrated in Fig-
ure II.1 for a tumor that originates from one single normal cell. This is con-
sistent with the observation that most human and animal tumors are mon-
oclonal in composition [173, 57]. The genetic changes shared by all tumor
cells accumulate along the single lineage preceding the final single founder
cell, whereas heterogeneous changes occur during tumor growth [232] (see
Figure II.1).

It is the progressive accumulation of multiple genetic changes that un-
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derlies the multi-step nature of tumorigenesis [79, 172]. As many genes are
targets of these changes, cancer is essentially a complex genetic disease. Cel-
lular genes implicated in tumor development are usually referred to as cancer
genes. It is possible to distinguish between two classes of cancer genes, those
directly controlling cell proliferation (Class I) and those maintaining the in-
tegrity of the genome (Class II). The former include proto-oncogenes and
tumor suppressor genes. In contrast to changes in Class I genes, a change
in the normal activity of a Class II gene leads to cancer as a secondary
effect. A change in activity of a cancer gene may concern either a change
in the level of gene expression (e.g., [89, 248]) or a disruption of the gene
product’s biological behavior (e.g., [135, 136]). These changes may take
place as the ultimate consequence of genetic events such as point mutations,
rearrangements or major chromosomal aberrations. Recent studies further
indicate that epigenetic events controlling the level of gene expression may
play a more important role in tumorigenesis than was previously thought
(see [103, 148, 265]).
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Figure II.1: Tumorigenesis. The start point is the moment at which one
normal cell enters the process of tumor evolution. Any down pointing arrow
represents the acquisition of one or more new physiological traits, each con-
ferring an additional growth advantage [79]. The single founder cell is the
last bottleneck along the evolutionary pathway [232]. The genesis of this
cell indicates the beginning of final clonal expansion (tumor growth). In ad-
dition to the traits acquired in earlier stages, one or more alterations may
occur during tumor growth leading to an increase in malignancy (tumor
progression).

The number of changes required to produce a tumor is specific to a particular
tumor type. Indeed, the number of cancer genes involved in tumorigenesis
varies from one tumor type to another [16, 97]. Moreover, the number
of alleles whose activity must change to lead to a phenotypic effect varies
from one cancer gene to another. Aberrant genes that act in a recessive
manner only have a phenotypic effect when present in the homozygous or
hemizygous state, whereas aberrant genes that act in a dominant manner
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exert a phenotypic effect even when present in the heterozygous state. With
regard to the temporal sequence of the changes, on the one hand it has been
proposed that the total accumulation of genetic alterations, rather than their
relative order, is most important for tumorigenesis (e.g., [57]). On the other
hand there is evidence that the nature and order of genetic changes can have
impact on both tumor morphology and the likelihood of tumor progression
(e.g., [102]).

Action of chemical carcinogens

Once present in a target tissue, chemical carcinogens can interfere with the
process of tumorigenesis at one or more stages. Whichever mechanism is
involved, tumor induction implies the interaction of the chemical with one
or more cellular components. If the interaction results in DNA damage, the
chemical is said to be ‘genotoxic.’ The potency of a genotoxic compound
depends not only on its capacity to cause DNA damage, but also on the rate
of cell replication and on the cell’s capacity to repair the specific damage
inflicted by the chemical compound [19, 147]. Non-genotoxic carcinogens
are able to act without causing DNA damage [99, 148]. For instance, they
can induce uncontrolled cell proliferation by altering inter-cellular commu-
nication [254, 200]. As a final remark, we notice that a carcinogen can have
more than one mode of action [238, 243]. For example, a chemical can act
as a mutagen at low doses, while on top of this it may be cytotoxic at high
doses [7, 69]. See also Chapter I (Section I.5.4).

II.2.3 Tumor growth

Individual tumor cells are not immortal. Death of tumor cells occurs through
the processes of apoptosis or necrosis [142, 220]. The latter may take place
as a consequence of insufficient supply of nutrients, or as a result of excessive
accumulation of metabolic waste products. Survival of chemically induced
tumor cells, however, is not only subject to natural death processes: they
may also be killed by the immune system of the host organism [176, 196].
The existence of cell loss implies that a tumor clone may regress prior to
reaching a detectable size (see Figure II.2).

Even if they are monoclonal in origin, tumor cells are often heteroge-
neous with respect to properties such as metabolism, cell division rate, and
antigenicity. During tumor growth, tumor cells become heterogeneous as a
result of the occurrence of additional genetic alterations (tumor progression).
The phenotypic heterogeneity of tumor cells is also the result of significant
differences among their local environments [215] which define, for instance,
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availability of nutrients. A limited supply of nutrients or oxygen commonly
occurs in solid tumors, giving rise to a necrotic core [220]. The location of
a cell within the tumor may determine its vulnerability to attacks of the
immune system. Thus, phenotype and location of individual cells determine
the rates of cell gain and cell loss within the tumor.

   Size

Proliferation

Initial Tumor
Size

Final Tumor

    Apoptosis Necrosis

RejectionImmune

Figure II.2: Tumor growth. Tumor size increases due to cell pro-
liferation. The cell-cycle time and growth fraction determine the
rate at which cells are added to the tumor. Tumor size decreases
due to cell death and cell killing. The final tumor size may be
below the detection limit.

For solid tumors it is possible to distinguish between two growth phases.
During the initial phase, or avascular growth phase, the tumor cells obtain
nutrients and oxygen by diffusion from the surrounding tissue. When the tu-
mor is no longer able to obtain sufficient nutrients by diffusion alone, tumor
cells may start to produce several factors to stimulate angiogenesis [63, 106].
This defines the beginning of the so-called vascular tumor growth phase.
During this second phase, tumor cells obtain oxygen and nutrients from the
newly formed tumor blood vessels. After vascularization the tumor may
become larger.

Once a tumor reaches a detectable size, its growth may be quantified
by measuring tumor size as a function of time. However, only few body
sites allow more than one measurement of tumor size [212]. The sparsity of
data on human tumor growth is even more accentuated because treatment is
rarely withheld [213]. As a consequence, available experimental data mainly
relate to growth of tumors in vitro (tumor spheroids), growth of tumors
inoculated in animal models, or growth of natural tumors in vivo during a
short period of their growth ontogeny.

Experimental results have revealed that growth of solid tumors in vivo

is often characterized by a late phase of declining growth rate [212]. The
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same growth pattern has been observed in studies on tumor spheroids in
vitro [215]. The growth deceleration has been attributed to several factors
such as increase in cell loss, increase in cell-cycle time or decline in the growth
fraction [127, 221]. The growth fraction, defined as the ratio of proliferating
cells to total cells [156], is a concept frequently used to compare tumors in
terms of their growth capacity. Another concept used for this purpose is
the tumor doubling time, that is the time a tumor needs to double its size.
Tumor doubling time (T2) is a useful concept if a tumor grows exponentially,
because it is then a constant. As soon as exponential growth is no longer
realistic, the tumor doubling time becomes less informative.

II.2.4 Effects

In many carcinogenicity tests the time to tumor onset is not observable. The
presence of a tumor can only be detected after the death (or sacrifice) of the
animal. Thus, though the goal of carcinogenicity studies is to evaluate tumor
incidence, one has to confront the topic of tumor lethality. How a tumor
causes a decrease in survival is not always clear. The size of the tumor is
relevant, but not the cause in itself. Rather, when a tumor reaches a certain
size it may either impair the normal function of the host organ [108], or
exhaust the organism due to its unrestrained use of resources. Moreover, the
probability of invasion and metastasis, which are the most life-threatening
aspects of tumor progression [137, 256], increases with the size of the primary
tumor [107]. The detrimental effect of a tumor thus depends on its size, but
it may also depend on its location in the body. For instance, it is unlikely
that a brain tumor causes death through attrition.

II.3 Overview of existing models

To begin with, we want to distinguish between a conceptual model, a mathe-
matical model and a mathematical description. We view a conceptual model
as a set of assumptions regarding a certain phenomenon. If the conceptual
model is translated into equations, it becomes a mathematical model. The
mathematical model thus comprises both the mathematical description and
the underlying assumptions (i.e., the conceptual model). Note that this
accounts for the possibility that two different mathematical models share
the same mathematical description. An good example of a mathematical
description that appears in different contexts is the Weibull equation [245]:

f(y) = 1− e−vy
τ

(II.1)
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where y is some variable. Sometimes f(y) describes the fraction of tumor
bearing animals as a function of dose (e.g., equation II.4), sometimes it
describes the fraction of tumor bearing animals as a function of time (e.g.,
equation II.5). That is, the interpretation of the variable y differs. The
associated conceptual models are clearly different as they concern different
phenomena. More confusing is the situation in which two models for the
same phenomenon result in an analogous mathematical description. Despite
their outward similarity, we consider such models to be different, because
they differ in their underlying assumptions. Naturally, such models are
indistinguishable when fitted to experimental data.

II.3.1 Kinetic models

Although an organism is exposed to a certain environmental concentration
of a (pro)carcinogen, the relevant concentration for tumor induction is at the
target site. This implies that we have to relate the external concentration
to the internal. Kinetic models deal with this problem.

Any kinetic model consists of a set of mass balance equations, each equa-
tion describing the change in the amount of chemical in a body ‘compart-
ment.’ A compartment does not necessarily correspond to an organ. For
example, the most simple kinetic model treats the entire body as one com-
partment. The models assume that the chemical is well mixed within each
compartment, so it makes sense to define the concentration of the chemical
in each compartment. The concentration of the chemical in compartment i
is Ci = Qi/Vi, where Qi and Vi denote the mass of the chemical and the
volume of that compartment, respectively. A general mass balance equation
for the change in Qi is:

Q′
i = flux in + fluxma − flux out − fluxmd (II.2)

where fluxma stands for production flux (metabolic activation) and fluxmd
for the metabolic-detoxication flux. The actual expressions for the fluxes
depend on the specific choice for the kinetic model. In steady state the total
positive flux equals the total negative flux, and the mass of the chemical in
the compartment is constant.

To give some flavor of kinetic models, we here briefly illustrate the linear
one-compartment model that treats the whole body as one compartment.
If no metabolic transformation takes place, the amount of chemical in the
body is determined by the uptake and elimination processes only. The model
assumes that both uptake and elimination follow simple linear kinetics or,
equivalently, it assumes that flux in is proportional to external concentration,
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while flux out is proportional to internal concentration. Since the physics of
transport suggests that flux in and flux out are also proportional to the areas
of the surfaces involved in absorption and excretion [117], equation II.2
yields:

Q′ = flux in − flux out = δνAνd− δηAηC

where d represents the external concentration, C the internal concentration,
and Aν and Aη the effective surface-areas for absorption and excretion, re-
spectively. The interpretation of the proportionality constants δν and δη
depends on the uptake and elimination routes and on the transport mecha-
nisms.

Body growth can substantially affect the kinetics of a chemical and, thus,
its internal concentration. Indeed, if the organism’s size (V ) is not constant,
the effective surface-areas Aν and Aη are also functions of time. Moreover,
due to the increase in size dilution of the chemical occurs. This implies that
the change in concentration is not simply proportional to the change in mass
of the chemical, which in mathematical terms means C ′(t) 6= Q′(t)/V (t). For
a discussion on a one-compartment model that accounts for body growth, see
references [117, 119]. We here focus on the simple situation where (i) the
organism does not grow, (ii) the external concentration is constant, and
(iii) the initial internal concentration is zero. Deviation from these condi-
tions complicates the mathematical expressions somewhat. These complica-
tions are beyond the aim of our presentation.

If the organism’s body size remains constant, C ′(t) equals Q′(t)/V and
the effective surface-areas Aν and Aη are constant. The mass balance equa-
tion above can then be rewritten as C ′(t) = νd− ηC(t), with ν = δνAν/V
and η = δηAη/V the (constant) uptake and elimination coefficients, respec-
tively. The solution of this linear differential equation is C(t) = ν

η (1− e−ηt)d,
which satisfies C(0) = 0. The equation gives a saturating curve when inter-
nal concentration is plotted against exposure time (see Figure II.3). Af-
ter some time the term e−ηt dies out, and the internal concentration be-
comes proportional to the external concentration with proportionality co-
efficient ν/η. In ecotoxicology this ratio is usually called bioconcentration
factor [119, 131, 194]. The steady-state proportionality between external
and internal concentration is a generic characteristic of linear compartment
models. This property breaks down, for example, if metabolic transforma-
tion follows the more realistic nonlinear Michaelis-Menten kinetics.
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Figure II.3: 1-compartment model.
Internal concentration as a function
of exposure time. Parameter values:
ν = 1 and η = 3. From top down
wards d equals 12, 10, 8, 6, and
4, respectively. For each curve, the
asymptotic maximum internal con-
centration is given by Cmax = d/3.

If any of the assumptions that underly the one-compartment model does
not hold, a multi-compartment model can be used. Two main approaches
have been pursued in developing multi-compartment kinetic models [9, 35],
namely data-based compartmental modeling and physiologically-based com-
partmental modeling (PBPK, where PK stands for Pharmaco-Kinetics).
The former includes empirical models, whose compartments often lack a bio-
logical interpretation. The latter includes biologically-based models, whose
compartments correspond more closely to anatomical structures. Indeed,
a compartment comprises a single organ, or a group of organs that share
relevant physiological features.

Most PBPK-models define a central (blood) compartment that is re-
sponsible for the distribution of the chemical (e.g., [158]). The amount of
chemical entering (or leaving) a compartment via the circulatory system de-
pends on the concentration in the blood and in the compartment, and on
the solubility of the chemical in the blood and in the compartment. If dis-
tribution among organs is fast in comparison with uptake and elimination,
blood flows can be omitted from the model [160]. The alternative is that
blood flows function as model parameters.

Even with a small number of compartments, PBPK-models require a
substantial number of parameters [9]. These include physiological param-
eters such as blood flows, pulmonary ventilation, and organ volumes, as
well as biochemical and physico-chemical parameters such as partition coef-
ficients, tissue clearances, and the rates of metabolism [9, 10]. As they have
a biological interpretation, most of them can be directly measured by ex-
perimental techniques. The remaining parameters have to be estimated. In
empirical models all the parameters, as they lack a biological interpretation,
have to be estimated from experimental data.
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II.3.2 Tumor induction models

The models we presented so far were all deterministic. From here on they
are either deterministic or stochastic. A deterministic model yields a single
outcome, whereas a stochastic model yields multiple outcomes and assigns a
probability to each of the different outcomes. Before going into the descrip-
tion of the models we briefly introduce a few basic concepts that crop-up in
most of the stochastic models. Among these concepts are cumulative dis-
tribution function, survivor function and hazard rate. To introduce these
concepts, we consider a relevant example.

Let T denote a variable representing the ‘time to first tumor.’ The
random variable T , which may adopt any positive value, is exhaustively
characterized by its cumulative distribution function FT (t) = prob{T ≤ t}.
This expression reads ‘the probability that the time to first tumor is less than
or equal to t.’ Ignoring mathematical exactness, this amounts to a prediction
of the fraction of tumor bearing animals at time t. Closely related to FT
is the survivor function GT (t) = 1− FT (t) = prob{T > t} that provides ‘the
probability that an individual is tumor free at time t.’ Finally, let hT denote
the hazard rate. Intuitively, the hazard rate concerns the probability per
unit time that a tumor develops in a individual of age t, given that the
individual is still tumor free. Mathematically, the hazard rate relates to the
survivor function as follows:

GT (t) = e−
∫ t
0
hT (s)ds (II.3)

For further details on this expression, see Section III.5. As a consequence,
if the hazard rate is known, the survivor function and the cumulative distri-
bution function FT (t) = 1−GT (t) are also known, and vice-versa. Hence,
the hazard rate constitutes an alternative way to exhaustively characterize
a random variable. Most of the stochastic models described below provide
expressions for the hazard rate.

The cumulative distribution function, the survivor function, and the haz-
ard rate are denoted in the example above as FT , GT , and hT respectively,
where the subscript indicates the random variable. The same concepts can
be defined in a more general sense for any random variable X (for fur-
ther details see, for example, Cox and Oakes (1984)). For example, in the
next section we will use FU , where U is a random variable with the same
dimension as the external dose. Finally, we notice that the biological and
mathematical interpretations of survival only coincide if the random variable
represents ‘time to death of an individual.’
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II.3.2.1 Tolerance distribution models

The models we present in this subsection are often motivated by the concept
of tolerance distribution [91]. To introduce this concept, let us consider a
group of mice that have been exposed to a chemical for a particular period of
time. Any tolerance distribution model treats the group of mice as hetero-
geneous with respect to their susceptibility to the chemical: each individual
has a different threshold-dose below which no response occurs. No hypothe-
sis about possible mechanisms underlies such a threshold. The models treat
the ‘threshold-dose of an individual’ (or tolerance, for short) as a random
variable, say U .

For the given exposure time, let P (d) denote the probability that an
individual responds to a dose d (i.e., P (d) amounts to a prediction of the
fraction of tumor bearing animals). If the group of mice have been exposed
to a dose d, only the animals with threshold dose below d will respond.
Thus, the probability that an individual responds is prob{U ≤ d} = FU (d),
that is, in this context P (d) = FU (d). The actual expression for FU depends
on the distribution of U , the so-called tolerance distribution.

Any continuous statistical distribution can be used as tolerance distri-
bution, the only constraint being that it covers only positive values (d ≥ 0).
Experimental results often show that a few animals have a very high toler-
ance. To account for this, skewed distributions are preferred. The choice
for one or another distribution is further motivated by the desired simplicity
of the expression for FU . The log-normal, log-logistic and Weibull distribu-
tions offer the desired shape with relatively simple expressions. Therefore,
these are the statistical distributions most frequently used in dose-response
analysis. The log-normal, log-logistic and Weibull distributions give rise to
the log-probit, log-logistic and dose-Weibull models, respectively.

The log-probit model (frequently abbreviated to probit) assumes the
logarithm of the tolerance has a normal distribution [37]. The tolerance
(U = eW , with W the logarithm of the tolerance) then has a so-called log-
normal distribution. The resulting cumulative distribution function for U
(see Figure II.4) is often expressed in terms of two parameters, θ1 and θ2,
which relate to the mean and the variance of W as shown in Table II.1.
The values of parameters θ1 and θ2, which have to be estimated by fitting
experimental data, implicitly depend on the duration of the exposure. This
follows from the fact that although time does not figure in the model, longer
exposure times increase the chances of an animal developing a tumor.

The log-logistic model (usually called logit, on the analogy of probit)
assumes that the tolerance U has a log-logistic distribution or, equivalently,
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that the logarithm of the tolerance W has a logistic distribution. The re-
sulting cumulative distribution function for U is often expressed in terms
of two parameters, %1 and %2, which relate to the mean and the variance
of W as shown in Table II.1. Like in the log-probit model, the values of
the parameters implicitly depend on the duration of the exposure. It can
be seen from Figure II.4 that the logit and log-probit models provide very
similar predictions for the fraction of tumor bearing animals. The choice
among them is therefore largely arbitrary. Motivations for the use of one
or the other are rarely given. We suspect that the choice for a particular
tolerance distribution is mainly due to habit.
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Figure II.4: Fraction of tumor
bearing animals as a function of
dose, P (d). Solid line: prediction
according to the log-probit model
(W normally distributed). Dashed
line: prediction according to the logit
model (W logistically distributed).
For both distributions the underly-
ing stochast W has zero expectation
and unit variance (W represents the
logarithm of the tolerance).

Finally, the ‘dose-Weibull model’ assumes that the tolerance has a Weibull
distribution. The resulting model is:

P (d) = 1− e−λd
β

(II.4)

where again the values of the parameters implicitly depend on the dura-
tion of the exposure. Although equation II.4 is the usual representation of
the model, there is an alternative in which the exponent λdβ is replaced
by (d/d∗)

β . The motivation for this alternative representation is that in
equation II.4 the dimension of λ depends on the value of β. As the value
of β derives from experimental data, the dimension of λ varies depending
on the data considered, which renders the parameter λ uninterpretable. In
contrast, the parameter d∗ has always the same dimension as d, and has the
interpretation of a reference dose. The reference dose must depend on the
exposure time, as zero exposure time cannot result in a tumor. For a given
exposure time, the corresponding d∗ is the level of exposure at which the
fraction of tumor bearing animals is P (d∗) = 1− e−1 ≈ 0.632.
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Table II.1: Log-probit and log-logistic models.

Let W denote the logarithm of the tolerance, E[W ] the mean, and Var [W ]
the variance. Let us assume that W has a normal distribution and let us
denote the mean and variance as µ and σ2, respectively. For the log-probit
model, FU can then be written as below, with θ1 = µ/σ and θ2 = 1/σ. Thus,
FU (d) = φ(−θ1 + θ2 ln d), where φ represents the cumulative distribution func-
tion of the standard normal distribution. Alternatively, let us assume thatW has
a logistic distribution and let us denote the mean and variance as µ and π2z2/3,
respectively. For the log-logistic model, FU can then be written as below, with
%1 = µ/z and %2 = 1/z. Thus, FU (d) = ψ(−%1 + %2 ln d) where ψ represents the
logistic function.

MODEL W E[W ] Var [W ] FU

log-probit normal µ σ2 FU (d) =
∫ −µ

σ
+ 1
σ
ln d

−∞ (2π)−
1
2 e
−x2

2 dx

=
∫ −θ1+θ2 ln d
−∞ (2π)

−1
2 e

−x2

2 dx

= φ(−θ1 + θ2 ln d)

log-logistic logistic µ π2z2

3 FU (d) =
(

1 + exp{µz − 1
z ln d}

)−1

=
(

1 + e{%1−%2 ln d}
)−1

= ψ(−%1 + %2 ln d)

II.3.2.2 Empirical ‘time-to-tumor’ models

Survival analysis is the branch of statistical modeling that deals with the
analysis of failure time data. The failure time of an individual is the time
until a particular event occurs. Any event that occurs at most once to each
individual defines a failure time. Because the occurrence of a first tumor is
such an event, survival analysis techniques can be applied to time-to-tumor
data.

Any continuous statistical distribution can be used as failure time distri-
bution, the only constraint being that it covers only positive values (t ≥ 0).
As for the tolerance models the log-normal, log-logistic and Weibull are the
statistical distributions most frequently used in time-response analysis. This
should not come as a surprise, as again the only motivation for their choice
is in the shape and simplicity of the distributions. The Weibull distribution,
for instance, is now given by:

FT (t) = 1− e−at
b

(II.5)

where the variable T represents the time-to-tumor. Time t (and not dose d)
is now the independent variable. Therefore, we refer to this expression
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as ‘time-Weibull model’ in order to avoid confusion with the dose-Weibull
model above. The values of parameters a and b, which have to be estimated
by fitting experimental data, implicitly depend on the level of exposure.

II.3.2.3 One-hit and multi-hit models

Let us again consider a group of mice that have been exposed to a chemi-
cal for a particular period of time. Contrary to the tolerance distribution
models discussed above, the hit-models assume that the group of animals
is homogeneous with regard to their susceptibility to a process generating
‘hits.’ One might think of a ‘hit’ as any of the changes discussed in Sec-
tion II.2.2. Let us assume that an individual develops a tumor when a hit
occurs, and that the occurrence of a hit is a random event. In this special
case the random variables ‘time to first hit’ and ‘time to first tumor’ are
thus interchangeable. As long as a mouse is still tumor free, it may develop
a first tumor with a certain probability during the next (small) time unit. In
the simplest scenario, this probability per time unit (hit-rate) remains con-
stant; the variable ‘time to first hit’ then has an exponential distribution,
and thus:

hT (t) = µ

FT (t) = 1− e−µt
(II.6)

where T represents ‘time to first hit (or tumor),’ and µ the hit rate. The haz-
ard rate hT and the cumulative distribution function FT relate to each other
as explained in the introduction to Section II.3.2. Although equation II.6 is
often referred to as the one-hit model in survival analysis, we refer to it as
the one-hit failure-time model (OHFT-model) to avoid confusion with the
one-hit dose-response model presented below. The OHFT-model is char-
acterized by a constant hazard rate, µ. This implies that susceptibility of

developing a tumor does not increase with time (age). Note, however, that
the (cumulative) chances of developing a tumor do increase with time (age)!

A natural extension of the model above is to assume that more than
one hit is required before a tumor develops, say k hits. In this special case
the random variables ‘time to the k-th hit’ and ‘time to first tumor’ are
interchangeable. With the occurrence of a first hit, the process generating
hits does not change, so that the hit-rate µ still is the same. This assumption
implies that the variable ‘waiting time between the first and the second hit’
also has an exponential distribution with hazard rate µ, and more generally,
any waiting time between two successive hits has an exponential distribution
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with hazard rate µ (see Figure II.5). In this context the parameter µ is the
(mean waiting time)−1.

µ

1

t1

µ

2

t2

k − 1

tk−1

µ

k

tk
time

Figure II.5: The multi-hit failure-time model. It is assumed that the
random variable ‘waiting time between two successive hits’ has an expo-
nential distribution with parameter µ (k represents the number of hits
required for tumor development; ti represents the time until the i-th hit).
Note that the hit-models are on the individual level, so µ is a probability
of hit per time unit per individual.

The variable ‘time to the k-th hit’ now has a so-called Erlang distribution.
For further details see Table II.2. Although this extension of the OHFT-
model is often referred to as multi-hit model in survival analysis, we refer
to it as multi-hit failure-time model (MHFT-model) to avoid confusion with
the multi-hit dose-response model presented below.

The ‘hit’ models with dose-dependent parameters

The hit models described above do not yet account for the level of exposure,
or dose. Obviously, the dose is an important determinant of the carcinogenic
effect of the chemical, so it cannot be ignored. To account for the dose we
have to specify its relationship with the hazard rate. Hanes andWedel (1985)
use the most simple approach to do this: they assume that the internal
concentration is constant and proportional to the constant external dose
(see Section II.3.1), and that the hit-rate is proportional to the chemical’s
internal concentration [80]. These assumptions lead to a constant hit-rate
proportional to the external dose. The hazard rate, which equals the hit-
rate in the one-hit failure-time model (equation II.6), then becomes αd.
Substitution of the expression for the hazard rate in equation II.6 yields:

FT (t, d) = 1− e−αdt (II.7)

The probability that an animal exposed to a dose d develops a tumor before
time t thus is a function of both exposure time and dose. Consequently,
for a single fixed exposure time t∗ it becomes a function of external dose
alone. The fixed exposure time now plays the role of a model parameter
with a known value. In sum, FT (t

∗, d) provides a prediction of the fraction
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Table II.2: Multi-hit models.

If any waiting time between two successive hits has an exponential distribution
(with parameter µ), the variable ‘number of hits in a fixed time interval’ has
a Poisson distribution (with parameter µt), and vice-versa. Let T denote the
variable ‘time to the k-th hit’ (or ‘time to first tumor’) and let Z denote the
variable ‘number of hits in a time interval of length t’. The event in which Z
is less than k is equivalent to the event in which T is greater than t. That
is, prob{Z < k} = prob{T > t} = GT (t). Further, FT (t) = 1 − GT (t) =

1 − prob{Z < k} = 1 −∑k−1
i=0

e−µt(µt)i

i! , because Z has a Poisson distribution.
This expression can be written in the form shown below, where Γ represents the
Gamma function.

FT (t) =

∫ t

0

µksk−1e−µs

Γ(k)
ds (II.9)

For a fixed exposure time t∗, the MHFT-model gives rise to the multi-hit dose-
response model:

P (d) =

∫ d

0

λkxk−1e−λx

Γ(k)
dx

with µ = αd and λ = αt∗.

of tumor bearing animals after an exposure period t∗, given an exposure to
a dose d:

P (d) = 1− e−λd (II.8)

where λ = αt∗ and P (d) = FT (t
∗, d). Because the hit-rate µ has the inter-

pretation of the inverse of mean waiting time, and µt∗ = λd, the product λd
stands for the mean number of hits in a time interval of length t∗. Equa-
tion II.8 is referred to as one-hit model in dose-response analysis. Normally
the one-hit model is only used because of its mathematical simplicity, and
an interpretation of the model is rarely given.

Likewise, substitution of µ = αd into the expression for the MHFT-model
yields the so-called multi-hit dose-response model (see Table II.2). If the
number of hits required for tumor development k is equal to one, the multi-
hit model reduces to the one-hit model (equation II.8). Thus, the multi-hit
model dose-response is an extension of the one-hit dose-response model.
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Above it was assumed that the hit-rate is proportional to the dose,
µ = αd. Substitution of this relation in equation II.6 gave rise to the one-hit
dose-response model. Other assumptions are also possible. For instance, one
might argue that the hit-rate is proportional to a power of dose, µ = αdβ .
Substitution of this alternative expression for the hazard rate in equation II.6
gives rise to the same mathematical expression for P (d) as the dose-Weibull
model (equation II.4) with λ = αt∗.

II.3.2.4 Multi-stage models

Many epidemiologic studies have revealed that age-specific cancer-incidence
rates increase with age. Plots of the age-specific incidence rate against age
yield straight lines when logarithmic axes are used. This suggests that age-
specific incidence rates increase proportionally with a power of age. To
explain this result, Nordling (1953) proposed that several mutations in the
same cell are required to induce a tumor: “If three mutations were required,
a cancer frequency proportional to the second power of age might be ex-
pected, with four mutations to the third power of age, and so on.” In 1954,
Armitage and Doll examined Nordling’s work and presented a mathemat-
ical formulation of his hypothesis [11]. The resulting model is now widely
known as the Armitage-Doll multi-stage model (AD-model), one of the first
mathematical models for carcinogenesis.

N Y1 M
1 2 k

Figure II.6: Armitage-Doll model. A normal cell (N) goes through sev-
eral intermediate stages before becoming a tumor cell (M). The tran-
sition from any state to the next is determined by the occurrence of a
specific change. An intermediate cell type i (Yi) is a cell that has in-
curred exactly i changes. k denotes the number of changes required to
transform a normal cell into a tumor cell.

The AD-model assumes that several successive ‘changes’ in one cell are re-
quired to transform it into a tumor cell (see Figure II.6). Nordling maintains
that the changes are mutations, but this specification is overly restrictive for
the mathematical development of the AD-model [11]. The only constraint
on the nature of the changes is that they must be irreversible and take place
independently of each other. Let us assume that k changes are required for
transformation of a normal cell into a malignant one. This implies that a
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normal cell (N) goes through k − 1 intermediate stages before becoming a
tumor cell (M). For any i < k, an intermediate cell type i (Yi) is a cell that
has incurred exactly i changes. With regard to the time course, the AD-
model postulates that the waiting time between any two successive changes
is exponentially distributed with transition rate pi (see Figure II.7). Finally,
the AD-model posits that the changes must proceed in a unique order. None
of the other multi-step models impose restrictions on the order of the steps
and, therefore, the last assumption characterizes the AD-model.

One can translate the above assumptions into an expression for the prob-
ability that a certain cell becomes a tumor cell before time t (see, for exam-
ple, reference [167]). One needs three additional assumptions to extrapolate
this result from single cells to entire organisms. First, one has to assume
that cells transform independently of each other. Table II.3 shows how this
assumption is used. Second, one has to know which cells are susceptible
to the changes. According to the so-called stem cell theory, only prolifera-
tive cells qualify for this. The effective number of normal cells thus equals
the number of ‘stem cells.’ The third and final assumption maintains that
the number of stem cells is constant. These assumptions, together with the
other assumptions of the AD-model, lead to an expression for the probabil-
ity that the time to first tumor cell is less than or equal to t. In general,
this probability differs from the probability that the time to first tumor is
less than or equal to t. However, on the assumption that a tumor cell con-
stitutes a detectable tumor (for a further explanation on this assumption,
see Section II.3.3), the same expression describes both probabilities. This
expression, usually referred to as the AD exact formula, is a rather awkward
page-filling equation (see, for example, reference [167]). Table II.3 provides
a derivation of the exact formula for a two-stage model.

The original AD-model is an approximation of the AD exact formula.
It holds if any transition rate is small in comparison with the organism’s
life span, and malignant transformation is a rare phenomenon. Table II.3
includes some explanatory information on these assumptions and their im-
plications. The approximate expression for the AD-model is given by:

hT (t) ≈ µtk−1

FT (t) ≈ 1− e−
µ
k
tk

(II.10)

where the parameter µ is proportional to the product of the transition
rates pi and proportional to the number of stem cells. According to this
expression, an age-specific incidence proportional to a (k − 1)-th power of
age indicates that malignant transformation requires k steps, and vice-versa.
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The mathematical expression for the survivor function (equation II.10) is a
special form of the time-Weibull model (equation II.5), with b = k an in-
teger. Moreover, if the number of required changes to transform a normal
cell into a tumor cell is one, the AD-model (equation II.10) reduces to the
OHFT-model (equation II.6).

p1

1

t1

p2

2

t2

k − 1

tk−1

pk

k

tk
time

Figure II.7: Comparison of the AD-model with the MHFT-model. k, number
of changes required for malignant transformation; pi transition rate i; ti time to
occurrence of the i-th change. (a) The AD-model is a model on the cellular level,
whereas the MHFT-model is a model on the individual level. Indeed, pi is rate per
time per cell, whereas µ is a rate per time per individual. (b) In the AD-model
the waiting time for a cell to go from state i to state i+ 1 has an exponential
distribution with parameter pi+1, whereas in the MHFT-model any waiting time
for an individual to go from any state to the next has a exponential distribution
with the same parameter µ. (c) In the AD-model the changes must take place in
a unique order, whereas in the MHFT-model no restriction is placed on the order
of the hits.

The AD-model with dose dependent parameters

So far we have not mentioned the level of exposure. To use the AD-model in
risk assessment, one needs to assume something about the relation between
the hazard rate and the dose. For instance, one might argue that each tran-
sition rate is proportional to external dose, pi = αid. More frequently each
transition rate is assumed to be a linear function of dose [41], pi = ai + bid,
where the ai have the interpretation of background transition rates (see Sec-
tion II.3.2.6). FT can then be viewed as a function of exposure time and
dose. Moreover, the probability of tumor at a fixed exposure time t∗ can be
seen as a function of dose only:

P (d) = 1− e−
∑k

i=0 qid
i

(II.11)

where any compound parameter qi is a product of (t∗)k, the number of nor-
mal cells, and a function of the coefficients aj and bj . Please note that
this approach disregards the step from an external dose to an internal dose.
This is only justified when these two quantities are constant and propor-
tional to each other. The only kinetic models that satisfy this constraint are



46 II. MODELING CHEMICAL CARCINOGENESIS

linear compartment models (see Section II.3.1). Equation II.11 is known as
the linearized multi-stage (LMS) dose-response model [141]. If the dose is
low, the following approximation holds: P (d) ≈ 1− e−q0−q1d. An analogous
expression can be obtained from the OHFT-model (equation II.6) by assum-
ing that the hit rate is a linear function of dose. See also Section I.5.4 on
low-dose extrapolation.

Table II.3: Multi-stage models.

Let N0 denote the number of susceptible normal cells (stem cells) and J the
random variable ‘time until a certain cell gives rise to a tumor cell.’ The prob-
ability that an organism is tumor free at time t equals the probability that not
any cell transforms into a tumor cell before time t. Under the assumption that
cells transform independently of each other, this implies that GT (t) equals the
product of N0 times GJ (t) or, equivalently, GT (t) = GJ(t)

N0 = (1− FJ(t))N0 .
In terms of the hazard rates this means hT (t) = N0hJ(t).

Exact formula: If two changes are required to transform a certain cell, the
time to transformation equals the sum of of the waiting time until the first
change (K1) and the waiting time between the first and the second change
(K2). The variables K1 and K2 follow an exponential distribution with pa-
rameters p1 and p2, respectively. F

′
J can be expressed in terms of F ′

K1
and F ′

K2
,

as follows: F ′
J(t) =

∫ t

0
F ′
K1

(s)F ′
K2

(t− s)ds = p1p2
(p2−p1) (e

−p1t − e−p2t). Integration

gives an exact expression for FJ and, thus, also for GT = (1− FJ)N0 .

Approximate formula: From equation II.3: G′
J(t) = −hJ(t)GJ (t). Because of

the relation FJ = 1 − GJ , this is equivalent to F ′
J(t) = hJ(t)(1− FJ(t)). In

this context, the assumption that transformation is a rare phenomenon means
(1− FJ) ≈ 1 or, equivalently, hJ(t) ≈ F ′

J(t). The hazard for T then yields:
hT (t) = N0hJ(t) ≈ N0F

′
J(t) =

p1p2N0

(p2−p1) (e
−p1t − e−p2t). Based on expansion in

Taylor series about t = 0 and the assumption that p1 and p2 are small, this ex-
pression reduces to: hT (t) ≈ p1p2N0t. Thus, for the two stage model µ = p1p2N0

(equation II.10).

Some modifications of the AD-model

In the original AD-model, a single cell undergoes successive changes before
becoming a tumor cell. That is, the model does not account for prolifera-
tion and death of intermediate cells. In 1957, Armitage and Doll proposed
a two-stage model that incorporates cell kinetics [12]. This model assumes
that once an intermediate cell is generated, it starts to proliferate at a con-
stant rate. In 1993, Chen extended the two-stage model to account for
age-dependent parameters [30]. Two years later, Little generalized the two-
stage model to account for an arbitrary number of stages and time-varying
parameters [138].
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II.3.2.5 Multi-event models

In 1971 Knudson conducted a statistical study on hospital patients and
concluded that two mutations must occur before retinoblastoma can de-
velop [113]. He also proposed that the first mutation is germinal in the
inherited form of the disease, whereas both mutations are somatic in the
non-inherited form. It is now widely accepted that this childhood cancer is
caused by the biallelic inactivation of the RB tumor suppressor gene [90, 95].
Thus, Knudson’s two mutations correspond to mutational events at homol-
ogous loci of the RB gene. This result, generalized to the hypothesis that
most tumors arise by mutation of recessive tumor suppressor genes, consti-
tutes the basis of a two-event carcinogenesis model proposed by Moolgavkar,
Venzon and Knudson [166, 170]. On the basis of the initials of the authors,
this model is called the MVK-model.

N Y M

β1 β2

α1 α2

µ1 µ2

Figure II.8: Two-event model. Normal cells progress to intermediate
and then to tumor cells (0, 1 and 2 mutations respectively). The muta-
tional events are irreversible. N , normal susceptible cell (stem cell); Y ,
intermediate cell; M , malignant cell; α1, rate (per cell per year) of cell
division of normal cells; β1, rate (per cell per year) of death or differen-
tiation of normal cells; µ1, rate (per cell per year) of division into one
normal and one intermediate cell. α2, β2, and µ2 are defined similarly
for intermediate cells.

Like the Armitage-Doll model (AD-model), the MVK-model starts from the
cellular level. It is for this reason that the models share some basic as-
sumptions. For instance, both assume that only mutations in stem cells
lead to cancer, and that cells transform independently of each other. How-
ever, in contrast to the AD-model, the MVK-model accounts for both cell
proliferation and cell death. Indeed, cell kinetics plays a major role in the
MVK-model. Clonal expansion of intermediate cells significantly affects the
probability of tumor induction, because it increases the number of target
cells for the second mutational event [161, 164]. Moreover, in the context
of the MVK-model, a ‘mutational event’ is equivalent to a cell division pro-
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ducing one mutant daughter cell. This interpretation of a mutational event
was first suggested by Kendall (1960). It is based on the observation that
fixation of a mutation requires at least one cycle of cell division [19, 88].
Hence, in the MVK-model an intermediate cell arises when a normal cell
divides into one normal and one intermediate cell (such a division does not
change the number of normal cells). In a similar way the genesis of a tumor
cell occurs during the division of an intermediate cell. It should be noted
that a mutational event in the MVK-model concerns the occurrence of an
effective mutation for the tumor type of interest. That is, the model’s mu-
tation rates do not correspond to mutation rates measured by experimental
techniques.

All tumor induction models described in the previous sections view tu-
mor induction as a stochastic process. In the tolerance models, an individ-
ual has a probability to respond to a dose. In the multi-hit and multi-stage
models, hits and changes may occur with a certain probability. The MVK-
model also views tumor induction as a stochastic process. It incorporates
stochasticity in a different manner, though. It assumes that the mutational
events as well as cell division and cell death are random events. Hence, in
any small time interval, normal cells may divide into two normal cells, die
or differentiate, or divide into one normal cell and one intermediate cell.
Likewise, intermediate cells may divide into two intermediate cells, die or
differentiate, or divide into one intermediate cell and one tumor cell. Each
of these events may occur with a certain probability. Further, the model
assumes that the probability of more than one event occurring in the small
time interval is negligibly small. Finally, the MVK-model assumes that a
tumor cell constitutes an observable tumor. The AD-model also uses the
terms tumor and tumor cell interchangeably. For a further explanation on
this assumption, see Section II.3.3.

A model based on the assumptions above was considered difficult to ap-
ply. For this reason, an approximation has been used based on the assump-
tion that the probability of malignant transformation is small (the resulting
expression for the hazard rate is shown in Table II.4). The same assumption
is also used in the AD-model to obtain an approximate expression. Such an
approximation can be useful if the result does not deviate significantly from
the full model. This appears not to hold for this approximation, though.
Moolgavkar and Dewanji pointed out that the approximation is unlikely to
be adequate when dealing with animal experiments in which the probabil-
ity of tumor is high [165]. Furthermore, several studies have revealed that
the approximate MVK-model can deviate significantly from the full model
for certain parameter values [121, 167, 87, 86, 94]. To avoid misleading re-
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sults, the use of the full model is recommended by these authors. Several
studies exemplify how the full model can be applied to epidemiological and
experimental data (for review, see [169, 167]).

One way to get closer to a workable expression for the full model is to
make the additional assumption that the number of normal cells (N) is con-
stant. This is approximately true if the number of normal cells is large. If,
in addition, the rates of mutation, cell division and cell death remain con-
stant in time, the model yields exact analytical expressions for the hazard
rate and the survivor function [262, 123] (see Table II.4). Less restrictive
is the assumption that the parameters are piece-wise constant. This means
that the parameters are constant for a certain time interval; they then may
change, after which they are again constant for some time. A closed form
expression can be found for such a model [169, 87], but this expression is
“not easy for nonmathematicians [94].” Because of this difficulty, Clewell
et al. (1995) and Hoogeveen et al. (1999) developed an improved approx-
imate model with arbitrarily time-varying parameters. For time-constant
parameters, the derived expression is exact [94].

Above we used the MVK-model to obtain an expression for the hazard
rate and the survivor function, which predict the fraction of tumor bearing
animals. Interestingly, we can also use the model to obtain expressions
regarding the size and number of intermediate clones (foci) [47, 144, 46].
This is relevant for those experiments in which information on the number
of premalignant clones and their sizes is available. The proper way to analyze
data on foci is currently topic of research [146, 77, 44, 73].

The MVK-model with dose-dependent parameters

If one wants to use the MVK-model in risk assessment, one needs to specify
how the parameters of the model depend on the level of exposure. Two
choices need to be made for this. One has to decide which parameters
are affected by a particular chemical, and one must specify how they are
affected. Thorslund et al. (1987) presented an overview of possible answers
to the first question. However, in practice only two of the possibilities are
considered: genotoxic carcinogens can act by altering the mutation rates,
whereas non-genotoxic carcinogens can act by changing cell kinetics.

Before we explain how carcinogens can affect the parameters, we intro-
duce some compound parameters. The effects of non-genotoxic carcinogens
are most easily characterized in terms of these parameters. The compound
parameters are simple functions of the basic parameters of the MVK-model,
which are shown in Figure II.8. The first compound parameter is the muta-
tion probability, m1. If α1 denotes the rate (per cell per year) of cell division
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of normal cells and µ1 the rate (per cell per year) of aberrant division into
one normal and one intermediate cell, then the mutation probability at cell
division is m1 =

µ1

µ1+α1
. The second compound parameter characterizes the

net proliferation of a normal cell. If β1 denotes the rate (per cell per year)
of death or differentiation of normal cells, then the net proliferation rate of
a normal cell is (α1 − β1). The parameters α2, β2, µ2, and m2 describe the
behavior of intermediate cells in a similar way.

In the context of the MVK-model, a genotoxic carcinogen increases the
mutation rates (µ1 and µ2). Obviously, an increase in either of the mutation
rates (or both of them) accelerates tumorigenesis. Theoretical interest in this
possibility is limited, probably due to the trivial nature of the mechanism.
In the last decade, modeling the effect of non-genotoxic carcinogens has
received much more attention, due to the increasing interest in the role of
cell proliferation in tumorigenesis (e.g., [7, 34, 205]). The architecture of the
MVK-model suits the study of this problem, as it explicitly accounts for cell
kinetics. A non-genotoxic carcinogen increases the parameters involved in
cell kinetics, without changing the mutation probabilities m1 and m2. Note
that such chemicals indirectly increase the mutation rates per cell per year.
That is, if α2 increases, µ2 must increase for the probability m2 =

µ2

µ2+α2
to

remain constant.

A non-genotoxic carcinogen may increase both cell division and death
rates in such a way that the net proliferation rate of an intermediate cell
does not change. Indeed, this occurs if the chemical increases α2 and β2 such
that (α2 − β2) remains constant. This leads to a rather small effect on tumor
incidence [162]. In contrast, even small changes in the net proliferation rate
of intermediate cells (α2 − β2) lead to a rather profound effect on tumor
incidence [162]. In this situation the non-genotoxic chemical affects tumor
incidence by at least two mechanisms, namely increasing the mutation rates
(µ1 and µ2) while simultaneously increasing the net change in the number
of intermediate cells [164]. Moolgavkar (1986) suggested that the action of
hormones exemplifies this phenomenon.

Some modifications of the MVK-model

Since its first publication, the MVK-model has received considerable atten-
tion (e.g., [21, 29, 31, 39, 122, 263]). Many investigators either sought to
extend the model to incorporate further biological details, or to facilitate
its practical use in cancer risk assessment. Several theoretical studies on
the full MVK-model deal with improved implementation (e.g., [94, 43, 86])
and parameter identifiability (e.g., [81, 85, 87, 206]). Model extensions ac-
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Table II.4: The MVK-model.

The following parameters figure in the MVK-model (see Figure II.8): N0, initial
number of normal susceptible cells (stem cells); α1, rate of cell division of nor-
mal cells; β1, rate of death or differentiation of normal cells; µ1, rate of division
into one normal and one intermediate cell; α2, β2, and µ2 are defined similarly.
For a detailed mathematical development of the model see, for example, ref-
erences [166, 169]. For a description of the mathematical techniques see, for
example, references [120, 216].

Approximate formula: It relies on the assumption that the probability of malig-
nant transformation is small. In the particular case that the rates of mutation,
cell division, and cell death remain constant in time, the following expression for
the (approximate) hazard rate can be derived:

hT (t) ≈
{

s1
s2−s3

(es2t − es3t) for s2 − s3 6= 0

s1t for s2 − s3 = 0

where s1 = µ1µ2N0, s2 = (α1 − β1), and s3 = (α2 − β2).
Exact formula: An exact analytical expression for the hazard rate can be derived
when (i) the number of normal cells is constant, and (ii) the parameter values
remain constant. The hazard rate is then given by [123, 262]:

hT (t) =
1

2x1

(x3 − x22)(e
√
x3t − 1)

(
√
x3 − x2) + (

√
x3 + x2)e

√
x3t

where x1 = α2

µ1N0
, x2 = (β2 + µ2 − α2), and x3 = (α2 + β2 + µ2)

2 − 4α2β2 are

identifiable parameters (i.e., these compound-parameters can be uniquely esti-
mated from experimental data) [81]. Note that the exact formula has the same
number of parameters and can be implemented as easily as the approximate
formula. Again, the hazard rate and the survivor function relate to each other
as shown in equation II.3.
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counting for tumor growth are treated in Sections II.3.3 and II.3.5. Other
examples of model extensions are discussed below.

A first example of model extension is the three-event model proposed
by Moolgavkar (1992). The motivation for this extension was the classic
paper on colorectal cancer by Fearon and Vogelstein (1990). In the model
the first two events correspond to mutations at homologous loci of the DCC
gene, whereas the third is a mutation at one allele of the p53 gene [163]. To
account for the fact that different cancers may involve different numbers of
mutations, Little (1995) has provided an expression for a multi-event model
with an arbitrary number of steps. The practical interest of this expression
is somewhat doubtful. With any additional step included, the number of
parameters piles up, making practical application of the model impossible.
For practical application the two-event model is used even if it is known
that more than two steps are involved. This use is motivated by the casual
assumption that only two steps are rate limiting.

Multiple-pathway models were first developed by Tan and Chen (1990).
The motivation for such models was the observation that the same type of
tumor might arise from different pathways. Multi-variate models account for
the possibility that a single agent may induce two or more different types of
tumors [216]. Mixed models allow for different individuals in the population
either to start the process of carcinogenesis at different steps of the same
pathway, or to involve different pathways [218]. For an exhaustive study on
multiple-pathway, mixed and multi-variate models, see Tan (1991).

Attempts have also been made to describe in more detail the interaction
between the carcinogen and the cell. For instance, a few models explicitly
account for DNA repair. Among them are the damage-fixation model for-
mulated by Portier and Kopp-Schneider (1991), and the model developed
by Bois and Compton-Quintana (1992). Both models describe DNA repair
as a random process. Alternatively, Conolly (1988) incorporated DNA re-
pair in a deterministic way by describing the formation of DNA adducts.
The adduct formation rate is assumed to be proportional to the amount of
genotoxic carcinogen and to the amount of nucleotides, whereas the adduct
repair rate is assumed to be proportional to the amount of adducts. The
MVK mutation rates (µ1 and µ2) are then assumed to depend on the amount
of adducts.

II.3.2.6 Background tumor incidence

The dose-response models we discussed above aim to relate tumor incidence
to the dose the animals are exposed to. Experiments concerning this re-
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lationship always include a control group of non-exposed animals (d = 0).
Most of the dose-response models above predict absence of tumor incidence
in this group, that is, no dose implies no response (i.e., P (0) = 0). This
contradicts the observational evidence that tumors often develop in control
animals. Background incidence can be easily incorporated into the models,
however. It requires a choice between two assumptions [41, 92]. One assump-
tion is frequently referred to as ‘additive background assumption,’ whereas
the other is frequently referred to as ‘independent background assumption.’

An additive background means that the same mechanism is responsible
for both spontaneous and induced tumors. This assumption holds when the
carcinogen acts by accelerating naturally occurring processes. To account
for an additive background response, one often introduces a dummy dose
d0. So, one postulates an unknown background dose to be responsible for
background tumor incidence. The fraction of animals bearing either a spon-
taneous or induced tumor at dose d is then P ∗(d) = P (d0 + d), where P
represents some dose-response model.

On the basis of a time-dependent model, whose parameters have an
interpretation, a more realistic approach is possible. This approach re-
quires two additional choices. First, one has to decide which parameters
are affected by the chemical. We already addressed this topic for the hit,
multi-stage, and multi-event models. Second, one has to specify how the
parameters are affected. For instance, to use the Armitage-Doll model as
dose-response model, the transition rates are assumed to depend linearly on
dose, pi = ai+bid, where ai has the interpretation of a background transition
rate. Thus, a linear dose-dependence accounts for background incidence.
Moreover, any dose-dependence of the form pi = ai + gi(d), where gi is an
arbitrary function satisfying gi(0) = 0, accounts for an additive background
incidence.

An independent background means that different mechanisms are re-
sponsible for spontaneous and induced tumors, and that both mechanisms
take place independently of each other. In this context, one often uses what
is know as Abbott’s correction [1] to predict the fraction of animals bearing
either a spontaneous or an induced tumor,

P ∗(d) = P ∗
0 + (1− P ∗

0 )P (d) (II.12)

where P represents some dose-response model describing the occurrence of
induced tumors; P ∗

0 is the tumor probability at dose zero. Table II.5 provides
a derivation of this expression.
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Table II.5: Independent background assumption.

Let R, I and T denote the random variables ‘time to spontaneous tumor,’ ‘time
to induced tumor,’ and ‘time to tumor’ (as a consequence of the independence
assumption, R does not depend on the level of exposure). At any point in time,
the fraction of tumor-free animals is the fraction of animals that have neither a
spontaneous nor an induced tumor. Under the independence assumption, this
implies that G∗

T (t, d) equals the product of GR(t) and GI(t, d). Expressed in
terms of the cumulative tumor probabilities this translates into:

F ∗
T (t, d) = FR(t) + (1− FR(t))FI(t, d)

For a fixed exposure time, this equation reduces to equation II.12 (Abbott’s
correction), with P (d) = FI(t, d). As the original dose-response model only ac-
counts for induced tumors, it provides an expression for FI(t, d). In terms of
the hazard rates the relation above implies hT = hR + hI . Swanyer et al. (1984)
relate hI to hR through a linear proportional hazard assumption, hI = αdhR.
In this particular situation, the survivor functions for R and T relate to each
other as G∗

T = G1+αd
R .

II.3.3 Tumor growth models

Tumor induction models at the cellular level (such as the AD-model and
the MVK-model) characterize the random variable ‘time to first tumor cell.’
As we showed above, they are used to analyze time-to-tumor data on the
assumption that a single cell constitutes a detectable tumor. Such use is
warranted if the tumor type fulfills two conditions. The first is that a tumor
arises from a single cell; the observation that most tumors are monoclonal
supports this. The second is that the time span a tumor cell requires to be-
come a detectable tumor is negligibly small in comparison with the duration
of tumor induction. The time to observing a tumor then roughly equals the
time to developing a tumor, and the terms ‘tumor cell’ and ‘tumor’ become
interchangeable.

For monoclonal fast growing tumors the growth period can thus be ig-
nored. However, neglect of tumor growth is less realistic for slowly growing
tumors as well as for rapidly induced tumors. If tumor growth cannot be
neglected, the simplest way to account for it is to assume that the time it
takes a tumor cell to reach a detectable size is constant, say tg. The fraction
of tumor bearing animals at time t is then the fraction of animals with a
tumor cell at time t− tg. A prediction for the latter fraction is provided by
the original model. Iversen and Arley (1950) considered tg, the time delay
between the genesis of a tumor cell and the emergence of a detectable tumor,
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but did not assume its value to be constant. In contrast, they assumed it to
be a normally distributed random variable.

Disregard tumor growth rules out the possibility that a tumor regresses
before reaching a detectable size [255]. In other words, it implies that once
a tumor cell arises, it will certainly give rise to a detectable tumor. This
also holds for the models above that incorporate growth as a time delay.
Moreover, it also holds for any model that describes tumor growth in a de-
terministic way that does not account for a decrease in size. In the next
sections we compare some deterministic growth models. As an alterna-
tive, some models for chemical carcinogenesis account for tumor growth in
a stochastic way (e.g., [46, 145, 218, 207]). In such models tumor cells are
subject to stochastic birth-and-death processes. That is, in any small time
interval, tumor cells may divide or die with a certain probability. The actual
probabilities depend on the tumor growth model.

Sherman and Portier (2000) modeled stochastic tumor growth on the
basis of clones. So, the process of tumor growth starts when an intermediate
cell gives rise to a malignant clone of size one. If the cell dies, the clone
becomes extinct. If the cell divides, a clone of size two results. If then either
cell dies the clone reverts to a single-cell clone, and so on. In summary, if
an observable clone consists ofMmin cells, to become observable a single-cell
clone has to go throughMmin stages of increasing size [207, 208]. The model
assumes that once a clone reaches a detectable size, it can no longer regress
in size.

II.3.3.1 Classic growth models

Several classic growth models from various disciplines have been used to
describe tumor growth (see Adam and Bellomo (1997)). In this section we
deal with four such models: exponential growth, Von Bertalanffy growth,
Gompertz growth, and logistic growth. Mathematically these models share
a common pattern: V ′

u = R(Vu)Vu, where Vu denotes tumor volume, and
R(Vu) denotes the relative growth rate or the increase in volume per unit
volume per unit time. The relative growth rate is thus some function of the
size of the tumor; its actual expression differs among the different growth
models. With the additional assumption that all cells within the tumor
have the same volume, the equation above can be rewritten in terms of the
total number of tumor cells. This is specially relevant for disseminated or
dispersed tumors such as leukemias and lymphomas.
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Figure II.9: Tumor volume as a function of time. Solid line: exponen-
tial growth. Dotted line: cube root growth. Broken lines from top down
wards: Von Bertalanffy, Gompertz, and logistic growth. For all the mod-
els we chose parameters values such that Vu(0) = 0.1 and Vu(50) = 15
(and Vu∞ = 15.20 when relevant). The saturating curves reach half the
maximum volume at time ť ≈ 13.14, ť ≈ 16.68 and ť ≈ 26.87, respec-
tively. The model equations are shown in Tables II.6 and II.7.

The simplest growth model, the exponential growth model, results from
the assumption that a constant fraction of tumor cells divide and die per
time unit. If so, the relative growth rate is constant in time, and the tumor
doubling time (T2) is also constant. The tumor doubling time is ln 2

zu
, with zu

the relative growth rate. Another relevant characteristic of the exponential
growth model is that there is no maximum tumor volume (see Figure II.9).

The Von Bertalanffy growth model [15] defines growth as the net result
of gains and losses in volume due to anabolic and catabolic processes, respec-
tively. The gain in volume is proportional to tumor surface area, whereas
volume loss is proportional to tumor volume. An additional assumption
states that a tumor maintains the same shape during growth (isomorphic

growth), so that its surface area is proportional to its (volume)
2
3 [224]. Con-

trary to the exponential growth curve, the Von Bertalanffy curve is S-shaped
with an asymptotic maximum tumor volume (see Figure II.9).

The model most widely used to describe tumor growth is the Gompertz
growth model [72, 249] (see Figure II.9). As early as 1934, Casey used Gom-
pertz curves to analyze experimental results on tumor transplantation [28].
Likewise, in 1964, Laird fitted the Gompertz growth model to tumor growth
data with success [126]. It is intriguing that this model originally conceived
as a ‘law of human mortality’ [72] gives such an accurate description of
tumor growth.
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Logistic growth arises from the assumption that the relative growth rate
declines linearly with tumor volume. The resulting growth model is an S-
shaped curve with an asymptotic maximum tumor volume (see Figure II.9).
The logistic growth equation was originally used by Verhulst (1838) to de-
scribe the growth of biological populations. No biological mechanisms un-
derly its formulation.

As long as tumor size remains small with respect to its maximum, the
relative growth rate remains approximately constant for both the logistic
and the Gompertz model. As a consequence, it may not be possible to
discriminate between the exponential, logistic, and Gompertz models during
the early growth period on the basis of experimental data.
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Figure II.10: Tumor doubling time (T2) as a function of time. Expo-
nential growth results in a constant tumor doubling time (solid line).
Cube root growth results in a tumor doubling time that increases lin-
early with time (dotted line). The other growth models result in a tumor
doubling time that increases more and more rapidly with time (broken
lines). The model equations are shown in Tables II.6 and II.7.

There are at least two ways to compare growth models. A fit of the different
models to the same data is useful to reveal similarities. Vaidya and Alexan-
dro (1982) have carried out such an analysis for solid tumors, and Afenya
and Calderón (2000) have done the same for disseminated tumors. As an
alternative, in Figures II.9 and II.10, we sought to reveal the differences.
To do this we forced the growth curves to include two values, Vu(0) = 0.1
and Vu(50) = 15. In addition, for the saturating curves, we chose a fixed
asymptotic maximum volume, Vu∞ = 15.20. For the three S-shaped growth
curves the doubling time becomes larger as the growth process continues.
Laird (1964) observed that for the Gompertz model the doubling time in-
creases slowly at the beginning of the growth process, but more and more
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rapidly as the tumor becomes larger. This also applies to the logistic and
Von Bertalanffy models. Another common characteristic of the S-shaped
curves is that the doubling time becomes infinitely large when the tumor
approaches half its maximum size. Figures II.9 and II.10 depict these results.

II.3.3.2 Living layer model

The living layer model, proposed by Mayneord (1932), is based on the exper-
imental observation that solid tumors often have a dead kernel surrounded
by a shell of viable tumor cells (see Figure II.11). The model is the first
one that relates tumor growth to the tumor’s structural heterogeneity. It
involves three assumptions; first, the tumor is spherical in shape; second,
there is a fixed maximum thickness (δm) for the living outer layer; and third,
the cell population within the living layer grows exponentially [152].

Interestingly, the living layer model predicts three growth phases. Dur-
ing the first phase tumor radius is smaller than or equal to δm. As a conse-
quence of the third assumption, the tumor grows exponentially. The second
phase starts when tumor radius becomes larger than δm, giving rise to the
development of a dead core. Finally, when the ratio of δm to tumor radius
becames very small, tumor growth tends to follow the cube root law (that is,
the cube root of tumor volume increases linearly with time; see Figure II.9).
For a mathematical formulation of the model, see Chapter V (Appendix C).

Figure II.11: Living layer model. (1 ) Early tumor without a dead
kernel (radius smaller than or equal to the maximum thickness of the
living layer). The whole tumor grows exponentially. (2 ) The tumor’s
radius has exceeded the maximum thickness of the living layer and, con-
sequently, the tumor has developed a dead core (inner white sphere).
(3 ) Advanced tumor. The tumor has increased in size, whereas the
thickness of the living layer has remained constant.
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II.3.3.3 Complex tumor growth models

For clinical studies growth of tumors is of prime relevance. With the moti-
vation to improve understanding and treatment of cancer, several complex
models for tumor growth have been developed. Most of them are diffusion-
limited growth-models. These models describe the growth of avascular tu-
mors (or tumor-spheroids), assuming that nutrients must be taken up across
the surface of the tumor. Uptake of nutrients at the surface together with
their use by the tumor tissue creates a nutrient gradient within the tumor.
The diffusion-reaction theory allows one to predict this gradient [75, 241].
Along the gradient, both proliferation and death of cells vary, according to
availability of the nutrient. Most models assume that cells grow exponen-
tially if the concentration of nutrients is above some critical level. When the
tumor becomes larger, this approach predicts a structurally heterogeneous
tumor with a outer living layer that remains constant in thickness and a
necrotic core [223]. Basic diffusion-models have been extented to account
for more realistic biological details such as presence of growth inhibitors [74],
non-uniform nutrient consumption [153], and tumor-immune system inter-
actions [2].

The complex growth models have the potential to increase our under-
standing. For practical applications such as the description of experimental
data on chemical carcinogenesis they are less suited, due to the complexity
of the mathematics they use. For this reason we only briefly mention these
models.

II.3.4 Effects

In carcinogenicity studies on skin tumors the time to tumor onset (i.e., time
to detectable tumor) is directly observable. This is the exception rather
than the rule, however. In most carcinogenicity tests the time to tumor
onset cannot be observed and, therefore, the presence of a tumor can only
be detected after the death (or sacrifice) of the animal. Consequently, there
is a need to make inferences about the actual time to tumor occurrence T ,
using the time to death caused by the tumor, †u. As tumor bearing animals
have a certain probability to die from the tumor, such inferences concern
tumor lethality.

Sawyer et al. (1984) assume that the tumor of interest is instantly lethal.
This implies that time of death with tumor equals time to tumor onset.
This method is appropriate for highly aggressive tumors, because they cause
death shortly after their onset. However, many carcinogenicity tests involve
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tumors that do not significantly affect survival. The use of the time to death
from tumor as a surrogate for time to tumor occurrence is then unrealistic.

Data including cause-of-death information usually distinguish between
five outcomes for the cause of death, only one of which is death from tumor
of interest. The possible competing causes are natural death with incidental
tumor, natural death without tumor, sacrifice with tumor, and sacrifice
without tumor. Modelers usually cluster these outcomes into (1) death from
tumor; (2) death from competing risk, with tumor present; and (3) death
from competing risk, with no tumor present.

Some authors have sought to use cause-of-death information (e.g., [56,
62]). However, because cause-of-death determinations are frequently unreli-
able, other authors have sought to carry out the required inferences without
using cause-of-death information (e.g., [4, 13, 48, 155]). Both approaches
mainly have resulted in purely statistical (non-parametric) methods that do
not rely on any conceptual model. A few authors assume a mathematical
model for the time to tumor onset, whereas they use non-parametric esti-
mates for both the time to death from tumor and time to death from a
competing risk.

Dewanji et al. (1993) proposed a model-based approach that accounts
for the three types of death. The use of cause-of-death data is possible
but not necessary. They relate time to tumor onset and time to death
from tumor through a lethality parameter ρ lying between zero (inciden-
tal tumor) and one (rapidly fatal tumor). They assume that the hazard
rate for †u is proportional to the hazard rate for T , with proportionality
coefficient ρ. Consequently, the corresponding survivor functions relate to
each other as G†u(t) = GT (t)

ρ. If ρ =0, there are no deaths from tumor
(G†u = 1), whereas if ρ = 1, the tumor is instantly lethal (G†u = GT ).

II.3.5 Combined models

Models for chemical carcinogenesis aim to characterize the relation between
tumor incidence and level of exposure to a certain (pro)carcinogen. The
first model for chemical carcinogenesis, which was proposed by Iversen and
Arley in the early 1950s, includes kinetics, tumor induction and tumor
growth [101]. However, most of the models that are currently used focus
on tumor induction only. That is, they use fairly elaborate assumptions on
the induction process, whereas they use shallow ‘default assumptions’ for
the remaining phases. Only a few models embrace more than one phase in
similar detail. In this subsection we deal with these models.
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II.3.5.1 Kinetics + Induction

All dose-response models in Section II.3.2 rely on the default assumption for
kinetics, which states that the internal concentration is constant and pro-
portional to the external dose. As discussed in Section II.3.1, this only holds
for linear kinetics and constant external dose. A more realistic alternative
is estimate the internal concentration with the aid of a kinetic model. Such
an approach combines kinetics and induction in one model.

To illustrate how a kinetic and an induction model can be combined, we
consider the one-compartment model (Section II.3.1) and the one-hit failure-
time model (Section II.3.2.3). If we assume that the hit-rate is proportional
to internal concentration (µ = ωC), it is no longer constant in time. The
hazard rate, which equals the hit-rate in the one-hit model, now becomes:

hT (t, d) =
νω

η
(1− e−ηt)d

Because the hazard rate is not constant, the variable time-to-tumor T is no
longer exponentially distributed. If after some time the internal concentra-
tion reaches steady-state conditions, the hazard rate becomes constant. The
model then reduces to the one-hit dose-response model (equation II.7), with
α = νω

η .

Van Ryzin and Rai (1987) developed a combined model that embraces
the phases of kinetics and induction. They described the internal concen-
tration in the target organ by assuming Michaelis-Menten kinetics for both
the incoming and outgoing processes. To solve the resulting mass balance
equation, they assumed the external dose and internal concentration to be
constant (steady-state conditions). Consequently, the internal concentration
depends hyperbolically on the external dose. The model relates induction to
internal concentration through a Weibull equation, P (d) = 1− e−γ−ωC(d)

β
,

where γ is a parameter that accounts for background incidence.

Still other combinations between kinetic models and induction models
have been explored. For instance, to analyze the effect of metabolic trans-
formation on tumor induction, Tan and Singh (1987) combined Michaelis-
Menten kinetics with the MVK-model. Conolly et al. (1988) also used the
MVK-model, but combined it with a PBPK-model. In this model the inter-
nal amount of active metabolite affect the MVK-parameters, according to
the two types of carcinogens discussed in Section II.3.2.5. Bogen (1990) used
approximate multi-event models to study tumor induction associated with
exposure to chlorinated methanes. To predict the effective liver concentra-
tion, he used a PBPK-model. Reitz et al. (1996) combined a PBPK-model
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with the linearized multi-stage (LMS) dose-response model, in an attempt to
predict liver angiosarcoma incidence due to vinyl chloride exposure. Some of
these attempts are difficult to evaluate, because they do not present either
the model structure or the model equations. Indeed, most of the articles
cited above focus on model results, rather than on model descriptions.

II.3.5.2 Induction + Growth

Multi-stage models and multi-event models (Sections II.3.2.4 and II.3.2.5)
characterize the random variable ‘time to tumor cell.’ These models are di-
rectly used to analyze carcinogenicity tests on the assumption that the terms
‘time to tumor cell’ and ‘time to tumor’ are interchangeable. This consti-
tutes the default assumption for tumor growth. As argued in Section II.3.3,
it only holds for monoclonal fast growing tumors (see Section II.3.3).

A few attempts have been made to combine tumor induction and tu-
mor growth in one model. For instance, Iversen and Arley (1950) define
time to tumor onset as the sum of an ‘excitation-time’ and a ‘growth-
time.’ Excitation involves the interaction of the chemical with a cell. The
model describes excitation-time (i.e., time to tumor cell) on the basis of
the one-hit theory (Section II.3.2.3). The growth-time plays the role of a
stochastic delay between developing and observing a tumor. Alternatively,
Yang (1991) combined a multi-event model with a tumor growth model.
More recently, Sherman et al. (1994) extended the MVK-model to incorpo-
rate tumor growth [208, 207]. The model describes tumor growth on the
basis of stochastic division and death of tumor cells. Like Yang’s model,
it treats the size of a detectable tumor as a constant (see Section II.3.3).
Luebeck and Moolgavkar (1994) consider a threshold tumor size for which
the probability of extinction is negligibly small. Beyond this threshold, the
tumor can be assumed to grow deterministically. The difference between
the detection threshold and the viability threshold is that the latter changes
with the parameter values.

Models that combine induction and growth where both are treated as a
stochastic process tend rapidly to become complicated. This might be one
of the reasons that so few of these models have been formulated. Although
models that combine kinetics and induction are slightly more common, in
general, the combined models are far outnumbered by models that focus on
induction alone.
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II.4 Conclusions

In this Chapter we gave an overview of models describing any part of the
chemical carcinogenesis process. We structured the overview according to
a division of the entire process, from exposure to effect, into four consec-
utive phases. An alternative criterion to classify the models is whether a
model is descriptive or mechanistic. This hardly is an all-or-none criterion;
rather it defines a continuum with descriptive and mechanistic as endpoints.
Tolerance distribution models, empirical time-to-tumor models, and classic
growth models obviously cluster at the descriptive end of the continuum,
whereas PBPK-models and multi-event models move some distance towards
the mechanistic endpoint.

All descriptive models or, as we argued in the introduction to Sec-
tion II.3.2, mathematical descriptions, have in common that they are rather
simple mathematical expressions with a small number of parameters. They
are useful to neatly summarize results of experiments in a few numbers,
the parameter estimates. The summarizing parameter estimates lack a bio-
logical interpretation, however. This is different for mechanistically oriented
models that rely on a set of assumptions on biological aspects of the process.
Their parameter estimates provide quantitative information on the rates of
processes and the factors that affect them [189].

Tests to determine the carcinogenic potency of a chemical aim to reveal the
relationship between exposure to the chemical and occurrence of a carcino-
genic response. This response may involve appearance of unusual tumors,
increase in incidence of normal tumors, earlier occurrence of normal tumors,
or increase in multiplicity of normal tumors. As we stated in the Introduc-
tion, models may facilitate the analysis of the sought relationship. Here we
will evaluate to what extent current models actually contribute to this aim.
But let us first briefly consider the data that have to be described.

In a standardized long-term carcinogenicity test several groups of animals
are administered different levels of the chemical. Besides these dose-groups,
the test includes an unexposed control group. The experiment has a fixed
duration; those animals still alive at the end of the experiment are sacri-
ficed to determine whether they bear tumors. The observed carcinogenic
response, or data, vary from one study to another. If the tumor of inter-
est is directly observable, tumor-onset times are recorded. In contrast, if
the tumor is not directly observable, time to death (or sacrifice) and tumor
pathology at the time of death (or sacrifice) are recorded.



66 II. MODELING CHEMICAL CARCINOGENESIS

external  dose

internal  dose

kinetics toxicology

induction risk  assessment

animals  bearing
tumor  cells

growth

MODEL

animals  bearing
detectable  tumors

mortality

epidemiologyeffects

clinical  oncology

DATA

PREDICTION

Figure II.12: Chemically induced carcinogenesis as a four-phase process. Kinetics
concerns the relationship between exposure and effective internal dose. Tumor
induction comprises the chemically induced transformation of normal cells into
tumor cells. Tumor growth relates to the clonal expansion of a tumor. Effects
involves the consequences of tumor development for the organism. As indicated
in italics, models devised for the different phases derive from different disciplines.
The large arrows indicate that tumor induction models make predictions concerning
tumor cells, whereas one can only detect tumors of a certain minimum size. Even
worse, one may not be able to detect tumors till the animal dies.

Between exposure and effect is a chain of processes, summarized in Fig-
ure II.12. In short, everything starts with the presence of a (pro)carcinogen.
Kinetic processes lead to a certain internal concentration, which may induce
the appearance of a tumor cell. This cell may become a detectable tumor
in due time. The presence of this tumor may eventually result in the death
of the animal.

In Section II.3 we gave an overview of models describing any part of
chemical carcinogenesis. As shown in Figure II.12, models for the different
phases derive from different disciplines. Kinetic models are mainly in the
domain of toxicology; cancer risk assessment deals with tumor induction
models; models for tumor growth are in the realm of clinical oncology; and
effect models are the topic of epidemiology. Moreover, much of the work
on different phases apparently proceeds in isolation of each other, as can be
inferred from the paucity of cross references.
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Models for chemical carcinogenesis aim to characterize the relation be-
tween dose and carcinogenic response. It seems desirable that such models
deal with the entire process, from exposure to effect. Ideally, the models
for the four phases should form a chain, in which the output of one model
serves as the input for the next. Indeed, the very first model for chemi-
cal carcinogenesis by Iversen and Arley (1950) started to do just this (the
model accounts for kinetics, induction, and growth). Current modeling is
apparently not motivated by such a desire, though. Models for chemical
carcinogenesis, with exception of the few combined models, focus on the
tumor induction phase. This situation has some undesirable consequences.

One consequence is that most models for chemical carcinogenesis suffer
from an imbalance between depth and width. For instance, a model for
chemical carcinogenesis that covers tumor induction aspects in depth may
shallowly treat, or even virtually ignore, kinetic aspects. Much new work
tends to aggravate this imbalance, as it expands existing models by adding
more biological details on tumor induction only. Biological details are prob-
ably added to increase the realism of the model. To judge whether a model
has indeed become more realistic after addition of some new elements, it
has to be confronted with data. Here we stumble upon another undesirable
consequence. The predictions of an induction model concern tumor cells,
whereas the data concern detectable tumors. In other words, the model
predictions do not directly bear on the data! (This is also indicated in
Figure II.12). This makes the interpretation of parameter estimates rather
uncertain. It also hampers a straightforward interpretation of the realism
of the models involved.

Let us now return to the original question: do current models contribute
to the aim to relate exposure to carcinogenic response? Although sweeping
generalizations over heterogeneous collections are always difficult to make,
we think the answer is at best ‘to some extent.’ The models used are not
overly realistic for the purpose of data description, because they ignore es-
sential processes. An increase in realism should be sought in accounting for
these processes in the first place. This may bridge the gap between model
predictions and data. Other prospect for improvement is offered by the use
of alternative information, especially on foci, as end-point in carcinogenicity
testing. If the data concern foci rather than tumors or mortality, the gap be-
tween data and prediction could be eliminated. The model then only needs
to cover kinetics and development of foci ; there is no need to pay attention
to tumor growth and the impact of the tumor on the animal. With such
improvements the models may become much more useful for the purpose of
estimation of cancer risk from carcinogenicity tests.
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III

ANALYSIS OF TUMOR
INCIDENCE DATA

“As well as formulating theories in precise mathematical form,

and studying them – deducing consequences and analyzing

behavior – there is an important requirement to

put them to empirical test,” D. Brown & P. Rothery





What do long-term studies tell us
about the tumor-induction potential
of chemical agents?

I.M.M. van Leeuwen (2003)

III.1 Introduction

As explained in Chapter I (Section I.3), long-term carcinogenicity bioassays
play an important role in cancer risk assessment. A fundamental objective of
such bioassays is to reveal the ability of the test agent to cause an increase in
tumor occurrence rates as compared with those in unexposed controls. The
aim of this Chapter is to examine how various interpretations of the results
from carcinogenicity bioassays affect the chance to achieve this objective.

The remainder of this Chapter is organized in six sections. Section III.2
introduces two representative long-term carcinogenicity tests. Section III.3
outlines the impact of censoring on the outcome of a carcinogenicity bioas-
say. Section III.4 discusses the well-known Kaplan-Meier (KM) method
and proposes two alternative formulations. Two uncertainties about the
KM-method are pointed out. Section III.5 extends the information pro-
vided in Chapter II (Section II.3.2) on the hazard and survivor functions.
Section III.6 gives a brief introduction to the maximum likelihood (ML)
principle. Finally, Section III.7 shows the results obtained with computer-
simulated carcinogenicity tests. It explores the capability of both the KM-
method and the ML-approach to recover the ‘real’ time-to-tumor distribu-
tion from ‘observed’ events.

III.2 Examples of carcinogenicity studies

Throughout this thesis, two studies are repeatedly used as examples of long-
term carcinogenicity bioassays. They concern the chemical compounds 1,3-
butadiene and benzo[a]pyrene.

III.2.1 1,3-Butadiene

As can be seen from Table I.5, the industrial chemical 1,3-butadiene (CAS
106-99-0) has recently been classified in Category A (known human car-
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cinogens). The compound is primarily used in the manufacture of synthetic
rubber and thermoplastic resins [175]. The corresponding NTP study in-
cludes a 2-year inhalation bioassay, in which groups of 70 male and 70 female
B6C3F1 mice were administered 0, 6.25, 20, 62.5, and 200 ppm 1,3-butadiene
for 6 hours a day, 5 days a week; groups of 90 male and 90 female mice
were administered 625 ppm 1,3-butadiene on the same schedule [174]. After
9 months (287 days) and again after 15 months (462 days), up to 10 male and
10 female mice were randomly withdrawn from each dose-group for interim
evaluations. I refer to this long-term carcinogenicity study as BUT-NTP.
For each mouse, the following information is available:

Table III.1: BUT-NTP data.

Carcass identification number
Sex
Dose level
Number of days on study
Cause of withdrawn from study (spontaneous death, interim

evaluation, terminal sacrifice, or missing)
Presence of tumors (e.g., lymphoma, lung neoplasm, and heart

hemangiosarcoma)

III.2.2 Benzo[a]pyrene

Benzo[a]pyrene (CAS 50-32-8), a polycyclic aromatic hydrocarbon, has been
reasonably anticipated to be a human carcinogen [175]. This chemical agent
forms as a result of incomplete combustion of organic compounds. It is
found, for instance, in gasoline and diesel exhaust, cigarette smoke, and
coal tar. The RIVM recently carried out a 2-year gavage bioassay, in which
groups of 52 male and 52 female rats (SPF Riv:TOX Wistar strain) were
exposed to 0, 3, 10, 30 mg B[a]P/kg for 5 days a week [125]. I refer to this
long-term carcinogenicity study as B[a]P-RIVM.

III.3 Censored data

During the analysis of the information shown in Table III.1, the interest is
often focussed on the evaluation of two variables, namely time to death and
time to death with tumor. Both variables constitute examples of so-called
failure times. A difficulty in the interpretation of failure-time data is that
often some individuals are not observed for the full time to failure [38]. In the
BUT-NTP study, for instance, some mice remained failure-free till the end
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of the bioassay. Moreover, up to 20 mice were randomly withdrawn from
each group for interim evaluations. Incomplete observation of the failure
time is called censoring [38].
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Figure III.1: Number of female mice present in the dose-group exposed
to 200 ppm 1,3-butadiene. The initial number of animals in this group
was 70. At day 287 and again at day 462, 10 animals were randomly
withdrawn for interim evaluations. The vertical lines indicate these cen-
soring events. Data from the BUT-NTP study (Section III.2.1).

Figure III.1 illustrates the change in the number of animals in the group
of females exposed to 200 ppm 1,3-butadiene. The occurrence of two main
censoring events results in a step-shaped pattern. Obviously, as spontaneous
death is not the only cause underlying withdrawn from study, dividing the
data shown in Figure III.1 by the initial number of animals does not provide
an accurate estimate of the survivor probability. Below I explain how to
estimate failure probabilities from censored data.

III.4 Kaplan-Meier estimators

Throughout this thesis, I use Kaplan-Meier (KM) estimators for both mor-
tality and tumor incidence, to adjust them for censoring [14, 104]. To fa-
cilitate the definition of these estimators, I introduce some terminology and
notation. By event I understand the departure of a single animal from the
study. As explained in the previous section, two types of events can be dis-
tinguished, namely failure events and censoring events. The definitions of
failure and censoring depend on the variable of interest. For instance, con-
cerning mortality, any natural death is a failure event, whereas interim eval-
uations, terminal sacrifices and missing animals constitute censoring events.
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In contrast, concerning tumor incidence, any death without the tumor of
interest constitutes a censoring event. The interpretation of failure event in
tumor incidence analysis is the main topic of Section III.4.2.
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Figure III.2: Kaplan-Meier adjusted female mice survival data (i.e.,
data corrected for interim evaluations, accidental deaths and missing
animals). KM-estimates (?) have been joined to distinguish the 6 dose-
groups. For curves from right to left, the administered 1,3-butadiene
dose is 0, 6.25, 20, 62.5, 200 and 625 ppm, respectively. Data from the
BUT-NTP study (Section III.2.1).

Let t1, t2, . . . , tr denote the times at which the number of events and the
remaining number of animals are recorded. For any given time interval
(tj−1, tj ], let ncj be the number of censoring events within that interval, nxj
the number of failure events, and nj = ncj +nxj the total number of events.
The experimental observations can then be summarized as:

{(t1, nx1, nc1), (t2, nx2, nc2), . . . , (tr, nxr, ncr)} (III.1)

If the failure event is uncommon, most nxj elements will be zero. Notice
that, if Nj−1 is the number of animals in the bioassay at tj−1, the remain-
ing number at tj is given by Nj = Nj−1 − nj . The KM-estimates can be
iteratively calculated as follows:

KM(t0) = 1

KM(ti) = θ̂(ti) KM(ti−1) for i = 1, . . . , r
(III.2)

where KM(tj) is the KM-estimate of the failure-free probability, that is,
the probability that the failure event does not occur before time tj . The
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function θ̂(tj) provides an estimate of the probability that the failure event
does not take place within the interval (tj−1, tj ] given that it did not take
place before time tj−1. I distinguish between two possible expressions for
this estimator, the first one being:

θ̂F (ti) =
Ni−1 − nxi
Ni−1

(III.3)

Substitution of this expression into equation III.2 leads to the classical KM-
estimator, which I will refer to as forward KM-estimator. Figure III.2 shows
the forward KM-adjusted female mice survival data from the BUT-NTP
study [174].

Alternatively, I define:

θ̂B(ti) =

{

Ni

Ni−1−nci
if Ni−1 6= nci

1 if Ni−1 = nci
(III.4)

which leads to what I will refer to as backward KM-estimator.

III.4.1 The role of interval size

The KM approach provides good estimates of the failure probability, in
the sense that the estimates converge to the true probabilities as the sample
size gets larger and larger [235]. However, in practice the KM-estimates may
present some problems when failure and censoring events happen in the same
interval. For instance, KM-estimates using equation III.3 differ from those
using equation III.4 unless nxj = 0 or ncj = 0 for any j. Indeed, using the
forward KM-estimator, an underestimation of the failure probability may be
expected because equation III.3 presumes that (in each time interval) failure
events precede censoring; in contrast, using the backward KM-estimator, an
overestimation of the failure probability may be expected. These statements
are supported by the KM-estimates shown in Figure III.3.

III.4.2 Influence of cause-of-death assumptions

In most long-term carcinogenicity tests, the presence of a tumor can only
be diagnosed after the death of the animal. Therefore, as explained in
Chapter II (e.g., Section II.4), the analysis of tumor incidence data usu-
ally involves inferences regarding tumor growth and cause of death (tumor
lethality). The assumptions made in order to carry out these inferences may
significantly affect both the KM-estimates and the fitting procedures and,
consequently, also the eventual risk estimates.
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Figure III.3: Cumulative incidence of spontaneous deaths with ma-
lignant lymphoma in female mice exposed to 200 ppm 1,3-butadiene.
Stars (?) represent the KM-estimates obtained when the events are
recorded per day. As only on day 454 both a censoring and a failure
event take place, forward and backward estimates are almost identical
(indeed, they are indistinguishable in this figure). However, if the events
are recorded once a month, the backward KM-estimates (solid line) and
forward KM-estimates (broken line) clearly differ. Data from the BUT-
NTP study (Section III.2.1).

The expression for the KM-estimator (Equation III.2) depends on two
choices: (i) variable of interest; (ii) criterion to classify the observed events
into two groups, namely censoring events and failure events (occurrences of
the variable of interest). For survival data, the variable of interest is ‘time to
death’ and the classification of events consists in distinguishing spontaneous
from non-spontaneous deaths. For tumor incidence data, however, the set-
tings are less obvious. Using the variable ‘time to death from tumor,’ I will
now discuss the implications of choosing different classification criteria.

The KM-estimates of lymphoma incidence shown in Figures I.1 and III.3
are based on the following assumption. If a lymphoma is found in an animal
that died spontaneously, the cause of death can be attributed to this tumor.
As malignant lymphoma has a high lethality, it is expected that Figure I.1
reflects well the behavior of the variable ‘time to death from lymphoma.’
This does not necessarily imply that Figure I.1 illustrates accurately the
overall lymphoma incidence. Indeed, lymphomas found in sacrificed animals
are not taken into account.

The influence of cause-of-death assumptions on the KM-estimates is ex-
emplified in Figure III.4, which shows the cumulative lung cancer incidence
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Figure III.4: Influence of cause-of-death assumptions on the KM-
estimates. Cumulative incidence of lung cancer in female mice exposed
to 200 ppm 1,3-butadiene. Solid line: natural deaths with two tumors,
including lung cancer, are viewed as censoring events. Broken line: any
natural death with a lung tumor is viewed as a failure event. Data from
the BUT-NTP study (Section III.2.1).

according to two different criteria. The broken line assumes that the cause
of any natural death bearing a lung tumor can be attributed to this neo-
plastic lesion. The solid line, instead, assumes that natural deaths with two
tumors (lung cancer and lymphoma or lung cancer and heart tumor) are not
due to lung cancer. That is, according to the second criterion, such events
are additional censoring events. Both criteria consider any non-spontaneous
death as a censoring event, independently of the presence or absence of lung
tumors. As can be seen from Figure III.4, the incidences predicted by the
two criteria differ considerably.

III.5 Hazard rates and survivor functions

Most failure-time models (e.g., tumor induction and survival models) are
expressed in terms of hazard rates. In Chapter II (Section II.3.2), we briefly
introduced the concepts of random variable, cumulative distribution func-
tion, survivor function and hazard rate. In this section, I provide a more
detailed mathematical definition of these concepts. For any failure-time
random variable X, its cumulative distribution function FX(t) is defined as
prob{X ≤ t} and its survivor function as GX(t) = 1−FX(t). The latter cor-
responds to the probability that the variable X takes a value larger than t.
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The hazard rate is given by [38, 253]:

hX(t) = lim
4t→0

prob{t < X ≤ t+4t|X > t}
4t (III.5)

The relationship between the hazard rate and the survivor function (equa-
tion II.3) can be directly deduced from these definitions. From the relation
between GX and FX :

− d

dt
GX =

d

dt
FX = fX(t) (III.6)

where fX , the derivative of FX , is called the probability density function
of X. Figure III.5 depicts the probability density functions of two Gamma
distributions. The expression for the hazard rate can be re-written as fol-
lows:

hX(t) = lim
4t→0

prob{t < X ≤ t+4t}
prob{X > t}4t

=
1

prob{X > t} lim
4t→0

prob{t < X ≤ t+4t}
4t

=
1

GX(t)
lim
4t→0

FX(t+4t)− FX(t)
4t =

1

GX(t)

d

dt
FX

Thus, from equation III.6:

hX =
fX
GX

= − 1

GX

d

dt
GX = − d

dt
lnGX (III.7)

which leads to d
dtGX = −hXGX . The analytical solution of this differential

equation is:

GX(t) = e−
∫ t
0
hX(s)ds, t ≥ 0 (III.8)

which is analogous to the expression shown in equations II.3 and IV.7.

III.6 Maximum likelihood principle

In Section III.4, I discussed how mortality and tumor incidence data can be
adjusted to account for censoring events. In this section, I explain a way to
deal with censoring during the model fitting procedure. For this purpose,
let me consider an arbitrary failure-time model describing the probability
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Figure III.5: Examples of probability density functions. Upper plot: Gamma
distribution with mean m = 900 days and standard deviation σ = 350 days. Lower
plot: Gamma distribution with m = 500 days and σ = 250 days. The vertical lines
in each plot represent 60 randomly generated tumor-induction times.

distribution of a random variable X. The model is defined by a particular
hazard rate hX that depends on a parameter vector θ.

The intuitive idea underlying the maximum likelihood method is to take
as estimates of the parameters those values for which the observations (equa-
tion III.1) are most likely to have occurred [38]. A failure event recorded
at ti corresponds to an observation of ti−1 < X ≤ ti. In contrast, a cen-
soring event recorded at tj is an observation of X > tj−1. The observed
failure event thus contributes a term FX(ti|θ)−FX(ti−1|θ) to the likelihood,
whereas the observed censoring-event contributes GX(tj−1|θ). If all events
are assumed to occur independently of each other, the probability of ob-
serving the whole set of observations can be expressed as a function of the
parameter vector θ:

L(θ) =
r
∏

i=1

(FX(ti|θ)− FX(ti−1|θ))nxi
r
∏

j=1

GX(tj−1|θ)ncj

which is called the likelihood function. According to the maximum likeli-
hood principle, the best parameter estimate of θ is the value at which the
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likelihood function reaches its maximum.
If the time intervals (tj−1, tj ] are small or if the observations (equa-

tion III.1) correspond to the instants at which events took place, the likeli-
hood function is defined instead as:

L(θ) =
r
∏

i=1

fX(ti|θ)nxi
r
∏

j=1

GX(tj |θ)ncj (III.9)

The log-likelihood function is defined as the logarithm of the likelihood:

LL(θ) =
r
∑

i=1

nxi ln fX(ti|θ) +
r
∑

j=1

ncj lnGX(tj |θ)

Instead of finding the maximum of L, one often finds the maximum of LL,
which is mathematically equivalent but computationally more convenient.
According to equation III.7, the probability density function can be ex-
pressed as: fX = hXGX . Substitution of this expression into the equation
above leads to:

LL(θ) =
r
∑

i=1

nxi lnhX(ti|θ) +
r
∑

j=1

nj lnGX(tj |θ)

where nj = nxj + ncj . Finally, from equation III.8:

LL(θ) =
r
∑

i=1

nxi lnhX(ti|θ)−
r
∑

j=1

nj

∫ tj

0
hX(s|θ)ds (III.10)

This expression is frequently used because it expresses the log-likelihood
function in simple terms of the hazard rate. Equation III.10 was used, for
instance, to get the model fit shown in Section III.7. Moreover, a generalized
version of this expression will be used in Chapter IV (equation IV.16) to fit
three mortality data sets simultaneously.

When fitting a model to experimental data, parameter values are esti-
mated by minimizing the function −LL(θ). For this purpose, different func-
tion minimization algorithms can be used. Throughout this thesis, I use
the Mathematica FindMinimum function, which is based on a modification
of Powell’s method when the number of parameters exceeds one [252].

III.7 Computer-simulation studies

The two studies described in Section III.2 concern standard carcinogenic-
ity bioassays and are therefore adequate to test some of the methodology
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available to analyze tumor incidence data. In this Section, I confront the
Kaplan-Meier method and the maximum likelihood (ML) approach with
computer-simulated data. Compared with the experiments that they mimic,
computer simulations possess the advantage that the differences between es-
timated and ‘real’ tumor incidences can be calculated.

III.7.1 Randomly generated data

Two hypothetical rat populations of N0 = 60 individuals are exposed to
a chemical carcinogen RA for their lifespan. The doses administered to
the populations are denoted as dL and dH , with dL < dH . In response to
the exposure, the animals develop an unusual tumor, type A, which has a
negligible incidence in untreated controls. The random variable T = ‘time to
tumor’ follows the Gamma distribution defined by the following cumulative
distribution function:

FT (t) =
1

Γ(m2/σ2)

∫ mt/σ2

0
s−1+(m/σ)

2

e−sds, t ≥ 0 (III.11)

where Γ denotes the Gamma function and m and σ represent the mean
and standard deviation of the distribution, respectively. In the particu-
lar case that k = (m/σ)2 is an integer, equation III.11 corresponds to a
multi-hit model (equation II.9) with k the number of hits and µ = m/σ2

the hit rate. I assume that both the mean time-to-tumor and the standard
deviation decrease with increasing exposure levels. In the multi-hit model
this happens, for instance, if the hit-rate is proportional to the dose. For
the time-to-tumor distribution in the dL-group, I take a mean of 900 days
and a standard deviation of 350 days, whereas for the dH -group I assume
m = 500 and σ = 250 days. Figure III.6 depicts both cumulative distribu-
tion functions. As can be seen from this figure, the distributions defined by
the chosen parameter values are in agreement with the results from exper-
imental carcinogenicity studies. I further assume that type A tumors are
immediately lethal. Consequently, the variables †u= ‘time to death from
tumor’ and T = ‘time to tumor’ are identical.

As can be seen from Figure III.6, the probability that an animal develops
a tumor before time t tends to one when t becomes large. That is, like
any standard failure-time model, the Gamma distribution presumes that,
in absence of a competing cause of death, any individual will eventually
fail (develop a tumor). Because the animals are exposed for a long period,
however, natural deaths take place due to the aging process. To account for
this competing cause of death, I assume that the random variable †α = ‘time
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Figure III.6: Cumulative distribution functions of the vari-
able ‘time to type A tumor.’ Left curve: Gamma distribution
(equation III.11) with m and σ equal to 500 and 250 days,
respectively (dose dH). The cumulative tumor incidence after
730 days is: FT (730|dL) ≈ 0.35. Rigth curve: Gamma distri-
bution with m = 900 days and σ = 350 days (dose dL < dH).
Figure III.5 shows the corresponding probability density func-
tions. The cumulative tumor incidence after 730 days is:
FT (730|dH) ≈ 0.834.

to aging-mediated death’ is Weibull distributed (equation II.5) with mean
800 days and standard deviation 250 days.

Assuming that the variables †α and †u are independent, the distribution
of the variable † = ‘time to death’ is given by the following survivor function:

G†(t) = G†α(t)G†u(t) (III.12)

For type A tumors, as the variables †u and T are the same, this expression
leads to G†(t) = G†α(t)(1 − FT (t)). Finally, to imitate experimental situa-
tions reliably, I randomly remove 10 individuals after 200 days and another
10 after 400 days. Moreover, I assume that all remaining animals are sacri-
ficed after 730 days. As animals may leave the study before they developed
a tumor, the observed tumor incidence may differ from the incidence shown
in Figure III.6. overview of all randomly generated events in the dL-group
is provided in Figure III.7.
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Figure III.7: Randomly generated events in a rat population exposed to dose dL
of compound RA. Each horizontal line represents a single specimen. Lines are
solid as long as the corresponding specimens are still alive. Upper panel: Spec-
imens leave the study because of aging-related death, tumor-mediated death, or
sacrifice. Filled boxes represent time of death from tumor. Dotted lines indicate
the lifespans expected when aging is the only cause of death. After 200 days and
again after 400 days, up to 10 specimens (?) are removed from the study. Moreover,
all remaining animals are sacrificed after 730 days. Lower panel: Observed events.
In both panels, the solid lines ending with a box are specimens that died from a
tumor.
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III.7.2 Error measures

To evaluate the quality of tumor incidence estimates, I use two error func-
tions:

DKM(t) = 1−KM(t)− FT (t|m,σ)
Dfit(t) = FT (t|m̄, σ̄)− FT (t|m,σ)

(III.13)

where KM(t) is the KM-estimation of the tumor-free probability (equa-
tion III.2), FT is defined as in equation III.11, and m̄ and σ̄ are the es-
timates of m and σ obtained by the maximum likelihood (ML) approach.
The error functions express the difference between the estimated cumula-
tive tumor incidence and ‘real’ cumulative tumor probability. Using these
functions, I define the following error measure: Emax

fit = Dfit(t#), where t#
is the instant at which the function |Dfit| reaches its maximum value. If
Emaxfit < 0.05, the ML-estimate of the cumulative tumor incidence deviates
less than 5% from the real cumulative tumor probability. As the estimate
of the cumulative tumor incidence at the end of the study is often used for
risk assessment, I also introduce: E730fit = Dfit(730) and E730KM = DKM(730).

Figure III.8 exemplifies the use of the error measures defined above. It
concerns the effect of censoring on a given set of randomly generated tumor-
induction times. In Figure III.8.a, as no censoring takes place, the KM-
estimates equal the cumulative incidences of randomly generated events.
As can be seen from this Figure, the randomly generated events (bullets)
are close to the corresponding real distributions (solid lines). Moreover,
the real (solid lines) and fitted (broken lines) cumulative incidences only
differ slightly. The values of the corresponding error measures also reveal
this: Emaxfit (dL) = −0.038 and Emax

fit (dH) = −0.060, which reflect the largest
discrepancies between estimated and real incidences. Figure III.8.b shows
the real and estimated tumor incidences when aging-related death is the
only competing cause of death. Finally, Figure III.8.c shows the outcome
of the bioassay when all censoring events described in Section III.7.1 are
included.
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III.7.3 Divergences among bioassays

Long-term carcinogenicity tests are time and money consuming bioassays.
Therefore, cancer risk assessment is generally based on the results of one
single long-term rodent test. But, what is the chance that the outcome of a
single test accurately reveals the relation between exposure and incidence of
tumors? This question can be addressed with the aid of computer-simulated
bioassays.
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Figure III.9: Variation in tumor incidence among bioassays. Cu-
mulative incidence of type A tumors in absence of competing
causes of death. Data from 500 independent computer-simulated
bioassays. The solid lines are the real cumulative tumor probabil-
ities shown in Figure III.6.

Figure III.9 shows that, indeed, the observed tumor incidence can differ dra-
matically among bioassays, even in absence of competing causes of death.
Consequently, the model fits depicted in Figure III.8 may not be repre-
sentative, as they concern one single bioassay. I therefore simulated the
RA-bioassay 10,000 times and analyzed the capability of both the maxi-
mum likelihood approach (equation III.10) and the Kaplan-Meier method
(equation III.2) to recover the real time-to-tumor distributions shown in
Figure III.6. For this simulation study, I utilized the bioassay design illus-
trated in Figure III.8.c. The results of the simulations are summarized in
Figures III.10 and III.11.

Figure III.10 shows the frequency of errors in the estimation of tumor-
incidence among the 10,000 dL-groups. The error range [−1, 1] has been
divided into 250 intervals of length 0.008. The histogram bars show the per-
centage of error values located within each interval for a sample of 10,000
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variates. The three histograms, from top downwards, illustrate the distribu-
tion of Emaxfit (dL), E730fit (dL), and E730KM(dL) values, respectively. Figure III.11
shows the results for a similar simulation concerning 10,000 dH -groups.

Figures III.10.b and III.10.c show that the distributions of the maxi-
mum likelihood and Kaplan-Meier estimation errors at day 730 are similar
in shape. This means that for the dL-group both methods provide equally
good estimates of the final cumulative tumor incidence (FCTI), FT (730|dL).
In the dH -group, however, the maximum likelihood (ML) approach be-
haves better than the KM-method. Compared to the KM-method, the ML-
approach has a 12.15% higher chance to get an FCTI estimation that differs
less than 5% from the real value.

In the example shown in Figure III.8.c, the Emax
fit (dH) value is much lower

than the Emaxfit (dL) value. That is, the maximum likelihood prediction of the
dH time-to-tumor distribution is more accurate. This is in agreement with
the shape of the corresponding error value distributions (Figures III.10.a
and III.11.a). Indeed, the mean of both distributions is close to zero, but
the standard deviation of Emax

fit (dH) is smaller than that of Emax
fit (dL). Con-

sequently, the chance to get a maximum likehood estimate of FT that differs
less than 5% from FT is 19.26% and 37.97% for the dL- and dH -group,
respectively.

In Figure III.11.c, an isolated bar clearly stands out from the body of
the E730KM(dH) distribution. It is mainly due to the frequency of the er-
ror value 0.166. This maximum overestimation occurs when the last speci-
men dies with a tumor before day 730, which implies KM(730) = 0 (equa-
tion III.2) so that DKM(730) = 1− 0.834 = 0.166 (equation III.13). This
observation suggests that the number of animals left after 730 days is im-
portant for the Kaplan-Meier FCTI-estimation. I explored this further in
Figure III.12, which shows the relation between the E730KM(dH) value and the
number of animals alive after 730 days.

Figure III.12 displays E730KM(dH) against the number of animals that are
still alive at the end of the bioassay, N730. In the boxplot, each box shows the
median (50th percentile) error value as a line and the first (25th percentile)
and third quartile (75th percentile) of the error value distribution as the
lower and upper parts of the box. The area in the box thus represents
the middle 50% of the values. The mean values are indicated with bullets.
The ‘whiskers’ shown above and below the boxes represent the largest and
smallest observed error values.
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Figure III.10: Frequency of tumor-incidence estimation-errors among 10,000
randomly-generated bioassays (60 rats exposed to a dose dL of RA). The bars
show the percentage of error values located within intervals of length 0.008. (a) Fre-
quency of Emax

fit (dL) values. Mean value = 0.0071 and standard deviation = 0.138.
The percentage of error values that lie between −0.05 and 0.05 is 19.26%. (b) Fre-
quency of E730fit (dL) values. Mean value = 0.00475 and standard deviation = 0.085.
Percentage between −0.05 and 0.05: 43.67%. (c) Frequency of E730KM(dL) values.
Mean value = −0.000047 and standard deviation = 0.087. Percentage between
−0.05 and 0.05: 42.93%.
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Figure III.11: Frequency of tumor-incidence estimation-errors among 10,000
randomly-generated bioassays (60 rats exposed to a dose dH of RA). The bars show
the percentage of error values located within intervals of length 0.008. (a) Frequency
of Emax

fit (dH) values. Mean value = 0.00104 and standard deviation = 0.0779. The
percentage of error values that lie between −0.05 and 0.05 is 37.97%. (b) E 730fit (dH)
values. Mean value = 0.0019 and standard deviation = 0.0585. Percentage be-
tween −0.05 and 0.05: 59.91%. (c) E730KM(dH) values. Mean value = −0.00066 and
standard deviation = 0.076. Percentage between −0.05 and 0.05: 47.76%. For an
explanation on the isolated bar, see text.
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Figure III.12 suggests that there is a linear relation between E 730KM(dH)
and N730. For a dH -group of 60 rats (upper panel), according to the least-
squares line obtained from 10,000 bioassays, the E730KM(dH) value is approxi-
mately zero if N730 ≈ 3.175. In contrast, if N730 > 3.175, its value is neg-
ative. Below I argue that 3.175 concerns the expected number of animals
alive at day 730 according to the real failure-time distributions.

A specimen is still alive after 730 days only if it does not die sponta-
neously before day 730 and it is not sacrificed at day 200 nor at day 400.
The expected number of specimens that are still present in the study at
day 730 can thus be calculated as:

E[N730] = N0G†(730)(1− Pc200)(1− Pc400)

whereN0 is the initial number of animals, G†(730) is given by equation III.12.
Pc200 and Pc400 are the probabilities that a specimen is censored at day 200
and at day 400, which are given by:

Pc200 =
nc200

N0G†(200)

Pc400 =
nc400

N0G†(400)(1− Pc200)

with nc200 and nc400 the number of animals sacrificed at day 200 and at
day 400, respectively. Substitution of the equations above into the expres-
sion for E[N730] leads to:

E[N730] = G†(730)

(

N0 −
nc200

G†(200)
− nc400
G†(400)

)

(III.14)

In the dH -group, for N0 = 60, nc200 = 10, and nc400 = 10, the expected
number of remaining animals at day 730 is E[N730] = 3.178, whereas for
N0 = 100, nc200 = 10, and nc400 = 10, the expected number of remaining
animals at day 730 is E[N730] = 7.215. These E[N730] values are in agree-
ment with the roots of the straight lines depicted in Figure III.12. Thus,
for N730 values larger than E[N730], the KM-method has a clear tendency
to underestimate the FCTI.
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Figure III.12: Boxplot summarizing the relation between the E730KM(dH) values and
the number of animals that are still alive at day 730. Data from 10,000 randomly-
generated bioassays. Each box shows the median as a line and the first and third
quartile of the error value distribution as the lower and upper parts of the box.
The mean values are indicated with bullets (•). The whiskers shown above and
below the boxes represent the largest and smallest observed error values. Upper

panel: N0 = 60. Same E730KM(dH) values as in Figure III.11.c. Least-squares fitting
of a straight line gives: y1(x) = 0.116− 0.0365x, which satisfies y1(0) = 0.116 and
y1(3.175) = 0. Lower panel: N0 = 100. Least-squares fitting of a straight line
gives: y2(x) = 0.12− 0.0165x, which satisfies y2(0) = 0.12 and y2(7.25) = 0.
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MODELING OXIDATIVE
DAMAGE AND AGING

“The secret to all the chemistry of oxygen,
whether we think of it as ‘good’ or ‘bad,’
is the formation of free radicals,” N. Lane

“With a little luck, there’s no reason why you can’t live to be

one hundred. Once you’ve done that, you’ve got it made, because

very few people die over one hundred,” G. Burns





A mathematical model that accounts for
the effects of caloric restriction on
body weight and longevity

Adapted from:
I.M.M. van Leeuwen, F.D.L. Kelpin, and S.A.L.M. Kooijman (2002)
Biogerontology, 3(6): 373–381

Abstract

Several aspects of energy dynamics, such as energy expenditure and caloric
intake, are known to affect the aging process. In this Chapter, we therefore
model the aging process within a mathematical framework describing the
energy dynamics of an organism. The resulting model comprises food intake,
body growth and survival. The equation for the mortality rate accounts for
food consumption and is suited to describe caloric restriction data. For non-
growing animals, the expression for the mortality rate reduces to the well-
known Gompertz equation. We successfully applied our model to growth
and survival data on mice exposed to different food levels.

Keywords

Dietary restriction; Dynamic Energy Budget theory; free radicals; metabolic
rate; mitochondrial aging theory; senescence.

IV.1 Introduction

Energy dynamics and aging seem to be strongly correlated. This is best
illustrated by the effects of caloric restriction. Studies on caloric restriction
carried out with different organisms, ranging from rotifers to rhesus mon-
keys [183, 198, 260], have revealed that calorically-restricted animals not
only live longer but also have fewer age-associated diseases. The aim of this
Chapter is to formulate a simple mathematical model that quantitatively
links aging to food consumption and body growth.

The model we present consists of two parts, a general mathematical
framework describing energy dynamics and a module dealing with aging.
The former provides quantitative expressions for characteristics and pro-
cesses such as food consumption, fat content, body growth, and metabolic

95
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rate. It is a slightly adapted version of the Dynamic Energy Budget (DEB)
theory as developed by Kooijman [116, 117]. The aging module of the model
is based on the free radical theory, which argues that senescence is the result
of intracellular damage inflicted by free radicals [82, 61]. Oxidative damage
to mitochondria [130, 159], which results in an increase in the generation
rate of free radicals, plays an important role in this module as it entails an
acceleration of the whole aging process.

An important link between the general framework and the aging model
is the concept of ‘rate of living’ [181, 247]. This link is supported by the
observation that intracellular generation of free radicals is predominantly a
function of metabolic rate [61, 209, 211]. In the context of the DEB-theory,
the rate of living is best characterized by the so-called utilization rate, or
catabolic rate, i.e., the total energy expenditure per time unit. As the
catabolic rate is a function of food consumption, we obtain a quantitative
expression for the relationship between life expectancy and food consump-
tion.

The remainder of this Chapter is organized as follows. We first briefly
explain the general framework, comprising food consumption, body growth
and catabolic rate. Thereafter we present our mathematical model for ag-
ing. We show that our approach leads to a biologically-based interpretation
of the widely used Gompertz model. Finally we confront our model with ex-
perimental data [246] on growth and survival of mice kept on various levels
of caloric restriction.

IV.2 DEB-based model for energy dynamics

The aim of this Chapter is to model the aging process within a general
framework describing the energy dynamics of an individual. A set of rules
to characterize intake and use of energy, which qualifies for our purposes,
is provided by the Dynamic Energy Budget (DEB) theory. It is based on
fundamental mechanisms that all organisms seem to have in common. The
basic structure of the DEB-theory is depicted in Figure IV.1. It assumes
that the body consists of two components: reserve materials (stored energy)
and structural biomass. The model for an individual therefore comprises a
set of two differential equations. The total weight of an animal at a certain
time (age) is given by the sum of the weights of its structure and reserves
at that time (age). For an introduction to the wide range of applications of
the DEB-theory, we refer the reader to reference [118] and for an exhaustive
description to [117].
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Figure IV.1: Energy fluxes according to the DEB-theory. Food is conceived as
material bearing energy. Part of this energy is taken up via the blood and delivered
to the reserves. Energy required to carry out the various physiological processes
is obtained from these reserves. A fixed proportion of the utilized energy is spent
on growth plus somatic maintenance plus heating, whereas the remainder propor-
tion is spent on maturity maintenance plus development (embryos and juveniles)
or reproduction (adults). According to the DEB-theory, the body consists of two
components, namely structure and reserve materials (stored energy). This decom-
position is useful for the quantification of maintenance costs, as these costs are
assumed to be paid for structural biomass only. Constant chemical composition is
assumed for both structure and reserves.

In this Chapter we focus on the effects of caloric-restriction (CR) on the
body weight and life expectancy of laboratory rodents. Mice and rats as
experimental animals have the advantage that a lot is known about their
physiology and, in particular, about their diet requirements. This substan-
tially increases the probability that during a CR-study the condition ‘un-
dernutrition without malnutrition’ is fulfilled.

Several long-term studies with mice and rats have shown that ad li-

bitum food consumption is approximately constant during the study pe-
riod [96, 112, 125]. As the animals usually grow during the study period
(e.g., Figure IV.2), this observation implies that food consumption in labora-
tory rodents is independent of body size. This is in conflict with the finding
that the feeding-rate of wild animals increases with body size [111, 250].
Since the DEB-theory assumes an increase in the ingestion rate with body
size, a first step in modeling the physiology of laboratory rodents is to adapt
the DEB theory to account for constant food consumption.
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Figure IV.2: Food consumption
and body growth of male (•) and
female (?) control rats. Food and
tapwater were supplied ad libitum.
Data from B[a]P-RIVM study (Sec-
tion III.2.2). The animals were ap-
proximately 6 weeks of age at study
initiation [125]. (a) Average food
consumption rate (gram per day);
(b) Body weight (gram) as a func-
tion of time; and (c) Average food
consumption per body weigth per
day. Female rats have a higher rela-
tive ingestion rate than male rats.

Most caloric-restriction studies share a common experimental design. An-
imals are organized in different diet-groups that either have food available
ad libitum or receive a fixed fraction % of ad libitum food consumption. In
mathematical terms this means that, for any diet-group, the constant food
ingestion rate I can be written as:

I = %Im (IV.1)

where Im is the (diet-composition specific) maximum food consumption rate
and % is a coefficient satisfying 0 < % ≤ 1. If an animal receives ad libitum

feeding, % = 1 and I = Im. If it instead receives 75% of ad libitum food
consumption, % = 0.75 and I = 0.75Im.

The expression for the ingestion rate (equation IV.1) can be incorporated
into the DEB model to obtain expressions for the change in the amount of
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reserves and structure. The resulting set of differential equations is shown
in Table IV.1 (equations IV.2 and IV.3), whereas the mathematical model
development is summarized in Appendix A. In Table IV.1 the variable V rep-
resents structural volume, whereas e represents the so-called scaled reserve-
density. The presence of the coefficient % in equation IV.2 indicates that
food intake directly influences reserve density. It can be shown that a lower
food availability results in a lower reserve density. Equation IV.4 shows how
total body weight W (t) depends on structural volume and scaled reserve
density. Below we will use this expression to estimate model parameters
from observed body weights. Finally, equation IV.5 provides the expression
for the scaled catabolic-rate c(t), which is defined as the catabolic rate C(t)
divided by the maximum reserve density.

IV.3 A simple model for aging

As we said in Section IV.1, our aging model is based on the assumption that
oxidative damage is responsible for age-associated physiological decline. At
any time (age) the amount of accumulated oxidative damage determines
the chance to survive. This idea is incorporated into the model by taking
the hazard rate proportional to the amount of oxidative damage per unit
structural volume:

h(t) = β
D(t)

V (t)
(IV.6)

S(t) = e−
∫ t
0
h(s)ds, t ≥ 0 (IV.7)

where h is the mortality rate or hazard rate, D the amount of oxidative
damage, and V the structural volume. We will refer to the fraction D

V as
damage density. The coefficient β is the damage-specific killing rate, which is
assumed to be independent of time (age). Equation IV.7 is the mathematical
relation between the hazard rate and the survivor function; S(t) denotes the
probability that an animal is still alive at time (age) t. For further details
on the hazard and survivor functions, see Chapter III (Section III.5).

In the previous section we obtained an expression for V , which depends
on food availability (equation IV.3). Yet a characterization of the hazard
rate (equation IV.6) also requires an expression for D. To deduce an expres-
sion for D, in this section we give a step-by-step explanation of the processes
summarized in Figure IV.3, starting from the generation of free radicals.

The main source of oxidative damage are Reactive Oxygen Species (ROS),
with some additional contributions by reactive nitrogen species [251]. Reac-
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Table IV.1: Equations for energy dynamics. Dimensions: − no dimension; L
length; M mass; T time; # amount.
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(IV.3)

W = dV (1 + ξe)V (IV.4)

c = e

(

vV
2
3 − dV

dt

)

(IV.5)

Parameter Dimension Interpretation
dV ML−3 Structural-volume specific weight

g - Growth energy-investment ratio

v LT−1 Energy conductance

Vh L3 Volume reduction due to heating

Vm L3 Ectothermic maximum volume

V1∞ L3 Maximum structural volume

ξ - Scaled reserve specific weight

% - Food-supply coefficient

Variable Dimension Interpretation
e - Scaled reserve-density

V L3 Structural volume

W M Total body weight

c L3T−1 Scaled catabolic-rate
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tive species are continuously generated in cells as a consequence of reactions
involved in, for instance, the respiratory chain, in phagocytosis, and in the
P-450 system [83]. However, it is known that most intracellular ROS are
produced by the mitochondria. Mitochondria consume more than 90% of
cellular oxygen and, in vitro, transform 1–2% of the consumed molecules into
superoxide anions [61]. The generation of ROS is thus directly related to
the rate of oxygen consumption and indirectly to the rate of living. Our first
assumption states that the intracellular ROS-generation rate is proportional
to the catabolic rate:

J+(t) = α(t)C(t) (IV.8)

where J+(t) is the ROS-production rate at time (age) t, C(t) the catabolic
rate at that time, and α(t) stands for the amount ROS produced per utilized
reserve-unit. Below we will argue that the value of α varies in time because
it depends on the amount of accumulated oxidative damage.

The reactivity of ROS is so great that the time delay between generation
and interaction with a cellular component is very small [149]. We assume
that the lifespan of ROS is negligibly short. Consequently, the rate of ROS
production (J+) immediately translates into a rate of ROS reaction (Jr).
Further we assume that a fixed fraction of the produced ROS is inactivated
by antioxidant defense systems, whereas the remaining fraction γJ+ actually
interacts with cellular components. The balance between ROS production
and elimination thus determines the level of oxidative damage:

Jr(t) = J+(t)− J−(t) = γJ+(t) (IV.9)

with J−(t) the ROS-elimination rate at time (age) t.
The change in the amount of oxidized macromolecules is not only deter-

mined by the rate of ROS reaction and the ability of the interacting ROS
to cause damage, but also by rate of repair or degradation of damaged cell
components. In addition, we assume that an amplification of damage occurs
as a consequence of existing damaged macromolecules. The change in the
amount of oxidized macromolecules is given by:

dD

dt
= zJr + xD − yD (IV.10)

where the first term stands for the ROS-mediated oxidation rate, the second
for the rate of damage production due to amplification, and the third for the
rate of repair (or degradation) of oxidized macromolecules. The coefficient
z depends on the ability of the reacting ROS to cause oxidative damage
relevant to the aging process.
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Figure IV.3: Basic structure of the aging module. Reactive species (RS)
are generated during normal aerobic metabolism. Additional RS can
come from exogenous sources. A fraction of the generated RS is elimi-
nated, whereas the remainder fraction reacts with cellular components
causing oxidative damage. Oxidized macromolecules can be either re-
paired or degraded. Oxidative damage accelerates the aging process via
two ‘feedback’ mechanisms. Accumulated oxidative damage is respon-
sible for physiological decline eventually resulting in the death of the
organism.
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Reactive species have been shown to attack most cellular components,
including nuclear DNA, lipids, and mitochondria [78, 222]. Oxidative dam-
age to mitochondria is of special interest as it engenders an increase in ROS
generation, thereby accelerating the whole aging process (see Figure IV.3).
Indeed, damage in the mitochondrial DNA has been shown to inhibit the
initial and middle segments of the respiratory chain, leading to massive
production of superoxide radicals [179]. Moreover, proteins of the electron
transport system are preferentially targeted for oxidation [222], which may
result in a less accurate activity. In mathematical terms, the occurrence
of damage-mediated amplification of ROS generation means that the coef-
ficient α (equation IV.8) is an increasing function of the amount of accu-
mulated oxidative damage. We assume that this function is linear in D, so
that the ROS-production rate is given by J+(t) = [α0 + α1D(t)]C(t). This
expression, together with equations IV.9 and IV.10, leads to:

dD

dt
= [(x− y) + α1z γ C]D + α0z γ C

This equation can be rewritten as follows:

dD

dt
= [ψ + φ c]D + ϕ c (IV.11)

with c the scaled catabolic rate (equation IV.5). The compound parameter ψ
is defined as x−y, the compound parameter φ is the product of α1z γ and the
maximum reserve density, and ϕ is the product of α0z γ and the maximum
reserve density. Equation IV.6 together with equation IV.11 constitute our
model for aging.

Before confronting the model with experimental data, we want to com-
pare our approach with the model most frequently used to describe survival
data: the Gompertz model [60, 72]. When body size remains constant, ac-
cording to equations IV.2 and IV.5, reserve density and catabolic rate also
remain constant in time. Let c∗ denote the constant scaled catabolic-rate
of a fully grown animal. If in addition the parameter ϕ has value zero,
integration of equation IV.11 provides a simple expression for the scaled ox-
idative damage: D(t) = D(0)e(ψ+φ c∗)t. Substitution of this expression into

the mortality rate (equation IV.6), leads to h(t) = βD(0)V (0)e
(ψ+φ c∗)t. This can

be rewritten as:

h(t) = h0e
ηt, t ≥ 0 (IV.12)
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with h0 = βD(0)V (0) the initial or baseline mortality rate, and η = ψ + φ c∗
the exponential mortality-rate coefficient. This is the well-known Gompertz
equation, which quantifies the observation that the mortality rate usually
increases exponentially with age. Interestingly, we now have obtained a
biological interpretation of the Gompertz parameters. The initial mortality
h0 is the product of the damage-density at t = 0 and the constant scaled
killing rate. Obviously the initial damage density depends on the amount
ROS produced until the beginning of the study, but it is independent of what
happens thereafter. The exponential mortality-rate coefficient η is a linear
function of the catabolic rate. It thus depends on the food level and varies
among species. Different species not only differ in their catabolic rates, but
also in the values for ψ and φ because these parameters depend on processes
such as elimination of ROS and repair of oxidative damage.

IV.4 Results and discussion

In 1996, Sohal and Weindruch claimed that any causal hypothesis for senes-
cence should explain at least the following three observations:

(i) organisms undergo progressive physiological decline with age;

(ii) caloric-restriction (CR) extends the average and maximum lifespan of
organisms;

(iii) life expectancy varies within and among species.

Although such causal hypotheses are usually stated verbally, they can also
be cast in the form of a mathematical model. Senescence then appears as
a mortality rate that increases with age. Such an approach has the added
benefit of quantitative testability.

The model we present in this Chapter is based on the free radical theory
for aging, which attributes age-associated physiological decline to intracel-
lular oxidative damage. Several authors, including Sohal and Weindruch
themselves, have claimed that the free radical theory satisfactorily justifies
the first observation. In the previous Section we showed that a simple ver-
sion of our model reduces to the Gompertz model. Indeed, our model can
be seen as a biologically-based generalization of the Gompertz model that
accounts for body growth and level of food availability. Even the reduced
version (Gompertz model) describes survival data well and, thus, succeeds
in explaining the age-associated increase in mortality rate in a quantita-
tive sense.
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Both a decreased energy expenditure and a retarded increase in the
level of oxidative stress have been reported in calorically-restricted ani-
mals [193, 258, 259]. The hypothesis for aging illustrated in Figure IV.3
therefore suggests that CR affects the mortality rate by decreasing the
catabolic rate and, thus, by decreasing the level of oxidative damage. To test
if the model satisfies the second condition in a quantitative sense, we con-
fronted it with CR data from Weindruch et al. (1986). The study includes
three groups of mice that are exposed to three different food levels: ad li-

bitum, 85 kcal/week (25% restriction), and 50 kcal/week (56% restriction).
According to the terminology introduced in Section IV.2, this means that %
has values 1, 0.75, and 0.44, respectively. We fitted the three body-weight
data sets simultaneously (see Appendix B). The growth curves correspond-
ing to the estimated parameter values are depicted in Figure IV.4.
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Figure IV.4: Average body weight W (t) as a function of time
(age). Data from Weindruch et al. (1986). From the top down-
wards the relative food level % equals 1, 0.75, and 0.44, respec-
tively. We fitted the three body-weight data sets simultaneously.
Details on the fitting procedure and on the estimated parameter
values are provided in Appendix B.

Once values for all the DEB-parameters (Table IV.1) have been estimated,
we are able to calculate the corresponding scaled catabolic-rate. Figure IV.5
shows the scaled catabolic-rate per structural biomass. We predict a clear
difference in scaled catabolic-rate per structural biomass among the diet-
groups at the beginning of the study. However, this difference eventually
disappears with the passage of time. This is in agreement with the ex-
perimental observations: “In general, whole-body studies have reported an
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Figure IV.5: Model simulation of the scaled catabolic-rate per struc-

tural body weight, 1
dV

c(t)
V (t) where V (t) is given by equation IV.3 and

c by equation IV.5. Parameter values as in Figure IV.4. From the top
downwards the relative food level % equals 1, 0.75, and 0.44, respectively.
Initially, caloric-restriction results in a decrease in the catabolic rate per
structural biomass. However, later on this difference disappears. This is
in agreement with the experimental observations on energy expenditure.

acute decrease in mass-adjusted energy expenditure that disappears with
long-term energy restriction [193].”

With the parameter values obtained above, the state variables c(t) and
V (t) in the aging module (equations IV.6 and IV.11) are known. Food con-
sumption indirectly influences survival through these two quantities. That
is, the model predicts differences in longevity on the basis of differences in
energy dynamics. We fitted the three survival data sets simultaneously (see
Appendix B). As can be seen from Figure IV.6, our model is able to explain
differences in survival on the basis of the differences in food consumption
and, therefore, satisfies Sohal and Weindruch’s second condition.

To describe the survival data shown in Figure IV.6, the Gompertz model
can be used. However, because it does not account for the food level, the
survival data of the three diet-groups can only be fitted independently of
each other. This means that a total of 4 parameter values are required (three
values for η and one value for h0). Notice that the number of parameters
depends on the number of diet-groups considered. So, for four diet-groups,
5 parameter values have to be estimated. Figure IV.7 depicts the result
of fitting three independent Gompertz curves (broken lines) as well as the
result of fitting simultaneously the three data sets with our model. As can
be seen from this figure, the quality of the fits is almost the same. Our
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model has the advantage that the number of parameters does not depend
on the number of diet-groups considered. Moreover, it has the additional
advantage that predictions can be made on the body weight and longevity
of animals exposed to alternative feeding-conditions.
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Figure IV.6: Survival probability S(t) as a function of time (age). Data
from Weindruch et al. (1986). From left to right % equals 1, 0.75, and
0.44, respectively. DEB-parameter values as in Figure IV.4. We fitted
the three survival data sets simultaneously. Details on the fitting proce-
dure and on the estimated parameter values are provided in Appendix B.

The third of Sohal and Weindruch’s conditions concerns intra and inter-
species differences in mortality rates. In the present Chapter, we focus on
growth and mortality of animals with constant food consumption, such as
laboratory rodents. The aging module, however, is based on fundamental
mechanisms that are not species-specific. If it is combined with the DEB-
model as presented in Kooijman (2000), the resulting model can be used to
describe the growth and mortality of animals with alternative food intake be-
havior. To fulfill the third condition, differences in parameter values should
account for the differences in mortality rates. The DEB theory includes
rules to compare energy dynamics among species. The so-called primary
scaling relationships link differences in body size to differences in parameter
values. The primary scaling relationships allow the derivation of body-size
scaling relationships for a variety of eco-physiological features such as food
ingestion, respiration, catabolic rate, and body growth. Further research is
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needed to extend this approach to obtain body-size scaling relationships for
the aging process.

It has been argued that, in addition to Sohal and Weindruch’s general
observations, a hypothesis for aging should also explain some more specific
features of mortality kinetics. Gavrilov and Gavrilova (2001), for instance,
argued that it should explain the exponential increase in mortality rates with
age observed in many adult species (Gompertz law) and the occurrence of
late-life mortality deceleration. With regard to the former, in the previous
section we showed that, for adult non-growing animals, our model reduces
to the Gompertz equation. Mortality deceleration at older ages can be
described in the context of our model as the consequence of the selection of
a special subpopulation. Late-life plateaus thus occur because animals that
reach advanced ages are genetically different.
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Figure IV.7: Comparison with the Gompertz model. Broken lines:
Gompertz curves. Solid lines: same curves as in Figure IV.6. Data
from Weindruch et al. (1986). As the Gompertz model (equation IV.12)
does not account for food consumption, three different values for the
exponential mortality-rate coefficient η have been estimated. In contrast,
our aging model (equation IV.6) naturally accounts for food consumption
and the three data sets have, thus, been fitted simultaneously. Details on
the fitting procedure and on the estimated parameter values are provided
in Appendix B.
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Many biogerontologists have argued that aging is a multicausal process.
The model we present reflects this. It integrates elements of three major
theories for aging, namely the free radical theory, the rate of living the-
ory and the mitochondrial theory for aging. Further research is needed
to explore the relationship between our model and other theories for ag-
ing, such as the disposable soma theory [109, 110] and the telomere loss
theory [5, 178]. The former states that longevity is determined by opti-
mizing the investments in somatic maintenance and reproduction. As the
DEB-theory provides quantitative expressions for the costs of both somatic
maintenance and reproduction, analysis of the trade-off between mortality
and reproduction is possible within the context of our model. The telomere
loss theory argues that mitosis-associated progressive telomere shortening is
responsible for cellular (replicative) senescence. It has been observed that
the rate of telomere loss depends on the level of oxidative stress [264]. The
consequences of this observation can be studied quantitatively with aid of
our model. These subjects are, however, beyond the scope of the present
Chapter.

As explained above, our model can be used to explore proposed hy-
potheses for aging. It can also be used to elucidate the effects of external
factors that may influence the aging process. In this Chapter, for exam-
ple, we studied the influence on longevity of long-term caloric restriction.
Moreover, Figure IV.3 shows how exposure to dietary oxidants can be in-
corporated into the model. Other factors whose effect can be quantified
are upregulation of antioxidant defenses and exposure to stress. A response
to such events can be modeled as a change in DEB-parameters or in aging
parameters.

Finally, we conclude by summarizing the most salient features of the
model presented in this Chapter: (1) we developed a physiologically-based
model for aging that is rather simple from a mathematical point of view.
This is illustrated by the possibility to estimate the required parameter val-
ues from growth and survival data only; (2) the model is able to predict
differences in survival on the basis of differences in food consumption. As
can be seen from Figure IV.6, the model not only predicts CR-animals to
live longer, but also provides CR-survival curves that are consistent with
the experimental observations; (3) we obtained an interpretation of the
Gompertz-parameters in terms of DEB-parameters. We deduced that the
exponential mortality-rate coefficient η is a function of the catabolic rate
and, thus, depends on food supply; (4) the aging module is based on funda-
mental mechanisms that are not species-specific; and (5) as explained above,
the model can be extended to incorporate other mechanisms of aging or to
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elucidate the consequences of several influential factors. In sum, the model
presented in this Chapter constitutes a useful tool for modeling aspects of
aging.
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Appendix

A. DEB model with constant food consumption

According to the DEB-model, the assimilation efficiency is independent of the in-
gestion rate and, consequently, the assimilation rate relates to the ingestion rate
as A/Am = I/Im, with Am the (diet-composition specific) maximum assimilation
rate. The term ‘assimilated energy’ refers to the energy content of the ingested
food minus the energy content of the feces and minus all energy losses during the
digestion process. As can be seen from equation IV.1, we assume that I/Im equals
%, which implies A/Am = %. Let us define the surface-area specific maximum as-

similation rate as {Am} = AmV
−2/3
1∞ , with V1∞ the ad libitum maximum structural

volume. The assimilation rate is then given by:

A = %{Am}V
2
3

1∞ (IV.13)

As can be seen from Figure IV.1, the change in the amount of reserves is given by
the difference between the assimilation and utilization rates, i.e., dE

dt = A−C. The
change in scaled reserve density (e = E

[Em]V ) is then:

de

dt
=

1

[Em]

d

dt

E

V
=

1

[Em]

(

A− C
V

− E

V 2

dV

dt

)

(IV.14)

where [Em] represents the maximum reserve density of the fully grown adult and
V (t) the structural volume of the organism at time t. According to the DEB-model,
the utilization rate (catabolic rate) is:

C =
E

V

(

vV
2
3 − dV

dt

)

(IV.15)

with v = {Am}/[Em] the energy conductance. An important property of C(t) is
that it only depends on the structural volume of the organism and its reserve
density. The scaled catabolic rate (equation IV.5) is defined as c = C/[Em].

Substitution of the expressions for A (equation IV.13) and C (equation IV.15)
into equation IV.14, leads to equation IV.2. According to the DEB-model [117],
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the change in structural body volume is given by equation IV.3. Food availability
indirectly influences growth via the reserve density. For % = 1, the scaled reserve
density (equation IV.2) tends to 1 and growth (equation IV.3) ceases when the

structural volume approaches its maximum value V1∞ = (V
1/3
m − V 1/3

h )3.
The total body weight of an organism is the sum of the weights of the two

body components: W (t) = WV (t) +WE(t) = dV V (t) + dE
E(t)
rE

, with rE defined

as amount reserves
volume reserves . The coefficients dV and dE represent the volume-specific weights

of structure and reserves, respectively. The expression above can be rewritten as

shown in equation IV.4, where ξ = dE
dV

[Em]
rE

.

B. Fitting procedures

At the beginning of the caloric-restriction CR-study, a population of mice is split
into three groups after weaning [246]. This entails that the three diet-groups share
the same initial conditions at t = 0 or, equivalently, the parameter valuesW (0), e(0)
and D(0) are equal for all groups. The same holds for the Gompertz parameter h0.

Body-weight data (Figure IV.4)

At the start of the study (t = 0) the animals have an average weight of 10 g [246].
We therefore took W (0) = 10 g for any diet-group. In addition, we fixed dV on
a value of 1 g/cm3 [117]. Because all mice received ad libitum feeding until the
beginning of the CR-study, the assumption that e(0) = 1 is appropriate [117].
We fitted our growth model (equation IV.4) to the three body-weight data sets
simultaneously to obtain values for v, g, ξ, Vh, and Vm (5 parameters). Please note
that because V1∞ can be expressed in terms of Vm and Vh (see Appendix A), only
values for the latter two parameters need to be obtained during the least-square
fitting procedure. The estimated DEB-parameter values are: ḡ = 6.43, v̄ = 5.71 cm
month−1, V̄h = 1.4 10−7cm3, V̄m = 42.05 cm3, and ξ̄ = 0.19. The corresponding
growth curves are depicted in Figure IV.4.

Survival data (Figures IV.6 and IV.7)

Because we do not have data on the amount of oxidative damage, D(t), not all five
aging-parameters (ψ, φ, ϕ, β, and D(0)) can be estimated. The parameters ϕ, β
and D(0) are linked: multiplying ϕ and D(0) with a constant and dividing β by
the same constant does not change the hazard rate. This means that one of the
three parameters can be chosen freely. Therefore we took D(0) = 0.1. We fitted
the three survival data sets simultaneously, using the maximum likelihood principle
(Section III.6). That is, we obtained θ̄ that maximizes the log-likelihood function
LL(θ):

LL(θ) =
3
∑

i=1

ni
∑

j=1

lnh%i(tij | θ)−
3
∑

i=1

ni
∑

j=1

∫ tij

0

h%i(s | θ)ds (IV.16)
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where θ is the 4-dimensional parameter (ψ, φ, ϕ, β) and tij is the time at which the
j-th mouse dies in diet-group i (see equation III.10). The hazard rate for diet-group
i is denoted by h%i . The food supply coefficient has values %1 = 1, %2 = 0.75, and
%3 = 0.44. The initial number of mice in each diet-group are n1 = 49, n2 = 57, and
n3 = 71.

The estimated parameter values are shown in Table IV.2, whereas the corre-
sponding survival curves are depicted in Figure IV.6. We also fitted three Gom-
pertz curves to the same data (Figure IV.7). Because the Gompertz model does
not account for food consumption, the value of the exponential mortality-rate coef-
ficient η differs among the diet-groups. The estimated Gompertz-parameter values
are included in Table IV.2. Since the Gompertz model and our model have the
same number of parameters, they can be compared using the difference between
the corresponding log-likelihood values. A difference lower than one, according to
the Akaike information criterion [24], indicates that both models describe the data
equally well.

Table IV.2: Estimated aging-parameters.

Our model (equation IV.6) Gompertz model (equation IV.12)

θ̄ = (ψ̄, φ̄, ϕ̄, β̄) θ̄G = (h̄0, η̄1, η̄2, η̄3)

ψ̄ = 0.058 month−1 h̄0 = 8.4 10−5 month−1

φ̄ = 0.0034 cm−3 η̄1 = 0.27 month−1 for %1 = 1

ϕ̄ = 1.7 10−5 # cm−3 η̄2 = 0.23 month−1 for %2 = 0.75

β̄ = 0.018 cm3 #−1 month−1 η̄3 = 0.17 month−1 for %3 = 0.44

LLG(θ̄G)− LL(θ̄) = 0.16
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Abstract

The growth potential of a tumor can significantly depend on host features
such as age, cell proliferation rates and caloric intake. Although this is
widely known, existing mathematical models for tumor growth do not ac-
count for it. We therefore developed a new model for tumor growth, starting
from a mathematical framework that describes the host’s physiology. The
resulting tumor-in-host model allowed us to study the implications of var-
ious specific interactions between the energetics of tumor and host. The
model accounts for the influence of both age and feeding regimen of the host
organism on the behavior of a tumor. Concerning the effects of a tumor
on its host, it explains why tumor-mediated body-weight loss is often more
dramatic than expected from the energy demands of the tumor. We also
show how the model can be applied to study enhanced body-weight loss
in presence of cachectic factors. Our tumor-in-host model thus appears a
proper tool to unite a wide range of phenomena in tumor host interactions.

Keywords

Tumor growth rate; Cancer cachexia; DEB theory; Energy expenditure;
Calorie restriction; Tumor doubling time.

V.1 Introduction

Mathematical models for tumor growth have been widely used in different
sub-disciplines, such as cancer risk assessment [46, 207], cancer biology [126,
242], cancer treatment [2, 223], and oncological decision making [66]. Since
the first models for tumor growth were published [15, 152, 249], they have
become more detailed and, consequently, more complex [75, 241]. Most
classic and modern approaches share at least one feature, though: both
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describe the increase in size of an independent ‘entity.’ The models are
therefore adequate to analyze, for instance, data on tumor spheroids growing
in vitro. Their use to describe data on tumors growing in vivo may be less
warranted because of interactions between tumor and host. The aim of this
Chapter is to develop a mathematical model to explore such interactions
between the growth of a tumor and the physiology of the host organism.

We based our model on well-recognized interactions between tumor
growth, energy homeostasis, utilization of stored energy by tumor and host,
and cancer cachexia. The formulation in terms of a mathematical model has
several benefits. First, it forces us to specify quantitative formulations about
the interactions, which improves testability of the hypotheses involved. Sec-
ond, because the model asks for an overall view of a number of processes and
their interrelationships, it can offer insights that complement those arising
from individual experimental studies. Finally, model simulations allow to
switch on or off particular hypothetical mechanisms easily, so that we can
evaluate their impact on and relevance for the expected outcome.

The Chapter is organized as follows. First, we introduce the Dynamic
Energy Budget (DEB) theory [117, 118], which provides quantitative ex-
pressions for fundamental physiological features and processes, such as food
consumption, body growth, metabolic rate, and aging. We then extend
this theory to account for tumor growth. Second, with the aid of computer
simulations, we show that tumor growth can significantly depend on host
physiology and vice versa. Regarding the influence of the host on tumor
behavior, we focus on the implications for the tumor of differences in host
energetics associated with host age and host caloric intake. Thereafter, we
study the decrease in body weight associated with the increase in size of a
tumor. Finally, we discuss several implications of the results obtained. The
Appendix contains additional information on the mathematical formulation
of the model as well as on the fitting procedures and parameter values.

V.2 Material and methods

V.2.1 Introduction to the DEB-theory

To model the interaction between tumor and host, we need a general frame-
work describing the physiology of the host organism. Such a framework is
provided by the DEB-theory. The theory starts with a set of rules to char-
acterize an individual organism, based on fundamental mechanisms that all
organisms seem to have in common. From these rules the theory derives
quantitative expressions for sundry physiological processes. In this Chap-
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ter, we explain only those aspects of the theory indispensable to understand
our model for tumor growth. A more complete, though still qualitative,
introduction to the theory can be found in [118], while [117] provides an
exhaustive formulation.

Food Gut

Reserves

ingestion defecation

utilization

assimilation

Feces

DevelopmentMaintenance

Growth Reproduction

Figure V.1: Energy fluxes in an in-
dividual organism, according to the
DEB-theory. Food is conceived as
material that bears energy. Part of
this energy is taken up via the blood
and delivered to the reserves. En-
ergy required to carry out the var-
ious physiological processes is ob-
tained from these reserves.

Figure V.1 shows the basic outline of the DEB-framework. According to
this framework, the body consists of two components, namely structural
biomass and reserve compounds. The latter pool comprises compounds
characterized by a high mobility. The reserve dynamics follows from the
supply and demand of the available resources. Structural biomass can be
conceived as volume, hence it is denoted by V (t). Both body components
have, by assumption, a constant, but not necessarily identical, chemical
composition. As the relative amount of reserves and structure can vary, the
composition of the total body can vary. For instance, during fasting the
body loses predominantly reserves, so that the overall composition of the
body changes.

V.2.2 The κ-rule

Maintenance costs play a key role in our model. Maintenance comprises
a range of different processes, among which are protein turnover, heating,
maintenance of membrane concentration gradients and muscle tension lev-
els. The costs of such processes should be distinguished from the costs of
growth, development and reproduction, as was already concluded in 1898 by
Duclaux. Since then, the importance of maintenance processes has become
widely accepted [27, 180, 186]. The DEB-theory assumes that maintenance
costs per unit structural volume per time unit, [M ], are constant, which
implies that total maintenance costs amount to M(t) = [M ]V (t) per time
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unit. This assumption leads to a relationship between body size and respi-
ration that accounts for both growth and maintenance. This prediction is
well supported by experimental data concerning the scaling of respiration
with body size [117].

The DEB-theory assumes that somatic processes (growth and mainte-
nance) and reproductive processes (development and reproduction) take
place in parallel. This is supported by the observation that some species
start reproduction while they are still growing; others start reproduction
well after reaching adult size. Yet in both species growth levels off in the
same way. This implies that the onset of reproduction cannot be the cause
of the cessation of growth.

According to the so-called κ-rule, an individual spends a fixed fraction
κ of the available energy on somatic processes (growth and maintenance)
whereas it spends the remainder fraction on reproductive processes (devel-
opment, maintaining the degree of differentiation, and reproduction). The
part of the κ-rule concerning growth can be written as:

energy available for growth = κC(t)−maintenance costs (V.1)

with C(t) the utilization rate at time t; the utilization rate is the rate at
which energy is mobilized from the reserves and is made available for phys-
iological processes (see Figure V.1). All the quantities in equation V.1 are
expressed per time unit. Thus equation V.1 is an energy rate balance, rather
than an energy balance. This applies to all similar equations in this Chapter.

To stay alive, an animal has to give maintenance priority over growth.
Increase in size consequently ceases when all energy available for mainte-
nance and growth is spent on maintenance only. Maintenance thus deter-
mines the ultimate size an organism can reach. The costs of growth are
the same for each unit increase in size. Thus, costs of growth per time unit
are proportional to the increase in structural volume: G(t) = [G] dVdt , with
[G] a constant. With the energy available for growth (equation V.1), the
organism’s size thus changes according to:

dV

dt
=
κC(t)− [M ]V (t)

[G]
(V.2)

The DEB-model provides a quantitative expression for the utilization rate
C(t) (see Appendix A). When food availability remains constant and food
intake is proportional to a body surface area, equation V.2 reduces to the
well-known Von Bertalanffy growth equation [15]. This equation fits growth
curves of a wide variety of animal species that do not change in shape during
growth [115].
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V.2.3 Generalized κ-rule

In the introduction to the κ-rule (Section V.2.2), we treated the animal’s
structure as a single variable. Since we want to describe tumor growth within
the DEB-framework, we have to expand the basic formulation. Suppose we
zoom in on a cell that changes into a tumor cell. From an energetic point
of view several things may happen. First, because tumor tissue is generally
less differentiated than other tissues, tumor growth and maintenance costs
per tumor volume may be lower allowing tumor cells to proliferate faster
than normal cells. But because a tumor is a part of the body that has run
out of control, a second energetic aspect may also change: a tumor cell may
consume more than its share of the available energy, at the expense of other
tissues. In other words, tumor cells may become gluttonous, taking what
they want, and leaving the left-over available to the body proper. Thus,
in our approach to tumor growth, mutations can lead to hyperplasia by
decreasing the costs of somatic processes (maintenance or growth) or by
increasing the energy supply per cell.

To model tumor growth dynamics, we need some additional variables
and parameters. In addition to body size V , we consider tumor size Vu.
Obviously, to survive and proliferate, the tumor has to obtain nutrients
from the host. We characterize the gluttony of the tumor by a coefficient
µu. If µu = 1, each tumor cells demands the same amount of energy as an
average normal cell; if µu > 1, then a tumor cell takes more than an average
body cell. Below we will argue that the gluttony coefficient µu plays an
important role in determining the aggressiveness of a tumor.

The growth rate of a tumor is not only determined by the ability of the
tumor to exploit the host’s resources, but also by the tumor’s maintenance
and growth investments. We assume that the tumor appropriates a fraction
κu(t) of the energy that the host has available for somatic processes. This
assumption implies that tumors have priority for the resources over the
host, which is supported by experimental evidence [26]. The κ-rule above
(equation V.1) can now be extended to account for the energetics of the
developing tumor:

energy available for tumor growth = κκu(t)C(t)− tumor maint. costs

energy available for body growth = κ(1− κu(t))C(t)− body maint. costs
(V.3)

where C is the rate of energy mobilization from the reserves. Like in equa-
tion V.1, all quantities are expressed per time unit.
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Experimental observations support that the tumor’s energy demand in-
creases with tumor size. This means that κu is a function of tumor size.
We assume that

κu(t) =
µuVu(t)

V (t) + µuVu(t)
(V.4)

so that κu, like κ, takes values between zero and one. Our assumption implies
that at small tumor size the fraction of the resources appropriated by the
tumor is approximately proportional to tumor size. As the tumor becomes
larger, the fraction still increases, but at a diminishing pace. The energy-
allocation rules above (equations V.3 and V.4), together with the expressions
for the tumor’s maintenance and growth costs, completely specify the growth
of a tumor. Appendix A outlines further details on the model equations.

V.3 Results

In this section, we analyze the implications of our approach with the aid
of computer simulations. For this purpose, we first need to have a set of
values for the physiological parameters. These values differ between species,
so we had to choose a particular species. As our target species we chose the
rat, because many data relevant to our study pertain to rodents. Moreover,
since the rat is a typical model species in cancer research, this choice may
facilitate testing of our predictions.

As explained in Chapter IV, for tumor-free laboratory rodents after
weaning it is warranted to assume constant food consumption. In our ap-
proach, this experimental observation replaces the DEB-based assumption
that food uptake increases with body size. To obtain the required host
parameter values, we fitted the resulting model to data on male rat body
growth from a study by Hubert et al. (2000). This study includes three
groups of 60 male rats exposed to ad libitum feeding, 25% caloric restriction,
and 55% caloric restriction. Figure V.2 shows the growth curves correspond-
ing to the estimated parameter values. Information on the fitting procedure
can be found in Appendix B.
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Figure V.2: Growth of Sprague-Dawley male rats. From top downwards: food
available ad libitum, 25% caloric restriction, and 55% caloric restriction. Dots
represent data from Hubert et al. (2000). The animals were 5 weeks old at study
initiation. We fitted the three data sets simultaneously, varying only food supply
among the diet groups. For information on the fitting procedure and the five
estimated parameter values, see Appendix. Tumorigenesis may occur, for instance,
at age ti1 = 15 or at age ti2 = 45 weeks. The vertical lines indicate these moments.

Once values for the parameters characterizing the organism are known, we
are able to predict the behavior of the utilization rate as a function of age.
In this Chapter, we will show that the utilization rate per structural volume
([C] = C

V ), rather than the utilization rate itself, is important for tumor
growth. As can be seen from Figure V.3, caloric intake significantly affects
[C] at the beginning. After some time, however, the body adapts to low
food availability and the difference in [C] with food availability disappears.
This is in agreement with the experimental observation that differences in
energy expenditure per lean body mass disappear with long-term caloric
restriction [193].
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Figure V.3: Model simulation of the energy-expenditure rate per struc-
tural volume, [C] = C

V . From top downwards: food available ad libitum,
25% caloric restriction, and 55% caloric restriction. Tumorigenesis may
occur, for instance, at age ti1 = 15 or at age ti2 = 45 weeks. The vertical
lines indicate these moments.

V.3.1 Tumor growth

In addition to the choice of the rat physiological parameter values, we also
need to characterize the tumor by choosing appropriate parameter values.
Because of the lack of adequate tumor growth data, we choose these values
with an eye on host parameter values. Basically, three parameters charac-
terize the tumor: its coefficient of gluttony µu, its growth costs [Gu] and its
maintenance costs [Mu]. It is the values of these parameters that determine
the ability of a tumor to outgrow host tissues. Tumor cells, for instance,
may be more successful extracting nutrients from the blood than normal
cells (i.e., µu > 1). Moreover, because tumor cells have no fine-tuned mor-
phology, it seems likely that tumor growth costs are less than host growth
costs (i.e., [Gu] < [G]). The same logic applies to tumor maintenance costs
(i.e., [Mu] < [M ]).

To obtain the expressions above (equations V.3 and V.4), we did not
make a priori assumptions on the shape of the tumor growth curve. Our
simulations show that both saturating and non-saturating growth patterns
are possible (see Figure V.4). The relevant quantities that determine the
growth pattern are the maintenance costs of tumor cells compared to that
of host cells and the coefficient of gluttony. Hence, it turns out that a
tumor can only grow if [Mu] is smaller or equal to µu[M ]. Moreover, only
if [Mu] = µu[M ] holds, it has an S-shaped growth curve. In contrast, if
[Mu] > µu[M ], the tumor dies off.
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Figure V.4: The shape of the tumor growth curve depends on the
relative values of the tumor and host parameters. For any curve: [Gu] <
[G]. Solid line: µu > 1 and [Mu] = µu[M ]. Dotted line: µu = 1 and
[Mu] < [M ]. Broken line: µu > 1 and [Mu] = [M ]. Tumorigenesis at age
ti1 = 15 weeks in an ad libitum fed host (see Figure V.2). For further
information on the parameter values, see Appendix B.

V.3.2 Influence of host on tumor

Effect of host age on tumor growth

Cancer incidence rates clearly vary with age. Yet, the influence of host age
is not restricted to the tumorigenesis phase. Several studies indicate that
tumor growth rates also depend on host age. For example, Peer et al. (1993)
found that breast cancers grow slower in old than in young human females.
Pili et al. (1994) inoculated Engleberth-Holm-Swarm (EHS) carcinoma cells
into mice of different ages. They reported that EHS tumors develop faster in
young than in old mice [185]. Moreover, rapid tumor growth resumed upon
transfer of tumor tissue from old animals into young animals. Likewise,
Donin et al. (1997) found a decreased growth potential of B16 melanomas
in middle-aged versus young mice. Besides reduced growth rates, a less
aggressive behavior of tumors has been reported in old as compared to young
hosts [93].

To study the effect of host age on tumor progression with our modeling
approach, we considered two ad libitum fed male rats of ages 15 and 45
weeks, respectively (see Figure V.2). We simulated the implantation of a
tumor cell clone (Vui = 0.2 cm3; 10 million cells approximately) of the same
type of tumor in both animals. The resulting tumor growth patterns are
shown in Figure V.5. The behavior of the tumors differs significantly. As
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we did not incorporate in our model any phenomena related to the aging
process per se, the predicted age-related differences in tumor growth can be
attributed to changes in the energetic state of the host during its lifespan.
Figure V.3 shows that the host energy expenditure per structural volume
diminishes with age. This results in a lower energy availability for the tumor
in old versus young host, leading to slower tumor growth in the older hosts.
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Figure V.5: Tumor growth is influenced by changes in energetics during
the host’s lifespan. Solid line: growth of a tumor early in the host’s life
(transplantation at age ti1 = 15 weeks). Broken line: growth of the
same tumor later in life (transplantation at age ti2 = 45 weeks). Tumor
parameters values: µu > 1, [Mu] < [M ], and [Gu] < [G]. Whereas
Figure V.4 depicts the change in size of three slowly growing tumors,
this Figure corresponds to a more aggressive tumor. The interpretation
of the vertical lines will be clarified later on. For further information on
the parameter values, see Appendix B.

Effect of caloric restriction on tumor growth

Another aspect of tumor-host interactions is the effect of host nutrition on
tumor growth. In the context of the DEB-theory, physiological processes
such as energy expenditure, body growth and aging, depend on food in-
take [132]. As we developed our model for tumor growth within this frame-
work, our approach naturally accounts for food consumption. The model is
thus suited to study quantitatively, for example, the influence of host caloric
intake on the behavior of a tumor.

Figure V.6 shows the growth of a tumor in hosts exposed to the same lev-
els of caloric restriction that underly the different growth curves depicted in
Figure V.2. Solid lines represent the growth of the tumor in three hosts that
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have been exposed to the feeding regimen for only 10 weeks; the broken lines
correspond to tumorigenesis after 40 weeks exposure. There are thus two
variables in this simulation. First, age at tumor transplantation, and second,
duration of the exposure to caloric restriction before tumor transplantation.
The effect of age was already discussed in Figure V.5. Figure V.6 adds to
his the impact of the different levels of caloric restriction. Based on differ-
ences in the disparity of the three curves for each age of transplantation,
we conclude that short-term caloric restriction has far greater influence on
tumor development than long-term caloric restriction. As explained above,
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Figure V.6: Food consumption affects tumor growth. Solid lines: tumor
implantation after a short exposure to caloric restriction (ti1 = 15 weeks).
Dotted lines: implantation of the same tumors after long time exposure
to the same levels of caloric restriction (ti2 = 45 weeks). Same tumors
as in Figure V.5. For each set of three curves, from left to right, food
available ad libitum, 25% caloric restriction, and 55% caloric restriction.

in our model the growth capacity of a tumor depends on the host’s rate
of energy-expenditure per structural volume, [C]. Figure V.3 shows that
food restriction results in a diminished [C]. We therefore predict that a
tumor grows slower in calorically restricted animals than in ad libitum fed
ones. However, as can also be seen from Figure V.3, the body adapts to low
food availability and the differences in [C] become smaller after exposure to
long-term caloric restriction. Consequently, the effect of caloric restriction
on tumor growth fades away during long-term caloric restriction. For this
reason, the broken lines in Figure V.6 are closer to each other than the solid
lines.
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V.3.3 Influence of tumor on host

Effect of tumor growth on body weight

We now pay attention to the implications of tumor growth for host physi-
ology. As the tumor exploits the resources of the host organism, the latter
disposes of less energy to carry out normal physiological processes. Because
maintenance always has priority over growth, the energy spending-cut ini-
tially results in a decrease of the host growth rate. If it decreases to zero
and tumor size still increases, the host has two ways to survive while satisfy-
ing the tumor’s energy demand: (a) reduce its own maintenance investment
and (b) degrade structural biomass. The former entails that not all required
maintenance processes are carried out, which may lead to serious physiolog-
ical problems and predispose for disease. The latter results in loss of, for
instance, skeletal muscle, which may ultimately lead to death.

Although the generalized κ-rule (equations V.3) allows for body-weight
loss, there are two reasons why it would be inappropriate to use these equa-
tions to describe tissue degradation. First, if these equations were used, all
energy originally invested in “building” a unit biomass would be regained,
which is thermodynamically impossible. Second, equations V.3 imply that
the host re-utilizes all energy released from tissue degradation to pay its
own maintenance costs. This contradicts accepted knowledge, indicating
that both host and tumor benefit from the released resources. We therefore
have to explicitly account for tumor-mediated body-weight loss.

The generalized κ-rule (equation V.3) can easily be extended to account
for the loss of body weight often observed in tumor-bearing organisms.
Above we argued that a tumor has priority over the available resources.
This implies that it also demands a fraction κu of the energy obtained from
the loss of structural biomass. The host re-utilizes the remainder to pay
its own maintenance costs. When no energy is available for body growth,
equations V.3 can be written as:

energy for tumor growth = κu(κC + S)− tumor maint. costs

0 = (1− κu)(κC + S)− body maint. costs
(V.5)

where S represents the rate at which energy is regained from the degrada-
tion of structural biomass. We assume that S(t) = −ω[G] dVdt , which means
that the amount of energy that becomes available per time unit is propor-
tional to the tissue degradation rate (notice that, because the host loses
structural volume, dV

dt is negative and, consequently, S is positive). The
parameter ω is an efficiency coefficient. The thermodynamic upper limit
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ω = 1 means 100% efficiency, which, however, can never be achieved. In the
realistic case that ω < 1, part of the degraded structural biomass is actually
wasted. Figure V.7 shows the predicted body-weight loss associated with
the growth of the tumors depicted in Figure V.5. According to our model,
tumor-mediated decrease in body weight involves a depletion in both struc-
ture and reserve materials. This is in agreement with the observation that
most cancer patients suffer a progressive decrease in both adipose tissue and
skeletal muscle.
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Figure V.7: Tumor growth
affects host body weight.
The results concern the same
computer-simulation study as
Figure V.5. Left: Tumor size as
a fraction (in %) of its volume 3
days after tumor implantation.
Right: Body weight as a fraction
(in %) of the host’s body weight
3 days after tumor implantation.
The vertical lines indicate when
tumor-mediated loss of struc-
tural biomass starts. The earlier
decrease in total body-weight
(see right panel) is due to a
depletion of reserve materials.
Tumor transplantation took
place at age ti = 15 weeks (solid
lines) and ti = 45 weeks (broken
lines) in ad libitum fed host.3 4 5 6 7 8
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Cancer patients with the same tumor type can significantly vary in the
extent to which they suffer from body-weight loss. Such variations also
occur in the context of our model. For instance, Figures V.5 and V.7 show
the development of the same tumor in two hosts that differ in age and,
consequently, also in size and energetic state. The time at which loss of
structural biomass begins, ts, is indicated with a vertical line. Notice that
total body-weight (Figure V.7) begins to decrease before ts, which is due to
an earlier depletion of reserve materials. As can be seen from Figure V.5, in
the young host, loss of structural biomass initiates when the tumor reaches
a size of 28.7 cm3. In contrast, in the older host, it starts when the tumor
has a size of only 8.4 cm3. The time delay between tumor implantation and
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manifestation of structural-biomass loss also varies with host age. Indeed,
in the young it concerns a delay of 4.2 weeks, whereas in the older host
it concerns a delay of 5.1 weeks. We conclude that body-weight loss is
determined by both host and tumor, rather than by the tumor alone.

Cachexia

The loss of body weight shown in Figure V.7 is due to interactions between
the energetics of tumor and host. A tumor may enhance body-weight loss
by producing (or inducing the production of) factors that interact with the
host. This may lead to the syndrome known as cancer cachexia, which is
a common cause of morbidity and mortality in cancer patients. Among
the proposed cachectic factors are several cytokines [150], a lipid-mobilizing
factor [227], and a proteolysis-inducing factor [228]. The degradation of
structural biomass induced by such factors can be incorporated into the
generalized κ-rule as follows:

energy for tumor growth = κu(κC + Sc)− tumor maint. costs

energy for body growth = (1− κu)(κC + Sc)− body maint. costs − Sc
ω

(V.6)

where Sc represents the energy obtained from the cachexia-related degra-
dation of structural biomass. The coefficient ω is again the efficiency of
energy regain. In the second equation, the term Sc

ω stands for the actual
costs of the shrinking process for the host. For simplicity, we assume that
the cachectic degradation of host tissues occurs at a rate proportional to
tumor size: σuVu, where σu indicates the cachectic potency of a tumor (i.e.,
unit structure degraded per unit tumor volume per unit time). If σu > 0,
the cachexia-mediated degradation of structural biomass results in an en-
ergy release rate of Sc = ω[G]σuVu. In contrast, if σu = 0 the tumor lacks
any cachectic potency and the expressions above reduce to equations V.3.
Owing to the energy demand of the tumor and to the cachexia-mediated
degradation of structural biomass, the host’s energy balance will soon be-
come negative. The host then has to degrade additional structural biomass
to continue satisfying both the tumor’s energy demand and its own mainte-
nance requirements.

energy for tumor growth = κu(κC + Sc + S)− tumor maint. costs

0 = (1− κu)(κC + Sc + S)− body maint. costs − Sc
ω

(V.7)

Figure V.8 shows the implications of cachexia for both host and tumor.
The tumor type represented here has higher growth costs than the tumor
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type displayed in Figure V.5. This explains the lower initial tumor growth
rate in Figure V.8.i. Nevertheless, the tumor is eventually more aggressive
due to its capacity to cause cachexia. Indeed, the host starts to lose struc-
tural biomass 3.2 weeks after tumor transplantation. Moreover, a critical
30% body-weight loss is reached just one week later (see Figure V.8.ii). Fig-
ure V.8.ii also shows that, although we did not incorporate anorexia into the
model, we predict a decrease in food consumption related to cachexia. In-
deed, food intake diminishes progressively to match the lowered body weight.
Figures V.8.iii and V.8.iv reveal that an increased energy expenditure per
structural biomass occurs despite the reduced food consumption. An ele-
vated resting energy expenditure has been frequently observed in relation to
cancer cachexia [20, 55, 230].

Above we argued that body-weight loss depends on the host physiological
parameters (e.g., Figure V.7). The same dependence holds for tumors with
a cachectic potential. The time delay between tumorigenesis and disease
onset, for example, may significantly vary among hosts. Consequently, the
moment of disease onset nor the extent of the disease can be deduced from
tumor size.

V.4 Discussion

The main difference between our approach and previous modeling approaches
to tumor growth, is that a tumor is conceived as a body part of the host
rather than as an independent entity with an intrinsic maximum size. Our
approach has the advantage that it can be used not only to describe tumor
growth, but also to explore the relevance of interactions between tumor and
host. We exemplified this by studying the influence of several host features
on tumor behavior and vice versa.

Another difference between our approach and others is that it does not
assume a priori the existence of an asymptotic maximum tumor size. In con-
trast, for the widely applied Gompertz model [126, 249], maximum tumor
size constitutes a model parameter and the associated S-shaped saturating
growth pattern is an intrinsic property of the tumor. But not all tumors
show saturating growth. The absence of a plateau in certain tumor growth
data has been attributed to the early death of the host [66]. That is, the
host dies before tumor growth saturates. We doubt whether this is a solid
explanation for any fast growing tumor that does not deviate from an expo-
nential growth pattern. But whether or not our doubt is justified, there is
good reason not to assume a priori the existence of a maximum tumor size.
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Figure V.8: Implications of cachexia-mediated body-weight loss for tumor and
host. (i) Tumor volume as a function of tumor age; (ii) Body weight as a fraction
(in %) of body weight 2 days after tumor transplantation; (iii) Predicted energy
expenditure per structural biomass; (iv) Food consumption as a fraction (in %)
of the ingestion rate 2 days after tumor implantation. The vertical lines indicate
the moment at which tumor-mediated loss of structural biomass starts. Tumor
transplantation took place at age ti = 15 weeks. Tumor parameters: [Mu] < [M ],
[Gu] < [G], µu > 1 and σu > 0.

Such an assumption hinders the possibility to predict under what physio-
logical conditions a saturating tumor growth can be expected, and how the
maximum tumor size depends on host and tumor characteristics.

We analyzed the relation between shape of the tumor growth curve and
the parameters of the host. Existence of an asymptotic maximum tumor size
is only expected for tumors whose maintenance costs and capacity to extract
nutrients from blood satisfy the condition [Mu] = µu[M ]. As this condition
concerns tumor and host parameters, the shape of the tumor growth curve
is determined by the energetic characteristics of both tumor and host.

Various factors known to affect tumor growth are not accounted for
by our model, for example, diffusion-limited nutrient availability, immune
response or the presence of growth inhibitors. The main reason for this is
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that when multiple determinants of tumor growth are incorporated at once,
it is very difficult to pinpoint the impact of any determinant in particular.
Our approach allowed us, for instance, to show that tumor-host interactions
in energy dynamics may already cause tumor growth to saturate. This
implies that diffusion-limited nutrient availability may be sufficient (e.g.,
[3]), but not essential to explain an S-shaped growth pattern. If we had
included reaction-diffusion of nutrients from the outset, it would have been
well-nigh impossible to arrive at this conclusion. To describe describe the
growth of particular tumors, however, it may be important to take specific
features into account. An advantage of our model is that it can easily be
extended to do so. In Appendix C, we exemplify this by showing how our
model can be used to describe the growth of solid tumor with a necrotic
kernel.

There is general agreement about the main causes of age-dependency of
cancer incidence. However, this does not hold for the mechanisms under-
lying age-dependent tumor progression. Among the mechanisms proposed
to explain the latter phenomenon are changes in angiogenic capacity [185],
altered apoptotic cell death [100], and immune senescence [192, 233]. As
results from various experiments provide evidence for different hypotheses,
we preliminarily conclude that several aspects of the natural aging process
may affect tumor progression. On the basis of our model predictions we
hypothesize that the age-dependent energetic state of the host also plays an
important role in determining tumor behavior. Indeed, we argued that age-
related differences in tumor growth are due to an age-associated decrease in
energy expenditure per structural biomass.

We carried out a theoretical caloric restriction study to investigate the
dependence of food consumption on a tumor’s growth capacity. Model sim-
ulations suggested a strong dependence if tumorigenesis occurs after short-
term caloric restriction. In contrast, a weak dependence of tumor growth
on caloric intake is expected if tumorigenesis takes place after long-term
exposure to caloric restriction. The dependence of tumor growth on food
consumption can be understood on the basis of changes in the host energy
expenditure.

With regard to the influence of a tumor on host physiology, we focused
on tumor-mediated body-weight loss. Computer simulations revealed that
body-weight loss can not be unequivocally linked to the increase in tumor
size. The main reason is that the severity of body-weight loss is deter-
mined by the energetics of both host and tumor, rather than by the tumor
alone. Moreover, part of the energy released is actually wasted. These model
outcomes may well explain the observation by Plata-Salamán (2000) that
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body-weight loss is often more dramatic than one would expect on the basis
of the measured tumor growth.

To illustrate the clinical utility of our model, we applied it to under-
stand the energetics behind cancer cachexia. From an energetic point of
view, cachexia involves several metabolic alterations, among which are an
increase in energy expenditure, a decrease in both structural biomass and re-
serves, and a reduced food consumption. As a result the host is maintained
in a negative energy balance. In the context of our modeling approach,
diminished food consumption is a consequence rather than a cause of body-
weight loss in cachexia. Yet, in response to the decreased food intake, an
acceleration of body-weight loss occurs. From the obtained model predic-
tions, we conclude that the extent of the disease as well as the time delay
between tumorigenesis and disease onset strongly depend on the physiolog-
ical features of the host.

A promising line of research would be to extend the model to include
clinical interventions intended to reverse body-weight loss in tumor-bearing
patients, such as food intake manipulations and parenteral nutritional sup-
port. Food intake manipulations can be incorporated, for instance, as an
increase in the assimilation rate. Popp et al. (1983) said that “the goal of
nutritional therapy in the tumor-bearing host is support of the host carcass
in the absence of increased tumor growth.” Different food intake manip-
ulations can be analyzed with the aid of our model, to figure out which
manipulation may achieve that goal.

Several authors discussed the possible benefits of a low-fat dietary in-
tervention in cancer patients [171, 199]. Because both tumor and host may
grow slower or even shrink as a response to the decreased caloric intake, the
main issue is whether the tumor or the host suffers more from the effects of
caloric restriction. As our model accounts for food consumption, it can be
used to examine the implications of such a dietary intervention.

Lazo (1985) argued that “the tumor cell population has to be viewed
within the cell community that constitutes the organism.” In line with this
insight, we formulated our mathematical model within a framework describ-
ing the host. We applied the new model to explore several interactions
between host and tumor, and were able to capture a number of empirically
observed events. Moreover, for some of them we were able to provide an
explanation based on energetic features of both tumor and host.
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Appendix

A. Model equations

Tumor-free individual

We assume that the assimilation efficiency is independent of the food ingestion rate
(see Appendix, Chapter IV). If an animal receives a fixed fraction % of ad libitum

food consumption, its assimilation rate is then given by: A = %Am, where Am
denotes the maximum (diet-composition specific) assimilation rate and % is the so-
called food-supply coefficient. We define the surface-specific maximum assimilation

rate as: {Am} = AmV
− 2

3

1∞ , with V1∞ being the ad libitum asymptotic maximum

structural volume. The assimilation rate can thus be written as: A = %{Am}V
2
3

1∞.

According to the DEB-theory, the utilization rate is given by:

C =
E

V

(

vV
2
3 − dV

dt

)

(V.8)

where E denotes the amount of reserves and v = {Am}
[Em] is the energy conductance,

with [Em] being the maximum reserve density. The change in the amount of reserves
is then given by the difference between assimilation and utilization (see Figure V.1),
that is: dE

dt = A−C. Substitution of the expressions for C into this equation leads
to:

de

dt
=

v

V
1
3

(

%
V

2
3

1∞
V

2
3

− e
)

(V.9)

with e being the scaled energy density e = E
[Em]V . At the beginning of the study,

the host’s age is t0 weeks and its initial reserve density is e(t0) = e0.

In the context of the DEB-model (Figure V.1), the body has two components.
Total body weight is therefore a function of both structure and reserves: W =
dV (1+ ξe)V , where dV is the density of structural biomass and ξ is a dimensionless
compound parameter (see Appendix, Chapter IV). As explained in the body of the
Chapter, the change in structural volume is given by equation V.2, which can be
written as:

dV

dt
=

1

g[Em]
C(t)−mV (t) (V.10)
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where g = [G]
κ[Em] is the energy-investment ratio and m = [M ]

[G] the maintenance-rate

coefficient. Substitution of the expression for C (equation V.8) gives:

dV

dt
=
veV

2
3 − gmV
g + e

(V.11)

From equations V.9 and V.11, it can be shown that V (t) tends to an asymptotic

maximum value, V%∞, which satisfies V%∞ = %V1∞ = %( v
gm )3 = %(κ{Am}

[M ] )3. Conse-

quently, A = %
1
3 {Am}V

2
3
%∞ and the scaled reserve density can be expressed as:

de

dt
=

v

V
1
3

(

%
1
3
V

2
3
%∞

V
2
3

− e
)

(V.12)

In sum, the change in size of a tumor-free organism is characterized by equa-
tions V.11 and V.12, with initial conditions V (t0) = V0 and e(t0) = e0.

Tumor-bearing individual

If tumorigenesis (or tumor implantation) happens at time ti, let Vui denote the
initial tumor size. At ti the host’s structural body-volume is Vi = V (ti) and its
reserve density e(ti) = ei. As the tumor appropriates reserves originally destined
to be spent on physiological processes such as body growth, the host is no longer
able to reach its maximum size. To account for this, we generalized the expressions
for the scaled reserve density (equation V.12) and the assimilation rate:

de

dt
=

v

V (t)
1
3

(

%
1
3
V%∞(t)

2
3

V (t)
2
3

− e(t)
)

(V.13)

A(t) = %
1
3 {Am}V%∞(t)

2
3 (V.14)

where V%∞(t) is defined as the “expected” ultimate structural biomass predicted at
time t. We assume that V%∞ is a function of tumor volume:

V%∞(t) = %
V (t)

Vu(t) + V (t)
V1∞

For a tumor-free animal in diet-group %, the function V%∞ is constant and equal
to V%∞.

For both tumor and host, we assume that growth costs are proportional to the
increase in structural volume, whereas the maintenance costs are proportional to
structural volume. Consequently, the generalized κ-rule (equations V.3) can be
written as:

dV

dt
=

1− κu(t)
g[Em]

C(t)−mV (t) (V.15)

dVu
dt

=
κu(t)

gu[Em]
C(t)−muVu(t) (V.16)
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where gu = [Gu]
κ[Em] and mu = [Mu]

[Gu]
. The expression for κu is given in equation V.4.

In the absence of a tumor, equation V.15 reduces to equation V.10. Substitution
of the expression for the utilization rate (equation V.8) into the equations above
leads to:

dV

dt
=

(1− κu)veV
2
3 − gmV

g + (1− κu)e
(V.17)

dVu
dt

=
(vV

2
3 +mV )gκue

ggu + (1− κu)gue
−muVu (V.18)

These equations, together with equation V.13 and the initial conditions V (ti) = Vi,
Vu(ti) = Vui, and e(ti) = ei, specify the change in size of both host and tumor.
If the condition mugu = µumg holds, the tumor grows according to an S-shaped
pattern. Moreover, this condition marks the bifurcation between tumors growing
(mugu < µumg) or dying off (mugu > µumg).

As explained in the body of the Chapter, equations V.17 and V.18 are reliable
thermodynamically as long as dV

dt ≥ 0. Let ts denote the time (age) at which
increase in structure ceases. We define Vs = V (ts), Vus = Vu(ts) and es = e(ts).
For t ≥ ts the following equations, together with equation V.13, describe the loss
of structural body mass and the increase in tumor size:

dV

dt
=

(1− κu)veV
2
3 − gmV

(ωg + e)(1− κu)
(V.19)

dVu
dt

=
gmκuV

gu(1− κu)
−muVu (V.20)

with initial conditions V (ts) = Vs, Vu(ts) = Vus and e(ts) = es. Equations V.19
and V.20 result from the substitution of the expression for C (equation V.8) and
S = −ω[G]dVdt into equations V.5. Notice that if the conditionmugu = µumg holds,

we have dVu
dt = 0.

Cachexia equations

Substitution of the expression for C (equation V.8) and Sc = ω[G]σuVu into equa-
tions V.6 gives:

dV

dt
=

(1− κu)(veV
2
3 + σuωVu)− gmV − gσuVu
g + (1− κu)e

(V.21)

dVu
dt

=
(vV

2
3 +mV )gκue+ (ωg + e)κugσuVu

ggu + (1− κu)gue
−muVu (V.22)

These equations, together with equation V.13 and initial conditions V (ti) = Vi,
Vu(ti) = Vui, and e(ti) = ei, specify the change in body size and in tumor volume.
If σu = 0, equations V.21 and V.22 reduce to equations V.17 and V.18, respectively.
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Let ts denote the time (age) at which equation V.21 satisfies dV
dt |ts = 0. For t ≥ ts

the following equations apply:

dV

dt
=

(1− κu)(veV
2
3 + σuωVu)− gmV − gσuVu
(ωg + e)(1− κu)

(V.23)

dVu
dt

=
gκu(mV + σuVu)

gu(1− κu)
−muVu (V.24)

The initial conditions at ts are determined by equations V.13, V.21, and V.22.
Equations V.23 and V.24 result from the substitution of the expression for C
(equation V.8), S = −ω[G]dVdt and Sc = ω[G]σuVu into equations V.7. If σu = 0,
equations V.23 and V.24 reduce to equations V.19 and V.20, respectively.

Table V.1: Model variables. Dimensions: − no dimension; e energy;
L length; M mass; t time.

Variable Dimension

e - Host scaled reserve-density

κu - Tumor reserve-demand function

A et−1 Assimilation rate

C et−1 Host utilization-rate

[C] et−1L−3 Utilization-rate per structural volume

V L3 Host structural-volume

V%∞ L3 Expected ultimate structural-volume

Vu L3 Volume of tumor’s viable cell population

VT L3 Tumor total volume

V† L3 Volume of tumor’s dead kernel

W M Host body-weight

LT L Tumor radius

S et−1 Energy release-rate

Sc et−1 Cachectic energy release-rate

B. Parameter values

Hubert et al. (2000) consider three different feeding regimes, ad libitum (% = 1),
25% caloric restriction (% = 0.75), and 55% caloric restriction (% = 0.45). The
animals were 35 days (5 weeks) old at study initiation. As the rats were split into
three groups at the beginning of the study, the values ofW0 =W (t0) and e0 = e(t0)
can be assumed to be the same for any diet-group. Moreover, because all animals
received ad libitum feeding until the beginning of the caloric-restriction study, the
assumption e0 = 1 holds. In addition we fixed dV on a value of 1 g/cm3. Dur-
ing the least-square fitting procedure, we only varied the value of the food-supply
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coefficient among the different diet-groups. The estimated parameter values are:
ḡ = 7.1, W̄0 = 142.84 g, ξ̄ = 0.94, V̄1∞ = 436.93 cm3 and v̄ = 2.22 cm/week.
Consequently: m̄ = v̄

ḡ (V̄1∞)−1/3 = 0.041 week−1. The body growth curves corre-
sponding to the estimated parameter values are shown in Figure V.2.

For any displayed tumor: Vui = 0.2 cm3. All computer simulations include a
‘switch’ of equations at time ts, with ts the time (age) at which loss of structural
biomass begins, i.e., dV

dt |ts = 0.

• Figure V.4 (shape of the tumor growth curve).
For any tumor: ω = 0.75 and σu = 0 week−1.
Solid line: µu = 4, gu = 3.5, and mu = µumg/gu ≈ 0.33 week−1.
Broken line: µu = 2, gu = 2.1, and mu = 0.14 week−1.
Dotted line: µu = 1, gu = 2.1, and mu = 0.027 week−1.

• Figure V.5 (influence of host age on tumor growth): µu = 9, gu = 5.1,
mu = 10−3 week−1, ω = 0.5, and σu = 0 week−1.

• Figure V.6 (effect of caloric restriction on tumor growth): µu = 3, gu = g,
mu = m, ω = 0.75, and σu = 0 week−1.

• Figure V.7 (tumor-mediated body-weight loss): µu = 9, gu = 5.1,
mu = 10−3 week−1, ω = 0.5, and σu = 0 week−1

(same values as in Figure V.5).

• Figure V.8 (implications of cachexia-mediated body-weight loss for tumor
and host): µu = 9, gu = 6.1, mu = 0.01 week−1, ω = 0.5, and σu = 1 week−1.

C. Model extension

An important advantage of our modeling approach is that it can be easily extended
to account for specific features of a particular tumor. To exemplify this, we show
how it can be used to describe the growth of a tumor with a dead kernel (see
Figure II.11). For simplicity, we assume that the the whole tumor is spherical
in shape. When the tumor reaches a critical size, defined by a radius δm, the
tumor starts to develop a dead kernel. In mathematical terms, this implies that an
additional cause of tumor-cell death has to be added to our model.

Let us denote as dVu
dt = X (Vu) our expression for the change in tumor volume

(equations V.18, V.20, V.22, or V.24). The growth of the viable cell population in
the tumor developing a dead kernel is then:

dVu
dt

= X (Vu)− Y(Vu) (V.25)

where Y represents the death of tumor cells due to insufficient nutrient availability
within the tumor. We assume that the volume of cells starved to death gives rise to
an equal volume of dead biomass. As the necrotic core can only increase by death
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Table V.2: Model parameters. Dimensions: − no dimension; e energy;
L length; M mass; t time.

Parameter Dimension
dV ML−3 Host structure-specific weight
% - Host food-supply coefficient
v Lt−1 Host energy conductance

[Em] eL−3 Host maximum reserve-density
V%∞ L3 Host asymptotic maximum structural-volume
Vui L3 Tumor initial size
W0 M Host initial body-weight
[M ] eL−3t−1 Host volume-specific maintenance rate
[Mu] eL−3t−1 Tumor volume-specific maintenance rate
m t−1 Host maintenance-rate coefficient
mu t−1 Tumor maintenance-rate coefficient
[G] eL−3 Host volume-specific costs for growth
[Gu] eL−3 Tumor’s volume-specific costs for growth
g - Host energy-investment ratio
gu - Tumor energy-investment ratio
ti t Host age at initiation of tumor growth
ξ - Host scaled reserve-specific weight
κ - Host reserve-allocation coefficient
ω - Efficiency-coefficient of energy regain
σu t−1 Cachectic potency
µu - Tumor gluttony coefficient
Im L3t−1 Host ad libitum food-ingestion rate
Am et−1 Host ad libitum assimilation rate
δm L Maximum thickness of the living layer

of cells in the living layer [152], we then have that Y =
dV†
dt , with V† the volume of

dead biomass. Substitution of this expression for Y in equation V.25, leads to:

dVu
dt

+
dV†
dt

= X (Vu)

Because the total volume of the tumor satisfies VT = Vu+V†, the expression above is
equivalent to dVT

dt = X (Vu). As the whole tumor is spherical in shape: VT = 4
3πL

3
T ,

with LT the radius of the tumor. From derivating this expression, we obtain:

dLT
dt

=
X (Vu)

4πL2
T

(V.26)

To exhaustively describe the growth of the whole tumor, we now have to fill in the
expression for Vu in the equation above. If we assume that the thickness of the
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living layer remains constant during tumor growth, the radius of the dead kernel is
given by L† = LT − δm and:

Vu = 4π

(

δmL
2
T − LT δ2m +

δ3m
3

)

(V.27)

because Vu = VT −V† and V† = 4
3πL

3
†. Equation V.27 together with equation V.26

describes the change in the radius of a tumor with a necrotic core. In the partic-
ular case that the living biomass grows exponentially (i.e., X (Vu) = zuVu), these
equations reduce to the tumor growth equation proposed by Mayneord (1932).





Samenvatting

Wiskundige modellen voor
de risicobeoordeling van carcinogene stoffen

In het jaar 2000 was kanker de oorzaak van 12% van de 56 miljoen sterfgeval-
len over de hele wereld. De Wereldgezondheidsorganisatie schat bovendien
dat het aantal nieuwe gevallen van kanker in de komende 20 jaar met nog
eens 50% zal stijgen. Hiermee is kanker definitief doorgedrongen tot de top-5
van de lijst van belangrijkste doodsoorzaken. Kanker is echter beslist geen
nieuwe ziekte. Zo zijn er bijvoorbeeld tumoren ontdekt in Egyptische (1500–
500 voor Christus) en Italiaanse (vijftiende eeuw) mummies. Rond het jaar
400 voor Christus vergeleek Hippocrates de aderen die uit sommige borst-
tumoren groeien met de ledematen van een krab. Vandaar de benamingen
karkinos (καρκινoς) in het Grieks en cancer in het Latijn, die oorspronkelijk
“krab” betekenden.

Tot de Middeleeuwen werd algemeen gedacht dat tumoren een straf van
God waren. Meer recent wordt kanker geassocieerd met veroudering en met
blootstelling aan diverse risicofactoren zoals straling, virussen, en natuurlijke
en synthetische stoffen. De hypothese dat bepaalde chemicaliën kanker kun-
nen veroorzaken is minstens zo oud als het epidemiologisch onderzoek van
Percival Pott (1775). Deze Engelse arts wees roet aan als schuldige van het
hoge aantal scrotumkankergevallen bij schoorsteenvegers. Inmiddels heeft
onderzoek uitgewezen dat veel chemicaliën het ontstaan van tumoren kun-
nen veroorzaken, een proces dat bekend staat als chemische carcinogenese.
We noemen zulke kankerverwekende chemicaliën carcinogenen.

Er zijn nu meer dan 100.000 verschillende stoffen op de markt en ieder
jaar komen er ongeveer 2.000 nieuwe bij. Uiteraard is het niet wenselijk
dat zo’n nieuwe stof risico met zich meebrengt voor de mens. Daarom moet
tevoren, in een zogenaamde risicobeoordeling, worden vastgesteld dat de
nieuwe stof niet carcinogeen is (of anderszins toxisch). De richtlijnen voor
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het uitvoeren van risicobeoordelingen worden bepaald door instellingen zoals
de EU, IARC, OECD, en USEPA1.

Onder risicobeoordeling van (mogelijk) carcinogene stoffen verstaat men
het schatten van het kankerrisico voor mensen na blootstelling aan een che-
mische stof. Meestal wordt deze risicobeoordeling uitgevoerd op basis van
dierproeven. De meest gebruikelijke proef is een twee jaar durende test
waarbij groepen muizen (of ratten) worden blootgesteld aan verschillende
hoeveelheden van de betrokken stof. Er is altijd één groep die een nuldo-
sis krijgt (de controlegroep), om de frequentie te controleren van tumoren
die niet door de stof worden veroorzaakt. In standaard carcinogeniciteits-
proeven, zoals die van de Amerikaanse NTP, is voor ieder dier de volgende
informatie beschikbaar:

Identificatiecode van het individu
Geslacht
Blootstelling (dosis)
Verblijftijd in de proef
Reden van het verlaten van de proef

(b.v. natuurlijke dood, verongelukt, of vermist)
Aanwezigheid van tumoren bij overlijden

Met behulp van deze informatie wordt het kankerrisico van de stof bepaald.

Modellen voor chemische carcinogenese

De resultaten van een carcinogeniciteitsproef kunnen geanalyseerd worden
met behulp van wiskundige modellen die de relatie tussen blootstelling aan
een stof en het aantal gevallen van kanker beschrijven. Zo kunnen er doses
berekend worden die bepaalde verwachte verhogingen van de kans op kanker
veroorzaken. Een voorbeeld hiervan is de TD50, de dosis waarvan verwacht
wordt dat zij tumoren veroorzaakt in 50% van de dieren die anders (bij een
dosis van nul) geen tumoren zouden hebben ontwikkeld. Modellen kunnen
ook worden gebruikt om de risico’s voor dieren te vertalen naar risico’s voor
de mens. Een andere toepassing van modellen voor chemische carcinogenese
is het voorspellen van tumorfrequenties veroorzaakt door blootstellingen be-
neden de laagst onderzochte dosis. Dit is belangrijk omdat dierproeven
worden uitgevoerd met doses die erg hoog zijn in verhouding tot de niveaus
waaraan mensen worden blootgesteld.

1Zie lijst met afkortingen op pagina 169
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Invloed van voedselopname op groei en veroudering

Zoals in de inleiding gezegd komen tumoren ook voor in de controlegroep. De
kans dat een dier een tumor ontwikkelt neemt tijdens de observatieperiode
toe. Dit geldt ook voor de mens: hoe ouder, hoe groter de kans op kanker.
Ofwel, het ontstaan van tumoren hangt samen met het verouderingspro-
ces. Twee andere aspecten van veroudering spelen ook een belangrijke rol in
carcinogeniciteitsproeven. In de eerste plaats: het aantal “normale” sterf-
gevallen bëınvloedt het aantal dieren in de proef en, daarom, ook het aantal
nieuwe kankergevallen. In de tweede plaats: of een dier een tumor heeft kan
meestal pas na zijn dood worden vastgesteld. De tijdstippen waarop dieren
overlijden bepalen dus de tijdstippen waarop tumoren worden geconstateerd.
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U moet meteen stoppen met roken,
iedere ochtend om 5.00 uur een halve

aspirine innemen . . . , bij iedere
maaltijd een vers teentje knoflook eten,

uw dieet aanpassen tot 50%
minder calorieën . . . ,

regelmatig sporten, maar niet te veel,
. . . ,

O ja! 96.25 ml rode wijn per dag,
maar geen druppel meer!

En . . . , . . . , . . . , . . . ,
. . . ,

En, heel erg belangrijk, u moet
vooral geen last krijgen

van stress!

Er zijn veel verschillende methodes voorgesteld om langer te leven.

Het volgen van een caloriearm dieet is echter tot nu toe de enige die

wetenschappelijk onderbouwd is. De andere methodes kunnen er wèl

voor zorgen dat ieder levensjaar langer lijkt !

We hebben een model ontwikkeld dat de relatie tussen het verouderingspro-
ces en de procesen van voedselopname en groei vastlegt. Dit model bestaat
uit twee modules. De eerste beschrijft de energiedynamica van een orga-
nisme, en geeft kwantitatieve formules voor de eetsnelheid, hoeveelheid vet,
verandering in lichaamsgrootte en metabole snelheid. Een hoge metabole
snelheid is gekoppeld aan een hoge respiratiesnelheid en een hoog hartritme.
De tweede module beschrijft het verouderingsproces gebaseerd op de theorie
dat veroudering het resultaat is van oxidatieve schade veroorzaakt door vrije
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radicalen. Een belangrijk verband tussen beide modules is dat de produc-
tiesnelheid van vrije radicalen afhangt van de metabole snelheid. Omdat
de metabole snelheid wordt bëınvloed door energie-opname en lichaams-
grootte, kunnen we een formule voor de overlevingskans afleiden die afhangt
van voedselniveau en groei.

Een eigenschap van ons model is dat, voor dieren die niet meer groeien,
de formule voor de overlevingskans kan worden vereenvoudigd tot de be-
kende Gompertzformule. Dankzij deze eigenschap zijn we te weten gekomen
hoe de parameters van het Gompertzmodel afhangen van metabole snelheid,
eetgedrag en lichaamsgrootte. We hebben ons model getoetst aan bestaande
gegevens van Weindruch en medewerkers, die groepen muizen met verschil-
lende voedselbeschikbaarheid hebben gevolgd. De dieren die een caloriearm
dieet krijgen leven aanmerkelijk langer. Ons model bleek in staat de ver-
schillen in groei en overlevingskans goed te beschrijven.

Interacties tussen tumor en gastheer

Wiskundige modellen die de groei van tumoren beschrijven worden ont-
wikkeld in verschillende specialisaties binnen het kankeronderzoek, zoals in
risicobeoordeling en behandeling. De meeste van deze modellen beschou-
wen een tumor als een zelfstandige eenheid, los van de “gastheer” waarin
de tumor groeit. Deze modellen kunnen dus niets zeggen over de mogelijke
interacties tussen tumor en gastheer. Om de relevantie van zulke interacties
te bestuderen hebben we een nieuw tumorgroeimodel ontwikkeld, waarin
de tumor onderdeel is van het lichaam van de gastheer. In de context van
ons model, nemen we aan dat tumoren ontstaan door veranderingen die
het energetisch mogelijk maken dat tumorcellen sneller delen dan normale
cellen.

Met behulp van computersimulaties hebben we gekeken naar de invloed
van de fysiologie van de gastheer op het gedrag van een tumor. Daarbij
bleek bijvoorbeeld dat de tumorgroeisnelheid wordt bëınvloed door de leef-
tijdsafhankelijke metabole snelheid van de gastheer. We voorspellen dat –in
het algemeen– tumoren zich sneller zullen ontwikkelen in jonge dan in oude
gastheren. Dit is te verklaren door dat de energiebeschikbaarheid per cel
afneemt met de leeftijd. Ook voorspellen we hoe tumorgroei bëınvloed kan
worden door het “eetgedrag” van de gastheer.

Wat betreft de invloed van de tumor op de gastheer hebben we geke-
ken naar het gewichtsverlies waaraan veel kankerpatiënten lijden. Als de
energetische eisen van de tumor te hoog worden, gaat de gastheer eigen
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weefsel afbreken om zijn onderhoudskosten te kunnen betalen. Als gevolg
hiervan verliest de gastheer niet alleen vetweefsel maar ook spierweefsel.
Een deel van de energie die vrijkomt tijdens dit proces wordt hergebruikt
door zowel gastheer als tumor. Omdat de efficiëntie van dit hergebruikpro-
ces minder is dan 100%, kan het gewichtsverlies erger zijn dan verwacht op
basis van de energetische eisen van de tumor. Daarnaast voorspelt ons mo-
del dat de snelheid waarmee het gewicht afneemt bëınvloed wordt door de
metabole snelheid van de gastheer. Deze voorspellingen verklaren mogelijk
waarom, in de praktijk, geen eenduidige relatie wordt geobserveerd tussen
de gewichtsverlies- en tumorgroeisnelheid.





Resumen

Modelos matemáticos para la evaluación
de pruebas de carcinogenicidad

En el año 2000 el cáncer fue responsable del 12% de la mortalidad mundial.
La Organización Mundial de la Salud (2003) prevé además que el número
de nuevos casos crecerá al menos en un 50% en los próximos 20 años. Estas
cifras demuestran que el cáncer se ha convertido definitivamente en una de
las principales causas de mortalidad. Sin embargo, el cáncer no es, ni mucho
menos, una enfermedad nueva. De hecho, se ha constatatdo la presencia
de tumores en momias eǵıpcias (1500–500 a.C.) e italianas (siglo XV), y
alrededor del año 400 a.C. Hipócrates comparó las venas que irradian de
algunos cánceres de mama con las extremidades de un cangrejo, lo cual dió
lugar a las denominaciones karkinos (καρκινoς) en griego y cancer en lat́ın.

Hasta bien entrada la Edad Media era creencia generalizada que la apari-
ción de un tumor se deb́ıa a la aplicación de algún castigo divino. Posterior-
mente se ha relacionado el cáncer con el proceso natural de envejecimiento,
aśı como con la acción de diversos factores como radiación, virus, y com-
puestos naturales y sintéticos. La idea de que ciertos compuestos qúımicos
pueden causar la enfermedad se remonta como mı́nimo a 1775, año en que
Percival Pott (1775) publicó su estudio epidemiológico. En él este médico
inglés propuso que el alquitrán presente en el holĺın era el agente causante
de la elevada incidencia de cáncer de escroto en deshollinadores. Desde en-
tonces se han identificado numerosos compuestos que poseen la capacidad
de inducir la formación de tumores mediante un proceso conocido como car-
cinogénesis qúımica. Estos compuestos reciben el nombre de carcinógenos.

Actualmente hay unos 100.000 compuestos qúımicos en el mercado, y
cada año se añaden alrededor de 2.000 nuevos. Naturalmente, es deseable
que la comercialización de estos nuevos compuestos no entrañe un riesgo
para el consumidor, por lo que es necesario evaluar la toxicidad y la carci-
nogenicidad de cada uno de ellos antes de permitir su acceso al mercado.
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Las directrices para llevar a cabo estas evaluaciones son establecidas por
instituciones como la OCDE1, la IARC2, la Unión Europea, y la USEPA3.

El proceso de evaluación del riesgo carcinógeno se ha definido como un
intento cient́ıfico de identificar y estimar el riesgo de cáncer asociado a la
exposición a un compuesto qúımico. Normalmente esta evaluación es lleva-
da a cabo a partir de los resultados obtenidos mediante experimentos con
animales de laboratorio. La prueba de carcinogenicidad más común consiste
en un ensayo de dos años de duración en el cual grupos de ratas o ratones
son expuestos a diferentes niveles de la sustancia qúımica de interés. Estos
experimentos siempre incluyen un grupo al que se le administra una dosis
nula, con el fin de controlar la incidencia de tumores no causados por el
compuesto qúımico. Una prueba estándar de carcinogenicidad proporciona
la siguiente información sobre cada animal:

Código de identificación individual
Sexo
Dosis
Número de d́ıas presente en la prueba
Razón de abandono de la prueba (muerte natural,

muerte accidental, desaparición, etc.)
Presencia de tumores

Con esta información se estima el aumento en el riesgo de cáncer debido a
un determinado compuesto.

Modelos matématicos de carcinogénesis qúımica

Los resultados de una prueba de carcinogenicidad pueden analizarse me-
diante modelos matemáticos que describen la relación entre la dosis de un
compuesto qúımico y la incidencia de cáncer. Mediante un modelo de este
tipo puede calcularse –por ejemplo– la dosis asociada a un cierto incremen-
to en la incidencia, como la denominada TD50, que es aquella dosis de la
que se espera que induzca tumores en la mitad de los individuos que no
los habŕıan desarrollado en ausencia de la sustancia. Los modelos también
pueden utilizarse para estimar el riesgo para personas a partir de los resulta-
dos obtenidos con animales de laboratorio, o para predecir la incidencia de
cáncer por debajo de la dosis más baja empleada. Esta última extrapolación

1Organización para la Cooperación y el Desarrollo Económico
2Agencia Internacional de Investigación del Cáncer
3Agencia de Protección Ambiental de los Estados Unidos
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es de gran relevancia, ya que las dosis utilizadas en pruebas de carcinogeni-
cidad son, en general, muy elevadas en comparación con las dosis a las que
los seres humanos se ven expuestos.

Un modelo matemático de envejecimiento

Como se ha mencionado en la introducción, normalmente se dan casos de
cáncer también en el grupo control. La probabilidad de que un animal de-
sarrolle un tumor aumenta a lo largo de los dos años que dura el ensayo de
carcinogenicidad. Un patrón similar de dependencia temporal se ha observa-
do en personas: cuanto más viejo es un ser humano, mayor es la probabilidad
de que desarrolle un cáncer. Estas observaciones indican que existe una re-
lación entre la aparición de tumores y el proceso natural de envejecimiento.
Al menos otros dos aspectos de este último son de gran importancia para
una correcta evaluación de los resultados de una prueba de carcinogenici-
dad. En primer lugar, el número de muertes por envejecimiento afecta al
numero de sujetos presentes en la prueba y, por lo tanto, también al número
de nuevos casos de cáncer. En segundo lugar, un tumor no se detecta por
lo general hasta que se produce la muerte del animal. Es decir, el instante
de la muerte determina el momento en el cual la presencia de un tumor es
registrada.

Hemos desarrollado un nuevo modelo matemático que describe la re-
lación entre el proceso de envejecimiento y los procesos de crecimiento e
ingestión de alimento. El modelo consta de dos partes; la primera descri-
be la dinámica energética de un organismo y proporciona ecuaciones para
caracteŕısticas fisiológicas básicas como la variación en la cantidad de grasa
corporal, las velocidades de ingestión y crecimiento, y la denominada veloci-
dad metabólica. Una alta velocidad metabólica va asociada a una velocidad
de respiración elevada y un ritmo cardiaco rápido.

La segunda parte de nuestro modelo describe el proceso de envejecimien-
to, y está basada en la teoŕıa de este es consecuencia de la acumulación de
daños causados por radicales libres. Un enlace fundamental entre ambas
partes del modelo es que la producción de radicales libres depende de la ve-
locidad metabólica; como ésta depende a su vez del consumo calórico y del
tamaño del organismo, hemos podido deducir una expresión para la proba-
bilidad de supervivencia –en funcion de la edad– que depende del consumo
calórico y del patrón crecimiento.

Una propiedad importante de nuestro modelo es que, para animales que
han alcanzado su tamaño final, la expresión para la probabilidad de supervi-
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Debe usted dejar inmediatamente
de fumar, tomar media aspirina cada

mañana a las 5:00 . . . , ingerir un diente
de ajo crudo antes de cada comida,

reducir su consumo actual de caloŕıas
en un 50%, y . . . , . . . , . . . ,

hacer deporte con regularidad
pero sin excederse . . . ,

. . . , . . . , . . . ,
¡Ah! Y recuerde tomar 96.25 ml

de vino tinto al d́ıa, pero
¡ni gota más!

Y . . . , . . . , . . . , . . . ,
Y, muy importante: ¡debe usted

evitar el estrés
a toda costa!

Aunque han sido muchos los métodos propuestos para alargar la vida,

sólo el de reducir la ingesta de caloŕıas dispone hasta ahora de testimo-

nios cient́ıficos a favor. Los otros métodos, no obstante, posiblemente

śı puedan lograr que cada año de vida parezca incréıblemente largo.

vencia puede simplificarse hasta la conocida ecuación de Gompertz (1825).
Gracias a esta propiedad nos ha sido posible obtener una interpretación en
términos fisiológicos de los parámetros de este modelo clásico; en particu-
lar, hemos podido averiguar como dependen de la velocidad metabólica, el
consumo calórico y el tamaño del organismo. Puesto a prueba con datos de
un conocido experimento de Weindruch y col. (1986) en el que varios gru-
pos de ratones fueron mantenidos a diferentes niveles de consumo calórico,
nuestro modelo resultó ser capaz de describir las diferencias en crecimiento
y supervivencia observadas entre los distintos grupos. Los animales con las
dietas más bajas en caloŕıas mostraron poseer la mayor esperanza de vida.

Interacciones entre tumor y organismo hospedador

Modelos matemáticos del crecimiento de tumores han sido desarrollados en
diversas subdisciplinas de investigación del cáncer. No obstante, la mayoŕıa
de estos modelos consideran al tumor como una entidad independiente y,
por lo tanto, no tienen en cuenta posibles interacciones entre el mismo y
su organismo hospedador. Para estudiar la relevancia de estas interacciones
hemos desarrollado un nuevo modelo matemático partiendo de la premisa
de que un tumor es siempre parte de un organismo. En nuestro modelo
determinadas mutaciones pueden dar origen al desarrollo de un tumor por
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medio de mecanismos que permiten que sea energéticamente factible que las
células cancerosas proliferen más rápidamente que las celular normales.

Mediante simulaciones de ordenador hemos investigado la influencia de
las caracteŕısticas fisiológicas del organismo hospedador sobre el comporta-
miento de un tumor. Aśı, hemos descubierto –por ejemplo– que la velocidad
de crecimiento del tumor depende de la edad del hospedador o, más concre-
tamente, de su velocidad metabólica, que a su vez vaŕıa con la edad. Según
las predicciones de nuestro modelo, un mismo tipo de tumor crece por lo
general con más rapidez en individuos jóvenes que en individuos maduros,
debido a que la enerǵıa disponible para cada célula decrece con la edad del
organismo. Nuestro modelo también predice que el consumo calórico puede
afectar al proceso de crecimiento de un tumor.

Con respecto a la influencia de un tumor sobre su hospedador, nos hemos
concentrado en la pérdida de peso que sufren muchos pacientes de cáncer.
Según nuestros resultados, cuando las demandas energéticas del tumor al-
canzan valores demasiado elevados, el organismo hospedador se ve obligado
a degradar tejidos propios con el fin de disponer de la enerǵıa suficiente para
llevar a cabo sus procesos esenciales de mantenimiento. Como consecuencia
el paciente no sólo pierde tejido adiposo, sino también músculo esquelético.

Una parte de la enerǵıa liberada durante le proceso de adelgazamiento es
aprovechada tanto por el hospedador como por el tumor. Como la eficiencia
de esta reutilización no del cien por cien, la pérdida de peso sufrida puede
ser mucho más acentuada de lo que cabŕıa esperar a partir de las demandas
energéticas del tumor. Además, la magnitud del proceso de adelgazamiento
depende tanto de estas últimas como de la velocidad metabólica del hos-
pedador. Posiblemente, estas predicciones de nuestro modelo explican por
qué en estudios cĺınicos no se ha observado una relación uńıvoca entre la
velocidad de crecimiento del tumor y la progresiva pérdida de peso sufrida
por el paciente.
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Abbreviations

Name or Description
ACI Adjusted Cumulative Incidence
AD Armitage-Doll model
ADI Acceptable Daily Intake
AIR Acceptable Increase in Risk
B[a]P Benzo[a]Pyrene
B[a]P-RIVM B[a]P carcinogenicity test
BUT-NTP 1,3-butadiene NTP carcinogenicity test
CA Chromosomal Aberrations
CAS Chemical Abstracts Service
CDF Cumulative Distribution Function
CPDB Carcinogenic Potency Database
CR Caloric Restriction
DCC Deleted in Colorectal Carcinoma gene
DEB Dynamic Energy Budget theory
DNA DeoxyriboNucleic Acid
ECETOC European Centre for Ecotoxicology and Toxicology

of Chemicals
EHS Engleberth-Holm-Swarm carcinoma
ERR Excess Risk Rate
FCTI Final Cumulative Tumor Incidence
FT Failure Time
EU European Union
IARC International Agency for Research on Cancer
IPCS International Programme on Chemical Safety
KM Kaplan-Meier
kpa Kilogram per year
LD50 50% Lethal Dose
LMS Linearized Multi-Stage dose-response model
LOAEL Lowest Observed Adverse Effect Level
MeCCNU 1-(2-Chloroethyl)-3-(4-MethylCyclohexyl)-1-NitrosoUrea
MHFT Multi-Hit Failure-Time model
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Name or Description
ML Maximum Likelihood
MTD Maximum Tolerated Dose
MVK Moolgavkar-Venzon-Knudson model
NCI National Cancer Institute (USA)
NIH National Institutes of Health (USA)
NKI Nederlands Kanker Instituut
NOAEL No Observed Adverse Effect Level
NOEL No Observed Effect Level
NTP National Toxicology Program (USA)
OECD Organization for Economic Cooperation and Development
OHFT One-Hit Failure-Time model
PBPK Physiologically-Based Pharmaco-Kinetics
PDF Probability Density Function
QRA Quantitative Risk Assessment
RB RetinoBlastoma
RIVM Rijksinstituut voor Volksgezondheid en Milieu
RNS Reactive Nitrogen Species
ROS Reactive Oxygen Species
RS Reactive Species
SAR Structure-Activity Relationships
STW Netherlands Technology Foundation
TCDD 2,3,7,8-Tetrachlorodibenzo-p-dioxin
TD50 Tumorigenic 50% Dose
T2 Tumor doubling time
tpa Ton per year
UCL Upper Confidence Limit
USEPA Environmental Protection Agency (USA)
UV UltraViolet
VSD Virtually Safe Dose
WHO World Health Organization






