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Abstract

Theories of dynamic energy budgets (DEB) link physiological processes of individual organisms, such as ingestion,
assimilation, respiration, growth and reproduction, in a single framework. In this introduction, I summarise the most encompassing
DEB theory developed so far [Kooijman, S.A.L.M., 2000. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge
Univ. Press, Cambridge.] and compare it with various alternative approaches. I further review applications of the DEB model to
particular species and discuss what sort of data sets are needed and have been used to estimate the various model parameters.
Finally, I argue that more comparative work, i.e. applying DEB models to a wide range of species, is needed, to see whether we can
understand the variability in parameter values among species in terms of their ecology and phylogeny.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A dynamic energy budget (DEB) model of an
individual organism describes the rates at which the
organism assimilates and utilises energy for mainte-
nance, growth and reproduction, as a function of the
state of the organism and of its environment (Nisbet et
al., 2000; Kooijman, 2001).The state of the organism
can be characterised by, for example, age, size and
amount of reserves, and the environment by e.g. food
density and temperature. Dynamic energy budget
models of individual organisms can be used as the
basic building blocks in model studies of the dynamics
of structured populations (Metz and Diekmann, 1986).
Practical applications of DEB models include the
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optimisation of pest control (Van Oijen et al., 1995),
the development of optimal harvesting strategies,
including the harvesting of microbial products such
as penicillin, and the reduction of sludge production in
sewage treatments (Ratsak, 2001).

One of the most encompassing theories of dynamic
energy budgets is the DEB theory developed by Bas
Kooijman in the 1980s (Kooijman, 1986a, 2000). This
theory resulted in the so-called κ-rule DEB model,
which assumes that the various energetic processes,
such as assimilation rate and maintenance, are
dependent either on surface area or on body volume.
The model further assumes that the assimilated
products first enter a reserve pool, from which they
are allocated to maintenance, growth and reproduction.
The κ-rule says that a fixed fraction κ is allocated to
maintenance and growth and that the remaining
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Fig. 1. Schematic representation of the κ-rule DEB model. Part of the
ingestion is assimilated, the rest is lost as faeces. The assimilated
products enter the reserve compartment. A fixed fraction κ of the flux
from the reserves is spent on maintenance, heating (for endotherms)
and growth (with a priority for maintenance), the rest goes to maturity
(for embryos and juveniles) or reproduction (for adults) and maturity
maintenance.

86 J. van der Meer / Journal of Sea Research 56 (2006) 85–102
fraction 1-κ is available for development and repro-
duction. Though the κ-rule model is based on just a
few straightforward assumptions concerning energy
acquisition, reserve dynamics, energy allocation and
maintenance, it is generally considered to be complex.
For example, Brown et al. (2004a) states that DEB
models are complex, using many variables and
functions. He claims that there is room for a comple-
mentary and even more general approach. This apparent
complexity and intractability may have hampered
widespread application and testing of DEB models.

Aim of the present paper is therefore twofold. First,
it intends to provide an easily accessible introduction
to the basics of the κ-rule DEB model. From this
introduction it should become clear that the DEB
model is as general and simple as possible, without
losing the essentials of the energy budget of an
individual organism. An even more general approach
does not seem feasible. Second, the paper should be of
help to the practically inclined biologist who aims to
link empirical observations on the physiology and
energetics of a particular species to a theoretical
energy budget model. In the second half of the paper
emphasis is therefore put on practical aspects of
estimating DEB parameters, using observational and
experimental data.

2. DEB theory

2.1. Introduction

Kooijman's DEB theory describes the individual
organism in terms of two state variables: structural body,
quantified as volume V, and reserves, quantified as
energy density [E]. The latter variable gives the amount
of reserves E per unit of the structural body volume V.
The square brackets in the notation of energy density
indicate that the variable is expressed per unit volume.
Appendix A provides more information on the notation
used in DEB theory. The structural body and the
reserves both have a constant chemical composition.
This assumption is called the assumption of strong
homeostatis. The amount of reserves can change relative
to the amount of structural body, for example as a result
of variable food conditions. This implies that the
chemical composition of the total body may change. It
also implies that a general model of the dynamic energy
budget of an individual must distinguish between
structural body and reserves. Organisms are able to
survive prolonged periods of starvation, during which
they continuously have to allocate energy to mainte-
nance. These energy needs cannot be immediately
fulfilled from feeding, which is another argument in
favour of taking reserves explicitly into account.

DEB theory assumes that assimilates derived from
ingested food directly enter the reserves. A fixed
fraction κ (read kappa) of the energy utilised from the
reserves is spent on growth and somatic maintenance,
the rest on development and reproduction. Based on this
rule the DEB growth model has been called the κ-rule
model (Fig. 1). Priority is always given to somatic
maintenance, and if the energy utilisation rate from the
reserves is no longer sufficient to pay for the somatic
maintenance costs, the individual dies.

The energy ingestion rate JẊ is proportional to the
surface-area of the organism V2/3 and is related to food
density through a Hollings type II curve. Hence JẊ=
{JẊm}fV

2/3, where {JẊm} is the maximum ingestion rate
per unit of surface area and f is the scaled functional
response. The scaled functional response, which can
vary between 0 and 1, is given by f≡X/(XK+X), where X
is the food density in the environment and XK the
saturation coefficient. The saturation coefficient, or
Michaelis-Menten constant, is the food density at which
the ingestion rate is half the maximum. In terms of
Hollings type II functional response it is equal to the
reciprocal of the product of the area of discovery (or
searching rate) and the handling time (Fig. 2). DEB
theory assumes that the assimilation efficiency of food is
independent of feeding rate. The assimilation rate (with
dimension unit energy per unit time) can thus be written
as p ˙A={p ˙Am}fV

2/3, where {p ˙Am} is the maximum
surface-area-specific assimilation rate. The precise



Fig. 2. The ingestion rate as a function of food density is described as a
Holling's type II functional response, with the underlying idea that the
animal is either searching for prey or handling prey. Searching occurs
at a constant rate, and each prey requires a constant (expected)
handling time. The initial slope of the function is given by the
searching rate, whereas the asymptotic ingestion rate is given by the
reciprocal of the handling time. The reciprocal of the product of the
searching rate and the handling time is equivalent to the saturation
coefficient XK, which sets the prey density at which the ingestion rate is
half the maximum rate.
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value of {p˙Am} will depend on the diet and the ratio
{p˙Am}/{JẊm} gives the conversion efficiency of ingested
food into assimilated energy.

The assimilated products enter a reserve pool and it is
assumed that the reserve density [E] (energy reserves E
per unit of body volume V) follows first order dynamics,
which means that the rate at which the reserve density
decreases (in the absence of assimilation) is proportional
to the reserve density itself. Hence,

d½E�=dt ¼ �pA=V � c½E� ¼ �pAmf gfV�1=3 � c½E� ð1Þ
where c is the proportionality coefficient that sets the
rate at which the reserve density drops when no
assimilation occurs. A maximum equilibrium reserve
density [Em] occurs at maximum food density, and can
be given (let d[E]/dt=0 and f=1) by [Em]={p˙Am}V

− 1/3/
c. Hence the coefficient c in Eq. (1) depends on volume,
and Eq. (1) can be re-written as:

d½E�=dt ¼ �pAmf gV�1=3 f � ½E�= Emf gð Þ ð2Þ
It follows that the equilibrium reserve density [E]⁎ is
proportional to the scaled functional response: [E]⁎= f
[Em]. The assumption of first order dynamics of reserve
density is one of the most important aspects of DEB
theory. It is also the most difficult part of DEB, since the
proposed mechanism underlying this assumption is
rather complicated (Kooijman, 2000, pp. 246).

The utilisation rate p˙C (with dimension energy per
unit time), which is the rate at which energy is utilised
from the reserves, can be written as the difference
between the assimilation rate and the rate at which the
reserves change p˙C=p˙A−dE/dt. According to the chain
rule for differentiation, the rate of change of the
reserves can be written as the rate of change of the
structural volume multiplied by the energy density plus
the rate of change of the reserve density multiplied by
the structural volume: p ˙C=p ˙A−dE/dt=p ˙A−d(V[E])/
dt=p˙A− [E]dV/dt−Vd[E]/dt. Combined with Eq. (2),
this gives

�pC ¼
�pAmf g½E�V 2=3

Em½ � � E½ � dV
dt

ð3Þ

When the energy density has reached equilibrium, the
first term is exactly equivalent to the assimilation rate.
The second term at the right-hand side is necessary to
prevent dilution of the reserves due to growth.

A fixed proportion κ of utilised energy is spent on
growth plus maintenance plus (for endotherms) heat-
ing, the rest goes to development (for embryos and
juveniles) or to reproduction (for adults). Maintenance
costs p˙M=[p˙M]V are proportional to body volume
(where [p˙M] are the maintenance costs per unit of
volume), and heating costs p˙T={p˙T}V

2/3 are propor-
tional to body surface area (where {p˙T} are the heating
costs per unit of surface area). Thus

j �pC ¼ EG½ �dV=dt þ �pM½ �V þ �pTf gV 2=3 ð4Þ

where [EG] are the energetic growth costs per unit of
growth in structural body volume. Substituting Eq. (3)
in Eq. (4) gives the growth equation

dV
dt

¼ j �pAmf g½E�= Em½ � � �pTf gð ÞV 2=3 � �pM½ �V
j½E� þ EG½ � ð5Þ

Under constant food conditions the growth equation
simplifies to

dV

dt
¼ jf �pAmf g � �pTf gð ÞV 2=3 � �pM½ �V

jf EM½ � þ EG½ � ð6Þ

This equation is mathematically equivalent to the Von
Bertalanffy growth model (Fig. 3). The ultimate
volumetric length, which is the cubic root of the



Fig. 3. Body length as a function of age. At constant food conditions,
the DEB model predicts that volume growth follows the Von
Bertalanffy growth equation, where the growth rate is given by the
difference between a surface-area related term and a volume related
term. Using the chain rule dV/dt=(dV/dL)·(dL/dt)=3(δML)

2·dL/dt
reveals the (non-autonomous first order) differential equation for the
Von Bertalanffy length growth dL/dt=r˙B(L∞−L). This equation can be
solved to obtain length as a function of time (or age), i.e. L(t)=L∞(1
−exp(r˙Bt)).
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ultimate volume, equals (κf{p˙Am}−{p˙T})/[p˙M], and the
Von Bertalanffy growth coefficient equals

1
3

�pM½ �
jf EM½ � þ EG½ �.

The Von Bertalanffy growth model is, however, based
on an entirely different biological rationale. DEB
theory uses the energy conservation law and assumes
that the difference between a supply (a fraction κ of
the utilisation rate) and a demand term (the mainte-
nance rate and the heating rate) is available for
growth. Hence, the proximate control of growth is the
utilisation rate, but the ultimate control is, of course,
in resource intake by the individual from the
environment (Fig. 1). In contrast, Von Bertalanffy
did not apply the energy conservation law to the
overall organism, but defined growth as the difference
between anabolism (synthesis) and catabolism
(breakdown).

By combining growth Eqs. (5) and (3), the utilisation
rate can now be written as an explicit function of body
volume and reserve density:

�p C¼ ½E�
j½E� þ EG½ �
�

�pAmf g EG½ �
Em½ � þ �pTf g

� �
V 2=3þ �pM½ �V

� �
ð7Þ
Under constant food conditions (when the reserve
density quickly reaches an equilibrium and becomes
proportional to the scaled functional response: [E]⁎= f
[Em]), the utilisation rate is thus a function of
surface-area and volume.

As was said above, a fixed proportion 1−κ of the
utilised energy goes to development and reproduction.
Embryos (which do not feed and do not reproduce)
and juveniles (which feed but do not reproduce) use
the available energy for developing reproductive
organs and regulation systems. DEB theory assumes
that the transitions from embryo to juvenile and from
juvenile to adult occur at fixed sizes, Vb and Vp,
respectively. The so-called κ-rule for allocation differs
from other allocation rules in that no sudden change in
the somatic growth pattern occurs at maturity. The rule
also implies a similarity of growth patterns between
the sexes. DEB theory further assumes that the
reproductive organs require so-called maturity main-
tenance costs. Since the development stops at maturity
(when the juvenile turns into an adult), these maturity
maintenance costs do not increase any further after
maturation. DEB theory states that for embryos and
juveniles the ratio between the costs for development
and the maturity maintenance costs is the same as the
ratio between the costs for somatic growth and the
(somatic) maintenance costs. Hence the utilisation rate
allocated to development (first term at the right-hand
side of Eq. (8)) and maturity maintenance (second
term at the right-hand side of Eq. (8)) is for
(ectothermic) embryos and juveniles given by:

1� jð Þ �pC ¼ 1� j
j

EG½ �dV=dt þ 1� j
j

�pM½ �V ð8Þ

The energy needed for maturity maintenance reaches its
maximum at the size at maturity Vp. The size at maturity,
i.e. the size at which a juvenile becomes an adult, is
assumed to be constant. For adults, which no longer pay
for development, the allocation to reproduction (first
term at the right-hand side) and maturity maintenance
(second term at the right-hand side) is given by:

1� jð Þ �pC ¼ �pR þ 1� j
j

�pM½ �Vp ð9Þ

Combining Eqs. (7) and (9) will give an explicit
expression for the reproduction rate (of ectotherms) p˙R.
At constant food conditions and when the animal has
reached maximum size, such expression simplifies to

�pR ¼ 1� jð Þf �pAmf gV 2=3
l � 1� j

k
�pM½ �Vp ð10Þ



Table 1
The basic assumptions of the κ-rule DEB model

1. An organism is characterised by a structural body and a reserve density (i.e. amount of reserves per amount of structural body). The chemical
composition of both structural body and reserves is constant, which is called the assumption of strong homeostasis.

2. Each organism starts its life as an embryo (which does not feed and does not reproduce). When the embryo has reached a certain degree of
maturation, it changes into a juvenile (which feeds, but does not reproduce). Similarly, a juvenile changes into an adult (which feeds and
reproduces) when it exceeds a given threshold value.

3. Ingestion is proportional to the surface area of the organism and depends upon food density by a Holling type II functional response. Recall that
embryos do not feed.

4. A fixed fraction of the ingested food is assimilated and enters a storage pool, which is characterised by the reserve density.
5. The regulation of the reserve density follows a first-order process.
6. A fixed fraction κ of the utilisation rate goes to somatic maintenance, heating (for endotherms) and growth of the structural body (with a priority for

maintenance), and the rest goes to maturity maintenance and (for embryos and juveniles) maturity or (for adults) reproduction.
7. Maintenance rate is proportional to structural volume and heating rate is proportional to the surface area of the organism.
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An overview of the main DEB theory assumptions is
provided in Table 1.

2.2. Temperature

The DEB theory uses the Van't Hoff-Arrhenius
equation to describe the dependency of physiological
rates on temperature. This equation has its origin in
statistical thermodynamics, where the behaviour of a
system containing a very large number of a single type
of molecules is predicted from statistical considerations
of the behaviour of individual molecules (Haynie,
2001). In its basic form the Van 't Hoff-Arrhenius
equation looks like

�k Tð Þ ¼ �klexp
�Ea

kT

� �
ð11Þ

where k ˙(T) is a reaction rate that depends upon the
absolute temperature T (in Kelvin), k ˙sub ∞ is a
(theoretical) maximum reaction rate, which is the
reaction rate when all molecules would react. The
term exp(−Ea/(kT)) is the Boltzmann factor, which gives
the fraction of the molecules that obtain the critical
activation energy Ea (in joules per molecule) to react.
This fraction increases with increasing temperature. The
constant k (not to be confused with the reaction rate k ˙) is
the Boltzmann constant and equals 1.38 10− 23 joule per
degree Kelvin. The Van 't Hoff-Arrhenius equation can
also be re-written in the form

�
k Tð Þ ¼ �

k1exp
TA
T1

� TA
T

� �
ð12Þ

where k ˙1 is the reaction rate at a reference temperature
T1, and TA the so-called Arrhenius temperature (which
equals Ea/k).

Glasstone et al. (1941) showed that the Van't Hoff-
Arrhenius equation is approximate for bimolecular
reactions in the gas phase. Kooijman (1993, 2000)
emphasises the enormous step from a single reaction
between two types of particles in the gas phase to
physiological rates where many compounds are in-
volved and gas kinetics do not apply. He therefore
regards the application of the Van't Hoff-Arrhenius
relation to physiological rates as an approximation only,
for which the parameters have to be determined
empirically. For this reason, Kooijman prefers the use
of an Arrhenius temperature instead of the use of an
activation energy, which would give a false impression
of mechanistic understanding. Similar to Kooijman,
Clarke (2003, 2004) and Marquet et al. (2004) stress that
the Van't Hoff-Arrhenius equation is just a statistical
generalisation, and they too conclude that at present we
still lack a clear understanding of the relationship
between temperature and metabolism at the organismal
scale.

2.3. Size and shape

The size of the structural body, quantified as volume
V, is one of the two basic state variables of the DEB
model. All energetic processes are directly related to V.
Maintenance rate, for example, is proportional to
volume V, whereas assimilation rate is proportional to
the so-called volumetric surface area V2/3. In practice
structural volume is not easily measured. Measurements
of length are usually much easier to obtain, and if an
organism does not change in shape during growth, then
each length measure can be used to predict volume by
using a calibration curve of the form

V ¼ dMLð Þ3 ð13Þ

where δM is a shape parameter, whose value, of course,
very much depends upon the type of length measure L
taken. For shells, for example, length may be measured
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as height or width. Mammals may be measured
including or excluding the tail, etc.

2.4. Compound parameters and a dimensionless
representation of the DEB model

The differential equations for energy density (Eq. (2))
and structural volume (Eq. (5)) are the core of the DEB
model. The dynamical behaviour of the system as
defined by these coupled equations (i.e., reserve
dynamics and growth) can be most easily understood
by using the dimensionless form of the equations. Using
the dimensionless variables scaled energy density
e= [E]/[Em], scaled volumetric length l=V1/3/Vm

1/3

(where, for ectotherms, maximum volumetric length
Vm
1/3 equals κ{p˙Am}/[p˙M]) and scaled time τ= t[p˙M]/[EG],

Eqs. (2) and (5) turn into:

de
ds

¼ g
f � e
l

ð14Þ

and

dl
ds

¼ g
3
e� l
eþ g

ð15Þ

where the compound parameter g is given by the ratio
[EG]/(κ[Em]). Similarly, the dimensionless form of the
utilisation rate (expressed as the scaled energy flux or
power, i.e. �pC EG½ �

Em½ �L3m PM½ � ) is given by
eg

eþ g
gl2 þ l3
� �

and
the dimensionless form of the assimilation rate by gfl2.

Apparently, the dimensionless compound parameter
g is the only parameter that truly affects the dynamics
of the two equations system. This observation is in
accordance with the suggestion of Fujiwara et al.
(2005) that information on g in the data comes from
the autocorrelation in the size trajectory. The parameter
g has been given the name ‘energy investment ratio’ as
it stands for the energetic costs of new structural
volume [EG] relative to the maximum available energy
for growth and maintenance κ[Em]. The parameter
‘maximum energy density’ [Em], and the two com-
pound parameters ‘maximum volumetric length’
κ{p˙Am}/[p˙M] and ‘maintenance rate coefficient’ k ˙M=
[p˙M]/[EG] scale the two state variables and time to their
dimensionless equivalents. The ‘maintenance rate
coefficient’ stands for the ratio of the costs of
maintenance to structural volume synthesis. Only
four parameters are thus needed to fully characterise
the dynamics of the reserves and the structural body.
This implies that observations on assimilation rate,
reserve dynamics (including utilisation rate) and
growth alone do not suffice to enable estimation of
all five (for ectotherms) basic DEB parameters [EG],
[Em], {p˙Am}, [p˙M], and κ (the list of basic parameters
should actually also include the parameters Vb and Vp,
which indicate the fixed sizes at which the transitions
from embryo to juvenile and from juvenile to adult
occur, but usually these sizes can be observed directly).
The scaled reproduction rate (at constant food density
and when the animal has reached its maximum size,
see Eq. (10)) equals (1−κ)g(f 3−Vp/Vm), and the
appearance of the parameter κ implies that information
on reproduction is also required for the estimation of
all five basic DEB parameters.

The ratio of the area-specific assimilation rate to the
maximum energy density occurs regularly in DEB
theory (e.g. in Eqs. (3) and (5)) and has been called the
energy conductance ν˙={p˙Am}/[Em]. The inverse of this
compound parameter ν ˙ can be interpreted as a
resistance.

3. Alternative approaches

A dynamic description of the energy budget of an
individual organism is a logical follow-up of a static
description, which was the prevalent approach in the
1970s and 1980s. Various alternative dynamic models
have been proposed, such as the net-production models
(Lika and Nisbet, 2000) and the metabolic theory of
ecology (Brown et al., 2004b). Below I will briefly
discuss the static descriptions and the various dynamic
alternatives.

3.1. IBP studies

Energy budget studies received an enormous impetus
from the International Biological Program (IBP) that
started in the 1960s. The flows of energy and matter
into, within and out of an individual organism were
divided into a number of separate fluxes. The most
important ones distinguished are ingestion (total uptake
of energy or mass), defecation (part of the ingestion that
is not absorbed, but leaves the gut as faeces),
assimilation or absorption A (part of the ingestion that
crosses the gut wall, i.e. the difference between
ingestion and defecation), growth dW/dt (part of the
absorption that is incorporated in the body tissue of the
organism), reproduction G (part of the absorption that is
released as reproductive bodies), excretion E (part of the
absorption that is released out of the body in the form of
urine, or other exudates, with the exception of
reproductive bodies), and finally respiration R (part of
the absorption that is released in association with the
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oxidation of organic compounds, and thus causes a net
loss of CO2). Assuming the conservation of energy and
mass, the balance equation dW/dt=A− (G+E+R) has
played a key role in the IBP. Hitherto, many studies have
followed this IBP recipe of constructing an energy
budget for an individual animal. Since the budget must
balance, a term particularly hard to measure was often
found by difference. In the Scope for Growth (SFG)
approach, for example, all terms apart from growth and
reproduction are measured (Bayne and Newell, 1983).
The SFG, which is the difference between absorption
and excretion plus respiration, of a ‘standard’ animal
(e.g. a blue mussel of 1 g dry mass) has been frequently
used as an indicator of the ‘health’ of the ecosystem
(Smaal and Widdows 1994; Widdows et al., 1995).

One of the major shortcomings of IBP-type energy
budget studies is that the results are only descriptive
and very hard to generalise, even towards animals of
the same species but different in size. Measuring the
SFG of a single individual of a particular size will not
elucidate the link between the energy budget and, for
example, the age-size relationship. Knowledge on the
relations between all energy budget terms and body
mass of the individual is required. The terms that were
distinguished in the IBP approach have been chosen
because they are relatively easy to measure, and not
because their relationship to body mass could be easily
derived from first principles. Respiration, for example,
reflects the costs of many different processes. Apart
from the basal maintenance costs of the body, which
are, among other things, due to the maintenance of
concentration gradients across membranes and the
turnover of structural body proteins, it includes heating
costs, costs that are directly coupled to the ingestion of
food and costs coupled to the growth of body tissue.
Whereas DEB assumes that all these costs depend in a
different way on body size (e.g. maintenance costs
relate to body structural volume, whereas heating costs
relate to surface area), IBP-type studies usually apply
allometric curve fitting to generalise the obtained
findings to other size classes. A further complicating
factor that is not accounted for in the IBP approach, is
that not all surplus energy available for growth will
immediately be used for growth of the structural part of
the body. It may be stored temporarily in a reserve
tissue buffer. As various processes, such as ingestion
and maintenance, will basically be related to the
structural part of the body, such distinction between a
metabolically active structural part of the body and
inactive reserve tissue seems to be a prerequisite for a
proper understanding of energy budgets of individual
organisms.
3.2. Net-production models

Various alternative dynamic energy budget models
have been constructed (Nisbet et al., 1996, 2004; Lika
and Nisbet, 2000) that have been classified as net-
production models. These models differ from Kooij-
man's κ-rule model in that they first subtract the
maintenance costs from the assimilated products, before
they are allocated to other metabolic processes (growth,
reproduction). Kooijman (2000, pp. 365) points to
various theoretical problems with net-production mod-
els, one of them being that non-feeding animals (e.g.
embryos or animals experiencing starvation periods) do
have to pay maintenance costs anyway, which thus
requires that extra switches have to be built in to pay
maintenance costs from the reserves under such condi-
tions. One might argue that theoretical arguments do not
suffice, as models are always simplifications of the truth,
and that the proof of the pudding is in the eating. Amajor
challenge is then to find out what sort of experiments
enable the selection of the most appropriate model
(Noonburg et al., 1998).

3.3. Metabolic Theory of Ecology

The so-called metabolic theory of ecology (MTE)
advocated by Brown and co-workers (West et al., 1997,
2001; Gillooly et al., 2002; Brown et al., 2004b) has
received much attention over the last decade, despite a
lack of generality of the proposed mechanism and a lack
of internal consistency in the description of the energy
budget of the individual organism (Van der Meer, 2006).
Basis of the theory is the idea that whole-organism
metabolic rate is limited by the internal delivery of
resources to cells. Resources have to be distributed
through branching networks, and it was suggested that
the fractal-like designs of these networks cause the
supply rate and hence the metabolic rate to scale as a 3/4
power of body volume. Such a closed branching
network is, however, at best applicable to a minority
of species. Apart for the vertebrates, closed networks do
not exist in the animal kingdom. It was further assumed
that the metabolic rate not only equals the supply rate,
but also the maintenance rate, defined as the power
needed to sustain the organism in all its activities. At the
same time, the difference between supply and mainte-
nance was assumed to be entirely used for the
construction of new body tissue. Yet, you cannot have
your cake and eat it, and, in fact, this ambiguity violates
the first law of thermodynamics, as denoted by
Makarieva et al. (2004). Another disadvantage of the
MTE model is that it does not provide explicit
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descriptions of some basic energy fluxes, e.g. the flux
towards reproduction.

3.4. Species-specific models

All types of DEB models, whether it is the κ-rule
DEB model or the net-production models, are
relatively simple models aiming to have a wide
applicability, throughout the animal kingdom and
possibly beyond. This implies that species-specific
aspects, such as, for example, the low feeding rate of
larval nematodes, are not covered by these models.
Practically inclined biologists therefore tend to develop
their own species-specific models (Scholten and
Smaal, 1998, 1999). A major problem with this
approach is that such descriptions lack a common
basis and usually contain many ad-hoc descriptions for
the various sub-processes. So, apart from their
complexity, this lack of a common basis hampers a
comparison between these models. I believe that if
species-specific aspects have to be taken into account,
a ‘phylogeny’ of models is needed, where the κ-rule
DEB model could play the role of the common
ancestor and each progeny contains its own peculiar-
ities. A good example is the work of Jager et al. (2005)
on nematodes. They observed that nematodes differ
from other animals in their initial growth being slower
than expected on the basis of size alone, and were able
to explain this lower growth by low feeding rates of
the larvae. The size of the mouth cavity appeared to
limit the feeding rate of the larval worms. Jager et al.
(2005) incorporated this phenomenon into the κ-rule
DEB model by correcting the ingestion rate using a
size-dependent stress factor.

4. Parameter estimation and the link with empirical
data: a short review of experimental approaches

So far, various studies have tried to estimate the five
basic DEB parameters (the surface-area specific assim-
ilation rate {p˙Am}, the volume-specific maintenance rate
[p˙M], the volume-specific costs of growth [EG], the
maximum energy density [Em], and the fraction of the
utilised energy spent on maintenance and growth κ), or,
alternatively, the five compound parameters (the energy
investment ratio g, the maintenance rate coefficient k ˙M,
the energy conductance ν ˙, the maximum volumetric
length Lm, and the Von Bertalanffy growth coefficient
r˙B) for one or a few specific (metazoan) species.
Examples are studies of daphnids Daphnia magna and
D. pulex (Evers and Kooijman, 1989), pond snails
Lymnea stagnalis (Zonneveld and Kooijman, 1989),
blue mussels Mytilus edulis (Van Haren and Kooijman,
1993), the flatfish species dab Limanda limanda, plaice
Pleuronectes platessa, sole Solea solea and flounder
Platichthys flesus (Van der Veer et al., 2001), the
nematode species Caenorhabditis elegans, C. briggsae
and Acrobeloides nanus (Jager et al., 2005), and the
delta smelt Hypomesus transpacificus (Fujiwara et al.,
2005). These six studies used both observational (field)
data and experimental data.

In the experiments both the initial state of the
organism (age, size) and the state of the environment
(food density, temperature) have been manipulated.
Response variables include feeding rate, assimilation
rate, respiration rate, growth rate and reproductive
output. Most DEB parameters, such as the fraction of
the utilised energy spent on growth and maintenance,
the maintenance rate per unit of volume, and the
maximum energy density, cannot be measured directly.
One problem is that conceptual model processes do
not have a simple one-to-one relationship to the
measurable response variables. Respiration rate, as
measured by oxygen consumption, for example, does
not represent only maintenance costs, but also over-
head costs of growth and reproduction. This implies
that the estimation procedures are often quite complex.
It appears that compound parameters, usually ratios
of the primary parameters, are often more easily
estimable.

Below, the experiments are categorised in seven
classes, (a)–(g) (Table 2a, b). Each class will be shortly
described.

4.1. Size and the functional response

Using the relationship between the ingestion rate JẊ
on the one hand and length L and food density X on the
other hand

�
JX ¼ �

JXm
n o

dMLð Þ2 X
XK þ X

þ e; ð16Þ

the surface-area-specific maximum ingestion rate {JẊm}
and the saturation coefficient XK can be estimated. Note
that the shape coefficient δMmust be known beforehand.
The relationship simplifies when either size or food
density is kept constant. The assimilation efficiency is
required to derive the assimilation rate from the
ingestion rate. This efficiency is assumed to be constant
and can be estimated by means of the Conover-ratio
method (Conover, 1966).

For bivalves, the ingestion rate is usually estimated
by determining the filtration rate and the food
concentration in the filtrated water separately (Van



Table 2a
An overview of field data and experiments used for estimating DEB parameters

a b c d e f g

Longitudinal × × × ×
Treatment None × (×) ×

initial size × × (×)
food density × × × i ∅ ? ?
temperature ×

Response intake rate ×
respiration rate × × ×
size/growth × × × × ×
mass/growth × × ×
cumulative reproduction ×
composition ×
survival time ×

(a) Treatment factors and response variables in various types of experiments (coded a–g). When food density is not a treatment factor, food levels can
either be kept at zero (indicated by the symbol∅) i.e. in case of a starvation experiment, be ad libitum (∞), be a known initial amount that is depleted
in the course of the observations (i), or be unknown (?).
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Haren and Kooijman, 1993). Assuming that the
filtration rate does not depend on food density, the
surface-area specific filtration rate can be estimated by
using

�
JW ¼ �

JW
n o

V 2=3 þ e; ð17Þ

where JẆ is the filtration rate, {JẆ} the surface-area
specific filtration rate, and ε random observation error.
Another feature of bivalve feeding is that it is often
observed that the saturation coefficient is not constant,
but depends on the silt content of the water (Pouvreau
et al., 2006). This issue can be taken into account by
more specific models of the feeding process, in which
it is assumed that the food-acquisition apparatus can
be temporarily clogged by silt particles (Kooijman,
2006).
Table 2b
An overview of field data and experiments used for estimating DEB parame

Short description

a Size and/or food density on ingestion rate (or filtration rate; or assim
b Food density and size on ingestion rate and respiration rate
c1 Food density on growth curve
c2 Food density on cumulative reproduction
d Age of embryo within an egg on dry weight, reserve materials and r
e1 Changes in respiration rate, body size and body mass during a starv

e2 Length on body size changes during starvation
e3 Initial size on survival time during starvation
f Temperature on growth rate
g Observational length and mass (wet weight) data

(b) The DEB parameters estimated using the experimental data from the ex
(1989), F to Fujiwara et al. (2005), H to Van Haren and Kooijman (1993), J
Zonneveld and Kooijman (1989).
4.2. Size and/or food density versus oxygen consump-
tion rate

Van Haren and Kooijman (1993) used the oxygen
consumption rate JȮ as an approximation of the
utilisation rate. Using Eq. (7)

�pC¼ ½E�
j½E� þ EG½ �

�pAm EG½ �
Em½ � þ �pTf g

� �
V 2=3 þ �pM½ �V

� �
;

which for ectotherms experiencing constant food
conditions can be written as

�pC ¼ f Em½ � EG½ �
jf Em½ � þ EG½ �

�pAmf g
Em½ � V 2=3 þ

�pM½ �
EG½ � V

� �
ð18Þ

they arrived at JȮ ∝ (ν˙(δML)
2 +kṁ(δML)

3). Hence, by
fitting the oxygen consumption rate as a linear function
ters

DEB parameters References

ilation rate) {JẊm} or {JẆ} or {p ˙Am}, and XK E, H, V, Z
[p˙M]/κ, ν/kṀ, g{JẊm} H
L∞, r˙B; kṀ, ν˙ and g F, H, J
κ, {p˙Am}, [p˙M] J

espiration rate ν˙, kṀ Z
ation period ν˙, kṀ, g/e0 H

[p˙M], [Em] V
ν˙ or [p˙M] Z
ν˙, {p˙Am

}/[p ˙M] or ν˙, κ Z
TA H, J
δM, L∞ H, V, Z

periment types a–g, and references. E refers to Evers and Kooijman
to Jager et al. (2005), V to Van der Veer et al. (2001), and Z refers to



Fig. 4. Length growth rate as a function of body length for various food
conditions (f). The Von Bertalanffy growth coefficient r˙B is equivalent
to the (negative) slope of the relation between the length growth rate
and length dL/dt= r˙BL∞− r˙BL. The intercept r˙BL∞ is the initial length
growth rate and is often indicated with symbol ω (Appeldoorn, 1982).
DEB theory predicts that ultimate size is smaller at lower food
conditions, but that the Von Bertalanffy growth coefficient increases
with decreasing food conditions.
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(without a constant) of the volumetric surface area and
the volume, they obtain (by taking the ratio of the two
regression parameters) the ratio between the energy
conductance ν ˙ and the maintenance rate coefficient kṁ.
Note that implicitly it is assumed that the part of the flux
from the reserves that is not respired (and that is
incorporated in either somatic tissue or in gonads) is
negligible compared to the fraction that is actually
respired.

If the food conditions are not constant, things get a bit
more complicated. However, Van Haren and Kooijman
(1993) used an experimental dataset in which ingestion
rate instead of food density itself was measured. They
subsequently used the relationship between utilisation
rate on the one hand and ingestion rate and structural
size on the other hand, which can be derived by inserting
the equation for the ingestion rate JẊ={JẊm}fV

2/3 into
Eq. (18). This reveals

�pC ¼
�JX Em½ � EG½ ��

JXj Em½ � þ �
JXm

� 	
V 2=3 EG½ �

�
�pAmf g
Em½ � V 2=3 þ

�pM½ �
EG½ � V

� �
ð19Þ

which can be re-written, using JȮ=ηp˙c (where η is a
conversion coefficient that couples an oxygen flux to an
energy flux) and V1/3 =δM·L, as

�
J O ¼ g

�pM½ �
j

�
JX�JX = dM dLð Þ2þg �JXm� 	

�
�m�

kM
þ dM dL

� �
ð20Þ

Hence, the terms η[p˙M]/κ, g{JẊm} and the ratio of the
compound parameters ν ˙ and kṀ can be estimated.

It should be realised that if one is unwilling to
assume that the part of the flux from the reserves that is
not respired (and that is incorporated in either somatic
tissue or in gonads) is negligible compared to the
fraction that is actually respired, matters become more
complicated.

4.3. Food density and growth and/or reproduction

If food conditions are more or less constant, growth
curves can be used to estimate ultimate volume, which
for ectotherms equals κf{p ˙Am}/[p ˙M], and the Von
Bertalanffy growth coefficient, which equals
1
3

�pM½ �
jf EM½ � þ EG½ �. Note that both compound parameters
contain the scaled food density f. It is not always
appreciated that the Von Bertalanffy growth coefficient,
often called the Von Bertalanffy growth rate, is not a
growth rate, but represents the (negative) slope of the
relation between the length growth rate and the length.
In fact, DEB theory predicts that within the same species
the Von Bertalanffy growth coefficient will increase
with decreasing food levels (Fig. 4).

If food conditions are variable over the lifetime of an
organism, it might be possible to estimate three
parameters, e.g. kṀ, ν˙ and g, from the size trajectory.
The size trajectory can be obtained by numerical
integration of the two DEB differential equations
(Fujiwara et al., 2005). The cumulative reproduction
versus age can be obtained in the same way (both for
constant and variable food densities). Recall that at
constant food conditions and when the animal has
reached maximum size, the reproduction rate (of
ectotherms) is given by Eq. (10) (Fig. 5).

4.4. Growth and respiration rates of an embryo

Zonneveld and Kooijman (1989, 1993) used data on
growth and oxygen consumption rates of embryos in
eggs. The idea is that embryos do not feed, but that they
use their high initial reserves for growth and mainte-
nance. This phenomenon considerably simplifies re-
serve dynamics and reduces scatter related to variable



Fig. 5. Cumulative maturation and reproduction as a function of age.
Scaled functional response is 1. At the age of maturity, i.e. when the
structural body volume reaches VP, the total investment in maturation
has reached its maximum. From that moment onwards reproduction
starts and the cumulative reproduction steadily approaches a diagonal
asymptote, whose slope is given by Eq. (10) (see text).
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food intake. For animals that do not feed (f=0) Eq. (2)
simplifies to

d½E�
dt

¼ �
�pAmf g
Em½ � E½ �V�1=3 ¼ � �m E½ �V�1=3 ð21Þ

This simplified version of the differential equation for
energy density and the differential equation for the
structural volume (i.e. Eq. (5)) can be (numerically)
solved in order to predict the growth of the embryo, and
the decrease in reserve mass (which is proportional to
[E]V) over time. Yolk mass was taken as equivalent to
the reserves (Zonneveld and Kooijman, 1993), but for
the pond snail reserves included glycogen, galactogen
and proteins that are easily mobilised (Zonneveld and
Kooijman, 1989).

4.5. Starvation experiments

For starving animals the rate of change in energy
density is given by Eq. (21). If growth has also ceased,
and structural volume V is constant, Eq. (21) can be
easily solved:

½E� ¼ ½E�0exp � �mV�1=3t

 �

ð22Þ

The utilisation rate for animals that do not feed and do
not grow simplifies to p˙C=−Vd[E]/dt, and the oxygen
consumption rate (substituting Eqs. (21) and (22) and
JȮ=ηp˙c) can then be written as

J�O ¼ g �m½E�0V 2=3exp � �mV�1=3t

 �

ð23Þ

This approach, which has been followed by Evers and
Kooijman (1989) and by Van Haren and Kooijman
(1993) is not entirely consistent with the κ-rule, as it does
not indicate for what purpose the difference between the
energy flux to growth andmaintenance (which according
to the κ-rule should equal κp˙C=−κVd[E]/dt) and the
maintenance requirements, which equal [p˙M]V, is used.

4.6. Temperature and growth

DEB theory assumes that for a particular species, all
rates (e.g. ingestion rate, respiration rate, growth rate)
can be described, within a species-specific tolerance
range, by an Arrhenius relationship using a single
Arrhenius temperature. The rationale behind this
assumption is that if different processes were governed
by a different Arrhenius temperature, animals would
face an almost impossible task of coordinating the
various processes. Van Haren and Kooijman (1993)
used the shell length growth rates of larval mussels at
different food conditions and temperatures to estimate
the Arrhenius temperature.

4.7. Size, mass and shape

The relationship between some length measure (e.g.
shell length in the case of bivalves) and wet mass can be
used to estimate the shape coefficient δM. However,
special attention should be paid to the role of reserves
and gonads. The idea is that the mass or volume measure
should represent structural size, and should thus not be
affected by the reserve density or the gonads. Hence dry
mass or ash-free dry mass is certainly inappropriate. Wet
mass can be used if reserves that have been used are
replaced by water. The same should hold for gonads. If
not, gonads may be dissected, but the physical removal
of reserves will cause a problem, as they are partly
stored in a variety of tissues. Specific density has to be
estimated or known.

5. Estimation procedures and the blue mussel as an
example

In this section, part of the parameter estimation
procedure of Van Haren and Kooijman (1993) is
repeated to illustrate the application of two statistical
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approaches (simultaneous regression by means of
weighted non-linear regression, and repeated measure-
ments or time-series regression) not commonly applied
in ecology, but very helpful in estimating DEB
parameters. Data were read from the published graphs,
which may have caused some inaccuracies in the
estimates. Van der Veer et al. (2006) provide a more
complete set of DEB parameter estimates for various
bivalve species.

5.1. Simultaneous (non-linear) weighted least-squares
regression

For the blue mussel Mytilus edulis Van Haren and
Kooijman (1993) assumed a specific density of 1g cm−2

in order to derive structural volume V from wet mass
measurements and subsequently fitted the relationship
V=(δML)

3 +ε. They arrived at an estimate (±SE) of the
cubic shape parameter δM

3 of 0.03692±7.59·10−5, but
did not indicate whether they used ordinary least squares
(OLS) regression or weighted least squares (WLS)
regression (Wetherill, 1986; see also Appendix B). From
the graph (Fig. 6) it is clear that the error variance
increases with increasing length. An OLS regression
revealed an estimate of the shape parameter of 0.03683±
6.39·10−4, and a WLS (assuming that the error variance
is proportional to cubic length) revealed an estimate of
0.03692±6.15·10−4. The difference between these
estimates is rather small.
Fig. 6. The relation between body wet mass and shell length for the
blue mussel Mytilus edulis. The fitted curve is based on a weighted
least-squares procedure. The error variance clearly increases with
length and the weights were chosen proportional to shell length. Figure
after Van Haren and Kooijman (1993; Fig. 1).
Van Haren and Kooijman (1993) used experimental
data from Winter (1973) to fit the function JẆ={JẆ}
(δML)

2 +ε between filtration rate JẆ and shell length L.
The parameter {JẆ} is an area-specific filtration rate.
The shape parameter δM was assumed to be known.
Since filtration rates also depend upon food concentra-
tions, the estimated value for {JẆ} is only valid for the
experimental food concentration, which equalled 40·106

cells dm−3. Subsequently, they used other data from
Schulte (1975) andWinter (1973) to fit filtration rate as a
function of both food concentration and shell length.
They used the function �

JW ¼ �
JWm

� 	 XK

XK þ X
dMLð Þ2þe, which

follows from the assumption that the ingestion rate JẊ,
which equals the filtration rate JẆ times the food density
X, follows Holling's type II functional response. The
function contains two estimable parameters, the maxi-
mum area-specific filtration rate {JẆm} and the satura-
tion coefficient XK. The parameter estimates from the
second experiment can be used to predict an area-
specific filtration rate for the first experiment. Applying a
temperature correction (the first experiment was per-
formed at 12°C and the second experiment at 15°C),
using an Arrhenius temperature TA of 7579K, revealed
an estimate for {JẆ} of 0.499dm

3 h−1 cm−2, on the basis
of the data from the first experiment. Using the
parameters of the second experiment, the obtained
estimate for {JẆ} is (slightly) different and equals
0.544dm3 h−1 cm−2.

However, if two or more functions contain common
parameters it is perfectly possible to apply a single
parameter estimation procedure. Suppose, for example,
that two sets of data are available, and that for both sets a
different (non-linear) equation has to be fitted, contain-
ing one or more common parameters. The error variance
is not necessarily the same. Hence, a random variable Y is
related to an independent variable X by a (non-linear)
function f(X,b) and a random variable Z is related to X by
a (non-linear) function g(X,b). The two functions contain
a single common parameter b whose value has to be
estimated, and the two types of observations have
different variances, which are known up to a constant:
varY=wYσ

2 and varZ=wZσ
2. An estimate for the

parameter b can then be obtained by a Weighted Least-
Squares estimation (Appendix B)), that is by minimising

SS bð Þ ¼
X
i

Yi � f Xi; bð Þð Þ2
wY

þ
X
j

Zj � g Xj; b
� �� �2
wZ

:

In practice these constants wY and wZ are not known, but
a commonly applied approach is to perform a two-step
procedure. In the first step, the two equations are fitted
separately, and the estimated residual variances are used
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for determining the constants wY and wZ. These
constants are subsequently used in the second step,
which is the (simultaneous) Weighted Least-Square
estimation. Applying this procedure to the two above-
mentioned data sets used by Van Haren and Kooijman
(1993) resulted in an estimated maximum area-specific
filtration rate {JẆm} of 0.525dm3 h− 1 cm− 2 (Table 3).

Similarly, the data from Kruger (1960) on oxygen
consumption rate versus shell length (Van Haren and
Kooijman, 1993, their Fig. 8) and from Bayne et al. (1987,
1989) on oxygen consumption rate versus ingestion rate
and shell length (VanHaren andKooijman, 1993, their Fig.
9) could have been used simultaneously (Table 3, Fig. 7).

5.2. Longitudinal studies, repeated-measurements ana-
lysis and time-series regression

Quite often eco-physiological experiments are so-
called longitudinal studies, which means that the response
is not a single observation in time, but consists of multiple
(or even continuous) observations in time. For example,
respiration rate might be repeatedly measured over a
prolonged period of growth or starvation. Similarly,
treatment conditions may vary over time. Food density,
for example, is usually kept at a constant level, but
Table 3
Estimates of DEB parameters for the blue mussel, based on Van Haren and

Data Original esti

1 Length and wet weight data δM
3 =0.03692

2 Size on filtration rate {JẆ}=0.041
dm3 h−1 cm−

3 Food density and size on filtration rate {JẆm}=0.83
dm3 h−1 cm−

XK=76 106±
cells dm−3

2&3
combined

4 Size on oxygen consumption rate ν˙/kṀ=26.5±
5 Size and ingestion rate on oxygen consumption

rate
η[p˙M]/κ=0.0
cm3 O2 h

−1

c
ν˙/kṀ=5.3±6
g{JẊm}=0.1
cm−2

h−
1

4&5
combined
planned fluctuating food levels have been used as well.
Field data often consist of longitudinal data, e.g. observed
weight loss during periods of natural starvation.

Repeated-measurements studies, such as observa-
tions on the growth of individual organisms, have been
analysed in two fundamentally different ways in the
literature (Sandland and McGilchrist, 1979). The
‘statistical’ approach treats the repeated measurements
on each individual as a multivariate observation or
profile (Johnson andWichern 1988) that can be analysed
by a multivariate analysis of variance (MANOVA).
Quite often, a further assumption is made on the
dependence structure of the observations (i.e. so-called
compound symmetry of the error covariance matrix is
assumed, which means that all covariances are equal for
each pair of years), which allows for the use of a
univariate repeated measures analysis of variance
(Winer, 1971; Potvin and Lechowicz, 1990). This
‘statistical’ approach thus allows for the dependence
structure, but will leave a biologist, who requires an
interpretation of the analysis of variance coefficients,
unsatisfied. Alternatively, the ‘biological’ approach fits a
biologically meaningful model, such as the DEB growth
model, through the individual observations, and different
parameters can be estimated for the different treatment
Kooijman (1993)

mates My estimates

±7.59·10−5 δM
3 =0.03692±6.15·10−4 (using WLS with length
as weights)

±0.000675
2

{JẆ}=0.378±0.00522dm
3 h−

1

cm−2

After temperature correction to 15 °C:
{JẆ}=0.499dm

3 h−
1

cm−2

±0.098
2

{JẆm}=0.831±0.101dm
3 h−

1

cm−2

42 106 XK=73.6 106±41.7 106 cells dm−3

{JẆm}=0.831±0.0837dm
3 h−

1

cm−2

XK=68.5 106±27.2 106 cells dm−3

This gives: {JẆ}=0.525dm
3 h−

1

cm−2

14.8mm ν˙/kṀ=7.67±15.52mm
56±0.025
m−3

η[p˙M]/κ=0.072±0.041cm
3 O2 h

−1

cm−3

.5mm ν˙/kṀ=0.27±0.54mm
6±0.07mg POM g{JẊm}=0.22±0.13mg POM cm−2

h−
1

Equal weighing of 4 and 5: η[p˙M]/κ=0.0098
±0.0148
cm3 O2 h

−1

cm−3

ν˙/kṀ=6.69±10.71mm
g{JẊm}=0.056±0.159mg POM cm−2

h−
1

Non-equal weighing of 4 and 5:
η[p˙M]/κ=0.0511±0.0201cm

3 O2 h
−1

cm−3

ν˙/kṀ=0.672±0.543mm
g{JẊm}=0.161±0.0664mg POM cm−2

h−
1



Fig. 7. Oxygen consumption rate as a function of (a) shell length and
(b) ingestion rate and shell length for the blue musselMytilus edulis. In
panel (b) squares indicate a shell length of 4.5cm, circles a shell length
of 2.5cm. Curves are given by Eq. (20). Solid lines refer to the
parameter estimates when the two datasets were used separately.
Dotted and dashed lines refer to the jointly estimated parameters, using
different weights. See also Table 3. Figure after Van Haren and
Kooijman, (1993; Figs. 8 and 9).

Fig. 8. Shell length of the blue mussel Mytilus edulis in the
Oosterschelde estuary during 1985 and 1986. Figure after Van Haren
and Kooijman (1993, Figs. 14 and 15).
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levels. The data are related through time and the
dependence structure in the underlying (growth) process
can be explicitly taken into account by introducing a
process-error term, or it can be ignored by treating all
error as observation error (Priestley, 1981; Harvey,
1993; Hilborn and Mangel, 1997). If there is random-
ness in the underlying (growth) process, then error will
propagate through time. Faster growth than expected
during a certain time period will have its effect on length
(and perhaps on growth) at later stages. Observation
error, on the other hand, will not have any effects on
length later on. The animal does not know what sort of
observation errors we make. Excluding one type of
noise in the analysis might lead to biases in parameter
estimation (Hilborn, 1979; Quinn and Deriso, 1999).
Recently, the so-called numerically integrated state-
space method (NISS) has been advocated as being able
to incorporate both types of error simultaneously
(Kitigawa, 1987; De Valpine and Hastings, 2002).
This method uses two models, one for the process
including process error, the other for the observations,
including observation error. Fujiwara et al. (2005) used
this method to analyse the growth of the delta smelt
under variable food conditions. They introduced process
noise in terms of a, for each individual independently,
randomly fluctuating food density, governed by a
stochastic process with two unknown parameters.
Here, Van Haren and Kooijman (1993) is followed
and it is assumed that all error is observation error,
which considerably simplifies analysis. For each set of
parameter values the two differential equations of the
DEB model are numerically integrated, and the model
predictions concerning the size trajectory are compared
to the observations by means of the residual sum of
squares. A non-linear least-squares optimisation proce-
dure (the Gauss-Newton method) is used to find that set
of parameter values that minimise the sum of squares. It
is impossible to estimate all DEB parameters on the
basis of the size trajectory alone and even when most of
the parameters were assumed to be known from other
sources, the data were not appropriately fitted (Fig. 8).
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Finally, it should be noted that in some cases,
longitudinal studies are not repeated-measurements
studies in statistical terms. If individual organisms are
treated separately and measured only once, but at
different points in time, then the observations are
independent. Similarly, if only two observations are
made in time (an initial observation and a final
observation), then the difference between these two
repeated measurements might be taken as the response
variable (e.g. a growth measurement, instead of two
repeated size measurements). This way, dependencies
within an individual organism are implicitly taken into
account.

6. Discussion

The six papers reviewed (Table 2b) showed a variety
of approaches for estimating the DEB parameters. None
of the papers has been able to obtain reliable estimates
for all five basic parameters or, alternatively, for the set of
compound parameters. Apparently, DEB parameters are
not easy to estimate. A reason for this problem is that one
of the two state variables, reserve density, is extremely
hard to measure. The only reviewed paper in which
reserve density was measured directly is Zonneveld and
Kooijman (1989), but they considered the special case of
embryo eggs, where the reserves are relatively easy to
measure. Van der Veer et al. (2001) indirectly measured
the maximum reserve density by assuming that flatfish
reached their maximum reserve capacity at the start of a
natural starvation period and lost all their reserves at the
end of the period. An alternative approach was
advocated by Van der Meer and Piersma (1994), who
applied the idea of strong homeostasis to distinguish
between reserves (what they called stores) and structural
body. Strong homeostasis means that the chemical
composition (for example, in terms of fat mass versus
non-fat mass) of both structural body and reserves is
constant, but not necessarily the same. For several bird
species they analysed carcasses of a large number of
individuals, including severely starved ones, in terms of
fat versus non-fat mass. They observed that (after
correcting for size) the relationship between lean mass
and fat mass could be described by a two-piece (or
broken) linear regression. The slope of one piece of the
regression line represents the composition of the
reserves, whereas the slope of the other piece reveals
the composition of the structural body. Animals around
that second piece had already started to break down their
structural body. The breakpoint between the two pieces
represents the structural body. Knowing the relation
between size and structural bodymass enables prediction
of the actual reserves by subtracting the predicted
structural body mass from the observed mass. The
approach fails when reserves are replaced by water, as
occurs in many aquatic animals.

If indeed observations on reserve density are lacking,
it will be impossible to estimate all DEB parameters on
the basis of information on food input, temperature and
the size trajectory alone. Additional information on the
various energy fluxes (such as assimilation, respiration
and reproduction) is needed as well. From the re-analysis
of the blue mussel data (Van Haren and Kooijman, 1993)
it appears that severe estimation problems may occur
when such data on energy fluxes are analysed in
isolation. Even using the available data sets on oxygen
consumption rate versus shell length and ingestion rate
simultaneously, resulted in extremely large standard
errors (Table 3, Fig. 7). Using a slightly different
procedure of weighing the two data sets revealed
completely different parameter estimates. Using as
much information as possible in a single estimation
procedure can reduce this problem of overfitting.

Writing the two DEB differential equations in a
dimensionless form already yields some hints for a rule
of thumb of how to estimate the basic DEB parameters.
The dimensionless form only contained the parameter g,
which is the energy investment ratio. Hence, this
parameter might be estimated from the wiggles in the
size trajectory, particularly when the scaled functional
response varies over time in a known way (Fujiwara et
al., 2005). Three other parameters, viz. maximum
energy density and the two compound parameters
maximum volumetric length and maintenance rate
coefficient, are needed to scale the two state variables
V and [E] and the variable time t to their dimensionless
equivalents. All five basic DEB parameters can be
derived from estimates of these three parameters and of
the parameters g and κ. The maximum energy density
[Em] could be determined by providing animals with ad
libitum food for a period long enough for the reserve
density to reach the maximum reserve density. Subse-
quently, animals are starved for variable periods of time
and the change in composition (e.g. in terms of fat, dry
lean mass, and water) over time allows the estimation of
both the structural body size and the maximum energy
density (Van der Meer and Piersma, 1994). Maximum
volumetric length Vm

1/3 and the maintenance rate
coefficient kṀ follow from the size trajectory of animals
that have been able to grow up under ad libitum food
conditions (if g is known, as the reciprocal of the Von
Bertalanffy growth coefficient under ad libitum food
conditions equals 3/(gkṀ)+3/kṀ). The parameter κ
follows from the reproduction rate of animals that
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have reached (at constant and known scaled functional
response) their maximum size, see Eq. (10). Hence, in
principle no information on assimilation rates and
respiration rates is needed to arrive at estimates of the
basic DEB parameters. Although the measurements of
these rates can be problematic (Van der Meer et al.,
2005) and although the use of respiration rate as an
approximation of the utilisation rate is not entirely
correct, additional information on these rates may lead
to more accurate parameter estimates. Hence, apart from
knowledge on (long-term) growth trajectories and
cumulative reproduction obtained under controlled (or
at least known) conditions, an additional short-term
experiment, in which both food conditions (using both
constant and time-varying food conditions, ranging
from zero to ad libitum) and temperature are varied in a
systematic way, and in which assimilation, respiration,
reproduction, size and body composition are measured
at regular intervals, would contribute much in revealing
reliable estimates of the basic DEB parameters.

Knowledge of the basic DEB (compound) para-
meters over a wide range of species opens opportunities
towards a more quantitative understanding of the broad
patterns in physiological diversity, for example in terms
of phylogenetic relatedness and ecology (Spicer and
Gaston, 1999).

Appendix A. A list of important DEB parameters

DEB uses a notation that is helpful in a quick
interpretation of the equations. All rates have dots,
which indicate that they contain the dimension ‘per
time’. All variables that are expressed per unit volume
are given between square brackets. All variables that are
expressed per unit surface area are given between
braces. Notation from Kooijman (2000) is used. The
earlier papers and books (Kooijman, 1986a,b, 1993)
used slightly different notations, shown in the column
Previous symbols.
Symbol
 Dimension
 Interpretation
 Previous
symbols
[E]
 eL−3
 Energy density

L
 L
 Body length

V
 L3
 Structural body volume

F
 –
 Scaled functional response

T
 T
 Temperature

X
 # l − 2 o r

#l−3

Food density in the
environment
[EG]
 eL−3
 Volume-specific costs of growth
 η, [G]

[Em]
 eL−3
 Maximum energy density
 [ S m ] ,

[Em]

{JẊm}
 #L−

2

t−
1

Surface-area-specific
maximum ingestion rate
⌊I·m⌋,
{I·m}
{p˙Am}
 eL−
2

t−
1

Surface-area-specific
maximum assimilation rate
⌊Aṁ⌋,
{Aṁ}
[p˙M]
 eL−
2

t−
1

Volume-specific maintenance rate
 ς˙, [M˙ ]

{p˙T}
 eL−

2

t−
1

Surface-area-specific heating rate

TA
 T
 Arrhenius temperature

XK
 #l−

2

or #l−
3

Saturation coefficient
 K

δM
 –
 Shape (morph) coefficient

κ
 –
 Fraction of utilisation rate spent on

maintenance plus growth
E½ �
g
 –
 Energy investment ratio G

j Em½ �

k˙ M
 t−

1

Maintenance rate coefficient
�pM½ �
EG�
 m˙
ν˙
 Lt−
1

Energy conductance
pAmf g
EM
Lm
 L
 Maximum volumetric length
j �pAmf g � �pTf g�pM½ �
L∞
 L
 Ultimate volumetric length
jf �pAmf g � �pTf g�pM½ �
r˙B
 t−
1

Von Bertalanffy growth coefficient
1
3

�pM½ �
jf EM½ � þ EG½ �
Appendix B. Weighted non-linear regression

B.1. Ordinary Least-Squares Regression

In Ordinary Least-Squares regression (OLS) the
parameters of a linear regression model are estimated
by minimising the sum of squares. In case of, for
example, the regression-through-the-origin model
Yi=bXi+εi, the problem is to find b̂ that minimises the
sum-of-squares function SSðbÞ ¼ P

i Yi � bXið Þ2.
The solution to this problem is obtained by setting the

derivative of the sum-of-squares function to b equal to
zero. This reveals the so-called normal equation:

ASSðbÞ
Ab

¼ �2
X
i

Xi Yi � b̂Xi

� � ¼ X
i

XiYi � b̂
X
i

X 2
i

¼ 0 ; resulting in b̂ ¼
P

XYP
X 2

:

The minimum sum of squares divided by n−m, where
n is the number of observations and m the number of
parameters (i.e. m=1 in the present case), provides an
unbiased estimate σ̂3 of the variance of the observa-
tions. The variance of a linear function of independent
random variables is given by var(uY1+vY2)=u

2 var
Y1+v

2 var Y2. Using this equality, it follows that

var ̂b ¼
P

X 2varYP
X 2ð Þ2 ¼ r2P

X 2
:
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B.2. Weighted Least-Squares Regression

The rationale for using Weighted Least-Squares
regression (WLS) is usually the fact that the observa-
tions do have different variances, which are known up to
a constant: varYi=wiσ

2. The parameters of, for example,
the regression-through-the-origin equation Yi=bXi can
then be obtained by minimising

SS bð Þ ¼
X
i

Yi � bXið Þ2
wi

:

For convenience, the problem can be re-stated in terms
of an OLS problem, by dividing both sides of the
regression equation by

ffiffiffiffiffi
wi

p
. This gives a regression

model with YiV¼ Yi=
ffiffiffiffiffi
wi

p
as the dependent variable, and

XiV¼ Xi=
ffiffiffiffiffi
wi

p
as the independent variable. The OLS

procedure then minimises

SS bð Þ ¼
X
i

YiV� bXiVð Þ2¼
X
i

Yiffiffiffiffiffi
wi

p � b
Xiffiffiffiffiffi
wi

p
� �2

¼
X
i

Yi � bXið Þ2
wi

;

and is thus equivalent to WLS.
B.3. Non-linear Least-Squares Regression

The problem with non-linear equations is that the
normal equations cannot be solved analytically. For
example, in case of the model Yi=aXi

b+εi, the normal
equations are given by

ASSða; bÞ
Aa

¼ �2
X
i

X b ̂
i Yi � ̂aX b ̂

i


 �
¼ 0

ASSða; bÞ
Ab

¼ �2
X
i

log Xið ÞâX b ̂
i Yi � ̂aX b ̂

i


 �
¼ 0;

which illustrates their intractable nature, i.e. the equa-
tions cannot easily be solved for â and b̂. Numerical
iterative methods are required to find the least-squares
solution. See, for example, Seber and Wild (1989) for
an introduction to non-linear regression.
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