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Abstract

In this dissertation, we use thermodynamic theory to analyse biological and economic sys-

tems, according to two methodological approaches. Substantive integration is a method-

ological approach that consists of making two different fields physically compatible either

by reformulating current theories or by building up new theory. For example, thermody-

namics must be compatible with the theories that explain and describe economic and

biological systems because thermodynamic laws impose constraints on mass, energy and

entropy flows. Formal analogy is a methodological approach that consists of the devel-

opment of an isomorphism between the mathematical formalisms of different fields. For

example, thermodynamics has a solid mathematical formal structure that describes equi-

librium, non-equilibrium and self-organized systems that provides a possible common

framework to describe thermodynamic, biological and economic systems. In this disser-

tation, we concentrate on the substantive integration between non-equilibrium thermody-

namics and the Dynamic Energy Budget (DEB) theory that describes biological systems

and on the formal analogy between equilibrium thermodynamics and neoclassical eco-

nomic theory. In this dissertation, we also build a more systematic description of DEB

theory as an intermediate step to a future substantive integration between thermodynam-

ics, economics and biology.

Keywords: Thermodynamics, Formal Analogy, Substantive Integration, Dynamic En-

ergy Budget Theory and Neoclassical Microeconomics
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Resumo

Nesta tese, a teoria termodinâmica é usada para analisar os sistemas biológicos e

económicos através de duas metodologias. A integração substantiva é a metodologia que

consiste em tornar dois campos do conhecimento compatı́veis, através da reformulação

das teorias existentes ou através da construção de nova teoria. Por exemplo, a ter-

modinâmica tem que ser compatı́vel com as teorias que explicam e descrevem os sistemas

económicos e biológicos porque as leis termodinâmicas impõem restrições nos fluxos de

massa, energia e entropia. A analogia formal é a metodologia que consiste no desen-

volvimento de um isomorfismo entre os formalismos matemáticos de diferentes áreas.

Por exemplo, a termodinâmica tem uma estrutura matemática formal que descreve os

sistemas em equilı́brio, não-equilı́brio e auto-organizados que pode constituir uma base

comum para a descrição dos sistemas termodinâmicos, biológicos e económicos. Nesta

dissertação, é feita a integração substantiva entre a termodinâmica de não equilı́brio e a

teoria ’Dynamic Energy Budget’ (DEB) que descreve os sistemas biológicos e é cons-

truı́da uma analogia formal entre a termodinâmica de equilı́brio e a teoria económica

neoclássica. Nesta dissertação, é também construı́da uma descrição mais sistemática da

teoria DEB como um passo intermédio para uma futura integração substantiva entre a

termodinâmica, a economia e a biologia.

Palavras Chave: Termodinâmica, Analogia Formal, Integração Substantiva, Teoria ‘Dy-

namic Energy Budget’ e Microeconomia Neoclássica



vi



vii

Samenvatting

In dit proefschrift gebruiken we thermodynamische theorie om biologische en economis-

che systemen te analyseren, volgens twee methodologische benaderingen. De in-

houdelijke integratie is een methodologische benadering die twee verschillende terreinen

natuurkundig met elkaar vereenigbaar maakt door bestaande theoriën te herformuleren,

of nieuwe op te zetten. De thermodynamika moet vereenigbaar zijn met theoriën die

economische en biologische systemen beschrijven en verklaren, omdat haar wetmatighe-

den randvoorwaarden opleggen op massa, energie en entropie stromen. Een formele

analogie is een methodologische benadering die bestaat uit de ontwikkeling van een

gelijkvormig wiskundig formalisme voor verschillende terreinen. De thermodynamika

heeft een solide formele struktuur die systemen beschrijft die wel of niet in evenwicht

verkeren of zelf-organiserend zijn en kunnen worden toegepast in de thermodynamika, de

biologie en de economie. In dit proefschrift concentreren we ons op een inhoudelijke in-

tegratie tussen niet-evenwichts thermodynamika en biologische systemen zoals die vast-

gelegd worden door de Dynamische Energie Budget (DEB) theorie en op de formele

analogie tussen evenwichts-thermodynamika en economische systemen die beschreven

worden door de nieuw-klassieke economische theorie. We zetten ook een meer systema-

tische specificatie van de DEB theorie op als tussenstap voor een toekomstige inhoudelijke

integratie tussen thermodynamika, economie en biologie.

Trefwoorden: Thermodynamika, Formele Analogie, Inhoudelijke Integratie, Dynamis-

che Energie Budget Theorie en Nieuw-klassieke Microeconomie
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Chapter 1

Introduction

In this dissertation, we use thermodynamic theory to analyse economic and biological sys-

tems, according to two methodological approaches. Substantive integration is a method-

ological approach that consists of making two different fields compatible, e.g., thermody-

namics and biology or thermodynamics and economics, either by reformulating current

theories or by building up new theory [6, 14]. For example, theories that explain and

describe economic and biological systems must be compatible with thermodynamics be-

cause thermodynamic laws impose constraints on mass, energy and entropy flows. A

formal analogy is a methodological approach of developing an isomorphism between the

mathematical formalisms of different fields [6, 14]. For example, thermodynamics has

a solid mathematical formal structure that describes equilibrium, non-equilibrium and

self-organized systems that provides a possible common framework to describe thermo-

dynamic, biological and economic systems.

In this dissertation, we concentrate 1) on the substantive integration between thermo-

dynamics and biological systems, 2) on the formal analogy between thermodynamics and

economic systems and 3) on the formalization of the Dynamic Energy Budget (DEB) The-

ory - a theory for biological systems as a prelude to a formal analogy between economic

and biological systems.

In a formal analogy between thermodynamic, biological and economic systems, a

mathematical framework is developed that simultaneously describes these systems. For-

mal analogies are important because 1) they reduce the number of logical reasonings used

in the different fields of knowledge, 2) they provide a similar interpretation for different

phenomena and 3) the knowledge that exists in one field is transposed to another con-

tributing to new developments. However, formal analogies have to be done with great care

identifying whether the conditions that have to be met in the original field of knowledge

1



2 Chapter 1

are also met in the field where the analogy is taken. In this dissertation, an isomorphism

is established between equilibrium macroscopic thermodynamics and neoclassical micro-

economics using a mathematical framework based on the Gibbs-Tisza-Callen approach to

equilibrium thermodynamics [2, 4, 19].

Equilibrium thermodynamics characterizes a macroscopic system that evolves in such

a way that some thermodynamic potential is optimized. The existence of this extremum

keeps the system stable because, when some fluctuation drives the system away from

equilibrium, the optimization behaviour brings it back [12]. Neoclassical microeconomics

describes the consumer maximizing his utility or the firm maximizing its profit. We focus

on the neoclassical microeconomic description of the consumer’s behavior because it is

the standard theory used to describe the behavior of firms and consumers [15, 22].

In a substantive integration, thermodynamic laws are applied to economic and biolog-

ical processes to obtain the constraints imposed on the relations between inputs, outputs

and the system’s state. Also, new theory compatible with thermodynamics can be devel-

oped to describe economic and biological processes. Substantive integration is important

because it unifies the understanding of biological and economic systems as thermody-

namic systems and therefore of the constraints imposed on them. In this dissertation,

non-equilibrium thermodynamics [5, 8, 12, 16, 18], is used to make a substantive integra-

tion with biological systems.

Non-equilibrium thermodynamics should be used as a substantive theory because eco-

nomic and biological systems are open thermodynamic systems kept out of thermody-

namic equilibrium due to mass and energy flows. In this work, we take further the sub-

stantive integration between the most general framework of non-equilibrium thermody-

namics and an organism described by the Dynamic Energy Budget (DEB) theory.

DEB theory describes the way organisms acquire and use matter and energy [13] link-

ing all levels of organization, from membrane physiology to ecosystem dynamics. We use

DEB theory to describe biological systems because 1) it has been successfully tested for

many organisms including bacteria, yeasts, unicellular algae, lichens, fishes, nematodes,

birds and mammals, 2) it is applicable to all species and 3) it is based on the description

of mass and energy flows. In this dissertation, we build an axiomatic formalism to de-

scribe metabolism that is fully compatible with DEB theory. This formalization of DEB

theory and the steps taken in the substantive integration between non-equilibrium thermo-

dynamics and DEB theory facilitate the development of new economic theory compatible

with thermodynamics by later establishing an analogy between economic and biological

systems.
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A good example to ilustrate the simultaneous existence of a substantive integration

between the firm and thermodynamics and a formal analogy between the organism and

the firm is the field of industrial metabolism. In this field, there is a substantive integra-

tion because economic flows, i.e., the whole integrated collection of physical processes

that convert raw materials and energy, plus labour, into finished products and wastes, are

described as mass and energy flows [1] and there is a formal analogy because the firm is

considered to be the economic analogue of a living organism [1].

Outline of the Dissertation

This dissertation comprises four chapters. Chapter 2 explores the formal analogy be-

tween microeconomics and equilibrium thermodynamics. Here, we show that neoclassi-

cal microeconomics is formally analogous to equilibrium thermodynamics proving that

neoclassical economics has irreversibility embedded in it and we obtain a definition of

irreversibility in economic behavior.

Chapter 3 is an elaboration on chapter 2. Here, the isomorphism between thermody-

namics and economics is taken much further including the definition of Legendre trans-

forms, Maxwell relations, Le Chatelier Principle and first order phase transitions in eco-

nomic systems. The equivalence between variables used in microeconomics and ther-

modynamics is established, new results are obtained in both fields and the differences

between the two optimization problems are systematized.

Chapter 4 addresses the substantive integration between thermodynamics and biology.

Here, non-equilibrium thermodynamics is applied to an organism that follows the rules of

DEB theory. Results include thermodynamic constraints on the behaviour and on the ther-

modynamic properties of aerobic and non-aerobic organisms. DEB’s concept of reserve

density is shown to be crucial in discussions concerning entropy production in organisms.

Chapter 5 formalizes into assumptions and propositions DEB theory and links it in a

precise way with the empirical patterns that characterize metabolism. This formalization

makes it easier to discuss the consequences of alternative metabolic theories. Results also

include an alternative proof of a crucial concept in DEB theory and a novel way to present

DEB’s theory on parameter values.

In this dissertation, we have concluded that:

• The existence of a formal analogy does not imply a substantive integration and vice-

versa. This is evident in the relation between thermodynamics and microeconomics:

a formal analogy between the two does not mean that microeconomic theory is
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compatible with thermodynamic laws.

• Formal analogies contribute to the solution of problems that exist in the theore-

tical structure of a scientific discipline. For example, the discussion on whether

the microeconomic formalism has irreversibility embedded in it is clarified by the

isomorphism established in chapter 2.

• Formal analogies contribute to obtain new results in a discipline. For example, the

relationship between elasticities in economics and the distinction between mathe-

matical integrability and optimization behaviour in thermodynamics.

• The identification of an isomorphism between two or more different disciplines

simplifies the learning process. A clear example is presented in chapter 3 where the

concept of economic integrability is shown to be equivalent to the Generalized Le

Chatelier Principle.

• The substantive integration between thermodynamics and other disciplines con-

tributes to new thermodynamic results about the systems studied. For example,

in chapter 4 we obtain the result that anaerobic organisms have a higher flexibility

in their thermodynamic behaviour.

Outlook

We used equilibrium thermodynamics to build up a formal analogy with one consumer

in chapters 2 and 3. The formal analogy can be extended to a profit maximizing firm or

to a social welfare maximizing central planner. Equilibrium thermodynamics can also be

used to establish a formal analogy with the optimal foraging strategy in ecology [21].

The transition from maximizing utility to maximizing social welfare is not straight-

forward because the equilibrium states that result from multiple optimizing agents are

different from the equilibrium state that results from an aggregate optimizing function.

The set of conditions under which optimizing consumers and producers lead to the max-

imization of social welfare is a crucial issue in economics [10]. The same issue can be

raised in ecological systems about the relation between optimizing organisms and the

optimization of an ecosystem [11].

Statistical physics [9, 20] explains the macro thermodynamic behavior by imposing a

probability distribution over the microscopic dynamical states. This paradigm would be

useful as a formal tool to explore the relationships between different scales in economic
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and ecological systems. Also, the scaling up from microeconomic systems to macroeco-

nomic systems that is achieved by using the equilibrium results at the micro scale to build

models at the macro scale [17] can be applied to ecological systems.

In this dissertation, we do not use the formal structure that describes the evolution

of thermodynamic systems from equilibrium, to non-equilibrium and self-organization.

The dynamics of systems out of equilibrium, but close to equilibrium, is characterized

by linear equations [2, 5, 12]. In these linear nonequilibrium thermodynamic systems

(LNET) the production of irreversibilities is minimized. The dynamics of systems far

away from equilibrium, studied in the framework of extended nonequilibrium thermo-

dynamic systems (ENET), is characterized by nonlinear equations [12]. These far away

from equilibrium systems are created and maintained by dissipative processes and evolve

unpredictably with some of these possible final states being states that possess spatiotem-

poral organization [12]. This formal structure can be applied to economic and ecological

systems to help characterize the evolution path for ecosystems and for economies [7].

The logical structure developed by Clausius-Kelvin-Carathéodory to describe equi-

librium thermodynamics [19] can be used to establish a formal analogy with economics

instead of the approach of Gibbs-Tisza-Callen used in this dissertation. A formal relation-

ship between the two approaches to thermodynamics is already established [4, 19].

We use non-equilibrium thermodynamics to make a substantive analogy with the or-

ganism described by the Dynamic Energy Budget Theory in chapter 4. Although the main

target of DEB theory is the organism, it also establishes links to the cellular and food

web levels [13]. This means that DEB theory can be used together with non-equilibrium

thermodynamics to extend the substantive integration to the cellular, organismic and eco-

logical levels.

We formalize DEB theory into assumptions and propositions in chapter 5. This is

a first step to use DEB theory to build up a non-optimizing theory in economics that

would describe in more realistic terms the behavior of consumers and firms and at a

more aggregate level the wealth of a country. This would also be an intermediate step

for a substantive integration between thermodynamics and economics because DEB is

compatible with non-equilibrium thermodynamics.

A description of both economic and ecological systems that is compatible with non-

equilibrium thermodynamics is a crucial step to determine one of the most important

issues in the interaction between ecologic and economic systems: the maximum scale of

economic systems [3].
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Chapter 2

Is neoclassical economics formally valid?

An approach based on an analogy between

Equilibrium Thermodynamics and Neoclassical

Microeconomics

Abstract

The relation between Thermodynamics and Economics is a paramount issue in Eco-

logical Economics. Two different levels can be distinguished when discussing it: formal

and substantive. At the formal level, a mathematical framework is used to describe both

thermodynamic and economic systems. At the substantive level, thermodynamic laws are

applied to economic processes.

In Ecological Economics, there is a widespread claim that neoclassical economics has

the same mathematical formulation as classical mechanics and is therefore fundamen-

tally flawed because: 1) utility does not obey a conservation law as energy does; 2) an

equilibrium theory cannot be used to study irreversible processes. Here, we show that

neoclassical economics is based on a wrong formulation of classical mechanics, being

in fact formally analogous to equilibrium thermodynamics. The similarity between both

formalisms, namely that they are both cases of constrained optimisation, is easily per-

ceived when thermodynamics is looked upon using the Tisza-Callen axiomatisation. In

this paper, we take the formal analogy between equilibrium thermodynamics and eco-

nomic systems far enough to answer the formal criticisms, proving that the formalism of

neoclassical economics has irreversibility embedded in it.

However, the formal similarity between equilibrium thermodynamics and neoclassical

9
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microeconomics does not mean that economic models are in accordance with mass, en-

ergy and entropy balance equations. In fact, neoclassical theory suffers from flaws in the

substantive integration with thermodynamic laws as has already been fully demonstrated

by valuable work done by ecological economists in this field.

Keywords: Thermodynamics, Entropy, Neoclassical Economics, Analogy and Irre-

versibility.

2.1 Introduction

The relation between Thermodynamics and Economics is a paramount issue in Ecological

Economics. Two different levels can be distinguished when discussing it: formal and

substantive.

At the formal level, a mathematical framework is used to describe both thermody-

namic and economic systems. This allows for insights that were gained in one field of

knowledge to be transposed to another. However, this has to be done with great care iden-

tifying whether the conditions that have to be met in the original field are also met in the

field where the analogy is taken.

At the substantive level, thermodynamic laws are applied to economic processes. The

integration between economics and thermodynamics at the substantive level is of crucial

importance because economic processes obey thermodynamic laws and therefore a sound

economic theory must be coherent with thermodynamics. This integration highlights the

dependence between the economic system and the biophysical framework contributing to

the analysis of the sustainability of economic systems.

This distinction between formal analogy and substantive integration is not a new is-

sue, e.g., Martinez-Alier [33] says that ‘the mathematical description of economic phe-

nomena in the language of physics is different from applying the concepts of physics’.

Also, Baumgärtner [9] discussing the different ways in which thermodynamics can be

incorporated in economic analysis, considers the isomorphism of formal structure and the

thermodynamic constraints on economic action among others, which are respectively, the

formal analogy and the substantive integration discussed in this chapter.

The belief that neoclassical economics is based on a formal analogy to classical me-

chanics is common among ecological economists. For example, Amir [2] argues that

‘most physical analogies in economic theory are borrowed from mechanics’, Martinez-

Alier [33] argues that ‘economic science has used the mathematics of mechanics since the
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first neoclassical economists’ and Costanza et al. [18] say that ‘the market model has been

formalized using the same mathematics as used by Newton for mechanical systems’. Out-

side ecological economics, this thesis has been most extensively argued by Mirowski [34],

who considers that neoclassical economics is an attempt to emulate classical mechanics.

Based on this supposed analogy to classical mechanics, the main formal criticisms of

neoclassical economics are: utility does not obey a conservation law as energy does; an

equilibrium theory cannot be used to study irreversible processes.

Here, we argue that neoclassical economics is not formally identical to classical me-

chanics and that the correct identification of the formalism that underlies the construc-

tion of neoclassical economics is vital in the evaluation of its internal coherence. We

show that economics is formally identical to thermodynamics because they are both

problems of static constrained optimisation. The similarity between both formalisms

has already been explored in the literature since the 40’ [22, 30, 40, 41] and more re-

cently [1, 12, 15, 16, 43, 44, 49, 50].

The formal analogies of Saslow [43], Berry et al. [12] and Amel’kin et al. [1] are

driven from superficial similarities between the entities of economy and thermodynamics

instead of being derived from fundamental principles. Therefore, these analogies are not

helpful in answering the criticisms raised by ecological economists concerning the formal

coherence of economic theory.

Candeal et al. [15, 16] prove that the mathematical representations of entropy and

utility are analogous. Candeal et al. [15] and Cooper [17] investigate the mathematical

foundations of the entropy representation where the entropy is built as an order preserving

function that satisfies a continuity property. Candeal et al. [16] establish a formal relation

between the entropy function and the utility function for the axioms that establish the

existence of both ordering functions. Although, these authors do not develop their analysis

any further, the formal analogy obtained at the function level is important and it lies

behind the optimisation analogy pursued here.

The claim that neoclassical economics is formally identical to classical mechanics has

also led many Ecological Economists to the substantive assertion that neoclassical eco-

nomics is fundamentally flawed because it ignores thermodynamics. This argument lacks

coherence because the existence of a formal analogy does not imply the existence of a

substantive integration and vice-versa. This statement about the non-equivalence between

the formal analogy and the substantive integration is easily argued, in this case, because

the formal analogy uses the entities that are part of economic theory, i.e., utility, while

the substantive integration uses the mass, energy and entropy flows in economic systems.
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Another argument that should help clarifying this issue is that different physical phenom-

ena are described with different mathematical formalisms although they all have to obey

thermodynamic laws. Whether neoclassical economics is formally identical to classical

mechanics is not straightforwardly related to its substantive relation with thermodynamic

laws.

For the same reason, although here we show that neoclassical economics is formally

identical to thermodynamics, this does not imply that it is substantively compatible with

thermodynamic laws. Whether neoclassical economics is in agreement with thermody-

namic laws should be evaluated by looking at the ‘entropic flow of energy and materials

that runs through the economy’ [33] instead of being based on the use of formal argu-

ments. We would like to emphasize that ecological economics has already given many

important contributions to this substantive integration between thermodynamics and eco-

nomics with, among many others, the works of Georgescu-Roegen [25], Daly [19], Bian-

cardi et al. [13], Ruth [38, 39], Stern [46], Ayres [4, 5, 6], Baumgärtner et al.[11], Ayres

et al. [7], Tiezzi [47] and Frondel and Schmidt [24].

The roadmap of this chapter is as follows. In section 2.2, we motivate the reader for

our formal analogy: (2.1) by explaining why there is the widespread idea that neoclassical

economics is formally analogous to classical mechanics and (3.1) by reviewing some of

the incorrect formal criticisms of neoclassical economics. In section 2.3, we present a

unified formalism for thermodynamic and economic systems, based on the formalism of

constrained optimisation. In section 2.4, some of the formalism’s characteristics, namely

its limits and scope and other related issues, are clarified. Section 3.12 concludes and

argues that although there is a formal analogy between thermodynamics and neoclassical

economics, these two fields are not substantively compatible.

2.2 Is the Formalism of Neoclassical Economics wrong?

It is generally claimed that neoclassical economics is based on classical mechanics be-

cause throughout the history of economics many economists used analogies from classi-

cal mechanics. Mirowski [34] gives some examples of the use of mechanical concepts

and metaphors: (2.1) the lever rule by Nicolas Canard, (3.1) gravitation theory by Stanley

Jevons, (3.5) force by Herman Gössen, (3.14) power by Frederick Soddy and (3.15) the

Energy Minimum Principle by Francis Edgeworth.

This approach of establishing analogies between mechanics and economics was taken

to its extreme by Irving Fisher who in 1892 established the most extensive relation be-
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tween mechanics and economics (Table 2.2). According to Fisher [23], while economic

equilibrium corresponds to maximum profit, mechanical equilibrium corresponds to min-

imum energy.

Mechanics Economics

Particle Individual

Space∗1 Commodity∗1

Force∗1 MU∗1

Work = force · space∗2 Disutility = MU · commodity∗2

Energy = force · space∗2 Utility = MU · commodity∗2

Equilibrium: impelling and resisting Equilibrium: MU and marginal

forces along each axis are equal disutility along each axis are equal

Table 2.1: The analogy between mechanics and economics proposed by Fisher (1991, p. 85). ∗1

(vector), ∗2 (scalar) and MU(marginal Utility).

Given the history of economic analogies to mechanics, there is a widespread claim

that neoclassical economics is fundamentally flawed because the assumptions on which

classical mechanics is based do not apply to consumer theory. The most important aspects

usually referred in the literature are: 1) utility does not obey a conservation law as energy

does; 2) an equilibrium theory cannot be used to study irreversible processes. Some of

the examples of this are described below.

Mirowski [34] considers that ‘forgetting the conservation of energy while simulta-

neously appealing to the metaphor of energy . . . is the Achilles heel of all neoclassical

economics’ because, according to Mirowski, although utility cannot be a conserved entity,

the results obtained in consumer theory assume that it is.

Amir [2, 3] claims that the utility function is unlikely to be a conserved quantity,

but that economic theory assumes that it is, which is supposedly patent in the use of the

proportionality between marginal utilities and market prices in equilibrium.

Georgescu-Roegen [25] argues that Jevons and Walras, whose aim was to create an

economic science similar to mechanics, built an economic theory that only describes

reversible and qualityless motion. Georgescu-Roegen also argues that ‘economics. . . is

mechanistic in the same strong sense. . . [that] classical mechanics. . . because neither in-

duces any qualitative change nor is affected by the qualitative change of the environment’.

Lozada [31] states that the entropy law is not reducible to mechanics by saying that

‘the inconsistency between the logical structure of the entropy law and the logical struc-
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ture of neoclassical economic analysis is that the former is evolutionary and the other is

arithmomorphic and hence non-evolutionary’.

However it is important to emphasize that some authors do disagree with the supposed

analogy between classical mechanics and neoclassical economics, e.g., Varian [51], in a

review of Mirowski’s book, argues that if the energy conservation principle implies that

utility is not a coherent concept then this implies that utility is not energy’, Marchionatti

and Gambino [32] say that ‘a critique, such as that of Mirowski, of the mechanical analogy

in neoclassical economics, seems largely unhelpful and based on a misunderstanding’

and Hands [27] argues that the standard Slutsky conditions, that are sufficient for the

integrability of demand, do not seem to be sufficient to guarantee, as Mirowski argues,

that prices form a conservative vector field.

We agree that if neoclassical economics were indeed formally identical to classical

mechanics it would be internally incoherent. However, we argue that neoclassical eco-

nomics is based on a wrong formulation of classical mechanics, being in fact formally

identical to thermodynamics. Both neoclassical economics and thermodynamics are equi-

librium theories and can be developed as formalisms of constrained optimisation as shown

in the next section.

2.3 A Unified Formalism for Neoclassical Economics and

Equilibrium Thermodynamics

In this section, a mathematical unified formalism based on the axiomatization of Tisza-

Callen is first developed in the general case and then applied to thermodynamic and to

economic systems.

2.3.1 General Formalism

The constrained optimisation problem describes the behaviour of the system that evolves

in order to maximize some function y subject to a set of constraints1. In equilibrium

the values acquired by the variables, xi, i = 1,. . . ,n, maximize the potential y, given the

constraints.

This maximization is constrained because the variables in equilibrium have to obey a

set of constraints, gz = 0, z = 1,. . . ,m. These constraints are a function of the initial values

1Minimization is an equivalent problem.
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of the variables, x0
i , and of some parameters kj, j=1,. . . ,l:

max
x1,...,xn

y (x1, . . . , xn) s.t. gz

(
x1, . . . , xn, x0

1, . . . , x
0
n, k1, ..., kl

)
= 0. (2.1)

This problem is solved with the Method of Lagrangean Multipliers2. The Lagrangean

function, L, is defined as:

L (x1, ..., xn, k1, ..., kl, λ1, ..., λm) = (2.2)

y (x1, ..., xn) +
m∑

z=1

λzgz (x1, ..., xn, x0
1, ..., x

0
n, k1, ..., kl).

The values of the variables that maximize the objective function subject to the constraints

are obtained solving the system of m + n equations:

∂L

∂xi
= 0, i = 1, ..., n,

∂L

∂λz
= 0, z = 1, ..., m

which is equivalent to:

∂y

∂xi
= −

n∑

z=1

λz
∂gz

∂xi
, i = 1, ..., n (2.3)

gz = 0, z = 1, ..., m

If the function y and the constraints gz are real valued and differentiable, if the number

of constraints, m, is less than the number of variables, n, and if the gradient vectors

of the constraint equations are linearly independent, the maximum exists. In this case,

Lagrange’s Method gives the first order equilibrium conditions [28], eq. (3.1), which

define the state of the system. These equilibrium conditions give the optimal values of

each xi, x∗
i , as a function of the parameters kj and of the initial conditions:

x∗
i = f

(
k1, ..., kl, x

0
1, ..., x

0
n

)
. (2.4)

With the set of equations (3.5) the optimal value of y, y∗, can also be written as:

y∗ = f
(
k1, . . . , kl, x

0
1, ..., x

0
n

)
. (2.5)

In the initial state, the system is characterized by the values x0
i ; which are called initial

conditions. In the final state, the system is characterized by the optimal values assumed

2For a more detailed description of this method see, e.g., Jehle (1991).
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by the variables, x∗
i . The evolution of the system from the initial to the final state is

called a process. In a reversible process, the initial and final states have the same y∗.

In an irreversible process, the final state has a higher value of y∗ than the initial state.

The amount of irreversibility (always positive) produced in an irreversible process can be

measured by the increase in y. An impossible process is a process that will never occur

because if it did the final state would have a lower value of y∗.

2.3.2 Thermodynamic Systems

The constrained optimisation problem in thermodynamics is the maximization of the en-

tropy of a composite system with constant total internal energy, constant total volume and

constant total mole numbers.

The entropy of a homogeneous thermodynamic system can be obtained from the fun-

damental equation [48, 14] 3:

S = S (U, V, N) . (2.6)

The variables are S, the entropy, U , the internal energy, V , the volume, and Nthe number

of moles.

The problem of the maximization of entropy for a composite system4 comprising two

simple systems (1 and 2) is formalized as5:

max
U1,U2,V1,V2,N1,N2

S = S1 (U1, V1, N1) + S2 (U2, V2, N2) ,

s. t.

U1 + U2 = U0
1 + U0

2 (2.7)

V1 + V2 = V 0
1 + V 0

2

N1 + N2 = N0
1 + N0

2

where the constraints are that, over the two systems, the sums of the internal energies, the

mole numbers and the volumes are kept constant. The initial conditions are the internal

energy U0
j , the mole numbers N0

j and the volume V 0
j for j= 1,2.

3Where, for simplicity, we consider a system with a single chemical component.
4Caratheódory introduced the concept of composite systems because the entropy is axiomatically only

defined for equilibrium systems.
5For simplicity, we consider only two subsystems.
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Defining temperature, Tj, pressure, Pj, and chemical potential, µj, for j= 1,2, as:

∂Sj

∂Uj
≡

1

Tj
(2.8)

∂Sj

∂Vj
≡

Pj

Tj

−
∂Sj

∂Nj
≡

µj

Tj

with Sj = Sj(Uj,Vj ,Nj), j= 1,2, the equilibrium conditions, see eq. (3.1), for the thermo-

dynamic system subject to the previous constraints are:

1

T1
=

1

T2

P1

T1
=

P2

T2
µ1

T1
=

µ2

T2

. That is, equilibrium is established when both systems have the same temperature, the

same chemical potentials and the same pressure. Thus, an isolated composite system

whose constraints are defined above increases its entropy towards the maximum value

by turning into a system with a homogeneous temperature, homogeneous pressure and

homogeneous chemical potential.

These equilibrium conditions are also explainable by reductio ad absurdum. Suppose

that, in the equilibrium state, the temperatures of the two systems were not equal, e.g.,

T1 >T2. If energy would flow (in the form of heat) from system 1 to system 2, system 2

would increase its entropy and system 1 would decrease its entropy because the derivative

of the entropy in relation with energy, eq. (2.8), is always positive given that the absolute

temperature is always positive. The increase in entropy of system 2 would be higher than

the decrease in entropy of the other system because its temperature is lower, again by eq.

(2.8). Therefore, the global change in entropy would be positive and consequently the

initial equilibrium state did not have the highest entropy possible, which means it was not

an equilibrium state.

Each optimal variable, see eq. (3.5), can be written as:

U∗
j = f

(
V 0

1 , V 0
2 , U0

1 , U0
2 , N0

1 , N0
2

)
, j = 1, 2, (2.9)

N∗
j = f

(
V 0

1 , V 0
2 , U0

1 , U0
2 , N0

1 , N0
2

)
, j = 1, 2

V ∗
j = f

(
V 0

1 , V 0
2 , U0

1 , U0
2 , N0

1 , N0
2

)
, j = 1, 2,
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These equations give the optimal value of the variables of each system as a function of

the initial conditions. The maximum entropy, see eq. (3.14), as a function of the same

arguments is:

S∗ = f
(
V 0

1 , V 0
2 , U0

1 , U0
2 , N0

1 , N0
2

)
. (2.10)

Reversible processes in a thermodynamic system are processes that occur in an isolated

system at constant maximal entropy. Impossible processes are processes that do not occur

because the isolated system would decrease its maximum entropy. Irreversible processes

in a thermodynamic system are processes that occur in an isolated system at increasing

maximal entropy. The amount of irreversibility produced is equal to the variation in en-

tropy between the initial state and the equilibrium state.

2.3.3 Consumer System

The extremum principle, in consumer theory, is the maximization of utility of a consumer

at constant market prices and constant endowment. When allowed to trade with the mar-

ket, the consumer maximizes his utility, U .

The consumer’s utility maximization problem is

max
x1,...,xn

U = U (x1, . . . , xn)

s.t.

p1x1 + ... + pnxn = p1x
0
1 + ... + pnx

0
n. (2.11)

where the constraint is that the total cost of goods that will be bought (left hand side

of the constraint) is equal to his initial endowment p1x
0
1 +. . . +pnx

0
n. The variables are

the different amounts of goods, xi, the parameters are the market price pi of good i, i =

1, . . ., n. The initial conditions are the amounts of each good i in the initial state, x0
i .

Defining marginal utilities as:

∂U

∂xi
≡ MUi, i = 1, . . . , n, (2.12)

with U = U(x1,. . . ,xn), the equilibrium conditions, see eq. (3.1), for the consumer are:

MU1

p1

= ... =
MUn

pn

.

A consumer system whose constraints are that the endowment and the prices remain con-

stant increases his utility towards the maximum value by exchanging with the market until

the ratio between marginal utility and price is the same for all products.



Is Neoclassical Economics Formally Valid? 19

Varian [52] proves this optimum condition by reductio ad absurdum using the follow-

ing argument. Suppose that the consumer’s utility is maximum but that the ratio between

marginal utilities of product i and product j is two and the ratio of prices is one. Then,

the consumer will exchange one unit of product j for one unit of product i obeying the

endowment constraint (they are worth the same) and increase his utility. This means that

the initial state was not at the maximum utility.

Each optimal value, see eq. (3.5), can be written as:

x∗
j = f (p1, p2, ..., pn, x

0
1, ..., x

0
n) j = 1, . . . , n . (2.13)

These equations give the optimal amount of product j as a function of the prices and initial

amounts of each product. The maximum utility as a function of the same arguments is the

equilibrium condition analogous to eq. (3.14),

U∗ = f
(
p1, . . . , pn, x

0
1, ..., x

0
n

)
. (2.14)

Reversible processes for the same consumer are processes in which he trades with the

market but does not increase his maximum utility. Impossible processes are trades that

do not occur because the consumer would decrease his maximum utility. Irreversible

processes for the consumer are processes characterized by an increase in utility: if a

consumer engages in a trade that increases his utility, he will not reverse the trade. The

amount of irreversibility produced is equal to the amount of utility increase between the

initial state and the equilibrium state.6

2.4 Discussing the Formalism

In this section we clarify some of the points of the formalism presented.

2.4.1 On the correct thermodynamic framework for substantive in-

tegration

We would like to emphasize that the substantive integration between thermodynamics and

economic systems should not be based on the thermodynamic theory of isolated systems

that we present in this chapter. Economic systems are open thermodynamic systems far

from equilibrium and therefore a thermodynamic analysis of economic systems should be

based on the thermodynamics of nonequilibrium open systems [29, 37, 35, 36, 26].

6This statement does not mean that we are considering that utility is a cardinal concept. This is further

discussed in section 2.4.3.
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2.4.2 On the concept of equilibrium

In the formalism of constrained optimization, equilibrium is the extremum point subject

to the constraints considered. It is equilibrium because the system will not move from

that point unless the constraints are changed. For example, for a certain amount of total

internal energy, total volume and total number of moles, a thermodynamic system is in

equilibrium if its entropy is at the maximum level (S*). This entropy equilibrium value

(S*) can only be changed if the constraints are changed, e.g., the system receives a heat

flow from the exterior hence increasing its total energy. The same is applicable to the

consumer: for a certain total cost of goods, a consumer system is in equilibrium if its

utility is at the maximum level (U*). This utility level (U*) can only be changed if the

constraints are changed, e.g., the consumer receives an additional endowment.

The formal equilibrium considered for the consumer problem is not the thermody-

namic equilibrium of the consumer. The thermodynamic equilibrium of the consumer

would be a dead consumer.

2.4.3 On the ordinal concept of utility

Utility is usually considered in an ordinal framework, i.e, utility functions order the con-

sumption bundles according to the preferences of the consumer but the absolute values of

utility have no meaning. This means that if utility function U(x1,. . . ,xn), represents the

preferences of the consumer, then so does any other utility function obtained through a

positive monotonic transformation Uθ = f(U(x1,. . . ,xn)), (Jehle, 1991), i.e.,

∂Uθ

∂U
=

∂f (U)

∂U
> 0. (2.15)

Our proposed formalism does not entail a cardinal concept of utility and is fully com-

patible with the ordinal framework because (2.1) the equilibrium conditions obtained and

(3.1) the ranking of the amount of irreversibilities produced are both independent of the

specific utility function chosen within the family of monotonic transformations. (2.1) is

proved by Samuelson [42] and (3.1) is obtained below.

The amount of irreversibility produced between an initial state characterized by x1,. . . ,xn

and a final equilibrium state x∗
1,. . . ,x∗

n can be measured using the utility function U or any

other positive monotonic transformation Uθ = f (U):

σ = U∗ (x∗
1, . . . , x

∗
n) − U (x1, . . . , xn)

σθ = Uθ∗ (x∗
1, . . . , x

∗
n) − Uθ (x1, . . . , xn)

. (2.16)
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We prove that σθ is a positive monotonic transform of σ, using eq. (2.15),

∂σθ

∂σ
=

∂
(
Uθ∗ (x∗

1, . . . , x
∗
n) − Uθ (x1, . . . , xn)

)

∂ (U∗ (x∗
1, . . . , x

∗
n) − U (x1, . . . , xn))

= (2.17)

∂Uθ∗ (x∗
1, . . . , x

∗
n)

∂U∗ (x∗
1, . . . , x

∗
n)

+
∂Uθ (x1, . . . , xn)

∂U (x1, . . . , xn)
> 0.

Summarizing, the amount of irreversibilities produced between any initial state and the

equilibrium state has an ordinal meaning, i.e., if the amount of irreversibilities produced

going from state A to equilibrium is higher than the amount of irreversibilities produced

going from state B to equilibrium, then the consumer will behave such as to move from

state A to state B but not the reverse.

2.5 Conclusions

In the ecological economics literature, the validity of neoclassical economics has been

widely discussed. This discussion has not been as fruitful as expected because the dis-

tinction between formal and substantive criticisms is blurred in many of the arguments

presented.

In this chapter, we present and explore the validity of the formal criticisms of neo-

classical economic theory. We concluded that formal criticisms are wrong because they

are either based on mixing up the substantive and formal levels [20, 45] or they are based

on the wrong assumption that the microeconomic formalism is analogous to the classical

mechanics formalism [2, 3, 25, 31, 34].

We have shown that the argument that the neoclassical formalism is wrong because

it was built from mechanics, is not valid; in fact, the neoclassical formalism is identical

to the Tisza-Callen axiomatization of thermodynamics. For both thermodynamic and

economic systems, we have identified the constrained optimisation problems along with

the equilibrium conditions. We have proved that the formalism of neoclassical economics

does not consider utility to be a conserved entity because it predicts the existence of

irreversible processes characterized by increasing utility at constant market prices.

Smith and Foley [44] also present a formal analogy between neoclassical economics

and thermodynamics based on constrained optimisation. These authors consider that the

main difference between the two fields is that ‘there is no counterpart in physics for the

way neoclassical economists attach importance to transformations respecting initial en-

dowments . . . and there seems to be no counterpart in economics to the importance ther-



22 Chapter 2

modynamics attaches to reversible transformations.’ The first remark is not correct be-

cause initial endowments in consumer theory (initial amounts of goods) are similar to the

initial extensive parameters characterizing an isolated composite system (volume, internal

energy and number of moles). The second remark is not correct because in consumer the-

ory many results are also obtained for reversible transformations, e.g., the compensating

and the equivalent variations. In both fields, reversible transformations are just limiting

cases of actual transformations but their study is important because they set limits on real

transformations.

Finally, it is of fundamental importance that the fact that neoclassical economics is

formally identical to thermodynamics does not mean that it is compatible with thermody-

namic laws. Examples of flaws in the integration between economic theory and thermo-

dynamic laws already identified are: economic theory considers a circular flow between

households and firms without considering the one-way flow that begins with resources

and ends with waste [25]; energy and capital are generally not substitutes, as assumed by

production functions, but complements [21, 38, 46]; the Inada conditions are inconsistent

with mass conservation [8]; and production theory does not fully possess thermodynamic

irreversibility [10].

However these flaws do not result from the similarities between the formal structure

of economics and mechanics. This misconception, which results from the use of the

formal to argue the substantive, is present in many works like Daly [20], Sollner [45] and

Geogescu-Roegen [25].

Daly [20] argues that standard economics explains circular flows because they are

mechanistic in nature (reversible and qualityless) and that it does not explain the one-way

flow of resources into waste because it is irreversible and mechanistic models cannot deal

with irreversibility. We have proved that formally standard economics has irreversibility

embedded in it; therefore, the fact that standard economics does not explain the physical

directionality of economic flows cannot be accounted for by its formal structure.

Sollner [45] considers that the definition of value in economic theory is incompatible

with the entropy law because it was taken from neoclassical mechanics. However, to

exemplify this formal flaw, Sollner uses substantive arguments analogous to the ones

provided by Georgescu-Roegen.

We argue that the flaws in the economic theory, referred by Sollner [45], Daly [20]

and Georgescu-Roegen [25] do exist, but the causality relation used to explain these flaws

is not correct. These flaws are due to a lack of substantive integration between thermo-

dynamics and economics instead of being rooted in the supposed ‘mechanistic’ nature of
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neoclassical economics.

Concluding, we proved that the analogies to classical mechanics used by economists

to build up neoclassical economic theory were wrongly formulated and that instead, neo-

classical economic theory was built formally analogous to thermodynamics. Additionally,

by clarifying the distinction between formal analogy and substantive integration we made

clear that although neoclassical economics and thermodynamics are both formalisms of

constrained optimisation they are not substantively compatible.
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Chapter 3

Equilibrium Econophysics: A unified formalism

for neoclassical economics and equilibrium

thermodynamics

Abstract

We develop a unified conceptual and mathematical structure for Equilibrium Econo-

physics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical

microeconomics and vice-versa. Within this conceptual structure the results obtained

in microeconomic theory are: (1) the definition of irreversibility in economic behavior,

(2) the clarification that the Engel curve and the offer curve are not descriptions of real

processes dictated by the maximization of utility at constant endowment, (3) the deriva-

tion of a relation between elasticities proving that economic elasticities are not all inde-

pendent, (4) the proof that Giffen goods do not exist in a stable equilibrium, (5) the deriva-

tion that ‘economic integrability’ is equivalent to the Generalized Le Chatelier Principle

and (6) the definition of a first order phase transition, i.e., a transition between separate

points in the utility function. In thermodynamics the results obtained are: (1) a relation

between the non-dimensional isothermal and adiabatic compressibilities and the increase

or decrease in the thermodynamic potentials, (2) the distinction between mathematical

integrability and optimization behavior and (3) the generalization of the Clapeyron Equa-

tion.

Keywords: Econophysics, Entropy, Utility, Optimization and Unification of Knowl-

edge.
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3.1 Introduction

A general definition of econophysics is the use of concepts and tools in Economics that

were developed in Physics. The state of the art in this field is the use of statistical physics

to get new insights into the behavior of financial markets [8, 10, 11, 15, 19, 21, 29, 32, 36,

39]. Here, we focus instead on the similarity between Neoclassical Microeconomics and

Equilibrium Thermodynamics. Some similarities between both formalisms have been

explored in the literature since the 40’s and 60’s [9, 16, 24, 23, 25, 27, 26] and more

recently [1, 2, 5, 6, 28, 30, 31, 34, 35]. In this chapter, we develop a unified formalism,

for both fields, using the Tisza-Callen axiomatization of thermodynamics [4, 33], and take

it further, making contributions both to Economics and to Thermodynamics. Also, by

formulating both theories with the same mathematical formalism, neoclassical economics

becomes accessible to physicists and thermodynamics becomes accessible to economists.

This makes this chapter also an interesting pedagogical tool, e.g., in B.Sc. courses in

econophysics like the one proposed by Grech [12].

The road-map of this chapter is as follows. All sections start by the description of the

general formalism followed by its application to the equilibrium thermodynamic system

and then to the consumer. In section 3.2, the fundamental equation, the constraints and

the extremum principle that describe the behavior of these systems are explained and the

equilibrium conditions are obtained. An alternative formulation to describe the systems’

behavior, the duality equation, is presented in section 3.3. The reversible, irreversible and

impossible processes undertaken by these systems are clarified in sections 3.4 and 3.5. In

section 3.6, adequate descriptions of systems with a special type of constraints are ob-

tained with the Legendre transforms. In section 3.7, the properties that characterize these

systems are identified and in section 3.8 the relation between them is established. The

stability conditions, i.e., the constraints imposed on the values of the systems’ properties

by the maximization principle, are presented in section 3.9 and the process that occurs

as a result of instability, i.e., the first order phase transition, is explained in section 3.11.

The issue of whether the system is described by the constrained optimization formalism

developed in the chapter is addressed in section 3.10. Section 3.12 concludes.

The microeconomic formalism of the consumer can contemplate two cases: (1) a

consumer who, in each of many periods, chooses between alternative bundles constrained

by the same budget and (2) a consumer who, over a short period of time faces a series of

opportunities to buy or sell goods at constant endowment; in the first case the bundle is

consumed within that period and in the second case the consumption is postponed [20].
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In this chapter, we will focus on the second case because: (1) it is more adequate for

financial markets, currently the major focus of econophysics and (2) the similarities with

the equilibrium thermodynamics systems are more straightforward.

3.2 Fundamental Equation and the Equilibrium State

A system that evolves in order to maximize some function y subject to a set of constraints 1

is described by a constrained optimization problem: in equilibrium the values acquired

by the state variables, xi, i = 1,. . . ,n, maximize the function y, given the constraints. The

function y(x1, . . . , xn) is the fundamental equation of the system. The state variables

are extensive variables, i.e., additive variables.

This maximization is constrained because the variables in equilibrium have to obey

a set of constraints, which are a function of the initial values of the variables, x0
i , and of

some parameters kj, j=1,. . . ,l:

max
x1,...,xn

y (x1, . . . , xn) s.t.

gz
(
x1, . . . , xn, x0

1, . . . , x
0
n, k1, . . . , kl

)
= 0,

z = 1, . . ., m. (3.1)

This problem is solved with the Method of Lagrangean Multipliers 2. The Lagrangean

function, L, is defined as:

L
(
x1, . . . , xn, x

0
1, . . . , x

0
n, k1, . . . , kl, λ1, . . . , λm

)
=

y (x1, . . . , xn) +

+
m∑

z=1

λzg
z
(
x1, . . . , xn, x

0
1, . . . , x

0
n, k1, . . . , kl

)
. (3.2)

where λz are the Lagrangean multipliers.

The values of the variables that maximize the objective function subject to the con-

straints are obtained solving the system of m + n equations:

∂L

∂xi
= 0, i = 1, . . . , n, (3.3)

∂L

∂λz
= 0, z = 1, . . . , m, (3.4)

1Minimization is an equivalent problem.
2For a more detailed description of this method see, e.g., Jehle (1991).
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which is equivalent to

πi = −

n∑

z=1

λz
∂gz

∂xi
, i = 1, . . . , n, (3.5)

gz = 0, z = 1, . . . , m, (3.6)

where πi ≡
∂y
∂xi

, i = 1, . . ., n. The variable πi is an intensive variable, i.e., a non-additive

variable. If the function y and the constraints gz are real valued and differentiable, if

the number of constraints, m, is less than the number of variables, n, and if the gradient

vectors of the constraint equations are linearly independent, the maximum exists. In this

case, Lagrange’s Method gives the first order equilibrium conditions [13], Eq. 3.5 and

Eq. 3.6, which define the state of the system. The differential form of the fundamental

equation is

dy =
n∑

i=1

πidxi. (3.7)

The constrained optimization problem in thermodynamics is the maximization of en-

tropy, S(U1, U2, V 1, V 2, N1
1 , N2

1 , . . . , N1
r , N2

r ), of a composite system, with subsystems

1 and 2 (see Appendix 3.13.1 for further details), with constant total internal energy, U ,

constant total volume, V , and constant total mole numbers for each chemical compo-

nent, Ni, i = 1, . . . , r, where Ni is the number of moles of the chemical compound i 3.

Thermodynamic intensive variables are:

1/T j ≡ ∂S/∂U j , (3.8)

P j/T j ≡ ∂S/∂V j ,

−µj
i/T

j ≡ ∂S/∂N j
i ,

with j = 1, 2 and i = 1, . . . , r, where T j is the temperature, P j is the pressure and

µj
i is the chemical potential of the i component of subsystem j. Temperature is de-

fined positive by Nernst’s postulate [4]. For the thermodynamic system, the equilib-

rium conditions (Eq. 3.5) are: 1/T 1 = 1/T 2 ≡ 1/T , P 1/T 1 = P 2/T 2 ≡ P/T and

µ1
i /T

1 = µ2
i /T

2 ≡ µi/T with i = 1, . . . , r. Thus, an isolated composite system with the

above constraints increases its entropy towards the maximum value by turning into a sys-

tem with a homogeneous temperature, homogeneous pressure and homogeneous chemical

potentials for all compounds. The differential form of the fundamental equation is

dS =

2∑

j=1

1

T j
dU j +

2∑

j=1

P j

T j
dV j −

2∑

j=1

r∑

i=1

µj
i

T j
dN j

i . (3.9)

3It is considered that no chemical reactions occur.
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The extremum principle, in consumer theory, is the maximization of utility,

U(x1, . . . , xn), of a consumer at constant market prices, pi, and constant endowment given

by w = p1x
0
1 + . . . + pnx

0
n where xi, i = 1,. . . , n, are the available amounts of each

good. The utility function, U , is the consumer’s fundamental equation because it describes

its behavior: when allowed to trade with the market, the consumer behaves in order to

maximize his utility. The consumer intensive variables are the marginal utility of good i,

MUi ≡ ∂U/∂xi. (3.10)

Marginal utilities are defined positive by the assumption of monotonicity usually made

on the utility function (Axiom 5, [13]): if a consumption bundle involves more of at

least one good and no less of any other good, then it provides a higher utility than the

original consumption bundle. This is equivalent to assuming that there are no ‘bads’,

only goods 4. The equilibrium conditions (Eq. 3.5) for the consumer are: MU1/p1 =

. . . = MUn/pn. Thus, a consumer whose constraints are that the endowment and the

prices remain constant increases his utility towards the maximum value by exchanging

with the market until the ratio of marginal utility to price is the same for all products. The

differential form of the fundamental equation is

dU = MU1dx1 + . . . + MUndxn. (3.11)

3.3 Duality Formulation

A duality formulation of the fundamental equation is the inverse function x1 =

x1 (y, x2, . . . , xn). Its intensive variables are given by:

∂x1

∂y
=

1

π1

∂x1

∂xj

= −
πj

π1

, j = 2, . . . , n. (3.12)

The duality formulation also has an extremum principle if y is a monotonically in-

creasing function of x1, i.e., π1 > 0:

min
y,x2,...,xn

x1 (y, x2, . . . , xn) s.t.

gz
(
y, x2, . . . , xn, y0, x0

2, . . . , x
0
n, k1, . . . , kl

)
= 0,

z = 1, . . ., m. (3.13)

4This is a simplification because ‘bads’ do exist, e.g., air pollution.
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The proof by reduction to absurd is a generalization of theorem 4.3.2 given by

Jehle [13]. If y∗ = max y but x∗
1 6= min x1 then there exists at least y∗,a(x∗,a

1 , x2, . . . , xn)

= y∗(x∗
1, x2, . . . , xn) such that x∗,a

1 < x∗
1. Since x1 is increasing in y then y∗ > y∗,a which

contradicts the initial assumption.

In the thermodynamic system, the duality is between entropy and energy. En-

tropy is a concave function and an increasing function of the internal energy, i.e.,

∂2S/∂U2 < 0 and ∂S/∂U > 0 which means that the internal energy is a convex func-

tion. Thus, the fundamental equation can also be written in the energy representation,

U(S1, S2, V 1, V 2, N1
1 , N2

1 , . . ., N1
r , N2

r ) (see Appendix 3.13.1 for further details); in this

formulation the relevant extremum principle is the Energy Minimum Principle. In the

energy representation, the intensive variables are straightforwardly the temperature, the

(minus) pressure and the chemical potentials.

An intuitive explanation for the Energy Minimum Principle is the following: if the

thermodynamic system is in equilibrium then its entropy is maximum, but if the energy

is not in its minimum value then this quantity ‘in excess’ can be withdrawn from the

system keeping the entropy constant. This quantity can then be returned to the system

increasing the entropy because temperatures are positive. Thus, the initial state was not

an equilibrium state because it was not at the maximum entropy [4].

In the consumer system, the duality is between utility and product demand. Utility is a

concave function and an increasing function of the amount of product, i.e., ∂2U/∂x2
i < 0

and ∂U/∂xi > 0 which means that the product demand function is a convex function.

Thus, the fundamental equation can also be written in the product demand representation,

xi(U, x1, . . . , xj 6=i, . . . , xn). This equation represents the demand for product i as a func-

tion of utility and the amounts of the other products. In the product demand representation

the extremum principle is the Product Minimum Principle.

An intuitive explanation for the Product Minimum Principle is the following: if the

consumer system is in equilibrium then its utility is maximum, but if the consumption

of product i is not in its minimum value then this quantity ‘in excess’ can be withdrawn

from the system keeping the utility constant. This quantity could be later returned to the

system increasing the utility because marginal utilities are positive. Thus, the initial state

was not an equilibrium state because the consumer was not at the maximum utility.

The economic variables x1, . . . , xn, in contrast to the thermodynamic variables, have

a similar meaning, in the sense that, using prices, they can all be added. Therefore, the

Product Minimum Principle can be applied for each product, implying that the feasible

bundle is the one with the lowest amount of each product and the lowest cost. The ex-
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planation is that if the consumer did not choose the bundle with the lowest cost, he could

trade it for a bundle with the same utility but a lower cost and use the remaining budget

to buy goods and increase his utility. In consumer theory, this is known as (1) the duality

between maximum utility and minimum expenditure, E(x1, . . . , xn) =
n∑

i=1

pixi or (2) the

equivalence between maximum utility and the cheapest bundle that provides that utility

(axiom 5, [13]). While the maximum utility problem computes the maximum level of

utility given a certain endowment, w, the minimum expenditure problem computes the

minimum endowment required to reach a certain level of utility [18].

3.4 Reversible, Irreversible and Impossible Processes

The evolution of the system from the initial to the final state as described by Eq. 3.1, is

triggered by a change in parameters; this is called a one step process. In a reversible

process, the initial and final states have equal y. In an irreversible process, the final

state has a higher value of y than the initial state. The amount of irreversibility (always

positive) produced in an irreversible process can be measured by the increase in y. An

impossible process is a process that will never occur because if it did the final state would

have a lower value of of y.

Reversible processes in a thermodynamic system are processes that occur in an iso-

lated system 5 at constant maximal entropy. An impossible process is a process that will

never occur because if it did the maximum entropy of an isolated system would decrease.

Irreversible processes in a thermodynamic system are processes that occur in an isolated

system at increasing maximal entropy. The amount of irreversibility produced is equal to

the variation in entropy between the initial state and the equilibrium state.

Reversible processes for the consumer are processes in which he trades at constant en-

dowment with the market but does not increase his maximum utility. Impossible processes

are trades that do not occur because the consumer with a constant endowment would de-

crease his maximum utility. Irreversible processes for the consumer are processes char-

acterized by an increase in utility: if a consumer with constant endowment engages in a

trade that increases his utility, he will not reverse the trade. The amount of irreversibil-

ity produced is equal to the amount of utility increase between the initial state and the

equilibrium state.

5An isolated thermodynamic system is a system with the set of constraints defined in Sec. 3.2.
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3.5 Many-step Processes

The evaluation of the change in the equilibrium value of the potential function, y∗, in

response to the change in its parameters is known as comparative statics analysis.

Given a change in parameters dki, dkj, . . ., the optimal values x∗
i , as a function of the

parameters and of the initial conditions,

x∗
i = x∗

i (k1, . . . , kl, x
0
1, . . . , x

0
n), (3.14)

are obtained from the equilibrium conditions, Eq. 3.5 and 3.6, and the optimal value func-

tion y∗,

y∗ = y∗(k1, . . . , kl, x
0
1, . . . , x

0
n), (3.15)

is obtained from the set of Eq. 3.14. Thus, Eq. 3.14 and 3.15 can be used to study a many-

step process composed of many maximization steps where: (1) each maximization step is

given by Eq. 3.1 and triggered by a change in one or more parameters and (2) the optimal

value of xi obtained at the end of each step is the initial value for the following step.

Not all trajectories described by Eq. 3.14 and 3.15 are processes because not all pa-

rameters are independent of each other. Suppose that k1(k2, k3); in this case, it is not

possible to impose independently dk1, dk2 and dk3.

Quasi-static Processes are processes characterized by infinitesimally close equilib-

rium points y∗; this requires infinitesimal changes in the parameters. Quasi-static processes

are reversible, irreversible or impossible according to the criteria defined.

The effects of changes dki in the value function y∗ are addressed by the envelope the-

orem summarized next (for more details consult [18]). Assuming that y∗ is differentiable

then at the equilibrium x∗
1, . . . , x

∗
n:

∂y∗

∂ki

=
∂y

∂ki

−
m∑

z=1

λz
∂gz

∂ki

. (3.16)

For the thermodynamic system, Eq. 3.14 is, e.g., U∗
1 (U, V, N1, . . . , Nr) while Eq. 3.15

is S∗(U, V, N1, . . . , Nr).

The application of the envelope theorem to the maximization of entropy gives:

∂S∗

∂U
= −λ1 =

1

T
, (3.17)

∂S∗

∂V
= −λ2 =

P

T
,

∂S∗

∂Ni
= −λj = −

µi

T
, j = 3, . . . , r + 2.
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The application of the envelope theorem to the minimization of energy gives:

∂U∗

∂S
= −λ1 = T, (3.18)

∂U∗

∂V
= −λ2 = −P,

∂U∗

∂Ni
= −λj = µi, j = 3, . . . , r + 2.

For the consumer, Eq. 3.14 is the Walrasian demand function given by x∗
i (w, p1, . . . , pn)

while Eq. 3.15 is the indirect utility function, U∗(w, p1, . . . , pn). For a given a set of prices

and endowment, the Walrasian demand function specifies the amount of product xi that

maximizes utility while the indirect utility function specifies the maximum utility achiev-

able.

The Engel curve is the Walrasian demand function with constant prices [18]. The En-

gel curve does not depict a process because endowment is a function of prices, w(p1, . . . , pn),

i.e., it is not possible to change endowment while keeping all prices constant. It would

only depict a process if at the end of each process the consumer either (1) had completely

consumed all its goods and received a new amount of money equal to w + dw or (2) ex-

changed all its goods for money and then received the extra endowment dw. These are

not the conditions assumed for a many-step process.

The offer curve depicts the relation between price pi and the optimal quantity of good

i with all other prices and endowment constant, [18]. Like the Engel curve, the offer curve

does not depict a process because pi(w, p1, . . . , pj,∀j 6=i, . . . , pn), i.e., it is not possible to

change the price of good i while keeping all other prices and the endowment constant.

For the minimum expenditure representation, Eq. 3.14 is the Hicksian demand func-

tion given by xh,∗
i (U, p1, . . . , pn) while Eq. 3.15 is the expenditure function given by

w∗(U, p1, . . . , pn). Maintaining a specified level of utility given a set of prices requires

the amounts of products xi, i = 1, . . . , n, given by the Hicksian demand function and the

endowment specified by the expenditure function.

The application of the envelope theorem for the maximization of utility gives

∂U∗

∂pi
= −λx∗

i , (3.19)

∂U∗

∂w
= λ.

Combining these results yields Roy’s Identity [18]:

x∗
i = −

∂U∗

∂pi

∂U∗

∂w

. (3.20)
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Roy’s identity gives a method to obtain the Walrasian demand functions knowing the

indirect utility functions. The intuition is the following: the higher the amount of xi that

a consumer needs to maximize his utility, the higher is the dependence of the maximum

utility on pi relative to its dependence on endowment. The application of the envelope

theorem for the minimization of expenditure yields Shepard’s Lemma [18]:

xh,∗
i =

∂w∗

∂pi

. (3.21)

Shephard’s lemma gives a relationship between the Hicksian demand and the expenditure

function. The intuition is the following: the higher the amount of xi that a consumer

needs to maintain his utility, the higher must be the expenditure increase with an increase

in pi to maintain the same utility.

3.6 Legendre Transforms

The Legendre transform is a mathematical technique by which one or more of the partial

derivatives πi replace one or more of the extensive variables xi as independent variables.

If the substitution of xi by πi is made for one variable, the Legendre transform is

ϕi(x1, . . . , πi, . . . , xn) = y(x1, . . . , xn) − πixi, (3.22)

if it is is made for all variables, we have the complete Legendre transform

ϕ (π1, . . . , πi, . . . , πn) = y (x1, . . . , xn) −

n∑

i=1

πixi. (3.23)

The meaning of the Legendre transform is easily grasped for two simplified cases: (1)

the fundamental equation is a first order homogeneous function, i.e., the Euler Equation,

π1x1 + . . . + πnxn = y, applies (see Appendix 3.13.4 for further details), implying that:

ϕi (x1, . . . , πi, . . . , xn) =
∑

j 6=i

πjxj , (3.24)

(2) πi is constant implying that the differential of the Legendre transform simplifies to:

dϕi(x1, . . . , πi, . . . , xn) = dy − πidxi =
∑

j 6=i

πjdxj .

Suppose that an extremum principle applies to the initial function and to its Legendre

transform. The Langrangean of the Legendre transform is

L(x1, . . . , xn, λ1, . . . , λn) = (3.25)
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ϕ(x1,...,πw,...,xn)
︷ ︸︸ ︷

y(x1, . . . , xw, . . . , xn) − πwxw

+
∑

z=1,m

λ′
zg

′z(x1, . . . , πw, . . . , xn),

and the Lagrangean of function y is given by Eq. 3.2. The first order conditions to the

optimization problems are respectively:

−
∑

i=1,n

λ′
z

∂g′z(x1, . . . , xn)

∂xi6=w

=
∂ϕ(x1, . . . , πw, . . . , xn)

∂xi6=w

= π′
i, (3.26)

and Eq. 3.5. If πw is constant, then πi = π′
i for all i 6= w and Eq. 3.26 is equal to

Eq. 3.5. Thus, whenever an extremum principle is imposed on the original function and

πw remains constant, an extremum principle is also imposed on the Legendre transform.

Theorem 2.3.3 [13] determines the sufficient conditions for the constrained optimal point

to be either a maximum or a minimum (see a more detailed discussion in sec. 3.9). Ac-

cording to this theorem the extremum is a constrained maximum if the principal minors

of the Hessian matrix of the Lagrangean evaluated at the extremum alternate in sign be-

ginning with positive (Appendix 3.13.2). The extremum is a constrained minimum if the

principal minors of the Hessian matrix of the Lagrangean evaluated at the extremum are

all negative. Whenever πw is constant then (1) if the initial function is maximized, the

same occurs with the Legendre transform and (2) if the initial function is minimized, the

same occurs with the Legendre transform. This is because the Hessian matrix of the La-

grangian of the fundamental function is equal to the Hessian matrix of the Lagrangean of

the Legendre transform.

In thermodynamics, intensive variables are constant when the system is no longer iso-

lated but in contact with a reservoir that maintains, e.g., a constant temperature. The

most common Legendre transforms in thermodynamics are (1) the Helmholtz poten-

tial, F ≡ U − TS; (2) the Enthalpy, H ≡ U + PV and (3) the Gibbs potential

G ≡ U − TS + PV (for further details see Appendix 3.13.1). The extremum principles

are: (1) the system reaches the minimum Helmholtz Energy subject to the reservoir tem-

perature; (2) the system reaches the minimum Enthalpy subject to the reservoir pressure

and (3) the system reaches the minimum Gibbs Energy subject to the reservoir pressure

and temperature. The differential form of the Legendre transforms with constant intensive

properties are:(1) dF = dU−TdS, (2) dH = dU+PdV , and (3) dG = dU−TdS+PdV .

For the consumer the Legendre transforms have an extremum principle when one or

more of the marginal utilities are constant, i.e., the consumption of these goods is such
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that their marginal utilities are constant. For example: (1) Public Goods or non-excludable

goods that have a null price and therefore null marginal utilities, i.e., these goods are con-

sumed until the additional utility derived from their consumption is null and (2) rationed

goods. These Legendre transforms have the following general form: Ψ ≡ U−
∑

i=1,l

xiMUi.

The extremum principle is that the system reaches the maximum Ψ subject to constant

marginal utilities for the products xi, i = 1, . . . , l. In this case, the differential form of the

Legendre transforms is: dΨ = dU −
∑

i=1,l

MUidxi =
∑

i=l+1,n

MUidxi. The economic intu-

ition is that the consumer maximizes the utility obtained with the consumption of goods

i = l + 1, . . . , n, because the amount of other goods is constrained in order to provide

constant marginal utilities.

The complete Legendre transform Ψ ≡ U −
∑

i=1,n

xiMUi can be written as the dif-

ference in the utility gain from consumption and the cost of consumption, Ψ = U −
MUq

pq

∑

i=1,n

xipi where
MUq

pq
, is equal for all goods, in equilibrium. If marginal utilities are

null then the complete Legendre transform is equal to the utility. Thus, the complete

Legendre transform is a measure of the net benefits of consumption, i.e., consumer’s sur-

plus [38].

3.7 Elasticities

While the first derivatives of the fundamental equation are intensive variables, the sec-

ond derivatives, i.e., elasticities, stand for important properties of the system. The non-

dimensional elasticities have the general form

qij
Π,X =

πj

xi

(
∂xi

∂πj

)

Π,X

, (3.27)

where Π is the set of πk variables kept constant (with k 6= j) and X is the set of xz

variables kept constant (with z 6= i) and the total number of variables kept constant is

n − 1. The absolute value of these non-dimensional elasticities has a straightforward

interpretation: it is the ratio of the proportional change in xi to the proportional change in

πj . These characteristics can be obtained empirically. Additionally,

1

xi

∂(xiπi)

∂πi
= 1 +

πi

xi

∂xi

∂πi
= 1 + qii

Π,X , (3.28)

which means that for xi > 0 if (1) q > −1 then πixi increases while if (2) q < −1

then πixi decreases. If the fundamental equation is first order homogeneous then πixi =
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ϕ(π1, . . . , xi, . . . , πn) and the value of the non-dimensional elasticity determines the sign

of the change in the potential given by the Legendre transform.

In thermodynamic systems, elasticities are descriptive of material properties. The

most used elasticities are respectively the thermal expansion, the isothermal compress-

ibility, the heat capacity at constant pressure, the adiabatic compressibility and the heat

capacity at constant volume:

α ≡
1

V

(
∂V

∂T

)

P,N

, (3.29)

κT ≡ −
1

V

(
∂V

∂P

)

T,N

,

cP ≡ T

(
∂S

∂T

)

P,N

,

κs ≡ −
1

V

(
∂V

∂P

)

S,N

,

cv ≡ T

(
∂S

∂T

)

V,N

,

(for further details see Appendix 3.13.1).

In thermodynamics non-dimensional elasticities are not used although they would be

useful given Eq. 3.28. For example, consider an open system with a movable and diather-

mic 6 wall in contact with a temperature reservoir. If the pressure of the reservoir is

increased then: (1) the system is compressed by the reservoir until the pressures are equal

(2) a heat flow is established between the system and the reservoir to maintain the system

at constant temperature and (3) a mass flow is established between the system and the

reservoir to maintain the system at constant chemical potential. If the non-dimensional

isothermal compressibility of the system κ′
T = κT P > 1 then the change in internal

energy associated with the change in pressure will be positive, i.e., the change in the

Legendre transform dφ(T, V, µ) = d(−PV ), while if κ′
T < 1, the change in internal en-

ergy associated with the change in pressure will be negative. This is summarized for all

thermodynamic non-dimensional elasticities in Tab. 3.1.

In economic systems, elasticities are descriptive of consumer characteristics. The

non-dimensional elasticities used in consumer theory are called elasticities:

ε{pk,∀k 6=i} ≡
pi

xi

(
∂xi

∂pi

)

{pk,∀k 6=i}

, (3.30)

6A diathermic wall allows for energy transfer in the form of heat between the system and the environ-

ment.
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Elasticities Legendre transform behavior

κ′
T φ(T, V, µ) increases with P at constant T if κ′

T > 1, remains constant if

κ′
T = 1 and decreases otherwise.

κ′
s φ(T, V, µ) increases with P at constant S if κ′

s > 1, remains constant if

κ′
s = 1 and decreases otherwise.

c′P φ(S,−P, µ) increases with T at constant P if c′P > −1 7.

c′v φ(S,−P, µ) increases with T at constant V if c′v > −1 8.

Table 3.1: The relation between Adimensional Thermodynamic Elasticities and the change in the

potentials given by the Legendre transforms of the Energy Function.

ε{xk,∀k 6=j} ≡
pj

xj

(
∂xj

∂pj

)

{xk,∀k 6=j}

e{pk ,∀k 6=i} ≡
pi

xj

(
∂xj

∂pi

)

{pk,∀k 6=i}

,

e{xk ,∀k 6=j} ≡
pi

xj

(
∂xj

∂pi

)

{xk ,∀k 6=j}

,

e{pk,∀k 6=i} ≡
w

xi

(
∂xi

∂w

)

{pk,∀k 6=i}

.

The ε{pk,∀k 6=i} is the adimensionalization of the inverse demand curve. It is called the own

price elasticity of demand. It measures how responsive demand is to changes in price [38].

Products are classified as Giffen Goods if ε{pk,∀k 6=i} >0. A product has an elastic demand

if the absolute value of the own-price elasticity is higher than 1 and an inelastic demand

otherwise. Eq. 3.28 says that if the demand of xi is elastic then an increase in price will

decrease the amount demanded so much that the revenue will decrease; if the demand is

inelastic then an increase in price will not change demand very much and the overall rev-

enue will increase. The e{pk ,∀k 6=i} is called the cross-price elasticity of demand [13]. The

ε{xk,∀k 6=j} and e{xk,∀k 6=j} are also prices elasticities but with the amounts of other prod-

ucts kept constant. The e{pk,∀k 6=i} is the adimensionalization of the inverse income curve.

It is called the income elasticity of demand. It measures how responsive demand is to

some change in income [38]. Products are classified according to their income elasticity:

normal goods (e{pk,∀k 6=i} >0) and inferior goods (e{pk,∀k 6=i} <0). Normal goods can be

either necessary goods (e{pk,∀k 6=i} < 1) or luxury goods (e{pk,∀k 6=i} >1). In the consumer

elasticities, prices are used instead of marginal utilities, because in equilibrium marginal

utilities are proportional to prices.
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y
(

∂πi

∂xj

)

{xk,∀k 6=j}
=

(
∂πj

∂xi

)

{xz ,∀z 6=i}

ϕi

(
∂πl

∂xj

)

πi,{xk,∀k 6=i,j}
=

(
∂πj

∂xl

)

πi,{xz ,∀z 6=i,l}

ϕi,g

(
∂πl

∂xj

)

πi,πg,{xk,∀k 6=i,j,g}
=

(
∂πj

∂xl

)

πi,πg,{xz ,∀z 6=i,l,g}

ϕi

(
∂πk

∂πi

)

{xj ,∀j 6=i}
= −

(
∂xi

∂xk

)

πi,{xj ,∀j 6=i,k}

ϕi,g

(
∂πk

∂πi

)

πg,{xj ,∀j 6=i,g}
= −

(
∂xi

∂xk

)

πi,πg,{xj ,∀j 6=i,k,g}

ϕi,g

(
∂xi

∂πg

)

πi,{xj ,∀j 6=i,g}
=

(
∂xg

∂πi

)

πg,{xj ,∀j 6=i,g}

ϕ
(

∂xi

∂πg

)

{πj ,∀j 6=g}
=

(
∂xg

∂πi

)

{πj ,∀j 6=i}

Table 3.2: Maxwell Relations obtained from y = y(x1, . . . , xn) and its Legendre transforms

ϕi = ϕi(x1, . . . , πi, . . . , xn), ϕi,g = ϕi,g(x1, . . . , πi, πg, . . . , xn) and ϕ = ϕ(π1, . . . , πn).

3.8 Maxwell Relations

The Maxwell Relations result from the equality of mixed partial derivatives valid for

scalar functions whose second derivatives exist and are continuous (Young’s Theorem).

The equality between the mixed partial derivatives of the fundamental equation y =

y(x1, . . . , xn) implies that:

(
∂πi

∂xj

)

xk 6=j

=

(
∂πj

∂xi

)

xk 6=i

. (3.31)

The equality between the mixed partial derivatives is also applicable to the other for-

mulations of the fundamental equation, i.e., the Duality Formulation and the Legendre

transforms. The Maxwell Relations for the Legendre transforms are given in Tab. 3.2.

Maxwell relations are important because they make explicit that not all second mixed

derivatives are independent. In fact, all second derivatives can be written as a function of

a small set of independent variables. The relations between the elasticities,

qkk
{πi,∀i6=k} = qkk

xj ,{πi,∀i6=k,j} +

(

qjk
{πi,∀i6=k}

)2

qjj
{πi,∀i6=j}

πjxj

πkxk
, (3.32)

qkk
xj ,{πi,∀i6=k,j} = qkk

xj ,xz,{πi,∀i6=k,j,z} +

(

qzk
xj ,{πi,∀i6=k,j}

)2

qzz
xj{πi,∀i6=j,z}

πzxz

πkxk

, (3.33)

. . .
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U(S, V, N)
(

∂T
∂V

)

S,N
= −

(
∂P
∂S

)

V,N

(
∂T
∂N

)

S,V
=

(
∂µ
∂S

)

V,N

(
∂P
∂N

)

S,V
= −

(
∂µ
∂V

)

S,N

F (T, V, N)
(

∂S
∂V

)

T,N
=

(
∂P
∂T

)

V,N

(
∂S
∂N

)

T,V
= −

(
∂µ
∂T

)

V,N

(
∂P
∂N

)

T,V
= −

(
∂µ
∂V

)

T,N

H(S, P, N)
(

∂T
∂P

)

S,N
=

(
∂V
∂S

)

P,N

(
∂T
∂N

)

S,P
=

(
∂µ
∂S

)

P,N

(
∂V
∂N

)

S,P
=

(
∂µ
∂P

)

S,N

G(T, P, N)
(

∂S
∂P

)

T,N
= −

(
∂V
∂T

)

P,N

(
∂S
∂N

)

T,P
= −

(
∂µ
∂T

)

P,N

(
∂V
∂N

)

T,P
=

(
∂µ
∂P

)

T,N

Table 3.3: Thermodynamic Maxwell Relations obtained from U , F , H and G.

qkk
πl,{xi,∀i6=l,k} = qkk

{xi,∀i6=k} +

(

qlk
πl,{xi,∀i6=l,k}

)2

qll
πk,{xi,∀i6=l,k}

πlxl

πkxk
, (3.34)

are obtained using the Maxwell relations (see Appendix 3.13.3 for further details). The

relation between qkk
πi6=k

and qkk
xi6=k

(see also Appendix 3.13.3 for further details) is:

qkk
{πi,∀i6=k} = qkk

{xi,∀i6=k} +

∑

j 6=k

xjπj

xkπk

qjk
{πi,∀i6=k}q

jk
πj ,{xi,∀i6=j,k}

qjj
πk,{xi,∀i6=j,k}

. (3.35)

The Maxwell relations that result from the Energy representation of the fundamental

equation and its Legendre transforms are given in Tab. 3.3 and the relations between the

thermodynamic elasticities for constant mole numbers are presented next.

The relation between the specific heat at constant pressure and the specific heat at

constant volume,

cP = cv +
Tvα2

κT
, (3.36)

is obtained using Eq. 3.33 and the relation between the adiabatic compressibility and com-

pressibility at constant temperature,

κT = κs +
Tvα2

cP
, (3.37)

is obtained using Eq. 3.33 and the Maxwell Relation
(

∂S
∂P

)

T,N
= −

(
∂V
∂T

)

P,N
. Eq. 3.36

and 3.37 imply that only three of five coefficients defined by Eq. 3.38 are independent.

The relation between specific heats and compressibilities is

cP

cv
=

κT

κs
. (3.38)

The Maxwell relations that result from the Utility function and its Legendre transforms

are given in Tab. 3.4 and the relations between the economic elasticities for two products

are summarized next.
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U(x1, . . . , xn)
(

∂pi

∂xj

)

{xk,∀k 6=j}
=

(
∂pj

∂xi

)

{xk,∀k 6=i}

ϕi (x1, . . . , pi, . . . , xn) −
(

∂pj

∂pi

)

{xk,∀k 6=i}
=

(
∂xi

∂xj

)

pi,{xk,∀k 6=i,j}

ϕi (x1, . . . , pi, . . . , xn)
(

∂pj

∂xk

)

pi,{xl,∀l 6=i,k}
=

(
∂pk

∂xj

)

pi,{xl,∀l 6=i,j}

ϕ (p1, . . . , pi, . . . , pm)
(

∂pj

∂xi

)

{pk,∀k 6=j}
=

(
∂pi

∂xj

)

{pk,∀k 6=i}

Table 3.4: Economic Maxwell Relations obtained from U, ϕi and ϕ.

The relation between the own price elasticity of demand at constant prices and the

own price elasticity of demand at constant amounts for product 2,

εp2
= εx2

+ e2
p2

1

εp1

p2x2

p1x1

, (3.39)

is obtained using Eq. 3.33 and for product 1,

εp1
= εx1

+ e2
p2

1

εp2

p2x2

p1x1
, (3.40)

is obtained using Eq. 3.33 and the Maxwell relation
(

∂x1

∂p2

)

p1,N
=
(

∂x2

∂p1

)

p2

. Eq. 3.39

and 3.40 imply that only three of the elasticities defined by Eq. 3.30 are independent. The

relation between the own price elasticities at constant prices and at constant amounts is

εp1

εp2

=
εx1

εx2

. (3.41)

3.9 Stability Conditions and the Le Chatelier Principle

The stability of the equilibrium state of a function y depends on the sign of d2y. If the

equilibrium is a maximum, the function is stable if it is strictly concave, i.e., d2y < 0; if

the equilibrium is a minimum, the function is stable if it is strictly convex, i.e., d2y > 0.

The sufficient condition for the twice continuously differentiable real-valued function y

on a set C to be (1) strictly convex is that its Hessian matrix is positive definite, i.e., all

sub matrices of the Hessian matrix defined by the first k rows and k columns have positive

determinants and to be (2) strictly concave is that its Hessian matrix is negative definite,

i.e., the determinants of the Hessian matrix are negative if k is odd and positive if k is even

[22]. These necessary and sufficient conditions impose certain constraints on the signs of

the elasticities (second derivatives).

Function y(x1, . . . , xn) is strictly concave if (∂πi)/(∂xi){xk ,∀k 6=i} < 0, i.e., qkk
{xk,∀k 6=i} <

0 if πi > 0 and xi > 0. The Legendre transforms of the concave function y are convex
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with respect to its intensive variables (a proof is presented in sec. 3.6), i.e., its second

derivatives are positive

∂2ϕ(x1, . . . , xl, πl+1, . . . , πn)

∂π2
l+1

=

−
∂xl+1(x1, . . . , xl, πl+1, . . . , πn)

∂πl+1
=

−
xl+1

πl+1
ql+1,l+1
Π,X > 0, (3.42)

with Π = {πj , j = l + 1, . . . , n} and X = {xi, i = 1, . . . , l}. Thus, the elasticity

ql+1,l+1
Π,X in Eq. 3.42 is negative if πi > 0 and xi > 0. Additionally, Eq. 3.32 to Eq. 3.34

imply the Generalized Le Chatelier Principle: 0 > qkk
{xi,∀i6=k} > . . . > qkk

xj ,{πi,∀i6=k,j} >

qkk
{πi,∀i6=k} .

The Generalized Le Chatelier Principle relations describe the behavior of a stable sys-

tem displaced from equilibrium by a change in its extensive variable dxk: (1) its conjugate

intensive variable will change by dπk and (2) the absolute value of dπk increases with the

number of extensive variables kept constant.

The entropy is strictly concave if (∂2S/∂U2) < 0, i.e., cv > 0. The Gibbs Energy

is strictly concave on its intensive independent variables T and P , if (∂2G/∂T 2) < 0,

i.e., cP > 0, and that (∂2G/∂P 2) < 0, i.e., κT > 0. These constraints on cv, cP and κT

together with Eq. 3.38 imply that κs > 0. Additionally, Eq. 3.36 and Eq. 3.37 imply that

cP > cv and κT > κs.

The conditions (∂2S/∂U2) < 0 and (∂2S/∂V 2) < 0 imply that: (1) the amount of

entropy increase that results from an unit increase in internal energy at constant volume

(due to a heat flow) decreases with the internal energy of the system and (2) the amount of

entropy increase that results from an unit increase of volume at constant internal energy

(due to both heat and work flows) decreases with the volume of the system.

Conditions cP > cv > 0 and κT > κs > 0 embody the Generalized Le Chatelier

Principle for thermodynamic systems: the absolute change in temperature triggered by a

change in entropy is higher for a system at constant volume than for a system at constant

pressure and the absolute change in pressure triggered by a change in volume is higher for

a system at constant entropy than for a system at constant pressure. As an example, we

can think of a diathermic cylinder fitted with a piston that is in contact with a temperature

reservoir. Suppose that the piston is pulled and an increase in volume occurs. The system

will decrease its pressure (κT > 0), but this decrease will be smaller (κT > κs > 0)

than at constant entropy, because the system receives a flow of heat from the temperature
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Thermodynamic Constraints Economic Constraints

cP > cv > 0 0 > ε{xk,∀k 6=i} > ε{pk,∀k 6=i}

Table 3.5: Constraints on the thermodynamic and economic elasticities imposed by stability.

reservoir.

The utility is strictly concave if (∂2U/∂x2
i ) < 0, i.e., ε{xk,∀k 6=i} < 0. The Economic

Potential Ψ is strictly convex on its intensive variables MUi if ε{pk,∀k 6=i} < 0 and, Eq. 3.39

and Eq. 3.40 imply that ε{xk,∀k 6=i} > ε{pk,∀k 6=i} (assuming that prices and amounts are

positive). These stability results imply that Giffen goods do not exist if the equilibrium

state is stable 9.

The condition (∂2U/∂x2
i ) < 0 corresponds to the ‘Law’ of Diminishing Marginal

Utility: the utility gained from an extra increase of one unit of product xi decreases with

the amount of xi already owned.

Conditions 0 > ε{xk,∀k 6=i} > ε{pk,∀k 6=i} embody the Generalized Le Chatelier Principle

for the consumer: the absolute change in demand triggered by a change in price is higher

for constant product amounts than for constant prices. As an example, we can think of

a consumer in contact with a market that has only two goods. If the price of product p1

decreases the consumer buys an additional amount of good x1 (εp2
< 0). The amount of x1

traded is smaller if the consumer can also trade product 2 with the market (0 > εx2
> εp2

).

Tab. 3.5 summarizes the constraints imposed by stability on the thermodynamic and

economic elasticities.

3.10 Equations of State and Integrability

Equations of state are equations that establish a relation in equilibrium between one

intensive variable and the independent extensive variables. They have the following func-

tional form

πi = πi (x1, x2, . . . ., xn) .

The knowledge of all equations of state is equivalent to the knowledge of the fundamental

equation under certain conditions. This is known as the integrability problem and it can

be summarized as follows: ‘When is it possible to build a fundamental function using

the equations of state?’. First, mathematical integrability implies that the fundamental

9Note that this would not occur if only quasi-concavity of the utility function was required (remark

pointed out by one of the reviewers).
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equation must satisfy the Maxwell relations. Second, the optimization behavior embed-

ded in the fundamental equation implies that the equations of state do not contradict that

the behavior is indeed optimized, i.e., the Generalized Le Chatelier Principle is verified.

These two conditions are equivalent to imposing that the Hessian matrix of the fundamen-

tal function is (1) symmetric and (2) negative semidefinite. If the fundamental equation

represents an order relation 10 then these two conditions are met (for further details see

Candeal et al. [6]).

In the thermodynamic system, the equations of state, derived from the fundamen-

tal equation written in the energy representation, are: T = T (S, V, N1, . . . , Nr), P =

P (S, V, N1, . . . , Nr) and µj = µj(S, V, N1, . . . , Nr) with j = 1, . . . , r (see Appen-

dix 3.13.1 for further details). These equations can be computed based on observed be-

havior. The energy fundamental equation can be built knowing all the equations of state

by using Eq. 3.18. We can identify the first condition of integrability in thermodynam-

ics as the Maxwell relations and the second as the constraints imposed on the thermo-

dynamic coefficients by the Generalized Le Chatelier Principle. In thermodynamics, the

entropy represents a preference relation imposed by the second law (for further details see

Cooper [7]); thus, it is always possible to obtain an entropy function from the equations

of state.

In the consumer, the equations of state, derived from the fundamental equation written

in the expenditure representation, are: pj = pj(x1, . . . , xn). These equations can be com-

puted based on observed behavior. The expenditure function can be built knowing all the

Walrasian demand functions (obtained from the equations of state) by using Eq. 3.20. The

first condition of integrability is known in economics as Antonelli’s integrability condition

and the second condition, i.e., the constraints imposed on economic elasticities, is known

as ‘economic integrability’ [17]. In the consumer the utility represents a preference rela-

tion if and only if the consumer is rational; thus, it might not be possible to obtain a utility

function from the equations of state.

3.11 First Order Phase Transitions

Phase transitions occur where the fundamental equation is unstable (at least one of the

stability criteria is violated). In Fig.3.1, the fundamental equation is unstable where

qii
{πj ,∀j 6=i} > 0, assuming that intensive and extensive variables are positive. In this case,

10A function f represents a preference relation � if: x � y ⇔ f(x) ≤ f(y).
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xi

πi

πj const.

Phase1 Phase2
A

Figure 3.1: First Order Phase Transition.

the fundamental equation is no longer valid, i.e., the system is not characterized by the

equilibrium conditions. However, the system can be decomposed into phases, i.e, subsys-

tems in equilibrium.

The two states 11 between which a first order transition occurs are distinct and are

characterized (1) by being in equilibrium with each other, i.e., by having equal intensive

variables [14],

π1
j = π2

j , j = 1, . . . , n, (3.43)

where πk
j is the intensive variable πj in phase k, k = 1, 2 and (2) by having at least one

extensive variable that is different x1
j 6= x2

j where xk
j is the extensive variable xj in phase

k. Conditions (1) and (2) imply that (3) qjj
{πi,∀i6=j} = ∞.

The total number of independent variables needed to characterize the phase transition

is n because Eq. 3.43 applies. If the function y is homogeneous first order then the Gibbs-

Duhem Equation,

0 = xk
1dπ1 + . . . + xk

ndπn, (3.44)

applies to each phase k (see Appendix 3.13.4 for further details) and the number of inde-

pendent intensive variables or degrees of freedom decreases to f = n− 2 because (1) the

intensive variable πj can be written as a function of the other intensive variables (eq. 3.44)

and (2) Eq. 3.43 applies. This is the Generalized Gibbs phase rule. Thus, the minimum

number of extensive variables that are needed to characterize the phase transition is n−f .

The relation between the intensive variables πp ≡ π1
p = π2

p and πg ≡ π1
g = π2

g in

11More than two states are possible but will not be considered in this chapter.
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equilibrium can be computed with the Generalized Clapeyron Equation:

(
∂πp

∂πg

)

{π1
i
−π2

i
,∀i6=p,g}

= −

(
∂(π1

k
−π2

k)
∂πg

)

{π1
i −π2

i ,∀i6=k,g}
(

∂(π1
k
−π2

k)
∂πp

)

{π1
i
−π2

i
,∀i6=k,p}

=

−

(
∂π1

k

∂πg

)

{π1
i −π2

i ,∀i6=k,g}
−
(

∂π2
k

∂πg

)

{π1
i −π2

i ,∀i6=k,g}
(

∂π1
k

∂πp

)

{π1
i −π2

i ,∀i6=k,p}
−
(

∂π2
k

∂πp

)

{π1
i −π2

i ,∀i6=k,p}

. (3.45)

where π1
i − π2

i is constant and equal to zero (Eq. 3.43). If the potential y is a first order

homogeneous function then Eq. 3.45 simplifies to

(
∂πp

∂πg

)

{π1
i −π2

i ,∀i6=p,g}

= −

x1
g

x1
k

−
x2

g

x2
k

x1
p

x1
k

−
x2

p

x2
k

, (3.46)

by computing the partial derivatives using the Gibbs-Duhem Equation (Eq. 3.44) for each

phase.

The system goes through a heterogeneous state where both phases coexist, with a

fraction of the system in one phase and the remainder in the other. The intensive vari-

ables πi that characterize the line that links the two phases (line A in Fig. 3.1) are such

that:
∑

i6=j

π2
i∫

π1
i

(x1
i − x2

i )dπi = 0; this is the Maxwell construction proved next. Each point

in a vertical line in Fig. 3.1 has a different πi for i 6= j; therefore, vertical lines have a

variable value of the Legendre transform ϕ(π1, . . . , πn). The horizontal line or πi that cor-

respond to the phase transition are such that the Legendre transform is at its maximum:

dϕ =
∑

i6=j

xidπi = 0. (3.47)

By integrating Eq. 3.47 we obtain the Maxwell construction. Its geometrical meaning

is best understood for the case where all intensive variables are kept constant with the

exception of πk:
π2

k∫

π1
k

xkdπk = 0, i.e., the area below the dashed line must be equal to

the area above. However, if the function y is homogeneous first order then the Legendre

transform ϕ(π1, . . . , πn) is always null because Eq. 3.44 applies. In this case, the adequate

Legendre transform has one extensive variable, ϕ(x1, π2, . . . , πn). Also, the horizontal

line or the πi that corresponds to the phase transition is such that the Legendre transform
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is at its maximum. With x1 constant:

dϕ =
∑

i6=1,j

xidπi = 0. (3.48)

Also for systems where x1 is constant and all intensive variables with the exception of πk

are also kept constant:
π2

k∫

π1
k

xkdπk = 0.

The system moves from one phase to the other by exchanging extensive variables with

the exterior, i.e., flows, subject to the constraints imposed:

gz = 0, z = 1, . . . , m. (3.49)

The amount of each extensive variable is computed using the specific extensive variables,

Xi = xi

X
, where X is

X = X1 + X2 ≡ αX + (1 − α)X,

X1 is the amount of X in phase 1 and α is the fraction of X in phase 1. Using the specific

extensive variables the amount of xz in each phase is

x1
z = XαX 1

z ,

x2
z = X(1 − α)X 2

z .

Thus the amount of xz is

xz = x1
z + x2

z = XαX 1
z + X(1 − α)X 2

z . (3.50)

This is the Generalized Lever Rule, i.e., the set of variables xz, z = 1, . . . , n is a linear

combination of the sets of specific variables X k
z , k = 1, 2. With the set of Eq. 3.50 and the

constraints imposed by Eq. 3.49 it is possible to compute xz, z = 1, . . . , n. Whenever y

is first order homogeneous function, the specific variables X k
z are independent of the size

of the system and therefore the set of independent intensive variables completely specify

the set of specific variables X k
z .

In a thermodynamic system, a phase transition occurs where the entropy fundamental

equation is unstable, i.e., it is no longer concave. Fig. 3.2 shows where the stability criteria

are violated: where the compressibility at constant temperature, κT , becomes negative. In

this case, the system is no longer homogeneous but two different phases coexist. The two

phases are characterized by: (1) equal temperature, pressure and chemical potential for
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V

P

T const.

Figure 3.2: First Order Phase Transition in Thermodynamics.

each chemical species and (2) different volumes, number of moles and internal energy.

These conditions imply that cP = ∞, α = ∞, κT = ∞.

The number of independent intensive variables, given by the Gibbs phase rule, for

thermodynamics, is r = (r + 2) − 2 where r is the number of different chemical species

and r+2 is the number of extensive variables. For systems with constant number of moles,

constant temperature and constant chemical potentials for all species, the horizontal line

of the phase transition is such that:
P 2
∫

P 1

V dP = 0 (Fig. 3.2).

In the thermodynamic phase transition, the change in pressure with temperature given

by the Clapeyron Equation (Eq. 3.46) is

(
∂P

∂T

)

{µ1=µ2}

=
S1

N1 −
S2

N2

V 1

N1 −
V 2

N2

=
∆s

∆v
, (3.51)

obtained for a system with one chemical component using Eq. 3.46 with πp = −P and

πg = T and where ∆s and ∆v are the changes in specific entropy, s ≡ S/N , and specific

volume, v ≡ V/N , between the two phases. The other relations that can be obtained are:

(
∂µ

∂T

)

{P 1=P 2}

= −
S1

V 1 −
S2

V 2

N1

V 1 − N2

V 2

= −
s1v2 − s2v1

∆v
, (3.52)

and

(
∂µ

∂P

)

{T 1=T 2}

=
V 1

S1 − V 2

S2

N1

S1 − N2

S2

=
v1s2 − v2s1

∆s
. (3.53)

In a thermodynamic system, the phase transition occurs as the system exchanges en-

ergy and/or volume, in the form of heat and/or work with the environment, i.e., U and/or

V change during the phase transition, at constant total number of moles

N ≡ N1 + N2 = αN + (1 − α)N, (3.54)
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where α is the fraction of N in phase 1. The aggregate amounts of volume and internal

energy are given by the Lever Rule: V = V 1 + V 2 = αNv1 + (1 − α)Nv2 and U =

U1 + U2 = αNu1 + (1 − α)Nu2, where u ≡ U/N is the specific energy.

Phase transitions in consumer theory occur where the utility function is unstable (no

longer concave) or the expenditure function is unstable (no longer convex). Fig. 3.3 shows

where the stability criteria are violated: the own price elasticity of demand, εpk
, becomes

positive. In this case, the consumer has two different stable consumption bundles. The two

consumption bundles are characterized by: (1) equal MUi and (2) different values of the

variables xi. These conditions imply that ε{pk,∀k 6=i} = ∞, e{pk,∀k 6=i} = ∞, e{pk,∀k 6=i} = ∞.

The number of independent intensive variables, given by the Gibbs phase rule, for the

consumer, is n and decreases to n − 2 is the utility is a first order homogeneous function.

For consumers in a market with constant prices for all products except product k, the

horizontal line of the phase transition is such that:
p2

k∫

p1
k

xkdp = 0.

In the consumer phase transition, the change in price of good i with price of good j,

is
(

∂pi

∂pj

)

{p1
z=p2

z ,∀z 6=i,j}

=

−

(
∂p1

k

∂pj

)

{p1
z−p2

z ,∀z 6=k,j}
−
(

∂p2
k

∂pj

)

{p1
z−p2

z,∀z 6=k,j}
(

∂p1
k

∂pi

)

{p1
z−p2

z ,∀i6=k,i}
−
(

∂p2
k

∂pi

)

{p1
z−p2

z,∀i6=k,i}

. (3.55)

obtained using Eq. 3.45 with πp = pi and πg = pj. If the utility is a first order homoge-

neous function then Eq. 3.55 simplifies to:

∂pi

∂pj {p1
z=p2

z ,∀z 6=i,j}

= −

x1
j

x1
z
−

x2
j

x2
z

x1
i

x1
z
−

x2
i

x2
z

. (3.56)

In the consumer system, the phase transition occurs as the consumer exchanges goods

with the market at constant prices. Thus, a phase transition in consumer theory, can be

thought of as a transition between two separate points in the utility function, motivated by

an increasing (or decreasing) endowment:

w ≡ w1 + w2 = αw + (1 − α)w, (3.57)

where α is the fraction of w spent in phase 1. The aggregate amounts of each product are

given by the Consumer Lever Rule: pixi = pix
1
i + pix

2
i = αwX 1

i + (1 − α)wX 2
i , where

X 1
i ,X 2

i are the equilibrium amounts of endowment spent on xk
i per unit of endowment

spent in phase k.
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x2

p2

p1 const.

Figure 3.3: First Order Phase Transition in the Consumer.

3.12 Conclusions

We have contributed to the unification of knowledge between Equilibrium Thermody-

namics and Neoclassical Microeconomics by building a formalism common to both fields

(Tab. 3.6 and 3.7). This general formalism includes (1) a derivation of a general rela-

tion between non-dimensional elasticities (Eq. 3.32 to Eq. 3.34) and (2) a derivation of

the general formalism of first order phase transitions including a Generalized Clapeyron

Equation (Eq. 3.45).

We obtained the following results in thermodynamics: (1) a relation between the

non-dimensional thermodynamic coefficients and the change in Legendre transforms

which highlights the importance of the non-dimensional coefficients in thermodynam-

ics (Sec. 3.7), (2) the distinction between mathematical integrability and the optimization

(Sec. 3.10) and (3) the generalization of the Clapeyron Equation (Eq. 3.52 and Eq. 3.53).

We obtained the following results in economics: (1) the definition of irreversibility in

economic behavior (Sec. 3.4), (2) the clarification that the Engel curve and the offer curve

are not descriptions of real processes dictated by the maximization of utility at constant

endowment (Sec. 3.5), (3) a relation between elasticities (Eq. 3.39 to 3.41), (4) the proof

that Giffen Goods do not exist in a stable equilibrium (Sec. 3.9), (5) the establishment that

‘economic integrability’ is equivalent to the Generalized Le Chatelier Principle (Sec. 3.10)

and (6) the definition of a phase transition of first order characterized by an infinite own

price elasticity of demand (Sec. 3.11). The importance of phenomena similar to phase

transitions in economics has been recently highlighted for financial markets [21, 37] and

for an Ising economy [3]. With the general formalism provided in this chapter for the first

order phase transition, this concept can be applied more rigorously and extended to other

fields of economics.

Differences between the formalism of thermodynamics and the microeconomic for-
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General Formalism Thermodynamic Formalism

Fundamental Function y(x1, . . . , xn) S(U1, U2, V 1, V 2, N1
1 , . . . , N2

r )

Extensive Variables xi U j, V j , N
j
i

Intensive Variables πi
1

T j , P j

T j ,−
µ

j

i

T j

Duality Function x1(y, x2, . . . , xn) U(S1, S2, V 1, V 2, N1

1
, . . . , N2

r )

Irreversibility Increase in y at constant gz Increase in S at constant U, V, Ni

Value Function y∗(k1, . . . , kl) S∗(U, V, N1, . . . , Nr)

Legendre Transforms ϕ(x1, . . . , πi, . . . , xn) F = U − TS

H = U + PV

G = U − TS + PV

Elasticities q
ij
Π,X α, cv, cP , κs, κT

Maxwell Relations cP

cv
= κT

κs

Le Chatelier Principle 0 > qkk
{xi,∀i6=k} > . . . cP > cv > 0 and κT > κs > 0

> qkk
xj,{πi,∀i6=k,j} > qkk

{πi,∀i6=k}

Equations of State πi(x1, . . . , xn) T (S, V, N1, . . . , Nr)

P (S, V, N1, . . . , Nr)

µi(S, V, N1, . . . , Nr)

Integrability Hessian matrix is: symmetric Maxwell Relations

and negative semidefinite Constraints on elasticities

Phase transition q
jj

{πi,∀i6=j} = ∞ cP = ∞, α = ∞, κT = ∞

Maxwell construction πk:
π2

k∫

π1

k

xkdπk = 0
P 2

∫

P 1

V dP = 0

Table 3.6: Table of Correspondences I.

malism are: (1) the fundamental equation in thermodynamics must be a homogeneous

first order equation because entropy is additive over the subsystems while in microeco-

nomics the utility is not 12, (2) the integrability problem is solved in microeconomics by

imposing that the consumer is always rational (which is not always empirically true) while

in thermodynamics it is solved by imposing the second law (which has always been em-

pirically true), (3) there is no equivalent to the Expenditure Duality in thermodynamics

because thermodynamic intensive variables do not all have the same meaning and (4) the

composite vs. simple systems issue only exists in thermodynamics because the entropy is

only defined in equilibrium while utility is defined out of equilibrium. The measurement

12In the field of Nonextensive Thermodynamics entropy is no longer a homogeneous first order function.
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General Formalism Economic Formalism

Fundamental Function y(x1, . . . , xn) U(x1, . . . , xn)

Extensive Variables xi xi

Intensive Variables πi MUi

Duality Function x1(y, x2, . . . , xn) x1(U, x2, . . . , xn)

w(x1, . . . , xn)

Irreversibility Increase in y at constant gz Increase in U at constant w

Value Function y∗(k1, . . . , kl) U∗(w, p1, . . . , pn)

Legendre Transforms ϕ(x1, . . . , πi, . . . , xn) Ψ = w −
∑

i=1,l

xipi

Elasticities q
ij
Π,X ε{pk,∀k 6=i}, ε{xk,∀k 6=j}

e{pk,∀k 6=i}, e{xk,∀k 6=j}, e{pk,∀k 6=i}

Maxwell Relations
εp1

εp2

=
εx1

εx2

Le Chatelier Principle 0 > qkk
{xi,∀i6=k} > . . . 0 > εxk

> εpk

Equations of State πi(x1, . . . , xn) pj(x1, . . . , xn)

Integrability Hessian matrix is: symmetric Antonelli’s integrability conditions

and negative semidefinite Constraints on elasticities or

economic integrability

Phase transition q
jj

{πi,∀i6=j} = ∞ ε{pk,∀k 6=i} = ∞, e{pk,∀k 6=i} = ∞

e{pk,∀k 6=i} = ∞

Maxwell construction πk:
π2

k∫

π1

k

xkdπk = 0
p2

k∫

p1

k

xkdp = 0

Table 3.7: Table of Correspondences II.

of the entropy in a thermodynamic system out of equilibrium implies that: (1) the system

be divided into subsystems where the entropy is defined, i.e., subsystems in equilibrium

and (2) the total entropy of the composite system be obtained by summing up the en-

tropies of the subsystems. In contrast, the measurement of the utility out of equilibrium

is straightforward because utility is defined for all consumption baskets.

Among the works cited in the introduction on the analogy between equilibrium ther-

modynamics and neoclassical microeconomics we would like to emphasize the contribu-

tions made by Rozonoer [23, 24, 25], Samuelson [27, 26] and Smith and Foley [30]. In

this chapter we follow the same approach that is followed in these works considering that

the entropy is formally analogous to the utility. Samuelson applies Le Chatelier Principle

to economic systems. Rozonoer establishes an analogy between mechanisms of resource
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exchange and allocation in thermodynamics and economics. This author also obtains a

version of the Le Chatelier Principle, although it is less general then the one obtained

here. Smith and Foley depart from the three axioms for the mathematical representation

of thermodynamic and economic systems (the three laws of thermodynamics). These au-

thors obtain as the second law for the consumer theory a definition of irreversibility in

economic behavior similar to the one proposed in this chapter, although our definition

of irreversibility is valid only for a constant endowment (constant energy for a thermody-

namic system). We believe that this constraint is necessary in the definition of irreversibil-

ity because if the consumer is forced to decrease his endowment, e.g., due to a new tax,

then he might find optimal to reverse a trade that has increased his utility in the past.

Future work on the topic of equilibrium econophysics should encompass: (1) the

derivation of first order phase transitions for the consumer theory with other constraints

and between different utility functions, (2) the derivation of second-order phase tran-

sitions, (3) the establisment of a relation between consumer theory and social welfare

analogous to the relation between statistical physics and macrothermodynamics and (4)

the improvement of consumer theory to include thermodynamic irreversibility (building

on the work of Sousa and Domingos [31]).

3.13 Appendices

3.13.1 Appendix I

The composite system can have an arbitrary number of subsystems; in this chapter, we

consider only the simplified case of two subsystems. Each subsystem is a homogeneous

system, i.e., it has a uniform temperature, pressure and chemical potentials for each chem-

ical species. Each subsystem is a simple system.

According to Callen’s postulate III [4], the entropy of a composite system is additive

over the constituent subsystems, i.e., S =
2∑

j=1

Si, where the entropy of each subsystem

is a function of its extensive variables Sj(U j , V j , N j
1 , . . . , N

j
r ). Thus, the entropy of the

system is S(U1, U2, V 1, V 2, N1
1 , N2

1 , . . . , N1
r , N2

r ). Applying the same reasoning to the

internal energy, it can be concluded that U(S1, S2, V 1, V 2, N1
1 , N2

1 , . . . , N1
r , N2

r ).

The enthalpy of subsystem j is Hj = U j + P jV j and the enthalpy of the composite

system is H =
2∑

j=1

Hj =
2∑

j=1

U j + P jV j. If the intensive variable is the same for both
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subsystems, i.e., P 1 = P 2 then H =
2∑

j=1

U j + PV j = U + PV . The same reasoning can

be applied to the other Legendre transforms to obtain the expressions given in sec. 3.6.

Elasticities defined in sec. 3.7 can always be used to characterize simple systems. In

the case of composite systems: (1) α, cP and κT are adequate for composite systems with

homogeneous temperature and pressure, (2) κs for composite systems with homogeneous

pressure and (3) cv for composite systems with homogeneous temperature.

Equations of state can describe: (1) composite systems in equilibrium or (2) each

subsystem separately.

3.13.2 Appendix II

The Hessian of the Lagrangean function is given by:














L11 · · · L1n g1
1 · · · gm

1
...

. . .
...

...
. . .

...

Ln1 · · · Lnn g1
n · · · gm

n

g1
1 · · · gm

1 0 · · · 0
...

. . .
...

...
. . .

...

g1
n · · · gm

n 0 · · · 0















,

where Lij = ∂2L
∂xj∂xi

and gi
j = ∂gi

∂xj
[13].

3.13.3 Appendix III

A more detailed deduction of the relation between elasticities given by Eq. 3.32 is pre-

sented below. Relations given by Eq. 3.33 to Eq. 3.34 are obtained in a similar manner.

Starting from
(

∂xk

∂πk

)

{πi,∀i6=k}

=

(
∂xk

∂πk

)

xj ,{πi,∀i6=k,j}

+

(
∂xk

∂xj

)

{πi,∀i6=j}

(
∂xj

∂πk

)

{πi,∀i6=k}

(3.58)

and (1) multiplying by
(

∂xj

∂πj

)

{πi,∀i6=j}
and (2) using the Maxwell relation

(
∂xk

∂πj

)

{πi,∀i6=j}
=

(
∂xj

∂πk

)

{πi,∀i6=k}
we obtain,

(
∂xj

∂πj

)

{πi,∀i6=j}

(
∂xk

∂πk

)

{πi,∀i6=k}

=
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=

(
∂xj

∂πj

)

{πi,∀i6=j}

(
∂xk

∂πk

)

xj ,{πi,∀i6=k,j}

+

(
∂xj

∂πk

)

{πi,∀i6=k}

(
∂xj

∂πk

)

{πi,∀i6=k}

. (3.59)

Eq. 3.32 is obtained by multiplying Eq. 3.59 by πk

xk
and rearranging.

The deduction of Eq. 3.35 is presented next. The differential of the extensive variable

xk can be written as:

dxk =
∂xk

∂π1
dπ1 + . . . +

∂xk

∂πn
dπn. (3.60)

Starting with Eq.3.60 the following steps are taken: (1) the Maxwell relation,
(

∂xi

∂πk

)

{πj ,∀j 6=k}
=
(

∂xk

∂πi

)

{πj ,∀j 6=i}
(Tab 3.2) is used to replace the partial derivatives, (2)

the expression is differentiated in relation to πk with xi constant and (3) the expression is

multiplied by πk

xk
and the following equation is obtained:

πk

xk

(
∂xk

∂πk

)

{xi,∀i6=k}

=

πk

xk

(
∂x1

∂πk

)

{πi,∀i6=k}

(
∂π1

∂πk

)

{xi,∀i6=k}

+

. . . +
πk

xk

(
∂xn

∂πk

)

{πi,∀i6=k}

(
∂πn

∂πk

)

{xi,∀i6=k}

. (3.61)

Using the elasticity given by Eq. 3.27, Eq. 3.61 can be written:

qkk
{xi,∀i6=k} =

x1

xk

q1k
{πi,∀i6=k}

(
∂π1

∂πk

)

{xi,∀i6=k}

+

. . . +
xn

xk
qnk
{πi,∀i6=k}

(
∂πn

∂πk

)

{xi,∀i6=k}

. (3.62)

With the partial derivatives replaced by

(
∂πj

∂πk

)

xi 6=k

= −
πjq

jk
πj ,{xi,∀i6=k,j}

πkq
jj
πk,{xi,∀i6=k,j}

, (3.63)

obtained using Eq. 3.27, Eq. 3.62 simplifies to Eq. 3.35.

3.13.4 Appendix IV

A simple and direct demonstration of the Euler Equation is presented by Callen [4, pp.

59], where Equation y(λx1, . . . , λxn) = λy(x1, . . . , xn) is differentiated with respect to

λ and then λ is set to 1.
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The Gibbs-Duhem Equation, 0 = x1dπ1 + . . .+xndπm, is obtained by combining the

differential of the Euler Equation, dy = π1dx1 + . . . + πmdxn + x1dπ1 + . . . + xndπm,

with the fundamental equation dy = π1dx1 + . . . + πmdxn.
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Chapter 4

The thermodynamics of organisms in the

context of DEB theory

Abstract

We carry out a thermodynamic analysis to an organism. It is applicable to any type

of organism because 1) it is based on a thermodynamic formalism applicable to all open

thermodynamic systems and 2) uses a general model to describe the internal structure of

the organism - the Dynamic Energy Budget Model. Our results on the thermodynamics

of DEB organisms are the following. (1) Thermodynamic constraints for the following

types of organisms: (a) aerobic and exothermic, (b) anaerobic and exothermic and (c)

anaerobic and endothermic; showing that anaerobic organisms have a higher thermody-

namic flexibility. (2) A way to compute the changes in the enthalpy and in the entropy of

living biomass that accompany changes in growth rate solving the problem of evaluating

the thermodynamic properties of biomass as a function of the amount of reserves. (3)

Two expressions for Thornton’s coefficient that explain its experimental variability and

theoretically underpin its use in metabolic studies. (4) A new mechanism that organisms

in non steady-state use to rid themselves of internal entropy production: ‘dilution of en-

tropy production by growth’. To demonstrate the practical applicability of DEB theory to

quantify thermodynamic changes in organisms we use published data on Klebsiella aero-

genes growing aerobically in a continuous culture. We obtain different values for molar

entropies of the reserve and the structure of Klebsiella aerogenes proving that the reserve

density concept of DEB theory is essential in discussions concerning (a) the relationship

between organization and entropy and (b) the mechanism of storing entropy in new bio-

mass. Additionally, our results suggest that the entropy of dead biomass is significantly

65
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different from the entropy of living biomass.

Keywords: Organism, Thermodynamics, Dynamic Energy Budget Theory, Entropy,

Enthalpy, Thornton’s coefficient.

4.1 Introduction

Many thermodynamic analyses of living organisms and cells have been made. Demirel et

al.[10], for example, used thermodynamics to describe the coupled phenomena of trans-

port and chemical reactions that take place inside living systems; Battley analyzed the

entropy change accompanying the growth of E. coli [2] and the growth of Saccharomyces

cerevisiae [5]; Stockar et al. [31, 32] analyzed the internal entropy production in some

micro-organisms; Esener et al. [12] studied the energetics of Klebsiella aerogenes; Duboc

et al. [11] evaluated the thermodynamic efficiency of Saccharomyces cerevisae; Qian and

Beard [29] introduced a thermodynamic formalism to study metabolic biochemical reac-

tion networks, etc.

The thermodynamic analyses mentioned use equations that describe chemical reac-

tions that take place inside an organism as the model describing the organism’s behavior;

examples of these aggregated chemical reactions are given in Battley[5, Table 2] for some

microorganisms. Because these models need a considerable amount of data they are not

useful in thermodynamic analyses made of more complex organisms. Even for microor-

ganisms these models present problems because they do not give a mechanistic explana-

tion of many of the energetic aspects of an organism’s growth process; this is patent in the

ad-hoc explanations given for the empirical results.

The thermodynamic analyses that have been made would benefit from a general the-

ory underlying the description of the energetic fluxes in order to build up solid knowledge

about organism’s metabolism. The Dynamics Energy Budget (DEB) theory is the most

general non-species-specific theory of this kind [22, 23, 28]. It consists of a set of simple,

mechanistically inspired rules that fully specify the uptake and use of mass and energy by

an organism. The frequently applied classical models by Monod and Marr-Pirt on bacter-

ial growth, and the well-known model by Droop for nutrient limited growth of unicellular

algae are all special cases of DEB theory. DEB theory also considers phenomena of a

complexity well beyond these simple models, including simultaneous nutrient limitation,

adaptation, co-metabolism, flocculated growth, product formation, aging and syntrophy.

Here, we will carry out a thermodynamic analysis of an organism using 1) the most
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general framework of non-equilibrium thermodynamics applicable to all open thermody-

namic systems (de Groot and Mazur [19], Bejan [7] and Moran et al. [26]) and 2) the

knowledge of its internal dynamics given by DEB theory.

This chapter is organized as follows. In section 4.2 we begin by defining the DEB

thermodynamic system, i.e., the mass and energy flows in the organism and the dynamics

of its state variables. This is followed by a thermodynamic analysis of the organism in

section 4.3. This analysis uses the mass, energy and entropy balances together with DEB

to obtain the thermodynamic constraints imposed on different types of organisms and to

discuss the use of Thornton’s coefficient. In Section 4.4 a thermodynamic characteriza-

tion of Klebsiella aerogenes is done using published data from chemostat experiments.

Section 4.5 concludes.

4.2 Thermodynamic System

To simplify our analysis, we focus on a single-reserve, single-structure heterotrophic that

lives on a single substrate. It is a V1 morph, i.e., an organism whose surface area is

proportional to volume. Extensions to include more substrates, reserves and/or structures

have been formulated in the DEB theory to include autotrophs and nutritional details [22].

However, such extensions do not pose new thermodynamic problems. Appendix 4.6.1

presents an explanation of the notation used throughout the chapter.

Fig. 5.1 presents a scheme, according to DEB theory, for an asexually propagating

heterotrophic organism 1. The simplest DEB model delineates one reserve, E, with ME

C-moles, and one structure, V , with MV C-moles; the chemical composition of each is

assumed to be constant (the strong homeostasis assumption). This simplifying assumption

combines nicely with the idea that the enzymes that catalyse chemical transformations in

the organism do so in a constant chemical environment, which is essential for full control.

Reserve has the dual role of providing both energy and essential compounds for growth,

maintenance, development and reproduction.

The incoming and outgoing fluxes through the outer surface of the system can be

divided into organic (food, X and products, P ), and mineral (CO2, H2O, O2, and ni-

trogenous waste, Nwaste) compounds. The energy flow of the food uptake per C-mol of

structure ṗX , enters and is transformed into an assimilation energy flux per C-mol of struc-

ture, ṗA, that goes into the reserves and into products, P , that are excreted. The catabolic

1The simplifications chosen are suitable for our empirical application.
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energy flux, ṗC , i.e., the rate per C-mol of structure, at which the organism mobilizes its

reserve for metabolic purposes 2, is partitioned between growth, ṗG, and maintenance,

ṗM , i.e.,

ṗC = ṗM + ṗG. (4.1)

Maintenance includes a variety of requirements, such as the turnover of chemical

compounds of structure (e.g. proteins), the maintenance of concentration gradients across

membranes, the maintenance of defense systems (e.g. the immune system), activity (in-

cluding behavior), the heating of the body to a near constant temperature (endotherms

only) and osmotic work (especially freshwater organisms) [22]. Growth is defined as the

increase of structure; body weight has contributions from both reserve and structure.

Ellipses in Fig. 5.1 are idealized reactors where anabolic and catabolic processes take

place. These transformations occur all over the organism, rather than at specific sites.

Consequently, the idealized reactors are the transformations themselves. These processes

are characterized by constant conversion efficiencies between mass flows, y∗1∗2, i.e., the

number of moles of ∗1 needed to produce one mol of ∗2. In the assimilation reactor

food is converted into reserve, yXE, and in the growth reactor reserve is converted into

structure, yEV .

The ratio mE ≡ ME/MV is the reserve density. For any constant food level, X =

X∗ > 0, there is a reserve density, m∗
E , that remains constant along the growth process.

Furthermore limX∗→∞ m∗
E ≡ mEm where mEm is the maximum reserve density (the

weak homeostasis assumption).

We now quantify the dynamics of the state variables structure and reserve. The amount

of structure and reserve and the flows in the organism are measured in mass and Gibbs

energy and the conversion between them is done using chemical potentials: the chemical

potential of food, µX , converts the flow of food per C-mol of structure, jX , to ṗX ; the

chemical potential of reserve, µE, converts the flow of reserve that exits the assimilation

reactor to ṗA and the flow of reserve that exits the reserve compartment to ṗC = ṗM + ṗG.

The change in C-moles of reserve per C-mol of structure is:

jE ≡
1

MV

dME

dt
=

ṗA − ṗC

µE
, (4.2)

because the reserve is continuously used (catabolic power) and replenished (assimilation

power). With Eq. 4.2, the reserve density dynamics is

dmE

dt
≡

d(ME/MV )

dt
=

ṗA − ṗC

µE

− mE
1

MV

dMV

dt
, (4.3)

2Catabolism has a somewhat different meaning in the biochemistry literature.
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where the last term on the right hand side is the dilution by growth.

To further evaluate the reserve dynamics we need to quantify feeding and assimilation.

The food uptake per C-mol of structure is given by jX = fjXm where f is the scaled

functional response and jXm is the maximum food uptake per C-mol of structure, i.e., the

food uptake that would occur at abundant food availability. The assimilation energy flow

per C-mol of structure is

ṗA =
jX

yXE
µE, (4.4)

where jX

yXE
is the reserve flow that exits the assimilation reactor per C-mol of structure.

The reserve dynamics can be further deduced considering 1) that the catabolic power

is independent of the food availability, 2) that the mobilization of reserves does not depend

on how they are partitioned among aggregates with different chemical compositions and

3) the weak homeostasis assumption (for details on the derivation see Appendix 4.6.2).

The reserve dynamics is then

dmE

dt
= k̇E (fmEm − mE) , (4.5)

where k̇E is the maximum reserve turnover rate:

k̇E =
jXm/yXE

mEm
. (4.6)

The parameter k̇E is a turnover rate because it is the ratio between the maximum flow

of C-moles of reserve into the ‘reserve compartment’, jXm/yXEMV , and the maximum

amount of C-moles of reserve kept in the ‘reserve compartment’, mEmMV .

By combining Eq. 4.3 with Eq. 4.5 the catabolic power simplifies to:

ṗC = µEmE

(

k̇E −
1

MV

dMV

dt

)

. (4.7)

To evaluate the dynamics of the structure we need to quantify maintenance and growth.

The maintenance energy flow per C-mol of structure is

ṗM = k̇MyEV µE , (4.8)

where k̇MyEV is the reserve flow that exits the reserve for maintenance purposes per C-

mol of structure and k̇M is the maintenance rate coefficient. The growth energy flow per

C-mol of structure is

ṗG = jV yEV µE , (4.9)
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Reserve (E)

Structure (V)

Minerals

Food (X)

Minerals, heat

Products (P)

Catabolism

Maintenance

Growth

Feeding    

Assimilation     

Figure 4.1: Schematization of an asexually propagating heterotrophic organism following DEB

theory. Boxes represent boundaries. Ovals represent chemical reactors. Lines represent mass and

energy flows: ṗX has the chemical composition of food; ṗA, ṗC , ṗG and ṗM have the chemical

composition of reserve and the flow that goes from the growth reactor to the structure compartment

has the chemical composition of structure.
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Compound

X Food

P Products

E Reserve

V Structure

W Biomass

O class of organic compounds (X, P , E, V )

M class of mineral compounds (CO2, H2O, O2, Nwaste)

Table 4.1: List of compounds.

where jV yEV is the flow that exits the reserve for growth purposes per C-mol of structure

and jV is the molar flow of structure.

The dynamics of structure

jV ≡
1

MV

dMV

dt
=

ṗG

yEV µE
=

(k̇E
mE

mEm
− k̇Mg)

( mE

mEm
+ g)

, (4.10)

is obtained by combining Eq. 4.1, Eq. 4.8, Eq. 4.9, and Eq. 4.7, where the investment ratio,

g, is a dimensionless quantity given by

g ≡ yEV /mEm, (4.11)

that stands for the ratio between the number of moles of reserve allocated to growth per

mole of structure and the maximum number of moles of reserve allocated to maintenance

plus growth per mole of structure. At constant food the dynamics of structure simplifies

to:

jV = (k̇Ef − k̇Mg)/(f + g), (4.12)

because the weak homeostasis assumption implies that dmE

dt
= 0.

4.3 Thermodynamic Analysis

We now formalise the thermodynamic analysis. See Table 4.1 for a list of compounds.

If the mole numbers of each compound, the total energy and the total entropy of

the organism are constant, the organism is in steady state. In this state there is still a

continuous flow of matter, energy and entropy through the system from and to external

reservoirs. This is implied by maintenance requirements. Here, we will consider that the
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organism is not in steady state because our life cycle perspective of an individual comes

with the necessity to consider changes in amounts of reserve and structure, both in mass

and energy aspects.

The strong homeostasis assumption justifies one of the main simplifications used in

the thermodynamic analysis: the molar chemical compositions, internal energies, en-

thalpies and entropies of reserve and structure are taken to be constant, independent of

the reserve density. In general, we consider that the chemical composition of biomass

(structure plus reserve) can change; this implies that the molar thermodynamic proper-

ties of biomass can also change. Whenever the reserve density is constant, the chemical

composition of biomass and its molar thermodynamic properties are also constant.

4.3.1 Mass Balance Equation

Most of the dry mass of biological systems consists of proteins, lipids, carbohydrates

and nucleic acids. The major chemical elements in the covalently bounded compounds

are carbon, C, hydrogen, H, oxygen, O, nitrogen, N, phosphorus and sulphur. The first

four elements stand for more than 96 % of the total dry mass [27], so we focus on these

elements only. A ‘molecule’ of structure is denoted by CHnHV
OnOV

NnNV
, a ‘molecule’

of reserve by CHnHE
OnOE

NnNE
, where the chemical index nij is the number of atoms

of element i per atom of carbon in compound j. The mass balance equation for the

organism is written on a molar basis for each element because there is no conservation of

compounds due to the chemical transformations inside the organism. The mass balance

equation is:

0 = nMJ̇M + nOJ̇O (4.13)

where J̇M is the vector with the molar fluxes of the minerals (J̇CO2
, J̇H2O, J̇O2

, J̇Nwaste
),

J̇O is the vector with the molar fluxes of the organics (J̇X , J̇P , −J̇V , −J̇E), nM is the

matrix with the chemical composition of minerals and nO is the matrix with the chemical

composition of organic compounds. Each entry in these matrices, n∗1∗2, is the number of

atoms of element ∗1 in compound ∗2.

The fluxes J̇V ≡ d
dt

MV and J̇E ≡ d
dt

ME are the change in C-mols of structure and

reserve per unit time in the organism. The other fluxes, J̇j, mole numbers per unit time,

are positive if they represent a net input into the thermodynamically defined organism

and negative otherwise. In a heterotrophic organism CO2 is usually but not always an

output, O2 is an input, H2O is an output formed metabolically from other compounds,
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nitrogenous waste is an output, food is an input and products are an output. Eq. (4.13)

states that, for each element, the rate of mole numbers accumulation inside the organism

(structure and reserve), equals the inputs minus the outputs (other organic and mineral

flows).

4.3.2 Energy Balance Equation

The energy balance equation quantifies the organism’s accumulation of energy as the

result of inputs minus outputs of energy fluxes. The energy fluxes (Joule/s) are the net

heat flux, the net work flux and energy fluxes associated with input and output molar

fluxes.

In this analysis mechanical work will be considered negligible. This is supported by

Garby et al. [17], who state that ‘the energy transfer as heat (in animals) is relatively large

and directed outwards, while the energy transfer as work is small’.

The temperature of structure, reserve and outgoing products, T , is assumed constant

and equal to the temperature of the body. We think this is a reasonable first approximation

because chemical reactions inside the organism occur for a limited temperature range

mainly due to enzymatic action [22]. Anyway this will probably be a better approximation

for endotherms or for ectotherms in an environment where they are able to keep their

temperature constant by moving.

This set of assumptions, i.e., a constant temperature of the organism, negligible me-

chanical work and incoming fluxes with a temperature similar to the organism’s imply

that the net heat released by the organism equals the net heat produced in all chemical re-

actions inside the organism. Chemical reactions taking place are the degradation of food

and reserve material in order to obtain energy (synthesize ATP from ADP) and release

nutrients, and the building up of reserve and new structural material with the nutrients

and energy obtained.

Here, we apply the energy balance equation to aerobic and to anaerobic organisms.

The distinction between these types of organisms is useful because there are simplifica-

tions applicable only to aerobic organisms (sections 4.3.2 and 4.3.3).



74 Chapter 4

Energy Balance Equation: General Organism

With the simplifications that were mentioned in section 4.3.2, the energy balance of the

entire thermodynamic system is

0 = h
T

MJ̇M + h
T

OJ̇O + ṖT+ (4.14)

where ṖT+ is the total released heat 3, h
T

M =
(

hCO2
hH2O hO2

hNwaste

)T

and h
T

O =
(

hX hP hV hE

)T

and hi is the molar enthalpy of compound i. The internal energy

and the flow work linked to the input and output molar fluxes are lumped in the enthalpy.

Eq. 4.14 is the energy balance for a non-steady state organism defined according to

DEB theory. This supports the use of direct calorimetry (the direct measurement of re-

leased heat) to assess enthalpy changes in organisms as referred by [31]: if the organism

was completely burned then the net heat release plus the enthalpy of the combustion prod-

ucts would be equal to the organism’s total enthalpy.

The enthalpy can be substituted by h = u+Pv = g+Ts = µ+Ts, which is obtained

using the definition of Gibbs energy g = u − Ts + Pv and the equality between Gibbs

energy and chemical potential g = µ for a single component:

0 = (µM + TsM)T J̇M + (µO + TsO)T J̇O + ṖT+ (4.15)

where sE is the molar entropy of the reserve, sV is the molar entropy of the structure,

µM and sM collect the values for the four minerals; µO and sO do that for the organic

compounds, as before.

Energy Balance Equation: Aerobic Organism

We assume that reactors have negligible mass and are at pseudo steady state. An addi-

tional assumption that can also be made is based on Garby and Larsen [17] who con-

sider, based on empirical knowledge, that for most important reactions in biological

systems T∆s is very small compared to ∆h and therefore the enthalpy of the reaction

∆hreaction is approximated using its Gibbs energy ∆greaction, since at constant tempera-

ture ∆g = ∆h− T∆s ≃ ∆h. This assumption is valid only for aerobic reactions but it is

less stringent than that of Kooijman [22], where entropy is set to zero.

3The heat follows the same sign convention as the mass flows: it is negative if the net input is negative,

i.e., the heat released is negative
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We apply the simplification that T∆s is very small to the set of all reactors to obtain:

0 = sT
MJ̇M + sT

OJ̇O. (4.16)

This equation can be disaggregated to

sV J̇V + sEJ̇E = sT
MJ̇M + sX J̇X + sP J̇P , (4.17)

to emphasize that the entropy variation of an aerobic organism (left hand side), equals the

net import of chemical entropy given by the right hand side of Eq. 4.17 4. With Eq. (4.17)

we conclude that, for an aerobic organism, if weak homeostasis applies, i.e., reserve and

structure are in constant proportions, then there is a positive net import of chemical en-

tropy during an increase in biomass, a negative net import of chemical entropy during a

decrease in biomass and a null net import at constant biomass (see the entries (1,1), (3,1)

and (5,1) 5 in Table 4.2). If weak homeostasis does not apply and the structure and re-

serve molar entropies are different then an organism that is increasing its biomass could

either have a positive or negative net import of chemical entropy. This is in accordance

with Stockar and Liu [31] who concluded that microbial growth might result either from

a positive or negative net import of chemical entropy.

The total entropy of an organism is easily computed if the molar entropy values and

the chemical composition of biomass are known. Otherwise, Eq. 4.16 has to be integrated

to obtain the total entropy of an organism as a function of total inputs and outputs from

birth tb until time t.

We apply the energy balance equation to the set of all reactors assuming that the

reactors are in steady-state but that the organism as a whole is not. We obtain 6,

0 = Q̇reactions + µT
OJ̇O + µT

MJ̇M (4.18)

where Q̇reactions is the rate of the total heat release by all chemical reactions, since the

work is null and the accumulation of energy is also null. Eq. 4.18 is equivalent to the

energy balance equation presented in [22, p153] but it is applicable only to an aerobic

organism. It would only be applicable to other organisms if entropies were set equal to

zero in Eq. 4.15. This is not a reasonable assumption because it is equivalent to assuming

4Chemical entropy is the entropy associated with mass.
5Entry is written as (line,column).
6We obtain this equation by summing the equations that describe the aggregate chemical reactions oc-

curring in each reactor.
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that the heat capacities of the various compounds including the minerals are null in the

interval between the absolute temperatures 0 K and T. Eq. 4.18 can be disaggregrated to

µV J̇V + µE J̇E = Q̇reactions + µX J̇X + µP J̇P + µT
MJ̇M. (4.19)

4.3.3 Entropy Balance Equation

The entropy balance equation states that the change in entropy is equal to the entropy

production inside the organism due to irreversible processes plus the net entropy flux

associated with heat and mass fluxes. The entropy balance equation is different from the

other balance equations because the accumulation of entropy inside the organism depends

on the internal processes, which control the value of the entropy production.

Entropy Balance Equation: General Organism

The entropy balance for the organism is

0 = σ̇ +
ṖT+

T
+ sT

MJ̇M + sT
OJ̇O, (4.20)

which can be written as

sV J̇V + sEJ̇E = σ̇ +
ṖT+

T
+ sT

MJ̇M + sX J̇X + sP J̇P , (4.21)

where ṖT+/T is the entropy exchange coupled with heat fluxes.

With Eq. 4.21 we conclude that for an anaerobic and exothermic organism 7 at constant

biomass, if weak homeostasis applies then the organism can have a 1) positive or 2)

negative net import of chemical entropy (see the entries (1,2) and (1,3) in Table 4.2).

In case 1 (resp. case 2) T σ̇ + ṖT+ < 0 (resp. T σ̇ + ṖT+ > 0). In case 1 (resp. case 2), the

organism will have a positive (resp. positive or negative) net import of chemical entropy

when its biomass is increasing and a positive or negative (resp. negative) net import of

chemical entropy when its biomass is decreasing (see the entries (3,2), (3,3) and (5,2),

(5,3) in Table 4.2). For an aerobic and endothermic organism the net import of chemical

entropy follows the same behaviour as in case 2 because T σ̇ + ṖT+ > 0 (see the entries

(1,4), (3,4) and (5,4) in Table 4.2).

Multiplying Eq. 4.20 by T and subtracting Eq. 4.15 we obtain

0 = gT
MJ̇M + gT

OJ̇O − σ̇T, (4.22)

7Exothermic (endothermic) organisms are organisms whose overall metabolism results in a negative

(positive) net import of heat from the exterior.
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where gi is the molar Gibbs energy per mole of compound i. This equation can be disag-

gregated to

gV J̇V + gE J̇E + σ̇T = gT
MJ̇M + gX J̇X + gP J̇P . (4.23)

to emphasize that the net import of Gibbs energy equals the rate of Gibbs energy change

inside the organism plus an irreversibility production measure.

The net import of Gibbs energy by an anaerobic organism follows the same behaviour

for exothermic and endothermic organisms (see Eq. 4.23). When the organism is either

increasing its biomass or at constant biomass the net input of Gibbs energy is positive (see

the entries (2,2), (2,3), (2,4), (4,2), (4,3) and (4,4)). When the organism is decreasing its

biomass the net input of Gibbs energy is negative or positive (see the entries (6,2), (6,3)

and (6,4)).

Entropy Balance Equation: Aerobic Organism

The results of the previous section can be further narrowed for aerobic organisms. Sub-

tracting Eq. 4.16 from Eq. 4.20, we obtain

σ̇ = −
ṖT+

T
, (4.24)

i.e., the rate of heat released by the aerobic organism equals minus an irreversibility pro-

duction measure.

Therefore, since the second law tells us that entropy production is always positive, the

total heat obtained from the organism is negative (released), which means that the sum

of the processes of assimilation, dissipation and growth must be exothermic for aerobic

life. The result of Kooijman in [22], i.e., ‘the second law of thermodynamics implies that

[each of] the processes of assimilation, dissipation and growth is exothermic’, is obtained

only by considering that entropies are null.

The second law only forbids that processes as a whole are endothermic when the

organism is aerobic and the heat released by the organism is equal to the heat released

in all chemical reactions. For example, using direct calorimetry, Stockar et al. [32, 25]

showed the existence of a chemotroph whose overall metabolic process (assimilation plus

dissipation plus growth) is endothermic. This rare type of overall metabolic process is

called ‘enthalpy retarded growth’.

With Eq. 4.19 and Eq. 4.24 we conclude that for an aerobic organism, if weak home-

ostasis applies then there is a positive net import of Gibbs energy at constant and at in-

creasing biomass (see the entries (2,1) and (4,1) in Table 4.2). When the organism’s
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Aerobic and Anaerobic and Anaerobic and

exothermic exothermic endothermic

Constant Biomass Chemical Entropy 0 + - -

Gibbs energy + + + +

Increasing biomass Chemical Entropy + + +/- +/-

Gibbs energy + + + +

Decreasing biomass Chemical Entropy - +/- - -

Gibbs energy +/- +/- +/- +/-

Table 4.2: Net import of chemical entropy and Gibbs free energy in the overall metabolism for 1)

exothermic aerobic organisms, 2) exothermic anaerobic organisms, and 3) endothermic anaerobic

organisms. All organisms are at constant chemical composition (weak homeostasis). Organisms

are either at constant, increasing or decreasing biomass. There are two columns for the anaerobic

and exothermic organisms because 1) they can either have a positive or negative net import of

chemical entropy at constant biomass (1st line) and 2) this is related to their behavior when they

are increasing or decreasing their biomass (3rd and 5th lines).

biomass is decreasing the net import of Gibbs energy is positive or negative (see the entry

(6,1) in Table 4.2).

4.3.4 Constraints imposed by the second law and DEB Theory

In the previous sections we made predictions on the sign of the net input into the organ-

ism of Gibbs free energy and chemical entropy. These results are synthesized in Table 4.2.

These predictions are made for aerobic exothermic organisms, anaerobic exothermic or-

ganisms and anaerobic endothermic organisms in a constant environment, for three situ-

ations: (1) steady-state (constant biomass), (2) non steady state with increasing biomass

and (3) non steady state with decreasing biomass. The imposition of a constant environ-

ment is a sufficient condition for weak homeostasis, i.e., constant biomass molar entropy.

Table 4.2 highlights the differences between aerobic and anaerobic organisms in a con-

stant environment: (1) only anaerobic organisms can be endothermic, (2) only anaerobic

organisms can have a net negative import of chemical entropy while increasing their bio-

mass and (3) only anaerobic organisms can have a net positive import of chemical entropy

while decreasing their biomass. Apparently, anaerobic organisms have a higher thermo-

dynamic flexibility.

For steady state, the internal entropy production (σ̇ > 0) implies a relation between
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the heat and the chemical entropy exchange with the environment (see Eq. 4.21). Based

on this, Stockar and Liu [31] distinguish different overall metabolisms: ‘entropy neutral

growth’ (1st column in Table 4.2), ‘entropy driven growth’ (3rd and 4th columns in Ta-

ble 4.2) and ‘entropy retarded growth’ (2nd column in Table 4.2) respectively for a null,

negative or positive net import of chemical entropy.

However, the classification of Stockar and Liu [31] developed for the steady-state

should not be used for the non steady state because it is misleading. An example is pro-

vided by aerobic organisms increasing their biomass. In this case they would be classified

as ‘entropy retarded’ when the mechanism used to get rid of entropy production is heat

dissipation only (see Eq. 4.24).

In non steady-states, organisms can get rid of internal entropy production by using an

additional mechanism: accumulation of chemical entropy in new biomass. This mech-

anism can be called ‘dilution of entropy production by growth’. The importance of the

mechanism of accumulation of chemical entropy in biomass is fully dependent on the

distinction introduced by DEB theory between reserve and structure. For an organism

that is not in steady state but has a constant chemical composition (weak homeostasis) the

capacity of this mechanism remains constant per C-mol of biomass increase (decrease)

because the additional C-mol has the same entropy. In constrast, when the reserve density

changes, the chemical composition of biomass and its entropy also change. Thus, the

additional C-mol of biomass increase (decrease) has a different capacity to accumulate

chemical entropy.

4.3.5 Calorimetry

Indirect Calorimetry

Indirect calorimetry is an empirical method of estimating heat production based on the

measurements of gaseous exchanges and the nitrogenous waste flux [8] using multiple

linear regression; see [3] or [24] for a good overview.

A theoretical underpinning for indirect calorimetry was provided by Kooijman [22].

Here, we obtained the linearity between the dissipated heat flux and the fluxes in a simpler

and more direct way by using only a subset of DEB theory: the existence of strongly

homeostatic reserve and structure.

We obtain the linear dependence between the mineral fluxes and the dissipated heat



80 Chapter 4

by combining Eq. 4.13 with Eq. 4.14,

ṖT+ = (h
T

On−1
O nM − h

T

M)J̇M. (4.25)

The coefficients that are obtained by linear regression are given by the expression in paren-

theses and can be computed without knowing any biochemical details. Only the chemical

composition and the enthalpies of the reserve, the structure and the input and output prod-

ucts are needed. This result is a theoretical basis for the linear dependence between the

mineral fluxes and the dissipated heat because it equates the total dissipating heat to a

weighted sum of consumed dioxygen, produced carbon dioxide, nitrogen waste and wa-

ter.

Thornton’s rule

In the literature, Thornton’s rule [33] is used to estimate heat production in aerobic or-

ganisms. This rule establishes a constant proportionality between the heat released in

the combustion of organic compounds and the consumed oxygen: 444 kJ per mol of O2

consumed. Recently the usefulness of this rule has been questioned by an experimental

study made by Walsberg and Hoffman [34] because significant variations were obtained

experimentally in the amount of heat released per mol of O2 in a Kangoroo rat and a dove.

We now use DEB theory to obtain the conditions that keep constant the proportionality

coefficient, hOT , in the amount of heat released,

ṖT+ = hOT J̇O2
. (4.26)

If the heat and the oxygen flows in Eq. 4.26 are written as functions of the organic fluxes

using Eq. 4.13 and Eq. 4.25, then the proportionality coefficient is given by:

hOT =
(h

T

O − h
T

Mn−1
MnO)J̇O

n−1
M(3, :)nOJ̇O

=

∑i=3
i=1(hO(i) − h

T

Mn−1
MnO(:, i))J̇O(i)

∑i=3
i=1 n−1

M(3, :)nO(:, i)J̇O(i)
(4.27)

where i = 1 is food, X , i = 2 is reserve, E, i = 3 is structure, V , nO(:, i) is column

i of matrix nO and n−1
M(3, :) is the 3rd line of matrix n−1

M ; it is the 3rd line that appears

because the 3rd column of matrix nM has the chemical composition of O2. Eq. 4.27 can

be written as:

hOT =

∑i=3
i=1 ṖT i+J̇O(i)

∑i=3
i=1 J̇O2

(i)J̇O(i)
=

∑i=3
i=1 hOTi

J̇O2
(i)J̇O(i)

∑i=3
i=1 J̇O2

(i)J̇O(i)
, (4.28)
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where ṖT i+ is the heat released in the complete combustion of one C-mol of the organic

compound i and n−1
M(3, :)nO(:, i) is the number of O2 moles consumed, J̇O2

(i), in the

complete combustion of a C-mol of the organic compound i. Because the heat released

in the complete combustion of an organic compound is constant it can be written as the

product of a constant hOTi
and J̇O2

(i).

With Eq. 4.28 the coefficient hOT can be interpreted as a mean of the heats released

per each mol of O2 that would be spent in the complete combustion of each organic

compound weighted by its net flow. For hOT to be constant it has to be independent of the

values of the organic flows JO(i). For this to occur, the coefficients hOTi
must be equal,

i.e., the heat released per mole of O2 for each organic compound must be the same, which

is usually not the case.

In the remainder of this section, we use DEB theory to obtain an expression that es-

tablishes the link between the coefficient of proportionality between the heat released and

the oxygen flow and the internal energetics of the organism. In the literature this coeffi-

cient has already been used to assess the metabolic pathways in aerobic organisms. For

example, Hansen et al. [21] obtained an expression that explains the difference between

the mean accepted value for Thornton’s coefficient and the observed proportionality co-

efficient by the existence of anaerobic reactions with an enthalpy change different from

zero.

Eq. 4.4 and 4.9 establish a connection between the organic flows of food, jX , and

structure, jV with the assimilation, ṗA, and growth powers, ṗG. The flow of reserve can

be written as a function of the three powers using Eq. 4.2 and Eq. 4.1:

jE = (ṗA − ṗM − ṗG)/µE. (4.29)

The flows jX , jV and jE multiplied by MV , can be assembled as:

J̇O = ηOṗMV , (4.30)

where ṗ is the vector with the three powers of assimilation, growth and maintenance per

C-mol of structure and ηO is the matrix with the coefficients that link each organic flow

with ṗA, ṗM and ṗG. With Eq. 4.30 and Eq. 4.28 the coefficient of proportionality hOT can

be written as:

hOT =

∑i=3
i=1 hOTi

J̇O2
(i)ηO(i, :)ṗ

∑i=3
i=1 J̇O2

(i)ηO(i, :)ṗ
. (4.31)

Eq. 4.31 establishes a link between the proportionality coefficient and the organism’s in-

ternal energetic flows: assimilation, maintenance and growth. Again, if the coefficients
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hOTi
are the same, hOT is independent of the relative amounts of energy spent in each in-

ternal process; otherwise its change can be used to assess the internal allocation of energy

in the organism between assimilation, growth and maintenance.

4.4 Empirical Application

To demonstrate the practical applicability of the well-tested DEB theory to quantify ther-

modynamic changes in organisms we use published data on Klebsiella aerogenes grow-

ing in a continuous culture at different steady-states obtained from Esener et al. [14, 15].

Klebsiella aerogenes is growing aerobically on glycerol as the sole carbon and energy

source, using ammonia as the N source, at a temperature of 35 ˚ C and a pH of 6.8 [14].

The products are only biomass (structure plus reserve), carbon dioxide and water [13].

The synthetic medium used by Esener et al. [13] is described by Evans et al. in [16].

More details about the experimental setup are given by Esener et al. [14].

Measurements include 26 measures of the specific CO2 production rate (mol of CO2

per C-mol of biomass inside the chemostat), 26 measures of the specific O2 consumption

rate, 26 measures of the yield of biomass on substrate YWX (C-mol biomass produced per

C-mol of substrate consumed) and 9 measurements of the biomass composition at dif-

ferent steady-states [14, 15]. Each steady-state is characterized by a different throughput

or dilution rate, d. The dilution rate is equal to the growth rate, jV , because otherwise

the biomass concentration in the chemostat would increase or decrease. The maximum

growth rate was also measured by [14, 15].

4.4.1 DEB parameters

We used the measurements to estimate the following essential DEB parameters: k̇E , yXE,

yEV , k̇M , g and the chemical compositions of a C-mol of structure nCV ≡ 1, nHV , nOV ,

nNV and a C-mol of reserve nCE ≡ 1, nHE , nOE , nNE .

The method is as follows. 1) We depart from a first guess of 13 DEB parameters.

2) For each steady-state we compute DEB variables like the functional response and the

reserve density using the DEB parameters. 3) For each steady-state we calculate the pre-

dicted values of CO2, O2, YWX and biomass composition. 4) We compute the difference

between the predicted values and the 105 measurements and make another estimation of

the DEB parameters using the Newton-Raphson method. Steps 2-4 are repeated in order

to minimize the sum of the squared errors. A detailed description of steps 1-3 is given
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below.

Estimation method

We depart from a first estimation of parameters k̇E , yXE, yEV , k̇M and g and the chemical

compositions of structure nCV , nHV , nOV , nNV and reserve nCE , nHE , nOE , nNE .

Eq. 4.12 is then used to compute the functional response f for each steady-state. This

equation is also used to compute the maximum growth rate, rm, that occurs when f is

equal to one.

The value for mEm is computed from the definition of investment ratio g given by

Eq. 4.11. For each steady-state Eq. 4.5 is used to compute the reserve density mE because

dmE/dt = 0.

With the reserve density mE and the parameters nCV , nHV , nOV , nNV , nCE , nHE ,

nOE and nNE , the chemical composition of a C-mol of biomass is computed using:

nHW = (nHV + mEnHE)/(1 + mE), (4.32)

nNW = (nNV + mEnNE)/(1 + mE), (4.33)

and

nOW = (nOV + mEnOE)/(1 + mE). (4.34)

The yield of biomass produced jV (1+mE), on substrate consumed fjXm, is computed

from:

yWX = jV (1 + mE)/(fjXm). (4.35)

The substrate consumption rate per mole of structure, jX , the structure production rate

per mole of structure, jV , and the reserve production rate per mole of structure, jE, are:

jX = fjXm, (4.36)

jV = jV , (4.37)

jE = jV mE . (4.38)

The flows in Eq. 4.36, 4.37 and 4.38 are divided by (1 + mE) to be converted to

flows per C-mol of biomass. Then, these flows are used together with the mass balance,

Eq. 4.13, applied to each steady-state of the Klebsiella aerogenes culture to compute the

CO2, H2O, O2 and NH3 flows. In Eq. 4.13, nM is the matrix with the chemical com-

position of minerals (CO2, H2O, O2 and NH3) and nO is the matrix with the chemical

composition of organic compounds (X, E, V ).
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Parameter Value Units

k̇M 0.021 h−1

k̇E 2.11 h−1

yV E 0.904 −

yXE 1.345 −

g 1 −

Table 4.3: DEB parameters for Klebsiella aerogenes.
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Figure 4.2: Measurements (points) and DEB model results (lines). Specific rate of consumption

of O2 (×), specific rate of production of CO2 (+) and yield (∗) vs. dilution rates. Units are:

mol.C-mol−1.h−1 for O2 and CO2 and C-mol.C-mol−1 for the yield.

Results

The elemental composition of structure and reserve are CH1.64O0.379N0.198, and

CH1.66O0.422N0.312, respectively. The values obtained for the other parameters are listed in

Table 4.3. The maximum growth rate measured is 1.052 h−1 and the value obtained with

the DEB model is 1.044 h−1. The comparison between the other measurements and the

DEB model results is presented in Fig. 4.2 and 4.3. The root mean square error for O2 and

CO2 are 0.0088 and 0.0086 mol.C-mol−1.h−1 respectively and the root mean square error

for YWX is 0.0249 C-mol.C-mol−1. The root mean square error for nHW , nOW and nNW

are 0.009, 0.0191 and 0.0113 C-mol.C-mol−1 respectively. Since the fits are very good,

and the DEB model obeys mass balances, we have an automatic check on the empirical

mass balances, i.e., the measurements obey the mass balance. The change in the chemical

composition of biomass (see Fig. 4.3) is not very significant because the chemical com-

positions of a C-mol of structure and a C-mol of reserve are similar with the exception of

the amount of nitrogen.

The values obtained for the reserve density for each dilution rate are in Fig. 4.4.
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Figure 4.3: Measurements (points) and DEB model results (lines). The variable chemical com-

position of biomass, nHW (+), nNW (×) and nOW (∗) vs. dilution rates.
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Figure 4.4: Reserve density vs. dilution rates.
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Figure 4.5: The assimilation, growth and maintenance energy flows per C-mol of biomass vs.

dilution rates.

We also obtained the flows per unit of biomass of assimilation, maintenance and growth

(Eq. 4.4, Eq. 4.8 and Eq. 4.9) shown in Fig. 4.5. The ratio of the assimilation flow to the

food flow,

ṗA/ṗX = (1/yXE)(µE/µX), (4.39)

is obtained with ṗX = jXµX and Eq. 4.4. This ratio is constant because Eq. 4.39 is a func-

tion of parameters only. The assimilation flow increases with the throughput rate because

the flow of food, X , also increases. Although the maintenance flow per C-mol of structure

is constant because it is a function of parameters only (Eq. 4.8), the maintenance flow per

C-mol of biomass decreases with the dilution rate because the reserve density increases.

This occurs because it is the structure that is costly in terms of maintenance and not the

reserve. The growth flow per C-mol of biomass increases with the dilution rate because

it is proportional to the specific growth rate, jV , (see Eq. 4.9) and the specific growth rate

(equal to the dilution rate) increases more than the reserve density (see Fig. 4.4).

The ratio of energy spent on maintenance to energy spent on growth, given by k̇M/r,

increases with a decreasing dilution rate, i.e., growth per C-mole of biomass becomes

more expensive with decreasing dilution rate. The energetic explanation rooted in DEB

theory for this behavior is: a decrease in the dilution rate translates into a lower catabolic

power (defined in Fig. 5.1) and because maintenance has priority over growth a higher

fraction of the catabolic power is spent on maintenance and a lower one on growth.
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4.4.2 Structure and reserve specific enthalpies and entropies

The enthalpy balance

The enthalpy balance applied to the chemostat is given by Eq. 4.14. For each steady-state

J̇M and J̇O are computed using the DEB model with the parameters estimated in the

previous section. Formation enthalpies of CO2, O2, H2O taken from [9] and formation

enthalpy of glycerol taken from [5] were corrected for the temperature of the experiment

using the specific heats at constant pressure taken from [9]. The formation enthalpy for

NH3 aq. is for 37 ˚ C and was taken from [20]. Values used are in Table 4.4. The en-

thalpies of structure and reserve are unknown but constant for all steady-states (strong

homeostasis assumption). The dissipating heat depends on the steady-state and is un-

known.

Eq. 4.14 is applied to different steady-states and solved for the dissipating heats and

the enthalpies of structure and the reserve. This system of equations involves 2 extra

unknowns. The two missing constraints were taken from Roels [30] (i.e. dissipating heats

for two steady-states).

Released heats are presented in Fig. 4.6. Specific released heat ranges from -20 kJ/C-

mol. to -253 kJ/C-mol (see Fig. 4.6) for increasing throughput rates. The values obtained

for the released heats are of the same magnitude as the released heats presented by [31] for

aerobic growth of different microorganisms on various substrates. The heat flow for each

dilution rate is much higher than any of the assimilation, growth and maintenance flows

(Fig. 4.6). Its magnitude is four to five times higher than the magnitude of the assimilation

flow. Therefore, the energy dissipated as heat, which in an aerobic organism is a measure

of the production of entropy, is a very significant energy drain.

We obtained a molar enthalpy of formation of -33 kJ/C-mol for the reserve and a

molar enthalpy of formation of -107 kJ/C-mol for the structure. Thus, the formation of

1 C-mol of structure and 1 C-mol of reserve from their components at a reference state

are both exothermic reactions, with the former being more exothermic. The steady-state

enthalpy of the biomass, (hV + hEmE)/(1 + mE), decreases with the dilution rate from

-76 kJ/C-mol to -105 kJ/C-mol. In the literature we found no formation enthalpy values

for Klebsiella aerogenes. Some formation enthalpy values referred in the literature are:

-95.68 kJ/C-mol for Escherichia coli growing aerobically on succinic acid [2], -97.8 kJ/C-

mol for the same microorganism [1] and -133.09 kJ/C-mol for Saccharomyces cerevisae.
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Ṗ
T

+

M
W

(k
J.

C
-m

o
l−

1
.h

−
1
)

Figure 4.6: The heat production rate per C-mol of chemostat biomass per hour (+) and heat

production per mol of O2 consumed (×) (Thornton’s rule) vs. dilution rates. Units are: (×) in

kJ.mol O2 and (+) in kJ.C-mol−1.h−1.

The entropy balance

The entropy balance applied to the chemostat is given by Eq. 4.16. For each steady-

state J̇M and J̇O are computed using the DEB model with the parameters estimated in

section 4.4.1. Absolute entropies were taken from Dean [9] and corrected for temperature

(see Table 4.4). The entropies of structure and reserve are unknown but constant for all

steady-states (strong homeostasis assumption).

Eq. 4.16 is applied to different steady-states and solved for the entropies of structure

and the reserve with nonlinear regression. We obtained a molar entropy of 74.8 J/C-

mol.K for the reserve and a molar entropy of of 52.0 J/C-mol.K for the structure. To test

the reliability of these specific entropy values we computed the left-hand side of Eq. 4.16

for many steady-states. It is very close to zero, i.e., it is at maximum 0.04% of any other

term in the equation. The first important remark is that these entropies are not null and

are different from the entropies of the inputs and outputs. The steady-state entropy of

the biomass, (sV + sEmE)/(1 + mE), increases from 52.4 J/C-mol.K to 61.4 J/C-mol.K

with increasing dilution rate (see Fig. 4.7). The molar biomass entropy increases with

the increasing dilution rate because the reserve density increases. In the literature we

found no absolute entropy values for Klebsiella aerogenes. Other absolute entropy values

comprise: 94.4 J/C-mol.K for dried Escherichia coli growing on succinic acid [2] and

34.17 J/C-mol.K for Saccharomyces cerevisae [4].

We also compare the molar biomass entropy obtained with DEB with the entropy

given by the empirical rule proposed by Battley [6] for organic substances (see Fig. 4.7).

The entropy of the biomass computed by DEB theory increases more with the dilution

rate and is significantly higher. However, the application of Battley’s rule to dead bio-
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Figure 4.7: Entropy of biomass computed with DEB model (+) and entropy of biomass given by

Battley’s rule (×) vs. dilution rates.

Formula State Enthalpy (kJ/mol) Entropy (J/mol.K)

CO2 g -393.14 214.70

H2O l -285.83 72.331

O2 g 0 205.80

NH3 aq. -132.5 112.34

C mol glycerol aq.8 -225.52 69.743

Table 4.4: Enthalpies and entropies at 35 ˚ C.

mass of Saccharomyces cerevisae [6] gave a very similar result to the entropy obtained

experimentally in [4]. Therefore: (1) the entropy of dead biomass is different from the

entropy of living biomass and (2) Battley’s rule should not be applied for living biomass.

The entropies of structure and reserve should be computed for other organisms in order

to evaluate the generality of these results.

In the literature [1] the entropy of biomass has been compared to the entropy of the

substrate. In our case, the biomass entropy ranges from 3.03 J/g.K to 2.69 J/g.K while

the entropy of glycerol is 2.03 J/g.K. The fact that 1 gram of biomass has a higher en-

tropy then 1 gram of substrate is in accordance with results obtained by Battley [1] for

Escherichia coli and succinic acid. Battley argues that this result points to the fact that

specific entropy is not related with complexity, otherwise, how could the lower entropy

value for the substrate be explained? We disagree because we think that 1 gram is an arbi-

trary quantity: why not compare 1 C-mol? In that case the entropy of a C-mol of structure

is lower than the entropy of a C-mol of glycerol.
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4.4.3 Calorimetry

The heats released in the complete combustion of compound i per mol of consumed O2

are: -472 kJ for the food, -485 kJ for the reserve and -447 kJ for the structure of Klebsiella

aerogenes. These values are more or less in agreement with the values obtained theoret-

ically by Gnaiger and Kemp [18] for other organic compounds. Although, the heats of

combustion of X , E and V are similar, the net flow of food is positive while the net flows

of structure and reserve are negative, suggesting that the coefficient hOT is not bounded

by the values of the various hOTi
. This is indeed the case for the dilution rates considered,

where the ratio of the heat flow to the oxygen flow varies between -476 kJ and -507 kJ per

mol of O2 consumed (see Fig. 4.6).

4.5 Conclusions

The thermodynamic analysis made in this chapter is applicable to any organism because

1) it is based on a thermodynamic formalism applicable to any open thermodynamic sys-

tem and 2) uses a general model to describe the internal structure of the organism - the

Dynamic Energy Budget Model.

We obtain the thermodynamic constraints for organisms with constant food availabil-

ity, i.e., organisms with a constant chemical composition (DEB’s weak homeostasis as-

sumption). These constraints are that only anaerobic organisms can (1) be endothermic,

(2) have a net negative import of chemical entropy while increasing their biomass and

(3) have a net positive import of chemical entropy while decreasing their biomass (see

Table 4.2). Apparently, anaerobic organisms have a higher thermodynamic flexibility.

We obtain Thornton’s coefficient as a function of either (1) the flows of organic com-

pounds (see Eq. 4.28), or (2) assimilation, maintenance and growth (see Eq. 4.31) using

DEB theory. These relationships are useful in providing new insights into the discrepan-

cies obtained between Thornton’s constant and experimental values.

We use experimental data on the aerobic growth of Klebsiella aerogenes to obtain

molar enthalpies and entropies for the reserve and structure. The knowledge that these

properties are constant (DEB’s strong homeostasis assumption) is sufficient to compute

changes in the enthalpy and in the entropy of living biomass that are known to accompany

changes in the reserve density. The importance of being able to compute thermodynamic

properties as a function of the amount of reserves has been acknowledged in the literature,

e.g., Battley [1] computes the enthalpy of a C-mol of E. coli under conditions that impose
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that ‘no storage materials are produced’. Previously, the entropy of living organisms was

obtained either by (1) experimental methods or by (2) Battley’s empirical rule [4]. The

use of DEB theory for these computations is better than the methods referred because (1)

experimental methods are destructive and (2) Battley’ rule does not give results similar

to the results we obtained. This last point suggests that the entropy of living biomass is

different from the entropy of dead biomass because Battley’s rule has been validated with

good results for dead biomass and organic compounds.

We introduce the mechanism of ‘dilution of entropy production by growth’ for organ-

isms that are not in steady-state. The capacity of this mechanism to store entropy in new

biomass changes with DEB’s reserve density because the molar entropy of the reserve is

different from the molar entropy of the structure. We proved this for Klebsiella aerogenes

where the entropies obtained are different from zero and the structure’s molar entropy is

significantly lower than the reserve’s. Additionally, this result suggest that the reserve

density concept of DEB theory is essential in discussions concerning the relationship be-

tween organization and entropy because the entropy of the organism is a function of the

reserve density but the entropy of the structure, which can be related with the organization

of the organism, is not.

The development of the generic thermodynamic analysis carried out in this chapter

can contribute to enlighten the discussions mentioned here and others including thermo-

dynamic measures of biological organization, the explanation of evolutionary increase in

size and evolutionary strategies of energy allocation.

4.6 Appendices

4.6.1 Appendix I

In this appendix we briefly explain the notation used throughout the chapter. A list of

compounds is in Tab. 4.1.

Mass of compound ∗, M∗, is measured in moles for P (product) or X (food) and in

C-moles for E (reserve), V (structure) and W (biomass). The ratio mE ≡ ME/MV is the

reserve density of the organism and mEm is the maximum reserve density.

Mass flows of compound ∗, j∗, are measured in moles (or C-moles) per C-mol of

structure per time. There is one exception to this rule, jXm, which is the flow of X

measured in moles per C-mol of structure per unit time at the maximum ingestion rate.

If mass flows are measured in moles or C-moles per unit time they are represented as
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J∗ ≡ j∗MV .

Coefficients that relate two mass flows are y∗1∗2. They represent the number of moles

of ∗1 needed to produce one mol of ∗2. In the assimilation reactor food is converted into

reserve, yXE, and in the growth reactor reserve is converted into structure, yEV .

Energy flows, ṗ∗, are measured in Gibbs energy per C-mol of structure per unit time.

The ∗ = X, A, C, M, G, stands for the process which the energy flow is associated with:

X (feeding), A (assimilation), C (catabolism), M (maintenance) and G (growth). Chemi-

cal potentials convert mass flows to energy flows: µX converts the flow of food to ṗX ; µE

converts the flow of reserve that exits the assimilation reactor into ṗA, the flow of reserve

that exits the reserve compartment into ṗC = ṗM + ṗG.

The energy flow ṗX is associated with the adimensional functional response f(X) ∈

[0, 1] that is equal to 1 at abundant food (X → ∞) and 0 at no food availability (X =

0). Other DEB parameters include: the reserve turnover rate k̇E and the maintenance

rate coefficient k̇M , both parameters’ dimensions are per time. The first is related with

the velocity of use of the reserve and the second with the velocity of degradation of the

structure. Also related with the structure there is the adimensional investment ratio g, a

measure of the relative cost of building structure.

Thermodynamic properties have the usual notation: g∗ is the molar Gibbs energy, h∗

is the molar enthalpy, s∗ is the molar entropy and u∗ is the molar internal energy and µ∗

is the chemical potential of compound ∗, T is the temperature, ṖT+ is the rate of heat

release by the organism and Q̇reactions is the rate of heat release by all chemical reactions

inside the organism.

Vectors and matrices are in bold. The transpose of a vector is indicated by T and the

inverse of a matrix is indicated by −1. An overbar means that it is a molar quantity.

The matrix with the chemical composition is n: nO is the matrix with the chemical

composition of the organic compounds (X , P , E, V ) and nM is the matrix with the

chemical composition of the minerals (CO2, O2, H2O, Nwaste). Each entry in these

matrices, n∗1∗2, is the number of atoms of element ∗1 in compound ∗2.

4.6.2 Appendix II

The dynamics of the reserve density

dmE

dt
= fmEmk̇E −

ṗC

µE

− mE
1

MV

dMV

dt
, (4.40)
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is obtained by combining Eq. 4.3 with Eq. 4.4, Eq. 4.6 and jX = fjXm. One of the

assumptions of DEB theory is that the mobilization of reserves, i.e., the catabolic power,

cannot depend on food availability, which means that it can only depend on the state vari-

ables, the reserve density, mE , and the amount of structure, MV . Under this assumption,

the last two terms in Eq. 4.40 are a function only of mE and MV . So, Eq. 4.40 can be

written as:
dmE

dt
= fmEmk̇E − Φ(mE , MV ). (4.41)

At constant food, the weak homeostasis assumption implies that the reserve density is

constant mE = m∗
E . Thus,

fmEmk̇E = Φ(m∗
E , MV ). (4.42)

However, the weak homeostasis assumption also implies that m∗
E is dependent on food

level but not on the amount of structure MV because the organism can grow with a con-

stant reserve density. Thus,

Φ(m∗
E , MV ) = H(m∗

E), (4.43)

because fmEmk̇E does not depend on MV . The function Φ(mE , MV ) can be general-

ized out of steady-state as Φ(mE , MV ) = H(mE) + (m∗
E − mE)G(mE , MV ). With this

specification for Φ(mE , MV ) eq. 4.41 becomes

dmE

dt
= fmEmk̇E − H(mE) − (m∗

E − mE)G(mE, MV ). (4.44)

With Eq. 4.40 and Eq. 4.44 the catabolic flux per C-mol of structure is:

ṗC = µEH(mE) + µE(m∗
E − mE)G(mE , MV ) (4.45)

− µEmE
1

MV

dMV

dt
.

Additionally, G(mE , MV ) = 0 because m∗
E is a function of food availability and accord-

ing to DEB theory the catabolic power cannot depend on food availability. Thus,

ṗC = µEH(mE) − µEmE
1

MV

dMV

dt
. (4.46)

Eq. 4.46 can be written as a function of mE , MV and parameters using Eq. 4.10:

ṗC = µEH(mE) − µEmE

(

k̇E
mE

mEm
− k̇Mg

mE

mEm
+ g

)

. (4.47)

To proceed with the derivation we need another of DEB’s assumptions: the partition-

ability of reserves. If the organism’s reserve is partitioned among different aggregates
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then the catabolic power that is mobilized from each aggregate must be proportional to

the amount of energy embodied in it:

MV ṗC(λmE , MV , λg) = λMV ṗC(mE , MV , g). (4.48)

Also, the number of moles allocated to growth per mole of structure, from each aggre-

grate, must be proportional to the amount of energy embodied in it.

The imposition that the catabolic power given by eq. 4.47 must obey eq. 4.48 implies

that λH(mE) = H(λmE). Therefore H(mE) = γmE and Eq. 4.46 simplifies to:

ṗC = µEmEγ − µEmE
1

MV

dMV

dt
. (4.49)

With Eq. 4.49 the reserve density dynamics given by Eq. 4.40 simplifies to:

dmE

dt
= fmEmk̇E − mEγ. (4.50)

At abundant food availability, (1) the ingestion rate jX = jXm implying that f = 1 and

(2) the steady-state reserve density is m∗
E = mEm. With conditions (1-2) γ = k̇E and

dmE

dt
= k̇E (fmEm − mE) . (4.51)
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Chapter 5

From empirical patterns to theory:

A formal metabolic theory of life

Abstract

The diversity of life on Earth raises the question of whether it is possible to have a unique

theoretical description of the quantitative aspects of the organisation of metabolism. How-

ever, similarities between organisms, like von Bertalanffy’s growth curves and Kleiber’s

law on metabolic rate, suggest that mechanisms that control the uptake and use of metabo-

lites are common to all organisms. These and other empirical patterns widespread in bi-

ology should be the ultimate test to any metabolic theory that hopes for generality. The

present study (1) collects empirical evidence on growth, stoichiometry, feeding, respira-

tion and indirect calorimetry and presents it in a simplified manner as stylized empirical

biological facts, (2) formalizes into assumptions and propositions a metabolic theory and

(3) proves that these assumptions and propositions are coherent with the stylized empiri-

cal facts. This formalized metabolic theory is fully consistent with the Dynamic Energy

Budget (DEB) Theory.

Keywords: Dynamic energy budget (DEB) theory, Kleiber’s law, von Bertalanffy

growth

5.1 Introduction

In the literature, two main approaches are followed to get insights into biological phenom-

ena: (1) the study of the complex set of biochemical reactions ocurring at different rates

and (2) the study of the organization of metabolism described by the mass and energy

99
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flows inside the organisms. We believe that the modeling of the biochemical networks of

reactions that are taking place in the organism is useful but will not by itself lead to an

understanding of life because the set of biochemical reactions occuring in the organism

can be species-specific and too complex, especially for multicellular organisms. Also, the

standard modeling of biochemical networks neglects the spatial structure and the complex

transport and allocation processes in the organism.

In contrast, this chapter builds on the premise that the mechanisms that are responsible

for the organization of metabolism are not species-specific [41]. This hope for generality

is supported by (1) the universality of physics and evolution and (2) the existence of

widespread biological empirical patterns among organisms.

The roadmap of this chapter is as follows. In section 5.2, the empirical patterns that

characterize metabolism are synthesized and presented in a stylized manner. They are

of the utmost importance because any biological non-species specific metabolic theory

should predict a qualitative behaviour that is compatible with these facts. We believe that

such a theory has already been developed - the Dynamic Energy Budget (DEB) Theory.

This theory aims to capture the quantitative aspects of the organisation of metabolism at

the organism level with implications for the sub- and supra-organismic levels [41, 47, 60].

In section 5.3, DEB theory is formalized for its standard model, which considers an iso-

morphic organism, with 1-reserve and 1-structure. This model is assumed to be appropri-

ate for most heterotrophic unicellulars and animals. This theory is formalized in such a

way that (1) the assumptions are highlighted and separated from the propositions and (2)

the reasoning behind the assumptions and propositions is supported by the stylized empir-

ical patterns or by universal laws. In DEB theory, the difference between species reduces

to differences in the set of parameter values. In section 5.4, DEB theory for the relation-

ship between parameters among different species is formalized. Section 5.5 synthesizes

the links between empirical patterns, assumptions and propositions and concludes.

5.2 Empirical Patterns

In this section, we summarize the stylized empirical patterns in biology that are essential

for a theoretical description of metabolic organization (see Tables 5.1, 5.2). These patterns

are related with (1) the metabolic processes that are known to be widespread in organisms

including feeding, growth, reproduction, maturation and maintenance; (2) the life-stages,

i.e., embryo, juvenile and adult, and (3) the stoichiometry of organisms.

A theory that describes the metabolism of organisms should also be compatible with
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Stylized Facts Empirical Evidence

Feeding F1 During starvation, organisms are able to reproduce animals [29, 36, 37]

F2 During starvation, organisms are able to grow animals

[13, 18, 66, 70, 77, 88]

F3 During starvation, organisms are able to survive animals [55, 76]

for some time bacteria [53]

Growth G1 The growth of isomorphic organisms at abundant animals

food is well described by the von Bertalanffy [8, 15, 17, 69, 72, 78]

growth curve [3, 64]

G2 Many species do not stop growing after reproduction has animals [35, 74]

started, i.e., they exhibit indeterminate growth [28, 48]

G3 Foetuses increase in weight proportional to cubed animals [30, 89]

time [30]

G4 The logarithm of the von Bertalanffy growth rate of bacteria [41, p.276-282]

different species corrected for a common body yeasts [41, p.276-282]

temperature decreases almost linearly with the animals [41, p.276-282]

logarithm of the species maximum size

G5 The logarithm of the von Bertalanffy growth rate for animals [19], [41, p.96]

organisms of the same species at different food

availabilities decreases linearly with ultimate length

Respiration R1 Freshly laid eggs do not use dioxygen in significant animals [6, 62, 67, 87]

amounts

R2 The use of dioxygen increases with decreasing mass in animals

embryos and increases with mass in juveniles and adults [6, 11, 62, 65, 67, 71, 87]

R3 The use of dioxygen scales with body weight raised animals [11, 65, 71]

to a power close to 0.75 [38]

R4 Organisms show a transient increase in metabolic rate animals [7, 27, 34, 59, 68]

after ingesting food independent of their body mass -

the heat increment of feeding

Table 5.1: Stylized facts and empirical evidence on feeding, growth and respiration.

Stylized Facts Empirical Evidence

Stoichiometry S1 Well-fed organisms have a different body chemical animals [9, 14, 29, 56]

composition than poorly-fed organisms yeasts [20]

S2 Organisms growing with constant food density animals

converge to a constant chemical composition [10, 16, 31, 49, 75]

Indirect I1 Dissipating heat is a weighted sum of three mass flows:

Calorimetry carbon dioxide, dioxygen and nitrogeneous waste animals [73]

Cells C1 Cells in a tissue are metabolically very similar

independently of the size of the organisms [57]

Table 5.2: Stylized facts and empirical evidence on stoichiometry, indirect calorimetry and cells.
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physics and evolutionary theory. The following laws or physical principles should have

a crucial role: (P1) mass and energy are conserved entities; (P2) any energy conversion

process leads to dissipation, i.e., entropy production is always positive; (P3) mass trans-

port beween different environments occurs across surfaces; (P4) mass and energy flows

into the cell depend only on intensive properties; (P5) the morphology of an organism,

i.e., the dependence of the surface area on the volume as the organism grows, controls the

relative importance of processes that are proportional to surface area and processes that

are proportional to volume. The following evolutionary principle should have an impor-

tant role: (P6) organisms increased their control over their metabolism during evolution,

which allows for some adaptation to environmental changes in a short period. Also, any

theory that captures all differences between individuals in differences in parameter values

should have (P7) parameter values that are individual-specific and inheritable in a sloppy

way, which allows for some adaptation to environmental changes across generations.

5.3 Theory on Metabolic Organization

The standard DEB model considers an isomorphic organism, i.e., an organism whose

surface area is proportional to volume to the power 2/3, with 1-reserve and 1-structure.

Figure 5.1 summarizes the standard DEB model while Tables 5.3 and 5.4 summarize the

notation used throughout the paper.

Assumption 5.3.1 (Strong homeostasis) The biomass of the organism can be partitioned

into two categories of generalised compounds, i.e. mixtures of a large number of com-

pounds, which do not change in chemical composition: the structure, V , and the reserve,

E. The organism feeds on a resource, X , and produces products, P , also of fixed chemical

compositions.

The rationale behind strong homeostasis is (P6). Organisms control their own metabolism

through the production of enzymes that catalyse chemical transformations in a constant

chemical environment. However, empirical evidence on the variable chemical composi-

tion of the organisms, (S1), justifies the need for two aggregate chemical compounds, i.e.,

structure, V , and reserve, E.

Assumption 5.3.2 (Metabolic Processes) Metabolism can be characterized by the fol-

lowing processes: (1) Feeding, ṗX , i.e., the uptake of food by the organism; (2) assimila-

tion, ṗA, i.e., the set of reactions that transform food into reserve and (3) catabolism, ṗC ,
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E - Reserve

V - Structure

Minerals

Food: X

Minerals, 

heat

Offspring: ER

Products: P

Catabolism

Somatic 

Maintenance

Allocation rule

Growth

Feeding    

Assimilation     
E

E EE

V
Maturity 

Maintenance

EH - Maturity

Reproduction

Maturation

Figure 5.1: Metabolism in a DEB organism. Circles are processes; rectangles are state variables;

arrows are flows of reserve (E), structure(V), minerals, food (X), products(P) or offspring (ER).
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Variable Dimension Interpretation Variable Dimension Interpretation

t T time ṗX e T−1 Feeding power

X # L−3 Substrate density ṗA e T−1 Assimilation power

E e Energy in reserve ṗC e T−1 Catabolic power

e – Scaled reserve density ṗM e T−1 Volume related

maintenance power

V L3 Structural volume ṗT e T−1 Surface related

maintenance power

L L Volumetric length ṗJ e T−1 Maturity maintenance

power

EH e Energy allocated to ṗG e T−1 Growth power

maturation

f – Scaled functional response ṗR e T−1 Reproduction power

Table 5.3: List of symbols. Dimensions: – no dimension; L length; M mass; T time; # moles or

C-moles; e energy. Symbols with (1) {·} are per unit surface area, (2) [·] are per unit of structural

volume and (3) · are per unit time.

i.e., the mobilization of reserve. So, reserve dynamics is given by:

dE

dt
= ṗA − ṗC . (5.1)

The mobilized reserve is allocated to (4) growth, ṗG, i.e., the increase of structure;

(5) somatic maintenance, ṗM + ṗT , i.e., the maintenance of the structure where ṗM and

ṗT are associated with volume and surface maintenance costs respectively; (6) maturity

maintenance, ṗJ , i.e., the maintenance of the complexity of the structure and (7) matura-

tion, ṗR, i.e., the increase in the complexity of the structure or (8) reproduction, ṗR, i.e.,

the flow of energy to offspring, i.e.,

ṗC = ṗM + ṗT + ṗG + ṗJ + ṗR. (5.2)

The fraction of catabolic power allocated to somatic maintenance and growth is a general

function 0 ≤ κ(V, E) ≤ 1, i.e.,

ṗM + ṗT + ṗG = κṗC . (5.3)

and

ṗJ + ṗR = (1 − κ)ṗC . (5.4)

All metabolic processes are a function of V , E and parameters. The feeding and

assimilation processes are also a function of X .
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Parameter Dimension Interpretation

{ṗAm} e L−2 T−1 Surface-specific assimilation power

[Em] e L−3 Maximum reserve density

[ṗM ] e L−3 T−1 Volume-specific maintenance power

{ṗT } e L−2 T−1 Surface-specific maintenance power

[EG] e L−3 Volume-specific growth costs

v̇ L T−1 Energy conductance

κ – Fraction of catabolic power spent on maintenance plus growth

κR – Fraction of reproduction power fixed in eggs

g – Investment ratio

k̇M T−1 Maintenance rate coefficient

k̇J T−1 Maturity rate coefficient

Lm L Maximum length

Lh L Heating length

Eb
H e Threshold of energy investment at birth

E
p
H e Threshold of energy investment at puberty

E0 e Energy cost of one egg

µE e M−1 Chemical potential

Compound specifier Dimension Interpretation

X – Substrate (food)

E – Reserve

V – Structure

P – Products

Mi – Mineral compound i

Process specifier Dimension Interpretation

A – Assimilation

C – Catabolism

M – Maintenance (volume related)

T – Maintenance (surface related)

G – Growth

R – Reproduction or Maturation

Table 5.4: List of symbols. Dimensions: – no dimension; L length; M mass; T time; # moles

or C-moles; e energy. Chemical compound and processes specifiers appear as subscripts to other

variables. Symbols with (1) {·} are per unit surface area, (2) [·] are per unit of structural volume

and (3) · are per unit time.
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Empirical evidence (R4) shows that there are processes in the organism associated

with food processing only, which suggests that food goes through a set of chemical reac-

tions that transform it into reserves. Organisms spend energy on growth, maintenance and

reproduction in the absence of food (F1, F2, F3) suggesting that the energy mobilized for

growth, maintenance and reproduction is obtained from the reserve and not from the en-

vironment. The energy mobilized for maturation is also obtained from the reserve and not

from the environment because eggs do not feed but they allocate energy to maturation.

The allocation of energy to growth, somatic maintenance, maturation and reproduction

covers the well-known metabolic processes common to all organisms. Maturity mainte-

nance includes maintaining regulating mechanisms and concentration gradients and de-

fense systems. The need to allocate energy to maturity maintenance is intimately related

with the second law of thermodynamics (P2): the level of maturity would decrease in the

absence of energy spent in its maintenance because the higher the level of maturity the

further away is the system from equilibrium.

Empirical evidence (R1) shows that freshly laid eggs do not require maintenance be-

cause aerobic organisms use dioxygen in chemical reactions that yield energy. Thus, 1)

freshly laid eggs do not have structure and 2) reserve does not require maintenance. Re-

serves can have active metabolic functions but do not require maintenance because they

are continuously used passively and replenished.

The use of dioxygen increases with decreasing mass in an embryo (R2). This means

that the structure that is built using the reserve requires maintenance. This is also coherent

with the fact that respiration increases with mass in juveniles and adults (R2). Structural

materials require maintenance because they are continuously degraded actively and re-

constructed.

Proposition 5.3.1 (Partitionability of reserve dynamics) If the organism’s reserve, E,

is partitioned in the organism among categories of chemical compounds, Ei ≡ λiE,

then 1) their constant relative abundances λi are constant and 2) the catabolic power

mobilized from each aggregate must be proportional to the amount of energy embodied in

it, i.e.,

ṗC(λE, V ) = λṗC(E, V ), (5.5)

with 0 ≤ λ ≤ 1 and 3) the catabolic power mobilized to maintenance and growth, from

each aggregate, must be proportional to the amount of energy embodied in it, i.e.,

κ(λE, V )ṗC(λE, V ) = κ(E, V )λṗC(E, V ). (5.6)
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Proof: The mobilization of the different categories of chemical compounds, Ei, must

be coordinated, such that their constant relative abundances λi are constant, otherwise the

chemical composition of reserves as a whole would change, violating Assumption 5.3.1.

Eq. 5.1 and the definition of Ei ≡ λiE imply that dEi/dt = ṗA(Ei, V ) − ṗC(Ei, V )

and 2) dEi/dt = λidE/dt = λi(ṗA(E, V ) − ṗC(E, V )). Eq. 5.5 follows from these two

equations.

Also, the allocation to growth and maintenance of the different categories of chemical

compounds, Ei, must be coordinated, such that growth and maintenance do not depend

on the partitioning of the reserves (see Assumption 5.3.2), i.e,

n∑

i=1

κ(Ei, V )ṗC(Ei, V ) = κ(E, V )ṗC(E, V ). (5.7)

With Eq. 5.5, we can simplify Eq. 5.7:

n∑

i=1

λiκ(λiE, V ) = κ(E, V ). (5.8)

Eq. 5.8 implies that κ(λiE, V ) = κ(E, V ) because
∑n

i=1 λi = 1. Eq. 5.6 follows. �

Proposition 5.3.2 (Metabolic Stoichiometry) The stoichiometry of each metabolic

process defined in Assumption 5.3.2 is constant. In particular, the stoichiometries of so-

matic maintenance, maturity maintenance, maturation and the overhead of reproduction,

(1 − κR)ṗR, are the same. For this reason, the sum of these powers is identified as the

dissipation power

ṗD = ṗM + ṗJ + ṗT + (1 − κR)ṗR, (5.9)

where κR = 0 for the embryo and juvenile stages.

Also, the following conversion factors that characterize each metabolic process are

constant. (1) η∗1∗2 ≡ µ−1
∗2∗1, between any mass flow ∗1 and any energy flow ∗2 and (2)

y∗1∗2, between any mass flows ∗1 and ∗2.

Proof: The stoichiometry of the assimilation process is (see Fig 5.1):

a1M1 + . . . + axMx + X −→ b1P + b2E, (5.10)

where M1 to Mx are the mineral compounds, b1 and b2 are the number of C-moles of

product and reserve produced per each C-mol of food processed and a1 to ax are the net

number of moles consumed of compounds M1 to Mx, respectively. To obtain the x + 2

stoichiometric coeffients a1 to ax, b1 and b2 we have to compute the mass balance for at

least x + 2 chemical elements. These stoichiometric coefficients are constant because the
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chemical composition of X , E and P are also constant (see Assumption 5.3.1). Therefore,

1) the factor yXE = 1/b2 that converts food to reserve moles is constant, and 2) the factor

ηXE = 1/(b2µE) that converts food moles to reserve’s energy is also constant because

µE is constant (see Assumption 5.3.1). A similar reasoning can be applied to the other

metabolic processes.

Also, the processes of maturity maintenace, somatic maintenance and the overhead

of reproduction that consist in transforming reserve plus minerals into minerals have the

same stoichiometry. �

The overhead of reproduction is associated with the conversion from the reserve en-

ergy of the mother into the reserve energy of the embryo. The existence of an overhead is

consistent with the dissipation principle (P2).

Proposition 5.3.3 (Organism Stoichiometry) The overall stoichiometry of the organism

has 3 degrees of freedom. More specifically, the flow of any compound produced or con-

sumed in the organism is a weighted average of the flows of any three other compounds.

Proof: The net flows (input-output) of minerals, products, heat and other compounds,

at the boundary of the organism, are given by:

J̇∗1 = J̇∗1A + J̇∗1D + J̇∗1G (5.11)

where ∗1 stands for CO2, O2, heat, Nwaste, H2O and other compounds, J̇∗1A, J̇∗1G and

J̇∗1D are the net flows of ∗1 in the assimilation, growth and dissipation processes, respec-

tively. Using the definition for η∗1∗2 (see Assumption 5.3.2):

J̇∗1 = η∗1AṗA + η∗1DṗD + η∗1GṗG (5.12)

where J̇∗1A ≡ η∗1AṗA, J̇∗1G ≡ η∗1GṗG and J̇∗1D ≡ η∗1DṗD.

To make this proof simpler we specify three compounds: CO2, O2 and Nwaste. We

write Eq. 5.12 for each compound:

J̇CO2
= ηCO2AṗA + ηCO2DṗD + ηCO2GṗG (5.13)

J̇O2
= ηO2AṗA + ηO2DṗD + ηO2GṗG (5.14)

J̇Nwaste
= ηNwasteAṗA + ηNwasteDṗD + ηNwasteGṗG (5.15)

By manipulating equations 5.13, 5.14 and 5.15, we obtain the following set of equations

for the powers ṗA, ṗD and ṗG

ṗA = αCO2
J̇CO2

+ αO2
J̇O2

+ αNwaste
J̇Nwaste

, (5.16)
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ṗD = βCO2
J̇CO2

+ βO2
J̇O2

+ βNwaste
J̇Nwaste

, (5.17)

ṗG = γCO2
J̇CO2

+ γO2
J̇O2

+ γNwaste
J̇Nwaste

, (5.18)

where αi, βi and γi are constants. Each power is a weighted average of the flows of 3

compounds. Thus, the flow of compound ∗1 (Eq. 5.12) can be written as a weighted

average of 3 compounds if ṗA, ṗD and ṗG are replaced by equations 5.16, 5.17 and 5.18,

respectively. �

The method of indirect calorimetry (I1) is a particular case of Proposition 5.3.3.

Proposition 5.3.4 (Structure dynamics) Structure dynamics is controlled by growth,

dV

dt
=

ṗG

[EG]
, (5.19)

where ṗG is the amount of energy allocated to growth and [EG] is the specific cost of

growth.

Proof: The dynamics of structure is linked to growth directly by Assumption 5.3.2.

The specific growth cost of structure is constant because [EG], a conversion factor between

energy and mass, is constant (see Proposition 5.3.2). �

Assumption 5.3.3 (Life-history events) Life stage events occur when EH exceeds cer-

tain thresholds. The initiation of feeding occurs when EH = Eb
H and the initiation of

allocation to reproduction coupled to the ceasing of maturation occurs when EH = Ep
H .

The dynamics of the amount of energy invested into maturation is:

dEH

dt
= ṗR, EH < Ep

H . (5.20)

Other life history events, such as cell division, metamorphosis or other stage transitions

(e.g. to the pupal stage) occur also at threshold values for EH .

The life history of organisms that reproduce by fission is well described by one single

life-stage, the juvenile, while multicellular organisms typically start as embryo that does

not feed and reproduce as adults. Whenever Ep
H > Eb

H the three life stages are: the

embryonic or foetal, the juvenile and the adult.

The logical reasoning behind this assumption is the following. An organism that de-

velops and produces offspring increases its complexity (or maturity) from the embryo to

the adult stage. Among organisms of the same species the level of maturity at the onset

of feeding behaviour is the same. Also, initiation of allocation to reproduction, among

organisms of the same species, occurs when they reach the same level (usually higher)

of maturity. Therefore, it is reasonable to assume that the amount of energy invested
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to achieve the degrees of maturity that organisms need to start feeding or allocating to

reproduction are intra-species constants.

Assumption 5.3.4 (Dependence on the Environment - Feeding) The ingestion at

abundant food is proportional to surface area, J̇Xm = {J̇Xm}V
2/3, where {J̇Xm} is the

maximum surface-specific feeding rate. So, the feeding power is

ṗX = {J̇Xm}V
2/3f(X)µX = J̇XµX , (5.21)

where 0 ≤ f(X) ≤ 1, the nondimensional functional response, is

f(X) =
J̇X

J̇Xm

, (5.22)

J̇X is the rate of ingestion at food density X and µX is the chemical potential of food.

Feeding is proportional to surface area within the same species because acquisition

processes and digestion and other food processing activities depend on mass transport

processes that occur through surfaces (P3).

Proposition 5.3.5 (Dependence on the Environment - Assimilation) The assimilation

power is proportional to surface area,

ṗA = {ṗAm}V
2/3f(X), (5.23)

where {ṗAm} ≡ {J̇Xm}
ηXA

is the maximum surface-specific assimilation rate.

Proof: By writing J̇X in Eq. 5.21 as a function of

ηXA ≡
ṗA

J̇X

, (5.24)

it follows directly that

ṗA =
{J̇Xm}

ηXA
V 2/3f(X). (5.25)

Proposition 5.3.2 implies that ηXA is constant and therefore {ṗAm} ≡ {J̇Xm}
ηXA

is also con-

stant. �

Metabolic processes can be classified as supply-driven or demand-driven. Demand-

driven processes are controlled by the state of the organism, i.e., by V and E, while

supply-driven processes are controlled by inputs, e.g., by X . Feeding and assimilation

are simultaneously supply and demand driven processes because they depend on the con-

centration of food in the environment, X and on the physiological state of the organism

through the surface area (body size).
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Assumption 5.3.5 (The κ allocation rule) The κ function is a constant.

Note that Assumption 5.3.5 only imposes that κ is also independent of V because in

Proposition 5.3.1 we proved that κ is independent of E.

Good support for this assumption is the empirical evidence that many organisms do

not stop growing after reproduction has started (G2) because it suggests that growth

and reproduction are parallel processes that do not compete directly. Many species of

holometabolic insects are an exception to this empirical evidence because they only start

reproduction if they are (about) fully grown. In this case, reproduction cannot compete

with growth.

Also, ovary and somatic cells have information on blood energy content (an intensive

variable) but not on each other’s activities (P4). Therefore, they take energy from the

blood proportionally to their carriers membrane concentration, i.e., a fixed fraction of the

energy content.

Assumption 5.3.6 (Weak homeostasis) For any constant food level, X = X∗ > 0, there

is a reserve density, [E]∗(X∗), which remains constant along the growth process. Fur-

thermore limX∗→∞[E]∗ ≡ [Em] < ∞, where [Em] is the maximum reserve density.

The weak homeostasis assumption is supported by the empirical evidence that grow-

ing biomass converges to a constant chemical composition as long as food density re-

mains constant (S2). Also, empirical evidence supports the existence of a maximum size

(G4,G5) which implies that the maximum reserve density, [Em], is limited.

Proposition 5.3.6 (Catabolic power) Catabolic power is given by:

[ṗC ] = [E]

(

v̇V −1/3 −
1

V

dV

dt

)

. (5.26)

where v̇ ≡ {ṗAm}/[Em] is the energy conductance.

Proof:

By the definition of reserve density, i.e., [E] ≡ E/V :

d[E]

dt
=

1

V

dE

dt
−

[E]

V

dV

dt
. (5.27)

Replacing dE
dt

by Eq. 5.1 and ṗA by Eq. 5.23 Eq. 5.27 simplifies to:

d[E]

dt
= {ṗAm}V

−1/3f(X) − [ṗC ] −
[E]

V

dV

dt
. (5.28)

Eq. 5.28 can be written as,

d[E]

dt
= {ṗAm}V

−1/3f(X) − Φ(V, [E]), (5.29)
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because 1) ṗC is a function of E and V (see Assumption 5.3.2), 2) dV/dt is proportional

to ṗG (see Eq. 5.19) and 3) ṗG is also a function of E and V (see Assumption 5.3.2).

If the organism is kept at constant food level for some time, weak homeostasis (As-

sumption 5.3.6) applies and Eq. 5.29 simplifies to

{ṗAm}V
−1/3f(X) = Φ(V, [E]∗), (5.30)

proving that [E∗] is a function of resource density. Also, Assumption 5.3.6 says that [E∗]

is independ of volume because it remains constant along the growth process, implying that

Φ(V, [E]∗) = V −1/3H([E]∗). The function Φ(V, [E]) can be generalized out of steady-

state as Φ(V, [E]) = V −1/3H([E]) + ([E∗] − [E])G(V, [E]).

Using Eq. 5.28, Eq. 5.29 and Φ(V, [E]) = V −1/3H([E]) + ([E∗]− [E])G(V, [E]), the

catabolic flux can be written as:

[ṗC ] = V −1/3H([E]) + ([E∗] − [E])G(V, [E]) −
[E]

V

dV

dt
. (5.31)

The catabolic power is a demand driven process, i.e., it cannot depend on X (see As-

sumption 5.3.2). However, Eq. 5.31 depends on [E∗] and [E∗] depends directly on X (see

Eq. 5.30). This implies that G(V, [E]) = 0. Thus,

[ṗC ] = V −1/3H([E]) −
[E]

V

dV

dt
, (5.32)

or

ṗC = V 2/3H([E]) − [E]
dV

dt
. (5.33)

The partitionability Assumption 5.3.1 is used to specify H([E]). However, in the

case of growing organisms, Eq. 5.5 is not enough, to specify H([E]), because dV/dt is

an unknown function of (V, E). In the case of a full grown adult (dV/dt = 0), Eq. 5.5

implies that

λH([E]) = H(λ[E]), (5.34)

or λH([E]) = H(λ[E]). Therefore H([E]) = v̇[E] and Eq. 5.32 simplifies to:

[ṗC ] = v̇[E]V −1/3 − [E]
1

V

dV

dt
. (5.35)

With Eq. 5.35 the reserve density dynamics is:

d[E]

dt
= V −1/3 ({ṗAm}f(X) − v̇[E]) . (5.36)
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Assumptions 5.3.4 and 5.3.6 impose that f(X) = 1 when [E] = [Em] implying that

v̇ =
{ṗAm}

[Em]
. (5.37)

�

The mobilization of reserves (catabolic power) is a demand-driven process because it

is independent of the environment (food) and it is dependent on V and E. This is rea-

sonable because 1) it occurs inside the organism at a molecular level, and at that level no

information concerning the external environment is available (P4), (2) this independence

provides the organism an increased protection against environmental fluctuations and an

increased control over its own metabolism (P6) and (3) it is uncoupled from the metabolic

functions of feeding and assimilation. If metabolic functions were dependent on each

other then it would be much more difficult to change a particular node in the metabolic

network, while avoiding complex consequences for the whole organism. Also, changes in

metabolic nodes typically occur ”randomly” (blind watchmaker), and if several of them

are required at the same time to improve the whole organism, such improvements would

be rare. The result would be that evolutionary progress would stop, while the environment

continues to change.

The catabolic power decreases with the relative structural growth because the energy

density decreases (dilution by growth). The catabolic power per unit of structural volume

of an organism that is not growing is

[ṗC ] = v̇
[E]

V 1/3
. (5.38)

This is similar to a diffusion law where the flux of reserves per unit of structural volume

is proportional to a reserve density gradient and to the energy conductance v̇. Also, [ṗC ],

is constant for a full grown organism at constant food level because dV/dt = 0 and

[E] = [E]∗ (see Assumption 5.3.6). This means that, at constant food level, an organism

that behaves accordingly to Assumption 5.3.6 and Proposition 5.3.6 has a higher degree

of control over its metabolism (P6).

Proposition 5.3.7 (Reserve density at weak homeostasis) The reserve density under weak

homeostasis is a function of resource density only:

[E∗] = f(X)[Em]. (5.39)

Proof: At weak homeostasis
d[E]
dt

= 0 and Eq. 5.28 simplifies to:

[ṗ∗C ] = [E∗]

(

v̇V −1/3 f(X∗)

[E∗]/[Em]
−

1

V

dV

dt

)

. (5.40)
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Eq. 5.39 is now obtained inserting the expression for catabolic power given by Eq. 5.26.

�

Assumption 5.3.7 (Maintenance Powers) Maintenance costs ṗM and ṗT are propor-

tional to structural volume and to surface area:

ṗM = [ṗM ]V, (5.41)

ṗT = {ṗT}V
2/3, (5.42)

where [ṗM ] and {ṗT} are constant specific costs, i.e., costs per time and per unit of struc-

tural volume or area, respectively.

Maturity maintenance costs ṗJ are proportional to the cumulative amount of energy

invested into maturation,

ṗJ = k̇JEH , (5.43)

where EH ≤ Ep
H and k̇J is a maturity rate coefficient.

Maintenance includes all metabolic processes that the organism must perform to ‘stay

alive’. Maintenance costs associated with size include costs that are proportional to the

structural volume ṗM , e.g., protein turnover, and processes that are proportional to the

surface area ṗT , e.g., heating in endotherms.

The chemical composition of the structure is constant (see Assumption 5.3.1) which

means that each unit of structure needs the same type and amount of materials and amount

of energy per unit of time, i.e., specific costs are constant.

The energy already invested in maturation, EH , contributed to increase the amount of

regulating mechanisms and gradients in the organism. Henceforth, the maturity mainte-

nance costs, ṗJ , increase proportional to EH . In an adult the maturity maintenance costs

are constant because maturity does not increase after the onset of reproduction.

Proposition 5.3.8 (Maturation and Reproductive Power) The amount of energy allo-

cated to maturation in a juvenile is

ṗR = (1 − κ)ṗC − k̇JEH , (5.44)

while the amount of energy allocated to reproduction in an adult is

ṗR = (1 − κ)ṗC − k̇JEp
H . (5.45)

Proof: It follows from Eq. 5.4 and Eq. 5.43. �

The amount of energy that an adult invests in reproduction is invested by a juvenile

into maturation. If an organism is kept at a low food density such that the accumulated
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amount of energy invested into maturation never reaches the threshold Ep
H then the or-

ganism will never reproduce. The energy drain to maturity maintenance, ṗJ , 1) decreases

ṗR (see Eq. 5.44 and Eq. 5.45) 2) and increases the duration of the juvenile stage (see

Eq. 5.20).

Proposition 5.3.9 (Allocation Priorities) Maintenance has priority over growth and ma-

turity maintenance has priority over maturation or reproduction.

Proof: Maintenance powers, ṗM , ṗT and ṗJ given by Eq. 5.41, Eq. 5.42 and Eq. 5.43

are set by the state of the organism V , by κ and other parameters that are constant. The

energy that is not needed for maintenance purposes is then allocated to growth by Eq. 5.19

and to maturation or reproduction by Eq. 5.44 or Eq. 5.45. �

Maintenance and maturity maintenance have priority because they are demand-driven

processes, i.e., they are completely controlled by the state of the organism. Growth and

maturation or reproduction are supply-driven processes because they do not depend on

the state of the organism, i.e., they depend on the amount of energy not needed for main-

tenance and maturity maintenance, respectively.

Proposition 5.3.10 (Maximum Size) Organisms of the same species have a maximum

size, Vm, i.e., organisms do not grow indefinitely.

Proof: Somatic maintenance competes directly and has priority over growth (see

Prop. 5.3.9). This is crucial because somatic maintenance increases proportional to size

(see Assumption 5.3.7), which imposes a maximum size on the organism. �

In the literature, the existence of a maximum size (including reserve and structure)

is generally accepted (G4,G5) which implies that the structure also has a maximum size,

Vm.

Proposition 5.3.11 (Dynamic energy budget) The dynamic energy budget of an organ-

ism is:
de

dt
= v̇L−1(f(X) − e) (5.46)

dL

dt
=

v̇

3

e − Lh/Lm − L/Lm

g + e
(5.47)

where e ≡ [E]/[Em] is the scaled reserve density, L ≡ V 1/3 is the volumetric length,

g ≡
[EG]

κ[Em]
(5.48)

is the investment ratio, i.e., the ratio between the costs of growth and the maximum amount

of energy allocated to growth and maintenance, Lh ≡ {ṗT}/[ṗM ] is the heating length

and

Lm ≡
κ{ṗAm}

[ṗM ]
=

v̇[EG]

g[ṗM ]
(5.49)
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is the maximum length.

Proof: Eq. 5.46, is obtained by multiplying Eq. 5.30 by [Em] and using the definition

of scaled reserve density.

Eq. 5.47 is derived by 1) replacing ṗG in Eq. 5.19 by Eq. 5.3, 2) replacing ṗC with

Eq. 5.26 multiplied by V , 3) replacing ṗM and ṗT with Eq. 5.41 and Eq. 5.42, respectively,

4) rearranging to obtain

dV

dt
=

[E]κv̇V 2/3 − [ṗM ]V − {ṗT}V
2/3

[EG] + κ[E]
, (5.50)

and 5) replacing V with L3, [E] with e[Em], {ṗT} with Lh[ṗM ], κ[Em] with [EG]/g and

[EG]v̇/g[ṗM ] with Lm in Eq. 5.50.

�

The heating length is the reduction in length due to the energy allocated to sur-

face maintenance costs. For endotherms, these surface maintenance costs are associated

mainly with heating. If an organism has no surface maintenance costs, i.e., ṗT = 0 and

Lh = 0, then its maximum volumetric length, Lm, achieved at e = 1, is given by Eq. 5.49

(see also Eq. 5.47).

The energy budget of the organism (Eq. 5.46 and 5.47) is determined by powers and

not the reverse, which means that in special circumstances (extreme starvation), the en-

ergy budget can be different.

Proposition 5.3.12 (von Bertalanffy law) The growth curve of an isomorphic individual

at constant food availability X∗ or at abundant food (f ≈ 1) is:

dL

dt
= ṙB(L∞ − L). (5.51)

The ultimate length L∞ and the von Bertalanffy growth rate ṙB are given by

L∞ = (fLm − Lh) , (5.52)

ṙB =
v̇

3Lm

1

g + f
=

k̇Mg

3(g + f)
=

(
3

k̇M

+
3Lh

v̇
+

3L∞

v̇

)−1

, (5.53)

where k̇M ≡ [ṗM ]/[EG] is the maintenance rate coefficient, i.e., the ratio between the

costs of maintenance and growth of structure.

Proof: If resource density is constant, X∗, reserve density is e∗ ≡ [E∗]/[Em] =

f(X∗) through most of the individual’s life (see Eq. 5.39). Hence, the growth curve (see

Eq. 5.47) is:
dL

dt
=

v̇

3

f − Lh/Lm − L/Lm

g + f
. (5.54)
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Eq. 5.51 is obtained by combining Eq. 5.54 with Eq. 5.52 and Eq. 5.53. �

Von Bertalanffy’s law (Eq. 5.51) is one of the most universal biological patterns (G1).

Also, organisms of the same species at different food availabilities exhibit von Bertalanffy

growth rates that are inversely proportional to ultimate length (G5) (Eq. 5.53).

Proposition 5.3.13 (Foetal Development) If the reserves of the mother, continuously sup-

plied to the foetus via the placenta, are considered very large, i.e., e = ∞ then foetal

growth is given by
dL

dt
=

v̇

3
. (5.55)

Proof: Eq. 5.55 is obtained dividing the numerator and the denominator of the right

hand side of Eq. 5.47 by e and then replacing it with ∞. �

According with Eq. 5.55 the structural volume of the foetus is proportional to cubed

time:

V (t) =

(
v̇t

3

)3

. (5.56)

The structural volume can be converted to weight using the following auxiliary proposi-

tion.

Proposition 5.3.14 (Volume to weight) The relationship between weight, w, and struc-

tural volume, V , is

w =

(
[E]

µE
+ dV

)

V =

(
[Em]

µE
e + dV

)

V, (5.57)

where dV is the density of the structure and µE is the chemical potential of reserve.

Proof: The volume of the organism can be written as,

[E]V

dEµE

+ V, (5.58)

where the first term is the volume of the reserve, i.e., the ratio between the reserve’s

energy, [E]V , and the reserve’s energy per unit volume of reserve, dEµE , and dE is the

density of the reserve. The weight of the organism (Eq. 5.57) is obtained by multiplying

the volume of the reserve by dE and the volume of the structure by dV . �

The structural volume of the foetus can be converted to weight (Eq. 5.57) using a

constant because he has unlimited access to food, i.e., the reserves of the mother. In

this case, Eq. 5.56 is validated by the empirical data that suggests that foetal weight is

proportional to cubed time (G3).

Proposition 5.3.15 (Intraspecific Kleiber’s Law) The metabolic rate measured by the

dioxygen consumption of animals of the same species, J̇O2
kept under fasting conditions,
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for a short time, is proportional to wα with α ∈ [0.66, 1]. If animals have the same reserve

density e then the proportionality constant is the same.

Proof: For organisms that are kept under fasting conditions, dioxygen is consumed in

growth, reproduction or maturation and maintenance, i.e.,

J̇O2
= ηODṗM + ηODṗJ + ηODṗT + (1 − κR)ηODṗR + ηOGṗG, (5.59)

where ηOD and ηOG are constant because the stoichiometry of each process is constant

(see Proposition 5.3.2).

Eq. 5.59 can be simplified to:

J̇O2
= ηOD

1 − κR + κRκ

κ
(ṗM + ṗT + ṗG) + ηODκRṗJ (5.60)

by first inserting the expression for ṗR given by Eq. 5.4 and then replacing ṗC with Eq. 5.3.

The somatic and maturity maintenance powers are given by Eq. 5.41, 5.42 and 5.43

and the growth power,

ṗG = [EG]v̇
(e − Lh/Lm)V 2/3 − V/Lm

g + e
, (5.61)

is obtained by combining Eq. 5.19 with Eq. 5.47. The powers ṗM and ṗJ are proportional

to V while ṗT is proportional to V 2/3 and ṗG is a linear combination of V 2/3 and V .

The dioxygen consumption must be approximately proportional to V α with α ∈ [2/3, 1]

because it is a linear combination of V 2/3 and V . If the animals of the same species have

a similar reserve density then the proportionality constant betweenJ̇O2
and wα is the same

(see Eq. 5.57). �

Empirical evidence on Kleiber’s law is amply available in the literature (R3). How-

ever, if organisms of the same species do not have similar reserve densities then the avail-

able data in the literature is harder to evaluate because respiration is typically linked to

body weight, which has contributions from both reserve and structure. DEB Proposi-

tion 5.3.15 provides an explanation for the differences in the values of α in Kleiber’s law

within the same species: differences in the allocation of energy to growth and surface

related maintenance.

5.4 Theory on Parameter Values

In DEB theory, the set of parameter values is individual-specific. Individuals differ in

parameter values and selection leads to evolution characterized by a change in the (mean)
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value of these parameters (P7). The differences between species is just an evolutionary

amplification of the difference between individuals, i.e., it reduces to differences in the

mean value of DEB parameters. In this section, the theory for the covariation of (mean)

parameter values among species is presented.

Assumption 5.4.1 (Primary molecular based parameters) Molecular based parame-

ters are related to molecular processes and, for related species, are similar and inde-

pendent of the ultimate size of the organism (see Tab. 5.5). These parameters include:

[EG], [ṗM ], {ṗT}, k̇J , κ, κR, v̇, [Eb
H ] =

Eb
H

Vm
and [Ep

H ] =
Ep

H

Vm
.

Parameters that characterize molecular based processes (see Tab. 5.5) are considered

to be identical for related species because cells are very similar independently of the size

of the organism (C1). Therefore cells of about equal size have similar growth, mainte-

nance and maturation costs, i.e., [EG], [ṗM ], {ṗT}, k̇J , κR, [Eb
H ] and [Ep

H ] are equal for

related species. The partition of energy mobilized from reserves is done at the level of the

somatic and reproductive cells and therefore κ is also a molecular based process. Kooi-

jman and Troost [46] present a possible molecular mechanism that makes clear that v̇ is

a molecular based parameter. A simpler but less precise argument to justify this is pre-

sented next. Two full grown organisms with the same V and the same [E], that belong

to different but related species with different maximum lengths, have similar metabolic

needs. Therefore they must have a similar rate of mobilization of reserves. This occurs if

v̇ is the same because the mobilization of reserves is proportional to v̇ (see Eq. 5.26).

Proposition 5.4.1 (Secondary molecular based parameters) The heating length Lh is

similar between related species and independent of the ultimate size of the organism.

Proof: The heating length Lh is independent of the size of the organism because both

{ṗT} and [ṗM ] are molecular based parameters and Lh = {ṗT }
[ṗM ]

. �

Proposition 5.4.2 (Physical design parameters) Physical design parameters are propor-

tional to the maximum length of the organism, Lm (see Tab. 5.5). These parameters in-

clude: {ṗAm}, [Em], Ep
H , Eb

H and g.

Proof: Suppose that a reference species and species A are related and that z = LA
m

Lm
is

the ratio of maximum lengths.

The surface specific assimilation rate is proportional to maximum length (see Eq. 5.49)

because the molecular based parameters are equal for both species, κ = κA and [ṗM ] =

[ṗA
M ]:

z =
LA

m

Lm
=

{ṗA
Am}

{ṗAm}
. (5.62)
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Molecular Based Parameters Physical Design Parameters

κA = κ {ṗA
Am} = {ṗAm}z

v̇A = v̇ g = zgA

κA
R = κR

k̇A
J = k̇J

[EA
G] = [EG] [EA

m] = [Em]z

[ṗA
M ] = [ṗM ]

{ṗA
T } = {ṗT }

[EH,A
b ] = [EH

b ] E
H,A
b = EH

b

[EH,A
p ] = [EH

p ] E
H,A
p = EH

p

LA
h = Lh

Table 5.5: Body Scaling Relations between different species with different maximum body sizes

of Lm and LA
m where z = LA

m

Lm
.

The maximum reserve density [Em] is proportional to maximum length, i.e., [EA
m] =

z[Em] because v̇ = v̇A and {ṗA
Am} = z{ṗAm} (see Eq. 5.37).

The energy investment threshold at puberty EH
p is proportional to maximum length,

i.e., EH,A
p = z3EH

p because [EH,A
p ] = [EH

p ]. Also, the energy investment threshold at

birth EH
b is proportional to maximum length, i.e., EH,A

b = z3EH
b because [EH,A

b ] = [EH
b ].

The investment ratio g is proportional to maximum length, i.e., g = zgA because

[EG] = [EG]A, κ = κA and [EA
m] = z[Em] (see Eq. 5.48).

�

Proposition 5.4.3 (von Bertalanffy growth rate) The von Bertalanffy growth rate for

species A at abundant food is:

log ṙA
B = log

v̇

3
− log(gLm + LA

m). (5.63)

where all parameters with the exception of LA
m are for a reference species.

Proof: At abundant food, i.e., f = 1, the von Bertalanffy growth rate (Eq. 5.53) for

species A is:

ṙA
B =

v̇A

3LA
m

1

gA + 1
. (5.64)

Eq. 5.63 is obtained by (1) rewriting the DEB parameters of species A as a function of the

DEB parameters of the reference species using Tab. 5.5 and then (2) applying logarithms.

�
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This proposition on the inter-species comparison of Von Bertalanffy growth rate cor-

rected for a common body temperature is supported by empirical data (G5)(for a compar-

ison between empirical data and DEB model predictions see [41, Fig. 8.3]).

Proposition 5.4.4 (Interspecific Kleiber’s Law) The metabolic rate measured by the

dioxygen consumption of full grown adult animals kept under fasting conditions, of

species of different maximum body size, scales to the α power of its mass, i.e., J̇O2
is

proportional to wα with α ∈ [0.5, 1].

Proof: For full grown organisms that are kept under fasting conditions, the dioxygen

is consumed in reproduction and somatic and maturity maintenance, i.e.,

J̇O2
= ηODṗM + ηODṗJ + ηODṗT + (1 − κR)ηODṗR (5.65)

where ηOD is constant because the stoichiometry of each process is constant (see Propo-

sition 5.3.2).

Eq. 5.65 can be simplified to Eq. 5.60 where ṗG = 0 by first inserting the expression

for ṗR given by Eq. 5.4 and then replacing ṗC with Eq. 5.3.

The somatic and maturity maintenance powers can be written for full grown adults

(l = 1 and min(EH , Ep
H) = Ep

H ):

ṗM = [ṗM ]V A
m , (5.66)

ṗT = {ṗT}V
A 2/3
m , (5.67)

ṗJ = k̇J [Ep
H ]V A

m , (5.68)

where all parameters are for the reference species with the exception of the maximum

body size of the species being considered V A
m . Eq. 5.66 to 5.68 were obtained from

Eq.5.41, 5.42 and 5.43 respectively, by first replacing body size V with Vm because

l = 1 and then rewriting DEB parameters of the species being considered, species A, as a

function of the DEB parameters of a reference species using Tab. 5.5 with the exception

of the maximum body size, V A
m .

The powers ṗM and ṗJ are proportional to maximum body size volume V A
m while ṗT

is proportional to V
A 2/3
m . The dioxygen consumption must be approximately proportional

to V A α
m with α ∈ [2/3, 1] because it is a linear combination of V

A 2/3
m and V A

m .

The relationship between the weigth and the volume of the species considered,

w =
[Em]e

µEV
1/3
m

V A 4/3
m + dV V A

m , (5.69)
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is obtained from Eq. 5.57 by replacing body size V with Vm, energy density [E] with

[Em]e and rewriting the parameters of species A as a function of the parameters of a ref-

erence species with the exception of V A
m . Thus, (1) the mass is approximately proportional

to V β
m with β ∈ [1, 4/3] and (2) the dioxygen consumption is approximately proportional

to wα/β with α/β ∈ [0.5, 1].

�

The proposition obtained that the power in Kleiber’s law can be in the interval [0.5, 1]

is more adequate that a unique value of 3/4. This is supported by Dodds et al. [12] re-

analyses of datasets. These authors tested whether the power is 3/4 or 2/3 finding little

evidence for rejecting the power 2/3. Also, Vidal and Whitledge [86] found powers of

0.72 and 0.85 for crustaceans and Phillipson [63] found values of 0.66 for unicellulars

and 0.88 for ectotherms.

According to Proposition 5.4.4, the proportionality between dioxygen production and

weight, in interspecies comparisons of full grown adults, has a variable power because of

a variable allocation to surface related maintenance costs, e.g., heating, ṗT .

5.5 Conclusions

Syntheses of DEB theory and discussions of the underlying concepts have already been

presented in the literature [60, 47, 81, 82]. However, in this chapter, we formalize DEB

in a set of assumptions and propositions proving 1) that DEB is a theory for the metabolic

organization of organisms fully supported by the empirical biological patterns and the

universal laws of physics and evolution and 2) a theory for metabolic organization can be

as formal as physics.

This theory considers that body mass is partitioned into structure and reserves which

is supported by empirical evidence that organisms can have a variable stoichiometry (S1).

Reserve does not require maintenance because it is passively continuously used and re-

plenished while structure requires maintenance because it is actively continuously de-

graded and reconstructed. These two metabolic facts are supported by the fact that freshly

laid eggs do not use dioxygen in significant amounts and that the use of dioxygen increases

with decreasing mass in the embryo and with increasing mass in the juvenile and adult

(R1, R2).

Feeding is considered to be proportional to surface area within a species because trans-

port occurs across surfaces (P3). In the organism (1) food is transformed into reserve and

(2) reserve is mobilized to fuel growth, maturation, maintenance and reproduction. This
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internal organization is suggested by the empirical evidence on the heat increment of feed-

ing (R4) and by the fact that starving organisms survive, grow and reproduce (F1-F3).

Additionally to the processes of growth, maturation, maintenance and reproductions,

organisms also allocate energy to maturity maintenance, which is imposed by the need

to spend energy to keep the organism far away from equilibrium (P2). The allocations

of energy to repoduction and growth do not compete with each other; this is suggested

by empirical evidence on growth (G2) and the laws of mass and energy transfer (P4).

Also, energy allocation to growth competes directly with the energy allocation to somatic

maintenance, which imposes a maximum size within a species (G4, G5).

Organisms tend to a constant chemical composition in an environment with constant

food availability; this is supported by empirical evidence on a constant stoichiometry

under certain conditions (S2) and motivated by evolutionary theory (P6).

The theory for the covariation of parameter values among species is based on the

empirical evidence that cells are similar across species (C1).

The propositions obtained explain the following empirical findings: (1) the method of

indirect calorimetry (I1), (2) body size growth (von Bertalanffy curves), (3) the variation

of von Bertalanffy’s growth rates within (G5) and across species (G4), (4) Kleiber’s law

on metabolic rate (R3) and (5) the pattern of foetal growth (G3).

These assumptions and propositions are at the core of DEB theory. This theory has

already been tested for many organisms including bacteria [4, 5, 43, 79], crustaceans [40],

collemboles [33], appendicularians [41], rotifiers [2], yeasts [20], molluscs [21, 24, 25,

26, 83], unicellular alga [41], lichens [41], nematodes [1, 22, 23, 32], fishes [84, 85] and

birds and mammals [41, 89].

In this chapter, we focus on the standard DEB model for isomorphs with one reserve

and one structure. They are ideal to explain the concepts, and demonstrate the impor-

tance surface area - volume interactions, which is an important organising principle, in

combination with mass and energy conservation. However, from an evolutionary perspec-

tive they represent an advanced state that evolved from systems with more reserves and,

therefore, less homeostatic control. The evolution of metabolism as a dynamic system is

discussed in [46]. Extensions to the standard DEB model that were not discussed in this

chapter include: (1) shape corrections for the surface area of organisms that do not behave

as isomorphs but deviate from this in predictable ways [41, p.26-29]; (2) the dependence

of physiological rates on body temperature [41]; (3) the inclusion of more reserves (for

organisms feeding on simple substrates) and more structures (plants) [41, p.168]; (4)

an ageing model that explains the phenomenological Weibull [41, p.141] and the Gom-
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pertz laws [54]; (5) shrinking whenever the catabolic power mobilized from reserves is

not enough to pay maintenance [80] and (6) implications for cellular levels [45], trophic

chains and population dynamics [39, 50, 51, 52, 58] and ecosystem dynamics [42, 44, 61].

This chapter contributes to a research agenda on a non-species specific metabolic the-

ory by (1) proposing a set of stylized empirical patterns that are the ultimate test to any

metabolic theory and (2) using these facts to establish a set of assumptions and obtaining

the propositions that follow. The validity of each assumption and empirical fact consid-

ered can be independently discussed leading to a wider consensus in the metabolic field.
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