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Chapter 1

Introduction

Without a doubt, our environment is a highly complex system. Interestingly,
in the past century many important insights have been gained from quite
simple mathematical models. Although these abstract models neglect biolog-
ical details and focus rather on the most fundamental processes the observed
dynamics can be very complicated (May and Oster, 1976). The typically qual-
itative results of simple models may help to understand the consequences of
the incorporated processes. In this way simple generic models are useful to
investigate the basic mechanisms behind ecological interactions.

One of the most dominant aspects of ecology is the dynamics of popula-
tions and the interactions between them. In the past century an abundant
number of simple models has been proposed and analyzed to explore these
dynamics. The majority of the proposed models are specific in the sense that
the mechanisms under consideration are represented by fully parameterized
functions. In principle, these models allow a detailed analysis of the system
dynamics. However, the properties of such specific models are often very sen-
sitive to the exact mathematical formulation of the processes. A detailed
derivation from field or lab experiments is in general difficult while a deriva-
tion from theoretical reasoning can hardly capture the complex nature behind
these processes. This problem appears not only in ecology but in many fields
of science where complex systems are under consideration. The formulation of
generalized models avoids instead to parameterize each processes under consid-
eration. Recently, the analysis of generalized models has been improved by a
framework that allows for extensive insights on the local stability properties of
the system. Moreover, it can be used to gain information about the presence
of global dynamics (Gross and Feudel, 2006). As we will see, this approach
has opened new vistas to old debates within the community of applied and
theoretical ecology. Before we discuss actual topics of ecology and the pros
and cons of the different modeling approaches, let us briefly rehash the histor-
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4 CHAPTER 1. INTRODUCTION

ical development of modern theoretical population dynamics and some basics
of dynamical system theory.

In 1798 Thomas Malthus proposed an exponential growth of populations
in his Essay on the Principle of Population. But Malthus was concerned about
the impact of limited resources. Basically, he reasoned that resources remain
constant or only increase linearly. Thus, the growth must cease when the de-
mand for resources exceeds the supply. It was Verhulst (1838) who formulated
these principles in terms of the logistic growth where the per capita growth
rate is given by a constant term minus a term that is proportional to the
existing population. The latter term expresses the intra-specific competition
for resources. This formulation leads for small populations to an initial expo-
nential growth which saturates with increasing abundance of the population.
Interestingly, this drastic simplification of nature describes the growth of many
single-species populations very well (i.e. Gause (1934); Perni et al. (2005)).

The first model which describes predator-prey interactions between dif-
ferent populations was proposed by Lotka (1925) (and independently soon
afterwards by Volterra (1928)). Following the chemical principle of mass ac-
tion, he proposed that the predation and the growth of the predator depend
bi-linear on the abundances of the prey and predators. Further, he assumed
constant rates for the growth of prey and mortality of the predator. The
simple model was originally used to explain an increased amount of predator
fishes in the Adriatic sea during the first world war. Solutions of this model
are neutrally stable limit cycles. If the linear growth term is substituted by a
logistic growth the system evolves into a stable focus. Although the logistic
growth is often used in predator-prey systems, its validity to capture the effect
of limited resources on a multiple species system is rather questionable (e.g.
Kooi et al. (1998)).

A next major milestone was the introduction of predator functional re-
sponse describing the predation rate as a nonlinear function of the abundance
of prey. It was argued by Solomon (1949) and Holling (1959) that the preda-
tion rate should not be linear since predators can only handle a limited amount
of prey per unit of time. Many variations of the Lotka-Volterra model have
been analyzed for several different functional responses (e.g. Rosenzweig and
MacArthur (1963); Truscott and Brindley (1994); Wolkowicz et al. (2003)).
Often, these models show transitions from stationary to oscillatory behavior
when the amount of resources, i.e. the related parameter is increased. These
oscillations can lead temporarily to very low prey populations. Thus, stochas-
tic extinction of the prey population becomes likely to occur (Cunningham and
Nisbet, 1983; Pascual and Caswell, 1997). In that sense, these models predict
a devastating effect of enrichment, the extinction of both populations. This
counterintuitive effect of increasing resources is called Rosenzweig’s Paradox of
enrichment (Rosenzweig, 1971). In contrast to the commonness of this effect
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in theoretical models, only some experiments show the paradox of enrichment
but others do not (e.g. Morin and Lawler (1995)).

In theoretical ecology several model modification have been proposed that
do not show this paradoxical effect. Arditi and Ginsburg (1989) showed that
the paradox of enrichment is absent when the functional response depends on
the ration between prey and predator abundances. However, ratio-dependent
models show other unrealistic effects instead. Predators still interfere at low
predator densities and rarity even allows them to capture high amounts of
prey even when prey density is extremely low (Hanski 1991, Abrams 1994).
Using a generalized model, Gross et al. (2004) have shown the usage of quan-
titatively similar alternatives to common functional responses can even lead
to stabilizing effects of enrichment.

Apart from stationary or periodic behavior chaotic dynamics can be found
in many population models, even in the simplest models like the logistic map
(May and Oster, 1976). While population cycles can be observed in many wild
populations, most prominently the snowhare-lynx populations in Canada and
lemmings population in north Europe (e.g. Elton (1924)) but also reoccurring
pests of forest insects (e.g. Berryman (1996)), chaotic dynamics are rarely
evidenced in nature (Hastings et al., 1993). Similar to the paradox of enrich-
ment the debate whether chaotic dynamics are likely to appear is often hold
on modeling details. For instance, Ruxton and Rohani (1998) observed that
for some models the chaotic dynamics disappear when the models are slightly
changed. Using the generalized modeling approach Gross et al. (2005) showed
that food chains with more than 3 trophic levels are in general chaotic.

The examples of the paradox of enrichment and the chaotic dynamics
demonstrate that generalized models can reveal generic system properties con-
cerning stability effects and complex dynamics. These results are derived from
a bifurcation analysis of generalized models. But also in the analysis of specific
models bifurcation theory plays a central role (Bazykin, 1998).

Bifurcations are qualitative transitions of the long term dynamics of the
system, like the transition from stationary to oscillatory behavior. In the field
of ecology several bifurcations have shown to be important. For instance, the
existence boundaries of populations are often tangent or transcritical bifurca-
tions (e.g. Kooijman et al. (2004)). Further, a Hopf bifurcation (Hopf, 1942)
is involved in the paradox of enrichment and can be observed experiments
on living populations (Fussmann et al., 2000) and homoclinic bifurcation are
assumed to play an important role in the dynamics of insect pests (Gragnani
et al., 1998) and plankton blooms (Scheffer et al., 1997). Because these bi-
furcations also play a central role in in the presented work, we provide in
the following a short description and some illustrating figures. More detailed
information can be found in (Guckenheimer and Holmes, 2002; Kuznetsov,
2004).
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First we consider Bifurcations of steady states as shown in Fig. 1.1. In a
tangent bifurcation two steady states merge together and disappear, as it is
illustrated in Fig. 1.1(a) in case of a stable and an unstable steady state. This
bifurcation scenario is also called saddle-node bifurcation. Beyond the bifurca-
tion point pcr the system approaches another attractor. This means that the
original state of the system is in general hardly re-obtained once the critical
parameter value has passed. Due to certain conditions a degenerated form of
the saddle-node bifurcation is often encountered in predator-prey models. Fig-
ure 1.1(b) shows a transcritical bifurcation where two steady states exchange
stability. This bifurcation is often related to a deterministic extinction of a
species when an equilibrium state exchanges stability with a solution where
one or more populations are zero.

(a) An unstable steady state (sad-
dle) and a stable steady state (node)
merge and disappear in a saddle-node
bifurcation at pcr

(b) An unstable equlibrium and a sta-
ble steady state exchange stability in
a transcritical bifurcation at pcr

Figure 1.1: Examples of steady state bifurcations.

Bifurcations of steady states and limit cycles are shown in Fig. 1.2 and
Fig. 1.3. Figure 1.3 shows two types of Hopf bifurcations. While a stable
steady state becomes unstable, either a stable limit cycle emerges (super-
critical Hopf bifurcation, Fig. 1.2(a)) or an unstable limit cycle disappears
(sub-critical Hopf bifurcation, Fig. 1.2(b)).

Another possibility for limit cycles to (dis)appear are homoclinic bifurca-
tions as shown in Fig. 1.3. In a homoclinic saddle bifurcation a limit cycle
turns into a homoclinic connection as shown in Fig. 1.3(a). On a homoclinic
connection the system evolves forward and backward in time towards the same
steady state. Consequently, such a homoclinic loop takes an infinite amount
of time, i.e. has an infinite period. The cycle disappears beyond the bifur-
cation. It is also possible that a stable and an unstable steady state with
a heteroclinic connection merge in a homoclinic saddle-node bifurcation as
shown in Fig.1.3(b). Thereby the heteroclinic connection becomes a homo-
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(a) A stable steady state becomes un-
stable and a stable limit cycle emerges
in a super-critical Hopf bifurcation at
pcr.

(b) A stable steady state becomes un-
stable and an unstable limit cycle dis-
appears in a sub-critical Hopf bifurca-
tion at pcr..

Figure 1.2: Hopf bifurcations.

clinic connetion in the bifurcation point which turns into a limit cycle beyond
the critical parameter value. Homoclinic bifurcations play also an important
role in the emergence of chaotic dynamics (Kuznetsov, 2004).

(a) A limit cycle disappears after it in-
tersects with an unstable steady state
(saddle) in a homoclinic bifurcation at
pcr.

(b) An unstable steady state and a
stable steady state with a hetero-
clinic connection merge in a homo-
clinic saddle-node bifurcation at pcr

and a limit cycle appears.

Figure 1.3: Homoclinic bifurcations.

For the analysis of specific models the computation of these bifurcations
can be done numerically using continuation methods as in powerful software
packages like AUTO (Doedel et al., 1997; Doedel and Oldeman, 2009), CON-
TENT (Kuznetsov and Levitin, 1996) and MATCONT (Dhooge et al., 2003).
These programs allow to follow the stationary or periodic solutions by vary-
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ing one parameter in order to find the bifurcation points. Once a bifurcation
point is detected, it is possible to follow the bifurcation point while another
parameter is varied. In this way bifurcation curves are obtained which can
lead to even more complicated bifurcation situations.

The application of these techniques to generalized models is not possible
since the generalized formulations allows not even a computation of a steady
state. Therefore, in the field of generalized modeling classical methods are
of advantage and allow for the computation of tangent and Hopf bifurcations
(Gross and Feudel, 2004). Thereby, the problem that the steady state is in
general unknown is overcome by a renormalization procedure. In principle, the
analytical bifurcation condition can be used to derive three-dimensional bifur-
cation diagrams. Basically, a three-dimensional representation is of advantage
for two reasons. First, such a visualization reveals much more information
about the influence of a parameter on the stability. For instance, increasing
the distance to destabilizing bifurcations could be interpreted as stabilization.
However, a parameter variation that increases the distance to a bifurcation
surface with respect to one parameter could decrease the distance to the bi-
furcation surface with respect to another parameter. Such a weak stabilization
can not be recognized from a one-dimensional bifurcation diagram (Van Voorn
et al., 2008). Second, a three-dimensional visualization helps to quickly locate
more complicated bifurcation situations at the intersections of the computed
bifurcation surfaces. These bifurcations can indicate the presence of additional
bifurcations, like homoclinic bifurcations and chaotic dynamics (Kuznetsov,
2004). Most importantly, an advantage of the localization of bifurcations in
generalized models is, that the analysis is independent of biological or math-
ematical details. Consequently, the results hold for whole classes of specific
models.

In order to capitalize on these advantages a method for the computation
of the bifurcation surfaces from implicit test functions is needed. Especially
for the localization of the more complicated bifurcation situations, a faithful
representation of the bifurcation surfaces is crucial. Therefore, a central point
of the presented thesis is the implementation of a technique that cope with
these demands.

The properties of generalized models depend on the model structure, i.e.
the variables and the considered gain and loss processes of these variables and
on which variables the processes depend on. In (Gross, 2004a) predator-prey
models have been analyzed in a very general form. In the following we will
introduce two modern branches of ecology, stoichiometric ecology and ecologi-
cal epidemiology that change the functional dependency and the structure of
predator prey systems respectively. The former considers the chemical com-
position of the populations and the flow of nutrients between the populations
(Sterner and Elser, 2002; Moe et al., 2005). These aspects change the depen-
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dencies of the processes that are restricted by stoichiometric constraints. The
latter considers the effects of diseases spreading among the interacting popu-
lations. This can be modeled by changing the structure of food chain models
Venturino (1995, 2002a). Both model types have not yet been analyzed in a
generalized form.

Although Lotka (1925) devoted much attention to stoichiometric aspects of
the energy transformation, the topic received not much attention in the com-
munity of theoretical ecologists. However, in the past two decades there was a
renewed interest on this topic and an increasing number of experimental and
theoretical studies in ecological stoichiometry Moe et al. (2005). It shows that
stoichiometric constraints can greatly affect population dynamics (e.g.Huxel
(1999); Loladze and Kuang (2000); Sterner and Elser (2002); Kooijman et al.
(2004)).

Primarily, two processes are effected by stoichiometric constraints. First,
the growth of the first trophic level, the primary production is limited by the
availability of nutrients like carbon, phosphorus or nitrogen. However, as soon
as the primary producer is in a predator-prey relation, the predator gets the
essential nutrients from the consumed prey and the nutrients become partly
stored in the higher trophic level. Therefore the primary production depends
in general also on the predator population.

Second, the conversion efficiency depends on the nutrient content of the
prey. Most food chain models assume that the conversion efficiency is constant.
This is reasonable as long as the predator and prey populations have a fixed
stoichiometric composition. However, it has been shown that primary pro-
ducers often have a rather variable nutrient content (Sterner and Elser, 2002).
Consequently, such a variable food quality must lead to a variable conversion
efficiency.

The effects of stoichiometric constraints depend again on the specific mod-
eling approaches. Loladze and Kuang (2000) for instance considered carbon
and phosphorus as limiting nutrients with a variable ratio within the producer.
For an intermediate total phosphorus concentration they observed the paradox
of enrichment but the oscillations disappear after a homoclinic bifurcation and
the system approaches another equilibrium. At low phosphorus concentration
the paradox of enrichment completely disappears. Instead, they observe a
destabilizing effect due to increasing phosphorus they call the paradox of nu-
trient enrichment. Kooijman et al. (2004) investigate a model with a variable
carbon concentration in the prey that results from reserves. In this model also
a homoclinic bifurcation is found but in contrast to the model by Loladze and
Kuang (2000) both populations go extinct beyond the bifurcation. In conclu-
sion, stoichiometric constraints show a great influence on the dynamics but a
unifying modeling approach has not been found yet. Therefore, the presented
thesis aims to identify generic model properties by the analysis of a generalized
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stoichiometric model. The results of this analysis are compared to previous
results of specific stoichiometric models in order to find common effects and
to understand the differences from a generalized point of view.

Ecological epidemiology focuses on the interplay of disease and popula-
tion dynamics. Theoretical epidemic models have been developed parallel to
predator-prey models and have many similarities. Like the Lotka-Volterra
model in population dynamics Kermack and Mckendrick (1927) proposed a
model for disease that is based on the principles of mass-action. It separates
a population into susceptibles, infected and removed or recovered individuals
(SIR). The incidence function that describes the infection rate was assumed
to be be proportional to the abundance of susceptibles and infected while
the infected recovered or died with a constant per capita rate. Similar to
the functional response in population dynamics several functional forms of
the incidence function have been proposed in the history of theoretical epi-
demiology (McCallum et al., 2001). A spreading diseases can affect ecological
dynamics in many ways. Anderson et al. (1986) proposed two modified Lotka-
Volterra models, one with infected prey and one with infected predators. They
assumed that the infection may increase mortality, decrease reproductivity, in-
fected prey becomes more vulnerable to predation and infected predators may
be less effective in predation. It shows that infections tend to destabilize the
predator-prey community. Up to now there are numerous theoretical studies
of eco-epidemic models with infected prey. On one hand many field studies
have shown that predators take a disproportionate large number of prey in-
fected by parasites (Hethcote et al., 2004). On the other hand there are also
examples where the predator can recognize an infection and avoid the infected
prey (Roy and Chattopadhyay, 2005). Most eco-epidemic models predict that
diseases tend to destabilize the predator-prey system (Anderson et al., 1986;
Dobson, 1988; Hadeler and Freedman, 1989; Xiao and Bosch, 2003) but also
stabilizing effects have been observed (Hilker and Schmitz, 2008). Compared
to models with infected prey the influence of infected predators is rarely inves-
tigated. Nevertheless diseases spreading in a predator populations can have a
major influence on population dynamics. An accidentally human-introduced
disease has dramatically reduced the number of wolfs on the Isle Royal, USA
from 1980 to 1982 and has led to an increased moose population (Wilmers
et al., 2006). In biological control programs diseases are introduced for exam-
ple to reduce non-native cat populations on islands but most often with no or
minor success (Mills and Getz, 1996). In conclusion, the poor success of con-
trol programs and contradicting results of modeling shows that the interplay
of disease and population dynamics are not yet well understood.

A main point of the presented thesis is to understand how diseases in
predator populations can effect the dynamics of the predator-prey interactions
from a general perspective. While some specific models show that diseases in
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the predator population can lead to oscillations (Anderson et al., 1986; Xiao
and Bosch, 2003; Haque and Venturino, 2007), we focus on the generation
of more complex dynamics. The generalized analysis is used to propose a
specific model that allows for a more detailed analysis of the emergence of
such complex dynamics.

In summary, the presented thesis introduces an innovative technique for
the computation of bifurcation surfaces. This technique is applied in combi-
nation with the approach of generalized modeling to identify generic effects of
stoichiometric constraints and diseases on predator-prey interactions. A main
focus of the thesis is, however, the comparison of specific and generalized mod-
els. Thereby new methods are invented to combine specific and generalized
bifurcation diagrams. It shows that both modeling approaches can take benefit
from each other.

In Chapter 2 a technique for the computation of bifurcation surfaces is
introduced. The basic method was first used in Stiefs (2005) and has been
further developed and improved. Using an adaptive triangulation method
this technique allows to visualize the test functions of bifurcations in three-
dimensional diagrams. To be specific, the algorithm computes a closed mesh
of triangles with vertices on the bifurcation surface. To allow for a detailed
representation of the bifurcation surface by the mesh the size of the triangles
is adapted to the local surface curvature. In order to visualize the three-
dimensional structure of the surfaces level lines on these on the mesh are
plotted instead of the mesh structure. This technique is a fast and efficient
method for the computation of bifurcation surfaces and the localization of
complicated bifurcation situations. The capabilities of these method are then
demonstrated in Chapter 3 and 4.

A generalized stoichiometric producer grazer model is analyzed in Chapter
3. We focus the analysis of on the effects of a variable food quality and of
primary productions that depend additionally on the predator abundances.
Thereby, we find a generic paradoxical effect of intra-specific competition.
The findings are demonstrated on several specific models which encounter dif-
ferent mechanisms behind the stoichiometric constraints. For instance, this
comparison shows that the paradox of competition incorporates Rosenzweig’s
paradox of enrichment and the paradox of nutrient enrichment as well. More-
over we demonstrate how bifurcation scenarios of specific models obtained by
continuation methods can be mapped into bifurcation diagrams obtained by
the triangulation technique of Chapter 2. The combined bifurcation diagrams
illustrate the relations of specific and generalized model parameters.

In Chapter 4 a generalized eco-epidemic predator-prey model with a disease
spreading upon the predator population is analyzed. Thereby we concentrate
our analysis on the generalized functional response and the generalized in-
cidence function as the most debated processes. We use the approach from
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Chapter 2 to locate complicated bifurcation situations that give information
about complex dynamics. We show that diseases in predator populations can
generate chaotic dynamics in predator-prey populations. This implication is
demonstrated for a specific example model. The generalized analysis is used
to find a parameter regions of complex dynamics. It is shown that the chaotic
parameter regions can be widespread and the specific model allows for an
exemplary investigation of the routes into chaos with numerical techniques.

Finally, we discuss the results in a comprehensive way in Chapter 5 and
give an outlook for further investigations.



Chapter 2

Computation and

Visualization of Bifurcation

Surfaces∗

2.1 Abstract

The localization of critical parameter sets called bifurcations is often a central
task of the analysis of a nonlinear dynamical system. Bifurcations of codimen-
sion 1 that can be directly observed in nature and experiments form surfaces in
three dimensional parameter spaces. In this chapter we propose an algorithm
that combines adaptive triangulation with the theory of complex systems to
compute and visualize such bifurcation surfaces in a very efficient way. The vi-
sualization can enhance the qualitative understanding of a system. Moreover,
it can help to quickly locate more complex bifurcation situations correspond-
ing to bifurcations of higher codimension at the intersections of bifurcation
surfaces. Together with the approach of generalized models the proposed al-
gorithm enables us to gain extensive insights in the local and global dynamics
not only in one special system but in whole classes of systems.

2.2 Introduction

The long-term behavior of dynamical systems plays a crucial role in many areas
of science. If the parameters of the system are varied, sudden qualitative tran-
sitions can be observed as critical points in parameter space are crossed. These
points are called bifurcation points. The nature and location of bifurcations

∗This Chapter is a modified version of a published manuscript (Stiefs et al., 2008). Some
notations are changed in order to be consistent with the other chapters. The example section
is not included, since chapter 3 and 4 provide examples for an application of the method.
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is of interest in many systems corresponding to applications from different
fields of science. For instance the formation of Rayleigh-Bénard convection
cells in hydrodynamics (Swinney and Busse, 1981), the onset of Belousov-
Zhabotinsky oscillations in chemistry (Zaikin and Zhabotinsky, 1970; Agladze
and Krinsky, 1982) or the breakdown of the thermohaline ocean circulation in
climate dynamics (Titz et al., 2002; Dijkstra, 2005) appear as bifurcations in
models. The investigation of bifurcations in applied research focuses mostly
on codimension-1 bifurcations, which can be directly observed in experiments
(Guckenheimer and Holmes, 1983). In order to find bifurcations of higher
codimension, in general at least two parameters have to be set to the correct
value. Therefore, bifurcations of higher codimension are rarely seen in exper-
iments. Moreover the computation of higher codimension bifurcations cause
numerical difficulties in many models. Hence, an extensive search for higher
codimension bifurcations is not carried out in most applied studies.

From an applied point of view the investigation of codimension-2 bifurca-
tions is interesting, since these bifurcations can reveal the presence of global
codimension-1 bifurcations–such as the homoclinic bifurcations–which are oth-
erwise difficult to detect. The recent advances in the investigation of bifur-
cations of higher codimension are a source of many such insights (Kuznetsov,
2004). While this source of knowledge is often neglected in applied studies,
the investigation of bifurcations of higher codimension suffers from a lack of
examples from applications (Guckenheimer and Holmes, 1983). In this way
a gap between applied and fundamental research emerges, that prevents an
efficient cross-fertilization.

A new approach that can help to bridge this gap between mathematical in-
vestigations and real world systems is the investigation of generalized models.
Generalized models describe the local dynamics close to steady states without
restricting the model to a specific form, i.e. without specifying the mathemat-
ical functions describing the dynamics of the system (Gross et al., 2004; Gross
and Feudel, 2006). The computation of local bifurcations of steady-states in
a class of generalized models is often much simpler than in a specific conven-
tional model. A bifurcation that is found in a single generalized model can be
found in every generic model of the same class. In this way the investigation
of generalized models can provide examples of bifurcations of higher codimen-
sion in whole classes of models. From an applied point of view, it provides an
easy way to utilize the existing knowledge on the implications of bifurcations
of higher codimension on the dynamics.

For generalized models, the application of computer algebra assisted classi-
cal methods (Guckenheimer et al., 1997; Gross and Feudel, 2004) for comput-
ing bifurcations is advantageous. These methods are based on testfunctions
for specific eigenvalue constellations corresponding to specific types of bifur-
cations (Seydel, 1991).
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Classical methods yield implicit functions describing the manifolds in pa-
rameter space on which the bifurcation points are located. For codimension-1
bifurcations these manifolds are hypersurfaces. In order to utilize these advan-
tages, an efficient tool for the visualization of implicitly described bifurcation
hypersurfaces is needed. A properly adapted algorithm for curvature depen-
dent triangulation of implicit functions can provide such a tool.

Generalized modeling, computer algebra assisted bifurcation analysis and
adaptive triangulation are certainly interesting on their own. However, here
we show that in combination they form a powerful approach to compute and
visualize bifurcation surfaces in parameter space. This visualization yields
also the relationship between the different bifurcations and identifies higher
codimension bifurcations as intersections of surfaces. This way the proposed
algorithm can help to bridge the present gap between applied and fundamental
research in the area of bifurcation theory.

First, in Sec. 2.3 we briefly review how generalized models are constructed
and how implicit test functions can be derived from bifurcation theory. In Sec.
2.4 we explain how these implicit functions can be combined with an algorithm
of triangulation in order to visualize the bifurcations in parameter space. In
chapter 3 and 4 we show how the proposed method efficiently reveals certain
bifurcations of higher codimension and thereby provides qualitative insights
in the local and global dynamics of large classes of systems.

2.3 Generalized Models and Computation of Bifur-

cations

The state of many real world systems can be described by a low dimensional
set of state variables X1, . . . ,XN , the dynamics of which are given by a set of
ordinary differential equations

Ẋi = Fi(X1, . . . ,XN , p1, . . . , pM ), i = 1 . . . N (2.1)

where Fi(X1, . . . ,XN , p1, . . . , pM ) are in general nonlinear functions. For a
large number of systems it is a priori clear which quantities are the state vari-
ables. Moreover, it is generally known by which processes the state variables
interact. However, the exact functional forms by which these processes can be
described in the model are often unknown. In practice, the functions in the
model are often chosen as a compromise between empirical data, theoretical
reasoning and the need to keep the equations simple. It is therefore often
unclear if the dynamics that is observed in a model is a genuine feature of the
system or an artifact introduced by assumptions made in the modeling process
(e.g. (Ruxton and Rohani, 1998)).
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One way to analyze models without an explicit functional form is provided
by the method of generalized models (Gross and Feudel, 2006). Since it will
play an essential role in Chapter 3 and 4, let us briefly review the central idea
of this approach.

Let us consider the example of a system in which every dynamical variable
is subject to a gain term Gi(X1, . . . ,XN ) and a loss term Li(X1, . . . ,XN ). So
that our general model is

Fi = Gi(X1, . . . ,XN ) − Li(X1, . . . ,XN ) (2.2)

Note that the parameters (p1, . . . , pM ) do not appear explicitly, since the ex-
plicit functional form of the interactions Gi and Li is not specified.

Since our goal is to study the stability of a nontrivial steady state, we
assume that at least one steady state X

∗ = X1
∗, . . . ,XN

∗ exists, which is
true for many systems. Due to the fact that a computation of X

∗ is impos-
sible with the chosen degree of generality we apply a normalization proce-
dure with the aim to remove the unknown steady state from the equations.
For the sake of simplicity we assume that all entries of the steady state are
positive. We define normalized state variables xi = Xi/Xi

∗, the normalized
gain terms gi(x) = Gi(X1

∗x1, . . . ,XN
∗xN )/Gi(X

∗) as well as the normalized
loss terms li(x) = Li(X1

∗x1, . . . ,XN
∗xN )/Li(X

∗). Note, that by definition
xi

∗ = gi(x
∗) = li(x

∗) = 1. Substituting these terms, our model can be written
as

ẋi = (Gi(X
∗)/Xi

∗)gi(x) − (Li(X
∗)/Xi

∗)li(x). (2.3)

Considering the steady state this yields

(Gi(X
∗)/Xi

∗) = (Li(X
∗)/Xi

∗). (2.4)

We can therefore write our normalized model as

ẋi = αi(gi(x) − li(x)) (2.5)

where αi := Gi(X
∗)/Xi

∗ = Li(X
∗)/Xi

∗ are scale parameters which denote
the timescales - the characteristic exchange rate for each variable.

The normalization enables us to compute the Jacobian in the steady state.
We can write the Jacobian of the system as

Ji,j = αi(γi,j − δi,j). (2.6)

where we have defined

γi,j :=
∂gi(x1, . . . , xN )

∂xj

∣

∣

∣

∣

x=x∗

(2.7)
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and

δi,j :=
∂li(x1, . . . , xN )

∂xj

∣

∣

∣

∣

x=x∗

(2.8)

While the interpretation of γi,j and δi,j describe the required information
on the mathematical form of the gain and loss terms, we will see in Chapter 3
and 4 that the parameters generally have a well defined meaning in the context
of the application.

2.3.1 Testfunctions for bifurcations of steady states

Our aim is to study the stability properties of the steady state. Thus, only
two bifurcation situations are of interest: (i) the loss of stability due to a
bifurcation of tangent type where a real eigenvalue crosses the imaginary axis
or (ii) a bifurcation of Hopf type where a pair of complex conjugate eigenvalues
crosses the imaginary axis.

If a tangent bifurcation type occurs, at least one eigenvalue of the Jacobian
J becomes zero. Therefore, the determinant of J is a test function for this
bifurcation situation.

Hopf bifurcations are characterized by the existence of a purely imaginary
complex conjugate pair of eigenvalues. We use the method of resultants to
obtain a testfunction (Guckenheimer et al., 1997). Since at least one symmetric
pair of eigenvalues has to exist

λa = −λb. (2.9)

The eigenvalues λ1, . . . , λN of the Jacobian J are the roots of the Jacobian’s
characteristic polynomial

P (λ) = |J − λI| =
N

∑

n=0

cnλn = 0. (2.10)

Using condition (2.9) Eq. (2.10) can be divided (after some transformations)
into two polynomials of half order

N/2
∑

n=0

c2nχn = 0, (2.11)

N/2
∑

n=0

c2n+1χ
n = 0 (2.12)

where χ = λa
2 is the Hopf number and N/2 has to be rounded up or down to

an integer as required.
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In general two polynomials have a common root if the resultant vanishes
(Gelfand et al., 1994). The resultant R of Eq.(2.11) and Eq.(2.12) can be
written as a Hurwitz determinant of size (N −1)× (N −1). If we assume that
N is odd we have

RN :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 c0 0 . . . 0
c3 c2 c1 . . . 0
...

...
...

. . .
...

cN cN−1 cN−2 . . . c0

0 0 cN . . . c2

0 0 0 . . . c2
...

...
...

. . .
...

0 0 0 . . . cN−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (2.13)

With the condition RN = 0 we have found a sufficient test function for sym-
metric eigenvalues. The Hopf number χ gives us the information whether the
eigenvalues are real (χ > 0), purely imaginary (χ < 0), zero (χ = 0) or a
more complex situation (χ undefined). In the case χ = 0 we have a double
zero eigenvalue which corresponds to a codimension-2 Takens-Bogdanov bi-
furcation (TB). In a Takens-Bogdanov bifurcation a Hopf bifurcation meets a
tangent bifurcation. While the Hopf bifurcation vanishes in the TB bifurca-
tion, a branch of homoclinic bifurcations emerges. For more details see (Gross
and Feudel, 2004).

2.4 Visualization

The testfunctions, described above, yield an implicit description of the co-
dimension-1 bifurcation hypersurfaces. Since it is in general not feasible to
solve these functions explicitly we have to search for other means for the pur-
pose of visualization. In the following we focus on the visualization in a three
dimensional parameter space, in which the bifurcation hypersurfaces appear
as surfaces. We propose an algorithm, that constructs the bifurcation surfaces
from a set of bifurcation points, which have been computed numerically.

In order to efficiently obtain a faithful representation of the bifurcation
surface, the density of these points has to be higher in regions of higher curva-
ture. Moreover, the algorithm has to be able to distinguish between different
- possibly intersecting - bifurcation surfaces.

2.4.1 Adaptive Triangulation

A triangulation is the approximation of a surface by a set of triangles. We
apply a simplification of a method introduced by Karkanis and Stewart (2001)
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and extend it using the insights of the previous section. The algorithm consists
of two main parts. The first is the growing phase, in which a mesh of triangles
is computed that covers a large part of the surface. The second is the filling
phase, in which the remaining holes in this partial coverage are filled.

2.4.2 The seed triangle

Denoting the three parameters as x, y and z, we start by finding one root
p1 = (x1, y1, z1) of the testfunction, by a Newton-Raphson method (e.g. Kelley
(2003)). Suppose p1 is a vertex of the seed triangle, then we search for two
other points as two additional vertices that define a triangle of appropriate size
and shape. We find another two roots p2 initial and p3 initial close to p1. p2 initial

and p3 initial are within a radius of dinitial around p1 wherein the surface can be
sufficiently approximated by a plane. We find the next vertex p2 using a point
in the direction of p2 initial with the distance dinitial to p1 as initial conditions
for the Newton-Raphson method. The initial condition for the third vertex p3

is a point in the plane that is spanned by p1, p2 initial and p3 initial, orthogonal
to the line between p1 and p2, with a distance of dinitial to p1 as well. We
get an almost isosceles seed triangle that approximates the bifurcation surface
close to p1 sufficiently to our demands.

2.4.3 Growing phase

Starting from the seed triangle adjoining triangles can be added successively.
The size of the adjoining triangles has to be chosen according to certain,
possibly conflicting requirements. On the one hand the algorithm has to adapt
the size of the triangles to the local surface curvature in order to obtain a higher
resolution in regions of higher complexity and vice versa. On the other hand
it has to maintain a minimal and a maximal resolution. At first we adapt the
size of the triangle to the curvature of the surface.

We construct an interim triangle by mirroring p1 at the straight line
through p2 and p3 and to find a point p4 initial on the surface as shown in
Fig.2.1. Thus p4 initial defines together with p2 and p3 the interim triangle.
The angle φ between the normals of the new triangle and the parent is used
to approximate the local radius of curvature. Following Karkanis and Stewart
(2001) we define the radius of curvature as

R =
d

2sin
(

φ
2

) (2.14)

where d the distance of the centers of both triangles (cf. Fig. 2.1). We choose a
desired ratio ρ = R/d to compute a curvature adapted distance dadapt = R/ρ.
Finally we use again the Newton-Raphson method to find a bifurcation point
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Figure 2.1: Seed triangle with one adjacent triangle.
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p4 at the distance dadapt from the straight line through p2 and p3 in the
direction of p4 initial. The bifurcation points p2,p3 and p4 then are the vertices
of the adapted triangle. As mentioned above the adjacent triangles have to
satisfy additional requirements. In order to maintain a minimal resolution
we define a maximum dmax. To restrict the number of computed bifurcation
points we also define a minimum dmin. If dadapt is larger than dmax or smaller
than dmin we set it to dmax or dmin respectively to find p4. To check the quality
of the adapted triangle we also define a maximum angel φmax. We decrease
the distance d, if the angle between the normals of the triangles is greater than
φmax .

Proceeding as described above the algorithm adds to every triangle up to
two adjacent triangles. In order to prevent overlapping triangles, we reject a
triangle if its center is closer to the center of an opposite triangle than one
and a half times the largest edge of both. To allow for self intersections of
bifurcation surfaces, we allow an intersection of triangles if the angle between
the normals of the triangles is bigger than 2φmax. Another possibility which
has to be taken into account is that our system may possess more than one
bifurcation surface. To prevent transitions φmax has to be small enough. For
instance, if two surfaces intersect at an angle φ̂, we have to choose φmax much
smaller than φ̂. Concerning Hopf bifurcations the Hopf number χ offers a
tool to distinguish between different surfaces, even if the angle of intersection
is very small. Along one Hopf bifurcation surface χ varies smoothly. On a
different Hopf bifurcation surface the Hopf number is in general different since
another pair of purely imaginary eigenvalues is involved. We can therefore
check the continuity of χ between the new bifurcation point and the parent to
make sure that the new point belongs to the same surface.

Since the bifurcation surfaces are in general not closed, we have to restrict
the parameter space according to a volume of interest V . We choose minimal
and maximal values for each variable to define a cuboid which includes V .
Triangles with vertices outside of the cuboid are rejected.

Apart from this restriction it is possible, that we find borders of the bifur-
cation surface within our cuboid. One example is a Hopf bifurcation surface
that ends in a Takens-Bogdanov bifurcation as described in Sec. 2.3. If we cross
the Takens-Bogdanov bifurcation, the new point still can be settled down on
the surface described by the test function. But in this case the Hopf number
χ is positive and the symmetry condition is satisfied by a pair of purely real
eigenvalues that is not related to a bifurcation situation. To place the new
point directly onto the border of the Hopf bifurcation surface we compute the
root of the χ-function using the coordinates of the new point as initial con-
ditions. Then we use the resulting point again to find the root of our test
function. Repeating this procedure we find iteratively our new point directly
on the border of the Hopf bifurcation surface. In this way we can not only
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prevent a jump from one Hopf bifurcation surface to another one by checking
the sign of χ, but we also approximate the border of the Hopf bifurcation
surface.

Following the procedure described above we can successively add triangles
to our mesh until no further triangle is possible. After the growing phase the
complete surface, in the prescribed region of parameter space, is covered by a
mesh of triangles as seen in the upper diagram in Fig. 2.2.

2.4.4 Focus

Sometimes the bifurcation surfaces are quite smooth but in some regions they
possess a more complicated structure. If the radius of curvature changes too
rapidly the algorithm fails to adapt the size of the triangles and the structure
is poorly approximated in this region. In these regions it is useful to increase
the minimal resolution in order to obtain a more accurate approximation of
the bifurcation surface. We realize this by so-called focus points. In a certain
radius r̂ around these focus points we reduce the maximal size of the triangles.
The new maximal triangle size d̂max is then given as

d̂max =

{ (

c + (1−c)r
r̂

)

dmax r < r̂

dmax r ≥ r̂
, (2.15)

where r is the distance to the closest focus point and c is a constant between 0
and 1. By definition d̂max decreases linearly with r from dmax to a lower value
cdmax, where c is a constant between 0 and 1. In Fig. 2.2 we see a triangulation
of an example surface after the growing phase. The upper diagram shows that
two centers of a higher resolution exit. The lower diagram shows that the
surface looks like a landscape with a hill and a plane. One center of high
resolution is on top of the hill and the other one in the plane. This example
shows both resolution control mechanisms, the size adaption due to the radius
of curvature (left) and due to a focus point (right).

While in Fig. 2.2 the focus point is not advantageous, this additional reso-
lution control is essential for the computation of rather complicated bifurcation
situations.

2.4.5 Filling phase

While the growing phase covers a large fraction of the surface with connected
traces of triangles, space between the traces remain. While we fill this gap,
we have to take care that we do not fill space that lies outside the bifurcation
surface, e.g. beyond a Takens-Bogdanov bifurcation. In the following we start
by describing the filling phase for surfaces without boundaries and then go on
to explain how boundaries are handled.
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Figure 2.2: Example surface after the growing phase computed with one focus
point. The size of the triangles adapts to the local curvature and the proximity
to the focus point.
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The first task we have to perform in the filling phase is to identify the gap.
We can acquire the gap between the traces by starting at a vertex p1 and
following the vertices at the boundary clockwise. In this way we construct a
sequence of all N vertices.

Once we have defined a gap we start to separate the gap into subgaps.
To each point of the gap we associate the normal nk of an adjacent triangle
and the closest neighbor. Similar to Karkanis and Stewart (2001) we define
all points as neighbors of pk which are located between the two half planes
which are spanned by the normal nk and the two vectors from pk to pk−1 and
pk+1 shown in Fig. 2.3(a). The closest neighbor of pk is the neighbor with
the smallest Euclidean distance. If we find two points, which are the closest
neighbors to each other they form a so-called bridge. We divide the gap at
the first bridge we find into two subgaps by connecting the two vertices. If a
subgap consists of only three vertices, we add it as a triangle to the mesh we
obtained from the growing phase. We proceed with the subgaps as described
above until no bridges are left. Afterwards we divide the remaining subgaps
at the point with the smallest distance to its closest neighbor. In the end of
this procedure the hole gap is completely filled up with triangles.

2.4.6 Borders in the filling phase

If the bifurcation surfaces are not closed but possess some boundaries due to
margins of the parameter region under consideration, or due to a codimension-
2 bifurcation e.g. a Takens Bogdanov bifurcation then we have gaps which are
not supposed to be filled up. In order to prevent bridges connecting these
borders, we use similar criteria for the bridges and all connections we make to
divide the gaps, as used in the growing phase.

First, the connections the algorithm produces by the division of gaps should
not be much larger than dmax to preserve a minimal resolution. In order to
prevent long connections at the margins of the parameter region we look for
closest neighbors in a radius of 3dmax. In order to prevent triangles with edges
longer than 2dmax, we choose the maximal connection length as 1.8dmax. If
a connection is longer, we compute an additional point on the surface close
to the middle of the bridge and take this additional point into account. This
criterion may also prevent the filling of an area where the bifurcation condition
is not satisfied. This is particularly true in case of a Hopf bifurcation if the
Hopf number χ is positive at this point. As described above the algorithm
would automatically try to find a bifurcation point at the border of the Hopf
bifurcation surface. If the computation of the new bifurcation point fails the
division is denied.

Second, the angles between the resulting triangles and the triangles of the
mesh should not be larger than φmax. This criterion keeps the triangulation
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(a) The space of possible neighbors
of pk is within the two half planes
spanned by the normal nk associated
to pk and the two vectors from pk to
pk−1 and pk+1.

(b) The difference between the angles
φi and φj to 90 degrees has to be less
than φmax

(c) The angle φn between the normals
of the connected points has to be less
than φmax

(d) If an additional point in the mid-
dle of the bridge is necessary the angle
φkink has to be less then φmax

Figure 2.3: A connection in the filling phase is called bridge and has to satisfy
different conditions.
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smooth and may prevent the covering of a more complex region of the surface.
Let φi and φj denote the angles between the connection and the normals ni

and nj associated to the connected vertices as shown in Fig.2.3(b). Further,
we denote φn as the angle between the two normals ni and nj (see Fig.2.3(c)).
If the difference from φi and φj to 90 degrees is larger than φmax or φn is larger
than φmax, we compute an additional point between as well. As illustrated in
Fig.2.3(d) a new point in the connection will in general cause a kink. If the
angle of the kink in the connection is bigger than φmax, the division is denied.
If we can not compute the new point, because probably the bifurcation does
not exist close to it, the division is also rejected.

Having obtained an adaptive triangulation of the bifurcation surface, we
have to consider how to display the set of triangles.

2.4.7 Level lines

One the one hand visualization of the edges of the triangles can lead to visual
fallacies. Small triangles seem to be far away while large triangles may look
very close. Focus points sometimes exacerbate this effect. On the other hand
not displaying only the triangle surface without edges would deprive the viewer
of clues on the three dimensional shape of the surface. We introduce level lines
as a cosmetic tool. Like the level lines in a map we project certain values from
the axes onto the surface.

Finally we demonstrate the ability of our algorithm by the computation
of a Whitney umbrella type bifurcation surface which may appear as a higher
codimension bifurcation for Hopf bifurcations (cf. Chapter 4, Sec. 4.4.2). In
this case the bifurcation surface is twisted in itself (cf. Fig. 2.4). Even close
to the end of the intersection line, where the crossing angle becomes small, no
transitions occur. While in most regions the degree of curvature is quite small,
a sharp edge appears close to the end of the line where the Hopf bifurcation
intersects itself. Since the radius of curvature decreases rapidly at this edge
from a quite high value to a very small one, the adaptive resolution control
would fail to adapt the size of the triangles in this region. However, using
focus points close to the end of the crossing line we can prevent bigger gaps
in this region.

After the filling phase is completed (Fig. 2.4(b)) we cut off the outer trian-
gles in order to obtain even margins at the boundary of the region in parameter
space. Instead of the triangles we display now the level lines on the surface
for both horizontal axes in Fig. 2.4(c). As mentioned above not only the bi-
furcation surfaces but also the intersection lines are of interest since they form
bifurcations of higher codimension. In order to highlight these bifurcations we
finally mark the intersection line and its endpoint as shown in Fig. 2.4(d).
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(a) The trace of triangles follows the
evolution of the surface.

(b) Whitney umbrella surface after
the filling phase.

(c) Whitney umbrella surface after
the filling phase with level lines (no
highlighting of the triangle edges).

(d) Marking of intersection line and
its endpoint

Figure 2.4: Construction of a Whitney umbrella shaped surface. While the
upper subplots (a) and (b) show the two phases of the triangulation algorithm,
the lower subplots (c) and (d) illustrate the preparation of the resulting dia-
gram.
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2.5 Discussion

In this chapter we have proposed and applied a combination of generalized
modeling, bifurcation theory and adaptive triangulation techniques. This ap-
proach has enabled us to compute and visualize the local codimension-1 bifur-
cation hypersurfaces of steady states. In order to obtain a faithful represen-
tation of the surface at a low computational cost the algorithm automatically
adapts the size of the computed triangle elements to the local complexity of
the surface. Due to the application of generalized modeling, the resulting bi-
furcation diagrams do not describe a single model, but a class of models that
share a similar structure.

The proposed approach enables the researcher to rapidly compute three
parameter bifurcation diagrams for a given class of models. By considering sev-
eral of these diagrams with different parameter axes an intuitive understanding
of the local dynamics in a given class of systems can be gained. In particu-
lar, the approach bridges the gap between applied and fundamental research
as discussed in the Introduction. In the visualization of local bifurcations as
surfaces in a three dimensional parameter space, certain local bifurcations of
higher codimension can be easily spotted. In our experience the proposed
approach reveals bifurcations of codimension two and three in almost every
model studied. It thereby provides plentiful examples for mathematical anal-
ysis. In return insights gained from the investigation of higher-codimension
bifurcations can directly feed back in the investigation of the system. In par-
ticular the implications of local bifurcations of higher codimension, discussed
above, is intriguing in this context. Provided that the dynamical implications
of a bifurcation are known from normal form theory, the appearance of such
a bifurcation in the three parameter diagram, pinpoints a parameter region
of interesting dynamics. This region can then be investigated in conventional
models or experiments. In this way the investigation of models is facilitated
by reducing the need for more costly parameter search in conventional models.

In the present thesis we have only used the proposed approach in conjunc-
tions with testfunctions for two basic local bifurcations: the Hopf bifurcation
and the tangent bifurcation. However, in principle, the approach can be ex-
tended to include testfunctions for codimension-2 bifurcations. This would
allow the algorithm to adaptively decrease the size of triangles close to these
bifurcations and continue the bifurcation lines directly once they are reached.
Furthermore, being hyperlines, the codimension-2 bifurcation points form sur-
faces in a four dimensional parameter space. Once again these surfaces can be
triangulated with the described algorithms. The four dimensional space could
be visualized in a movie, where time represents the forth parameter or by col-
lapsing and color coding one of the parameter dimensions. Both approaches
would allow for the visual identification of bifurcations of codimension three
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and higher.
At present the proposed approach has two limitations. First, the extraction

of information is solely based on the Jacobian. Higher orders, which determine
the normal form coefficients, are at present not taken into account. However,
parameters that capture this information could be defined in analogy to the
exponent parameters, which we have used to capture the required information
on the nonlinearity of the equations of motion.

The second limitation is that the approach outlined here is presently only
applicable to systems of small or intermediate dimension (N < 10) as the
analytical computation of the testfunctions becomes cumbersome for larger
systems. This problem can be avoided by combining the triangulation tech-
niques proposed here with the numerical investigation of generalized models
demonstrated in (Steuer et al., 2006).
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Chapter 3

Stoichiometric

producer-grazer systems∗

3.1 Abstract

We analyze how stoichiometric constraints affect the dynamics of producer-
grazer systems. The approach of generalized modeling is used to identify
generic stability properties and global dynamics. We find a Takens-Bogdanov
bifurcation that leads to the disappearance of the paradox of enrichment in
certain parameter regions. Further, the Takens-Bogdanov bifurcation indi-
cates the presence of homoclinic bifurcations. These findings are compared to
different specific modeling approaches.

3.2 Introduction

Traditionally most ecological models quantify energy and biomass flow solely
in terms of carbon. Stoichiometric constraints arising in part from different
nutrient ratios in the populations are only captured indirectly. However, in
recent years it has been shown that already minor extensions can make carbon-
based models stoichiometrically explicit and thus significantly enhance the
qualitative understanding of laboratory experiments and field observations.
Presently, the effects of stoichiometric constraints are thus receiving more and
more attention (Sterner and Elser, 2002).

In particular the conversion efficiency from the first to the second trophic
level as well as the rate of primary production have been found to be strongly
affected by stoichiometric constraints (Andersen et al., 2004). Most primary

∗This Chapter has been submitted in a condensed version to The American Naturalist.
Especially, the discussion of the generalized parameters in Sec.3.3 and the final discussion
Sec. 3.6 are much more detailed than in this Chapter.
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producers are flexible in their use of nutrients and are thus characterized by
highly variable nutrient content. By contrast grazers growing by consumption
of the primary producers have a relatively fixed internal stoichiometry. Thus
conversion efficiency of producer into grazer biomass can depend strongly on
the nutrient content of the producer.

The producer’s nutrient content depends on the many complex processes
governing nutrient flows (DeAngelis, 1992), but is particularly dependent on
grazing. Although grazing can enhance the recycling of nutrients in the sys-
tem (Sterner, 1986), it also sustains accumulation of biomass on higher trophic
levels which can lead to a storage of nutrients in the biomass of grazers and
predators. In systems in which the recycling of nutrients is essential, storage
of nutrients can lead to a depletion of nutrients available for primary produc-
ers and consequently decreases both the primary production and the grazers
conversion efficiency.

Nutrient storage and variable conversion efficiency introduce a complex
feedback mechanism as the rate of primary production and the growth of graz-
ers become dependent on the biomasses of all populations in the system. Even
in simple food chain models it has been shown that stoichiometric constraints
arising from variable nutrient content lead to complex dynamics (Huxel, 1999;
Loladze and Kuang, 2000; Sterner and Elser, 2002; Kooijman et al., 2004).
A point of particular concern is that different, but seemingly similar, models
can exhibit very different dynamics, depending on the functional forms that
are used to describe the conversion efficiency. Since the metabolism of even
a single cell is highly complex, every specific function formulated to describe
stoichiometric constraints on the level of the population necessarily involves
strong assumptions. It is therefore an important practical challenge to iden-
tify the decisive feature of the functional forms that have a strong impact on
the dynamics and therefore have to be captured in the formulation of credible
models.

In this Chapter we use the approach of generalized modeling (Gross et al.,
2005; Gross and Feudel, 2006) to analyze the effects of stoichiometric con-
straints. In a generalized model the rates of processes do not need to be
restricted to specific functional forms which enables us to investigate the dy-
namics of a large class of models comprising of several well studied examples.
This allows us to compare the results of the generalized model to three spe-
cific models: the model of Kooijman et al. (2004) based on the Dynamic En-
ergy Budget (DEB) theory (Kooijman, 2000), a model by Loladze and Kuang
(2000) which uses Liebigs minimum law, and a related model with smooth
functions based on the concept of synthesizing units (SU) (O’Neill et al., 1989;
Kooijman, 2000). The generalized model provides an unifying framework that
explains differences and commonalities between the different specific models,
while the specific models allow for numerical investigation which reveal ad-
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ditional insights beyond what can be extracted from the generalized model.
Our analysis reveals that a variable conversion efficiency has a strong impact
on population dynamics, leading to global bifurcations (Kuznetsov, 2004) and
parameter regions where the paradox of enrichment (Rosenzweig, 1971) is
avoided. However, the generalized analysis reveals a paradox of competition
that is related to the paradox of enrichment but appears to be a generic prop-
erty of the model class. By comparison, the functional dependence of the
primary production on populations other than the primary producer appears
to be of minor importance.

3.3 A generalized food chain model with variable

efficiency

Our aim is to understand the effects of stoichiometric constraints on the pri-
mary production S and biomass conversion efficiency E. Therefore we consider
one of the most fundamental classes of population models containing a primary
producer X and a grazer Y as variables. For the sake of simplicity we assume
that X and Y express the biomass densities in terms of carbon concentrations
as it is the case for the specific models we analyze in Section 3.5.

As motivated in the introduction we assume that the the primary produc-
tion S(X,Y ) and biomass conversion efficiency E(X,Y ) may depend on both
variables, i.e. the primary producer and the grazer. The grazing is represented
by the generalized per capita functional response F (X). Finally we assume a
linear mortality of the grazer with a constant rate D. Thus the model reads

Ẋ = S(X,Y ) − F (X)Y ,

Ẏ = E(X,Y )F (X)Y − DY .
(3.1)

Usually the first step in the analysis is a local stability analysis of steady
states. However, in contrast to specific models where the functional forms
of the processes, namely S(X,Y ), F (X) and E(X,Y ), are given explicitly,
we can not compute the steady states of generalized models. Nevertheless, a
normalization procedure described in (Gross and Feudel, 2006; Gross et al.,
2004) enables a local stability analysis of generalized models in terms of bi-
furcation theory. This normalization is based on the assumption that at least
one positive but not necessarily stable steady state (X∗, Y ∗) exists. Addition-
ally, this normalization technique leads to generalized parameters that can
be interpreted by biological reasoning. In the following we demonstrate this
method with a minimum of technical details (cf. Gross and Feudel (2006) for
further details) in order to focus on the biological results.

Firstly, we define the normalized variables x = X/X∗ and y = Y/Y ∗ as
well as the normalized processes s(x, y) = S(X∗x, Y ∗y)/S(X∗, Y ∗), e(x, y) =



34 CHAPTER 3. STOICHIOMETRIC PRODUCER-GRAZER SYSTEMS

E(X∗x, Y ∗y)/E(X∗, Y ∗) and f(x) = F (X∗x)/F (X∗). The normalized model
reads then

ẋ = s(x, y) − f(x)y ,
ẏ = r(e(x, y)f(x)y − y) ,

(3.2)

with r := D
S(X∗,Y ∗)/X∗

. The advantage of this normalization is that we know

not only the steady state x∗ = y∗ = 1 but also the generalized processes in
the steady state s(x∗, y∗) = f(x∗) = e(x∗, y∗) = 1.

The interpretation of the new parameter r is straightforward. From the
model Eq.(3.2) we see that the parameter r is directly connected to the
timescale of the grazer population y. Due to the normalization the parameter
r describes the relative scale of the lifetime between the producer and the
grazer in the steady state (X∗, Y ∗). If r = 1 both variables have the same
timescale in the steady state. We assume that the timescale of the grazer is
slower than the timescale of the producer (Hendriks, 1999), i.e. 0 ≤ r ≤ 1.

So far, we normalized the generalized model in order to avoid the unknown
steady state (X∗, Y ∗) and obtained the timescale parameter r. The next step
is the stability analysis of the steady state under consideration in terms of
bifurcation theory. The stability of the steady state is given by the eigenvalues
of the Jacobian J in the steady state. A steady state is stable if the real parts
of all eigenvalues are negative. Thus, only two bifurcation situations where
the steady states becomes unstable are of interest: tangent bifurcations (where
one real eigenvalue crosses the imaginary axis) or Hopf bifurcations (where a
pair of complex conjugate eigenvalues crosses the imaginary axis). Note, since
we focus on the eigenvalues only we do not distinguish between generic or
degenerate types of these bifurcations in the generalized analysis.

The Jacobian of the normalized model in the steady state reads

J|x=x∗,y=y∗ =

∣

∣

∣

∣

σx − γ σy − 1
r(ηx + γ) rηy

∣

∣

∣

∣

(3.3)

where we define

γ := df(x)
dx

∣

∣

∣

x=x∗,y=y∗

,

σx := ds(x,y)
dx

∣

∣

∣

x=x∗,y=y∗

,

σy := ds(x,y)
dy

∣

∣

∣

x=x∗,y=y∗

,

ηx := de(x,y)
dx

∣

∣

∣

x=x∗,y=y∗

,

ηy := de(x,y)
dy

∣

∣

∣

x=x∗,y=y∗

,

(3.4)

as the generalized parameters with x∗ = y∗ = 1. These parameters encode
the required information about the mathematical form of the processes. The-
oretically, we are now able to compute the bifurcation conditions mentioned
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above based on the Jacobian (Eq. (3.3)). These bifurcation manifolds are
hypersurfaces in parameter space that separate stable from unstable parame-
ter regions. In principle, we could start to compute the bifurcation diagrams
using the the technique introduced in Chapter 2. However, in order to benefit
from these bifurcation diagrams, we first need bifurcation parameter that we
understand from a biological perspective.

3.3.1 Ecological and stoichiometric restrictions

At this point we defined the model structure and obtained the timescale pa-
rameter and generalized parameters as potential bifurcation parameters. The
interpretation of the generalized parameters in the light of stoichiometry re-
quires a fundamental knowledge of the processes. For the bifurcation analysis
it is further convenient to substitute some of the parameters. In the following
we discuss the main ecological and stoichiometric restrictions on the processes
and their mathematical consequences before we choose a set of bifurcation
parameters having a biological interpretation.

First, it is reasonable to assume that the primary production S(X,Y )
grows proportional to the number of primary producers X if competition is
low. However, as stated in the introduction each realistic system has limited
resources. A storage of nutrients in biomass of X and Y could lead to a lack
of available nutrients. Such a lack of a limiting nutrient would lead to low or
even zero primary production.

Since a single grazer can only consume a limited amount of producers
the consumption rate, i.e. the functional response F (X) saturates for high
producer densities. We assume that the functional response F (X) growths
monotonously with the density of primary producers X. This means that
there are no inhibition effects due to high primary producer densities.

In our model class food quality effects does not affect directly the consump-
tion rate but the conversion efficiency E(X,Y ) of the consumed biomass. Low
food quality in terms of a lack of at least one essential nutrient tends to de-
crease the biomass production of the grazer and therefore E(X,Y ). But the
food quality, the nutrient content of the primary producer is coupled to the
availability of nutrients. For the same reasons as mentioned above, the biomass
of X and Y tends to decrease the amount of available nutrients and therefore
the nutrient content of X. Consequently, we assume that E(X,Y ) decreases
monotonously with X and Y .

3.3.2 Mathematical consequences

For low values of X and Y resources are abundant and the competition pres-
sure on X is low. Thus S(X,Y ) is approximately a linear function in X and
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independent of Y as described above. The relations

σx = ds(x,y)
dx

∣

∣

∣

x=x∗,y=y∗

= X∗

S(X∗,Y ∗)
dS(X,Y )

dX

∣

∣

∣

X=X∗,Y =Y ∗

,

σy = ds(x,y)
dy

∣

∣

∣

x=x∗,y=y∗

= Y ∗

S(X∗,Y ∗)
dS(X,Y )

dY

∣

∣

∣

X=X∗,Y =Y ∗

,
(3.5)

show that a linear approach, say S(X,Y ) = S(X) = βX where β is a constant
factor, leads to σx = (X∗/βX∗)β = 1 and σy = 0. Since this situation is a
limit case, we relate low competition to σx close to 1 and σy close to zero. By
contrast, if available resources are scarce S(X,Y ) grows slower than linear in
or even decreases with X and decreases monotonously with Y . Consequently,
the parameters σx and σy are lower than 1 and 0, respectively. They go to
−∞ when a limiting nutrient becomes unavailable for primary production
(S(X∗, Y ∗) → 0). Note that this is a limit case since S(X∗, Y ∗) is always
larger than 0 for any positive steady state (X∗, Y ∗). Due to our assumptions
above we identify 1 ≥ σx > −∞ and 0 ≥ σy > −∞ as biologically reasonable
ranges. In order to have a parameter within a limited range [0, 1) we define
the parameters cx := (1−σx)/(2−σx) and cy := −σy/(1−σy) and substitute
σx = 2 − 1/(1 − cx) and σy = 1 − 1/(1 − cy).

Since realistic functional responses F (X) saturate for high producer den-
sities, high values of X∗ → ∞ lead to γ → 0. If producer is scarce the value
of γ is higher. Typical values are γ = 1 and γ = 2 that are related to linear or
quadratic consumption rates, respectively. As stated above we assumed that
the conversion efficiency E(X,Y ) decreases monotonously, i.e. ηx ≤ 0, ηy ≤ 0.
Further we assumed that E(X,Y ) tend to become small for high values of X
and Y . If E(X∗, Y ∗) → 0 (while X∗ and Y ∗ approach values larger than zero)
then ηx → −∞ and ηy → −∞ as we see from Eq.(3.6).

ηx = de(x,y)
dx

∣

∣

∣

x=x∗,y=y∗

= X∗

E(X∗,Y ∗)
dE(X,Y )

dX

∣

∣

∣

X=X∗,Y =Y ∗

ηy = de(x,y)
dy

∣

∣

∣

x=x∗,y=y∗

= Y ∗

E(X∗,Y ∗)
dE(X,Y )

dY

∣

∣

∣

X=X∗,Y =Y ∗

(3.6)

Briefly we assume −∞ < ηx ≤ 0 and −∞ < ηx ≤ 0. Again we define new
parameters nx := 1/(1 − ηx) and ny := 1/(1 − ηy) that are defined within the
range (0, 1] respectively to substitute the unbounded parameters ηx = 1−1/nx

and ηy = 1 − 1/ny.

3.3.3 Bifurcation Parameters

In summary our bifurcation parameters are r, cx, cy, γ, nx and ny. Apart
from γ all parameters are per definition limited in between 0 and 1. We
identified the parameter r as the relative timescale between the producer X
and the grazer Y . Following (Gross et al., 2005) we denote the parameter γ as
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Name Range Remarks

r relative timescale (0,1) → 1 no timescale separation,
→ 0 infinite timescale separation

cx, cy intra and inter [0,1) 0 no competition (S(X,Y ) linear in X
specific competition and independent of Y ),

→ 1 only competition(S(X∗, Y ∗) → 0)

γ sensitivity to prey > 0 close to zero for saturated F (X),
1 for F (X) linear in X
2 for F (X) quadratic in X

nx, ny food quality (0,1] 1 for good food quality
→ 0 (constant E(X,Y )), for low food
quality (E(X∗, Y ∗) → 0)

Table 3.1: Bifurcation parameters of the generalized model.

the (grazer) sensitivity to prey (producer). When the producer is abundant
the grazer is not very sensitive to the amount of producers since predation is
already quite saturated. In this case γ is close to zero as mentioned above.

We denote the parameters cx and cy as the intra-specific and inter-specific
competition parameters, respectively. They are close to 0 if competition is
low and close to 1 if limiting resources are scarce and competition leads to low
primary production S(X∗, Y ∗).

In a similar way we interpret nx and ny as food quality parameters. As long
as food quality is good in the sense that only food quantity limits growth these
parameters are close to 1. In the case of low food quality these parameters
are lower and approach 0 if the concentration of a limiting nutrient of the
grazer approaches zero in the primary producer population. Table 3.1 gives
an overview of all bifurcation parameters of the generalized model.

3.4 Generalized analysis

Now, after obtaining a reasonable parameter range for all parameters that
appear in the Jacobian we can analyze which theoretically realistic parameter
sets solve the bifurcation conditions mentioned above (Re(λ1,2) = 0). Our
particular emphasis lies on the impact of the functional form of the efficiency
E(X,Y ). Hence, we first analyze the qualitative behavior with constant effi-
ciency before we assume that E depends on the density of primary producers
and grazers.
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Figure 3.1: Bifurcation diagram of the generalized model with constant effi-
ciency, i.e. nx = ny = 1. The steady state is stable in the top left region. A
Hopf bifurcation line (H) and a tangent bifurcation line (T ) are shown. The
bifurcations are independent of the relative timescale r and the inter-specific
competition parameter cy. Note that the tangent bifurcation is at γ = 0 and
is not present in models with monotone increasing functional response F (X).

3.4.1 Constant efficiency

First, we consider the rather conventional case of a constant efficiency, i.e.
nx = ny = 1. Figure 3.1 shows the resulting bifurcation diagram.

We find a tangent bifurcation line (T ) and a Hopf bifurcation curve (H).
The steady state of the normalization is stable in the top left region of the
diagram. If one of the bifurcation lines is crossed due to a parameter variation
the steady state becomes unstable.

First of all, it is remarkable that both bifurcations are independent of r and
cy. This means that timescale separation and the functional dependency of
S(X,Y ) on Y (i.e. how X competes with Y ) has no influence on the stability
of the positive steady state.

The Hopf bifurcation curve exceeds the valid parameter range of 0 < cx < 1
for γ ≥ 1. For this reason, a Hopf bifurcation cannot be found in this model
class if f(x) and therefore F (X) are linear functions (γ = 1). One famous
example is the Lotka-Volterra model with a logistic growth (Hofbauer and
Sigmund, 1998). However, a Hopf bifurcation can appear in general if the
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function F (X) saturates and γ becomes lower than 1, e.g. models with Holling
type II or type III functional response (Rosenzweig and MacArthur, 1963).
In these models an increase of the intra-specific competition parameter cx

leads to a Hopf bifurcation and destabilizes the steady state. In ecology this
Hopf bifurcation is usually related to a destabilization of the whole system,
because in many models the oscillations beyond the Hopf bifurcation lead
to low population densities and hence, increase the chance of a stochastic
extinction of both populations. This counterintuitive effect of the intra-specific
competition on the stability of the system is closely related to the paradox of
enrichment (Rosenzweig, 1971).

The Hopf bifurcation ends at a tangent bifurcation line at γ = 0 in a
codimension-2 Takens-Bogdanov bifurcation. Since we consider F (X) as a
monotonous function, i.e. γ > 0, the tangent and the Takens-Bogdanov bifur-
cation at γ = 0 can not be observed (as long as the conversion efficiency is a
constant).

3.4.2 Variable efficiency

Let us now analyze the influence of a variable efficiency E(X,Y ) when the
primary production S(X,Y ) is independent of Y leading to cy = 0. Clearly,
the food quality parameters nx and ny are not independent of each other.
Since very low values of E(X∗, Y ∗) may lead to low values of nx and ny it
is rather unrealistic to choose for instance nx close to 0 and ny close to one
at the same time. However, the exact relation between nx and ny depends
on the specific model. To see how the stoichiometry changes qualitatively
the bifurcation diagram compared to results from constant efficiency models
(shown in Fig. 3.1) we assume first that nx = ny. We will see in Sec. 3.5 that
such a linear approach compares to one of our specific models as well.

Figure 3.2 shows the bifurcation diagram for a moderate timescale sepa-
ration r = 0.3. Note, that the two-dimensional bifurcation diagram shown in
Fig. 3.1 which we obtained for a constant efficiency (ideal food quality) can
be seen as a cross section of this three-dimensional bifurcation diagram shown
in Fig. 3.2 at nx = ny = 1.

We observe that the Hopf bifurcation surface can only be found in the
region of relatively high food quality values. In the Appendix we show that
generally no Hopf bifurcations can occur for nx ≤ 0.5. In that sense low food
quality leads in general to the disappearance of the paradox of enrichment.
However, this does not mean that low food quality necessarily stabilizes the
system. From Fig. 3.2 we see that rather the opposite seems to be the case.
A decreasing food quality can lead to a crossing of the tangent bifurcation
surface and hence, into the unstable parameter volume. Beyond the tangent
bifurcation the system leaves the steady state X∗, Y ∗ and approaches another
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Figure 3.2: Bifurcation diagram of a generalized producer-grazer model. A
surface of Hopf bifurcations (bright) and a surface of tangent bifurcations
(dark) are shown. The bifurcation parameters are the sensitivity to prey γ, the
food quality parameters nx = ny and the intra-specific competition parameter
cx. The fixed parameters are r = 0.3 (moderate timescale separation) and
cy = 0 (S(X,Y ) = S(X)). The steady state (X∗, Y ∗) is only stable in the
top front volume. Note that the cross section at nx = ny = 1 represents the
bifurcation diagram in Fig. 3.1.
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attractor.
Furthermore, we note that the Takens-Bogdanov bifurcation can occur as

soon as the food quality parameters nx = ny are lower than one. At this bifur-
cation the Jacobian has a double zero eigenvalue. In addition to the tangent
bifurcation and the Hopf bifurcation a homoclinic bifurcation emerges from the
Takens-Bogdanov bifurcation line (Kuznetsov, 2004). The homoclinic bifur-
cation is in general difficult to detect and can be related to sudden population
bursts and to the vanishing of population cycles. Consequently, we can state
that a variable food quality and therefore a variable conversion efficiency leads
to new bifurcations and therefore enriches the system dynamics.

In the last section we have shown that the inter-specific competition pa-
rameter cy has no influence on the stability of the steady state if the efficiency
is constant. For variable efficiency models the inter-specific competition pa-
rameter cy leads to a shift of the tangent bifurcation surface and therefore
to a shift of the end of the Hopf bifurcation surface. However, for low to in-
termediate values of cy ≤ 0.5 the bifurcation diagram looks almost identical
to Fig. 3.2 where we assumed cy = 0 (S(X,Y ) = S(X)). Figure 3.3 shows
two bifurcation diagrams at cy = 0.6 (left) and at cy = 0.95 (right). We see
that the effects become more pronounced for relative high values of cy → 1.
However, we observe that the inter-specific competition parameter cy does not
change the results discussed above qualitatively. Nevertheless, it leads to a
shift of the bifurcation surfaces and hence can influence the stability of the
system.
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Figure 3.3: Bifurcation diagram of a generalized producer-grazer model. A
surface of Hopf bifurcations (bright) and a surface of tangent bifurcations
(dark) are shown. The fixed parameters are r = 0.3 and cy = 0.6 (left diagram)
and cy = 0.95 (right diagram). The steady state (X∗, Y ∗) is only stable in
the top front volume.

To see whether these findings persist if we decrease nx and ny indepen-
dently, we compute a bifurcation diagram for low competition (cx = 0.01 and
cy = 0) and take nx and ny as bifurcation parameters. As shown in Fig. 3.4,
for both parameters nx and ny a decrease leads to an upwards shift of the
tangent bifurcation surface (dark). The parameter nx causes additionally an
upwards shift of the Hopf bifurcation surface (bright). However, the conclu-
sions we derived from Fig. 3.2 do not depend on the specific coupling of nx

and ny as long as one or both of these parameters decrease.
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Figure 3.4: Bifurcation diagram of a generalized producer-grazer model. A
surface of Hopf bifurcations (bright) and a surface of tangent bifurcations
(dark) are shown. The fixed parameters are r = 0.3, cx = 0.01 and cy = 0.
The steady state (X∗, Y ∗) is only stable in the top front volume.
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In summary, the analysis of the generalized model showed that for a con-
stant efficiency a decreasing intra-specific competition (i.e. competition pa-
rameter cx) tends to destabilize the system due to a Hopf bifurcation. The
timescale r as well as the inter-specific competition parameter cy and therefore
the functional dependency of S(X,Y ) on Y have no effect.

Although in variable efficiency models the inter-specific competition pa-
rameter cy has an influence on the bifurcation surfaces for nx < 1, ny < 1 the
effects are qualitatively low. We can clearly ascribe the presence of tangent
and Takens-Bogdanov bifurcations to a variability of the conversion efficiency
for the model class under consideration. Further homoclinic bifurcations are
in general present for variable conversion efficiency emerging from the Takens-
Bogdanov bifurcations. In other words, although both processes, the primary
production S(X,Y ) and the conversion efficiency E(X,Y ) are obviously con-
strained due to stoichiometry, the latter appears to be much more important
for the system dynamics. Even low effects of a variable food quality may cause
population bursts and the disappearance of population cycles, as stated above.

The Hopf bifurcation ends for decreasing food quality (i.e. at a certain
value of nx and ny) in a Takens-Bogdanov bifurcation. The paradox of en-
richment is therefore absent for low food quality parameters. However, a
decreasing intra-specific competition (i.e. the competition parameter cx) still
tends to destabilize the steady state under consideration due to a tangent
bifurcation.

3.5 Specific stoichiometric modeling approaches

The generalized analysis is of most advantage if the functional forms of the
processes are unknown. As we have seen above it allows to gain insights on
stability properties and global dynamics from very fundamental assumptions
about the considered processes. A major drawback of the generalized analysis
is that we have no information about the response of the steady state values
(X∗, Y ∗) on parameter variations.

In specific models usually rather simple functional forms are used that
incorporate the basic knowledge about the underlying processes. This specific
model description allows for a numerical as well as an analytical analysis. A
drawback of specific models is that it is difficult to distinguish generic system
properties from artifacts or degenerations due to the simplifications made in
order to formulate the specific model. In the following we present a fruitful
combination of generalized and specific bifurcation analysis in order to relate
generalized and specific model properties.

Please note that in the following model descriptions small and capital let-
ters no longer relate to normalized or non-normalized variables and processes.



3.5. SPECIFIC STOICHIOMETRIC MODELING APPROACHES 45

We will instead use the notations of the variables from the formulations of the
original models. The bifurcation diagrams of the specific models are obtained
by numerical continuation using the software AUTO Doedel et al. (1997);
Doedel and Oldeman (2009).

3.5.1 DEB model and simplified DEB model

A first central result of the generalized analysis is that the functional depen-
dency of the primary production on the grazer population expressed by cy

has no or a qualitatively rather low influence on the bifurcation manifolds.
The appearance of new local and global bifurcations is clearly related to the
variable efficiency in the model class under consideration.

The following specific example is a DEB model which has been introduced
by (Kooijman et al., 2004, 2007). It considers the dynamics of a producer
P and a consumer C. In this model the primary production depends not
only on the density of primary producers but also on the grazer density. It
was formulated as a variable efficiency model as well as a simplified constant
efficiency model. In the following we compare the dynamics of the two models
to our generalized analysis.

We follow the model formulation in (Kooijman et al., 2007) without main-
tenance costs. In the DEB model the producer consists of two compartments.
Assimilated nutrients are added first to a reserve or storage compartment. In
a second step reserves are used for growth. Since the producers take up nu-
trients from the environment fast and efficiently, we assume that all nutrients
are either in the structure or reserves of the producers P (t) or in the structure
of the consumers C(t).

Here the producer’s reserve density mN is obtained from the conservation
of nutrient in the system

mN (t) = N/P − nNC C/P − nNP (3.7)

for a total constant amount of nutrient N . The chemical indices nNP and
nNC stand for producers’ and consumers’ nutrient content per carbon and are
constant as well. This means that P (t) ∈ (0, N/nNP ) and C(t) ∈ [0, N/nNC).

Following (Muller et al., 2001), the time evolution of the amounts of pro-
ducers P and consumers C is given by

d

dt
P = rP P − jP C with rP =

kNmN

yNP + mN
and jP =

jPmP

K + P
(3.8)

d

dt
C = (rC − hC)C with rC =

(

r−1
CP + r−1

CN − (rCP + rCN )−1
)

−1
(3.9)

rCP = yCP jP and

rCN = yCN mN jP
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Name Value Units

N Total nutrient in the system 0-8.0 mol l−3

nNC Chemical index of nutrient in C 0.25 mol mol−1

nNP Chemical index of nutrient in P 0.15 mol mol−1

kN Reserve turnover rate 0.25 h−1

yNP Yield of N on P 0.15 mol mol−1

jPm Maximum specific assimilation rate 0.4 mol mol−1 h−1

K Half saturation constant 10 mM

yCP Yield of C on P 0.5 mol mol−1

yCN Yield of C on N 0.8 mol mol−1

jPAm Maximum specific assimilation rate 0.15 mol mol−1 h−1

Table 3.2: Parameter table of the model by (Kooijman et al., 2007)

where the specific growth rate of the producers rP follows from Droop-kinetics
and the specific feeding rate jP is the Holling type II functional response. The
specific growth rate rC of the consumers results from the standard SU rules for
the parallel processing of complementary compounds, here producer’s reserve
and structure (O’Neill et al., 1989; Kooijman, 2000). The flux rCP represents
the contribution of the producer’s structure to consumer’s growth, and rCN

that of producer’s reserve, while both compounds are required in the fixed
stoichiometric ratio yCP /yCN .

For the simplified constant efficiency version of model Eqs. (3.8, 3.9) we
assume that the consumer takes the structural part of the producer only. Then
the growth rate of the consumer follows a simple Holling type II functional
response, that is rC = rCP .

d

dt
P = rP P − jPAC with rP =

kNmN

yNP + mN
and jPA =

jPAmP

K + P
(3.10)

d

dt
C = (rCP − h)C with rCP = yCP jPA (3.11)

In order to compare the dynamics of both model formulations Eqs. (3.8,3.9)
and Eqs. (3.10, 3.11) for different amounts of available nutrients N , we com-
pute two bifurcation diagrams Fig. 3.5 and Fig. 3.6.

Figure 3.5 shows the bifurcation diagram of the simplified DEB model
(3.10, 3.11) for a variation of the total nutrient N . We see that a positive
steady state emerges from a transcritical bifurcation TC and becomes unstable
in a Hopf bifurcation H where a stable limit cycle emerges. This bifurcation
scenario is typical for many constant efficiency models (Van Voorn et al.,
2008) although the primary production here is modeled in a different way.
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Figure 3.5: Bifurcation diagram of the simplified DEB model. The stable
positive steady states emerges from a transcritical bifurcation TC and becomes
unstable in a Hopf bifurcation H. From the Hopf bifurcation emerges a stable
limit cycle.

Note that the parameter N is not equivalent to the carrying capacity K of
the frequently used logistic growth. However, from the generalized point of
view it is not surprising that we obtain a similar bifurcation diagram since all
constant efficiency models in the model class under consideration share the
same rather simple bifurcation diagram shown in Fig. 3.1.

Due to the results from the generalized analysis we expect a much more
complicated bifurcation scenario for the variable efficiency DEB model Eqs. (3.8, 3.9).
Figure 3.6 shows the bifurcation diagram for the DEB model with variable ef-
ficiency. The positive stable equilibrium emerges from a tangent bifurcation
instead of a transcritical one. Biologically, this tangent bifurcation can be
interpreted as an Allee-effect: The initial population size of the grazer has to
be large enough (above the unstable solution emerging from the tangent bifur-
cation) in order to persist. By increasing the amount of Nutrient N the stable
equilibrium becomes unstable in a Hopf bifurcation H and as in the simplified
model a stable limit cycle emerges. In contrast to our previous observations for
the simplified constant efficiency model Eqs. (3.10, 3.11) the stable limit cycle
vanishes for even higher values of N in a homoclinic bifurcation. After this
global bifurcation the zero equilibrium is the global attractor for the system.
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Figure 3.6: Bifurcation diagram of the DEB model with variable efficiency. A
stable (solid line) and an unstable (dashed line) solution emerge from a tangent
bifurcation T . The stable solution becomes unstable in a Hopf bifurcation H
and a stable limit cycle emerges. The limit cycle disappears in a homoclinic
bifurcation when increasing N .
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Figure 3.7: Bifurcation diagram of the generalized producer-grazer model from
top (left) and side (right) view. A surface of Hopf bifurcations (transparent
grey) and a surface of tangent bifurcations (dark grey) are shown. Addition-
ally, the steady state solutions from Fig. 3.5 (at nx = 1.0) and from Fig. 3.6
(0 ≤ nx ≤ 1) are shown. In contrast to Fig. 3.2, the relation ny = ny(nx) is
derived to fit the computation shown in Fig. 3.6. The fixed parameters are
r = 0.02 and σy = −2.37 (i.e. cy ≈ 0.77)
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Although the bifurcation types that can be found are in line with the
generalized analysis it is not a priori clear where these bifurcations occur. In
order to see how the specific bifurcation diagrams compare to the generalized
analysis, we transfer the curves in Fig. 3.5 and Fig. 3.6 into the generalized
parameter space. For each point in Fig. 3.5 and Fig. 3.6 we compute the
related generalized parameter set.

While we used the ad hoc approach nx = ny in our previous analysis we can
now obtain the relation directly from the transferred bifurcation curves. Figure
3.7 shows the resulting bifurcation diagram. Note that the derived relation
between nx and ny is specific for the DEB model and for the parameter used in
Fig. 3.6. However, the qualitative results we derived in Sec. 3.4.2 from Fig. 3.2
assuming nx = ny hold for Fig. 3.7 as well.

In addition to the bifurcation surfaces we see two curves partly solid and
partly dashed. The right hand side curve at nx = 1 relates to the positive
steady state of the simplified DEB model shown in Fig. 3.5. The TC is located
at cx = 1 in the generalized diagram. At this point the positive steady state
intersects with the zero equilibrium (Y ∗ → 0) where the grazing as well as
the primary production become zero. From Sec. 3.5 we already know that
S(X,Y ) → 0 is related to cx → 1. The Hopf bifurcation point H where the
stable positive steady state (solid line) becomes unstable (dashed line) fits to
the Hopf surface of the generalized analysis.

The other curve is transferred from the bifurcation diagram of the DEB
model with variable efficiency shown in Fig. 3.6. It intersects the tangent bi-
furcation surface at T . This is exactly the point T from Fig. 3.6 in generalized
coordinates. The dashed part of the curve is the unstable steady state while
the solid part is the stable steady state that coalesce in the tangent bifurca-
tion T . The stable steady state becomes unstable when it intersects the Hopf
bifurcation surface at H. Note that at the tangent bifurcation T both parts
of the curve evolve into two different directions in the generalized parameter
space. The reason is that both parts of the curve are related to two different
steady states. Consequently, both curves are normalized to different steady
states.

From the generalized analysis we expect the presence of a homoclinic bifur-
cation due to the Takens-Bogdanov bifurcation. At the homoclinic bifurcation
the limit cycle that emerges from the Hopf bifurcation intersects the unsta-
ble steady state from the tangent bifurcation and disappears. Biologically
speaking, close to the homoclinic bifurcation the population typically remains
for a long time close to the unstable equilibrium before it rapidly breaks out
and comes back to the equilibrium. After the bifurcation the population ap-
proaches another attractor. In this example both populations die out.

From Fig. 3.7 we see that this scenario is impossible for the simplified
constant efficiency DEB model. The tangent bifurcation as well as the Takens-
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Bogdanov bifurcation are out of the feasible range γ > 0.
In summary, the generalized framework allows for a comparison of the

DEB model and the simplified DEB model. The combined diagram in Fig. 3.7
visualizes that the simplification to a constant efficiency model leads to a
reduced bifurcation scenario. Or in other words, that an extension to a variable
efficiency model leads to much richer dynamics.

3.5.2 Non-smooth model by Loladze and Kuang 2000

Another central result of the generalized analysis is the disappearance of Hopf
bifurcations and as a consequence, the disappearance of the paradox of enrich-
ment for low food quality parameters nx or ny.

A specific stoichiometric model where the disappearance of the paradox
of enrichment has been observed was proposed and analyzed in (Loladze and
Kuang, 2000). In contrast to our first example two different essential nutrients
are considered here namely carbon and phosphorus. Further, no storage of nu-
trients is modeled explicitly. The density of phosphorus η(t) in the producers
population x is variable but not less than a minimal density q. The density of
phosphorus θ in the grazer population y is assumed to be constant.

The primary production follows a logistic growth with carrying capacity K
if carbon is limiting. However, if phosphorus is limiting the carrying capacity
is given by the upper limit for the producer density which is the total available
phosphorus (P−θy) divided by the minimal phosphorus density in the primary
producer q. Hence, the classical carrying capacity is replaced by the minimum
function min(K, (P − θy)/q).

The producer is consumed by the grazer with rate cf(x) carbon and at
the same time phosphorus with a rate η(t)cf(x). If the growth of the grazer
is carbon limited the conversion efficiency is assumed to be constant ê. As
soon as the phosphorus density of the producer η(t) is below the phosphorus
density of the grazer the growth of the grazer is phosphorus limited. The
conversion efficiency is decreased by the ratio η(t)/θ. Consequently, we define
the conversion efficiency as min(ê, êη/θ).

The model equations read

dx

dt
= bx

(

1 −
1

min(K/x, η/q)

)

− cf(x)y (3.12)

dy

dt
= êmin

(

1,
η

θ

)

cf(x)y − dy (3.13)

where

f(x) =
x

a + x
(3.14)
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Name Value Units

P Total phosphorus 0.025 mg P l−1

ê Maximal production efficiency 0.8
in carbon terms

b Maximal growth rate of the producer 1.2 day−1

d Grazer loss rate (includes respiration) 0.25-0.27 day−1

θ Grazer constant P/C 0.03 (mg P)(mg C)−1

q Producer minimal P/C 0.0038 (mg P)(mg C)−1

c Maximum ingestion rate of the grazer 0.81 day−1

a Half-saturation of grazer ingestion response 0.25 mg C l−1

K Producer carrying capacity limited by light 0.25-2.0 mg C l−1

Table 3.3: Parameter table of the model by Loladze and Kuang (2000).

and the variable

η(t) =
P − θy(t)

x(t)
(3.15)

where the constant P is the total amount of phosphorus in the closed system.
Observe that the grazer egests nutrient that is not used for growth. The

egested products are mineralized and sequestered by the producer instanta-
neously. As a result, no external carbon and phosphorus pools are assumed.

Since η is variable also the conversion efficiency êmin(1, η/θ) is variable if
phosphorus is limiting. In this case, as in our last example we expect from
the generalized analysis that tangent bifurcations as well as homoclinic bifur-
cations can be found. Figure 3.8 shows a one parameter bifurcation diagram
of this model for a variable carrying capacity K. The positive stable steady
state starts from a transcritical bifurcation TC1 and becomes unstable at a
Hopf bifurcation. This bifurcation scenario is similar to constant efficiency
models as we have seen for the simplified DEB model. However, for higher
values of K we see additionally another stable and another unstable solution
emerging from a tangent bifurcation T . The limit cycle emerging from the
Hopf bifurcation vanishes in a saddle-node homoclinic bifurcation at T . At
this point T another unstable and a stable solution emerge on the limit cycle
and turn the limit cycle into a homoclinic loop.

As mentioned above, another central result of the generalized model is in
line with the results from the model analysis in (Loladze and Kuang, 2000):
The disappearance of the paradox of enrichment for low food quality (low
total phosphorus concentrations, see Eq.(3.15))). From the generalized mod-
eling point of view, the disappearance of the paradox of enrichment is related
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Figure 3.8: One-parameter bifurcation diagram with the carrying capacity K
on the abscissa, and the grazer biomass on the ordinate. A stable positive so-
lution that emerges from a transcritical bifurcation TC1 (solid line) becomes
unstable (dashed line) at the Hopf bifurcation H. A stable limit cycle that
emerges at the Hopf bifurcation vanishes for increasing K in a saddle-node
homoclinic bifurcation where another stable and an unstable solution emerge
from the tangent bifurcation T . The stable solution of the tangent bifurcation
exchanges stability with the zero equilibrium in another transcritical bifurca-
tion TC2.
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to a switch of the generalized parameter nx. By comparing Eq. (3.1) and
Eq.(3.13) we see that the efficiency is given as êcmin

(

1, η
θ

)

. This means that
the efficiency switches from a constant function to a function that is inverse
proportional to x if phosphorus becomes limiting. In the generalized parame-
ter space this is related to a switch of nx from 1 to 0.5. As we have shown the
value nx = 0.5 is exactly the limit where the Hopf bifurcation disappears. In
that sense we understand the disappearance of the paradox of enrichment in
the model by Loladze and Kuang (2000) as a generic property of all models
that allow for low values of the food quality parameter (nx ≤ 0.5).

In order to visualize the switch we show in Fig. 3.9 a two-parameter bi-
furcation diagram of the model by Loladze and Kuang (2000) similar to Fig.
5 in (Loladze and Kuang, 2000). Figure 3.9 shows the switch explicitly as a
curve A and additionally a homoclinic bifurcation G. We note that the Hopf
bifurcation as well as the homoclinic and the tangent bifurcation end at the
switch. At first sight, it seems confusing that Hopf and tangent bifurcation
appear at the same side of the switch. The reason for this is that the tangent
bifurcation line and the Hopf bifurcation line are related to different steady
states as we show in Fig. 3.8. This difference in the steady state leads to dif-
ferent generalized parameters due to the normalization. For the steady state
of the Hopf bifurcation the switch A is from nx = 1 to nx = 0.5. By contrast,
for the steady states at the tangent bifurcation the switch A is from nx = 0.5
to nx = 1.

In the generalized model we observe that a decrease of competition always
tends to destabilize the steady state. At low food quality where no Hopf bi-
furcations can be found this destabilization is caused by a tangent bifurcation.
We see from Fig. 3.9 that, in the model by Loladze and Kuang (2000) the same
bifurcation scenario can be found when phosphorus is limiting: an increasing
total phosphorus concentration can lead to a destabilization due to the tan-
gent bifurcation T . Loladze and Kuang (2000) denoted this paradoxical effect
as the paradox of nutrient enrichment. From the generalized point of view
both the paradox of enrichment and the paradox of nutrient enrichment are
combined by the paradox of competition.

In contrast to Fig. 5 in (Loladze and Kuang, 2000), Fig. 3.9 shows not
only the switch but also the location of the homoclinic bifurcation. From the
generalized analysis we know that a homoclinic bifurcation is present because
of the Takens-Bogdanov bifurcation line we found. However, the Takens-
Bogdanov bifurcation can not be found in this specific model because the
switch of nx from 1 to 0.5 avoids the parameter region where the Takens-
Bogdanov bifurcation is present. Therefore, it is an open question whether
the additional homoclinic connection of the saddle emerges from the Takens-
Bogdanov bifurcation found in the generalized analysis. A path following of
the homoclinic connection stops at the switch A in the model as shown in
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Figure 3.9: Bifurcation diagram in a two-parameter plane spanned by total
phosphorus content P and carrying capacity K for the non-smooth model by
Loladze and Kuang (2000), with d = 0.32. The (saddle) homoclinic bifurca-
tion curve G merges with the tangent bifurcation curve T in a saddle-node
homoclinic bifurcation. A is the curve where the grazer minimum function
((P − θy)/x)/θ = 1, i.e. a stoichiometric switch occurs. The Hopf bifurcation
curve H and the tangent bifurcation curve T both terminate at the curve A.
The curves TC1 and TC2 define the transcritical boundary. Before TC1 and
beyond or rather below TC2 the grazer becomes extinct.
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Fig. 3.9. In order to find the Takens-Bogdanov bifurcation as the organizing
center of the Hopf and the homoclinic bifurcation we formulate a smooth
analogon to this model to avoid the switch which introduces a discontinuity.

3.5.3 Smooth analogon model

To overcome discontinuities in derivatives which cause problems for a bifur-
cation analysis we now set up a new model which is a smooth approximation
of the model Eqs. (3.12, 3.13) analyzed in (Loladze and Kuang, 2000). The
closed system consists of the producer, the grazer and the environment. Just
as in (Loladze and Kuang, 2000) we assume that there is no phosphorus in the
environment, but there is an external carbon pool for the two biota. The pool
represents the resources for the producers modeled in (Loladze and Kuang,
2000) by introducing the carrying capacity K.

Let x denote the biomass density of the producer and y the biomass density
of the grazer, both represented in mg C per volume of the environment. Then
the model reads

dx

dt
= bx

jm

1 + KPC

(C−x)BC
+ KPC

(P−θy−qx)BP
− KPC

(C−x)BC+(P−θy−qx)BP

− cf(x)y

(3.16)

dy

dt
= ê

1.2

1 + θ
η − 1/(1 + η

θ )
cf(x)y − dy (3.17)

where the constant C is the total amount of carbon in t, P is the total amount
of phosphorus and

jm := 1 +
KPC

CBC
+

KPC

PBP
−

KPC

CBC + PBP
(3.18)

so that b is the maximum initial producer growth rate (i.e. for x → 0,y →
0). The parameter θ is again the phosphorus density in the grazer and η(t)
the phosphorus density in the producer. The parameters BC and BP are
the assimilation preferences of the producer for C and P respectively. The
parameter KPC is a saturation constant.

The producer consists of two components, its structure and a phosphorus
pool. The structure has a fixed stoichiometry, that means the phosphorus
density P/C ratio denoted by q is fixed. The total phosphorus density in the
producer is denoted by η: hence, the phosphorus of the pool is η − q.

To model the assimilation of the producer (Eq.(3.16), the SU-formulation
(O’Neill et al., 1989; Kooijman, 2000) is used where both nutrients are as-
sumed to be essential. Note that this rate determines the growth rate of the
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Name Value Units

KP C Saturation constant 1

BC Producer assimilation preferences for C 0.002 l (mg C)−1

BP Producer assimilation preferences for P 2 l (mg P)−1

Table 3.4: Parameter table of the smooth analogon to the model by Loladze
and Kuang (2000) (b, C, P , θ, η, c and ê same as in Tab.3.3).

producer measured as carbon content while the phosphorus is already fixed
by the conservation law applied to the closed system and the assumption that
all phosphorus is in the biota. As a result the phosphorus density in the pool
η − q and consequently the total phosphorus density η are time-dependent.

Furthermore, in this formulation the growth depends on carbon influx
from the environment proportional to C − x and internal phosphorus from
the pool P − θy − qx. In the mass-balance model formulation the densities
of the two nutrients available for growth are C − x − y and P − θy − qx.
Note that now not C − x − y but C − x is used for the carbon in order to
obtain the same approximation as in the model of Loladze and Kuang (2000).
This reflects the fact that the model formulation with the logistic growth for
the producer in absence of the grazer does not obey mass-conservation (Kooi
et al., 1998). However, in Sec. 3.5.4 we also analyze a model formulation with
mass-conservation to investigate its impact on the dynamics.

The consumed amount of carbon and phosphorus by the grazer are both
proportional to cf(x) while η, is time-dependent. In this process there is no
distinction between the origin of the phosphorus: either from the structure
of the producer or from its phosphorus pool. In (3.17) the SU-formulation
for the two momentary fluxes is used. However, in this formalism both fluxes
need to be independent. Application of this formalism is justified by assuming
that after ingestion both nutrients from the assimilation (catabolic) process
become available for growth as unrelated chemical substances whereby the
two nutrients are both essential. The factor 1.2 is used to get a better match
between the smooth model (Eqs. (3.16, 3.17)) and its non-smooth counterpart
(Eqs. (3.12, 3.13)). Indeed, we obtain a very similar bifurcation diagram when
increasing the total carbon concentration C that compares to the carrying
capacity K in the model by Loladze and Kuang (2000).

Figure 3.10 shows a bifurcation diagram of the smooth SU model formu-
lation. The variation of the total carbon C leads to a qualitatively as well
as quantitatively similar bifurcation diagram compared to Fig. 3.8 where we
increased the capacity K from the logistic growth formulation. Again the ap-
pearance of the tangent and the homoclinic bifurcation are in line with the
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Figure 3.10: One-parameter bifurcation diagram with total carbon concen-
tration C on the abscissa, and the grazer biomass on the ordinate. A stable
positive solution that emerges from a transcritical bifurcation TC1 (solid line)
becomes unstable (dashed line) at the Hopf bifurcation H. A stable limit cycle
that emerges at the Hopf bifurcation vanishes for increasing K in a saddle-
node homoclinic bifurcation where another stable and an unstable solution
emerge from a tangent bifurcation T . The stable solution of the tangent bi-
furcation exchanges stability with the zero equilibrium in another transcritical
bifurcation TC2.

results from the generalized analysis. As mentioned above, we expect from
the generalized analysis a Takens-Bogdanov bifurcation to be the organizing
center of the Hopf and the homoclinic bifurcation. However, the tangent and
the Hopf bifurcation can not meet in a Takens-Bogdanov bifurcation since
both belong to different steady states. We need to find a tangent bifurcation
of the steady state of the Hopf bifurcation. Indeed, by decreasing d slightly
from 0.25 to 0.27 we observe that the steady state which becomes unstable
in the Hopf bifurcation undergoes a tangent bifurcation T2 and turns into a
stable steady state in the tangent bifurcation T1. The resulting bifurcation
diagram is shown in Fig. 3.11.

In contrast to the non-smooth model by Loladze and Kuang (2000), the
smooth model formulation enables us to map the specific bifurcation diagram
into the generalized parameter space as we did for the DEB model in Fig. 3.7.
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Figure 3.11: One-parameter bifurcation diagram with total carbon concen-
tration C on the abscissa, and the grazer biomass on the ordinate. A stable
positive solution that emerges from a transcritical bifurcation TC1 (solid line)
becomes unstable (dashed line) at the Hopf bifurcation H. A stable limit
cycle that emerges at the Hopf bifurcation vanishes for increasing K in a sad-
dle homoclinic bifurcation. The saddle emerges together with another stable
solution from a tangent bifurcation T1. The stable solution of the tangent bi-
furcation exchanges stability with the zero equilibrium in another transcritical
bifurcation TC2. In contrast to Fig. 3.10 where we used the same parameter
set except d = 0.25 instead of d = 0.27, the two unstable solutions merge and
disappear in another tangent bifurcation T2.

However, in contrast to the DEB model a linear approach for the relation
between nx and ny is sufficient to get a match between the bifurcation points
of the specific model and the bifurcation surfaces of the generalized bifurcation
diagram. Figure 3.12 shows the combined bifurcation diagram.

Again the transcritical bifurcations are located at the cross section at cx =
1. At this plane the first positive steady state starts at TC1. A further increase
of C leads to a decreasing intra-specific competition parameter cx. At first
the Hopf bifurcation surface is crossed at H before the unstable steady state
connects to the other steady state at the tangent bifurcation point T2.

The tangent bifurcation point T1 is located at the same bifurcation surface.
For the stable solution of the tangent bifurcation T1 the relation of cx and C
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Figure 3.12: Bifurcation diagram of a generalized producer-grazer model. A
surface of Hopf bifurcations (bright) and a surfaces of tangent bifurcations
(dark) are shown. The fixed parameters are r = 0.28 and cy = 0. The steady
state (X∗, Y ∗) is only stable in the top front volume.

is counterintuitive: An increase of C is related to a decrease of cx. The stable
solution exchanges stability in the other transcritical TC2 at the plane cx = 1.
Again, it is important to note that each point on the curve in Fig. 3.12 is related
to different steady state values and consequently to a different normalization.

As discussed above, based on the results of the generalized analysis we ex-
pect that the Hopf bifurcation H and the tangent bifurcation point T2 intersect
in a Takens-Bogdanov bifurcation. This Takens-Bogdanov line is expected to
be the origin of the homoclinic bifurcation. A two parameter continuation of
the bifurcations presented in Figure 3.13 shows exactly this bifurcation sce-
nario for the smooth SU model. The Hopf bifurcation line ends for a decreasing
total phosphorus content P in a Takens-Bogdanov bifurcation which is also
the starting point of the homoclinic bifurcation which causes the breakdown
of the limit cycle shown in Fig. 3.10 and Fig. 3.11. It shows further that the
additional tangent bifurcation T2 in Fig. 3.11 emerges together with T1 from
a cusp bifurcation N . At d = 0.25 we are above the T2 curve and therefore,
the second tangent bifurcation is absent in Fig. 3.10.

In summary, compared to the non-smooth model by Loladze and Kuang
(2000) the SU formulation leads qualitatively to similar results. A main differ-
ence is that the disappearance of the paradox of enrichment is not related to a
sudden switch of underlying processes but to a Takens-Bogdanov bifurcation
that determines the end of Hopf bifurcations.
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Figure 3.13: Bifurcation diagram in parameter space spanned by carbon con-
tent C and phosphorus P , of the smooth analogon to the model by Loladze
and Kuang (2000), with d = 0.25. There exists a homoclinic bifurcation curve
(solid curve) G that originates from the Takens-Bogdanov point TB, which is
also the origin for the Hopf bifurcation curve H. As in Fig. 3.9 the (saddle)
homoclinic bifurcation merges with the tangent bifurcation T1 to a saddle-
node homoclinic bifurcation. The tangent bifurcation lines T1 and T2 emerge
from a cusp bifurcation N . In this 2 parameter bifurcation diagram the two
transcritical bifurcations TC1 and TC2 (cf. Fig. 3.10,3.11) are shown as one
curve with a decline part TC1 and an increasing part TC2.
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3.5.4 Smooth mass balance

In order to adapt the SU model to the model by Loladze and Kuang (2000), we
have assumed that the total free carbon is given by C−x. As mentioned above
this is necessary to match their assumption of a logistic growth when carbon
or light is limiting. This approach is rather problematic as soon as more than
one species is involved (Kooi et al., 1998). But how does the results change
if we assume mass-conservation and therefore C − x − y as the free carbon
concentration? From the generalized analysis, we expect that the dependency
of the primary production on the grazer population does not change the results
qualitatively. Figure 3.14 shows the two parameter bifurcation diagram for the
SU model taking into account the mass conservation.

We see that the transcritical bifurcation line TC is not affected since the
grazer population is absent at the transcritical. Except for the transcritical
bifurcation line the mass conservation leads to a shift of the whole bifurca-
tion scenario to higher values of C and lower values of P . Quantitatively the
changes are remarkable: The stable region between the transcritical TC2 and
the tangent bifurcation T is much more narrow while the stable region be-
tween the transcritical TC1 and the Hopf bifurcation H is now larger than in
Fig. 3.13. However, the shift does not change the qualitative results are as
expected the same as above.

3.6 Discussion

Stoichiometric ecology has brought the concept of food quality into theoretical
ecology. The variability of food quality for grazers in terms of a variable nutri-
ent content of primary producers leads consequently to a variable conversion
efficiency between these trophic levels. It has been shown before that a vari-
able conversion efficiency leads to new bifurcations and richer dynamics even
in the most fundamental food chain models. While early variable food qual-
ity models were rather based on ad hoc approaches for the variable efficiency
function (Koppel et al., 1996; Huxel, 1999) recent models are more explicit in
stoichiometry and the resulting constraints on growth processes (e.g. Loladze
and Kuang (2000); Muller et al. (2001); Hall (2004); Kooijman et al. (2007);
Sui et al. (2007); Wang et al. (2008)). These constraints affect not only the
conversion efficiency but also the primary production. Since higher trophic
levels utilize nutrients for their growth processes they reduce the amount of
nutrients available for the producer. This indirect intra-specific competition
leads to a dependency of the primary production on higher trophic levels.
However, any specific approach to include these constraints on the primary
production and conversion efficiency in ecological models is as ecological mod-
eling itself a simplification of nature. Consequently, it remains always the
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Figure 3.14: Bifurcation diagram in parameter space spanned by carbon con-
tent C and phosphorus P , of the smooth analogon to the model by Loladze
and Kuang (2000), with d = 0.25. There exists a homoclinic bifurcation curve
(solid curve) G that originates from the Takens-Bogdanov point TB, which
is also the origin for the Hopf bifurcation curve H. The (saddle) homoclinic
bifurcation merge with the tangent bifurcation T1 to a saddle-node homoclinic
bifurcation. In this 2 parameter bifurcation diagram the two transcritical bi-
furcations TC1 and TC2 (cf. Fig. 3.10,3.11) are shown as one curve with a
decline part TC1 and an increasing part TC2. Compared to the model without
mass conservation the whole bifurcation scenario is shifted to higher values of
C and slightly to lower values of P except the transcritical curve TC1, TC2.
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question if properties of specific models are system inherent or artifacts of the
simplifications.

By using the generalized approach, a normalization technique allows for
an analysis without a further specification of the processes in terms of its
mathematical form. Consequently, the generalized modeling helps to identify
generic properties of model classes that share the same structure. However, a
drawback of the generalized analysis is that due to the normalization all in-
formations about the steady state values and total rates are lost. Because all
positive steady states share the same generalized bifurcation diagram, multi-
stability i.e. the coexistence of different stable states for a given set of param-
eters, can not be detected by the generalized analysis. Also simulations and
as a consequence certain numerical methods can not be applied. Therefore it
can be of advantage to combine the generalized analysis with specific modeling
approaches.

In (Van Voorn et al., 2008) we analyzed stabilizing mechanisms observed
in specific models by using the formalism of the generalized models. The
comparison of both approaches has led to a better understanding of these
mechanisms. In the presented thesis we go the opposite way. We find insights
of the generalized model and use them to understand, predict and compare
the properties of different specific models.

The generalized analysis reveals that for constant conversion efficiency
models neither the relative timescale r nor the inter-specific competition cy

influence the stability of steady states. Further, we find a counterintuitive
effect of intra-specific competition for the whole producer-grazer model class:
Increasing intra-specific competition (in terms of the parameter cx) leads to a
destabilization of the system due to a Hopf bifurcation. This effect is closely
related to the paradox of enrichment (see Sec. 3.5.1). However, it shows that
the introduction of a variable conversion efficiency greatly affects not only
these local stability properties but also the global system dynamics.

For variable efficiency we find tangent bifurcations and a line of codimension-
2 Takens-Bogdanov bifurcations in addition to the Hopf bifurcation. The bi-
furcations are not independent of the relative timescale r and the inter-specific
competition cy anymore. On the the one hand, the Takens-Bogdanov bifurca-
tion line provides evidence of global bifurcations in variable efficiency models.
On the other hand, the Takens-Bogdanov bifurcation line determines the end
of the Hopf bifurcation surface. We show that for low food quality (nx ≤ 0.5)
no Hopf bifurcations can be found. In that sense, variable food quality leads to
the disappearance of the paradox of enrichment. Since these observations are
not related to the magnitude of the variation of the conversion efficiency, the
subclass of constant conversion efficiency models appears, from the generalized
analysis point of view, as a degenerated model class.

Our examples of a specific stoichiometric models show, as expected, that
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in addition to Hopf bifurcations tangent and homoclinic bifurcations can be
found. Based on the generalized analysis we can ascribe these additional bifur-
cations to the variability of the conversion efficiency in the model. Although
it is possible to transfer qualitative results from the generalized analysis to
specific models it is rather problematic to map bifurcation diagrams obtained
from the different modeling approaches onto each other. One problem is that
each change of system parameters can change the steady state itself. Since the
parameters of generalized models are usually linked to steady state values, the
change of a single parameter of a specific model may change all parameters of
the generalized model at the same time and vice versa. The second problem is
that the analytical dependency of the steady state on the system parameters
is in general not known explicitly.

Here we present the possibility to overcome these problems. The path fol-
lowing methods used for the bifurcation analysis of the specific models compute
the steady state values simultaneously. From the generalized analysis we iden-
tify four generalized parameters as the most important ones. Since we can only
visualize 3 dimensions we fit one parameter as a function of another related
parameter (ny = ny(nx)). We use this fit to compute the three-dimensional
bifurcation diagram of the generalized model. Since we know how the steady
state values change depending on the parameters from the numerical bifurca-
tion analysis of the specific model we can compute the associated bifurcation
parameters of the generalized model as well. This technique enables us to plot
the bifurcation curves of the specific model into the generalized bifurcation
diagram.

The combined bifurcation diagrams allow for a direct comparison of dif-
ferent models. For instance, we present in our analysis a bifurcation diagram
(Fig. 3.7) were the bifurcation scenario of a variable efficiency DEB-model
proposed by Kooijman et al. (2007) and a simplified DEB-model are shown in
one generalized diagram. Thereby, we see that the bifurcation points of the
specific models coincide with the bifurcation surfaces of the generalized analy-
sis. Moreover it shows that the curve of the simplified model is located in the
front plane of the diagram. This subspace where the bifurcation scenario is
much simpler as the rest of the generalized diagram is dedicated to the class of
constant efficiency models. With this in mind, it is not surprising that all the
additional bifurcations and global dynamics related to the variable efficiency
disappear from the DEB model in Sec. 3.5.1 if the model is simplified to a
constant efficiency model. In that sense the simplification of the DEB-model
represents the generic effect of a transition into the class of constant efficiency
models visualized in the combined diagram.

The generalized analysis as well as numerical bifurcation analysis require
continuously differentiable models. Therefore, another difficulty arise from
models with non-smooth processes. A frequently assumed non-smooth ap-
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proach in stoichiometric models is Liebig’s minimum law as used in the model
by Loladze and Kuang (2000). Although such a sudden switch is problematic
from the analytical point of view, the model by Loladze and Kuang (2000)
shares some important properties to the generalized model: the appearance of
tangent and homoclinic bifurcations as well as the disappearance of the Hopf
bifurcation and the paradox of enrichment for low food quality. However, from
the generalized analysis we expect a Takens-Bogdanov bifurcation acting as
an organizing center, the origin of the homoclinic bifurcation and the end of
the Hopf bifurcation.

Using the synthesizing units approach we propose a smooth analogon to
the model by Loladze and Kuang (2000) that complies with the predictions
from the generalized analysis. In order to adapt the SU model to the model
by Loladze and Kuang (2000) we had to neglect the inter-specific competition
for carbon between producer and grazer in the primary production. However,
as we expect from the generalized analysis the inter-specific competition for
carbon leads only to a shift of the bifurcation scenario and does not change
the qualitative results of our analysis. Nevertheless, such shifts can be quanti-
tatively of importance in applied modeling. Technically, a smooth description
is of advantage since it does not create problems for analytical and numerical
bifurcation analysis. Biologically, the disappearance of the paradox of enrich-
ment due to a Takens-Bogdanov bifurcation appears less artificial as a sudden
non-smooth switch of underlying processes.

Although the projections of the numerical bifurcation curves of the smooth
analogon model fit the bifurcations obtained from the generalized model very
well, it becomes clear that the translation is not trivial. The relation between
specific parameters and the generalized parameters depends on the steady
state under consideration and can be even counterintuitive as we have shown
in Sec. 3.5.1 and Sec. 3.5.3. Especially, the relation between resources and the
intra-specific competition cx is crucial for the question whether the paradox
of enrichment can be observed in a model or not. Gross et al. (2004) analyzed
the impact of different forms of predator-prey interaction on the paradox of
enrichment. In our analysis we found a destabilization due to decreasing intra-
specific competition. The paradox of enrichment is instead generally related
to increasing resources. The relation between resources and competition de-
pends on the response of the steady state values. If for instance X∗ and Y ∗

grow proportional to the resources the enrichment has probably no effect on
competition and the paradox of enrichment can not be observed (Arditi and
Ginsburg, 1989). As we have shown in Fig. 3.7 and Fig. 3.12 an increase of
resources (i.e. the total nutrient N or the total carbon C respectively) can in-
crease or even decrease the intra-specific competition parameter cx, depending
on the steady state under consideration. Whether the paradox of enrichment
can be observed in a model or not depends therefore on the model specific
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response of the steady state under consideration.

Using the approach of generalized models we have shown that the para-
dox of enrichment can in general not be found for low food quality values
(nx ≤ 0.5). Therefore, the variability of food quality is another mechanism to
invalidate the paradox of enrichment. However, the paradox of intra-specific
competition is still present since a decreasing of the competition parameter
still tends to destabilize due to a tangent bifurcation. In that sense, each
parameter variation that decreases the competition parameter cx potentially
destabilizes the system. Consequently, the paradox of competition observed in
the generalized model analysis is a generic paradox of the whole model class.

Appendix

The paradox of enrichment is related to a destabilization of the system due to
a Hopf bifurcation. Here we show that no Hopf bifurcations can be found if the
food quality parameter is low, nx ≤ 0.5. This condition is related to ηx ≤ −1.
From Sec. 3.3 we know that the Hopf bifurcation condition as well as the
tangent bifurcation condition depend on the eigenvalues of the Jacobian. To
be specific the Hopf bifurcation requires center symmetric eigenvalues which
are given if trace(J) = 0 and therefore

γH = −rηy + σx. (3.19)

The tangent bifurcation requires a zero eigenvalue which is given if det(J) = 0
and therefore

γT = −
ηxσy − ηx − ηyσx

σy − 1 + ηy
. (3.20)

From our analysis in Sec. 3.4 we know that the Hopf bifurcation ends at the
tangent bifurcation in a Takens-Bogdanov bifurcation. Consequently we can
find no Hopf bifurcation below the tangent bifurcation and γH ≥ γT is an
additional condition for the Hopf bifurcation. Let us assume that ηx ≤ −1.
Since σx ≤ 1 we see that

(σx + ηx) < 0. (3.21)

We multiply by the negative expression (σy − 1) and obtain

(σy − 1)(σx + ηx) > 0. (3.22)

On the left hand side we add the three negative terms rηyσy − rηy + rη2
y and

obtain

rηyσy − rηy + rη2
y + σy(σx + ηx) − (σx + ηx) > 0. (3.23)
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Finally we divide by the negative term σy − 1 + ηy and get

rηyσy − rηy + rη2
y + σyσx + σyηx − σx − ηx

σy − 1 + ηy
< 0. (3.24)

Using Eq.(3.19) and Eq.(3.20) this is equivalent to

γH − γT < 0 (3.25)

which contradicts the condition of Hopf bifurcations Eq.(3.19). Consequently,
no Hopf bifurcations can be found if nx ≤ 0.5.



Chapter 4

Evidence of chaos in

eco-epidemic models∗

4.1 Abstract

We study an eco-epidemic model with two trophic levels in which the dynamics
is determined by predator-prey interactions as well as the vulnerability of the
predator to a disease. Using the concept of generalized models we show that for
certain classes of eco-epidemic models quasiperiodic and chaotic dynamics is
generic and likely to occur. This result is based on the existence of bifurcations
of higher codimension such as double Hopf bifurcations. We illustrate the
emergence of chaotic behavior with one example system.

4.2 Introduction

Mathematical models are essential tools in order to understand the mecha-
nisms responsible for persistence or extinction of species in natural systems.
In ecological models persistence is in general desired. By contrast, investiga-
tions in epidemic models usually aim at finding mechanisms that lead to the
extinction of the parasites or infections (e.g. Liu et al. (2008)). However, it
is known that diseases can not only greatly affect their host populations, but
also other species their host populations interact with (e.g. Anderson et al.
(1986)).

∗This Chapter is a slightly modified version of the manuscript (Stiefs et al., 2009). The
manuscript has been accepted for publication in the journal Mathematical Bioscience and
Engineering. Some notations have changed in order to be consistent with the Chapter 2 and
3. Further, Fig. 4.1 and Fig. 4.2 are not colored in the accepted manuscript. The Appendix
contains an additional Section that shows the relation of two parameters from Chapter 3
and 4.
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In recent decades theoretical ecologists as well as epidemiologists became
increasingly interested in so-called eco-epidemiology. Eco-epidemic models de-
scribe ecosystems of interacting populations among which a disease spreads
Arino et al. (2004); Beltrami and Carroll (1994); Chattopadhyay and Arino
(1999); Hadeler and Freedman (1989); Hethcote et al. (2004); Saenz and Het-
hcote (2006); Venturino (1994, 2001, 2002b). It has been shown that invading
diseases tend to destabilize the predator-prey communities Anderson et al.
(1986); Dobson (1988); Hadeler and Freedman (1989); Xiao and Bosch (2003).
However, Hilker and Schmitz Hilker and Schmitz (2008) show that predator
infection can also have a stabilizing effect.

Most of the existing models in eco-epidemiology consider a disease in the
prey population Arino et al. (2004); Chattopadhyay and Arino (1999); Ven-
turino (1995). There are only a few models where the predator population is
infected Venturino (2002a). Some of the latter can exhibit sustained oscilla-
tions which are absent from the uninfected ecological model under considera-
tion Anderson et al. (1986); Xiao and Bosch (2003).

In ecology as well as in epidemiology oscillations are associated with desta-
bilization. The reason is that extinction of the population due to natural fluc-
tuations becomes very likely when the oscillation drives the population to low
abundances d’Onofrio and Manfredi (2007); Rosenzweig (1971); Van Voorn
et al. (2008). Such extinction events are less critical if a species is spatially
separated in several subpopulations. The subpopulations allow for a repopula-
tion by migration after the extinction of one subpopulation. However, in such
a case synchronous dynamics between the subpopulations due to the coupling
by migration can have a devastating effect: it increases the possibility of global
extinction of the whole species Heino et al. (1997); Holt and McPeek (1996)
when all subpopulations have a minimum at the same time. In epidemiology
such a synchronization of the dynamics can again be desired and induced by
pulse vaccinations Grenfell et al. (1995) in order to cause the extinction of the
disease.

In some models where the prey is infected also chaotic long-term dynamics
have been observed Chatterjee et al. (2007). In contrast to oscillations, the
effect of chaos on the stability in ecological models is a question of debate for
a long time Gross et al. (2005); Hastings et al. (1993); Ruxton and Rohani
(1998). A popular view has been that chaos has a destabilizing effect because
of the associated boom and burst dynamics Berryman and Millstein (1989).
However, for a population that consists of subpopulations as described above
it has been shown that chaotic dynamics can be of advantage in order to stabi-
lize the whole population. Although chaotic dynamics increase the number of
local extinctions of subpopulations it reduces the degree of synchrony between
different patches. Consequently it reduces the probability of a global extinc-
tion Allen et al. (1993); Ruxton (1994). Thereby it seems essential that the
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subpopulations are chaotic in isolation Earn et al. (1998). With the coupling
the subpopulations can show simpler dynamics but the subpopulations tend to
be out of phase. In this sense it can be of advantage for the total population if
the subpopulations exhibit chaotic dynamics or are close to chaotic parameter
regions. This observation may explain why some ecological systems appear to
be at the edge of chaos Turchin and Ellner (2000). Further, diffusion-induced
complex dynamics as been found in continuous spatial predator-prey systems
Baurmann et al. (2007); Pascual (1993); Upadhyay et al. (2008). But also
isolated populations can exhibit persistent chaotic dynamics. Benincà et al.
Benincà et al. (2008) observed chaotic dynamics of a food web in laboratory
mesocosm that last for more than 6 years. From an evolutionary point of
view ecological models should evolve into chaotic parameter regions if chaotic
dynamics are of advantage for the population persistence.

To study stabilizing or destabilizing effects bifurcation theory is often ap-
plied to find the parameter regions where the steady state for the ecological
or epidemiological model is stable with respect to perturbations. These anal-
yses are based on specific models describing the relevant processes in form of
ordinary differential equations (ODEs). Recently another approach has been
developed which is based on generalized models where the exact mathematical
form of the processes entering the right hand side of the ODEs is not specified
Gross and Feudel (2006). In spite of the fact that the mathematical functions
are not known in detail, it is possible to analyze the stability properties of
the steady state and draw conclusions about possible destabilization mecha-
nisms of the steady state when a system parameter is varied Gross and Feudel
(2004), as well as the emergence of chaotic dynamics Gross et al. (2005).

In this Chapter we use the concept of generalized model to study the im-
pact of a disease of the predator on the dynamics of a predator-prey system.
To this end we couple a generalized ecological model with an epidemic one
and study the stability properties of the steady state. The advantage of the
method is that our results are not restricted to a particular model but apply
to certain classes of models since we use parameters encoding the shape of
predator-prey functional responses and incidence functions as bifurcation pa-
rameters. We find that the coupling of both models introducing a disease in
the predator population leads to complex dynamics such as quasiperiodic and
chaotic motion. This complex dynamics are solely based on the interplay of
demographic and epidemic modeling since the demographic and the epidemic
model alone are not capable to exhibit chaotic motion. As a result we show
that chaos is generic and prevalent for certain classes of eco-epidemic models.

The Chapter is organized as follows: In Sec. 4.3 we discuss the demo-
graphic as well as the epidemic model and introduce the eco-epidemic model.
Furthermore, we normalize the model and discuss the possible emergence of
bifurcations for the steady state. In Sec. 4.4 we analyze the stability properties
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of the steady state for the predator-prey model with and without the disease
in the predator population and compare the results. As a conclusion we ob-
tain classes of systems in which we expect to find quasiperiodic and chaotic
behavior. Since these findings are based on mathematical theorems we can
only state the existence of parameter regions where the dynamics is chaotic.
To find out the size of these parameter regions and the hence, their relevance
for the dynamics of the eco-epidemic model we investigate a specific model
in Sec. 4.5 to show explicitly the emergence of chaotic dynamics. Finally we
summarize the results in Sec. 4.6.

4.3 The generalized eco-epidemic model

Before we begin our analysis we will briefly outline the construction of one of
the simplest predator-prey models and of one of the most elementary epidemic
models, which together form the building blocks for the more general eco-
epidemic model we would like to consider.

The basic demographic model in general accounts for two interacting species.
The nature of interactions can be of competing, predator-prey or symbiotic
nature. A typical formulation for a predator-prey model is given by

Ẋ = SX − MXX2 − G(X)Y,

Ẏ = EG(X)Y − MY Y ,
(4.1)

where S is the specific growth rate of the prey X. Apart from predation the
growth of the prey is limited by intra-specific competition assumed to increase
quadratically in X with the coefficient MX thereby giving a logistic evolution
for the prey dynamics. The predation is expressed by the so-called per capita
functional response G(X). The efficiency of biomass conversion is given by
the yield constant E. MY is the mortality rate of the predator population.

This simple model structure has been analyzed for a variety of different
functional responses G(X) describing the prey-dependent predation rate (e.g.
Holling (1959)). However, in our case the function G(X) is not specified
in order to keep the model more general. In Sec. 4.4 we will discuss some
properties of this underlying ecological model.

Classical epidemic models partition the population into several epidemi-
ological classes, for a thorough review see Hethcote (2000). The population,
in our case the predator population Y , is usually split into susceptibles YS ,
infected YI , and recovered YR. The latter may be thought of as being immu-
nized, at least for a period of time, after which they return into the class of
susceptibles. Following this population division, in absence of vital dynamics,
i.e. demographic terms to account for births and natural deaths, a simple
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SIRS model would be written as

ẎS = −λ(YS, YI) + δYR

ẎI = λ(YS , YI) − γYI

ẎR = γYI − δYR

(4.2)

assuming linear transition rate γ from the infected to the recovered class. The
recovered become susceptible again with a fixed rate δ.

In general, pathogen transmission is expressed by interactions among indi-
viduals. The latter are modeled by the incidence function λ(YS , YI), for which
the most common approaches are the mass action λ(YS , YI) = bYSYI and
the so-called standard incidence function or frequency-dependent transmis-
sion λ(YS , YI) = bYSYI/(YS + YI). In both cases susceptibles YS and infected
YI are assumed to be well-mixed and hence, to interact randomly. However, it
is not clear if the assumption of random interactions and an equal distribution
of infected and uninfected is appropriate to describe pathogen transmission in
wild populations. Both, small-scale experiments as well as observed disease
dynamics, give evidence that simple mass action is not an adequate model in
many situations McCallum et al. (2001). The simplest argument for an asym-
metry of the incidence function is that due to a patchiness in the disease on
average each infected individual is more likely to have an infected neighbor.
The more biological details are taken into account, the more complex the in-
cidence function may be. For instance, Capasso and Serio Capasso and Serio
(1978) introduced a saturated incidence function. Such a saturation can be
caused by crowding effects at high infection levels or by protection measures
the susceptible individuals take. Liu et. al. Liu et al. (1986) proposed a
more general incidence function of the form λ(YS , YI) = kYSY p

I /(1 + mY p
I ).

Additionally a variety of other incidence functions have been investigated by
various authors (e.g. Table 4.1). A universal approach has not been found
yet. However, using the generalized approach we avoid to specify the inci-
dence function but study more generic properties of the model class under
consideration.

To analyze the effect of a disease in the predator population Y on the
dynamics of interaction with the prey X we combine the demographic model
Eqs. (4.1) with the SIRS epidemic model Eqs. (4.2) as follows

Ẋ = SX − G(X)(YS + YR + αYI) − MXX2,

ẎS = EG(X)(YS + YR + αβYI) − MY YS + δYR − λ(YS, YI),

ẎI = λ(YS , YI) − (MY + µ)YI − γYI ,

ẎR = γYI − δYR − MY YR.

(4.3)

Here we assume neither vertical transmission, nor vertical immunity, i.e. that
the infected predators as well as the recovered predators reproduce only sus-
ceptibles. Furthermore, we suppose that the disease can, in principle, influence
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Functional form Comments Citations
∼ SI mass action Anderson and May (1979)

May and Anderson (1979)

∼ SI
S+I standard incidence May and Anderson (1987)

∼ SI(1 − CI) Yorke and London (1973)

∼ IS
1+AI Capasso and Serio (1978)

∼ SpIq power relationship Liu et al. (1986)
∼ Sln(1 + BI/k) Barlow (2000)

∼ Sp Iq

B+Iq p > 0, q > 0 Liu et al. (1986)

∼ S I
A+I2 non-monotone incidence Xiao and Ruan (2007)

∼ S I
A+S+I asymptotic incidence Diekmann and Kretzschmar (1991)

Roberts (1996)

Table 4.1: Different proposed functional forms for the incidence function

the demographic parameters. The disease may induce a disease related mor-
tality rate µ and reduce the predation and reproduction rates of the infected
YI expressed by the factors α and β respectively.

All parameters and terms denoted by Greek letters are related to the
disease. Note, that in the absence of weakening effects of the disease (i.e.
α = β = 1 and µ = 0) the combined model Eq.(4.3) reproduces the popula-
tion dynamics of the uninfected model Eqs.(4.1) , with Y = YS +YI +YR. This
means that the disease could have in principle no influence on the ecological
dynamics.

To analyze the dynamics of model (4.3) one would start by computing
the steady state and its stability with respect to perturbations. But a local
stability analysis cannot be performed since an analytical computation of the
steady states is impossible because G(X) and λ(YS , YI) are not specified but
assumed to be general functions. However, this difficulty can be overcome
using the normalization procedure for the generalized models described in
Gross and Feudel (2006). To use this approach we assume that a positive
steady state (X∗, Y ∗

S , Y ∗

I , Y ∗

R) exists.

We now define normalized variables x := X/X∗, ys := YS/YS
∗, yi :=

YI/YI
∗ and yr := YR/YR

∗. Further, we define a normalized functional re-
sponse g(x) := G(X∗x)/G(X∗) and l(ys, yi) := λ(YS

∗ys, YI
∗yi)/λ(YS

∗, YI
∗) as

a normalized incidence function. Note, that in the space of normalized state
variables the steady state is by definition (x∗, ys

∗, yi
∗, yr

∗) = (X∗/X∗, ...) =
(1, 1, 1, 1). In the same manner, we obtain l(ys

∗, yi
∗)=g(x∗)=1. Following the
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normalization procedure we can rewrite Eqs. (4.3) as

ẋ = ax (x − m̃xg(x)(f̃α(bys + b̃yr) + fαyi) − mxx2),

ẏs = as (esg(x)(f̃β(bys + b̃yr) + fβyi) − myys + ẽsyr − m̃yl(ys, yi)),
ẏi = ai (l(ys, yi) − yi).
ẏr = ar (yi − yr).

(4.4)

The details of the normalization and the definitions of the newly introduced
scale parameters ai, b, b̃, fα, f̃α, fβ, f̃β, es, ẽs,mx, m̃x,my and m̃y are given in
the Appendix. As an advantage of this approach these parameters are easy to
interpret in the biological context. The scale parameters ax, as, ai and ar for
instance encode the inverse timescales of the normalized state variables. They
measure the relation between the lifetimes of the different species. All other
scale parameters are between 0 and 1 and describe weight factors of certain
processes of the model at the steady state.

The losses due to intra-specific competition relative to the total losses
within the prey are represented by the parameter mx. To be specific, if mx is
close to 1 the losses of prey due to intra-specific competition preponderate. In
the Appendix, we show that the inter-specific competion parameter cx defined
in Chapter 3 is equal to the weight faktor mx for the considered models. The
parameter m̃x = 1 − mx expresses losses caused by predation. fα and f̃α are
the fractions of prey consumed by infected predators and healthy predators
respectively. In the same way b is the fraction of healthy predators that are
susceptible and b̃ = 1− b the fraction of healthy predators that are recovered.
Further, the parameter es represents the weight factor of the natural growth
terms of susceptibles due to consumption of X. At the steady state the fraction
of gains due to recovered predators that become susceptible again is given by
ẽs = 1− es. The natural mortality for the predator relative to the total losses
is expressed by my.

In the normalized model the steady state under consideration is known
(x∗, y∗) = (1, 1). The stability of this steady state depends on the eigenvalues
of the Jacobian. The steady state is stable if all eigenvalues have a negative real
part. Consequently only two bifurcations can separate stable from unstable
parameter regions: the tangent type bifurcation where a real eigenvalue crosses
the imaginary axis and a Hopf bifurcation where a pair of complex conjugate
eigenvalues crosses the imaginary axis.

Because all normalized state variables and the normalized processes (l(ys, yi),
g(x)) are equal to one at the steady state, the Jacobian of the normalized
model contains in addition to the scale parameters only the derivatives of the
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normalized processes in the steady state. We define

gx := ∂g(x)
∂x

∣

∣

∣

x∗

,

ls := ∂l(ys,yi)
∂ys

∣

∣

∣

ys
∗,yi

∗

,

li := ∂l(ys,yi)
∂yi

∣

∣

∣

ys
∗,yi

∗

(4.5)

as the generalized parameters. These parameters can be interpreted as non-
linearity measures of the corresponding functions with respect to the variable
of the derivative. If the function G(X) is linear in X the derivative of the nor-
malized function gx is equal to one. It is zero for a constant function and two
for a quadratic function. To be consistent with previous publications we let gx

be the predator sensitivity to prey Gross et al. (2004, 2005); Gross and Feudel
(2006). In the same sense we denote by ls and li the incidence sensitivity to
susceptibles and to infected respectively.

In summary the Jacobian consists of 10 scaling parameters and 3 general-
ized parameters. How to obtain the test functions for the above mentioned bi-
furcations from the Jacobian is described in detail in Gross and Feudel (2004).
These test functions enable us to draw three-dimensional bifurcation diagrams
as described in detail in Stiefs et al. (2008).

Since we are essentially interested in the influence of different mathematical
expressions for the functional response and for the incidence function, we
focus our bifurcation analysis on the generalized parameters gx, ls and li.
We chose the other scale parameters according to biological reasoning. It is
known that in many cases the timescale for the lifetime of species belonging
to different trophic levels slows down with each higher trophic levels Hendriks
(1999). Hence, we could assume that the inverse timescale of the susceptible
predators is less than half the timescale of the prey, i.e. as = 0.4ax. By
renormalizing the timescale we can say that ax = 1 and as = 0.4. It is further
reasonable to expect that the timescale of the infected predators is slightly
larger than the timescale of the susceptible predators since we suppose that
their overall lifetime is shorter. Let us assume ai = 0.5. Clearly, this intuitive
way is much more appropriate than guessing some abstract parameters. If we
would analyze a specific real system at the steady state we could, in principle,
also gain an appropriate value for each scale parameter by measuring the
corresponding rates. Approximating all other scale parameters, we end up
with three parameters which we consider as the most interesting bifurcation
parameters. These are the sensitivity of the predator with respect to prey gx

and the sensitivity of the incidence function with respect to susceptibles ls and
infected li. The computation of three-dimensional bifurcation diagrams allows
us to discuss the stability properties of the eco-epidemic model depending on
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the mathematical form of the functional response G(X) and the incidence
function λ(YS , YI).

4.4 Stability of the steady state: from local to global

bifurcations

4.4.1 Absence of diseases

Before we analyze the effect of an infection on the predator-prey interactions,
we take a look at the generalized predator-prey model in the absence of infected
individuals. It is known that the predator-prey system Eq.(4.1) can exhibit
self-sustained oscillations if the functional response G(X) is nonlinear in X for
instance a Holling type II function Holling (1959). A typical example would be
the Rosenzweig-MacArthur model Rosenzweig and MacArthur (1963). These
oscillations appear due to a supercritical Hopf bifurcation. Figure 4.1 shows
the bifurcation diagram of the generalized predator-prey model given by Eq.
(4.1). As mentioned above ax is set to be one so that ay corresponds to the
relative inverse timescale. We see two tangent type bifurcation surfaces (blue)
and one Hopf bifurcation surface (red). The steady state is stable in the top
volume of the diagram. If one of the bifurcation surfaces is crossed due to a
parameter variation the steady state becomes unstable. The only biologically
sound parameter range for the scale parameters ay and mx lies between [0,1]
since both parameters express some kind of weight factor measured in relation
to other scale factors.

Firstly note, that such a destabilization never occurs for a variation of ay.
The timescale has therefore no influence on the stability of the steady state in
this model class.

Secondly, the Hopf bifurcation surface exceeds the biologically relevant
parameter range for gx ≥ 1. For this reason, Hopf bifurcations cannot be found
in this model class if g(x) and therefore G(X) are linear functions (gx = 1).
This situation corresponds to the Lotka-Volterra model coupled with logistic
growth. However, from a biological perspective, models should allow lower
values of the sensitivity to prey, i.e. gx < 1. Due to a limited consumption of
prey the functional response G(X) should saturate at high amounts of prey.
Since saturation is related to low values of gx, Hopf bifurcations should likely
occur in biological realistic models.

Even, lower values of the sensitivity to prey, i.e. gx ≤ 0, are rather un-
likely and occur only in systems with non monotonic functional responses.
Biologically this region where the predation decreases with increasing prey
can be related to inhibition effects or group defense techniques of the prey
Andrews (1968); Freedman and Wolkowicz (1986). At gx = 0 we find that the
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Figure 4.1: Bifurcation diagram of a generalized predator-prey model. A
surface of Hopf bifurcations (red) and two surfaces of tangent type bifurca-
tions (transparent blue) are shown. The bifurcation parameters are the prey
sensitivity gx, the timescale of the predator ay and the competition mx (intra-
specific competition of the prey).
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Hopf bifurcation ends at the lower tangent type bifurcation surface at gx = 0
in a codimension-2 Takens-Bogdanov line. On this line the Jacobian has a
double zero eigenvalue. In addition to the tangent type bifurcation and the
Hopf bifurcation a homoclinic bifurcation emerges from the Takens-Bogdanov
bifurcation line. This bifurcation is in general difficult to detect and can eco-
logically be related to sudden population bursts. In the model class under
consideration a Takens-Bogdanov bifurcation can only be observed in systems
with non monotonic functional response G(X). This property is necessary
to enable negative values of gx and therefore it is also necessary to cross the
Takens-Bogdanov bifurcation at gx = 0.

Another way to achieve a destabilization of the steady state due to a Hopf
bifurcation is to decrease the competition parameter mx. This effect is rather
counterintuitive since decreasing the competition means ecologically to im-
prove the food conditions for the predators. Such behavior of the model can
be strongly related to the paradox of enrichment Rosenzweig (1971).

4.4.2 Disease in the predator population

We now investigate the impact of a disease in this two trophic food chain as
described by Eq. (4.3). In contrast to the normalized predator-prey model the
normalized eco-epidemic model has not 3 but 13 parameters that may all more
or less influence the stability of the steady state. Thoroughly analyzing and
discussing these parameter variations is beyond the scope of this work. Instead
we focus only on bifurcations that give evidence for more complex dynamics.
Such complex behavior like quasiperiodic or chaotic dynamics occur usually in
the neighborhood of global bifurcations or bifurcations of higher codimension,
which can be found for a lot of different parameter sets in the model class
under consideration. It is important to note that though the whole bifurcation
analysis presented is based on local stability properties of the steady state, we
are able to detect easily higher codimension bifurcations since they correspond
to intersections of different bifurcation surfaces like the Takens-Bogdanov line
discussed in the previous subsection.

For our analysis we chose gx, ls and li as the most important bifurcation
parameters. For most of the common incidence functions (cf. Table 4.1)
li ≤ 1 due to saturation effects with respect to the number of infected. The
sensitivity to prey gx is for the same reason also confined to this range gx ≤ 1.

For the the scaling parameters we assume now that 90 percent of the losses
of prey are caused by predation, which means a relative competition mx = 0.1.
We assume further that 95 percent of the predation is caused by healthy
predators, i.e. susceptibles plus recovered, (f̃α = 1 − fα = 0.95) and that half
of the healthy predators are susceptible (b = 0.5). The gain of susceptible
predators results for 95 percent from biomass conversion (es = 0.95) and only
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5 percent from the recovering (ẽs = 1 − es = 0.05). The natural mortality of
the healthy predators is assumed to be relatively low compared to losses due
to infection (my = 0.1).

Using the parameter settings mentioned above we compute the stability
of the steady state as shown in Fig. 4.2. We find as in the model without
disease a surface of tangent type bifurcations (transparent blue) and a surface
of Hopf bifurcations (red). But now the Hopf bifurcation surface possesses a
rather complicated shape. This shape corresponds to a Whitney umbrella, a
bifurcation situation which is rarely found in applications. Other examples
of a Whitney umbrella are presented in Gross (2004b); Stiefs et al. (2008).
In this bifurcation scenario the Hopf bifurcation surface is twisted around
a codimension-3 1:1 resonant double-Hopf point characterized by two iden-
tical pairs of complex conjugate eigenvalues. As Fig. 4.2 shows, a line of
codimension-2 double-Hopf bifurcations emerges from this point. At this line
where the Hopf bifurcation surface intersects itself two pairs of purely imagi-
nary complex conjugate eigenvalues can be found.

Additionally we observe two intersection lines of the Hopf bifurcation
surface with the tangent type bifurcation surface. One is again a Takens-
Bogdanov bifurcation and the other one is a Gavrilov-Guckenheimer bifurca-
tion line that emerges from a so-called triple point bifurcation on the Takens-
Bogdanov bifurcation line Kuznetsov (2004). On this Gavrilov-Guckenheimer
line the Jacobian has a zero eigenvalue in addition to a pair of purely imaginary
complex conjugate eigenvalues. In contrast to the Takens-Bogdanov bifurca-
tion the Hopf bifurcation surface does not end on the Gavrilov-Guckenheimer
bifurcation. The existence of the Gavrilov-Guckenheimer bifurcation indicates
that quasiperiodic and chaotic dynamics are likely to occur in the neighbor-
hood of this bifurcation. The double-Hopf bifurcation line instead is a clear
evidence for the existence of chaotic parameter regions Kuznetsov (2004).
Therefore we can conclude that the consideration of the vulnerability of the
predator population to a disease can lead in general to complex dynamics in
eco-epidemiological systems.

Unfortunately we have no information about the size of the chaotic pa-
rameter region since our analysis is based on mathematical theorems. In the
following section we investigate a specific model that allows to translate the
generalized parameters to specific system parameters and vice versa. This
specific example allows not only to explicitly compute the chaotic parameter
regions but also gives insights into the route to chaos.
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Figure 4.2: Bifurcation diagram of the generalized eco-epidemic model. A
surface of Hopf bifurcations (red) and a surface of tangent type bifurcations
(transparent blue) are shown. The intersection lines are a Takens-Bogdanov
bifurcation line (TB), a Gavrilov-Guckenheimer bifurcation line (GG) and
a double-Hopf bifurcation line (DH). The double-Hopf bifurcation line ends
in a 1:1 resonant double-Hopf bifurcation point (1:1 DH) and the Gavrilov-
Guckenheimer bifurcation line ends in a triple point bifurcation at the Takens-
Bogdanov line. The bifurcation parameters are the generalized parameters gx,
ls and li which are strongly related to the functional form of the underlying
processes, namely the per capita functional response g(x) and the incidence
function l(ys, yi) respectively. The fixed parameters are scale parameters ax =
1, as = 0.4, ai = 0.9, ar = 0.25, fα = 0.05, b = 0.5, es = 0.98, mx = 0.1 and
my = 0.1.
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4.5 Chaos in a specific eco-epidemiological system

To demonstrate the theoretical implications of the existence of a Whitney
umbrella bifurcation situation in a specific model, we need to choose specific
mathematical functions for the generalized processes. This means that we
construct an example of a specific model that compares to the generalized
parameter set of the bifurcation diagram shown in Fig. 4.2.

Since the generalized parameters represent the derivatives of the general-
ized processes we need to choose functions according to the parameter range
of the higher codimension bifurcations. As stated above in ecology and epi-
demiology a large pool of proposed functional responses G(X) and incidence
functions λ(YS , YI) exists. Since the double-Hopf bifurcation line appears for
gx lower than 1, which means a increase of g(x) slower than linear in x, a
functional response with saturation is necessary to obtain the double-Hopf
bifurcation line.

Instead of defining a specific model and normalizing it we construct an
already normalized specific model for the sake of simplicity. We choose a
Holling type III function g(x) = ax2/(1+bx2) as the functional response. Due
to the normalization we need g(1) = 1. Therefore we define a := (1 + b).
The relation between b and gx is then gx = 2/(1 + b). In a similar way we
allow values of ls and li lower than 1 as well. We use the asymptotic incidence
function l(ys, yi) = cysyi/(1 + dys + eyi) Diekmann and Kretzschmar (1991);
Roberts (1996). In order to satisfy l(1, 1) = 1 we define c := (1 + d + e). We
find the relations ls = 1 + e/(1 + d + e) and li = 1 + d/(1 + d + e).

Now we have a specific model that allows a translation of the parameter
set of the generalized model into the parameters of the specific model. This
enables us to analyze the dynamics of the system. As discussed in the pre-
vious section the double-Hopf bifurcation indicates the emergence of chaotic
parameter regions. In order to find these parameter regions we compute the
Lyapunov exponents of the specific system for a grid of points in the general-
ized parameter space close to the double-Hopf bifurcation.

The result is shown in Fig. 4.3. The two solid lines are Hopf bifurcation
lines that intersect in a double-Hopf bifurcation. Within the white area the
steady state (1,1) is stable. In the light grey area the system exhibits periodic
long-term dynamics.

In addition to the two Hopf bifurcation lines we find numerically other
bifurcation lines (two dashed, one dotted) using pathfollowing methods imple-
mented in MATCONT Dhooge et al. (2003). The dashed lines are Neimark-
Sacker bifurcations where a limit cycle becomes unstable and a stable quasiperi-
odic motion on a torus emerges. This behavior can be found in the dark grey
parameter regions. In the black regions the largest Lyapunov exponent is pos-
itive and hence, the dynamics is chaotic. The dotted line is a period doubling
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bifurcation. For small values of ls we find first the transition to quasiperiodic
motion on a torus with a subsequent transition to chaos. For larger values
of ls the periodic solution undergoes first a period doubling before the torus
or Neimark-Sacker bifurcation occurs. While the transition to chaos involves
always a transition from quasiperiodicity, the chaotic attractor looks different
for small and large values of ls since the Neimark-Sacker bifurcation and the
period doubling swap places. Both routes to chaos are illustrated in Fig. 4.4.

The population dynamical system alone (Eq.(4.1)) as well as the epidemio-
logical system alone (Eq.(4.2)) do not exhibit complex dynamics. Only if both
are coupled to form an eco-epidemiological system with an infected predator,
the dynamics can be quasiperiodic or chaotic. Our generalized analysis shows
that chaos is generic in this class of models.

4.6 Discussion

We have studied a generalized eco-epidemic model which couples the behavior
of a predator-prey system to the dynamics of a disease which can infect the
predator. The advantage of investigating generalized models lies in the fact
that the exact mathematical form of the interaction processes like predator-
prey or infection interactions does not have to be specified. This allows for
rather general conclusions about the stability of the positive steady state which
will be reached in the long-term limit. Moreover, this generalized approach
can give insight into the global dynamics of the system though only a local
stability analysis is performed. Due to the usage of generalized models our
results apply to certain classes of models.

The eco-epidemic model is based on two often used generalized models
which exhibit only stationary points or periodic behavior when studied sepa-
rately. Examples for specific versions of the predator-prey system (Eq. (4.1))
are the Rosenzweig-MacArthur system and related versions possessing differ-
ent nonlinear functional responses Beddington (1975); DeAngelis et al. (1975);
Rosenzweig and MacArthur (1963); Truscott and Brindley (1994). The epi-
demic model used as a basis is the well-known SIRS (susceptibles-infected-
recovered-susceptibles) models (Eq. (4.2)). Specific versions of this model use
different nonlinear incidence functions Anderson et al. (1986); Capasso and
Serio (1978); Liu et al. (1986); May and Anderson (1987).

We have shown that the coupling of an ecological and an epidemiolog-
ical model can lead to classes of systems exhibiting complex dynamics like
quasiperiodic and chaotic behavior. Our result is based on the detection of
higher codimension bifurcations like double-Hopf bifurcations, triple points
and Gavrilov-Guckenheimer bifurcations. In the neighborhood of such bifur-
cations there exist parameter regions where quasiperiodic and chaotic behavior
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Figure 4.3: Dynamics of a specific model close to the double-Hopf bifurcation.
The steady state is stable in the white area between the two Hopf bifurcation
lines (solid lines). Beyond the Hopf bifurcation lines (1.) the system exhibits
stable periodic dynamics (bright grey). Both Hopf bifurcation lines intersect in
a codimension-2 double-Hopf bifurcation. This double-Hopf bifurcation is the
starting point of a Neimark-Sacker bifurcation line (dashed). At the Neimark-
Sacker bifurcation line a stable Torus emerges (2.) and the system exhibits
quasiperiodic dynamics (dark grey). The dotted line is a period doubling
bifurcation line. Beyond this line where the system oscillates on a period 2
orbit (3.) we find another Neimark-Sacker bifurcation (dotted-dashed line).
In the black region we find chaotic dynamics (4.,5.).
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Figure 4.4: Simulations in 5 different dynamical regimes of Fig. 4.3. We see
a limit cycle at gx = 0.614, ls = 0.48 (1.), a torus at gx = 0.6025, ls = 0.456
(2.), a limit cycle with doubled period at gx = 0.613, ls = 0.5 (3.) and two
chaotic attractors at gx = 0.6, ls = 0.47 (4.) and gx = 0.608, ls = 0.51 (5.).

can be found. This mathematical finding based on bifurcation theory is illus-
trated with a specific model where the interaction functions are specified in
order to be able to use numerical methods like path-following of bifurcations
and the computation of Lyapunov exponents. As a result we can demonstrate
that the chaotic parameter regions are not small and therefore not negligible,
but rather large and hence, important for the dynamics of the system.

Finally we note that we were not able to find complex dynamics in the eco-
epidemic model using a SIS instead of a SIRS model. Therefore it seems to be
essential that we introduce the class of recovered predators for the occurrence
of complex dynamics.

To our knowledge this is the first example where chaotic behavior has been
found in an eco-epidemic model system with a disease in the predator popu-
lation. Based on the generalized approach we can state that the emergence of
chaos is generic for certain classes of eco-epidemic models and thus likely to
be found.
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Appendix

Normalization of the eco-epidemic model

By substitution of the normalized state variables x := X/X∗, ys := YS/YS
∗,

yi := YI/YI
∗ and processes g(x) := G(X∗x)/G(X∗), l(ys, yi) := λ(YS

∗ys, YI
∗yi)/λ(YS

∗, YI
∗)

into Eq.(4.3) we obtain

ẋ = 1
X∗

(SX∗x − G(X∗)g(x)(YS
∗ys + YR

∗yr + αYI
∗yi) − MXX∗2x2),

ẏs = 1
YS

∗ (EG(X∗)g(x)(YS
∗ys + YR

∗yr + αβYI
∗yi) − MY YS

∗ys

+δYR
∗yr − λ(YS

∗, YI
∗)l(ys, yi)),

ẏi = 1
YI

∗ (λ(YS
∗, YI

∗)l(ys, yi) − (MY + µ)YI
∗yi − γYI

∗yi),

ẏr = 1
YR

∗ (γYI
∗yi − (MY + δ)YR

∗yr)

(4.6)
Observing this ODE in the steady state yield the conditions

ax := S = MXX∗ + G(X∗)(YS
∗+YR

∗+αYI
∗)

X∗
,

as := MY + λ(YS
∗,YI

∗)
YS

∗ = 1
YS

∗ (EG(X∗)(YS
∗ + YR

∗) + δYR
∗),

ai := MY + µ + γ = λ(YS
∗,YI

∗)
YI

∗ ,

ar := MY + δ = γYI
∗

YR
∗ .

(4.7)

By defining the scale parameters as

fα := αYI
∗

YS
∗+YR

∗+αYI
∗ , f̃α := YS

∗+YR
∗

YS
∗+YR

∗+αYI
∗ = 1 − fα,

b := YS
∗

YS
∗+YR

∗ , b̃ := YR
∗

YS
∗+YR

∗ = 1 − b,

mx := MXX∗

ax
, m̃x := G(X∗)(YS

∗+YR
∗+αβYI

∗)
axX∗

= 1 − mx,

es := EG(X∗)(YS
∗+YR

∗)
asYS

∗ , ẽsδ := δYR
∗

asYS
∗ = 1 − es,

my := MY X∗

as
, m̃y := λ(YS

∗,YI
∗)

asYS
∗ = 1 − my,

(4.8)
we can rewrite Eq.(4.6) in the normalized form Eq.(4.4).

The intra-specific competion parameter

Compared to the model formulation Eq. 3.1 in Chapter 3 the primary pro-
duction in this Chapter is given by the logisitc growth Ŝ(X,Y ) = Ŝ(X) =
SX − MXX2. Note, that S denotes the specific growth rate of the prey.

Per definition in Sec. 3.3.2 we have σx := ds(x,y)
dx

∣

∣

∣

x=x∗,y=y∗

and cx := (1 −
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σx)/(2 − σx). A differentiation of s(x, y) = Ŝ(X∗x)/Ŝ(X∗) with respect to x
yields σx = 1 − MXX∗/(S − MXX∗). From the first Equation in Eqs. (4.7)
and the definition of mx in Eqs. 4.8 we get mx = MXX∗/S and therefore
σx = 1 − mx/(1 − mx). Substituting the latter expression in the definition of
cx yiels cx = mx. In conclusion, for the logisic growth the intra-specific com-
petition parameter of Chapter 3 is indeed equivalent to the scale parameter
mx.
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Summary

Population dynamics are often investigated under the usage of simple mathe-
matical models. The model properties of these models can be very sensitive to
the mathematical formulation of the considered processes. A detailed deriva-
tion of these functional forms from field or lab experiments is in general diffi-
cult. However, in generalized modeling a further specification of the processes
under consideration is avoided. Consequently, the analysis of these models
allows to gain very generic system properties.

Generalized and specific modeling approaches require different computa-
tion techniques to locate bifurcations in parameter space. In Chapter 2 an in-
novative technique to locate bifurcations in generalized models is introduced,
that allows for an efficient computation of three dimensional bifurcation dia-
grams. This technique is applied on two rarely investigated types of predator-
prey models. One model focuses on stoichiometric constraints on the primary
production and the conversion efficiency. These constraints cause dependen-
cies that are not considered in classical predator-prey models. The other
model describes how a disease spreads upon a predator population and how
these dynamics influence the population interactions. The predator popula-
tion is thereby structured in susceptible, infected and recovered predators. To
find generic effects we use the approach of generalized modelling. The re-
sulting bifurcation diagrams are partly combined with bifurcation diagrams of
specific modeling approaches to demonstrate the interplay of generalized and
specific modelling.

Although probably all natural interacting populations are influenced by
limitation of nutrients and diseases, the related dependencies and the dis-
tinction between infected and uninfected are rarely considered in theoretical
predator-prey models. The generalized analysis shows that these aspects of
ecology qualitatively change predator-prey dynamics. In the following we bri-
ethly discuss the main results and give suggestions of further investications.

We begin with the investagtion of the generalized stoichiometric predator-
prey model in Chapter 3. First, it turns out that for the classical assumption of
constant efficiency the stability of equilibria depends only on two generalized
parameters, the intra-specific competition and the predator sensitivity to prey.
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The technique for the computation of bifurcation surfaces introduced in Chap-
ter 2 is used to show how this two-dimensional bifurcation diagram evolves
when the conversion efficiency becomes variable. The additional dimension is
spanned by the food quality parameter that is related to the variability of the
conversion efficiency.

The analysis shows that a variable conversion efficiency has major effects on
the stability and dynamics of the system. In addition to the Hopf bifurcation, a
surface of tangent bifurcations and a line of codimension-2 Takens-Bogdanov
bifurcation appear. One the one hand, the latter indicates that homoclinic
bifurcations are also generic in stoichiometric models. On the other hand, the
Takens-Bogdanov bifurcation marks the end of the Hopf bifurcation surface.
Therefore, it leads to the disappearance of the paradox of enrichment for low
food quality.

The computation of three-dimensional bifurcation diagrams allows for a
fast overview to get a qualitative understanding of the (de)stabilizing prop-
erties of the six system parameters. By contrast to the strong influence of
the variable efficiency, it shows that stoichiometric constraints on the primary
production have qualitatively rather low effects. They cause only shift of the
observed bifurcation scenario. In this way we identify the variable efficiency as
a key process that remarkably changes the dynamics of classical predator-prey
systems.

These general properties are used to understand and predict the differ-
ences of specific stoichiometric models. First, we considered in Sec. 3.5 a
variable and a simplified constant conversion efficiency model by Kooijman
et al. (2004). The observation that a homoclinic and a tangent bifurcation
appear in the variable efficiency model but not in the constant effiency model
is in agreement with the results from the generalized analysis. Also a sto-
ichiometric model proposed by Loladze and Kuang (2000) with unsmooth
processes considering two limiting nutrients shows the appearance of tangent
and homoclinic bifurcations. Further, the generalized analysis coincides with
the disappearance of the paradox of enrichment in the model by Loladze and
Kuang (2000). From the generalized point of view this corresponds to the fact
that the unsmooth conversion process in this model allows only two discrete
values for a parameter of the generalized model. For one parameter value a
Hopf bifurcation exist and for the other no Hopf bifurcation can occure. In or-
der to provide an example that allows to analyze the transition between both
extreme parameter values we construct a smooth analogon model. This model
shows that a Takens-Bogdanov bifurcation is responsible for the disappearance
of the Hopf bifurcation, as predicted by the generalized analysis. Further, the
results of the generalized analysis correctly predict a shift of the bifurcation
scenario when additionally mass conservation is assumed in Sec. 3.5.4. These
examples show that the generalized modeling can be used in combination to
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specific models with identify properties that are generic for the model class.
The comparison to specific examples is done qualitatively but also quanti-

tatively. We show that it is possible to translate specific bifurcation diagrams
into generalized parameters and combine these projections with a generalized
bifurcation diagram. This is done by fitting the specific coupling of certain
generalized parameters. These combined bifurcation diagrams show in an ex-
emplified way how specific and generalized parameters are connected. Further,
it illustrates how multiple intersecting steady states that require different nor-
malizations share one generalized diagram.

We show a counterintuitive stabilizing effect of intra-specific competition
appearing likewise in constant and variable efficiency models. Instead of the
related paradox of enrichment, this effect does not depend on the specific func-
tional response under consideration. Further, a comparison to the observed
paradox of nutrient enrichment in (Loladze and Kuang, 2000) shows that both,
the paradox of enrichment and the paradox of nutrient enrichment, are com-
bined in the paradox of competition observed in the generalized model. This
illustrates the generic nature of the observed paradox of competition.

In the generalized eco-epidemic model in Chapter 4 where we consider a
disease in the predator population, the visualization technique is used to locate
bifurcations of higher codimension that give information about the appearance
of complex dynamics. By the localization of a double-Hopf bifurcation in the
generalized eco-epidemic model in Sec. 4.4.2, we show that chaotic parameter
regions generally exist when the predator is infected by a disease.

This generalized analysis is used in Sec. 4.5 to construct a specific eco-
epidemic model which is investigated to study the dynamics close to the
double-Hopf bifurcation. Thereby, we find additional period-doubling and
Neimark-Sacker bifurcations. We identify two routes into chaos, both involve
a transition from quasiperiodicity. Most importantly, we demonstrate that the
chaotic parameter regions are extended. In this way our analysis shows that,
in the class of eco-epidemic models under consideration, chaos is generic and
likely to occur. In other words, we show that diseases in predator populations
can generally lead to chaotic dynamics.

More generally, the analysis in Chapter 4 shows that the localization of or-
ganizing centers by three-dimensional bifurcation diagrams reveals the regions
of most interesting dynamics. Moreover, it provides plenty of examples for
these situations since the generalized model represents a whole classes of mod-
els. From a technical perspective, the faithful representation of the Takens-
Bogdanov bifurcation, the intersection with the Gavrilov-Guckenheimer bi-
furcation and most importantly, the complicated Whitney-umbrella structure
of the Hopf bifurcation in Sec.4.5 (Fig.4.2) represents a masterpiece of the
adaptive triangulation algorithm presented in this thesis.

In principle, the formulations of the models could be much more gen-
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eral than in Chapter 3 and Chapter 4. The most general formulation of a
predator-prey system is Ẋi = Fi(X1,X2), i = 1, 2. Obviously, this formula-
tion hardly allows any conclusions about the involved processes. Instead, the
models proposed in this thesis adopt some processes from conventional model-
ing approaches like the logistic growth in the eco-epidemic model or the linear
death terms in the predator populations. This clearly reduces the degree of
generality of the model but likewise focuses the analysis on the considered pro-
cesses. Another advantage of this semi general formulation is that the results
are, as it shows in the presented thesis, directly transferable to specific model
examples.

In summary, the presented thesis has contributed to our understanding
of stoichiometric influences on predator-prey interactions and how diseases in
predator populations can influence predator-prey dynamics. On one hand, the
models under consideration can be further generalized in order to see how these
effects act jointly with other model modifications like nonlinear death terms.
On the other hand, one could further specify and modify the eco-epidemic
model to account for a specific problem. For example, one could adapt the
model to analyse the dynamics of a specific disease of cats and the interaction
with the rabbit population on an island (cf. Introduction). Also the method
for the computation of bifurcations in generalized models could be extended
in several ways. As an outlook, three possible extensions are discussed more
in detail.

First, the computation of the bifurcation surfaces can potentially be ex-
tended in order to compute hypersurfaces. The proposed method for the
computation of bifurcation surfaces provides a fast and efficient computation
of three-dimensional bifurcation diagrams. The resolution of computed bi-
furcation points is locally adapted to the complexity of the surface. Once
such a representation of the bifurcation surfaces is found, it is possible to
trace these points while varying a fourth parameter. If necessary, additional
bifurcation points can be computed in order to maintain or adapt the local
resolution. In this way, one would obtain four-dimensional hypersurfaces that
can be visualized in a three-dimensional diagram where the fourth parameter
can be changed interactively. This technique would allow to investigate the
evolution of the bifurcation landscape. Moreover, it is possible to iterate this
step for additional parameters. In this way, one can explore step by step the
whole bifurcation manifold. This information could be used to evaluate the
(de)stabilizing effect of a parameter variation in terms of how the variation
changes distance to the bifurcation surfaces in the direction of all parameters
under consideration.

Second, the generalized stoichiometric predator prey model in Chapter
3 can be used as a building block in a generalized stoichiometric food web.
We have shown that the variable food quality greatly affects the dynamics of
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simple predator prey models. In larger population models, the variable food
quality applies mainly to the autotrophs at the bottom of the food chains
or webs. However, as we have discussed in Sec. 3.2, the resulting variable
efficiency function depends in general on all other populations. Therefore, a
specific modeling approach would become very complicated with the number
of considered species. A generalized modeling approach could instead be used
to overcome this difficulty. In generalized food webs, the large number of
parameters makes a stability analysis in terms of three-dimensional bifurca-
tion diagrams inappropriate. Instead, a simple numerical correlation between
parameter values and the stability of the steady state can reveal how the pa-
rameter influence the stability of the steady state statistically as it has been
done in (Steuer et al., 2006, 2007). In this way, the influence of a variable food
quality on the stability of complex food webs could be studied from a very
general perspective.

Third, the specific model in Chapter 4, Sec. 4.5, could be used to study
stabilizing effects of diseases in conjunction with chaotic dynamics. In Sec.
4.2 we discussed that chaotic dynamics can prevent synchronization effects in
patchy populations and therefore reduce the possibility of global extinction
events. An interesting theoretical investigation beyond the scope of this work
is to model population patches using the example model in Sec. 4.5 and
adding a weak coupling due to migration between the patches. Theoretically
it should be possible to observe predator-prey oscillations when the disease has
no influence on the vital dynamics (α = β = 1, µ = 0) since the predator prey
interactions are not affected by the disease. An adequate coupling should cause
synchronization between the patches. Such an experiment is less artificial than
it might sound. For example, the snowhare-lynx cycles from different regions in
Canada show synchronization over millions of square kilometers (Blasius and
Tönjes, 2007). An onset of chaotic dynamics in the model due to an increase of
the influence of the vital dynamics could perturb the synchronization (Allen
et al., 1993; Ruxton, 1994; Earn et al., 1998). In this way, a disease that
reduces the vitality of the predator population could prevent both the prey
and the predator population from global extinction.

To this end, whenever a system is too complex for an comprehensive de-
scription like our environment, simple specific and generalized models help to
understand the system properties from an elementary perspective. As the pre-
sented thesis shows, both modeling approaches can fruitfully act in concert.
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Samenvatting

De dynamica van ecosystemen bestaande uit populaties en hun natuurlijke
voedselbronnen, kan onderzocht worden met behulp van wiskundige modellen.
Met deze modellen wordt de verandering in de tijd van het aantal individu-
en waaruit de populaties bestaan, bestudeerd. Wetmatigheden (behoud van
massa bijvoorbeeld) waaraan biologische en fysiologische processen moeten
voldoen, worden gebruikt om de wiskundige vergelijkingen af te leiden. Af-
hankelijk van de gemaakte aannamen een veelheid aan modellen op: van de
klassieke Lotka-Volterra tot de op de Dynamische Energie Budget (DEB) the-
orie (Kooijman 2000) gebaseerde modellen. Snelheden waarmee de biologische
processen verlopen zijn voorbeelden van parameters in deze modellen. De ei-
genschappen van deze modellen, hier specifieke modellen genoemd, kunnen
gevoelig afhangen van de wiskundige formulering van de beschouwde proces-
sen en de gebruikte parameter waarden. Een gedetailleerde afleiding van de
vergelijkingen uit veld of laboratorium experimenten is vaak moeilijk.

Bij het gebruik van gegeneraliseerde modellen (Gross 2004a) wordt verdere
specificatie van de beschouwde processen omzeild. Uitgangspunt hierbij is
dat processen zoals toe- en afname (geboorte, groei, sterfte) met eenvoudige
wiskundige formules worden beschreven. Via een normalisatie techniek worden
parameters verkregen die kenmerkend zijn voor het dynamisch gedrag dat we
willen bestuderen, maar ook een biologische interpretatie toestaan. Als gevolg
daarvan levert de analyse eigenschappen op van klassen van modellen. Het is
echter ook mogelijk de processen specifieker te omschrijven waardoor (zoals in
dit proefschrift gedaan wordt) de twee type modellen met elkaar vergeleken
en verbonden kunnen worden.

In dit proefschrift wordt het dynamische gedrag van de modellen bestu-
deerd met behulp van bifurcatie-analyses. Daarbij wordt het lange termijn
gedrag bestudeerd. Parameters, die bijvoorbeeld de snelheden van de biolo-
gische processen beschrijven, worden onderscheiden van toestandsvariabelen,
zoals aantal individuen, die in de tijd kunnen veranderen. De meest eenvou-
dige situatie is dat beide populaties van een predator-prooi systeem na lange
tijd naar een evenwicht gaan waarbij beide populatiegroottes nagenoeg con-
stant worden. Een belangrijke eigenschap van een dergelijk evenwicht is haar
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stabiliteit. Indien het systeem na een verstoring weer terug keert naar het oor-
spronkelijk evenwicht wordt deze stabiel genoemd; indien niet dan instabiel.
Voorbeelden van ander lange termijn gedrag zijn: aanhoudende slingeringen
van de populatiesgroottes en chaotisch gedrag waarbij de toestand van het
systeem gevoelig af hangt van de beginsituatie en waarbij kleine verstoringen
grote gevolgen kunnen hebben.

In een bifurcatie analyse wordt de afhankelijkheid van het dynamisch ge-
drag van parameters bestudeerd. Wanneer bij het variëren van een parameter
het gedrag kwalitatief verandert wordt gezegd dat er een bifurcatie optreedt.
Bij een zogenaamde tangent bifurcatie treedt een plotselinge verandering op
waarbij het systeem naar een andere stationaire oplossing gaat. In een Hopf
bifurcatie verandert een evenwicht in slingerend gedrag, vaak rondom het in-
stabiele evenwicht.

De resultaten worden weergegeven in diagrammen waarbij de parameters
langs de assen staan en de bifurcaties gebieden met een zelfde gedrag be-
grenzen. Voor het berekenen van bifurcaties van gegeneraliseerde en speci-
fieke modellen zijn verschillende methoden vereist. In hoofdstuk 2 wordt een
nieuwe techniek voor het vinden van bifurcaties in gegeneraliseerde modellen
gëıntroduceerd die een efficiënte berekening van driedimensionale bifurcatie
diagrammen mogelijk maakt. Driedimensionale diagrammen geven snel in-
zicht in kwalitatieve veranderingen van (de)stabilisatie eigenschappen. Deze
techniek wordt gebruikt voor het analyseren van twee predator-prooi modellen.

Het éne model is een uitbreiding van het klassieke predator-prooi systeem
waarbij rekening gehouden wordt met de beperkingen die de stoichiometrie
oplegt aan de omzetting van voedsel in biomassa. De prooi consumeert nu-
triënten (in dit geval een koolstof- en een fosforbron terwijl andere bouwstoffen
in overvloed beschikbaar zijn) en bestaat zelf uit twee componenten (weer kool-
stof en fosforhoudend). De prooi wordt opgegeten door een predator waardoor
zijn voedsel ook uit twee hoofdbestanddelen bestaat die zijn groei vastleggen.

De consumptie en verwerking van twee voedselbronnen tot nieuwe bio-
massa wordt beschouwd als één chemische reactie. Stoichiometrie is dan de
verhouding waarin de twee voedselbronnen met elkaar “reageren” en de ver-
houding tussen deze voedselbronnen en de geproduceerde nieuwe biomassa.
Met de stoichiometrie wordt naast het belang van voedselhoeveelheid ook de
kwaliteit (samenstelling) van het voedsel belangrijk. Als gevoldg hiervan is de
efficiëntie van de omzetting van prooi-biomassa naar predator-biomassa niet
meer constant, maar varieert met de voedsel samenstelling. Een ander hierbij
belangrijk aspect is de mineralisatie van afbraakproducten en dode biomassa
waarbij volledige recycling van de nutriënten wordt verondersteld.

De beperkingen opgelegd door de voedselsamenstelling brengen afhanke-
lijkheden met zich mee die in de klassieke predator-prooi modellen niet be-
schouwd worden. Als deze wel beschouwd worden dan wordt in het algemeen
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in de wiskundige beschrijving een switch gebruikt waarbij beneden een drem-
pelwaarde het ene nutriënt de groei beperkt en boven de drempel-waarde de
andere. Dit is bijvoorbeeld het geval in Loladze et al. (2000). Van een sys-
teem met een switch een gegeneraliseerde model maken is echter onmogelijk.
Mede daarom wordt in dit proefschrift het switch-model vervangen door een
model waarin de groei geleidelijk met de samenstelling van het voedsel ver-
andert. Deze beschrijving wordt verkregen door toepassing van de wachttijd
theorie op het verwerkingsproces van random beschikbaar komende bouwste-
nen voor nieuwe biomassa. Dit specifieke model kan wel rechtstreeks met een
het gegeneraliseerde model vergeleken worden.

Het andere model beschrijft hoe een ziekte zich over een predatorpopulatie
verspreid en hoe dit de interactie tussen de populaties bëınvloedt en daarmee
het dynamisch gedrag. In de predator populatie wordt daarbij onderscheid
gemaakt tussen drie klassen individuen, namelijk het aantal vatbare (S van
susceptibles), besmettelijke, I (infectious), en immune R (recovered) predato-
ren. In het klassieke model wordt genegeerd dat individuen sterven en geboren
worden. Dit kan alleen maar een redelijke aanname zijn als een epidemie op
een korte tijdschaal plaatsvindt.

Om het verwantschap tussen de gegeneraliseerde en de specifieke modelfor-
mulering te demonstreren worden diagrammen verkregen met beide modellen
gecombineerd. Daartoe worden een aantal parameters in het gegeneraliseerde
model voor dat doel gekozen. In wat volgt behandelen we kort de belangrijkste
resultaten.

We beginnen met het onderzoek van het gegeneraliseerd stoichiometrische
predator-prooi model in hoofdstuk 3.

De analyse toont aan dat een variabele efficiëntie van de omzetting van
prooi-biomassa naar predator-biomassa, grote invloed heeft op de stabiliteit
en het dynamische gedrag van het systeem. Naast de “Hopf bifurcatie vlak”,
is er een vlak van “tangent bifurcaties” en ontstaat er een kromme lijn van
zogenaamde codimensie-2 “Takens-Bogdanov bifurcaties”. Dit toont aan dat
er homocline bifurcaties zijn. Daarnaast markeert de Takens-Bogdanov het
einde van de Hopf bifurcatie-vlak. Daarom verdwijnt de “paradox van de ver-
rijking”. De paradox van de verrijking is het effect dat als het nutriëntaanbod
verhoogd wordt het systeem boven een bepaalde drempel (aangegeven door
de Hopf bifurcatie) gaat slingeren, en bij nog verder ophogen de minimum-
waarden tijdens een periode zo klein wordt dat uitsterven van de populaties
waarschijnlijk is.

In tegenstelling tot de sterke invloed van een variabele efficiëntie, blijken
de stoichiometrische beperkingen opgelegd aan de prooi kwalitatief weinig ef-
fect te hebben. De beperkingen veroorzaken enkel een verschuiving van het
waargenomen bifurcatiescenario. Op deze manier kan men de variabele effi-
ciëntie als sleutelproces identificeren dat het dynamisch gedrag van de klassieke
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predator-prooi verandert.
De eigenschappen van het gegeneraliseerde model worden ook gebruikt om

verschillen tussen specifieke modellen te begrijpen en te voorspellen. In hoofd-
stuk 3 worden daarom naast een gesimplificeerd model met constante conversie
efficiëntie, meedere modellen met een variabele efficiëntie bestudeerd. Het feit
dat een homocline en een tangent bifurcatie in het variabele efficiëntie model
wel voorkomen maar niet in het constante efficiëntie model is in overeenstem-
ming met de resultaten van de gegeneraliseerde analyse. Ook het stoichiome-
trische model met een switch procesbeschrijvingen, heeft een tangent en een
homocline bifurcatie. Met de resultaten van het gegeneraliseerde model kan
beschreven worden hoe de “paradox van de verrijking” in het Loladze et al.
(2000) model verdwijnt. Ook voorspelt de gegeneraliseerde analyse correct
het opschuiven van het bifurcatie scenario als rekening gehouden wordt met
de wet van behoud van massa.

In het gegeneraliseerde eco-epidemisch model in hoofdstuk 4 waarin we
een ziekte in de predatorpopulatie bestuderen, wordt de visualisatie techniek
gebruikt om de hogere co-dimensie bifurcaties te lokaliseren. Die geven in-
formatie over het eventuele bestaan van complex dynamisch gedrag. De ge-
generaliseerde analyse wordt gebruikt voor de constructie van een specifiek
eco-epidemisch model waarvan het gedrag onderzocht wordt in de buurt van
de dubbele-Hopf bifurcatie. Belangrijk is dat het gebied waarin chaos op-
treed groot is. Op deze manier laat de analyse zien dat in een klasse van eco-
epidemisch modellen chaos generiek is en dat het waarschijnlijk vaak voorkomt
dat ziektes in predatorpopulaties leiden tot chaotisch gedrag.

Meer in het algemeen kunnen we stellen dat de analyse in hoofdstuk 4
aantoont dat de lokalisatie van een centrum waaruit alles afgeleid kan wor-
den, door middel van driedimensionale diagrammen, situaties opleveren met
interessant dynamisch gedrag. Bovendien geeft het meerdere voorbeelden van
deze situaties omdat het gegeneraliseerde model een hele klasse van modellen
representeert. De berekende gecompliceerde Whitney-paraplu structuur van
de Hopf-bifurcatie in fig.4.2 toont de mogelijkheden van de toepassing van het
in hoofdstuk 2 ontwikkelde adaptieve algoritme.

Deze voorbeelden laten zien dat de gegeneraliseerd modellen gebruikt kun-
nen worden in combinatie met specifieke modellen en waarbij algemene eigen-
schappen worden gëıdentificeerd voor de klasse van modellen. Wanneer een
natuurlijk systeem een zeer gecompliceerd beschrijving vereist, kunnen eenvou-
dige specifieke en gegeneraliseerde modellen helpen de eigenschappen van het
systeem te begrijpen vanuit de onderliggende basis principes. Dit proefschrift
toont de meerwaarde van een gecombineerde analyse van beide modellen.
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