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1

General Introduction

1.1 Combining DEB and AD

A biological community is a group of species that occur together in space and

time [1]. The structure of a biological community is described by characterist-

ics such as the number of species of which it consists, the type of the species
interactions, their biomass distribution, and their interaction strengths. The

structure of a community is closely related to its dynamics and its function-
ing, involving ecological processes such as biomass production and retention,

nutrient cycling and energy dissipation, which, in turn, may affect community

stability, persistence and resilience.
Community structure and functioning do not arise at random, but are the

result of many different processes. Some of these processes, such as for in-

stance population growth, lead to a quantitative change in the community
structure, and may take place on short (ecological) time scales. Other pro-

cesses, such as the entry of new species and the adaptation or extinction of
existing ones, may lead to a qualitative change in community structure, and

are typically associated with longer (evolutionary) time scales.

In many modeling studies, these long-term processes are simply ignored,
and the number of species, their interactions, and the involved parameter val-

ues are assumed to be fixed. Yet, qualitative changes in community structure

and functioning are very important, as they allow communities to develop and
enable them to adapt to changing environmental conditions. Obviously, long-

term changes in community structure and functioning are essential when, for

example, predicting the consequences of climate change, designing strategies
for environmental management, or studying sustainable exploitation of natural

resources.
One way of incorporating qualitative changes in the structure of a model

community is by means of an assembly process. In assembly models such as

the Web World model [2], new species are selected from an existing pool of
species and are incorporated if they add to the community in a stable way [7].

The assembly process may thus correspond to migration of new species from

1



2 1. General Introduction

surrounding areas into the community. A problem with assembly models is

that the results largely depend on the specific supply of new species throughout
time. Consequently, each simulation run may have a very different outcome,

which makes the results difficult to analyze and interpret.
An alternative for the assembly process is evolution. Evolutionary models

involve adaptation and speciation through mutation and selection. The phen-

otypic characteristics, subject to evolution, are referred to as adaptive traits.
The values of the adaptive traits of new species are not chosen at random, but

are based on those of their (successful) ancestors, from which they deviate by

small mutational steps. The size and direction of these mutational steps are
stochastic, but when they are small and rare the evolutionary change of the

adaptive traits becomes deterministic and predictable (see Section 1.3).
A model that does include evolutionary processes to shape the food web

structure is the ‘speciation model’ [20]. This model, however, does not con-

sider any population dynamics, so that speciations and extinctions are again
included as random events. An evolutionary community model that includes

population dynamics, is the one developed by Ito & Ikegami [11], which uses

a diffusion process to describe the mutational process. Like in the Web World
model, it considers one adaptive trait for the ability of predation and one for

the vulnerability to predation. These traits represent morphological or behavi-
oral characteristics, but they are not assigned particular features, and neither

are they linked to physiological processes or traded off with each other. As a

consequence, the model results may not always lead to realistic results. For
example, the populations may evolve towards ever larger trait values, unless

explicit boundaries are defined.

Some models do include concrete adaptive traits that are linked to physiolo-
gical processes. For example, the size-structured evolutionary food web model

developed by Loeuille and Loreau [15] uses body size as the adaptive trait.
However, their model incorporates various empirically derived functions and is

based on the elegant but not very realistic Lotka-Volterra-dynamics, in which

the rate of encounter between consumers and resources is proportional to the
product of their masses.

In this thesis, I include more realism in evolutionary community models.

For this, two very promising ideas are combined, the Dynamic Energy Budget
(DEB) theory on metabolic organization [13, 14, 18] and the Adaptive Dynam-

ics (AD) theory on evolutionary speciation [5, 6, 9, 17], which so far existed
separately with hardly any links between them. DEB theory was used to for-

mulate models concerning system dynamics on an ecological time scale, while

AD theory was mainly applied to unrealistically simple ‘toy’ models. The aim
of this thesis is to apply AD theory to models based on DEB theory, to include

multiple adaptive traits, to consider inhomogeneities in space and time, and to

formulate AD theory methods in a more general bifurcation theoretical frame-
work.
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1.2 Dynamic Energy Budget theory

Dynamic Energy Budget theory [13, 14, 18] is a modeling framework for meta-

bolic organization. It consists of physiological rules that describe the uptake
and use of energy and material. It is derived from first principles and provides

a quantitative framework for modeling any living organism. These organisms

are considered to consist of two state variables, structural biomass and re-
serves. Assimilates derived from food are added to the reserves, which then

fuel all other processes including maintenance, growth and reproduction. As a
result, growth and reproduction do not depend directly on the available food

resources, but rather on the reserves. These have a broader interpretation than

is generally the case for storage material: reserves are not set aside for later
use, but consist of all material that is available for metabolic use, now or later.

DEB theory does not only take into account the energy fluxes, material fluxes

and chemical reactions occurring between the species in a community, but also
explicitly formulates the fluxes and chemical reactions occurring between the

community and its environment, the total of which is referred to as ‘community
metabolism’.

1.2.1 Simplifications

To keep the analysis feasible, I use various approximations to simplify the DEB

models. In Chapters 2 to 4 this is done by assuming that the organisms’ surface-

area to volume ratio does not change during their lifes. This is a reasonable
assumption for small organisms such as algae, that reproduce through growth

and division. It eliminates the distinction between the individual and the pop-
ulation, which simplifies the model considerably. Furthermore, the energy re-

serves of the organisms are not considered, but only their structural biomass.

In Chapter 5, a different simplification is used. Here, the assumption is
made that the organisms grow quickly to adult size. As a result, their juvenile

stage can be ignored and all individuals in the population are either embryos

or adults. Adults do not grow, but only reproduce, which contrasts with repro-
ductive dividers such as mentioned above. Also, all adults are assumed to have

the same size, which again leads to a constant surface-area to volume ratio.
Although the reserves of these organisms are considered, they are assumed to

be in equilibrium with their environment, which means that the scaled reserve

density is equal to the scaled functional response. This assumption of an eco-
logical equilibrium is not problematic, because focus lies on the evolutionary

dynamics rather than on the ecological ones. These ecological dynamics are

assumed to be much faster than the evolutionary dynamics, such that, when
regarded on an evolutionary time scale, the system can be considered always to

be at its ecological equilibrium. In Chapter 6, such an equilibrium assumption
can no longer be made, as a periodically fluctuating environment is considered.

In this case the reserves have to be modeled explicitly throughout time.
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1.3 Adaptive Dynamics theory

Adaptive Dynamics (AD) theory helps analyze phenotypic evolution under dens-

ity or frequency-dependent selection [5, 6, 9, 17]. The concept of evolution
has been introduced by Darwin and Wallace [4, 22]. According to Darwin,

biotic factors in general, and competitive interactions in particular, were the

main factors driving natural selection. By putting the emphasis on the direct
competition between individuals, the impression was created that the environ-

ment was simply a ‘static arena’ for selection. Wallace, in contrast, put more
emphasis on the struggle against enemies, predators and the physical envir-

onment. These same two views underly two alternative approaches that still

exist in the field of ecology, the so-called demographic and autoecology ap-
proach [10]. The seeming incompatibility between the two views has led to the

‘competition controversy’ in community ecology [3, 23]. AD theory, however,

combines the two views, by assuming a feedback loop between the population
and the environment. This feedback loop implies that the environment is af-

fected by the density or frequency distribution of the phenotypes present in the
system. As a result, the environment and the fitness landscape are not static,

but may change along with the evolution of the species or populations in it.

Changes due to such a feedback loop may be small and irrelevant when con-
sidering short periods and small regions, but can not be ignored when temporal

and spatial scales become larger.

AD theory focuses on adaptive traits that characterize an individual. Other
traits are assumed to be constant over time and among all individuals belong-

ing to a (mono-phylogenetic) taxon. The trait values are inherited from parent
to offspring, but small changes may arise due to mutations. Whether a mutant

may invade the resident population depends on its invasion fitness. This inva-

sion fitness is defined as the mutant’s long-term per capita growth rate in the
environment that is ‘set’ by the resident population; this resident population is

assumed to be in equilibrium with its environment, and thus has a growth rate

of zero. Hence, by definition, the individuals belonging to the resident popu-
lation always have a zero invasion fitness. Mutants with a negative invasion

fitness will die out, but mutants with a positive invasion fitness may replace
the resident population. A series of such replacements will lead to a pheno-

typic change of the population. As long as mutations are small, and sufficiently

rare for the resident population always to be close to its population-dynamical
equilibrium when probed by a mutant, the direction and endpoint of pheno-

typic change can be deterministically approximated by means of the so-called

canonical equation of Adaptive Dynamics [6].

1.3.1 Evolutionary branching points

An evolutionary equilibrium is reached when the organisms have attained a

trait value at which the local fitness gradient is zero. Various types of evol-

utionary equilibria are possible, but two of the most important to biological
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communities are the continuously stable strategy (CSS) and the evolutionary

branching point (EBP) [8, 9, 16, 17].
A CSS is an attracting and evolutionarily stable strategy. This means that

the population will evolve towards the corresponding trait value, and then re-
main there, because this value corresponds to a local fitness maximum. Hence,

a CSS forms an evolutionary endpoint at which evolution comes to a halt.

The EBP is an attracting but evolutionarily unstable strategy. The popula-
tion will evolve towards it, but along with this process the fitness landscape

changes and has formed a local fitness minimum when the corresponding trait

value is reached. As a result, selection becomes disruptive, and the popula-
tion will split into two (coexisting) populations, which process is referred to

as ‘evolutionary branching’. Evolutionary branching of asexually reproducing
organisms, as are all model organisms in this thesis, may correspond to sym-

patric speciation in sexual organisms. Evolutionary branching thus provides

the system with a mechanism for autonomously increasing its biodiversity.

1.3.2 Simplifications

Various factors in this thesis complicate the AD analysis, for which solutions or
simplifications have to be found. In Chapters 2 and 5, two adaptive traits are

considered instead of one, so that the standard graphical approach of AD the-
ory, the so-called Pairwise Invasibility Plot (PIP), can not be used. In Chapter 2

this problem is solved by using Levin’s graphical approach adjusted for density-

dependent selection [21]. This approach is based on the assumption that first
the population will always evolve towards the trade-off curve, and then along

it. The curve is formed by a one-dimensional range of trait value combinations,

at which the two trait values cannot be increased both at the same time; any
increase in one of the trait values necessarily implies a decrease in the other. In

Chapters 3 and 4, the two traits are simply combined into one by assuming a
direct trade-off between them. In Chapter 5 again two adaptive traits are con-

sidered, but here their simultaneous evolution is analyzed through simulations

and bifurcation analysis.
Another complicating factor is environmental heterogeneity. In Chapter 4

a one-dimensional water column with a light-intensity gradient is studied. As

a result, the specific growth rate of organisms varies with depth and can no
longer be used as a direct measure for the invasion fitness. Instead, a fit-

ness measure has to be used that an take into account growth rates at every

depth, which is found in the dominant eigenvalue of the linearized system. In
Chapter 6 again a heterogeneous environment is assumed. This time, however,

the fluctuations occur not in space but in time. To study the corresponding
evolutionary dynamics we apply Floquet theory, which transforms periodic sys-

tems to traditional linear systems.
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1.4 Thesis outline

In Chapters 2 to 4, specialization into two traits representing different trophic

functions is studied. Trophic functions are (interactions with) ecosystem pro-
cesses, such as primary production, nitrification and respiration. For this, a

model of a population of mixotrophic organisms is used. Mixotrophs are cap-

able of both autotrophy and heterotrophy, i.e., they can use both inorganic and
organic carbon as a material and energy source. Evolution enables these or-

ganisms to specialize in autotrophic and heterotrophic assimilation. Their two
adaptive traits represent the affinities for the autotrophic and heterotrophic

assimilatory pathways. After evolutionary branching (Section 1.3.1), two pop-

ulations may result, an autotrophic one in which the organisms have lost their
abilities for heterotrophy, and an heterotrophic one in which the organisms

have lost their abilities for autotrophy. This process may correspond to the

autonomous development of a single-species community into a very simple
food web.

Chapter 2 studies the consequences of introducing an indirect and
physiologically-based trade-off function, instead of a simple and direct one,

as is often used in evolutionary models. This trade-off function involves the

costs for the autotrophic and heterotrophic machineries. Chapter 3 discusses
the application of numerical bifurcation analysis to study the evolutionary dy-

namics of ecosystem models, and Chapter 4 more closely investigates the role

of environmental factors on the evolutionary outcomes. This is done by pla-
cing the mixotrophs in a spatially heterogeneous environment, a mixed water

column with a light-intensity gradient.
In Chapters 5 and 6 another approach is used in which the focus lays on

specialization within a trophic function, instead of on specialization into trophic

functions. In this case, evolution allows the organisms to specialize, not by
increasing or decreasing the ability for a certain metabolic pathway, but by

increasing the affinity of a given pathway for one or another substrate. Hence,

when studying specialization within a trophic function, the substrate, instead
of the trophic function, becomes the focus.

For studying specialization within a function, I focus on body size as the
main adaptive trait, because it can characterize a range of substrates or prey

populations, as well as predator populations. Differences in body size are as-

sociated with differences in scale of time and space in which the organisms
live, and they reflect differences in physiological processes and life histories.

Also, much is known about the relations between body size and physiology

[12, 13, 19], which play a central role in DEB theory. From the basic assump-
tions of DEB theory various body-size scaling relationships can be derived and

understood, which makes this modeling framework very suitable for studying
body-size related processes.

In Chapters 5 to 6, we use a predator-prey model that considers two life

stages for the predator, embryos and adults. In Chapter 5, not one but two
adaptive traits were considered, the predator body size and its prey-size pref-

erence. Together, these properties determine which predator-prey size com-
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binations are established and thus largely define the structure of a community.

Though in this study the energy reserves of the organisms are taken into ac-
count, they are assumed to be in equilibrium with their (constant) environ-

ments. As a result, they form a burden rather than a profit to the organisms,
slowing down their reproduction rates. This, of course, does not do justice

to the large role of reserves in the real world. Therefore, in Chapter 6 these

reserves and their evolutionary advantage in a fluctuating environment are
studied.

In the General Discussion (Chapter 7) the results are summarized and the

two approaches (specialization into and within trophic functions) are com-
pared. The roles of system structure and parameters are discussed, followed

by a discussion on role of adaptive traits and trade-offs in modeling realistic
evolutionary communities.
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Abstract

In evolutionary history, several events have occurred at which mixotrophs

specialized into pure autotrophs and heterotrophs. We studied the con-

ditions under which such events take place, using the Dynamic Energy

Budget (DEB) theory for a physiological modeling basis and Adaptive Dy-

namics (AD) theory for the evolutionary analysis. We modeled a popula-

tion of mixotrophs that are capable of both autotrophic and heterotrophic

assimilation. The organisms have a certain affinity for both pathways;

mutations in these affinities enable the population to evolve. Evolution-

ary branching points provide an opportunity for the mixotrophic popula-

tion to split up and specialize into separate autotrophs and heterotrophs.

Evolutionary branching points, however, are found only under specific con-

ditions which depend on intrinsic properties such as the cost function, the

level of the costs and the boundaries of trait space. Only at intermediate

cost levels and when an explicit advantage to pure strategies exists, may

branching occur. Due to the constraints on the affinities and their indirect

trade-off, only some of the more complicated cost functions give rise to an

evolutionary branching point. In contrast to the intrinsic properties, ex-

trinsic properties such as the total nutrient content or light intensity were

found to have no effect on the evolutionary outcomes at all.

9
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2.1 Introduction

In recent years, the omnipresence of mixotrophy and its important role in

aquatic food webs have been increasingly recognized [1, 16, 17]. Mixotrophy
is the nutritional strategy which combines autotrophic and heterotrophic feed-

ing. Heterotrophy depends on outside sources of organic food materials; it in-

cludes feeding modes like pinocytosis (uptake of dissolved organic carbon) and
phagocytosis (uptake of particulate organic material). In contrast, with auto-

trophy, organic material can be manufactured from inorganic sources, which
may be done by means of chemotrophy (using energy from specific inorganic

molecules) or phototrophy (using energy from sunlight). Although many com-

binations of such heterotrophic and autotrophic types are possible, the term
‘mixotrophy’ is often reserved for the combination of phototrophy and phago-

trophy [17]. This type of mixotrophy is often encountered in planktonic prot-

ists, which is the kind of organisms that we focus on in this study. Mixotrophy
is a common phenomenon among these organisms, and they occur in a variety

of freshwater and seawater habitats [6, 14, 16, 18].
In the course of evolution, specialization of phototrophs and heterotrophs

from a common mixotrophic ancestor has occurred several times. One of the

earliest of such events can be found in the early development of prokaryotes.
Probably, life started out with chemolithoautotrophs, as both organic matter

and dioxide were rare at the time life emerged on earth [10, 19]. Then, early

in evolution, phototrophy arose among prokaryotes [5]. Subsequently, from
the phototrophic machinery, the respiratory chain could evolve. This led to

phototrophic organisms with a central glucose-based metabolism. Some of
these prokaryotes improved their photosynthetic abilities; others, however, lost

their ability to photosynthesize, and specialized in heterotrophy.

Evolutionary branching occurred again later in evolution, in the eukaryotes.
The first eukaryotes were heterotrophic and some acquired phototrophy by

endosymbiosis. This had resulted in mixotrophic eukaryotes. Yet, in the course

of evolution the majority of these mixotrophs specialized again in either the
autotrophic or the heterotrophic direction [14].

Although evolutionary branching makes up an important part of evolution-
ary history, it is still not well understood why or under what conditions they

take place. Also its relation with the environment is not quite clear, although

in some taxa mixotrophy appears to be associated with oligotrophic environ-
ments (low nutrient supply). This may be related to the fact that mixotrophs

have access to two food sources, which increases their chances of survival dur-

ing periods when one or both sources are limited [18]. Specialized organisms
such as pure autotrophs and heterotrophs would then be thought to occur in

eutrophic environments (nutrient rich). Yet, mixotrophic protists are known to
be very abundant in a range of eutrophic to oligotrophic waters [17].

Another, more ‘intrinsic’, factor that might regulate the occurrence of evol-

utionary branching could be the balance between costs and benefits involved
in mixotrophy. Benefits include the better chance of survival mentioned above,

but access to two food sources might also reduce the nutrient losses that are
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due to stoichiometry requirements, increasing the growth efficiency of the or-

ganism. In addition, mixotrophs may have the benefit of eating their compet-
itors which will reduce interspecific competition for food, as was suggested by

Thingstad et al. [18]. On the other hand, costs are related to building and
maintaining the apparatus for both phototrophic and heterotrophic assimila-

tion. In case of phototrophy, complex photosystems have to be build, as well

as protection mechanisms against UV damage. For phagotrophy, for instance,
it might be necessary to actively regulate the cell volume. Studies show that

the apparatus involved in phototrophy can account up to 50% of the energy for

cell synthesis, and comprises a corresponding fraction of the total cell biomass,
although large differences exist between the various species [14]. Energy and

biomass involved in the heterotrophic function seems much smaller, probably
less than 10% of the total cell biomass [14].

In this paper we use a modeling approach to study the balance between

costs and benefits of mixotrophy and its implications for evolutionary behavior.
In order to keep our focus, we study this balance and underlying mechanisms

for a very simple model-system with a homogeneous environment. The costs

and benefits lead to a certain trade-off between autotrophy and heterotrophy,
which is used to study under which conditions evolutionary branching occurs.

Furthermore it is studied how the evolutionary behavior is related to the envir-
onment or to such system properties as total carbon and nitrogen content.

In order to model the mixotrophy system we use the Dynamic Energy Budget

(DEB) theory, which is a modeling framework based on physiological mech-
anisms for the uptake and use of energy [8]. Then, to study under which

conditions the mixotrophs will branch, we apply Adaptive Dynamics (AD) the-

ory [2, 13]. The mixotrophy model differs in several aspects from the simple
models used so far to develop AD theory. Inherent difficulties are solved by us-

ing an alternative method based on Levin’s graphical approach, which was ex-
tended for density dependence [15]. This graphical method takes into account

both natural selection acting on differences in fitness between phenotypes and

constraints on the possible set of phenotypes. A trade-off between two traits is
shaped by the boundary of this set of possible phenotypes. Instead of assuming

a specific function for the trade-off curve as is often done, we derive the trade-

off between autotrophy and heterotrophy on basis of mechanisms defining the
costs and benefits of assimilation. In addition to providing an example of how

AD theory is applied to a DEB model, this study may also improve our under-
standing of AD theory, as its predictions can be interpreted by the physiological

mechanisms underlying the model.

2.2 Methods

2.2.1 Model description

We model the population of mixotrophs and its abiotic environment by means

of DEB theory [8]. This theory is a modeling framework for metabolic pro-
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cesses with physiological rules for the uptake and use of resources. It respects

the principles of energy and mass conservation, and stoichiometric constraints
on the synthesis of biomass. We use a simplified version of the mixotrophy

model presented by Kooijman et al. [9] that has only one state variable for
the mixotrophic organisms (biomass V ) and three state variables for the envir-

onment: detritus D, dissolved inorganic carbon DIC and dissolved inorganic

nitrogen DIN . The latter two states consist of one chemical element only; bio-
mass and detritus are thought of as generalized compounds containing both

carbon and nitrogen and other elements, which have a fixed chemical com-

position. It is assumed that elements other than carbon and nitrogen are not
limiting the growth of the organisms, and that the environment is homogen-

eous; self-shading is neglected. The system is closed for mass, but open for
energy.

The four state variables partake in 5 transformations: assimilation A (auto-

trophic or heterotrophic, AA or AH), growth G, maintenance M and death H;
a diagram of these transformations and the corresponding fluxes is shown in

Figure 2.1. A mixotrophic organism assimilates the dissolved inorganic carbon

and nitrogen from the environment and turns it into biomass and energy via
the autotrophic pathway. When the organism dies, its biomass becomes avail-

able in the form of dead biomass (detritus) via the heterotrophic pathway of its
conspecifics. Maintenance costs, overhead costs for growth and stoichiometric

constraints take care of the conversion of organic carbon and nitrogen back

into their inorganic form. The changes in state variables can be summarized
as: ddtXC = XV(jC;AA + jC;AH + kM); (2.1a)ddtXN = XV(jC;AA + jC;AH + kM)nN;V; (2.1b)ddtXD = XV(jD;AH + h); (2.1c)ddtXV = XV( jV;G � h); (2.1d)

where Xi is the concentration of state variable i and ji;j is the specific flux of
compound i partaking in transformation j; Both the specific maintenance ratekM and death rate h are assumed to be constant; nN;V is a chemical coefficient
which stands for the amount of nitrogen per carbon atom in biomass. The

notation used in these and following equations is introduced in Tables 2.1 and

2.2; default values of the parameters are given in Table 2.3.
Biomass and detritus, which consist of general compounds, are expressed

in the amount of carbon. Overhead costs for the transformation of inorganic

material into biomass (via the autotrophic route) are paid from photons and
not from carbon. Therefore, the uptake flux of dissolved inorganic carbonjC;AA is equivalent to (minus) the autotrophic assimilation flux jV;AA . The
flux of detritus is calculated from the heterotrophic assimilation flux jV;AH ,

which is corrected for overhead costs by means of a yield coefficient, yD;V. This
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Figure 2.1: Diagram of the metabolism of a mixotroph. The shaded

box encloses the organism, the lighter part of which denotes its mem-

branes containing the assimilatory machinery; circles denote a synthesiz-

ing unit. The organism has one state variable XV for biomass; the en-

vironment consists of the other three states: dissolved inorganic carbonXC, dissolved inorganic nitrogen XN and detritus XD. Arrows indicate

the structure-specific transformation fluxes.

Table 2.1: Table of symbols used for transformations and compounds.

Index Transformation Index CompoundA assimilation C DICAA autotr. assim. N DINAH heterotr. assim. V biomassM maintenance D detritusH death I intermediary productG growth
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Table 2.2: Table of frequently used symbols for variables. Index m refers to the max-

imum value. In the dimension column, l means length, t time.

symbol dim interpretationt t timeXi mol l�3 concentration of compound iKi mol l�3 saturation constant for compound iyi;j mol i
mol j mol compound i required per mol compound jJi;j mol i t�1 flux of compound i associated with transformation jji;j mol i
mol V t�1 structure-specific flux of compound iji;Am mol i
mol V t�1 struct-spec. max assimilation flux of compound iji;AK mol i
mol V t�1 struct-spec. max saturation flux of compound ini;j � chemical coefficient for element i in compound jh t�1 hazard ratekM t�1 maintenance rate�i � affinity for assimilatory route i (A = autotrophic, H = heterotrophic route)zi � flux ratio ji;Am=ji;AK for compound iz � determines the curvature of the cost functionfi � scaled functional response for element/process ir t�1 struct-spec. growth rates t�1 invasion fitnesssi t�1 potential fitness contributed by assimilation via route i (A or H)

yield coefficient denotes the amount of detritus that is required per amount of

biomass. The gross growth flux jV;G consists of the total assimilation flux jV;A
corrected for maintenance and again the overhead costs. Carbon and nitrogen
fluxes due to overhead costs and stoichiometric constraints are included in the

heterotrophic assimilation flux jC;AH , which simply follows from the difference

between incoming (assimilation) fluxes and the production flux of biomass,jV;G. jC;AA =� jV;AA ; (2.2)jC;AH =� jD;AH � jV;AHyD;V ; (2.3)jD;AH =� yD;V jV;AH ; (2.4)jV;G = jV;AyD;V � kM: (2.5)

The deviation in jC;AH from the model of Kooijman et al. [9] is caused by

the extra overhead costs at the transition from assimilates to biomass. The
autotrophic and heterotrophic assimilation fluxes jV;AA and jV;AH , and the

way the total assimilation flux jV;A depends on these two are discussed below.

Assimilation. Mixotrophs have the ability to produce assimilates via two sep-
arate pathways, the autotrophic and heterotrophic pathway. In the model, a
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Table 2.3: Table of default values.

Control parameters:XC+ 800 �MXN+ 150 �MjL;F �5 mol/ mol d
Evolutionary parameters:�A 0� 1 –�H 0� 1 –
Cost levels and function:y0 1:1 mol/ molyA 2:5 mol/ molyH 2:5 mol/ molyAH 0:0 mol/ molz 1 –KC 500 �M zC 10 – yD;I 1:3 mol/ molKN 0:1 �M zN 10 – nN;V 0:15 –KD 2500 �M zCH 10 – kM 0:1 d�1jV;AAm 2:6 mol/ mol d jL;FK 25 mol/ mol d h 0:1 d�1jV;AHm 2:6 mol/ mol d

central role is played by the affinity that the organisms have for each of these
two assimilatory pathways, �A for the autotrophic route and �H for the het-

erotrophic route. These affinities represent binding probabilities and therefore
their values range from 0 to 1. A higher affinity may be interpreted as an in-

crease or an improvement in the assimilation machinery that results in a higher

binding probability, which in turn will lead to a higher assimilation flux.
Autotrophic and heterotrophic assimilation fluxes jV;AA and jV;AH are cal-

culated by multiplying the affinities with the corresponding maximum assimil-

ation rates jV;AAm and jV;AHm, and the functional responses fA and fH:jV;AA =�A jV;AAm fA; (2.6)jV;AH =�H jV;AHm fH: (2.7)

In [9], these affinities were not included in the assimilation fluxes, but in the

gross growth flux jV;A. Another difference is that here we assume that no

limitation exists to the maximum flux of processing gross assimilates (k !1).
The total assimilation flux jV;A then simply becomes:jV;A = jV;AA + jV;AH : (2.8)

The functional responses are modeled with use of Synthesizing Units (SUs)
cf. Kooijman [7, 8], which provide a simple and realistic method for calculat-

ing production fluxes at simultaneous nutrient and light limitations. Planktonic
protists have a photosynthetic system that consists of two photosystems, with

which they stepwise convert carbon dioxide, nitrogen and light into assimil-

ates. First, carbon dioxide and photons are bound by carriers. Then, the carbon
dioxide is reduced into a carbohydrate. Nitrogen is bound, and together the
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carbohydrates and nitrogen are synthesized into biomass. This process can be

modeled by coupling several SUs: The binding fluxes of carbon fC and nitrogenfN can be calculated by a simple one-substrate SU; the reduction rate of carbonfCH can be calculated by a complementary SU for which both carbon and elec-
trons are essential. Finally, fA can be calculated with again a complementary

SU. These processes are represented by the following equations:fC = XCKC +XC ;fCH = 1 + z�1C1 + a�1 + b�1 � (a+ b)�1 ; a = zC fC; b = �JL;FJL;FK ;fN = XNKN +XN ;fA = 1 + z�1N + z�1CH � (zN + zCH)�11 + a�1 + b�1 � (a+ b)�1 ; a = zN fN ; b = zCH fCH; (2.9)

where Ki is the saturation constant for compound i and zi a scaling parameter
that weighs the contributions of carbon C, carbohydrates CH and nitrogen N .

Light influx JL;F (negative, because photons flow in) is scaled with parameterJL;FK, so that a multiplication of these two fluxes with an arbitrary number

(different from zero) has no effect. The light influx can be taken proportional to

the solar irradiance (photon flux per unit of surface area of water/ air boundary
layer). For a detailed discussion on modeling photosynthesis by means of SUs

the reader is referred to Kooijman (2000) and Kooijman et al. (2002).

The functional response of the heterotrophic route fH depends on the bind-
ing of detritus, which can be represented by a one-substrate SU:fH = XDKD +XD ; (2.10)

whereKD is the saturation constant for detritus. In [9] a parallel processing SU

was used that complemented detritus with DIN to synthesize assimilates; the
two models are equal when nitrogen density does not limit the heterotrophic

assimilation flux (KNV ! 0).
At the transformation of assimilates into biomass, overhead costs have to

be paid; these were quantified by the yield coefficient yD;V (2.11). This yield

coefficient is assumed to be related to the affinities for assimilation, as among
the overhead costs are the costs that are associated with building of the assim-

ilation machinery. Depending on the mechanisms assumed, various relations

between overhead costs and affinities result. These costs were modeled as to
consist of three parts: (1) a constant ‘base’ cost y0, specifying the costs involved

in biomass production apart from the assimilation machinery; (2) costs associ-
ated with the increase in or the improvement of the assimilation machinery, a

relation that can be either linear (z = 1), convex (z < 1) or concave (z > 1);

the absolute increase in these costs are specified by the parameters yH and yA;
(3) other costs, in this case we consider costs proportional to the product of



2.2. Methods 17

the two affinities; their relative increase is specified by the parameter yAH. To-

gether, these three parts make up the (flexible) function for the yield coefficientyD;V that quantifies the overhead costs for growth:

costs = base costs + costs for ass.machinery (AA and AH) + extra costsyD;V = y0 + yA(1� (1� �A)z) + yH(1� (1� �H)z) + yAH �H �A: (2.11)

Population and ecosystem. The DEB theory takes the organism’s uptake to
be proportional to its surface area and maintenance to be proportional to its

(structural) mass. Because we assume here that an organism’s surface area is
proportional to its mass, the distinction between the individual and the pop-

ulation is eliminated in the expressions for the fluxes. The system is closed

for mass, but open for energy and is started up containing only one (mono-
morphic) population of mixotrophs. Because the mixotrophs are capable of

both autotrophic and heterotrophic assimilation, all essential recycling of car-

bon and nutrients is installed and a continuous material cycling through the
ecosystem is possible. So, although only a single population is involved, we

may regard the mixotrophs and their environment as a complete ecosystem.

Evolution and Specialization. Evolution is included in the system in the
form of random but small mutations, i.e. heritable changes in parameters val-

ues. The mutations occur (independently) in the values of the two affinities�A and �H that the mixotrophs have for the two assimilatory pathways. A time

scale separation is assumed between the evolutionary time scale and the popu-

lation dynamical time scale, so that mutations occur only after the system has
reached a steady state. Our main goal is then to derive under which conditions

for the affinities the mixotroph population specializes into two populations of

separate autotrophs and heterotrophs.

2.2.2 Predicting the evolutionary outcome

Predictions of the evolutionary outcome of the system are made with use of AD

theory [2, 13]. The fitness s of an organism with a certain phenotype (�A,�H)

is defined as its long-term average per capita growth rate r. An important
concept in AD theory is the feedback loop between population and environ-

ment; the resident population is said to ‘set’ the environment, which is then

denoted by Eres. The resident population that has reached a steady state with
its environment, does not grow or shrink so that phenotypes (�Ares ,�Hres) be-

longing to this population by definition have an invasion fitness of zero:sres = r(�Ares ; �Hres ; Eres) = 0: (2.12)

When a mutant phenotype arises, it will be rare and is therefore assumed not

to affect the environment in the short term. Its invasion fitness will thus be
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determined by its phenotype (�Amut ,�Hmut), and by the environment which was

set by the residents: smut = r(�Amut ; �Hres ; Eres): (2.13)

Mutants of a phenotype having a positive invasion fitness may be able to in-

vade, those having a negative invasion fitness will die out. Following the in-
vasion, a mutant may replace the resident population and become the new

resident or live on in coexistence with the original population. Together, the
changed population and the environment will reach a new steady state, in

which the new residents will have a growth rate of zero again. It is by a series

of such invasions and replacements that the population evolves towards a ‘sin-
gular strategy’ at which both the fitness gradients have vanished:�smut��Amut = 0 and

�smut��Hmut = 0: (2.14)

A phenotype is a combination of the properties or ‘traits’ that characterize

the organisms, and all phenotypes together form the organisms’ trait space.

In this trait space, fitness-contour lines connect all combinations of traits that
have the same invasion fitness. Such a contour plot is often thought of as a

‘fitness landscape’, with peaks at phenotypes that have a high fitness and val-
leys at those of small fitness. As invasion fitness depends on the mutant’s trait

values but also on the environment which was set by the resident, this land-

scape is different for different resident populations. The sequence of resident
replacements typical to the evolutionary process then gives rise to the concept

of ‘changing fitness landscapes’.

The model presented here differs from the simple ‘toy’ models that are of-
ten used in AD theory. Not only is the mixotroph model physiologically based,

but also is it two-dimensional, meaning that the organisms have two traits
that are subject to evolution instead of one. The standard graphical approach

in AD that uses Pairwise Invasibility Plots (PIP’s) is only appropriate for one-

dimensional cases and comments on the extension of the theory for multiple
traits are rare [12, 13]. Therefore, we use an alternative method based on

Levin’s graphical approach, which was extended for AD theory by Rueffler and

van Dooren [15]. The classical approach [11] is based on fixed fitness land-
scapes, but the extended approach does include density dependence, which

leads to the changing fitness landscapes that are conditional on the resident
type. With this method it is possible to classify the evolutionary behavior as a

function of the curvature of the invasion boundary and the shape of the trade-

off function.
Invasion boundaries are the zero-fitness contours, consisting of all those

phenotypes that are selectively neutral, i.e. which neither grow nor shrink in

numbers under the conditions set by the resident population. Strategies at one
side of the invasion boundary will have invasion fitness smaller than zero and

mutants at this side will all die out. Strategies at the other side of the invasion
boundary will have invasion fitness higher than zero and mutants at that side

will potentially be able to invade.
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Trade-offs exist between two (beneficial) processes or traits of which not all

combinations are feasible for the organism. Together, the feasible phenotypes
constitute the feasibility set, which is a subset of the total trait space. The trade-

off function is shaped by the boundary of this feasibility set. For strategies on
the trade-off curve an increase in either of the two traits results in a decrease

of the other.

Rueffler and van Dooren (2002) explained that under certain assumptions
a series of mutations will always lead towards this trade-off curve, and once

it has been reached, evolution is assumed to proceed along it. The direction

of further trait substitutions depends on whether the derivative of the invasion
boundaries is smaller or larger than that of the trade-off curve. Whereas the

trade-off curve does not depend on the environment, the invasion boundaries
do depend on the environment and so they will change every time the resident

population is replaced by a new population. The process of mutations followed

by the replacement of the resident population will continue until the invasion
boundary becomes tangent to the trade-off curve or until the border of the

feasibility set is reached. In the first case the fitness gradient vanishes and a

singular strategy is reached. From the shapes of trade-off curve and invasion
boundaries, it can then be determined if such a singular strategy is an attractor

(convergence stable) and whether it is invadable (evolutionarily stable).
Two of the possible outcomes of evolution are continuously stable strategies

(CSS’s) and evolutionary branching points (EBP’s). The former are convergence

stable and evolutionarily stable strategies. In other words these are attract-
ors that can not be invaded by any mutant; the population will remain on

such a strategy. The latter are convergence stable but evolutionarily unstable

strategies. When arriving at a branching point, the population will suffer from
heavy intraspecific competition. Any mutant is able to invade, and disruptive

selection will induce the population to split up into two populations. For the
mixotrophs such branching points form opportunities to specialize into separ-

ate autotrophs and heterotrophs.

In terms of Levins’ extended approach a singular strategy is an attractor if
the slope of the invasion boundaries above this strategy is larger (more neg-

ative) than the slope of the trade-off curve at the place where the two inter-

sect; below the singular strategy the slope of the invasion boundaries must be
smaller (less negative) than that of the trade-off curve. A singular strategy is

invadable if the second derivative of the invasion boundaries is smaller (more
negative) than that of the trade-off curve. From this it follows that, when the

invasion boundaries are known to be linear and the singular strategy is an at-

tractor, the trade-off curve has to be convex in order to give rise to a branching
point.

2.2.3 Levins’ graphical approach applied to the mixotroph model

To find the conditions under which evolutionary branching occurs in the mixo-

troph model, we must first define the mixotrophs’ traits, invasion fitness and
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trade-off function. As was discussed above, every model organism is charac-

terized by its two trait values �A and �H. The values of the affinities range
between 0 and 1, so the organism’s trait space is the set T = f �A; �H j0 � �A � 1 ^ 0 � �H � 1 g. The invasion fitness smut of a mutant strategy(�Amut , �Hmut) in an environment that is set by the resident population Eres is

defined as its specific growth rate. This can be rewritten from equations (2.1d)

and (2.5) as follows:smut = 1XV ddtXV = jV;A(�Amut ;�Hmut ;Eres)yD;V(�Amut ;�Hmut) � kM � h; (2.15)

in which we now denoted explicitly the arguments of the variables. jV;A again
is the total gross assimilation flux, yD;V the yield coefficient for biomass out of

assimilates, kM the maintenance costs and h the death rate.
As the affinities are related to both costs and benefits, they are no direct

measures for invasion fitness. An expression is needed in which the affinities

are translated into a partial fitness contributed by the autotrophic route and a
partial fitness contributed by the heterotrophic route. By substituting (2.6) and

(2.7) via (2.8) in (2.15) the separate contributions of the two trophic pathways

to total invasion fitness become explicit:smut =jV;AA(�Amut ; �Hmut ; Eres) + jV;AH(�Amut ; �Hmut; Eres)yD;V(�Amut ; �Hmut) � kM � h;=fAmut(Eres) jV;AAm �AmutyD;V(�Amut ; �Hmut) + fHmut(Eres) jV;AHm �HmutyD;V(�Amut ; �Hmut) � kM � h;=fAmut(Eres) sA(�Amut ; �Hmut) + fHmut(Eres) sH(�Amut ; �Hmut)� kM � h;
(2.16)

in the last step of which we rename the grouped terms as the potential auto-
trophic fitness sA and the potential heterotrophic fitness sH. These contribu-

tions are called ‘potential’ because they do not include the functional responsesfA and fH, and thus stand for the maximally attainable fitness of each trophic
route.

Now that the contributions of autotrophy and heterotrophy to the invasion

fitness have been separated and can be expressed in sA and sH, the shape of
the trade-off curve and the invasion boundaries can be found much more eas-

ily. Equation (2.16) shows that the invasion boundaries are linear in sA andsH. Because of this, the evolutionary stability of the singular strategies can

be predicted on basis of the shape of the trade-off curve alone: if the trade-

off curve is concave the singular strategy will be evolutionarily stable; if it is
convex the singular strategy will be evolutionarily unstable. Note that all sin-

gular strategies are also attracting (convergence stable), because autotrophs

and heterotrophs are mutually dependent; their products serve as each others
substrates. This means that the shape of the trade-off curve now fully determ-

ines the qualitative evolutionary outcome of the system: if the trade-off curve
is concave the population will evolve towards a CSS; if the trade-off curve is

convex a branching point will arise.
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The trade-off curve can be visualized indirectly by the feasibility set, be-

cause it consists of this set’s boundary. The feasibility set consists of all possible
combinations of sA and sH. It is obtained by calculating for every combina-

tion of the two affinities the potential autotrophic fitness sA and the potential
heterotrophic fitness sH; it thus is the set F = f sA; sH j 0 � �A � 1 ^ 0 ��H � 1 g. The feasibility set can be shown by means of a contour or surface plot

of the invasion fitness smut plotted against the two potential fitnesses sA andsH; its boundary is the trade-off curve. A complicating factor in showing the

trade-off curve is that the invasion fitnesses of the mutants lying on this curve

change with every resident. This can be solved by using the ‘total potential
fitness’ instead of the invasion fitness; the total potential fitness spot is simply

the sum of the two partial potential fitnesses:spot = sA(�A; �H) + sH(�A; �H): (2.17)

Putting the total potential fitness on the z-axis of the contour plot (instead of
the invasion fitness) will not affect the feasibility set F and thus not the shape

of the trade-off curve. However, the total potential fitness is independent of the

resident strategy, which makes it an obvious and easy method for graphically
representing the trade-off curve. In terms of the total potential fitness, the

trade-off curve can be described as to consist of those strategies that combine
a given value of �H with a value of �A such that the total potential fitness spot
is maximal, provided that �H lies between 0 and the value at which spot is

highest; vice versa, it also consists of the strategies that combine a given �A
with a �H such that spot again is maximal and �A lies between 0 and the value

at which spot is highest. The trade-off curve thus is the set C = f sA; sH j( 0 � �A � �Apot ^ �H j spot = maximal ) _ ( �A j spot = maximal ^ 0 � �H ��Hpot ) g.
The relation between the traits �A and �H and potential fitnesses spot is

illustrated in Figure 2.2, in which surface and (base-)contour plots of the total

potential fitness are shown. The figures on the left show the total potential

fitness for every combination of �A and �H; on the right these strategies have
been translated into potential fitnesses sA and sH, and the total potential fitness

was then plotted against these two. In the base-contour plots, the feasibility

sets F now become visible, as do their boundaries C, which form the trade-off
curves between autotrophy and heterotrophy. Each grid cell consists of a dif-

ferent combination of the two affinities and thus denotes a different strategy,
and each grid cell in the surface plot on the left corresponds with a grid cell in

the surface plot on the right. Although on the left these strategies are shown

in terms of affinity values and on the right they are shown in terms of poten-
tial autotrophic and heterotrophic fitnesses, corresponding strategies have the

same total potential fitness in both plots. In the first example (A) potential

fitness increases monotonously in both affinities; in the second example (B)
fitness maxima lie at intermediate affinities.

In the plots on the right of Figure 2.2 it can be seen that total potential
fitness increases when approaching the trade-off curve. Another feature illus-

trated in these plots is the role of the constraints on the affinity trait space
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Figure 2.2: Surface plots and (base-)contour plots of total potential fit-

ness spot (2.17). On the left, total potential fitness is plotted for every

combination of the two affinities �A and �H; on the right these strategies

are translated into the potential autotrophic and heterotrophic fitnessessA and sH, and the total potential fitness is then plotted against these

two. The base-contour plots in the latter figures show the feasibility setsF , and their upper boundary is the tradeoff curve C. (A) Maxima in total

potential fitness lie at the extremes of affinity trait space; the trade-off

curve coincides with the boundaries of the trait space (C = B). (B) Max-

ima in total potential fitness lie at intermediate trait values; on the right

the fitness surface folds back onto itself, so that the boundaries of the trait

space end up within the feasibility set.
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the other affinity varies. These boundaries are given by the set B = f sA; sH j( 0 � �A � 1 ^ �H = 1 ) _ ( �A = 1 ^ 0 � �H � 1 ) g. In example (A) the trade-

off curve coincides with the boundary of the trait space, C = B. In this case the
shape of this trade-off curve is governed by the constraints on the affinities. In

example (B) the best strategies lie at intermediate trait values, and limitations

to affinity trait space do not play a role in shaping the trade-off curve.
To study the effect of various cost functions, we tested four different cost

functions (2.11) and three levels of the costs: For the first three cost functions,

costs are related to the trait values ( yA > 0 , yH > 0 , yAH = 0 ). For the
first cost function a convex relation between affinity and costs was assumed(z = 0:7). This cost function implies relatively low costs for small affinities but
leads to increasingly higher costs at higher affinities. For the second cost func-

tion a linear relation between affinity and costs was assumed (z = 1). For the

third cost function a concave relation between affinity and costs was assumed(z = 1:3), which implies that small affinities are relatively expensive but for

higher affinities costs will level off. The fourth cost function does not assume a

relation between affinities and costs as such, but is related to the combination
of two affinities ( yA = 0 , yH = 0 , yAH > 0 ). These costs might for instance

be coupled to interference of intermediary products of the two pathways. The
amount of costs are in this case proportional to the product of the affinities. Fi-

nally, three additional cost functions, consisting of a combination of the fourth

costs function with one of the first three ( yA > 0 , yH > 0 , yAH > 0 ), were
tested for their effect on the shape of trade-off curve. The parameters yA , yH
and yAH were set to low (1:0), intermediate (2:5) or high values (5:0).
2.3 Results

In Figure 2.3, feasibility sets F and trade-off curves C for various cost functions

(rows) and at three levels of costs (columns) are shown. In the first three
rows, costs are related to trait value. In the fourth row, costs are related to

the combination of the two affinities. Arrows indicate the strategies where the

population will end up, which in case of a CSS is at the location of the singular
strategy (which may be a boundary optimum) and in case of an EBP at the two

end strategies that result after evolutionary branching. In the figures also the
boundaries of the affinity trait space B are shown, which are marked by thick

continuous curves. It can be seen that in many of these figures, the trade-off

curve coincides with these boundaries, C=B. Although not shown, invasion
boundaries are all linear, and they all intersect the feasibility set such that all

singular strategies are attracting.

The figure shows that for low cost levels the feasibility sets are large, and
that their size decreases and their shape flattens with increasing cost level. At

low costs the singular strategy is a boundary optimum that lies in the middle
of the trade-off curve; this is an attractor and it is evolutionarily stable (CSS).

At high levels of costs the upper-left extreme of the trade-off curve is reached.
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Figure 2.3: Contour plots of total potential fitness spot (2.17) for vari-

ous cost functions (rows), and for three levels of costs (columns). The

contours give shape to the feasibility sets F; their boundaries form the

trade-off curves C. Arrows indicate the evolutionary end strategies. The

thick continuous curve shows the boundary of the affinity trait space B,

which in some cases coincides with the trade-off curve. In the first three

rows, costs (2.11) are related to the trait values ( yA > 0 , yH > 0 ,yAH = 0 ); these relations are convex (z = 0:7), linear (z = 1:0) or con-

cave (z = 1:3). In the fourth row, costs are related to interference of

intermediary products ( yA = 0 , yH = 0 , yAH > 0 ). The three levels of

costs are low (1:0), intermediate (2:5) and high (5:0). At low costs (left

column), the singular strategy is a CSS, with �H = 1 and �A = 1. At

intermediate costs (center column), the singular strategy has shifted to

the upper left of the trade-off function. Its evolutionary behavior depends

on the specific cost function; At high costs (right column) the evolution-

ary end point has come to lie at the extreme of the trade-off curve where�H = 0. This population is not viable and will die out.
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Although this strategy is attracting and evolutionarily stable, it is non viable.

Intermediate levels of costs will lead to a singular strategy that lies somewhere
in-between, and which is in some cases again a boundary optimum. Its evolu-

tionary behavior, however, is not set by the level of costs; rather it depends on
the specific cost function that is assumed.

At convex cost functions for which z = 0:7, the resulting trade-off curves

are concave; for linear cost functions in which z = 1, they consist of two linear
parts and for concave cost functions in which z = 1:3 they consist of two convex

parts. For the fourth type of cost function, resulting trade-off curves consist of

two linear parts again. None of these cost functions results in a convex trade-
off curve; hence, none of these will lead to evolutionary branching.

The upper row of Figure 2.4 shows the feasibility setsF and trade-off curvesC resulting from the combined cost functions. In these cost functions the three

relations between costs and trait values (convex z = 0:7, linear z = 1 and

concave z = 1:3) were combined with extra costs for interference; all costs
were set to intermediate levels (yi = 2:5). Again, arrows show the strategies

at which the population will end up. The lower row shows the corresponding

contour plots in the affinity trait space. Here, dots indicate the end strategies.
It can be seen that for the first combined cost function (Figure 2.4a) the

trade-off curve is convex and does not coincide with the trait boundaries. Evol-
utionary branching may occur and simulations show that the population will

then end up consisting of pure autotrophs (�A = 0:8, �H = 0) and pure het-

erotrophs (�A = 0, �H = 0:8); notice that eventually both types have a sub-
maximal affinity for the function in which they specialize. A combined cost

function with z = 1 leads to a trade-off function that consists of two linear

parts, resulting in a singular strategy that also is a boundary optimum (CSS)
(Fig. 2.4b). The shape of this curve coincides largely with the boundaries of

affinity trait shape; only its center does not. A combined cost function withz = 1:3 leads to a trade-off that is convexly shaped (Fig. 2.4c) and completely

coincides with the boundaries of the affinity values. For this trade-off curve

the population will evolve towards a branching point at which the population
splits up. Eventually it will end up in pure autotrophs (�A = 1, �H = 0) and

pure heterotrophs (�A = 0, �H = 1); both types will then have a maximum

affinity for the function in which they specialize.

2.4 Discussion

2.4.1 Intrinsic vs. extrinsic properties

Intrinsic properties affect the organism’s potential fitness, while extrinsic prop-

erties affect the environment and therefore the actual fitness of the organism.
Intrinsic properties considered in this study are the level of the costs, the mech-

anisms underlying these costs and the constraints on the affinity trait space.
With extrinsic properties are meant external environmental properties such as

the total carbon or nitrogen content and the incoming light intensity.
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Figure 2.4: Contour plots of total potential fitness spot (2.17) for the

‘combined’ cost functions. Costs parameters are all set to the intermediate

level of 2.5, and are related both to interference of intermediary products

and to trait value ( yA > 0, yH > 0, yAH > 0 ) (2.11). Latter relation is

(a) convex (z = 0:7), (b) linear (z = 1:0) or (c) concave (z = 1:3). The

upper row shows the fitness contours in terms of potential autotrophic

and heterotrophic fitness, sA and sH. Here the feasibility sets F become

visible; their boundaries form the trade-off curves C. The thick continu-

ous curves show the boundaries of affinity trait space B. Arrows indicate

the evolutionary end strategies. The lower row shows the fitness contours

in terms of the affinities, �A and �H. Here, dots indicate the end points

of evolution; these correspond to the arrows above. (a) The resulting

trade-off is, although only slightly curved, convexly shaped. Evolution-

ary branching will occur and the population will end up at pure strategies

with sub-maximal affinity values. (b) The trade-off curve consists of two

linear parts. The population will remain on the boundary maximum; (c)

The trade-off curve is convex. The singular strategy is a branching point,

at which the population may split up into pure autotrophs and pure het-

erotrophs with maximal affinity values.
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The intrinsic and extrinsic properties affect the system’s evolutionary beha-

vior each in a different way. Following Levins’ extended approach, the evolu-
tionary outcome of a system is determined by the shape of the trade-off curve

and that of the invasion boundaries. As was discussed above, the trade-off
curve is based on the boundaries of the feasibility set and is therefore only

affected by intrinsic properties. In contrast, invasion boundaries do depend

on the environment and theoretically they can thus be affected by extrinsic
properties.

Remarkably, however, it was found that the environmental properties do

not have any effect on the evolutionary outcomes at all, which was derived
mathematically in Appendix I. This result is explained by the mass balance

that was respected in the model: the feedback mechanisms that take care of
the full material recycling in the system couple the steady state densities of

the environment such that even under different environmental conditions the

mixotrophs will evolve to the same strategy.
Although this result was derived for a closed system, it can be easily ex-

tended to open systems. Changing the closed system into an open system can

be done by adding in- and output fluxes to the equations that describe the
changes in the state variables (2.1a – 2.1d). For the mixotroph system, an

obvious choice would be to have DIC and DIN enter the system, and to have
detritus removed as is often the case in the surface layer of a water column.

Another possibility would be a constant flow of water in and out of the system,

carrying a certain concentration of compounds, such as in a chemostat envir-
onment. By consequently adjusting the equations in the appendix as to include

these in- and output fluxes, it can be shown that in such open systems the

evolutionary behavior would be affected not only by intrinsic parameter val-
ues, but also by the parameters that determine these in- and output fluxes (e.g.

the dilution rate). If these fluxes are very large, they will come to dominate
the system’s evolutionary behavior. For example, when the influx of DIC and

DIN is very large as well as the outflux of detritus, the autotrophs will be no

longer dependent on heterotrophs and are able to survive on their own. Surely,
in such an environment it will be advantageous to specialize into more auto-

trophic organisms. On the other hand, as the in- and output fluxes go to zero,

the evolutionary behavior of the system will be dominated more and more by
intrinsic parameters. Eventually, the system will be completely closed as the

one studied in this paper, and its evolutionary behavior will be determined by
intrinsic parameters only.

2.4.2 Boundaries of the affinities’ trait space

Figure 2.3 shows that many of the trade-off curves C coincide with the bound-

aries of affinity trait space B. This happens if fitness increases monotonously
in both affinities, instead of having an internal optimum. If coinciding with the

trade-off curve, these boundaries determine to what value the fitness can in-
crease. Singular strategies on such trade-off curves will thus always lie on (one

of) the extremes of the affinity trait space, and will in that sense be boundary
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maxima. Usually, at a singular strategy both the fitness gradients vanish (2.14).

At the singular strategies that lie at a boundary of the affinity trait space, only
one of these gradients will be zero.

The influence of the trait space boundaries becomes apparent in the shape
of the trade-off curve, and explains the pointed shapes that many of them have.

Along the boundaries of the affinity trait space, one of the traits is held constant

at a value of 1. At their ‘tips’, which in affinity trait space corresponds to the
strategy of (�A = 1, �H = 1), the control of the trade-off curve switches from

one boundary to another. At such a tip, neither of the fitness gradients is zero.

This illustrates that the constraints on the affinities can greatly control the
location of the singular strategy and the shape of the trade-off curve. In this

way they can have considerable effect on the evolutionary outcomes of the
system.

2.4.3 Cost level

The level of the costs also has considerable effects on the evolutionary beha-

vior of the system. If costs are small relative to the benefits, the trade-off

between autotrophic assimilation and heterotrophic assimilation will be very
weak, which results in a feasibility set that is ‘pointing outward’, as can be seen

in the first column of Figure 2.3. As small costs hardly put any constraints
on the affinity values, it is advantageous to increase these affinities to their

maximum, which explains why in these cases the evolutionary behavior is gov-

erned completely by the limitations on the range of the trait values. The corres-
ponding evolutionary outcome will be a population ending up at the boundary

optimum lying at the ‘tip’ of the trade-off curve which, as mentioned above,

corresponds to a strategy of (�A = 1, �H = 1).
At intermediate costs, the trade-off is stronger which is visible from the

feasibility set that has become smaller and has flattened. In some cases (Fig-
ures 2.3e and h) the trade-off curve is still determined by the constraints on

affinities; this is, however, largely related to the cost function at hand. In other

cases (Figures 2.3b and k), the trade-off curve is (at least partially) governed
by the relation of affinities with costs and benefits. The singular strategy has

shifted over the trade-off curve in the upper left direction, which in terms of

trait values means that the affinity for the heterotrophic route has decreased.
If costs are high, the population will evolve to ‘the extreme’ of the trade-

off curve, where the affinity for the heterotrophic route has decreased to zero(�H = 0) and organisms are pure autotrophs. Monomorphic populations con-
sisting of a strategy in which one of the trait values is zero are not viable as

they can not maintain a complete nutrient cycle; as a consequence such popu-
lations will die out. The phenomenon in which the population evolves towards

a non viable strategy is called evolutionary suicide [3, 4]. As low costs lead to

a boundary optimum that is a CSS while high costs lead to evolutionary suicide,
a branching point can only be found at intermediate cost levels.
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2.4.4 Cost function

The cost function specifies the relation between costs and affinity. To a large
extend, this relation determines whether a trade-off curve is controlled by the

boundaries of affinity trait space or not. Costs that increase with affinity in a
convex manner (z > 1) turn out relatively high for small affinities but level off

for higher affinities. Therefore, high affinities will be relatively cheap and these

strategies will naturally lead to the highest potential fitnesses. As in such case
the potential fitness will be increasing monotonously in the two affinities, it are

the boundaries set to the affinity trait space that determine the curvature of

the trade-off curve (Figure 2.3, third row). In contrast, concave cost functions(z < 1) lead to relatively low costs at small affinities. This leads to a fitness

optimum at intermediate affinities, in which case the boundaries of the trait
space do not affect the trade-off curve (Figure 2.3, first row). Also for linear

cost functions (z = 1), high affinities are relatively cheap. This is a consequence

of the division of the assimilation flux jV;A by the yield coefficient yD;V (2.5):
whereas both the assimilation flux and the costs depend linearly on �, only the

assimilation flux goes through the origin; the cost function is set off by the base

cost y0, which is always larger than zero (2.11). Therefore, also for linear cost
functions the trade-off function is controlled by the boundaries of affinity trait

space (Figure 2.3, second row).
The effect that the cost function has on the evolutionary behavior can be

read from the shape of the trade-off curve. For costs that increase with trait

values in a convex manner (z < 1) the trade-off curve is concavely shaped
(Figure 2.3, first row). In combination with invasion boundaries that are linear

and singular strategies that are attracting, concave shaped trade-off curves will

always lead to continuously stable strategies (CSS’s).
For costs that are linearly related to trait value (z = 1), trade-off curves

consist of two straight lines connected at a blunt angle (Figure 2.3, second
row). Linear costs put an advantage to higher affinities; at the boundaries,

where one of the affinities is constant, these costs increase linearly with the

other affinity. This explains why the two parts of the trade-off curve are linear
as well (Figure 2.3d-f). At intermediate costs the singular strategy will lie

somewhere on the upper segment of the trade-off curve. Once such a strategy

is reached, the invasion boundary coincides with this straight part of the trade-
off curve which means that all strategies on this part of the trade-off curve will

then have the same invasion fitness. In practice, the population will remain on
such a strategy.

Concavely shaped cost functions (z > 1) will give rise to trade-off curves

that consist of two segments that are both convexly curved (Figure 2.3, third
row). This is because at the boundaries, where one of the affinities is held

constant, costs still increase convexly and specialized strategies are favored

over mixed ones. Like before, at intermediate cost levels, the singular strategy
will have shifted to the middle of the upper segment of the trade-off curve.

Once the population has reached this strategy, this segment will lie above the
invasion boundary, and all strategies on this part of the trade-off function are



30 2. When do mixotrophs specialize?

able to invade. This combination of trade-off curve and invasion boundary

indicates that the system has a branching point at which the population will
split into two populations. However, the two resulting populations will consist

not of pure autotrophs and pure heterotrophs, but of pure autotrophs (�A = 1,�H = 0) on the one hand and mixotrophs (�A = 1, �H = 1) on the other.

So basically, only one of the traits is involved in the process of evolutionary

branching, while the other trait remains constant.
Trade-off curves resulting from the fourth cost function (yAH > 0), in which

costs are related to the interference of intermediate products, consist of two

straight parts again (Figure 2.3, fourth row); this is because these costs are
proportional to the product of the two affinities, and at the boundaries these

costs will increase linearly. This cost function only affects mixed strategies;
strategies towards the zero-boundaries are much less affected and completely

pure strategies are not affected at all, which explains why the extremes of the

trade-off curve are equal at all three levels of costs. It also explains that, at
the higher cost levels, only these extremes are controlled by the boundaries

of affinity trait space and its center is not. At intermediate costs, the singular

strategy will lie somewhere at the upper segment of the trade-off curve and the
population will remain on this singular strategy.

2.4.5 Evolutionary branching

None of the simple cost functions discussed above leads to a convex trade-
off curve; and thus, none of them leads to a branching point. Figure 2.4,

however, shows that some of their combinations do lead to convex trade-off

curves. In these ‘combined’ cost functions, two mechanisms are assumed to
underlie the costs simultaneously: one part of the costs is related to the value

of the affinities, and another part is related to the interference between the
two affinities. As discussed earlier, the relation between affinities and costs

determines whether the fitness optimum lies at intermediate affinities or at

maximum affinities values. The costs for interference put a disadvantage to
maximizing both traits at the same time, which favors pure strategies over

mixed ones. Apparently, it is the combination of these costs that make a convex

trade-off curve possible and thus evolutionary branching. To understand this
finding, we will discuss the different combinations one by one.

In the first case (Figure 2.4a), the costs of interference are combined with
a concave cost function (z = 0:7). Owing to the contribution of the concave

cost function, the potential fitness maxima come to lie at intermediate affinity

values, and the boundaries of the trait space do not play a role in shaping the
trade-off curve. Simultaneously, the costs for interference favor pure strategies

over mixed ones, which in this case is enough to provide an advantage to spe-

cialization. Indeed this cost function leads to a trade-off curve that, although
only slightly curved, is clearly convexly shaped and may lead to evolutionary

branching of the population.
In the other cases (Figure 2.4b and c), the boundaries of the trait space do

affect the trade-off curve, and the formation of its curvature is more complic-
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ated. When the trait space boundaries control the trade-off curve, the behavior

of the cost function at these boundaries is important. At the boundaries one of
the affinities is constant; for the costs related to interference, which are propor-

tional to the product of the affinities, this means that they will increase linearly
with the other affinity. Hence, in contrast to the previous case, these costs will

now not induce an advantage to specialization. Costs that are related linearly

to affinity (z = 1) will not favor specialization either. As a result, the trade-off
curve will consists of two linear parts (Figure 2.4b). Consequently, the bound-

ary optimum will not be a branching point, and the population will remain on

this strategy. However, if the costs related to affinity are concave (z > 1), these
will favor specialized strategies over mixed ones, even at the boundaries of

trait space. Standing alone, these costs led to a trade-off curve that resulted in
branching in only one of the traits (see Figure 2.3h); however, in combination

with costs for interference that discourages mixed strategies, the two convex

parts are connected such that a completely convex trade-off curve results (Fig-
ure 2.4c). This gives rise to a branching point and specialization may now

occur.

In summary, a single mechanism underlying the costs will not result in evol-
utionary branching; it is the combination of two mechanisms with complement-

ary effects that can lead to a convex trade-off curve and thus to a branching
point. In the first case, the convex relation between costs and affinities leads

to a fitness optimum at intermediate affinity values, which is complemented

by the costs related to interference that favors pure strategies. In the second
case, the concave relation between costs and affinities puts an advantage to

maximizing each trait, whereas the costs related to interference makes it dis-

advantageous to maximize both affinities simultaneously. In both these cases,
the mechanisms together combine into an explicit advantage to specialization.

Apparently, such an advantage must exist in the underlying metabolic mechan-
isms in order to obtain evolutionary branching. In many toy models, a single

trait value may determine the shape of the trade-off curve. For the studied

system, however, two traits are involved that are coupled indirectly via the cost
function; constraints imposed on the affinities complicate things even further.

As a result, only some of the more complicated cost functions may induce evol-

utionary branching. This clearly illustrates the considerable consequences that
indirect trade-offs and constraints on the trait space can have for the evolution-

ary outcomes of the system.

2.5 Conclusions

We have studied a DEB model of a population of mixotrophs and the condi-

tions under which this population will specialize into separate autotrophs and
heterotrophs. For the mixotrophic organisms a trade-off exists between auto-

trophy and heterotrophy, which was derived from the physiological mechan-
isms in the DEB model. Difficulties in applying the AD theory, which were in-

herent to the model’s complexity and its two-dimensionality of the trait space,
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could be solved by using the extended version of Levins’ graphical approach.

This approach was particularly helpful in providing more insight in the effects
of the various mechanisms on the curvature of the trade-off function, and there-

fore on the system’s evolutionary outcome.
The evolutionary behavior of the mixotrophic population was found to de-

pend only on intrinsic properties such as the cost function (the relation between

the costs and the affinities for assimilation) and the level of these costs; also
the boundaries of the affinity trait space were found to play an important role.

Evolutionary branching was found to occur only at intermediate cost levels and

for cost functions that create an explicit advantage to specialization. Although
this might seem obvious, it may not always be realized when assuming a spe-

cific trade-off function without considering the underlying mechanisms.
Furthermore, it was found that indirect trade-offs and constraints on the

affinities can greatly affect the location of the singular strategy and the shape

of the trade-off curve. As such they can considerably complicate the require-
ments for evolutionary branching. This result should be taken into account

when considering trade-offs from real systems, because in the natural situation

many constraints and indirect couplings might exist on or between physiolo-
gical processes.

In contrast to the intrinsic properties, extrinsic properties such as total nu-
trient content were found to have no effect on the evolutionary outcomes of the

model at all; this was related to the mass balance and the feedback mechanisms

in the system. Therefore, our analysis suggests that evolutionary branching of
the mixotrophic population is not a common feature of the system and that it is

not related to the environment. This, perhaps, explains the observations in the

introduction that many organisms are in fact mixotrophic, and that mixotrophs
are found in a range of eutrophic to oligotrophic waters. However, assump-

tions such as homogeneity and the application of the mass balance may limit
the possibilities for evolutionary branching and specialization. Additional re-

search could therefore study the effects that for instance spatial structure has

on the evolutionary behavior of the system.
Another line of research could make use of the fact that the mixotroph

model presented in this study consists of only a single population, which makes

it one of the smallest non-degenerative ecosystems that we can think of. Evol-
utionary branching into separate autotrophic and heterotrophic populations

forms the first step in the evolution of the ecosystem to develop from a very
simple to a more complex (and realistic) ecosystem, purely by self organiza-

tion. It would be interesting to study this process of self-organization, and to

follow the developments that take place in the cycling of energy and nutrients.

Appendix

In this appendix we show that in a homogeneous system, the singular strategy
and its evolutionary stability are determined only by parameters that are in-

trinsic to the organisms. This means that they are not affected by system
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properties such as the total nitrogen content, the total carbon content or the

incoming light intensity. This can be shown as follows:
As a time scale separation is assumed between the evolutionary and eco-

logical dynamics, the resident population is considered to be always in steady
state with its environment. The resident’s fitness sres is equal to its specific

growth rate (2.15), which in steady state must be equal to zero (2.12):sres = jV;A(�Ares ;�Hres ;Eres)yD;V(�Ares ;�Hres ) � kM � h = 0: (2.18)

This can be rewritten into the following expression for the total assimilation
flux: (The star denotes that a flux is constant on a ecological time scale, but

may vary on an evolutionary time scale.)j�V;A = (kM + h) yD;V(�Ares ; �Hres) (2.19)

Since the system is assumed to be in steady state, the density of detritus is

constant; ddtXD = 0. The detritus density depends on the specific detritus up-
take flux (for autotrophic assimilation) jD;AH and the specific influx of detritus,

which is equal to the specific death rate h (2.1c). Therefore, in steady statej�D;AH = �h. The uptake flux of detritus is determined by the heterotrophic as-
similation flux jV;AH and the yield coefficient of assimilates from detritus yD;I
(2.4). With the steady state assumption, (2.1c) and (2.4) can be combined into

an expression for the heterotrophic assimilation flux:j�V;AH = hyD;I : (2.20)

By substituting (2.19) and (2.20) in (2.8), an expression for the autotrophic
assimilation flux can now be given as well:(h+ kM) yD;V(�Ares ; �Hres)� hyD;I : (2.21)

Substituting (2.20) and (2.21) in respectively (2.6) and (2.7) yields expres-

sions for the steady state functional responses fA� and fH�:fA� = (h+kM) yD;V(�Ares ;�Hres )� hyD;I�Ares jV;AAm ;fH� = hyD;I�Hres jV;AHm : (2.22)

The steady state values of both these functional responses can thus be fully
expressed in terms of �Ares and �Hres and other intrinsic parameters that are

constant both on an ecological and an evolutionary time scale (h, kM, yD;I, z,jV;AAm, jV;AHm, y0, yA, yH and yAH).

In turn, the functional responses determine the steady state densities of

DIC (XC), DIN (XN) and detritus (XD). This is done via equations (2.9) and
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(2.10), such that for a given set of system properties (C+, N+, and jL;F) the

invasion fitness of the residents is exactly zero:Eres = fXC; XN; XDjC+; N+; jL;F; sres = 0g: (2.23)

As follows from (2.13) and (2.15), the invasion fitness of a mutant invad-
ing in a resident population depends on its phenotype (�Amut ; �Hmut) but also

on the environment as was set by the residents Eres and thus on the envir-

onmental properties. However, from (2.9) and (2.10) it can be seen that the
mutants have exactly the same steady state functional responses as the resid-

ents; (2.22) showed that these functional responses do not depend on envir-

onmental properties but only on intrinsic parameters:fAmut = fA� and fHmut = fH�: (2.24)

By substituting (2.24) in (2.16), the environmental properties can be ‘bypassed’

in calculating the invasion fitness of the mutants. That is, we do not need
the steady state values of DIC, DIN and detritus to calculate the steady state

functional responses and the associated invasion fitnesses. Equation (2.13) can
thus be replaced by smut = r(�Amut ; �Hmut ; �Ares ; �Hres): (2.25)

The invasion fitness of a mutant invading a resident population can thus be
fully expressed by intrinsic parameters. From the invasion fitness the fitness

gradients can be calculated (2.14), as well as the location of the singular

strategies and their evolutionary stability. Therefore, predictions on the evol-
utionary outcomes of the system, which are based on the fitness function, can

also be done from intrinsic parameters alone. In other words, the evolutionary
outcomes of the system are not affected by the environmental properties at all.

This result can be explained by the feedback mechanisms in the system,

which couple the densities of detritus (needed for heterotrophy) with the dens-
ities of DIC and DIN (needed for autotrophy). As a consequence, these dens-

ities can not vary independently; changing one of the system properties will

directly or indirectly affect all densities. Because the system is closed, for any
set of environmental properties a balance is sought between autotrophy and

heterotrophy, which apparently always results in the same evolutionary out-
come.
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Heerwaarden, J. S. (1996). Adaptive dynamics, a geometrical study of the

consequences of nearly faithful reproduction. In van Strien, S. J. and Ver-
duyn Lunel, S. M., editors, Stochastic and spatial structures of dynamical

systems, pages 183–231. Elsevier.



36 2. When do mixotrophs specialize?

[14] Raven, J. A. (1997). Phagotrophy in phototrophs. Limnol. Oceanogr.,

42:198–205.

[15] Rueffler, C., van Dooren, T., and Metz, J. A. J. (2004). Adaptive walks
on changing landscapes: Levins’ approach extended. Theoretical Population

Biology, 65:165–178.

[16] Stickney, H. L., Hood, R. R., and Stoecker, D. K. (2000). The impact of
mixotrophy on planktonic marine ecosystems. Ecol. Modelling, 125:203–

230.

[17] Stoecker, D. K. (1998). Conceptual models of mixotrophy in planktonic

protists and some ecological and evolutionary implications. Europ. J. Prot-

istol., 34:281–290.

[18] Thingstad, T. F., Havskum, H., Garde, K., and Riemann, B. (1996). On

the strategy of ”eating your competitor”: a mathematical analysis of algal

mixotrophy. Ecology, 77:2108–2118.

[19] Wachtershauser, G. (1988). Pyrite formation, the first energy source for
life: A hypothesis. Systematic and Applied Microbiology, 10:207–210.



3

Bifurcation analysis of ecological

and evolutionary processes in
ecosystems

Tineke A. Troost, Bob W. Kooi and Sebastiaan A.L.M. Kooijman

Abstract

Bifurcation theory is commonly used to study the dynamical behavior of

ecosystems. It involves the analysis of points in the parameter space where

the stability of the system changes qualitatively. Generally, such changes

are related only to changes in environmental parameters, while the organ-

ism’s trait values are assumed to be constant. In reality, however, these val-

ues also change, though on a longer (evolutionary) time scale. On an eco-

logical time scale, evolutionary changes come down to mutants invading

a resident population. Points in the trait space where invasibility changes

correspond to transcritical bifurcations. Therefore, bifurcation theory may

also be used to study the evolutionary dynamics of ecosystems. By analyz-

ing an exemplary system, the advantages of this approach and differences

with the Adaptive Dynamics approach are discussed. We will elaborate

the evolutionary course of an ecosystem consisting of a mixotroph popula-

tion. Mixotrophs use inorganic resources for their autotrophic assimilation

pathway, and organic material for their heterotrophic pathway. The ad-

aptive traits are the affinities for these two pathways, which also affect the

overhead costs for growth. We will show that the shape of the cost-function

determines whether the evolutionary end-point is a monomorphic (mixo-

troph) population, or a dimorphic (autotroph, heterotroph) population.

37
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3.1 Introduction

In biological modeling studies the model behavior is often studied by means of

bifurcation analysis. This technique involves the analysis of qualitative changes
in the stability of the system. Generally, such changes are related only to

changes in environmental parameters such as the total nutrient content or the

ambient temperature. The corresponding dynamics all take place on an ecolo-
gical time-scale, at which the organisms’ phenotypes or traits are assumed to

be fixed. In reality, however, these traits may also change, though on a much
longer, evolutionary, time-scale. As such, evolution provides an additional ‘di-

mension’ to the system. In contrast to environmental parameters, however, the

trait values cannot be forced externally. Instead, they are the result of an evol-
utionary process involving mutation and natural selection. Therefore, insight

in the evolutionary dynamics of a system is essential for its full understanding.

system.
On an ecological time-scale, evolution consists of mutants trying to invade

a resident population. When the mutant is successful, it may replace the res-
idents or coexist with them. This marks a change at the evolutionary time-

scale. A common method to analyze evolutionary population dynamics is the

Adaptive Dynamics theory [12, 23]. In this approach the invasion fitness of
the mutant depends not only on its own trait values, but also on those of the

residents, as these interactively determine the environment. Two time-scales

are distinguished, the ecological and the evolutionary time-scale. On the ecolo-
gical time-scale the dynamics of the resident species, as well as other ecosystem

species, are generally formulated with difference equations, or with ordinary,
delay or partial differential equations. The time-independent parameters that

occur in these equations, such as vital rates, depend on the organism’s trait val-

ues. These traits, in turn, form the state variables in the evolutionary model.
Their changes can be described by a set of ordinary differential equations, the

so-called ‘canonical equations’ [7], in which the (stable) equilibrium state vari-

ables of the ecological model are parameters.
Points in the trait space where the invasion fitness of the mutant changes

sign are the values where the system changes stability. Here a mutant can in-
vade the resident(s) population, which corresponds to an evolutionary change

of the ecosystem. In bifurcation theory, these points are called transcritical

bifurcation points. This indicates that bifurcation analysis techniques can be
used to analyze evolutionary dynamics. The vital parameters which described

the ecological function of the populations are now used as bifurcation paramet-

ers, instead of the normally used environmental parameters [15]. In [1, 2], the
rate of change of a population behavioral trait alters at the ecological time-scale

instead of at the evolutionary time-scale. That is, the ecological model is aug-
mented with the equations which describe the dynamics of the adaptive traits.

This is the hybrid case where species traits and environmental parameters can

be used as bifurcation parameters simultaneously.
The main goal of the paper is to apply bifurcation analysis to both the

ecological and the evolutionary dynamics of a simple ecosystem. The stand-
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ard graphical approach in Adaptive Dynamics uses Pairwise Invasibility Plots

(PIP’s). Here we put more information into these diagrams by including bifurc-
ation curves of the ecological model at which the long-term dynamical beha-

vior changes when a parameter is varied. Furthermore we extend the graphical
approach for the dimorphic resident population case. Finally, we discuss the

advantages of applying bifurcation analysis to evolutionary models.

We use a model considering a mixotroph population in an environment
closed for mass and open for energy (incoming sunlight and heat loss). The

organisms use light, inorganic carbon and nitrogen to produce carbohydrates

via the autotrophic metabolic pathway. Dead organisms are recycled: detritus
is consumed and used via the heterotrophic metabolic pathway. Assimilates

produced by both the metabolic pathways are used for growth. Organic mat-
ter is re-mineralized via overhead costs and maintenance. A system of ODEs

describes the dynamics at the ecological time-scale. The model is a simplified

version of the one used by Kooijman et al. [21], which was also used in [30]
and [29]. The adaptive traits �A and �H control the efforts to process assim-

ilates via the autotrophic and heterotrophic metabolic pathways. The model

is simplified by assuming a trade-off between the investment into these two
pathways, which makes the trait space one-dimensional. Consequently, more

results can be obtained analytically, and the standard AD approach using PIP’s
can be applied.

The evolutionary behavior of this system depends on the shape of the cost

function. When it is convex the singular strategy is uninvadable. This is an
evolutionary end-point at which the population remains mixotrophic. When

the cost function is concave the singular strategy is an evolutionary branching

point. Detailed descriptions of the evolutionary course before branching (one
resident and one mutant) and after branching (two residents and one mutant)

are given. After branching the uninvadable evolutionary end-point is dimorphic
in which case autotrophs and heterotrophs coexist.

3.2 The ecological model formulation

The ecosystem is described by four state variables: the mass densities of Dis-
solved Inorganic Carbon (DIC) XC, Dissolved Inorganic Nitrogen (DIN) XN,

detritus XD, and biomass XV. The state variables partake in 5 transforma-
tions: autotrophic and heterotrophic assimilation A, maintenance D, growth G
and death H. The material flows are depicted in Figure 3.1 and the notation is

introduced in Table 5.1.

3.2.1 The population model

The conversion of the resources XC and XN into biomass occurs via two assim-
ilation pathways, an autotrophic (using inorganic sources) and a heterotrophic

one (using organic sources).
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XD
XN
XC fCHfA

fH A GAA(�A)
AH(�H)

overhead costs AH(�H)

overhead costs AA(�A)
jL;F

H mortality

M maintenance
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Figure 3.1: Schematic representation of the mass fluxes through the

mixotroph system, after Troost et al. [29].

Autotrophic pathway. DIC and DIN are used for assimilation via the auto-

trophic pathway. The corresponding functional responses for their uptake are

Holling type II fC = XCKC +XC ; and fN = XNKN +XN ; (3.1)

where KC and KN are the saturation constants. Light is treated as a nutrient,
and is stoichiometrically coupled with carbon to form carbohydrates CH. The

corresponding functional response readsfCH = 1 + z�1C1 + z�1C f�1C + x�1L � (zCfC + xL)�1 with xL = �JL;FJL;FK ; (3.2)

where the light influx JL;F is taken to be proportional to the solar irradiance.

The parameter zC weighs the relative contribution of DIC in the florescence
process. The expression (3.2) is proposed by Kooijman [20] to model assim-

ilation and growth and is called a Synthesizing Unit (SU). The light influx is

scaled with parameter JL;FK, which quantifies the maximum phototrophic as-
similation rate. Observe that this functional response (3.2) differs from the

Liebig’s minimum law formulation [13, 28] in which growth is limited by only

one nutrient at a time. The SU-formulation provides a more realistic description
of multiple nutrient limitation, and avoids switches in the model that hamper

the application of bifurcation theory. Under Liebig’s minimum law the Jacobian
matrix evaluated at an equilibrium will generally be discontinuous at points at

which another resource becomes limiting [19].
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Table 3.1: Parameters where element E 2 fC;N; g (carbon, nitrogen), compounds C 2fC;N ;D;Vg (DIC, DIN, detritus, biomass) and transformation P 2 fA;Hg assimilation

processes.

Symbol Dim Interpretationt; � t ecological and evolutionary time scalesXC mol l�3 concentration of compound CKC mol l�3 saturation constant for compound CxL � scaled light influx:
�JL;FJL;FKyCi;Cj mol Ci

mol Cj mol compound Ci required per mol compound CjjC;P mol C
mol V t�1 structure-specific flux of compound C and process P: JC;P=XVjC;Am, jP;AK mol C
mol V t�1 struct-spec. max assim. & satur. flux, of compound CnE;C � chemical coefficient for element E in compound Ch t�1 mortality ratekM t�1 maintenance rate coefficient�A,�H � affinities for auto- and heterotrophic assimilation routezC � assimilation preference for compound CfP � scaled functional response for transformation P

Nitrogen and carbohydrates are combined as followsfA = �1 + z�1N + z�1CH � (zN + zCH)�1�1 + z�1N f�1N + z�1CHf�1CH � (zNfN + zCHfCH)�1 ; (3.3)

where zN and zCH weigh the relative contributions of nitrogen and carbo-

hydrates.

Heterotrophic pathway. In [21], the heterotrophic assimilation fluxes are as-

sociated with the complementary detritus-nitrogen SU which depends on both
detritus and DIN. Here we will follow [30], assuming the more simple Holling

type II functional response fH fH = XDKD +XD : (3.4)

Growth, maintenance and mortality. Functional responses for the auto-
trophic and heterotrophic assimilation pathways fA and fH determine the two

flows jV;AA and jV;AH from the two pathways as followsjV;AA = �A jV;AAmfA ; (3.5a)jV;AH = �H jV;AHmfH : (3.5b)

where �A and �H are the organism’s affinities for each pathway, and jV;Am
and jV;AHm are the corresponding maximum assimilation rates. The two af-
finities are assumed to be traded off, such that the trait space becomes one-

dimensional: �A + �H = 1. The value �, used from this point on, effectively
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Table 3.2: Parameter reference values, after [29].

Symbol Value Unit Symbol Value Unit Symbol Value UnitjL;F �1 mol/ mol d XC+ 2400 �M XN+ 40 �MzC 0.1 – zN 0.1 – zCH 0.01 –y0 1.1 mol/ mol yA 0.5 mol/ mol yH 0.1 mol/ moljV;AAm 4.5 mol/ mol d jV;AHm 4.0 mol/ mol d jL;FK 50 mol/ mol dyD;V 1.3 mol/ mol nNV 0.15 –KC 500 �M KN 0.1 �MKNV 0.0 �M KD 2500 �MkM 0.15 1/ dh 0.1 1/ d

corresponds to the affinity for the autotrophic pathway, while (1 � �) corres-

ponds to the affinity for the heterotrophic pathway. The two assimilation fluxes
are then summed to form the total assimilation flux jV;A:jV;A = jV;AA + jV;AH : (3.6)

The conversion of assimilates into new biomass comes with overhead costsyC;V > 1. The conversion coefficient yC;V(�) is assumed to depend on trait �
as follows [30]:yC;V(�) = y0C;V + yA (1� (1� �)z) + yH (1� �z) : (3.7)

Parameter z determines the shape of this cost-function, for z = 0:7 it is convex,

for z = 1 it is linear, and for z = 1:3 it is concave. For the parameter values
given in Table 3.2 the cost function is increasing for 0:7 < z < 1:3.

Due to the overhead costs, part of the growth flux (jV;A(1 � 1=yC;V)) is

excreted in the environment. Part of the remaining assimilates are used to pay
maintenance costs, which are proportional to the biomass and to the mainten-

ance rate kM. Death occurs at rate h.

3.2.2 The ecosystem model

We study a system consisting of n populations denoted by V i, i = 1 � � �n. The
populations are characterized by their affinity for the assimilatory pathways,�i. Apart from this value, all populations are assumed to have the same set

of parameter values. Because the trait value differs per population, also their
assimilation rates differ. This, however, does not affect their chemical com-

positions, nor those of their assimilation and maintenance products. Hence,

we can assume that the dead individuals of all populations are converted into
the common detritus pool with biomass XD. This leads to the following state



3.2. The ecological model formulation 43

equationsdXCdt = nXi=1XVi(� jiV;AyC;V(�i) + yD;VjiV;AH) +XVkM ; (3.8a)dXNdt = nNV� nXi=1 XVi(� jiV;AyC;V(�i) + yD;VjiV;AH) +XVkM� ; (3.8b)dXDdt = �yD;V nXi=1 XVijiV;AH +XVh ; (3.8c)dXVidt = XVi( jiV;AyC;V(�i) � kM � h) ; (3.8d)

where t is the time at the ecological time scale.

The last term of Eqs. (3.8a) and (3.8b) are due to recycling of the mainten-
ance products. Detritus is produced at a rate equaling the mortality rate of the

organism, described by the last terms of Eqs. (3.8c) and (3.8d). Via the hetero-
trophic pathway the detritus may be converted into biomass again, enabling

mass recycling. The resulting assimilates are used for growth and maintenance

(see Eq. (3.8d)). The assimilation and maintenance products excreted by the
organisms into the environment are instantaneously mineralized.

The system is closed for mass but open for energy, such as light input and

heat production. Environmental parameters are the light influx constant JL;F,
and the total amounts of carbon X+C and nitrogen X+N ,XC+ = XC +XD + nXi=0 XVi ; (3.9a)XN+ = XN + nNV(XD + nXi=0 XVi) ; (3.9b)

which act as external forcing on the system. The model conserves carbon and
nitrogen, so the dimension of the systems equals the number of state variables

minus these two (n + 1). The initial conditions for XD and XV have to be

chosen such that all state variables of the full system are always non-negative.

3.2.3 Numerical bifurcation analysis of the ecosystem

To study the ecological dynamics of the system, we first consider one popula-

tion only (n = 1). The steady-state equations are obtained from (3.8) by taking
the right-hand sides to be zero. The roots of the resulting set of four non-linear

equations have to fulfill the constraints (3.9a) and (3.9b).(1� �) jV;AHmf�H = hyD;V ; (3.10a)� jV;AAmf�A = � hyD;V + yC;V(kM + h) : (3.10b)
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Figure 3.2: The steady-state distribution of carbon in the mixotroph com-

munity, plotted for a range of total nitrogen contents, XN+. The non-

changed amounts are XC+ = 2400 C-mol for carbon and JL;F = 1 for

light. Carbon can occur in the form of DIC, (XC), detritus (XD) and bio-

mass (XV). The amount of C-moles in these state variables are plotted

cumulatively. The affinity is taken equal to � = 0:7038 and z = 1:3. All

other parameter values are given in Table 3.2.

Equations (3.10a) and (3.1) give an explicit formulation for X�D. Equation
(3.10b), together with (3.9), determines the remaining three state variablesX�C, X�N and X�V. For the parameter values given in Table 3.2 all positive

equilibria are stable.
Figure 3.2 shows the bifurcation diagram where the total amount of nitro-

gen, XN+, is varied. Roughly speaking, DIN is the most limiting nutrient forXN+ . 350, and DIC for XN+ & 350. The results are similar to those reported
in [21], where the costs for growth yC;V were constant.

In Figure 3.3 the equilibrium values of the four state variables X�C, X�N,X�D and X�V are depicted as a function of the single trait value �. For a fixed

environment with XN+ = 40, XC+ = 2400, the population can only exist for a

restricted range of affinities (0:2 . � . 0:8).

3.3 The evolutionary model formulation

Now, we consider the parameter � to be an adaptive trait whose value may

change on the evolutionary time scale � . The affinity � is a genetic trait that is
inherited from parent to offspring. A new value of � may enter the population

through mutation. A mutant may just die out, or it may invade and replace the
resident population. A series of such replacements is called a ‘trait-substitution
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Figure 3.3: The steady-state distributions in the mixotroph community

as a function of trait �. The non-changed amounts are XC+ = 2400 C-mol

for carbon, XN+ = 40 N-mol for nitrogen, and JL;F = 1 for light. The

amount carbon (DIC XC) nitrogen (DIN XN), detritus (structural XD)

and biomass (structural XV) are plotted. All other parameter values are

given in Table 3.2.

sequence’ and corresponds to evolution of the population.

3.3.1 Invasion of a monomorphic resident population

To study the invasibility of the population we consider two populations (n = 2),
a resident population with trait value �r and a mutant population with trait

value �m. In AD theory, the resident population is assumed to be in equilibrium
with its environment, and is therefore said to ‘set’ the environment, which we

denote by E(�r). Mutants are assumed to be rare (XVm = 0), so that initially

they do not yet have any affect on their environment. The mutant invasion
fitness s(�m; E(�r)) is then defined as its long-term per capita growth rate cal-

culated in the equilibrium environment as is set by the resident population,

with XVm = 0 [24]. As the resident is in steady state with its environment,
its specific growth rate is zero, which leads to the conclusion that the invasion

fitness of the resident is always zero, s(�r; E(�r)) = 0. The assimilation fluxes

for the resident and mutant population readjrV;A(�m; E(�r)) = �r jV;AAmfA(�r) + (1� �r) jV;AHmfH(�r) ; (3.11)jmV;A(�r; E(�r)) = �m jV;AAmfA(�r) + (1� �m) jV;AHmfH(�r) ; (3.12)

where fA and fH are given in Eqs. (3.4) and (3.3). These assimilation fluxes

depend only on the trait value of the resident population since the mutant
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biomass was set to zero. The mutant invasion fitness iss(�m; E(�r)) = jmV;A(�r; �m)yC;V(�m) � kM � h ; (3.13a)= hyD;VyC;V(�m) (1� �m1� �r � �m�r ) + (kM + h)(�myC;V(�r)�ryC;V(�m) � 1) :
(3.13b)

When the invasion fitness is positive, the mutant may invade and may then

replace the residents, or it may coexist together with them. When the invasion

fitness is negative, the mutant will just die out.
By a series of invasions and replacements of the residents, the population

evolves. The direction and speed with which this happens depends on the local

‘invasion gradient’. This gradient reads�s(�m; E(�r))��m �����m=�r = yC;V(�r)� �hyD;V(1��r)�r + (kM + h)(yC;V(�r)�r � �yC;V(�r)��r )�(yC;V(�r))2 ;
(3.14)

where �yC;V(�m)��m �����m=�r = yA z(1� �r)z�1 � yHz�z�1r : (3.15)

The dynamics of the trait �r and the full evolutionary trajectory of the pop-
ulation are then described by the canonical equation [4, 5, 7]d�rd� = �X�Vr �s(�r; �m)��m �����m=�r ; (3.16)

where � is the time at the evolutionary time scale; � is the invasion rate coeffi-
cient and describes the frequency and variance of the mutations.

Evolution continues until the invasion gradient (3.14) becomes zero. This
occurs whenhyD;V(kM + h) = yC;V(�r)(1� �r)� yA z(1� �r)z�r + yH(1� �r)z�zr ; (3.17)

where yC;V(�r) is given by Eq. (3.7). The root of this equation is called the
‘singular strategy’ SS, denoted by ��r . Figure 3.4 plots the invasion fitnesss(�m; E(�r�)) of a range of mutants while the resident has a trait value equal to
the SS, for three values of z: z = 0:7 (continuous curve), z = 1 (dashed curve)

and z = 1:3 (dotted line).

The evolutionary stability of the SS can be determined by the second deriv-
ative of the fitness function with respect to the mutant trait, evaluated in the

SS: �2s��2m = �2s(�r; �m)��2m �����m=�r : (3.18)
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Figure 3.4: Invasion fitnesses s(�m; E(�r)) for mutants with a range of

trait values �m in the resident population at the SS ��r , for z = 0:7 (con-

tinuous curve where ��r = 0:6578, CSS), and z = 1:3 (dotted curve where��r = 0:7038, EBP). For z = 1 the invasion fitness is zero (dashed curve)

and the singular strategy becomes ��r = 0:67948. The symbols (filled circle

for z = 1:3 and open circle for z = 0:7) indicate the singular strategy SS

values ��. All other parameter values are given in Table 3.2.
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If this derivative is negative, residents with this strategy cannot be invaded

by any mutant. Hence, the SS is evolutionarily stable and the population will
remain on this strategy, which is a ‘continuously stable strategy’ (CSS) [12]. On

the other hand, if the derivative is positive, the residents on this strategy are
invadable by any mutant. The SS is evolutionarily unstable and is now called

an ‘evolutionary branching point’ (EBP) [12]. Once the population has reached

this strategy, disruptive selection will induce the population to split up and into
two coexisting subpopulations. The evolutionary dynamics of the resulting

dimorphic system are discussed further in section 3.3.5. First, however, we

study how the stability of the SS depends on a change of the coefficient z and
we present the corresponding bifurcation diagrams.

3.3.2 Bifurcation analysis of the evolutionary model

In terms of bifurcation analysis, the invasibility of the resident is determined
by the system’s stability. As the resident is assumed to be in equilibrium with

its environment, the system without the mutant is stable. If the stability does

not change when a mutant is added to the system, this mutant will just die out.
If the stability does change, however, the mutant may be able to invade. The

stability is obtained by evaluation of the Jacobian matrix of system (3.8) withn = 2, evaluated in the equilibrium point X�D, X�Vr and X�Vm = 0. Since the

system is closed for mass we can eliminate the equations for the two nutrientsXC and XN. Hence, the Jacobian matrix is a 3 � 3 matrix, where the detritusXD and biomasses of the resident and mutant populations XVi, i = r;m are

the state variables.

The determinant of the Jacobian matrix evaluated at the equilibrium is fac-
torizable. That is, it equals the determinant of the system where the mutant

population is not considered, times the long term specific growth rate (invasion
fitness) of the mutant. Since we assumed that the system without mutant is in

stable equilibrium, the real part of the roots of the characteristic equation of

this system are all negative. Consequently, the stability of the system includ-
ing the mutant is completely determined by the sign of the invasion fitness s.
Therefore, the adaptive dynamics approach and the bifurcation approach come

down to the same thing: s < 0 gives stability in which case the mutant cannot
invade, while s > 0 means instability and thus invasibility of the resident pop-

ulation. Notice that there are two additional zero eigenvalues when the two
nutrients are included.

Computer packages LOCBIF [14], CONTENT [22] and AUTO, [9, 10] can be

used to calculate the transcritical bifurcation curves. We found that is was
not possible to use the standard procedure in AUTO. Obviously, the fact that

two transcritical curves intersect in the SS causes a problem. This was solved

as follows. Since we are interested in the situation where the biomass of the
mutant population is zero we can skip the equation for the mutant population

from Eq. (3.8) while still the equilibrium values for the resident populations are
determined as equilibria of the resulting system. In order to fix a transcritical

bifurcation point in that point where the invasion rate of the mutant is zero we
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append Eq. (3.19c) to that system where the trait of the mutant �m is taken as

a state variable. Though this equation does not have an interpretation, it can
be used to continuate the transcritical bifurcation.dXDdt = �yD;V nXi=1XVijiV;AH +XVh ; (3.19a)dXVridt = XVri( jriV;AyC;V(�ri) � kM � h) ; (3.19b)d�mdt = jmV;AyC;V(�m) � kM � h ; (3.19c)

where yC;V(�) is given by (3.7) and the growth flux jiV;A by (3.6). Both XC andXN are eliminated using mass conservation. The trait �r is the free bifurcation
parameter with the continuation of the so-called fold bifurcation where one

eigenvalue of the Jacobian matrix evaluated at the equilibrium equals zero.

To calculate the evolutionary dynamics, the fitness gradient with respect to
the trait of the two residents has to be evaluated, for which at each instant the

equilibrium values of the state variables of the ecological system (3.8) have
to be calculated. This can be avoided by integrating both the ecological and

evolutionary model simultaneously for t = "� , " � 1 by implementing an ap-

proximation of the time-scale separation. Symbolic expressions for the invasion
gradients can be obtained using symbolic computer packages. We used Maple

(Maplesoft, Waterloo, Canada) together with AUTO.

3.3.3 Bifurcation diagrams for the monomorphic resident popu-
lation

The Pairwise Invasibility Plot (PIP) in Figure 3.5 shows the invasibility of a

rare mutant with trait value �m in a resident population with trait value �r
[3, 12] for z = 1:3 (continuous curves) and z = 0:7 (dashed curves). The
vertical lines are the mutant zero invasion fitness isoclines (s(�m; E(�r)) = 0).
The horizontal lines denote the zero fitness isoclines for the residents when

the roles of mutant and resident are interchanged (s(�r; E(�m)) = 0); these
are easily obtained by mirroring the mutant isocline over the diagonal. On the

diagonal, mutant and resident have the same trait value, and therefore their
invasion fitnesses are zero as well. Together, these lines bound six regions:

two with a ‘+’ where the mutant invasion fitness is positive in which case the

mutant may invade and replace the resident; two with a ‘�’ where the mutant
invasion fitness is negative in which case it cannot invade; and two with ‘++’

in which case the mutant may invade but cannot replace the resident: when

invaded by the mutant, the resident may invade ‘back’, which is called ‘mutual
invasibility’. The SS lies at the trait value ��r where the local fitness gradient

(Eq. 3.14) is zero.
With z = 0:7 we have ��r = 0:6578 and at this point the second derivative

(Eq. 3.18) is negative. Hence, the SS is a CSS [12] on which the population will
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Figure 3.5: Pairwise Invasibility Plot (PIP) plotting the invasion fitness

of a mutant with trait value �m invading a resident population with trait

value �r. It shows the zero fitness isoclines for z = 0:7 (dotted lines), z =1:0 (dashed curves) and z = 1:3 (continuous curves). The intersection of

the diagonal with the other two curves corresponds to a singular strategy

(SS). ‘-’ denotes the area in which the mutant cannot invade the resident,

‘+’ denotes the area in which the mutant may invade and replace the

resident, and ‘++’ denotes the area of mutual invasibility in which the

mutant may invade but cannot replace the residents.

remain. For z = 1:3 we have ��r = 0:7038. At this point the second derivative is

positive and therefore the SS is an (EBP) at which the population will split up

into two coexisting subpopulations.
The two-parameter bifurcation diagram in Figure 3.6 uses as bifurcation

parameters the affinities of two competing populations, �1 and �2. Though it

looks very similar to the PIP in Figure 3.5, its interpretation is different. Instead
of a resident population and a rare mutant with traits, the bifurcation diagram

treats the two populations as equals. The lines now denote transcritical bifurc-
ation curves, which are the boundaries in trait space where the system changes

stability. Formally, these boundaries correspond not to zero invasion fitnesses,

but to zero biomass of (one of) the populations. In the trait space below TC�1
no population can exist. Above TC�1 one population can exist stably. At TC�2
the biomass of population 2 is zero (XV2 = 0), while above TC�3 the biomass

of population 1 is zero (XV1 = 0). Between these lines both populations can
coexist. Coexistence in this figure corresponds to mutual invasibility in the PIP-

plot (Figure 3.5). Above TC�4 no population can exist. At the diagonal line Z,
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Figure 3.6: Two-parameter bifurcation diagram, using as bifurcation

parameters the affinities of two competing populations, �1 and �2. Tran-

scritical bifurcation curves are shown for three z-values, z = 1:3 (continu-

ous curve), z = 1 (dashed curve) and z = 0:7 (dotted curve). At TC�1
and at TC�4 , one of the populations has zero biomass and can establish

itself. At TC�2 population 2 has zero biomass, and can establish itself next

to population 1. At TC�3 population 1 has zero biomass and can estab-

lish itself next to population 2; between these two bifurcation curves both

populations can exist.

the two populations exchange roles. Crossing this line in a vertical direction

corresponds to the replacement of population 2 by population 1. At this point

the biomass of population 1 goes from zero to an equilibrium value, while at
the same time the biomass of population 2 goes to zero. As these changes in

equilibrium biomass densities are not smooth, Z is a catastrophic bifurcation.

Moreover, points on Z are also structurally unstable, as the biomasses of the
two populations are undetermined, only their total biomass is known.

When interpreting the two populations as residents and mutants, the bi-
furcation plot provides information about the evolutionary dynamics of the

system. The change in stability to which the transcritical bifurcations corres-

pond, may be interpreted in terms of invasibility. Crossing TC�2 corresponds
to the mutant invading the resident, while crossing the TC�3 corresponds to

the resident invading the mutant. The SS lies at the point where the two trans-

critical bifurcations intersect, which thus is a degenerated point. Introducing a
mutant in a system with residents that have the SS, corresponds to moving up

or down in the strictly vertical direction in the plot. Evolutionary stability is en-
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Figure 3.7: Steady-state distributions of detritus XD, resident XVr and

mutant XVm biomass as function of trait �m = �r�0:1 for a monomorphic

resident population, where z = 1:3.

sured when we do not end up in the region where coexistence is possible. This

holds true for z = 0:7. Because the transcritical bifurcation curve for z = 0:7
does not intersect with the vertical line through the SS, this also holds for large
mutational steps. With z = 1:3, such movements end up in the region of coex-

istence. Hence in this case the SS is evolutionarily unstable and thus an EBP.
For a linear cost function (z = 1), numerical evaluation of the expression for

the invasion fitness in its singular strategy ��r = 0:67948 equals zero, independ-

ent of the trait value of the mutant �m. Hence, when the resident population
possesses the singular strategy, all mutants have a zero invasion fitness.

The one-parameter bifurcation diagram in Figure 3.7 depicts the equilib-

rium detritus XD and biomasses XVi along the subdiagonal curve, �m = �r �0:1. At the two transcritical bifurcation points TC�1 and TC�4 , biomasses are

zero of the mutant and the resident populations, respectively. Between TC�1
and TC�2 only the resident population exists, while between TC�3 and TC�4
only the mutant population exists. Between TC�2 and TC�3 both populations

coexist. We remark that for �m = �r + 0:1 (the line symmetric with respect to
the diagonal, �m = �r) the same results hold when XVr and XVm are inter-

changed, that is, the two populations change role.

Figures 3.8 is again a one-parameter bifurcation diagram where now �r =0:7 and �m is the bifurcation parameter. The range of parameter �m is divided

in four subregions. Coexistence of the resident and mutant population occurs

for low (�m < TC�2 ) and high (�m > TC�3 ) values. In the intermediate range
the mutant is extinct, while at crossing the diagonal (Z) in region the mutant

replaces the resident. As a result of the small mutational step assumption the
value of the mutant never lies in the two outer regions during a monomorphic
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Figure 3.8: Steady-state distributions of detritus XD, resident XVr and

mutant XVm biomass as function of the trait �m, where �r = 0:7 andz = 1:3 for a monomorphic resident population. Note that the plot shows

a limited range of values for �m.

evolutionary sequence. Figure 3.8 illustrates what happens on the diagonalZ, where �m = �r. Here, the steady state biomasses of the two populationsX�Vr and X�Vm themselves are not fixed, only their sum is. This shows that

the diagonal is a structurally unstable point where the dependence of the state
variables is not smooth with respect to a parameter change. A similar bifurc-

ation point was found in [17] where the effects were studied of predation of

two prey populations living on a single nutrient in a chemostat environment, a
phenomenon called ‘predator-mediated coexistence’.

3.3.4 Invasion of the dimorphic resident population

We have seen that when z = 0:7 the singular strategy is a CSS. Hence, the pop-
ulation will evolve towards it and then remain on it. However, for z = 1:3 the

singular strategy was an EBP. This means that the population will evolve to-
wards it, but not remain on it. When it has reached the SS, disruptive selection

will split up the population such that it becomes dimorphic. To study the evol-

utionary dynamics in this post-branching period, we will study the invasibility
of a dimorphic resident population. Therefore, we now consider a trimorphic

population (n = 3), consisting of two resident populations and one mutant

population. In Figure 3.9 the region of coexistence of the two residents in the
three dimensional parameter space is drawn. Two subdiagional planes are im-

portant, one where �m = �r1 and �r2 is free, and the other where �m = �r2 and�r1 is free. So on these planes the mutant is equal to one of the residents. Since

we may restrict ourselves to the invasion of a rare mutant which differs slightly
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from one of the two residents we are interested in the part of the diagram close

to these two subdiagional planes which intersect in the diagonal line Z where�m = �r1 = �r2. Pre-branching dynamics is restricted to this diagonal line on

which the point �r1 = �r2 = �m = ��r is the singular strategy. In a similar way,
the post-branching process is restricted to the two subdiagional planes.

The invasion fitness for the mutant invading the resident population i = 1; 2
with trait �ri equalssi(�m; E(�r1; �r2)) = jmV;A(�r1; �r2; �m)yC;V(�m) �����m=�ri � kM � h : (3.20)

The invasion gradients for the mutant invading the resident populationsi = 1; 2 with trait �ri read�si(�m; E(�r1; �r2))��m �����m=�ri = yC;V(�m)�jmV;A(�r1;�r2;�m)��m � jmV;A(�r1; �r2; �m)�yC;V(�m)��m(yC;V(�m))2 �����m=�ri ;
(3.21)

with �yC;V(�m)=��m���m=�ri given by (3.15).

The dynamics of the two traits �ri are described by the canonical equationd�rid� = �X�Vri �si(�m; E(�r1; �r2))��m �����m=�ri ; (3.22)

where the parameter � is the invasion rate coefficient of the mutant.

To calculate the evolutionary dynamics we have to solve ODE-system (3.22).

Evaluation of the right-hand side of these ODEs requires the calculation of the
invasion gradient �jmV;A(�r1; �r2; �m)=��m which depends on the three equi-

librium values for detritus X�D and the biomasses of the two residents X�Vi,i = 1; 2. (We recall that since the system is closed for mass we can elimin-
ate the two nutrients equilibrium densities X�C and X�N.) This means that in

each time step of the procedure to solve the ODE-system, the equilibria of the
ecological model have to be solved numerically.

The SS for the monomorphic resident population is also a SS for the di-

morphic resident population. However, when we allow infinitesimally small
evolutionary changes, this point is never reached in the pre-branching epis-

ode. Therefore, Geritz et al. [12] explicitly do not allow ‘infinitesimally small

evolutionary changes’ and the biologically more realistic assumption is made
that the mutations are small but discrete. As a result, evolution does not stop

after reaching (a point close to) the SS, but continues as a development of a
dimorphic resident population.

3.3.5 Bifurcation diagrams for the dimorphic population

To study invasibility of the dimorphic resident population we calculated one-

parameter diagrams for pairs of residents (�r1; �r2) with ��r < �r1 � 1 and
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Figure 3.9: Three-dimensional PIP for the dimorphic resident population.

Evolutionary changes of the resident with trait �r1 take place in the lower

dashed plane, and those due to changes of the resident with trait �r2 in the

upper dashed plane. These planes correspond to transcritical bifurcation

sheets, denoted by TC�21 and TC�22. The arrows denote the direction of

evolution in each plane. The bullet on diagonal Z indicates the SS of the

monomorphic population. The two filled circles in the corners indicate

the evolutionary end-points.
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Figure 3.10: Steady-state distributions of detritus XD, resident XVr and

mutant XVm biomass as function of the traits �m, for a dimorphic resident

population with �r1 = 0:75, �r2 = 0:5 and z = 1:3.��r < �r2 � 1. Figure 3.10 is one of these diagrams where �r1 = 0:75, �r2 = 0:5,

and �m is the bifurcation parameter. The range of parameter �m is divided into

three subregions. In the intermediate range for �r2 = 0:5 < �m < �r1 = 0:75
the steady state with XVm = 0 is stable; here, the mutant cannot invade.

For �m < 0:5 and �m > 0:75 the equilibrium with XVm = 0 is unstable and
the mutant may invade. Like in the monomorphic case, these subregions are

divided by transcritical bifurcations, which we denote by TC�21 and TC�22.
Figure 3.11 depicts the corresponding mutant invasion fitness as a function

of the mutant trait �m. We found the same pattern for all (�r1; �r2) in the range

with coexistence. Thus, a mutant is unable to invade when �r1 < �m < �r2,
but able to invade when this value is greater or smaller than those of both
residents: �m < �r1 or �r2 < �m. In our case this is true for all two-resident-

mutant combinations inside the region between the two subdiagonal planes,
except at the SS �r1 = �r2 = ��r and in the corner of the trait-space (�r1 = 1 and�r2 = 0 or �r2 = 1 and �r1 = 0). Apparently, the trait values of the residents

coincide with transcritical bifurcation points. This implies that the subdiagonal
surfaces in the 3-dimensional representation of Figure 3.9 act as ‘transcritical

bifurcation sheets’.

Invasion is thus possible if the mutant has a trait value above this region
(when the resident is on the upper plane) or below it (when the resident is

on the lower plane). This is illustrated by the arrows in Figure 3.9. The trait

substitution sequence will lead to the corner coalition �r1 = 1, �r2 = 0 (or to�r2 = 1, �r1 = 0). These boundary coalitions are evolutionary attainable and

uninvadable, and thus they are evolutionary end-points. No interior protected
dimorphisms exist, because no point exists where both invasion gradients are
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Figure 3.11: The invasion fitness s(�m; E(�r1; �r2)) as function of the

traits �m, for a dimorphic resident population with �r1 = 0:75, �r2 = 0:5
and z = 1:3. Arrows indicate the direction of evolution.

simultaneously zero. This could already be seen from the PIP’s in Figure 3.5,

because none of the zero fitness isoclines contains points where the fitness

gradient is zero.
For completeness, Figure 3.12 shows the evolutionary course for the mixo-

troph starting with a resident population with �r(� = 0) = 0:3. A determ-

inistic and a stochastic realization are shown. In the deterministic case the
evolutionary steps are continuous. After evolutionary branching both subpop-

ulations start from a point close to the SS point and initially diverge slowly.
In the stochastic case the mutations are assumed to be uniformly distributed

around the trait of the progenitor resident population. In this simulation, new

mutants are introduced already before the equilibrium state is attained, so that
the mutants do not always have completely replaced the residents, which ex-

plains why polymorphism occurs. In both types of realizations the population

eventually consists of pure autotrophs (� = 1) and pure heterotrophs (� = 0).

3.4 Discussion and conclusions

We studied the application of bifurcation analysis to the ecological and the
evolutionary dynamics of a mixotrophic population in a closed system. We

found that bifurcation analysis is very suitable to determine the evolutionary

behavior of a model. This is because the derivation of the evolutionary invasion
criterion can be based on the stability of the extended system including the

mutant. The standard AD approach partly stems from bifurcation techniques,

and therefore both approaches and their results show substantial overlap. This
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Figure 3.12: Evolution predicted by a deterministic (A) and a stochastic

model (B). When � = 1 the population is purely autotrophic, and when� = 0 it is purely heterotrophic.
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is illustrated by the fact that the zero invasion fitness isoclines in the PIP’s can

also be calculated on basis of transcritical bifurcations.
The application of bifurcation techniques to evolutionary problems is not

new but has also been used by other authors, such as [6, 8]. However, when
the underlying ecological model is based on the classical Lotka-Volterra popu-

lation dynamics, often analytical solutions are available and bifurcation ana-

lysis is more straightforward. Dercole [4, 5] used the standard Rosenzweig-
MacArthur prey-predator model [27], which also has simple ecological equilib-

ria. He used, however, bifurcation analysis intensively to study the evolution

of complex trait dynamics such as evolutionary branching-extinction cycles.
In our case, numerical bifurcation analysis is needed because the ecosystem

model itself is more complex, due to the explicit formulation of the environ-
ment. Other sources of complexity may be a large system dimension, such that

the determination of the attractor to which the system will evolve after inva-

sion becomes non-trivial [16, 18]. Finally, numerical bifurcation techniques
may be needed when analyzing models that have multiple ecological equilibria

or non-equilibrium attractors, such as limit cycles (see also [7, 11]).

Numerical bifurcation analyzes are made easy by standard computer pack-
ages such as LOCBIF [14], CONTENT [22] and AUTO, [9, 10]. For their applic-

ation, however, the models need to be continuously differentiable. Switches,
such as are needed when for example using Liebig’s minimum law, provide

problems. A suitable alternative to Liebig’s law is provided by the Synthesizing

Unit [20], which models multiple nutrient limitation in a continuous fashion.
Similarly, the reserve dynamics of the Dynamic Energy Budget theory (DEB)

gives a continuous description of the formation and use of energy storages,

for which no threshold values or model switches are needed. This makes DEB-
models very suitable for evolutionary studies that need bifurcation techniques.

In addition to facilitating the analysis of large ecosystems and complex evol-
utionary dynamics, bifurcation diagrams were also found to provide additional

information. For example, they may show the areas in the trait space where no

population can exist. Also, bifurcation diagrams of the ecological model in the
neighborhood of the the singular strategy can show the equilibrium biomasses

of the competing residents and mutants, which may help to understand how

evolution continues after evolutionary branching.
Another advantage of bifurcation analysis is that the results are valid for

both small and large mutational steps. This enables a comparison between an
evolutionary approach and the assembly process approach [25, 26]. In adapt-

ive evolution, mutants differ in one or a few trait values from one of the resid-

ent populations. This process consists of small mutational steps, which lead to
an (almost) continuous change of the trait value. Therefore, the course of the

evolution of the system can be described deterministically. In contrast, with an

ecosystem assembly process, populations from a pool are introduced. These
populations may have very different parameter values, so that the changes in

the parameter space may be in big steps. This means that in Figure 3.6 the
trait value of the introduced population may be on the entire range along the

vertical line. Coexistence can already occur after one step and this may already
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be the end-point. Therefore, the succession sequence of the assembly process

can be very irregular and can not be approximated deterministically.
Evolutionary analysis of the mixotroph model showed that for convex cost

functions (z < 1) a CSS was found; the population will evolve towards this
point and then remain on it. For concave cost functions (z > 1) an EBP was

found. In this case the population will first evolve towards this point and then

split up into two coexisting subpopulations. These will then evolve to a pure
autotrophic and a pure heterotrophic subpopulation. This holds for both in-

creasing and decreasing cost functions and even for costs functions with in-

terior local extrema.
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Abstract

In recent years, the population dynamics of plankton in light- or nutrient-

limited environments have been studied extensively. Their evolutionary

dynamics, however, have received much less attention. Here, we used

a modeling approach to study the evolutionary behavior of a population

of plankton living in a mixed water column. Initially, the organisms are

mixotrophic and thus have both autotrophic and heterotrophic abilities.

Through evolution of their trophic preferences, however, they can special-

ize into separate autotrophs and heterotrophs. It was found that the light

intensity gradient enables evolutionary branching and thus may result in

the ecological specialization of the mixotrophs. By affecting the gradient,

also other environmental properties acquire influence on this evolutionary

process. Intermediate mixing intensities, large mixing depths and high nu-

trient densities were found to facilitate evolutionary branching and thus

specialization. Latter result may explain why mixotrophs are often more

dominant in oligotrophic systems while specialist strategies are associated

with eutrophic systems.
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4.1 Introduction

We study the evolution of trophic preference of a population of mixotrophic

plankton in a mixed water column by means of a modeling approach. Mixo-
trophs are capable of both auto- and heterotrophy, which means that they can

use both organic and inorganic sources for the production of biomass. We en-

able the mixotrophs to specialize into pure auto- and heterotrophs by allowing
their trophic preferences to evolve. Nitrogen content, mixing intensity and

mixing depth are environmental properties that are typical to aquatic systems,
and are known to have a large impact on the ecological dynamics of plankton.

Here, we study their effects on the evolution of trophic preferences and thus

the ecological specialization of the mixotrophs.
The focus is on mixotrophic organisms for two reasons. Firstly, because

the phenomenon of mixotrophy is widespread. Eukaryotes acquired photo-

autotrophy via the uptake of chloroplasts [36]; in most taxa, however, this did
not result in the loss of heterotrophy. Hence, many typical photo-autotrophs

are able to use organic compounds as an energy, carbon and/or nitrogen source
[46] and basically they are mixotrophs. This seems to be the case especially

in algae. Algae are not a natural group, but a collection of unrelated taxa that

each have fully heterotrophic close relatives; this applies to blue green bacteria,
chlorophytes, rhodophytes, euglenophytes, dynozoans, chlorarachnids, crypto-

phytes, haptophytes and heterokonts (see for example Cavalier-Smith [3]).

This suggests that, in addition to their well known autotrophic abilities, many
algae may also have some (unknown) heterotrophic abilities. Many other or-

ganisms, including plants, some animals, fungi, forams and radiolarians, ac-
quired phototrophy via symbiosis [30]; these are again mixotrophs. Although

the practical importance of either of the assimilatory routes in these organ-

isms is often small or depends on environmental conditions, mixotrophy is
thus much more common then is generally recognized.

The second reason for studying mixotrophs is because of their autotrophic

and heterotrophic abilities, which enable a complete recycling of matter and
nutrients. Therefore, they form the simplest, non-degenerate ecosystem pos-

sible. Such single-species mixotrophic communities share many characteristics
with the canonical communities [28, 31], i.e. a three-species systems consisting

of producers, consumers and decomposers. We, therefore, believe that these

very much simplified theoretical single-species ecosystems do capture some of
the basic features of all ecosystems. From this it also follows that specialization

of mixotrophs into auto- and heterotrophs corresponds to the first steps in the

evolution of the ecosystem to develop from a very simple to a more complex
ecosystem. Studying this process may therefore provide insight in the evolution

of food webs and ecosystems.
In recent years, an extensive amount of research has been done on the ef-

fects of chemical and physical properties on plankton blooms and species com-

position. Obviously, nutrients and light play a large role; they affect the abund-
ance and the species composition of phytoplankton communities through their

ratio [16, 24], as well as through their absolute supply [22]. Physical proper-
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ties, on the other hand, affect the availability of nutrients and light and there-

fore, they can have a great impact on the dynamics and species composition
as well [22]. The vertical turbulent diffusion coefficient and the mixing depth

were found to define critical conditions for phytoplankton blooms [10, 18–20].
Diehl [7] explained how the primary causes of biomass limitation shift with in-

creasing mixing depth. Yet other factors were found to determine the species

composition, such as for instance fluctuations in light intensity [33, 34].
While the research on phytoplankton has thus been centered around eco-

logical dynamics, their evolutionary dynamics have received considerably less

attention. Although several studies have been done to assess the effects of
resource gradients on evolutionary outcomes, these studies were of a more

general character [2, 4, 8, 13, 14, 32, 38, 41]. Analysis of the evolutionary
dynamics of a more specific and realistic system is expected to lead to more

specific results and additional insights. Also, many of the studied systems have

self-growing, reproducing lowest trophic levels (the logistic growth model is
very popular) and are based on implicit assumptions about their food dynam-

ics; frequently, they are at odds with conservation of mass [25]. In reality,

however, all trophic levels are closely interlinked, including that of the zero
trophic (abiotic) level. These assumptions can have considerable effects on the

evolutionary dynamics of the system, as already became apparent in a previous
study on mixotrophs in a closed and homogeneous system [44]. In the present

study we again take into account explicitly the dynamics of the lowest trophic

level, but now we consider the mixotrophs to live in a mixed water column
with a light intensity gradient; this is a closed but heterogeneous system.

The paper is organized as follows: first we give a short description of the

mixotroph model and the methods used for analyzing its evolutionary out-
comes. Then we discuss the general effects of a light intensity gradient on

the ecological and evolutionary dynamics of the mixotroph system. Thereafter
we explain how system characteristics such as spatial structure and mass bal-

ances affect the evolutionary outcomes. Finally we discuss the specific effects

of mixing intensity, mixing depth and nitrogen content on the evolution of spe-
cialization.

4.2 Modeling mixotrophs in a water column

We model a mixotrophic population in a water column, which is based on the

mixotroph model presented by Kooijman et al. [29]. The model is based on

the Dynamic Energy Budget (DEB) theory, which is a modeling framework for
metabolic processes based on physiological rules for uptake and use of energy

and nutrients [27]. It respects the principles of energy and mass conservation,

and stoichiometric constraints on the synthesis of biomass. The population
dynamics of the mixotrophs were simplified according to the same assumptions

that were done by Troost et al. [44], which were found to have no qualitative
effect and only a small quantitative effect on the evolutionary outcomes of the

system. The model has only one state variable for the mixotrophic organisms
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Table 4.1: Symbols for transformations and compounds.

Index Transformation Index CompoundA assimilation C DICAA autotr. assim. N DINAH heterotr. assim. V biomassM maintenance D detritusG growth

(biomass XV), and three state variables to describe the abiotic environment:

detritus XD, dissolved inorganic carbon (DIC) XC and nitrogen (DIN) XN. The
latter two states consist of one nutrient only, while biomass and detritus are

thought of as generalized compounds containing both carbon and nitrogen and
other elements in a fixed chemical composition. It is assumed that elements

other than carbon and nitrogen are not limiting the growth of the organisms.

The system is closed for mass, but open to energy (light and heat production).
The four state variables partake in five transformations: assimilation A

(autotrophic AA and heterotrophic assimilation AH), growth G, maintenanceM and death H (see Table 4.1). A diagram of these transformations is shown
in Figure 4.1. The mixotrophic organisms are capable both of autotrophic and

heterotrophic assimilation, for both of which they have a certain affinity, de-
noted by �A and �H respectively. The mixotrophs use DIC, DIN and light for

the autotrophic pathway, and detritus for the heterotrophic pathway. Once

taken up, these resources are synthesized into basic building blocks. Part of the
assimilates are used for maintenance; the rest is turned into biomass. When

an organism dies, its biomass turns into detritus and becomes available for its

conspecifics. Maintenance costs, overhead costs for growth and stoichiometric
constraints take care of the conversion of organic carbon and nitrogen back

into their inorganic form; other means of mineralization of detritus such as
decomposition by bacteria are not considered. A brief description of the main

growth fluxes and evolutionary processes is given below, which is followed by

a section on the spatial structure of the water column and the equations for
the vertical transport. A detailed discussion on the growth equations of the

mixotrophs is given in the Appendix.

4.2.1 Assimilation and evolution

The mixotrophs are capable of both autotrophy and heterotrophy and there-
fore they are assumed to use light, carbon, nitrogen and detritus for assimila-

tion. The corresponding functional responses (fA for the uptake of nutrients

involved in the autotrophic route and fH for uptake of nutrients involved in
the heterotrophic route) are calculated with use of synthesizing units (SU) cf.

Kooijman [26], which provide a simple and realistic method for calculating

production fluxes at simultaneous limitations. This method provides a more
realistic alternative for Liebig’s law which assumes that only one resource is



4.2. Modeling mixotrophs in a water column 67

XD

XN

XC fCH

fA

fH

jL,F
M

H

A G

AA(�A)

AH(�H)

overhead costs (AA)

overhead costs (AH)

XV

Figure 4.1: Diagram of the metabolism of a mixotroph. The shaded box

encloses the organism, the lighter part of which denotes its membranes

containing the assimilatory machinery. A circle denotes a Synthesizing

Unit (only SUs with two or more substrates are shown). The organism

has one state variable for biomass XV; the environment consists of three

states: dissolved inorganic carbon XC, dissolved inorganic nitrogen XN
and detritus XD. Arrows indicate the structure-specific transformation

fluxes.

limiting at a time.
The mixotrophs are characterized by their affinities for the autotrophic and

heterotrophic assimilatory pathway �A and �H, which together represent the
trophic preference of the organisms. These affinities affect the organism’s auto-

trophic and heterotrophic assimilation rates jV;AA and jV;AH , and consequently

the total assimilation rate jV;A (4.16-4.18). Affinities for either pathway are as-
sumed to entail costs for building the necessary machinery, which are included

by means of the yield coefficient yC;V, which consists of certain base costs y0,
increased by extra costs for building the assimilation machineries yA and yH,
which for both pathways is proportional to the corresponding affinity (4.24).

The parameter z determines the shape of the cost function; convex cost func-
tions (z > 1) give the organisms an intrinsic advantage to evolve to specialized

strategies, while concave cost functions (z < 1) give them an intrinsic advant-

age to evolve to mixotrophic strategies. ‘Intrinsic advantage’ means that it is
naturally inherent to the physiology of the organism, and thus not induced by

the external environment. As a default the cost function is chosen to be linear(z = 1), because this gives a neutral trade off which does not favor mixotrophic
nor specialized strategies [44].

The two affinities are assumed to be traded off, following the requirement
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that �H + �A = 1: (4.1)

That is, we effectively have a one-dimensional trait space, which is denoted

by � = �A; Organisms that have a � of unity are thus pure autotrophs, those
that have a zero � are pure heterotrophs; strategies in-between correspond to

mixotrophic organisms with a range of different trophic preferences.

The trophic preference � of the mixotrophs is genetically determined, and
in combination with their abiotic environment it determines the fitness of the

organisms. The mixotrophs reproduce asexually and a parent passes its trophic

preference on to its offspring; sloppy heredity may however introduce small
changes in the trophic preference. These mutations give rise to differences

in fitness between the organisms, and mutants with a higher fitness can re-
place (or coexist with) the resident population; it is by a series of such re-

placements that the population evolves. A time scale separation is assumed to

exist between the ecological and the evolutionary time scale, so that mutations
occur only after the system has reached a steady state.

4.2.2 Spatial structure, light gradient and vertical transport

The aquatic environment in which the mixotrophs live is modeled as a one-

dimensional water column. X(Lz; t) denotes the vector of the densities of the

compounds (XC, XN, XD, XV) at depth Lz and time t. Lz 2 (�Lm; 0) whereLm is the maximum depth of the water column. Mass transport through the

column is possible, but the column as a whole is closed for mass. Hence, the
total carbon content XC+ and the total nitrogen content XN+ of the system

are constant; they consist of the amounts of carbon (or nitrogen) in each of the

four compounds, integrated over the depth of the water column:XC+ = Z �Lm0 �XC(Lz; t) +XD(Lz; t) +XV(Lz; t)� dLz; (4.2)XN+ = Z �Lm0 �XN(Lz; t) + nN;V(XD(Lz; t) +XV(Lz; t))� dLz; (4.3)

in which nN;V is the fixed amount of nitrogen per mole carbon in biomass and

detritus.
The system is open to energy; light comes in at the surface and is absorbed

by biomass, detritus and non-plankton components. According to Lambert-
Beer’s law, the light absorption is proportional to the density of biomass and

detritus and to the background turbidity. The change in light intensity is given

by: �JL;F�Lz (Lz; t) = � (�+ �VXV(Lz; t) + �DXD(Lz; t)) JL;F(Lz; t); (4.4)
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where � denotes the background turbidity; �V and �D are the specific absorp-

tion coefficients for biomass and detritus. Integrating this equation over depth
gives the following light intensity JL;F at depth Lz and time t:JL;F(Lz; t) = JL;F(0) exp(�Lz + Z Lz0 � �VXV(l; t) + �DXD(l; t)� dl) ;

(4.5)

where JL;F(0) is the amount of incoming light at the surface. Diurnal changes
in incoming light intensity are not taken into account.

As a default, self shading (light absorption by plankton components) is neg-

lected (�V = 0, �D = 0), and Equation (4.5) can be simplified into:JL;F(Lz) = JL;F(0) exp f�Lzg : (4.6)

The value of the background turbidity (� = 0:07 m�1) was chosen such that the

light intensity is reduced to about 6% at 40m depth. In the oligotrophic/eutrophic
scenarios, where self shading is taken into account, the specific absorption coef-

ficients of biomass and detritus were set to values of �V = 0:1 and �D = 0:05
m2 mol�1, respectively. The specific absorption coefficient of biomass was as-
sumed to be higher than that of detritus due to the presence of photosynthetic

pigments in biomass; these pigments are largely broken down in detritus. Val-
ues of the specific absorption coefficients were based on those presented by

Falkowski and Woodhead [11] and Valiela [45].

The decrease in light intensity affects the autotrophic assimilation rate;
density gradients build up as a consequence and induce diffusive transport

through the water column. This diffusive transport is modeled as a down-

gradient mixing process, which uses a finite mixing coefficient. Therefore, a
density gradient is retained throughout the mixed layer even at considerable

turbulence levels. The phytoplankton cells are assumed to be neutrally buoy-
ant, i.e. there is no advection. The reaction-diffusion equation for the change

in density of the compounds amounts to:�X�t (Lz; t) = F+KV �2�Lz2X(Lz; t); (4.7)

where the growth term F is a vector consisting of the righthand sides of Equa-

tions (4.11a-4.11d); KV = 0:5m2d�1 and denotes the vertical mixing coeffi-
cient that is assumed to be the same for all compounds, and uniform over the

whole depth of the water column. Mixing is thus not hindered by a thermo- or

pycnocline and the mixing depth of the water column is equal to its maximum
depth. Neumann boundary conditions are imposed; this implies no material

fluxes at the surface and the maximum depth of the water column:�X�Lz (Lz; t) = 0 for Lz = �Lm; 0: (4.8)
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4.2.3 Evolutionary analysis

Predictions of the evolutionary outcome of the system are made with use of Ad-
aptive Dynamics (AD) theory [5, 6, 15, 37]. In this theory the invasion fitness

of a mutant invading in a resident population s�res(�mut) is defined as its long-
term average per capita growth rate. The resident population is assumed to

have reached a steady state with its environment so that resources are reduced

to a level that just covers the costs of exploitation; the residents thus have by
definition a zero invasion fitness: s�res (�res) = 0. A mutant is assumed to be

rare and will therefore not affect the environment in the short term. Mutants

that have a positive invasion fitness (specific growth rate) may be able to in-
vade, those that have a negative invasion fitness will just die out. Following

the invasion, a mutant may replace the resident population and become the
new resident or live on in coexistence with the original population. Together,

the changed population and the environment will reach a new steady state, in

which the new residents will again have a net specific growth rate of zero.
The evolutionary process can be illustrated by means of ‘adaptive land-

scapes’, of which some examples are given in Figure 4.2. Adaptive landscapes

plot invasion fitness to strategy; they visualize by which mutants a resident
population can be invaded. The residents (denoted by a black dot) have, as

was discussed above, a zero invasion fitness. Evolution is directed towards
strategies with a higher invasion fitness than the resident strategy, and will

therefore follow the fitness gradient D1, i.e. the derivative of the fitness func-

tion with respect to the trait of the mutant �mut:D1 = �s�res��mut (�mut): (4.9)

In Figure 4.2, the direction of evolution is indicated by arrows. Evolution will
drive the population to a singular strategy (SS) at which the fitness gradient

vanishes (D1 = 0); this is an evolutionary equilibrium.

The evolutionary stability of such an SS is determined by the second deriv-
ative (D2) of the fitness function:D2 = �2s�res��2mut (�mut): (4.10)

Two types of singular strategies that are most relevant to this study are the con-
tinuously stable strategies (CSS) and the evolutionary branching points (EBP).

CSS’s are attractors and lie at a fitness maximum at which the second derivat-

ive of the fitness gradient is negative (D2 < 0); this is an evolutionarily stable
situation and the population will remain at such a strategy (Figure 4.2B). EBP’s

are attractors as well, but these lie at a fitness minimum at which the second

derivative of the fitness gradient is positive (D2 > 0); now any nearby mutant
is able to invade (Figure 4.2E). In this case disruptive selection will induce

the population to split up and become dimorphic. In the remainder of the pa-
per, the adaptive landscapes and the vertical profiles only show the system for

residents that have already reached an SS.
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Figure 4.2: Schematic examples of adaptive landscapes; the residents

are denoted by a dot and the arrows indicate the direction in which the

population will evolve. (A,D) The strategy of the residents is smaller than

the singular strategy (SS); (B,E) the resident strategy is equal to the SS;

(C,F) the resident strategy is larger than the SS. (B) represents an adaptive

landscape of a SS that is evolutionarily stable (CSS), while (E) represents

an adaptive landscape of a SS that is evolutionarily unstable (EBP).

4.3 Results and discussion

4.3.1 Vertical profiles and evolutionary outcomes

When no light intensity gradient is present, the system is spatially homogen-
eous. In this case, and if costs for autotrophy and heterotrophy are neutral with

respect to specialization (z = 1), the population will evolve to a trophic prefer-

ence of � = 0:68. This is a singular strategy that lies at a fitness maximum and
thus is evolutionarily stable (CSS); the corresponding adaptive landscape is al-

most flat (Figure 4.3F, dotted curve). When imposing a light intensity gradient
(Figure 4.3E), the system becomes heterogeneous, which has both ecological

and evolutionary consequences.

On an ecological time scale, the autotrophic production rate begins to vary
throughout the system and becomes highest in the euphotic surface layer. Here,

nutrients will get depleted while biomass and detritus densities will increase.

The resulting differences in concentrations will cause net movement due to
diffusion. Imposing a light intensity gradient thus triggers a cascade of dens-
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Figure 4.3: Vertical profiles and adaptive landscape for the monomorphic

population (continuous curves) and those for the dimorphic population

after evolutionary branching has taken place (dotted and dashed curves).

The former consists of mixotrophs that have reached the singular strategy;

the latter population consists of separate heterotrophs (dashed curve h)

and almost pure autotrophs (dashed curve a) that have reached an evolu-

tionarily stable coexistence. In (A-E) are shown the densities of DIC (XC),
DIN (XN), detritus (XD), biomass (XV) and the light intensity gradient(XL), plotted against the depth Lz. The adaptive landscapes in (F) plot

invasion fitness s�res(�mut) against a range of mutant strategies �mut; the

dashed curve shows the adaptive landscape with two resident strategies

after branching, the dotted curve shows the (almost flat) adaptive land-

scape at the singular strategy for a homogeneous system.
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ity gradients, locally limiting factors and diffusive transport processes. This

results in the steady state profiles that are shown by the continuous curves in
Figure 4.3A-D. These profiles correspond well to the typical vertical structure of

the water column in tropical latitudes (TTS) [35]: the light intensity is highest
at the surface, while the source of nutrients is at depth; at the surface a nitro-

gen depleted layer exists. The model also captures the observed sharp gradient

in the nitrogen density, and the shallow peak of autotrophic production (not
shown).

On an evolutionary time scale, the light intensity gradient induces the SS to

shift to a slightly more autotrophic value (� = 0:69), which now comes to lie
at a fitness minimum (Figure 4.3F, continuous curve). This is an evolutionary

branching point (EBP), at which the mixotrophic population may split up into
two specialized subpopulations. Here, evolutionary branching is expected to

result in (almost) pure autotrophs (� = 0:97) and heterotrophs (� = 0:0), as

these form an evolutionarily stable coexistence; this coexistence was found by
manually adjusting the traits of the two strategies until they were at the bound-

ary or at a ESS. The autotrophs in this coexistence are at a fitness optimum with

a fitness gradient of zero, while the heterotrophs are at a fitness boundary max-
imum (Figure 4.3F, dashed curve). The dotted curves in Figure 4.3A-D show

the profiles that result after evolutionary branching has taken place. The total
amount of biomass is not very different from that of the mixotrophic popula-

tion, and the distribution has changed slightly. DIC and DIN densities have

increased, but the depth of the nitrogen depleted layer is unchanged.
An intuitive explanation for the occurrence of the evolutionary branching

and the resulting ecological specialization of the mixotrophs is related to their

lack of flexibility. Each variation in habitat can be optimally exploited by a
different phenotype. However, the mixotrophs have a fixed phenotype with a

constant ratio of the two affinities which they can not adjust on an ecological
time scale. Neither can autotrophs and heterotrophs, but by changing their

abundances relative to the other they are able of changing the ratio of auto-

trophy to heterotrophy. Together, they can adjust themselves to any habitat,
which gives them an advantage over mixotrophic phenotypes.

The result that a light intensity gradient induces evolutionary branching is

consistent with previous, more general studies on the effects of spatial (or tem-
poral) heterogeneity on evolutionary outcomes. Some of these studies [13, 32]

assumed two, three or a range of habitats with for instance different resource
types or productivities that lead to differences in demographic parameters that

are consistent across genotypes; in these studies, the genotype determines the

habitat choice or preference. Other studies [2, 4, 8, 14, 38, 41] assumed that
no habitat was intrinsically more productive than another but that different

genotypes achieve different growth rates, carrying capacities or mortality rates

(genotype by environment interaction) [2, 4, 8, 14, 38, 41]; here, the habitat
choice is passive, like in the present paper. In these studies it was found that

heterogeneity of the environment facilitates evolutionary branching. Doebeli
and Dieckmann [8] explained that the underlying mechanism is an enhanced

degree of frequency dependence.
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4.3.2 Open and closed systems

A remarkable difference between this and earlier studies becomes apparent
when the locally different habitats, present in the heterogeneous systems, are

considered in isolation. When isolated, these habitats resemble homogeneous
systems with different environments. In most studies, the populations will ad-

apt to these different environments, resulting in a different phenotype per hab-

itat. By contrast, in the mixotroph system, the population will always evolve
to one and the same mixotrophic strategy, regardless of its habitat. The dif-

ference lies in the fact that the mixotroph system is closed for mass. The isol-

ated habitats can thus be considered as closed and homogeneous systems, for
which we showed that their evolutionary outcomes are not affected by envir-

onmental properties indeed [44]. This result was explained by the feedback
mechanisms of the mixotrophs and the recycling processes in the system that

couple the steady state densities of the environment such that they can not

change independently. Changing an environmental property does not affect
one, but all of the steady state densities. Ultimately, the feedback fluxes pro-

duced by the mixotrophs determine the steady states of the environment, and

not vice versa. Therefore, the evolutionary outcome is determined only by the
organism’s intrinsic properties quantifying these feedback fluxes. Organisms

with equal properties will thus always evolve towards the same (mixotrophic)
strategy.

Apparently, the light intensity gradient not only facilitates evolutionary

branching, but also provides the degrees of freedom that enable phenotypic
variation (and thus ecological specialization) to occur. This freedom is associ-

ated with the vertical transport in the water column. Although the transport

of the organisms is analogous to the migrational or dispersal processes con-
sidered in previous studies, transport of other compounds in the environment

is generally not taken into account. For the mixotrophs, however, such trans-
port is essential, because the system is closed for mass and a full recycling of

material has to take place. Transport between the layers relaxes the require-

ment of mass conservation, which now has to be respected only at the level
of the whole water column. As a consequence, complementary processes such

as autotrophic and heterotrophic assimilation can be carried out at different

locations, as long as their products are exchanged. It is also possible to induce
evolutionary branching in homogeneous systems, but then an intrinsic advant-

age is required which favors specialism over mixotrophy. Such an advantage
can for example be induced by a non-linear cost function (z > 1). The spa-

tial gradient in this study, however, induces evolutionary branching without

an intrinsic advantage (z = 1). In some cases, it even induces evolutionary
branching with an intrinsic disadvantage (z < 1), as will be discussed later on.

Whereas in closed and homogeneous systems the environmental properties

have no effect on the evolutionary outcomes at all, in a closed and spatially het-
erogeneous environment these properties may acquire influence through their

effect on the spatial gradient. Examples of such environmental properties are
mixing intensity, mixing depth and total nutrient content, which are discussed
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in the following sections. In homogeneous systems, environmental properties

can only induce phenotypic variation when the system is opened for mass [44].
Opening the system for mass relaxes the requirement of full material recycling,

and thus reduces the effect of the feedback mechanisms. As a consequence,
the environmental properties that determine the in- and outfluxes of the sys-

tem can affect the steady state densities of the environment and as such they

acquire influence on the evolutionary outcomes as well [44].
Another difference with previous studies is the occurrence of habitat se-

gregation. Doebeli and Dieckmann [8] showed that branching induced by spa-

tial heterogeneity and local adaptation is often accompanied by geographical
segregation. This is because the local environment at the one end of the gradi-

ent is more favorable for one of the morphs, while the local environment at
the other end is more favorable for the other morph. Basically, such a single

spatial gradient thus provides two opposite gradients, which results in a clear

habitat segregation of the two morphs. Figure 4.3D, however, shows that after
mixotrophs have specialized into separate autotrophs and heterotrophs, hab-

itat segregation does not occur. Although the autotrophs are more abundant at

the surface and the heterotrophs are (relatively) more abundant at the bottom
of the column, the geographical differentiation is not sharp and far from com-

plete. This is because the light intensity gradient has a direct effect only on the
autotrophs; these autotrophs produce the substrates for the heterotrophs, so

that the resulting detritus gradient is closely related to that of the light intens-

ity gradient, and certainly not opposite to it. The mutual dependency of the
two phenotypes, and thus that of the two substrate gradients, restricts the de-

gree of the spatial heterogeneity. This explains why a clear habitat segregation

does not occur. Probably, it also explains why the fitness differences between
the various strategies are not very large, and why the spatial profiles of the

mixotrophs before branching are so similar to the profiles of the auto- and
heterotrophs after branching.

To induce and maintain two opposite substrate gradients (more spatial het-

erogeneity) in the studied system, we will need additional mechanisms that
actively separate autotrophic and heterotrophic substrates. These mechanisms

could for instance be a downward transport (sinking) of detritus, in combina-

tion with upward diffusion of DIC and DIN. The upward diffusion of DIC and
DIN can probably also be replaced by the more effective alternative of a con-

tinuous influx of these nutrients at the surface of the water column. This would
imply opening the system for mass and thus reducing the mutual dependency

of the two phenotypes. This could be taken a step further by assuming a ‘lat-

eral’ in- and outflux, i.e. in- and outputs of material over the whole depth of
the column, which would totally eliminate the mutual dependency between

the auto- and heterotrophs, and readily increase the degree of spatial hetero-

geneity. Because in studies of open systems recycling is not necessary, feedback
loops and mutual dependencies are often not considered. Hence, habitat se-

gregation will be found more often in those studies than in studies considering
closed systems.
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4.3.3 The role of diffusion and turbulent mixing

Figure 4.4A shows the evolutionary stability of the system when the mixing
intensity is varied simultaneously with z. We recall that values of z larger than

one give the organisms an intrinsic advantage to specialize into autotrophic
and heterotrophic strategies, while values smaller than one provide a disad-

vantage to specialization. In the figure it can be seen that when only molecular

diffusion takes care of the vertical transport (KV = 9: 10�5m2d�1), the evolu-
tionary equilibrium (SS) will be stable unless z becomes equal to or larger than

unity. This implies that, if they have a intrinsic disadvantage to specialization,

the organisms will always evolve to a mixotrophic strategy and remain on it.
Apparently, the substrate gradients resulting from molecular diffusion are not

sufficient to ‘counteract’ such a disadvantage.
In real life, however, vertical transport is not restricted to molecular diffu-

sion. Eddy or turbulent diffusion is due to extern sources such as wind stress,

and mixes the water much more effectively than does the molecular motion.
Figure 4.4A shows that at higher mixing intensities, the SS becomes unstable,

even though z < 1. In this case, the population may thus split up and special-

ize into autotrophs and heterotrophs, regardless of their intrinsic disadvantage
to specialization. Clearly, increasing the mixing intensity makes the singular

strategy more susceptible to invasion and thus facilitates ecological specializa-
tion.

Although it was shown that an increase in the mixing intensity facilitates

evolutionary branching, it can be theorized that the effect will be reduced at
very high intensities. This is because at high mixing intensities, the water

column will loose its heterogeneous character; even though the light intens-

ity gradient will still be present, the organisms will be circulating randomly
through the column and will on average be exposed to a same amount of light.

Effectively, a completely mixed system will thus be equal to a homogeneous
system, which by definition has no spatial gradient.

However, it was found that high mixing coefficients (KV > 102) lead to the

extinction of the population. At these mixing intensities, the phytoplankton
cells are mixed to great depths and will on average be exposed to light intens-

ities that are too small to allow a net positive population growth. Apparently,

the depth of the water column exceeds the critical depth, which for neutrally
buoyant phytoplankton is equal to the ‘Sverdrup depth’ [21]. This is the depth

at which the integrated autotrophic production exactly equals the integrated
respiration.

To test the effects of a high mixing intensity, we thus needed to reduce the

mixing depth to prevent the population from extinction. In natural systems,
the mixing depth is limited by a thermo- or pycnocline. Here, we simply re-

duced the maximum depth of the water column to 40 and 30 m, respectively;

the steepness of the light intensity gradient and the grid cell size used for dis-
cretization were unchanged; the cost function was assumed to be neutral with

respect to specialization (z = 1). Figure 4.5 shows that high mixing intensit-
ies indeed result in a decrease of the second derivative of the fitness function
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Figure 4.4: Bifurcation diagrams showing the evolutionary outcomes of

the mixotroph system when the shape coefficient z (Equation (4.24)) is

varied simultaneously with (A) the mixing intensity KV and (B) the total

nutrient content XN+; ‘CSS’ denotes that for these parameter values the

organisms will evolve towards a mixotrophic strategy at which they will

remain; ‘EBP’ denotes that the singular strategy is evolutionarily unstable

so that the population may split up and evolve into specialists; the dashed

curve in (A) denotes the critical mixing intensity above which the system

is not viable and in (B) it denotes the critical nutrient content below which

the system is not viable.
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in this graph the cost function is assumed to be neutral with respect to

specialization (z = 1).
(dashed curve for Lm = 40 m, dotted curve for Lm = 30 m). This suggests

that facilitation of evolutionary branching is highest at intermediate mixing in-
tensities. As intermediate mixing intensities result in intermediate gradients of

DIN and ‘light-exposure’, this is in agreement with Doebeli and Dieckmann [8]
who find that at intermediate gradients the facilitation of evolutionary branch-

ing is highest. From the figure it also follows that an increase in the mixing

depth positively affects evolutionary branching and thus supports ecological
specialization.

While increasing the mixing coefficient was thus found to facilitate the pro-

cess of evolutionary branching, it seems to have only a small effect on the final
evolutionary outcomes that result after branching has taken place. The mixo-

trophs again specialize into pure heterotrophs and almost pure autotrophs.
The corresponding adaptive landscape is qualitatively also very similar to the

landscape that was found at the default parameter values (Figure 4.3F, dashed

curve); at higher mixing intensities it just becomes more pronounced, with a
deeper fitness valley between the two coexisting strategies.

4.3.4 Effects of the total nutrient content

Nutrients such as nitrogen and phosphorus are important limiting factors in

aquatic systems. The mixotrophs in our model are nitrogen limited, as can be
seen from the nitrogen depleted layer in the vertical profiles (Figure 4.3B). Al-

though an increase in the total amount of DIN in the system does lead to an
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increase in the amount of biomass, it does not affect the depth of the nitro-

gen depleted layer and neither does it affect the evolutionary outcomes (not
shown). This is because nitrogen does not directly interfere with the light in-

tensity and its gradient.
However, when taking into account self shading, nitrogen content will af-

fect the light intensity gradient indirectly. Self shading decreases the total

amount of available light, and alters the light intensity gradient. In eutrophic
systems (which have a larger total nutrient content) organisms are more abund-

ant, so that a larger proportion of the incoming light is absorbed than in oligo-

trophic systems (with smaller nutrient contents). Figure 4.4B shows the evolu-
tionary stability of the system when XN+ and z are varied simultaneously. Be-

low a critical nitrogen content (XN+ < 28), the system is not viable. At small
nitrogen contents, the singular strategies are evolutionarily unstable (EBPs)

only at a narrow range of z-values where the intrinsic disadvantage to special-

ization is small. At higher nutrient contents, the range of z-values under which
branching will occur has increased. High nutrient contents may thus lead to

ecological specialization under a larger range of cost functions.

This result links evolutionary branching and specialized strategies to higher
nutrient contents and thus to eutrophic systems, while it links mixotrophic

strategies to oligotrophic systems. Indeed, mixotrophs are observed to be most
dominant in oligotrophic environments [1, 17]. This is mostly explained by

the fact that mixotrophs have access to two food sources, which is assumed

to increase their chances of survival when resources are limited [9, 39, 40,
43]. The present result that evolutionary branching is facilitated by eutrophic

conditions more than by oligotrophic conditions may provide an additional

mechanism underlying the association between mixotrophs and oligotrophic
environments.

4.4 Conclusions

4.4.1 Evolution of specialization

The light intensity gradient makes evolutionary branching possible, such that
mixotrophs living in a mixed water column may specialize into separate auto-

trophs and heterotrophs. Because the system is closed for mass, the diffusive
transport of all compounds through the system is essential and makes eco-

logical specialization possible. By affecting the light intensity gradient, also

other environmental properties can acquire influence on the evolutionary be-
havior of the system. It was found that evolutionary branching, and thus eco-

logical specialization, is facilitated most by intermediate mixing intensities and

large mixing depths. Under these circumstances, evolutionary branching may
occur even when the organisms have an intrinsic disadvantage to specializa-

tion (z < 1). If self shading is taken into account, higher nutrient densities
will facilitate specialization as well. This may provide an explanation for the

observation that mixotrophs are more dominant in oligotrophic systems while
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specialized autotrophs and heterotrophs are more often found in eutrophic sys-

tems. Ecological specialization of mixotrophs results in a very simple food web
of autotrophs and heterotrophs, and thus may correspond to the first steps in

the evolution of an ecosystem. As the results show how various environmental
properties facilitate ecological specialization, they provide insight in how the

environment affects the organization of food webs and which environmental

conditions favor the development of ecosystems.
Although nitrogen content and mixing intensity can increase the ranges

of z-values for which evolutionary branching occurs, this increase is not very

large when compared to the full range of possible z-values (Figure 4.4). This
suggests that the shape of the cost function is more important than the envir-

onmental parameters in determining the evolutionary outcomes of the system.
However, the quantitative impact of the spatial heterogeneity, and that of the

environmental properties, may well depend on the degree of heterogeneity

itself; including additional mechanisms that increase the spatial heterogen-
eity (e.g. sinking of detritus) may therefore be of importance before reaching

quantitative conclusions. Also, the quantitative impact of the environmental

parameters depends on the used parameter values, while the model was not
tested against (nor fitted to) empirical data and not all of the parameter values

were empirically based. Therefore, we focus on the qualitative rather than on
the quantitative results of the model. It would be interesting, however, to test

the model predictions experimentally, such that the relative impact of envir-

onmental parameters can be quantified. Unfortunately, such experiments are
difficult to realize. Experimental work with closed few-species ecosystems is

rare; Kawabata et al. [23] managed to maintain a three-species community of

heterotrophic protozoa, saprotrophic bacteria and mixotrophic euglena, but ex-
periments involving closed systems with only mixotrophs are not known to the

authors. Furthermore, the predictions involve evolutionary processes which
requires experiments that continue over long time periods. However, we are

optimistic about future possibilities, as in various experiments microbial pop-

ulations limited by a single resource have been observed to evolve into stable
dimorphisms [12, 42].

4.4.2 Concluding remarks on system structure

The study revealed that the assumptions on mass conservation and spatial

structure can greatly affect the evolutionary outcomes. This should be taken

into account when choosing or developing a model for the study of evolution-
ary behavior. In this final section, we summarize these effects and indicate

their significance with respect to evolutionary speciation processes.
In closed and homogeneous systems, evolutionary branching does not occur

unless the organisms have an intrinsic advantage to specialization (z > 1) [44].

Moreover, for z � 1 phenotypic variation is not possible at all: the population
always evolves to the same (mixotrophic) strategy. Environmental properties

do not have any effect on this.
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Opening the system for mass makes phenotypic variation possible, and pop-

ulations living in a different environment may now each evolve to a different
trophic preference. This process of ‘local adaptation’ of the asexual mixotrophs

may correspond to a speciation process in sexually reproducing organisms.
Such a speciation process would be ‘allopatric’, as the reproductive isolation

of the two descendent species is initially due to their geographical separation.

Introducing a spatial heterogeneity (spatial gradient) in the system, as was
done in the present study, may induce evolutionary branching, even when the

organisms have an intrinsic disadvantage to specialization (z � 1). Hence,

it may cause the mixotrophs to specialize into separate autotrophs and het-
erotrophs. Like local adaptation, evolutionary branching of the asexual mixo-

trophs may correspond to a speciation process in sexual organisms. In this
case, however, speciation would be ‘sympatric’, as the two descendant species

live in the same or in overlapping areas and geneflow is thus not hindered by

geographical barriers.
Finally, we showed that habitat segregation resulting from a spatial het-

erogeneity will be found more often in studies of open systems than in those

considering closed systems. This is related to the mutual dependencies and
feed back loops inherent to the full mass recycling which may restrict the de-

gree of spatial heterogeneity and its effects. Evolutionary branching resulting
in habitat segregation suggests the possibility of an adaptive route to allopatric

or parapatric speciation [38].

Appendix: The mixotroph model

State variables and ODEs

This appendix gives a detailed discussion on the growth equations of the mixo-

troph model. The spatial structure and vertical transport are discussed in the

main text. Although all state variables depend on time t and on depth Lz, here
we discuss only how they depend on the time, while their depth is considered

to be fixed. The model is based on the mixotroph model presented by Kooij-

man et al. [29] and is based on the Dynamic Energy Budget (DEB) theory. The
population dynamics of the mixotrophs were simplified according to the same

assumptions made by Troost et al. [44], which are discussed in appendix 4.4.2.
The model has only one state variable for the mixotrophic organisms (bio-

mass XV), and three state variables to describe the abiotic environment (de-

tritus XD, dissolved inorganic carbon (DIC) XC and nitrogen (DIN) XN). The
latter two states consist of one nutrient only, while biomass and detritus are

thought of as generalized compounds containing both carbon and nitrogen and

other elements in a fixed chemical composition. It is assumed that elements
other than carbon and nitrogen are not limiting the growth of the organisms.

The system is closed for mass, but open to energy (light and heat production).
The four state variables partake in five transformations: assimilation A

(autotrophic AA and heterotrophic assimilation AH), growth G, maintenance
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Table 4.2: Symbols used for variables.

Symbol Dimension Interpretationt t TimeLz l Depth below water surfaceXi mol l�3 Concentration of compound iXi+ mol Total amount of compound ifi � Scaled functional response for element/process ih t�1 Hazard rateJi;j mol i t�1 Flux of compound i associated with transformation jji;j mol i
mol V t�1 Structure-specific flux of compound i: Ji;j=MVji;Am mol i
mol V t�1 Struct-spec. max assimilation flux, of compound iji;AK mol i
mol V t�1 Struct-spec. max saturation flux, of compound iKi mol l�3 Saturation constant for compound iKV l2t�1 Turbulent mixing coefficientkM t�1 Maintenance rateni;j � Chemical coefficient for element i in compound jyi;j mol i
mol j Mol compound i required per mol compound jz � Shape coefficient for the cost functionzi � Flux ratio ji;Am=ji;AK for compound i� l�1 Background turbidity coefficient�i l2mol i�1 Specific absorption coefficient for compound i�i � Affinity for assimilation route i (autotrophic or heterotrophic)M and death H . An overview of these transformations was already given in

the main text, accompanied by Figure 4.1. A more detailed diagram is given
in Figure A1, which shows the symbols for all fluxes. DIC and DIN are assim-

ilated via the autotrophic route and their specific uptake fluxes are denoted byjC;AA and jN;AA ; the resulting autotrophic assimilation flux is jV;AA . Detritus
is taken up by the heterotrophic route, whose uptake flux is denoted by jD;AH;

the resulting heterotrophic assimilation flux is jV;AH . The two assimilation
fluxes are combined into a total production rate jV;A. Part of these assimilates

are transformed into biomass (jV;G); maintenance costs (jV;M) and overhead

costs take care of the conversion of organic material back into inorganic nu-
trients ((1 � y�1C;V)jV;AA , (yD;V � 1)jV;AH and (1 � y�1C;V)jV;AH). The biomass

density is diminished through mortality (jV;H); upon death, the biomass of

these organisms turns into detritus (jD;H). The notation of these fluxes and
the corresponding equations are introduced in Table 4.2; default values of the

parameters are given in 4.3.
The amounts of biomass, detritus and DIC are all expressed in the num-

ber of moles of carbon. Therefore, at transformations without additional costs

or losses, the production flux equals minus its associated uptake flux: jV;H =�jD;H and jV;M = �jC;M. Also, biomass is assumed to have a constant chem-

ical composition, and nN;V specifies the fixed amount of nitrogen per mole

carbon. As a result, the uptake flux of DIN jN;AA equals nN;V times jC;AA ; sim-
ilarly, also other fluxes involving nitrogen can be rewritten: jN;M = nN;V jC;M
and jN;AH = nN;V jC;AH . Finally, the specific maintenance and death rates of
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Figure 4.6: Detailed diagram of the metabolism of a mixotroph, show-

ing the symbols of the fluxes. The shaded box encloses the organism, the

lighter part of which denotes its membranes containing the assimilatory

machinery. A circle denotes a Synthesizing Unit (only SUs with two or

more substrates are shown). The organism has one state variable for bio-

mass XV; the environment consists of three states: dissolved inorganic

carbon XC, dissolved inorganic nitrogen XN and detritus XD. Arrows

indicate the structure-specific transformation fluxes.

the mixotrophs are assumed to be constant, so that jV;M = kM and jV;H = h.
The temporal changes in state variables can now be summarized as follows:ddtXC = XV(jC;AA + jC;AH + kM); (4.11a)ddtXN = XV(jC;AA + jC;AH + kM)nN;V; (4.11b)ddtXD = XV(jD;AH + h); (4.11c)ddtXV = XV( jV;G � h); (4.11d)

where Xi is the concentration of state variable i and ji;j is the specific flux of
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Table 4.3: Default parameter values.

Parameter Value Dimensionh 0:1 d�1jL;F(0) �1 mol mol�1 d�1jL;FK 50 mol mol�1 d�1jV;AAm 4:5 mol mol�1 d�1jV;AHm 4:0 mol mol�1 d�1KC 500 �MKN 0:1 �MKD 2500 �MKV 0:5 m2 d�1kM 0:1 d�1Lm 70 mnNV 0:15 –XC+ 2400 �MXN+ 40 �My0 1:1 mol mol�1yA 0:5 mol mol�1yH 0:1 mol mol�1yD;V 1:3 –z 1 –zC 0:1 –zN 0:1 –zCH 0:01 –� 0:07 m�1�D 0:1 m2mol�1�V 0:05 m2mol�1
compound i partaking in transformation j. The fluxes are given by:jC;AA = �jV;AAyC;V ; (4.12)jC;AH = �jD;AH � jV;AHyC;V ; (4.13)jD;AH = �yD;V jV;AH ; (4.14)jV;G = jV;AyC;V � kM: (4.15)

The transformation of detritus into assimilates comes with overhead costs.

The yield coefficient yD;V determines the fraction of detritus required per amount
of produced assimilates. To compensate for the loss in this transformation, an

additional amount of detritus is taken up. Therefore, the uptake flux of detritusjD;AH is equal to minus the amount of assimilates that is used for heterotrophic
assimilation jV;AH times the yield factor yD;V (equation (4.14)).

From the assimilation products, maintenance costs are paid; the resulting
amount of material is used for growth (see equation (4.15)). At the transform-

ation of assimilates into biomass, again overhead costs have to be paid again,

which is in this case taken care of by means of the yield coefficient yC;V. DIC is
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thus taken up by autotrophic assimilation, but due to the overhead costs, not

all of the carbon becomes biomass; the ‘lost’ carbon is released in the environ-
ment in its inorganic form again. The same goes for DIN and detritus: part of

these resources that are taken up for assimilation are released again into the
environment in the form of DIC and DIN.

It is assumed that the overhead costs are paid from the assimilates pro-

duced in both assimilatory routes, and in proportion to the two assimilatory
fluxes. DIC and DIN fluxes due to overhead costs paid by the autotrophic

route come back into the environment in the same form (inorganic) as they

were taken from it. Therefore, these can be ‘bypassed’ in calculating jC;AA .
This flux is then equal to minus the amount of DIC that is taken up is from

the environment for assimilation (jV;AA), plus the amount of DIC that is re-
leased through overhead costs; latter amount can be calculated by subtract-

ing the amount that is actually transformed into biomass (jV;AA=yC;V) from

the amount that is taken up (jV;AA). This results in the following equation:jC;AA = �jV;AA + (jV;AA � jV;AA=yC;V), which can be simplified into jC;AA =�jV;AA=yC;V (equation (4.12)).

Similarly, the amount of DIC that is released from the heterotrophic routejC;AH is equal to the difference between the amount taken up for assimila-

tion jV;AH and the amount that is actually transformed into biomass: jV;AH �jV;AH=yC;V. But, also at the transformation of detritus into assimilates, over-

head costs had to be paid and DIC and DIN were released. These losses are

equal to the difference between the amount that is taken up for assimila-
tion (yD;V jV;AH) and the amount that is actually transformed into assimilates(jV;AH). Combining these two release fluxes of DIC in the environment results

in the following equation: jC;AH = (yD;V � 1)jV;AH + (jV;AH � jV;AH=yC;V).
This equation can be simplified as jC;AH = yD;V jV;AH � jV;AH=yC;V in which

the first term can be substituted by �jD;AH (equation (4.13)).
The deviation in equations (4.12-4.15) from Kooijman et al. [29] is caused

by the extra overhead costs that were included for the production of biomass

by means of yC;V. These costs were introduced by Troost et al. [44] as to
provide a trade-off between autotrophy and heterotrophy. Without such costs,

the mixotrophs could increase both their assimilatory capabilities without any

negative consequences. Although in the present study yet another trade-off
is assumed (see Equation (4.1)), these additional overhead costs were main-

tained. This provides the possibility to include an intrinsic advantage to either
mixotrophic or specialist strategies, and makes it better possible to compare

the present results with those of the previous study. In the next section these

costs and the assimilation fluxes jV;AA , jV;AH and jV;A are explained.

Assimilation

Mixotrophs have two assimilatory pathways, the autotrophic and the hetero-

trophic one, of which the products are combined substitutably for biomass pro-
duction. In the model, a central role is played by the affinities that the organ-

isms have for each of these two assimilatory pathways; �A for the autotrophic
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route and �H for the heterotrophic route. A higher affinity may be interpreted

as an increase or an improvement in the assimilation machinery that results in
a higher assimilation flux.

Autotrophic and heterotrophic assimilation fluxes jV;AA and jV;AH are pro-
portional to the affinities, to the maximum assimilation rates jV;AAm and jV;AHm,

and to the functional responses fA and fH:jV;AA =�A jV;AAm fA; (4.16)jV;AH =�H jV;AHm fH: (4.17)

In Kooijman et al. [29] the affinities were not included in the assimilation
fluxes, but in the gross growth flux jV;A. Another difference is that here we as-

sume that no limitation exists to the total assimilation flux (see section 4.4.2).

The total assimilation flux then becomes:jV;A = jV;AA + jV;AH : (4.18)

The functional responses fA and fH are modeled with use of Synthesizing
Units (SUs) cf. Kooijman [26, 27], which provide a simple and realistic method

for calculating production fluxes at simultaneous nutrient and light limitations.

Planktonic protists have a photosynthetic system that consists of two photosys-
tems, with which they stepwise convert carbon dioxide, nitrogen and light into

biomass. First, carbon dioxide and photons are bound by carriers. Then, the

carbon dioxide is reduced into a carbohydrate. Nitrogen is bound and, together
with the carbohydrates, synthesized into biomass. This process can be modeled

by coupling several SUs. Binding fluxes of carbon fC and nitrogen fN can be
calculated by a simple one-substrate SU; the reduction rate of carbon fCH can

be calculated by a complementary SU for which both carbon and electrons are

essential. Finally, fA can be calculated with again a complementary SU for
which both carbohydrate and nitrogen are essential:fC = XCKC +XC ; (4.19)fN = XNKN +XN ; (4.20)fCH = (1 + z�1C )1 + z�1C f�1C + x�1L � (zCfC + xL)�1 ; with xL = �JL;FJL;FK ;(4.21)fA = �1 + z�1N + z�1CH � (zN + zCH)�1�1 + z�1N f�1N + z�1CHf�1CH � (zNfN + zCHfCH)�1 ; (4.22)

where Ki is the saturation constant for compound i and zi a scaling parameter

that weighs the contributions of carbon C, carbohydrates CH and nitrogen N .
Light influx JL;F (negative, because photons flow in) is scaled with parameterJL;FK so that a multiplication of these two fluxes with an arbitrary number
(different from zero) has no effect. At the surface of the water column, the

light influx can be taken proportional to the solar irradiance (photon flux per
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unit of surface area of water/ air boundary layer). Below the surface the light

influx depends on the depth according to equation (4.5) (with selfshading) or
to equation (4.6) (without self shading). The functional response of the hetero-

trophic route fH depends on the binding of detritus, which can be represented
by a one-substrate SU: fH = XDKD +XD ; (4.23)

in which KD is the saturation constant for detritus.

Affinities for either pathway are assumed to entail costs for building the

necessary machinery, which are taken care of by means of the yield coefficientyC;V. This yield coefficient consists of certain base costs y0, increased by ex-

tra costs for building the assimilation machineries yA and yH, which for both

pathways is proportional to the corresponding affinity:yC;V = y0 + yA(1� (1� �A)z) + yH(1� (1� �H)z): (4.24)

We recall that in this paper we took � = �A = 1 � �H. The parameter z de-

termines the shape of the cost function; convexly shaped cost functions (z > 1)
give the organisms an intrinsic advantage to specialized strategies, while con-

cave cost functions (z < 1) give them an intrinsic advantage to mixotrophic

strategies. The fourth term in the cost function (yAH) as it was used by Troost
et al. [44], involving costs due to the interaction between the two assimilat-

ory routes, was for simplicity not taken into account (yAH = 0). Based on
Raven [40], the costs related to the autotrophic machinery yA were assumed

to be higher than the costs related to the heterotrophic machinery yH. The

costs are paid by both assimilatory pathways (jV;AA and jV;AH), proportional
to the contribution of these pathways to the total assimilation flux jV;A, see

equations (4.12), (4.13) and (4.18).

Simplifications

As mentioned above, the population dynamics of the mixotrophs were simpli-

fied according to the same assumptions that were done in [44]. These assump-
tions were found to have no qualitative and only a small quantitative effect on

the evolutionary outcomes, while they simplify the model considerably.
The first simplification concerns the structure of the organisms. The mixo-

trophs are assumed to consist only of structural biomass and not to have stor-

age pools or reserves. Reserves may be very important when studying the
transient behavior and ecological dynamics of a system and in particular when

considering a fluctuating environment. However, here we assume a constant

environment; in addition, we study the evolutionary dynamics of the system
for which we assume that the system is always in steady state at an ecological

time scale.
Secondly, it is assumed that no limit exists to the total assimilation ratejV;A, which was done by increasing the maximum assimilation rates (kA and
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by simply adding the autotrophic and heterotrophic assimilation rates jV;AA
and jV;AH . This makes the maximum assimilation rates (kA and kH) as well as

the intermediary assimilation fluxes that were used in [29] (jVA;AA and jVH;AH)
redundant, and thus leads to a simpler formulation. Again, this assumption

mainly affects the transient dynamics of the system.

Thirdly, DIN was assumed not to play a role in the heterotrophic assimila-
tion route. In the model of Kooijman et al. [29], detritus was complemented

with DIN in order to synthesize the nitrogen-rich reserves. Here, we assume

that DIN does not affect the heterotrophic route at all, and the flux is removed
from the equations. In the base model, the saturation constant for the uptake of

DIN via the heterotrophic route KNV was already set to a small value, such that
the heterotrophic assimilation rate was hardly affected by DIN. Since the two

models become equal when the saturation constant goes to zero (KNV ! 0),
they are effectively very similar.

Finally, we used a more common formulation of Lambert-Beer’s law (4.5)

by removing the maximum depth Lm out of the equation. This resulted in a

different interpretation and dimension of �.

Numerical methods

To calculate the steady state vertical profiles of the four variables (XC, XN,XD, XV), the equations are solved with the method of lines: first the spatial
derivatives are discretized using central differences on a regular grid consisting

of N cells; then, the resulting system of 4N ordinary differential equations is

solved by numerical integration. For this we use a standard FORTRAN routine
from the IMSL library for implicit integration of ODEs (DIVPAG), which can

handle stiff systems. To speed up the calculations, the routine is set to select the
chord method in which the Jacobian is replaced by a diagonal approximation

based on a directional derivative. It turns out that a value of N = 40 gives

sufficiently accurate results. Because the plankton cells are assumed to be
neutrally buoyant, we do not have an advection term in the reaction-diffusion

equations. This makes it rather straightforward to solve them. When taking

into account self shading, the depth integral in Equation (4.5) classifies the
PDE model as an integro-PDE, which is computationally more demanding than

simulation of standard PDEs [19]. Calculations, however, did not raise any
problems.

To calculate the evolutionary outcomes, we need to calculate the invasion

fitness of potential mutants. In the heterogeneous environment, the specific
growth rate of the mutants varies with depth. Therefore, we can not use their

specific growth rate as the invasion criteria straight away, but we have to take

into account the distribution of the resident and the mutant population over the
depth of the water column. Mathematically, this comes down to calculating the

dominant eigenvalue �, evaluated in the SS of the linearized discretized system
that includes the mutant. If � is negative, the mutant cannot invade; if � is

positive, the mutant is able to invade. Therefore, an additional state variable
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for the mutant is included in the model; its density was set to zero (XVmut = 0)
as mutants are assumed to be rare. The resulting system now consists of 5N
ODEs.

The Jacobian of this system is calculated with a FORTRAN routine (again
from the IMSL library) that uses forward differences (DFDJAC), and the asso-

ciated eigenvalues are found with the routine DEVLRG. Because mass balances

are applied to the total carbon and nitrogen content in the system, always two
of the resulting eigenvalues are zero. The resident population is assumed to be

in stable equilibrium with its environment, so all other eigenvalues of the sys-

tem without the mutant are negative. For the system including the mutant, the
largest eigenvalue (other than the two zeros) represents the long term growth

rate of the mutant and thus its invasion fitness: s�res (�mut) = �. The evol-
utionary equilibria, at which the first derivative of the fitness function at the

strategy of the resident is equal to zero (D1 = 0), were found with the bisection

method. The second derivatives of the fitness function (D2) are determined
quantitatively by taking second order central finite differences.
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[14] Geritz, S. A. H., Kisdi, E., Meszéna, G., and Metz, J. A. J. (1998). Evol-

utionary singular strategies and the adaptive growth and branching of the

evolutionary tree. Evolutionary Ecology, (12):35–57.

[15] Geritz, S. A. H., Metz, J. A. J., Kisdi, É., and Meszéna, G. (1997). Dy-
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Joint evolution of predator body

size and prey-size preference

Tineke A. Troost, Bob W. Kooi, Ulf Dieckmann

Abstract

We studied the joint evolution of predator body size and prey-size prefer-

ence based on Dynamic Energy Budget theory. The predators’ demography

and their functional response are based on general eco-physiological prin-

ciples involving the size of both predator and prey. While our model can

account for qualitatively different predator types by adjusting parameter

values, we mainly focused on ‘true’ predators that kill their prey. The res-

ulting model explains various empirical observations, such as the triangu-

lar distribution of predator-prey size combinations, the island rule, and the

difference in predator-prey size ratios between filter feeders and raptorial

feeders. The model also reveals key factors for the evolution of predator-

prey size ratios. Capture mechanisms turned out to have a large effect on

this ratio, while prey-size availability and competition for resources only

help explain variation in predator size, not variation in predator-prey size

ratio. Furthermore, predation among predators is also identified as an im-

portant factor.
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5.1 Introduction

The range of body sizes encountered in nature is enormous. A bacterium with

full physiological machinery has a volume of 0:25 � 10�18 m3, while a blue
whale has a volume of up to 135 m3. These body sizes are associated with the

different scales in time and space in which organisms live, and reflect the dif-

ferences in physiological processes and life histories. A wide range is also found
in the prey-size preference of predators: consider, for example, whales feeding

on plankton and hyena eating zebra. Like body size, the prey-size preference is
an important ecological property, as it determines which trophic links between

predators and prey are established. Together, the body size and the prey-size

preference of predators largely define the structure of a community. While the
effects of body size on individuals and populations has been investigated from

many angles [4, 25, 40, 49], general relationships between a predator’s body

size and its prey-size preference are more difficult to find.
Various mechanisms have been proposed that attempt to explain predator-

prey size ratios and prey-size preferences. These include passive selection
mechanisms such as prey visibility [41, 43] or gape limitation [17, 24, 35, 41].

Active selection mechanisms, on the other hand, underlie optimal foraging

theory, which assumes that predators select prey sizes that provide the best
energy returns. Several mechanisms based on active selection are discussed

in [16, 23, 30, 32, 42, 44]. However, since results vary both within and

between predator-prey systems and the found relationships are greatly species-
specific, it is difficult to extract general rules from them.

In recent years, several models have been developed that focus on general
large-scale patterns of feeding links in food webs. Some of these models, such

as the cascade model [8] and the niche model [48], are able to generate food

webs that approximate many features observed in real food webs. However,
these models are often descriptive and predator-prey pairs are assigned at ran-

dom. Other models do have a more mechanistic basis and include physiological

relations based on body size, but assume a fixed predator-prey size ratio [31].
Aljetlawi et al. [1] derived a functional response that accounts for both pred-

ator and prey size: the derived relation is sufficiently flexible to be adjusted
to many different specific predator-prey systems. This very flexibility, however,

limits the scope for deriving general rules.

In this study we combine a process-based eco-physiological model with a
functional response that depends on the size of both predator and prey. The

model is based on Dynamic Energy Budget (DEB) theory [28, 29], a versatile

framework for modeling metabolic processes with physiological rules for up-
take and use of material and energy. DEB theory does not specify all details

of the size-dependence of the functional response. One of our aims here is to
make the terms underlying this functional response explicit and, where neces-

sary, include additional terms, while staying as close to DEB theory as possible.

We do not arbitrarily choose predator-prey size ratios, but instead allow
the predator size and its prey-size preference to evolve independently. The ob-

jective is to study which size combinations between predators and preys are
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feasible and to which predator-prey size ratios the considered population or

community will eventually evolve. More specifically, we study how patterns of
predator size and prey-size preference depend on various factors, given a fixed

prey-size distribution; the examined factors include environmental parameters
and ecological parameters, with the latter describing predation as well as com-

petition. The model focuses on a generalized predator with two life stages,

and therefore is not intended to replace more species-specific studies on size-
selective prey choice. By retaining a general perspective, we hope that the res-

ults reported below will provide insights into the various factors determining

predator-prey size ratios, and thereby will help understanding of predator-prey
size patterns observed in nature.

5.2 Model description

5.2.1 Population dynamics

We consider a predator-prey model in which a population of predators feed
on one or more populations of prey. The predators are described by one state

variable, their biomass density XA (given by the total amount of structural
biovolume per unit of system volume), and by two adaptive traits, their adult

length `A and their preference for a prey length `P. The two adaptive traits

remain constant throughout an individual’s life, but may change from parent
to offspring through mutation. Prey populations are described by their biomass

density Xi per volume, and consist of organisms of length `i, with i = 1; : : : ; n.

The prey populations do not directly interact with each other.
Our model is based on a model of a size-structured rotifer population [26,

27], of which we use a simplified version that includes only two life stages for
the predator, embryos and adults. Embryos do not feed, but grow by using

the reserves they got from their mothers when eggs were produced. Adults, in

contrast, do not grow but they do feed; the acquired energy is used for main-
tenance and egg production. Separating the functions of growth and feeding

simplifies the model, but also removes intraspecific body size scaling relations.

The interspecific scaling relations, however, are maintained. These include a
size-dependent egg-production period aA and a size-dependent developmental

period of the embryo ab. A continuous function for reproduction allows the
system to be expressed in terms of delay differential equations (DDEs). The

dynamics of the system can then be described as follows,

d

dtXi(t) = (Xr;i �Xi(t))D � Iifi(t)XA(t); (5.1a)

d

dtXA(t) = R(t� ab) exp (�hab)XA(t� ab)� hXA(t); (5.1b)

where Xr;i is the incoming density of prey i, fi is the predator’s functional re-

sponse to prey i (to be further discussed in Section 6.2), Ii is the maximum
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volume-specific ingestion rate of prey i (which equals the inverse of the hand-

ling time [th;i℄ multiplied by the probability �s that an attack is successful,Ii = �s=[th;i℄, where the square brackets indicate that the handling time is

expressed on a volume-specific basis), D is the dilution rate of prey, and h is
the predator’s mortality rate. The predator’s egg development time ab depends

on the specific energy conductance kE, ab = 3=kE [26]. The predator’s repro-

duction rate is given by R(t) = hexp(haA(t))� 1 ; (5.2)

(see [26]), which depends on the mortality rate h to account for the removal

of unhatched eggs due to mortality of their mothers. For small mortality rates,
the reproduction rate equals the inverse of the egg-production period, R(t) =1=aA(t).

An expression for aA(t) was derived by Kooi and Kooijman [26]. Their ex-
pression is given by the ratio between the amount of energy needed per egg and

the rate with which energy becomes available for reproduction. The latter de-
pends on the scaled energy density e of the mother (i.e., on the volume-specific

amount of energy [E℄ divided by the maximum energy content [Emax℄) and on

the specific energy conductance kE. At equilibrium, the scaled energy density e
of an adult equals its scaled functional response f , so that the amount of mobil-

ized energy equals kEf . From the mobilized energy, the costs of maintenance

have to be paid, calculated by multiplying the maintenance rate coefficientkM (ratio of costs for maintenance per unit of time to costs for growth) with

the energy investment ratio g (the proportion of the total amount of available
energy that is used for growth). The scaled energy density required to pro-

duce an egg consist of the costs for the structural biomass of a newborn indi-

vidual and the costs for growth and maintenance during the embryonic period,g+ = g + 34gkM=kE [26], as well as the energy density of a newborn individual

itself, ê. Based on these considerations, the egg-production period is obtained

as aA(t) = g+ + ê(t)kEf(t)� kMg ; (5.3)

[26]. For a more detailed explanation of the model, including derivations ofab, R, aA, and g+, readers may want to consult [26] and [27]. All paramet-

ers and variables of the model are summarized in Table 5.1, with all default

parameter values listed in Table 5.2.

5.2.2 Scaling considerations

Because this study considers adult length to be subject to evolution, some body-

size scaling relations had to be included that were not taken into account in
the original model [26, 27], where body size was fixed. First, the energy in-

vestment ratio g was no longer assumed to be constant, but instead becomes
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Table 5.1: Parameters and state variables of the model.

Symbol Dimension Interpretation

Physiological parametersab; aA t Egg-development time and egg-production time; ab = 3=kEe; ^e � Scaled energy density, of adult and of newborn individuals; e = [E℄=[Emax℄ = f[E℄; [Emax℄; [Emax℄ref eL�3 Volume-specific energy density; actual, maximum, and referenceg; g+ – Energy investment ratio for biomass and embryo growth; g+ = g + 34 gkM=vh t�1 Mortality ratekE t�1 Specific energy conductance; kE = v=`AkM t�1 Maintenance rate coefficientR t�1 Reproduction rate� – Proportion of the maximum size that is reached; � = `A=`maxv Lt�1 Energy conductance

Trophic parametersb; b0 l3L�3t�1 Volume-specific encounter rate and encounter rate coefficientD t�1 Dilution ratef; fi � Functional response; overall, and with respect to prey population iIi L3L�3t�1 Maximum volume-specific intake rate for prey population i`i; `max; `ref L Length of individuals of prey population i; maximum length of predator; reference lengthtg; tc; th t Ingestion, capture, and handling time[th℄; [th;i℄; [th℄ref L3L�3t Volume-specific handling time: actual, with respect to prey population i, and minimum.[tg;0℄; [tc;0℄ L3L�3t Coefficients for volume-specific ingestion and capture timeXr;i; Xr;0 L3l�3 Incoming prey density; function, and scaling coefficientÆ L Distance between the successive lengths of incoming prey-size distribution� L Mean length of incoming prey-size distribution�P; � � Standard deviation; of attack probability (niche width), and of incoming prey-size distribution�a; �s � Attack probability and capture efficiency

Ecological state variablesXA; Xi L3l�3 Structural volume density of (adult) predators and of prey population i

Evolutionary state variables`A L Adult length of predator`P L Prey-size preference of predator

Units: t, time; L, length of individual; l, length of reactor; e, energy.
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Table 5.2: Default parameter values.

Parameter Default value~b0 1000~D 0.1~̀
ref 1[~tc;0℄ 3.5[~tg;0℄ 0.77� 0.1�P 0.05~� 0.25�s 1~� 0.5

Tildes indicate that parameters are scaled by v, kM and/or Xr;0 to make them dimensionless.

dependent on body volume `3m, following an expression central to DEB theory,g = �=(kM `max) [28]. Note that the adult body size `A of the predators is a

fixed proportion � of their maximum size, `A = � `max. This enables the model

to cope with predators that quickly grow to adult size, without slowing down
as would be expected from an asymptotic growth curve.

Second, the specific energy conductance kE is equal to the energy conduct-
ance � divided by the size of the organism, kE = �=`A. The rationale behind

this scaling relation is that energy is mobilized across membranes, which have

a surface area proportional to that of the organism. As a result, the develop-
mental period of the embryo becomes dependent on adult body size as well,ab = 3`A=�. Third, the mortality rate h was assumed to scale with length, such

that larger organisms have a longer life span, h = D `ref=`A; at the reference
length `ref mortality rate h is equal to dilution rate D. As such, the dilution

rate serves as a measure for the harshness of the environment.
Like in the original model [26, 27], the scaled energy density of the eggs ê

is assumed to depend on the scaled energy density e of the mother. However,

the present study considers various prey sizes, and the scaled energy density e
varies with prey size. Therefore, we assume that the mother does not provide

her eggs with an energy density [E℄ that equals e when scaled to her own max-

imum energy density [Emax℄ (which depends on the actual prey availability).
Instead she assumes the worst-case scenario for her eggs, and provides them

with an energy density [Ê℄ that equals e when scaled against the maximum
possible energy density [Emax℄ref. This ensures that the model does not allow

for the unrealistic scenario in which mothers deliberately lower their energy

densities by choosing prey with large handling times, in order to increase their
reproduction rates. The scaled energy density of eggs is thus given byê = [Ê℄[Emax℄ = [Ê℄[Emax℄ref

[Emax℄ref[Emax℄ = [Emax℄ref[Emax℄ e: (5.4a)
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If we again use e = f , this can be rewritten as[Emax℄ref[Emax℄ e = [Emax℄ref[Emax℄ f = [th℄[th℄ref
f; (5.4b)

where the last step follows from the fact that the maximum energy density

is proportional to the maximum ingestion rate, while the maximum ingestion
rate is the inverse of the handling time, so that [Emax℄ / 1=[th℄, [28], p. 269.

5.2.3 Incoming prey densities

The model introduced above can be analyzed either for a single or for multiple

prey populations. In the latter case, the incoming prey densities Xr;i were

assumed to vary gradually across prey populations, following a distribution
with mean prey size �, (dimensionless) standard deviation �, and maximum

density Xr;0, Xr;i = Xr;0 Æ�p2� exp �12 ln(`i=�)2�2 !; (5.5)

where Æ denotes the distance between the successive lengths of prey. For nu-

merical purposes, this prey-size distribution was truncated at +3 and at �3
times the standard deviation �, thus representing 98% of the total distribution.

We found that a resolution of n = 50 was sufficient to ensure that results were

essentially unaffected by discretization of the prey-size distribution.

5.2.4 Functional responses

The sequence of capturing a prey consists of encounter, attack, and handling.

These interactions between predator and prey are assumed to follow a Holling

type-II functional response,f = nXi=1 fi , with fi = Xi=Ki1 +Pnj=1Xj=Kj and 1=Kj = �a;j bj [th;j ℄; (5.6)

where Ki is the half-saturation constant of the functional response to prey i,bi is the volume-specific encounter rate of the predator with prey i, �a;i is the

attack probability for prey i, and [th;i℄ is the volume-specific time required for

handling prey i. These terms and their dependencies on the body sizes of
both predator and prey, `A and `i, as well as on the prey-size preference of

the predator, `P, are discussed below. In line with DEB theory, we base these

relationships on general scaling principles involving the lengths `, surface areas`2, or volumes `3 of the involved organisms. As a result, the relations derived

here are less detailed than the relations derived by, e.g., Aljetlawi et al. (2004);
our assumption below of fixed scaling exponents also avoids problems with

varying dimensions, and thus interpretations, of scaling coefficients.
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Encounter rate b. The encounter rate bi of a predator with a prey of size `i
arises from encounters within the predator’s search area. This search area is
assumed to be proportional to the predator’s surface area, b / `2A, as is the

case, for instance, for sessile filter feeders that orient their arms perpendicular
to the current. For filter feeders that generate their own current, the encounter

rate equals the filter rate. Their flapping or beating frequency is observed to be

independent of their size [28], such that the generated current is proportional
to the surface area of their extremities, and thus again to their surface area.

Other organisms may lay in ambush and capture prey that come within reach,

i.e., within a distance that is proportional to the length of a leg or jaw or
tongue, such that also here the encounter rate scales with surface area. Mobile

organisms generally move with a speed proportional to their length: if the
width of the path searched for food is proportional to length, this again leads to

an encounter rate that scales with surface area. The encounter rate also scales

with the surface area of the prey `2i , as the prey’s visibility or detectability is
assumed to be proportional to the prey cross-sectional area or silhouette. In

summary, we assume bi / `2A`2i . Because the population dynamics above were

expressed on a per-volume basis, bi is divided by the volumes of predator and
prey, leading to the following relationship,bi = b0 `2

ref`A`i ; (5.7)

where the lengths are measured relative to a reference length `ref, so that

the encounter rate coefficient b0, which controls the absolute value of the en-

counter rate, has the same dimensions as bi. Without any loss of generality,
reference lengths were taken as equal for predator and prey.

Attack probability �a. The predator prey-size preference `P is assumed to

evolve separately from the predator’s adult body size `A and is not imposed by
morphological constraints such as limited gape size. Even though such struc-

tural limits may exist, we assume here that they are adjusted to the prey-size

preference, rather than vice versa. The probability �a with which a predator
attacks a prey of size `i is assumed to be log-normally distributed and depends

on the prey-size preference `P and (dimensionless) niche width �P,�a;i = exp �12 ln(`i=`P)2�P
2 ! : (5.8)

On encounter, a prey exactly of the preferred size `P will thus be attacked with
certainty.

Handling time th. In general, the time required for handling each prey item

comprises the time needed for capture and ingestion.
Ingestion is the process by which the prey is physically taken up into the

body of the predator, passing through, for instance, its outer membrane or
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its gut wall. First of all, ingestion time tg is assumed to be proportional to

the amount of prey biomass that has to be ingested, and thus, for one prey
individual, proportional to the prey volume, tg;i / `3i .

In addition, for intraspecific comparisons, DEB theory assumes the ingestion
time to be inversely proportional to the surface area through which the intake

occurs, and this surface area is assumed to scale with the total surface area `2A
of the predator. For small individuals, which have a favorable ratio between
surface-area and volume, the ingestion time will thus be small, while for lar-

ger individuals, it will be large. In this study, however, we assume all adult

individuals of a population to have the same size, `A. For interspecific com-
parisons, DEB theory assumes ingestion rates to be proportional to maximum

length, `max, which implies that tg / `�1m. Such a scaling may, for instance,
be related to gut capacity (body plan) or diet composition of the predator.

Capture time is assumed to depend on the relative sizes of predator and

prey. Larger prey require a longer capture time because they may be better
protected, resisting more strongly, or have to be cut into chunks before being

ingested. Specifically, we assume that the capture time increases faster with

prey size than does the corresponding yield, which implies that it is propor-
tional to size with an exponent larger than 3; as a default, here, we assume an

exponent of 4, tc / (`i=`A)4.
The total handling time th equals the mean length of the handling process,

consisting of capture and ingestion,th;i = tc;i + �stg;i= tc;0 ( `i`A
)4 + �s

tg;0`max

`3i`2A ; (5.9)

where tg;0 and tc;0 are the ingestion and capture coefficients, and �s is the

fraction of attacked prey that is actually captured; only this fraction has to be
ingested. As a default, all attacks are assumed to be successful, �s = 1; the

effects of reduced capture efficiencies are studied in Section 5.5.5.

Because adult size increases with maximum size, and since all adult or-
ganisms are assumed to possess adult size, `max can be substituted with `A=�.

The time th;i that a predator needs for handling an individual of prey i can
be converted into the volume-specific handling time [th;i℄, which measures the

time that a volume-unit of predator needs for handling a volume-unit of preyi, through multiplication with (`A=`i)3,[th;i℄ = [tc;0℄ `i`A
+ �s�[tg;0℄: (5.10)

The total handling time [th℄ given the actual prey-size availability is the

sum of prey-size specific handling times [th;i℄ weighted with the fraction �i of
all attacks that are directed at prey i,[th℄ = nXi=1 �i[th;i℄; with �i = �a;ibiXiPnj=1 �a;jbjXj : (5.11)
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Finally, [th℄ref (5.4a) is the absolute minimum, or reference, handling time,

which equals [th;i℄ at infinitely small prey-sizes, [th℄ref = [th;i℄��`i=0 = �s�tg;0,
and thus only depends on predator size.

5.2.5 Choice of units

The model presented above was scaled by maintenance rate kM, energy con-

ductance v, and incoming prey density coefficient Xr;0. Scaling renders the
outcomes independent of these parameters. The unit of time, t, is chosen ask�1M , the unit of predator and prey length, L, is chosen as v=kM, and the unit of
reactor length, l, is chosen as 3pXr;0 kM=v; the latter unit, however, only fea-

tures in the dimensions of biomass-volume densities, L3l�3, which are made

dimensionless simply through division by Xr;0.
The remaining variables and parameters, which then become dimension-

less, are denoted by a tilde: for instance, the predator size `A (dim: L) was

divided by v (dim: Lt�1) and multiplied by kM (dim: t�1) so that the scaled
length ~̀

A is dimensionless. The scaled predator and prey densities are indic-

ated by x instead of X , e.g., xA = XA=Xr;0, and the scaled time t is indicated
by � . The default values of the scaled parameters are shown in Table 5.2. The

scaled model can thus be written as follows,

dxi
d� = (xr;i � xi) ~D � ~IifixA(�); (5.12a)

dxA

d� = ~R(� � ~ab) exp(�~h~ab)xA(� � ~ab)� ~hxA(�): (5.12b)

The scaled reproduction rate ~R is given by~R(�) = ~hexp(~h(g+ + ê(�))(f(�)=~̀A � g)�1)� 1 ; (5.13)

where ~D and ~h are the scaled dilution and mortality rates and ~ab is the scaled

egg development rate, ~ab = 3 ~̀
A. Furthermore, f is the functional response, g

is the energy investment ratio, g = �= ~̀A, g+ is the difference in reserve density
between the beginning and end of egg development, g+ = g + 34�, and ê is

the energy density of an egg. Note that f , g and ê already were dimensionless

variables before, and are therefore not affected by any choice of units.

5.3 Methods

5.3.1 Ecological analysis

The coexistence set is the region in the trait space of the predator’s body size~̀
A and its prey-size preference ~̀

P in which the predator and prey populations
can coexist, i.e., where x�i > 0 for i = 1; : : : ; n and x�A > 0 (here and below, a

superscripted asterisk indicates a population dynamical equilibrium). At each
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point of this trait space there also exists a boundary equilibrium, x�A = 0 andx�i = xr;i for i = 1; : : : ; n, which is unstable for trait combinations within the
coexistence set and stable for those outside. In other words, the boundary of

the coexistence set is formed by trait combinations for which the boundary
equilibrium changes stability.

To determine the coexistence set for the model introduced above, only one

prey population was assumed to be available in the system. When the prey-
size preference of the predator matches the one available prey size, ~̀P = ~̀i, the

predator’s niche width �P is not relevant and a point on the boundary of the

coexistence set is given by ( ~̀A; ~̀P = ~̀i) for which x�A = 0 and ~R exp(�~h~ab) = ~h,

with ~R in (5.13). The remaining points ( ~̀A; ~̀P 6= ~̀i) of the boundary of the co-

existence set were then determined by numerically continuating this condition
using standard continuation software.

5.3.2 Adaptive Dynamics theory

For the evolutionary analysis of our model we utilized adaptive dynamics the-

ory, a general framework that helps analyze phenotypic evolution under fre-

quency dependent selection [12, 13, 20, 38]. This approach assumes a time
scale separation between the ecological and evolutionary dynamics, so that

mutations in adaptive traits occur sufficiently rarely for the considered resid-
ent population always to be close to its population dynamical equilibrium when

probed by a mutant. Mutants with a positive invasion fitness may replace the

resident population. A series of such replacements leads to phenotypic change
of the population. The directions and endpoints of phenotypic change depend

on the invasion fitness-gradient and are calculated by means of the so-called

canonical equation of Adaptive Dynamics [13]. Below we specify, in turn, these
general notions for the model analyzed in this study.

Invasion fitness. The invasion fitness of a mutant is defined by its long-term

per capita growth rate r( ~̀m; Er( ~̀r)) while being rare in the environment Er set
by the resident population at its ecological equilibrium. Here, ~̀ is the vector of

the predator’s adaptive traits ~̀= (~̀A; ~̀P) and the subscripts ‘r’ and ‘m’ indicate
resident and mutant trait values, respectively. To calculate the invasion fitness

of the mutant we extend Equations (5.12a) by including the dynamics of the

mutant predator,

dxA,m

d� = ~Rm(� � ~ab;m) exp��~hm ~ab;m�xA,m(� � ~ab)� ~hm xA,m(�): (5.14)

Introducing a mutant in the system also requires a feeding term to be added to

Equation (5.12a), as shown in Equation (5.21a).

As explained in detail in the appendix, the invasion fitness of the mutant is
thus given by s( ~̀m; ~̀r) = ~Rm( exp(�3 ~h ~̀A,m)� ~h; (5.15)
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where ~Rm is the mutant’s reproduction rate,~Rm = ~hexp(~h(g+m + êm)=(fm=~̀A,m � gm))� 1 : (5.16)

Here the functional response fm of the mutant depends on the adaptive traits of
both mutant and resident, because the resident predator sets the environmentEr and thus determines the equilibrium prey density in the system.

Selection gradient. The expected direction of phenotypic change is propor-
tional to the selection gradient, i.e., to the derivative of invasion fitness with

respect to the adaptive traits of the mutant, evaluated at the trait values of
the resident. For a monomorphic resident population, this selection gradient is

denoted byrm s( ~̀m; ~̀r) =  �� ~̀
A,m

s( ~̀m; ~̀r); �� ~̀
P;m s( ~̀m; ~̀r)!����� ~̀

m=~̀r : (5.17)

Canonical equation. A deterministic approximation of the stochastic evol-

utionary trajectories of body size and prey-size preference, jointly driven by

mutation and selection, is provided by the canonical equation of adaptive dy-
namics [13], which for our system is given byd ~̀rdt = �( ~̀r)x�A,r~̀3

A,r

rm s( ~̀m; ~̀r): (5.18)

Here � is a rate factor that depends on the fraction of mutations per birth,
on the coefficient of variation in the distribution of offspring numbers, on the

mean size of mutational steps, and on the multiplier that transforms x�A,r=~̀3Ar
into the abundance of resident predators. The precise value of � is irrelevant
for this study as we are only interested in evolutionary equilibria, and not in

the timing of the trajectories leading towards them.

Evolutionary outcomes. Eventually, the population will reach a combination
of trait values ~̀

r at which the selection gradient vanishes,rm s( ~̀m; ~̀r) = 0: (5.19)

Such an evolutionary equilibrium may be either stable or unstable according to
Equation (6.7). An evolutionary equilibrium may also be situated at a fitness

maximum, a fitness minimum, or a fitness saddle according to Equation (6.5).
In the latter cases, the evolutionary equilibrium is not locally evolutionarily

stable, so that the resident population may split up and evolve into two or

more subpopulations through a process known as evolutionary branching [19,
20, 37, 38].
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5.3.3 Evolutionary analysis

Single-trait evolution. As a preparatory step in the evolutionary analysis of
our model, only the predator’s body size was allowed to evolve, while its prey-

size preference was fixed. In this case, the evolutionary dynamics are reduced
to the single trait ~̀A. For this purpose we assumed, like in the ecological ana-

lysis, that only a single prey population existed and that the predator’s prey-size

preference matched this prey size, ~̀P = ~̀i. The evolutionary outcome in ~̀
A was

then found numerically by integrating the dynamics of ~̀A according to the ca-

nonical equation of adaptive dynamics, Equation (6.7), while keeping ~̀
P fixed,

until an evolutionary equilibrium was reached. This evolutionary equilibrium
was determined for a range of prey-size preferences within the coexistence re-

gion.

Two-trait evolution. The full evolutionary dynamics were studied by allow-

ing the two adaptive traits of the predator to evolve jointly. In this case, a range

of prey sizes was assumed to be available to the predator according to Equation
(5.5). The evolutionary equilibrium was again found numerically, by solving

Equation (6.8).

Evolutionary branching. To study the evolutionary process after an evolu-
tionary equilibrium had been reached, an extended numerical analysis was car-

ried out. This analysis consisted of integrating Equation (6.7) until reaching

an evolutionary equilibrium. If this equilibrium was evolutionarily unstable,
i.e., if it corresponded to a fitness minimum, the original predator population

was equally split into two predator populations and the two corresponding
canonical equations were considered further. The trait values of the two pred-

ator populations were chosen to deviate slightly from that of their ancestor

in the two (opposite) directions of highest fitness increase around the ances-
tral combination of trait values. The two canonical equations were integrated,

and new predator populations were added analogously if applicable, until an

evolutionarily stable evolutionary equilibrium was reached, corresponding to a
fitness maximum in all introduced predator populations. Due to the determin-

istic nature of the adaptive dynamics, more than one predator population may
branch at the same time.

Mutual predation. Finally, to explore the effects of predation among predat-

ors, the functional response f was calculated as the sum of partial functional
responses fi, where i now consisted of all prey populations (1; : : : ; n) as well

as of all predator populations (1; : : : ; p),f = n+pXi=1 fi: (5.20)
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Stochastic evolution. As a further robustness test, we used a stochastic sim-

ulation process instead of the deterministic dynamics in Equation (6.8). For
this purpose, we integrated the ecological dynamics of the system for 104 time

steps, followed by the addition of a new mutant predator population to the
system. The trait values of the mutant were drawn at random from a normal

distribution around the trait values of its ancestor with a standard deviation

of 10�3. The initial biomass of the mutant population was set to a very small
value, xA,m = 10�20, which was also the cutoff biomass density below which a

population was assumed to go extinct. In the case of extinction, the affected

population was removed from the system.

5.4 Results

5.4.1 Ecological analysis

We start by studying which predator-prey size combinations can coexist. These

combinations are referred to as ‘feasible’ and shown in Figure 5.1. For this
analysis, the predator’s prey-size preference equals the single available prey

size assumed to be available, ~̀
P = ~̀i. Figure 5.1 can be interpreted in two

ways: vertically, as the feasible range of predator body sizes for a given prey

size (illustrated by arrow 1), and horizontally, as the feasible range of prey-size

preferences for a given predator body size (illustrated by arrow 2).
We separately determined the coexistence set for two different functional

responses. First, only the basic handling processes of encountering and ingest-

ing prey were assumed to play a role in the functional response of the predator
([~tc;0℄ = 0, for other parameter values, see Table 5.2). In this case, Figure 5.1

shows that the maximum feasible predator body size is inversely related to the
maximum feasible prey size (dashed line). Second, the model was extended

by including a capture time that depends on the predator-prey size ratio. Now,

large predator-prey size ratios are no longer feasible, and the boundary of the
coexistence set become curvilinear (continuous curve).

Figure 5.2 shows a set of empirically observed combinations of predator-

prey sizes that were presented by Cohen et al. [9], together with the coexist-
ence set of our model based on a size-ratio-dependent capture time (continuous

curve). The empirical data set consists of 478 size combinations from 30 food
webs. In the doubly logarithmic plot, these are distributed over a triangular

area that is bounded above by a maximum predator size, bounded below by the

equality of predator and prey sizes, and bounded on the left by the minimum
prey size. The coexistence sets in Figures 5.1 and 5.2 (continuous curves) are

identical, but in Figure 5.2 the axes are translated back from dimensionless

variables into lengths expressed in centimeters. For the two relevant scaling
parameters, kM and v, reasonable values were chosen that lie well within the

range of empirically observed values (kM = 1:44 d�1, v = 0:3 cm d�1 [28]);
the dilution rate was adjusted ( ~D = 0:05) so as to obtain a slightly better fit for

the upper boundary of the coexistence set.
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Figure 5.1: Coexistence set of the investigated predator-prey system.

Combinations of scaled predator body size ~̀
A (vertical) and prey-size pref-

erence ~̀
P (horizontal) are shown logarithmically, assuming that the pre-

ferred prey size equals the one available prey size (~̀P = ~̀i). The dashed

curve depicts the boundary of this coexistence set when only ingestion

and encounter times are considered, while the continuous curve shows

this boundary when capture times are considered as well. The two arrows

indicate the graph’s two possible interpretations: (1) the feasible range

of predator body sizes for a given prey size, and (2) the feasible range of

prey-size preferences for a given predator size.
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Figure 5.2: Comparison of the coexistence set predicted by our model

(continuous curve) with empirical data presented by Cohen et al. [9]. The

logarithm of the length of the predator is plotted against the logarithm of

the length of the prey, with both lengths being expressed in centimeters.

Along the dotted line, body sizes of prey and predator are equal. The

dimensionless variables ~̀A and ~̀
P were translated back into lengths using

the two relevant scaling parameters, kM = 1:44 d�1 and v = 0:3 cm d�1;
the dilution rate was set to ~D = 0:05.

5.4.2 Evolutionary analysis

After having established which combinations of a predator’s body size and its

prey-size preference are ecologically feasible, we also studied the evolutionary

dynamics of these adaptive traits. Figure 5.3 again shows the coexistence set
(continuous curve) and the diagonal along which predator size and prey-size

preference are equal (dotted line). The dashed line shows the body size to

which the predator will evolve when feeding on a prey of a given size. In other
words, it shows how the evolutionary equilibrium depends on prey size. This

line results from single-trait evolution in `A, and applies when only one prey

size is available and ~̀
P = ~̀i. The figure shows that the evolved predator size is

positively correlated with prey size, and that the slope of the correlation line is

equal to unity.
When, instead of one prey size, a range of prey sizes is available simul-

taneously to the predator, as described in Section 5.2.3, and both traits are

allowed to jointly evolve, the predator population evolves to an evolutionary
equilibrium within the coexistence set, which in Figure 5.3 is denoted by an

asterisk.

However, after this evolutionary equilibrium is reached, evolution contin-
ues. Since the evolutionary equilibrium does not correspond to an evolution-

arily stable fitness maximum, the originally monomorphic predator population
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Figure 5.3: Evolutionary outcomes of scaled predator body size ~̀
A and

prey-size preference ~̀
P. The continuous curve depicts the boundary of the

coexistence set, while the dotted line depicts the diagonal along which

predator size and prey-size preference are equal. The dashed line shows

the outcome of single-trait predator evolution in ~̀
A, for a single prey size,

with ~̀
P = ~̀i. The asterisk indicates the initial evolutionary equilibrium

(and primary evolutionary branching point) of two-trait evolution in the

predator when considering a range of available prey sizes. The filled

circles show the composition of the predator community after evolution-

ary branching (deterministic evolution), while the open circles depict this

composition when predation among predators was also taken into account

(stochastic evolution).

splits up into two populations and thus becomes dimorphic. This process of
evolutionary branching is repeated several times, such that the predator pop-

ulation cascades into a range of populations with different trait combinations,

until an evolutionarily stable predator community is eventually reached. In Fig-
ure 5.3 the trait combinations realized in this evolved community are shown

by filled circles.

Inclusion of predation among predators also leads to sequential evolution-
ary branching. The trait combinations resulting under stochastic evolution

after 5000 mutations are shown in as open circles in Figure 5.3; at this point in
time the system is close to an evolutionarily stable equilibrium. The slightly ir-

regular spacing of the realized trait combinations reflects the stochastic nature

of the evolutionary process.
Figure 5.4 (pg. 115) shows how the predator’s body size and prey-size pref-

erence at the initial evolutionary equilibrium (i.e., before evolutionary branch-

ing) are affected by the availability of prey sizes. Specifically, the three panels
show how the predator’s adaptive traits vary with three features of the prey:

the mean ~� and standard deviation � of the prey-size distribution, and the



110 5. Joint evolution of predator body size and prey-size preference

prey’s dilution rate ~D. Analogously, Figure 5.5 (pg. 116) shows the variation

of the predator’s adaptive traits with two features of the predator: its niche
width � and its probability �s of successfully capturing an attacked prey.

5.5 Discussion

In the first two subsections below we discuss the results of our ecological ana-

lysis, followed by three subsections of discussion on the results of our evolu-

tionary analysis.

5.5.1 True predators versus parasitic predators

When taking into account only the basic handling processes of encountering
and ingesting of prey, small predator-prey size ratios are feasible (Figure 5.1,

dashed line). Clearly, this does not agree with the distribution of empirically
observed predator-prey sizes shown in Figure 5.2. However, small size ratios

are typically found in parasite-host systems [36], which were not included in

the empirical dataset of Cohen et al. (1993). Parasites are organisms that
obtain their nutrients from one or very few host individuals, causing harm

but no (immediate) death. True predators, in contrast, continuously require

new prey individuals, which are killed at attack or quickly thereafter. Because
parasites do not have to overpower their prey, capture times may be neglected.

Under these circumstances, our model predicts that small predator-prey size
ratios are feasible, in qualitative agreement with empirical data.

The transition between parasites and true predators, however, is gradual.

This is illustrated by the typical classification of a bird-egg eating snake as
a predator, while the sea-cucumber-egg eating pearlfish is classified as a para-

site. Examples of the wide range of parasitic relationships are discussed in [10].

Whatever classification rules are defined, many exceptions can be found, point-
ing to the fact that these boundaries are essentially artificial. DEB theory as-

sumes that predators and parasites are basically of the same kind, and thus
that they can be described by the same model; their differences in physiology

only require different parameter values. The differences in these parameter

values, however, may lead to considerable, even qualitative, differences in the
feasibility of predator-prey size combinations. In the results of our model, this

is reflected by the qualitative change in the shape of the coexistence set when

capture times are considered (Figure 5.1, continuous curve). In this case, the
coexistence set is shrunk and it is no longer feasible for small predators to feed

on large prey.
Hence, by adjusting capture times in our model (e.g., by varying the cap-

ture time coefficient), we can account for both parasites and true predators.

Similarly, by adjusting other parameter values, our model may also be expec-
ted to account for other types of predators, such as grazers or parasitoids. As

a default, however, we considered a capture time coefficient that is relatively

large, so that the model corresponds mainly to true predators.
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5.5.2 Imperfect upper triangularity

When including in our model a capture time that depends on the predator-prey
size ratio, the feasible set becomes triangularly shaped (Figure 5.1, continuous

curve), which matches the empirical distribution of observed predator-prey
size combinations presented by Cohen et al. [9] (Figure 5.2). This so-called

‘upper triangularity’ is often found in real food webs [7, 9, 47]. The term

stems from considering a food web’s matrix of trophic interaction coefficients,
in which species are arranged in hierarchical order, such that all of the non-

zero matrix elements lie above the main diagonal. In the present study, the

emergence of upper triangularity implies that larger predators can feed on a
wider range of prey sizes and that for smaller prey sizes, the feasible range of

predator sizes is wider. It also implies that a given species essentially does not
eat other species that are larger than itself, which suggests a body-size-based

hierarchy. Body size has been suggested previously to provide a mechanistic

interpretation for the hierarchy assumption in the cascade model [8], both by
Warren and Lawton [47] and by Cohen [6]. However, in our analysis we did

not postulate a size hierarchy as such: instead, this hierarchy naturally results

from the scaling relations and size-dependent functional response suggested
by DEB theory, and in particular from the considered proportionality of capture

time to predator-prey size ratio.
The value of the capture time coefficient [~tc;0℄ considerably affects the shape

of the coexistence set. Yet, when plotted on a doubly logarithmic scale, differ-

ent values of [~tc;0℄ all result in a lower boundary of the coexistence set given
by a straight line with slope one, corresponding to a fixed predator-prey size

ratio. Although these lines have different intercepts, they lie rather close to

each other and to the main diagonal for a relatively large range of values for[~tc;0℄, especially when large predator and prey size ranges are considered. This

finding would explain why, across many natural systems, the distribution of
body size combinations involved in predator-prey links seems to be essentially

the same.

Although the predicted boundaries of the coexistence set fit the empirical
data reasonably, the fit is not perfect. For example, part of the predicted cur-

vilinear upper boundary of the coexistence set, corresponding to combinations

of small prey sizes with large predator sizes, is not observed in the considered
empirical dataset. Instead, the upper boundary in the empirical dataset may be

described simply by the body size of predators maxing out at about 150 cm to
200 cm. In the model, this curvilinear upper boundary is mainly determined by

the encounter rate between predator and prey being proportional to the prey’s

surface area. Apparently, in natural systems, this is not realistic for large pred-
ators in combination with small prey. Probably, at these size ratios, the prey is

not detected by vision, and the detectability may not be proportional to a prey’s

silhouette. This implies that the model’s fit in this range of size combinations
could be improved by including additional mechanisms. However, we chose to

keep our model simple and to stay in line with DEB theory by including as few
additional assumptions as possible.
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An interesting property of the model is that the predicted lower boundary of

the predicted coexistence set (Figure 5.2, continuous curve) does not coincide
with the diagonal along which predator and prey sizes are equal (dotted line),

but instead lies below it (as discussed above, the exact location of this lower
boundary depends on parameter values, and especially on the capture time

coefficient [~tc;0℄). The coexistence set thus extends to predators feeding on

prey individuals that are larger than themselves.
Cohen et al. [9] found that, in their dataset, approximately 10% of all pred-

ators fed on larger prey. Empirical studies have demonstrated this effect also for

other natural food webs. Because of these consistent observations, the simple
cascade model [8] has been extended, resulting in the more general niche

model [48], which is viewed as providing better matches with empirical food
web data [7, 39, 47]. The proposed explanations are all based on the assump-

tion that a certain hierarchy exists, but that the measures or variables used to

characterize it may be imperfect. In contrast, the size-ratio-dependent capture
time assumed in our model provides a mechanism that naturally explains a

body-size-based hierarchy while also allowing for ‘exceptional’ predator-prey

links. This result suggests that not the measures or the variables, but rather
the hierarchy itself is imperfect.

5.5.3 Evolution under increased levels of ecological realism

Our approach allows us to study and disentangle the evolutionary effects caused

by the successive incorporation into our model of increased levels of ecological
realism. Five such steps have been taken. First, we started out from a system

in which a single predator adapts to a single prey. Second, we investigated

the joint evolution of the body size and prey-size preference of a single pred-
ator confronted with a range of prey sizes. Third, we considered the adaptive

radiation of predator types caused by resource competition. Fourth, we in-
cluded trophic interactions among predators to examine their effects on the

outcomes of predator radiation. Fifth, we included evolutionary stochasticity

in our model, to corroborate the robustness of our deterministic predictions.
Figure 5.3 shows that when a single predator adapts to a single prey, pred-

ator body size is positively correlated with prey body size, with a slope equal

to 1. This implies that the predators evolve to a fixed predator-prey size ra-
tio that is constant across predator sizes. A positive correlation between body

sizes of predator and prey is indeed found in vertebrates [21, 46] and inverteb-

rates [47], as well as in planktonic predators [22]. Even though these studies
underscore that a general and fixed size ratio does not exist, they do find a

constant size ratio within each trophic or taxonomic group.
When, instead of one prey size, a range of prey sizes is available simultan-

eously to the predator, and the body size and prey-size preference of a single

predator evolve jointly, the size ratio at the resultant evolutionary equilibrium
(asterisk in Figure 5.3) is slightly different than that resulting from single-trait

evolution (dashed line in Figure 5.3). This is because now a range of prey sizes
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is available, so that the predator’s niche width comes to play a role. The effects

of varying this niche width are discussed in detail in Section 5.5.5.
Were the range of prey sizes not bounded, the predators would evolve to-

wards ever smaller body sizes. This is inherent to their physiology, which fa-
vors small sizes over large ones: large organisms have relatively more energy

reserves, and therefore a relatively longer egg-production period, which negat-

ively affects their reproduction rate. Also, smaller organisms have a relatively
large surface area, which is favorable with respect to the encounter and inges-

tion rates that both scale with surface area. Apparently, many physiological

mechanisms favor a smaller size. Two factors that, by contrast, may induce
evolution towards larger body sizes are heat loss and environmental variabil-

ity. The tendency of organisms living at high latitudes to evolve to large body
sizes has become known as Bergmann’s rule [3, 33, 34], and is often ascribed to

the favorable effects of lower surface-area-to-volume ratios on heat loss. Envir-

onmental variability, on the other hand, implies periods of starvation for which
a large body size is favorable, as larger organisms have larger energy reserves.

These two factors, however, were not considered in the present study.

Figure 5.3 (filled circles) shows the trait combinations of the predator pop-
ulations that will eventually result from deterministic evolution when adaptive

radiations are considered. The mechanism underlying the evolutionary branch-
ing events is competition for resources, which leads to disruptive selection. The

evolutionary branching process affects both adaptive traits: under the force of

disruptive selection, some populations evolve towards smaller body sizes and

smaller prey-size preferences, while others evolve to larger body sizes and lar-

ger prey-size preferences. When they are isolated, each of the populations

(filled circles) will again evolve towards the first evolutionary equilibrium (as-
terisk). This may correspond to evolutionary processes on some islands, where

small mammal species have been observed to evolve to a larger size and larger
species to a smaller size. Such a tendency has become known as the ‘island

rule’ [45], and can thus be understood by the evolutionary dynamics in our

model. Figure 5.3 also shows that all resulting populations retain the same
predator-prey size ratio. From this it can be concluded that competition for

resources may lead to the differentiation of predator body sizes and prey-size

preferences, but not to a differentiation of predator-prey size ratios.
In determining these evolutionary outcomes, direct interactions among pred-

ators, either through predation or through interference competition, were not
taken into account. Therefore, these outcomes clearly correspond to idealized

conditions. Real organisms may only conform to the resultant predictions in

situations in which competition and predation among predators are naturally
absent, such as on (small) islands.

Predation among predators or direct (interference) competition, on the

other hand, may give an additional advantage to large body sizes: larger or-
ganisms can be preyed upon by a smaller range of predators and are thus less

vulnerable to predation (as follows from the triangular distribution of empir-
ical predator-prey combinations), and they may also have an advantage in the

direct competition for food or territory. As such, these processes may be expec-
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ted to cause organisms to depart from the predator-prey size ratios predicted

above.
Figure 5.3 (open circles) shows that predation among predators does in-

deed lead to much larger predator-prey size ratios than would be expected on
the basis of resource competition alone. Predation among predators may thus

indeed be an important factor for explaining the large variation of predator-

prey size ratios found in nature. Direct (interference) competition is expected
to have a similar effect as predation among predators. Both factors help explain

Cope’s rule [2, 11], which states that natural selection will tend to produce

large-bodied species.
Predictions of deterministic and stochastic renderings of the evolutionary

dynamics in our model agree almost completely, even though the stochastic
dynamics expectedly induce a slight amount of jitter in the evolved predator

populations (open circles in Figure 5.3).

5.5.4 Evolutionary effects of environmental factors

Figures 5.4a and 5.4b show how the outcomes of evolution in predator body

size and prey-size preference are affected by the availability of prey sizes. An
increase in the mean ~� of the prey-size distribution causes both traits to in-

crease (Figure 5.4a), while the response to variations in the standard deviation� of the prey-size distribution turns out to be hump-shaped (Figure 5.4b). Al-

though the evolved values of the scaled predator body size ~̀
A and prey-size

preference ~̀
P change, their ratio remains essentially constant across a large

range of the studied parameter values. Changes in the prey-size distribution,

expressed in terms of ~� and �, may thus induce shifts in predator body sizes and

prey-size preferences, but cannot explain the variation observed in predator-
prey size ratios.

In contrast, an increase in dilution rate does change the evolved size ratio by
making it larger. The evolved body size of predators is affected by the dilution

rate through changes food abundance: smaller dilution rates reduce both the

rate at which new prey enter the system and the mortality of predators, thus
intensifying conspecific competition for resources. The resulting decrease in

evolved predator body size may correspond to the tendency to dwarfism on

islands, which also has been related to limited food resources [5].

5.5.5 Evolutionary effects of feeding modes

Ecological factors, such as the predator’s feeding mode, may also affect the
evolutionary outcomes of predator body size and prey-size preference. In par-

ticular, a difference between the predator-prey size ratio of filter feeders and
raptorial feeders is seen across taxonomic groups. Hansen et al. [22] found that

the optimal size ratio of filter feeders is larger than that of raptorial feeders.

They also found that filter feeders generally feed on a larger range of prey sizes
than raptorial feeders. To examine whether the wider prey range can explain
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Figure 5.4: Effects of environmental parameters on the evolutionary out-

comes of scaled predator body size ~̀
A (continuous curve) and prey-size

preference ~̀
P (dashed curve). The three panels show the evolutionary

equilibrium values (a) for a range of means of the available prey-size dis-

tribution ~�, (b) for a range of standard deviations of this distribution �,

and (c) for a range of dilution rates ~D.
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Figure 5.5: Effects of ecological parameters on the evolutionary outcome

of scaled predator body size ~̀
A (continuous curve) and prey-size prefer-

ence ~̀
P (dashed curve). The two panels show the evolutionary equilibrium

values (a) for a range of niche widths �P and (b) for a range of capture

efficiencies �s.
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the differences in size ratios, we studied the evolutionary effects of varying the

niche width �P of the predator. Figure 5.5a shows that the predator-prey size
ratio first increases with niche width and then stabilizes. As the niche width

goes to zero, the predator evolves towards a preference for the smallest prey
size that is still available. In this case, the predator-prey size ratio becomes

equal to the size ratio that was predicted from single-trait evolution; this is

expected, as in that analysis the predator was assumed to feed on one prey size
only, which corresponds to vanishing niche width.

Although raptorial feeders may be more size-selective, it is conceivable that

they are also more efficient predators, with a larger fraction of their attacks
being successful. Therefore, we also studied the evolutionary effects of varying

the capture efficiency �s. Figure 5.5b shows that when a predator is less suc-
cessful, its body size will become larger, while its prey-size preference will be-

come smaller. Successful predators will thus evolve towards smaller predator-

prey size ratios. Combining a large niche width with a small capture efficiency
will lead to an even stronger increase in predator-prey size ratio, which may ex-

plain the large size ratio often encountered in filter feeders. These mechanisms

might also provide an explanation for the tendency of the predator-prey size
ratio to decrease with trophic level [7], as predators at higher trophic levels

may more often be raptorial feeders than filter feeders.

5.6 Conclusions

A size-dependent functional response was developed and combined with body-

size scaling relationships from DEB theory to establish a physiologically motiv-
ated eco-evolutionary model of adaptations in the body sizes and prey-size

preferences of predators. To obtain a realistic coexistence set for feasible
predator-prey size combinations, we included capture times that depend on

predator-prey size ratios. The resulting model exhibits many features, both

ecological and evolutionary, that match empirical observations, such as the tri-
angular distribution of predator-prey size combinations, the island rule, dwarf-

ing, and the difference in predator-prey size ratio between filter feeders and

raptorial feeders.
The coexistence set predicted by our model accommodates a wide range

of predator-prey size ratios. By contrast, the evolutionary outcomes in the
simplest versions of our model, in which a single predator adapts either to a

single prey or to a range of prey, imply a fixed predator-prey size ratio. Even

though such a fixed size ratio often exists within trophic and taxonomic groups,
it certainly does not apply across these groups. We therefore introduced and

examined various factors that help explain variation in predator-prey size ra-

tios. These factors can be organized into three different classes (Figure 5.6).
First, some factors may change the size ratio predicted for single-predator

adaptation (Figure 5.6a). Therefore, these factors can have a large impact
on observed patterns of predator-prey size combinations. Examples include

changes in physiology and feeding mode, but also changes in the harshness of
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Figure 5.6: Three different types of change in evolved predator-prey

patterns. Continuous curves delineate the boundaries of the coexistence

set, dashed lines show the outcomes of single-trait evolution, and asterisks

indicate the evolutionary outcome of two-trait predator evolution when a

range of prey types is present. Arrows depict changes in the predator’s

two adaptive traits ~̀
A (vertical) and prey-size preference ~̀

P (horizontal):

(a) the expected outcome of evolution in predator body size and predator-

prey size ratio is changed, together with the coexistence set; (b) predator

body size evolves, while the size ratio remains the same; (c) the predator

evolves away from the body size and size ratio predicted by single-trait

predator evolution.

the environment (dilution rate). Within taxonomic or trophic groups, organ-

isms often possess a relatively similar physiology, which may therefore explain

the constant size-ratio that is observed within such groups. It should be noted
that factors in this class, in contrast to those listed further below, may also af-

fect the boundaries of the coexistence set. Yet, on the logarithmic scale used

in Figures 5.1 to 5.3, the resultant lower boundaries of the coexistence set lie
close to each other for a relatively large range of parameter values.

Second, there are factors that cause predators to change their body size
and prey-size preference without changing their predator-prey size ratio (Fig-

ure 5.6b). These include, for example, changes in the range of available prey

sizes. Also, the patterns of size combinations resulting from resource com-
petition conform to a fixed predator-prey size ratio. In addition, our analysis

has demonstrated that competition for resources induces differentiation, rather

than mere shifts, in predator body sizes and prey-size preferences. Changes in
available range in prey sizes and resource competition may thus explain the

range of predator body sizes and prey-size preferences observed in nature, but
cannot explain the large variation in predator-prey size ratios.

Third, some factors may systematically induce organisms to depart from

the predator-prey size ratio predicted for single-prey-single-predator adapta-
tion (Figure 5.6c). We have found that predation among predators, as well as
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interference competition, can cause this effect, by giving an additional advant-

age to large body sizes. As such, these processes may provide an explanation
for the tendency of natural selection to produce large-bodied species (Cope’s

rule). Factors from this third class also help us understand the diversity of
predator-prey size ratios encountered in nature.

Distinguishing which of these types of processes is causing the variation

in specific empirical predator-prey size combinations will not be easy. Several
parameters and processes have similar, or compensatory, effects that are dif-

ficult to separate, even in experiments. For example, in most cases it will be

problematic to assess the evolutionary outcome of single-prey-single-predator
adaptation. This is because the organism will usually have adapted evolution-

arily to its specific environment, which typically includes predation and com-
petition. These limitations should be taken into account when trying to explain

empirical predator-prey patterns, or when measuring predator-prey size ratios

in experimental setups.

Appendix: Derivation of invasion fitness

In this appendix we show that for determining the coexistence set and the inva-

sion fitness of the DDE system (5.12) one can use an ODE formulation without
delay. For this purpose, below we first derive the invasion fitness of a mutant

predator trying to invade a given resident population of predators.

We start from DDE system (5.12), consisting of a prey population x1 and a
resident predator population xA,r, and introduce a mutant predator populationxA,m, according to Equation (5.14). For the sake of clarity, we consider only a
single prey population and leave out the tildes that denote scaled parameters

in the main text. The resulting system is given bydx1dt = �xr;1 � x1(t)�D � I1;rf1;r(t)xA,r(t)� I1;mf1;m(t)xA,m(t) ; (5.21a)dxA,rdt = exp(�hab,r)Rr(t� ab,r)xA,r(t� ab,r)� hxA,r(t) ; (5.21b)dxA,mdt = exp(�hab,m)Rm(t� ab,m)xA,m(t� ab,m)� hxA,m(t) ; (5.21c)

where I1;x = 1=th( ~̀x), with x = r,m.
The subsequent analysis can be outlined as follows. In order to derive the

mutant’s invasion fitness, we study the stability of the resident after the mutant

has been introduced. We assume that there is a stable resident equilibrium
when the mutant is absent. The full system above is then linearized around

this equilibrium, and the characteristic equation of the resultant linear system

is analyzed. When the real parts of all roots of this equation are negative,
the resident is stable and the mutant cannot invade. By contrast, when the

dominant root is positive, the resident is unstable and the mutant can invade.
In particular, we will determine the combinations of trait values at which this

stability changes.
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Below, a superscripted asterisk indicates that the considered variable is at

equilibrium under constant environmental conditions. We now introduce new
variables that denote displacements from this equilibrium,�1 = x1 � x�1; (5.22a)�A,r = xA,r � x�A,r; (5.22b)�A,m = xA,m � x�A,m: (5.22c)

The linearized model at equilibrium then readsd�1dt =� �1(t)D � I1;r��1(t)df1;rdx1 (x�1)x�A,r + f1;r(x�1)�A,r(t)�� I1;m��1(t)df1;mdx1 (x�1)x�A,m + f1;m(x�1)�A,m(t)� ; (5.23a)d�A,rdt =exp(�hab,r)��1(t� ab,r)dRrdx1 (x�1)x�A,r +Rr(x�1)�A,r(t� ab,r)�� h�A,r(t) ;
(5.23b)d�A,mdt =exp(�hab,m)��1(t� abm)dRmdx1 (x�1)x�A,m +Rm(x�1)�A,m(t� ab,m)�� h�A,m(t) :
(5.23c)

In the following we use the shorthand notations R�r = Rr(x�1) and R�m =Rm(x�1).
Since we are interested in the invasion by a rare mutant predator popula-

tion, we take x�A,m = 0. Then the matrix P , defined byP0� �1�A;r�A;m1A = 0�0001A (5.24)

in conjunction with Equations 5.23, is obtained by substituting �i in Equa-
tions (5.23) by �i exp(�t); i = 1(A; r); (A;m) and division by exp(�t) > 0,P = 0� J1 �I1;mf1;m(x�1)00 0 J2 1A : (5.25a)

The 2�2 matrix J1 is given byJ1 = 0� �(�+ h)� I1;r dfrdx1 (x�1)x�A,r �I1;rf1;r(x�1)exp(�(�+ h)ab,r)dRrdx1 (x�1)x�A,r �(�+ h) + exp(�(�+ h)ab,r)R�r1A
(5.25b)

and the 1�1 matrix J2 byJ2 = exp(�(h+ �)ab,m)R�m � (�+ h) : (5.25c)
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The characteristic equation is obtained by the requirement that the determ-

inant of the matrix P be equal to zero. Then the �i play the role of eigenvector
components and the complex number � plays the role of eigenvalue, which is

now a root of the characteristic equation.
Since the mutant is assumed to be rare, the determinant of P factorizes,

being given by the product of detJ1 and detJ2 = J2, with these two factors

corresponding to the two decoupled systems: the prey-resident-predator sys-
tem, described by J1, and the mutant-predator population, described by J2.
The first factor yields the characteristic equation of the prey-resident-predator

system, detJ1 = 0. This characteristic equation belongs to the eigenvalue
problem for the set of one ODE and one DDE (Equations 5.23a and 5.23b) eval-

uated at the resident equilibrium without the mutant (i.e., x�A,m = 0). The
second factor yields the characteristic equation detJ2 = J2 = 0 of the first-

order linear homogeneous DDE (Equation 5.23c) describing the dynamics of

the mutant population. The expression for J2 in Equation (5.25c) is of a form
discussed extensively in [14, page 312]. For this case, the complex roots of the

characteristic equation can be obtained analytically.

The function J2(�) with � 2 R is monotonically decreasing, dJ2=d� < 0.
Therefore there is one unique real root �0. Since J2(0) = exp(�hab,m)R�m � h,

the real eigenvalue equals zero, �0 = 0, if and only if exp(�hab,m)R�m = h.
Thus, Equation (5.25c) has exactly one positive real solution, �0 > 0, whenexp(�hab,m)R�m > h and exactly one negative real solution, �0 < 0, whenexp(�hab,m)R�m < h. In [15, page 321] it is shown that infinitely many complex
roots exist. Let �k = �k + i!k, then substitution of this into the characteristic

equation J2 = 0 and separately equating real and imaginary parts gives�k = �h+ exp(�hab,m)R�m exp(��kab,m) os(ab,m!k) ; (5.26a)!k = � exp(�hab,m)R�m exp(��kab,m) sin(ab,m!k) : (5.26b)

Clearly, if Equation (5.26b) holds for !k, it holds also for �!k, so the complex
conjugate ��k = �k � i!k is also a root of the characteristic equation. Further-

more, the unique real root �0 is the dominant eigenvalue, i.e., the real parts of

all other roots are smaller than �0. Comparison of Equation (5.26a) with the
characteristic equation for �0 gives�0 � �k = exp(�hab,m)R�m�1� exp((�0 � �k)ab,m) os(ab,m!k)� : (5.27)

Suppose that os(ab,m!k) = 1, then sin(ab,m!k) = 0, and hence !k = 0, which

contradicts the fact that �k = �k + i!k has non-zero imaginary part. We can

thus conclude that os(ab,m!k) < 1. Now assume that �0 � �k � 0, then, withR�m > 0 (since R�m � R�r > 0 due to small mutational steps), Equation (5.27)

implies 1 � exp((�0 � �k)ab,m) os(ab,m!k), and also this leads to a contradic-

tion. This shows that Re(�k) < �0, k = 1; 2; : : : , or in other words: the real
eigenvalue �0 is the dominant root of the characteristic equation detP = 0.

Above, we assumed that the system comprising the resident predator and
the prey has a positive stable equilibrium. We checked this assumption numer-

ically for the coexistence set shown in Figure 5.1 using the default parameter
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values given in Table 5.2: under these circumstances, the real parts of the ei-

genvalues of J1 are strictly negative. Thus, the dominant eigenvalue �0 of J2
will also be the dominant eigenvalue of detP , if �0 exceeds the largest real part

of the eigenvalues of J1. Hence, for exp(�hab,m)R�m = h the dominant eigen-
value is zero, �0 = 0, and at trait values for which this holds the prey-resident-

predator system changes stability, so that the system becomes invadable by the

mutant predator.
Now suppose that the real eigenvalue �0 is positive but small. Then the

characteristic equation gives�0 =� h+ exp(�(�0 + h)ab,m)R�m� h+ �1� �0ab,m + 12 �20a2b,m + � � � � exp(�hab,m)R�m; (5.28a)

so that, for �0ab,m � 1, we have�0 = �h+ exp(�hab,m)R�m: (5.28b)

Consequently, the rate �0 is the invasion fitness of the mutant predator at the

equilibrium of the prey-resident-predator system, (x�1; x�A,r; x�A,m = 0).

We have thus shown that exp(�hab,m)R�m � h can be used as a test func-
tion for a continuation procedure to calculate the boundary of the coexist-

ence set. Furthermore, if �0ab,m � 1, which holds for small mutational steps,exp(�hab,m)R�m�h is the mutant’s invasion fitness. The rare mutant (xA,m = 0)

will be able to invade the stable prey-resident-predator system if and only ifexp(�hab,m)R�m > h. The biological interpretation of this inequality is clear:
the mutant’s effective birth rate has to exceed the dilution rate. After success-

ful invasion, the mutant generally replaces the resident; around evolutionary

branching points they can coexist, leading to a dimorphic predator popula-
tion [18].
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waarden, J. S. Adaptive Dynamics, a geometrical study of the consequences

of nearly faithful reproduction. In: van Strien, S. J. and Verduyn Lunel,
S. M. (Eds.). Stochastic and Spatial structures of dynamical systems. KNAW

Verhandelingen, Amsterdam, 1996 pp. 183–231.

[39] Neubert, M. G., Blumenshine, S. C., Duplisea, E. D., Jonsson, T., and

Rashleigh, B. (2000). Body size and food web structure: testing the equi-
probability assumption of the cascade model. Oecologia, 123:241–251.

[40] Peters, R. H. (1983). The Ecological Implications of Body Size. Cambridge

University Press, New York.

[41] Rincon, P. A. and Loboncervia, J. (1995). Use of an encoutner model to

predict size-selective predation by a stream-dwelling cyprinid. Freshwater
Biology, 33(2):181–191.

[42] Rytkonen, S., Kuokkanen, P., Hukkanen, M., and Huhtala, K. (1998). Prey

selection by sparrowhawks accipiter nisus and characteristics of vulnerable
prey. Ornis Fennica, 75(2):77–87.



126 5. Joint evolution of predator body size and prey-size preference

[43] Svensson, J. E. (1997). Fish predation on eudiaptomus gracilis in rela-

tion to clutch size, body size, and sex: A field experiment. Hydrobiologica,
344:155–161.

[44] Turesson, H., persson, A., and Bronmark, C. (2002). Prey size selection in

piscivorous pikeperch (stizostedion lucioperca) includes active prey choice.
Ecology of Freshwater Fish, 11(4):223–233.

[45] Van Valen, L. (1973). Pattern and the balance of nature. Evolutionary

Theory, 1:31–49.

[46] Vezina, A. F. (1985). Empirical relationshi[s between predator and prey

size among terrestrial vertebrate predators. Oecologia, 67:555–565.

[47] Warren, P. H. and Lawton, J. H. (1987). Invertebrate predator-prey body
size relationships: an explanation for upper triangular food webs and pat-

terns in food web structure? Oecologia, 74(231-235).

[48] Williams, R. J. and Martinez, N. D. (2000). Simple rules yield complex

food webs. Nature, 404:180–183.

[49] Yodzis, P. and Innes, S. (1992). Body size and consumer-resource dynam-
ics. American Naturalist, 139(6):1151–1175.



6

Seasonality as a driver of body size

evolution

Tineke A. Troost, Jan A. van Dam, Bob W. Kooi, Erik Tuenter

Abstract

The seasonality hypothesis states that variable climates, characterized by

large annual cycles, select for large body sizes. Therefore, it provides an al-

ternative explanation for the observed increase of body size with latitude,

which phenomenon is known as ‘Bergmann’s rule’, and is traditionally ex-

plained by differences in temperatures. So far, experimental and field data

do not unambiguously support the seasonality hypothesis, and neither do

models. In order to study the effects of seasonality on the evolution of

body size, we use a physiologically based model for rodents. Model res-

ults show that seasonality may lead to larger body sizes indeed; for this,

relative amplitude rather than absolute amplitude is decisive. Our model

is the first to support the seasonality hypothesis and, as such, shows the

importance of basing model dynamics on physiological processes. Simula-

tions across geological time scales illustrate that evolutionary patterns in

body size may be a response to temporal variability in seasonality related

to the Milankovitch cycles.
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6.1 Introduction

Temporal and geographical trends in body size are still not fully understood.

A famous example is Bergmann’s rule, describing an increase of size with lat-
itude [5, 42, 43]. The latitudinal trend in body size is often attributed to the

latitudinal gradient in temperatures, but Lindstedt and Boyce [40] suggested it

to be related to seasonality. Their so-called ‘seasonality hypothesis’ states that
seasonal environments select for large body sizes [6, 7]. The underlying mech-

anism is thought to be related to starvation, as larger organisms have larger
energy reserves that will last longer under starvation conditions [39, 51].

So far, however, experimental and field data do not unambiguously support

the seasonality hypothesis. The hypothesis has been tested against field data
by searching for geographical gradients in body size that correlate with gradi-

ents in seasonality, but the results are non-decisive. Positive relations between

body size and seasonality were found for muskrats [6], western bobcats [57],
western rattlesnake [2], weevils [8] and sifakas [37]. In contrast, data on

moose [19] and thirteen species of western palearctic carnivores [44] did not
show clear correlations and thus did not support the hypothesis. The vari-

ability of the results may be explained by the fact that body size is not only

related to starvation, but also to a range of other physiological processes such
as ingestion, maintenance, reproduction and thermo-regulation. As was pre-

viously pointed out by Dunsbrack and Ramsay [18], these (inter)relationships

and processes may cloud the specific effects of seasonality.
Mathematical models may help to study the many interrelationships be-

tween body size and physiological processes. Various models have been de-
veloped to study the effect of seasonality on a variety of life history parameters

and storage dynamics. Yet, like the empirical data mentioned above, existing

model results do not clearly support the seasonality hypothesis either. Cohen
and Parnas [9, 50] used a model to study the relation between variability and

storage level, and optimized allocation patterns. They found that variability

leads to higher levels of storage, but they make no predictions on body size.
Boyce [7] studied the relation between seasonality and life history parameters

(r- versus K-selection), and his results can be interpreted as being consistent
with the seasonality hypothesis. Finally, Shertzer and Ellner [53] found that

variable environments select for smaller body sizes. Clearly, their result does

not support the hypothesis.
The present paper aims to study again the effects of seasonality on the

evolution of body size by means of a modeling approach. Our model distin-

guishes itself from the previously mentioned models because it is fully based
on physiological rules for uptake and use of energy and material; the dynamics

of biomass and reserves are derived from first principles and tested against a
large amount of experimental data, which modeling framework is referred to

as Dynamic Energy Budget (DEB) theory [33].

The resulting model is tested under different values of seasonality. Tradi-
tionally, different seasonalities are sought in a geographical context. In this

study, however, we focus on temporal variations in seasonality. An advantage
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of studying temporal variability in seasonality is that the body size response

can be followed for a single species or lineage, occurring at one location. Geo-
graphical comparisons, in contrast, need often be corrected for interspecific

differences, or for environmental differences other than those in seasonality.
Also, studying temporal variation allows for additional testing, as not only the

evolutionary equilibria, but also the evolutionary trajectories, can be compared

against empirical data.
A particularly strong temporal forcing of seasonality exists on the scale of

20,000-400,000 years, the scale of Milankovitch cycles [34, 47], which have

been extensively documented in the geological record [25, 26, 49]. Solar insol-
ation reaching the earth’s atmosphere is a function of three orbital parameters:

the wobbling of the earth’s axis (precession, mean period 21,000 years), the tilt
of the axis (obliquity, 41,000 year period), and the shape of the earth orbit

around the sun (eccentricity, main periods 100,000 and 400,000 years). The

effect of precession is that the distance from earth to sun varies for each of the
seasons. The climatic effects of precession on seasonality are relatively strong

on low and middle latitudes, with periods of high seasonality alternating with

periods of low seasonality. Obliquity creates seasons, and its effect is largest
on high latitudes. Obliquity-variations in the geological past have been partic-

ularly linked to glaciations. The direct contribution of eccentricity to insolation
is low, but because eccentricity modulates precession (there is no precession

effect with zero eccentricity, i.e. a circular earth orbit), 100,000 and 400,000

year periodicities are also well recorded in the geological record. In addition,
the primary Milankovitch cycles are modulated by longer cycles with periods

of 1.2 and 2.4 million years [34].

The fossil record shows that organisms respond to Milankovitch cycles by
changes in their distribution (habitat tracking) [3]. Body size response is to

be expected as well, but until now there are surprisingly few studies which
have addressed changes in body size on Milankovitch time scales. Given the

widespread recognition of climate cycles in sediments throughout the earth’s

history, the body size response is expected to show a cyclical component. This
can be tested only in cases where an excellent fossil record is available. Because

rodents have such an excellent fossil record, and because their population dy-

namics are well known, and are often driven by periodic environmental factors
such as rainfall [15, 38, 41, 52], we have based our model on these animals.

Results are compared with data on body size changes of small rodents belong-
ing to the family of Muridae during the late Miocene (10-8 million years ago),

which are based on fossil teeth collected from fluviatile and lacustrine (lake)

sediments in Central Spain.
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6.2 Methods

6.2.1 Model description

We use a model that is based on the model developed by Kooijman and Kooi

[29, 30], and adjusted it to account for rodents living in a generalized reactor,

with a resource entering the system with a periodically varying density. The
rodent population is described by two state variables, their ‘structural biomass’

(the total amount of biovolume per hectare X1) and their ‘reserve density’
(energy per structural volume [E1℄ = E1=X1). The energy density is scaled by

the maximum energy density [Em℄, so that the resulting scaled energy densitye1 = [E1℄=[Em℄ is dimensionless and may range between 0 to 1. Adults are
assumed to all have the same energy density e1, as well as the same body

size `A. The model was simplified by assuming that the delay in birth due to

the embryonal period is negligible, which reduces the equations into ordinary
differential equations (ODEs):

dX0
dt = (X0;in(t)�X0)D � f(X0)fImgX1=`A ; (6.1a)

de1
dt = kE(f(X0)� e1) ; (6.1b)

dX1
dt = (R(e1) � h)X1 ; (6.1c)

whereX0 is the resource density in the system, and X0;in is the resource density
that enters the system at rate D; the periodic forcing of the incoming resource

density is discussed in section 6.2.2. kE is the energy turnover rate and h
the rodent mortality rate. fImg is the surface-area-specific maximum ingestion
rate and X1=`A is the rodent surface-area per hectare. The function f is their

functional response, which is assumed to be of Holling type-II ,f = X0K +X0 ; (6.2)

where K is the saturation constant.
The continuous expression for the reproduction rate R is derived in [29,

30], which is the ratio between the amount of energy needed per egg and the

rate with which energy becomes available for reproduction. The latter depends
on the scaled energy density e1 of the mother, and on the energy conductancekE. From the mobilized energy, first the costs for maintenance have to be paid,
calculated by multiplying the maintenance rate kM (i.e. the ratio of costs for

maintenance per unit of time to costs for growth) with the energy investment

ratio g (i.e., the proportion of the total amount of available energy that is used
for growth). The scaled energy density required to produce an embryo consists

of the costs for the structural biomass of a newborn individual, the cost for

growth and maintenance during the embryonic period, g+ = g + 34gkM=kE

[29, 30], as well as of the energy density of a newborn individual, e1. The
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reproduction rate is thus given by:R(e1) = kE e1 � kMgg+ + e1 : (6.3)

Rodents quickly grow into their adult size. Therefore, the juvenile stage can

be neglected and all individuals are assumed to be adults, and thus have the
same body size, which simplifies the model considerably. To model the corres-

ponding steep growth curve, the adult size was assumed to lie at a fraction �
of the maximum size: `A = �`m.

Parameter values for physiological processes were based on average values

for rodent species found in literature. Weights were converted to biovolumes

using a volume-specific density [MV℄ of 1 g cm�3. The average incoming re-
source density or productivity, X0;in, was set to 10 kg ha�1, as to result in

realistic rodent densities. The saturation constant K was chosen as one-tenth
of the maximum possible food density, such that the scaled functional responsef could range from 0 to a value close to 1. For a more detailed explana-

tion of the model, including derivations of R and g+, readers may want to
consult [29, 30]. Parameters and variables of the model are summarized in

Table 6.1, with all default parameter values listed in Table 6.2.

Reproduction rate under starvation conditions. During the winter, the ro-
dents may depelete their energy storage. In case they can no longer meet their

maintenance requirements (R(e1) < 0), death due to starvation will start to
occur. Note that the reserve density does not need to be zero for such short-

ages to arise, as it is not only the reserve density but also its mobilization ratekE that is physiologically limiting. In a physiologically-structured model organ-
isms generally have different energy reserves and such shortages would mean

that some organisms or cohorts would die. However, in our simplified model

all organisms have the same size and energy reserves and deplete these re-
serves at the same time. Instead of having the total population die, we assume

that the change in the structural biomass of the population is proportional to
the reproduction rate, also when this becomes negative. The resulting decrease

in biomass implies that the organisms use their structural biomass for paying

their maintenance costs. A more liberal interpretation could be that, due to the
natural variation in energy density, part of the population dies while the rest

survives. As a result, the average reserve density, and thus the reproduction

rate, increase again. When it is very inefficient to use structural biomass to pay
maintenance costs, the body size at the evolutionary equilibrium would shift

towards a size at which the reserves are always sufficient to pay the mainten-

ance needs. Therefore, together with the evolutionary size, we present this
‘adequate’ body size in our results.

Scaling considerations. In the present study, body size `A is assumed to be
subject to evolution. Therefore, various body-size scaling relationships were

included that were not considered in the original DEB model [29, 30], where
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Table 6.1: Used symbols; t=time, L=length of individual, l =length of area, m=mass,

e=energy.

Symbol Dimension InterpretationD t�1 ‘Dilution’ rate[E℄; [Em℄ e L�3 Energy density, and maximum (storage capacity)f � Scaled functional responseg; g+ � Energy investment ratio; g + 34gm=�fImg L3L�2t�1 Surface-area-specific maximum intake rate fImg = `A[Im℄[Im℄ L3L�3t�1 Volume-specific maximum intake rate.kE t�1 Specific energy conductance: v=`AkM t�1 Maintenance rate coefficient[MV℄ m L�3 mass per unit of structural body volumeR t�1 Reproduction rateT0, Tp t Period length of seasonal cycle, and of precession cycleTs t Starvation periodX0;in(t), X0;in L3l�2 Incoming resource density, function and average� – Fraction of the asymptotic size that is reached�, �p – Amplitude of the seasonal cycle, and of the precession cyclev L t�1 Energy conductance – Shape coefficient of environmental cycle

State VariablesX1, X0 L3l�2 Rodent and resource biovolume densitye1 – Scaled energy density

Adaptive traits`A L Adult rodent length `A = �`m`m L Maximum rodent length

Table 6.2: Default parameter values

Symbol Value Unit Reference (if relevant)
D 0:01 d�1h 0:002 d�1 [20][Im℄ 0:05 mg ml�1d�1 [35]kM 0:5 d�1 [33]K 1 kg ha�1 1=10 of X0;in[Mv℄ 1 g cm�3T0 365 dTs=T0 0.5 –v 0:2 cm d�1 [33]X0;in 10 kg ha�1� 0:25 – –� 1 –
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body size was assumed to be fixed. First, the energy investment ratio g was

no longer constant, but comes to depend on body volume `3m, following an ex-
pression central to DEB theory, g = �=(kM `m) [33]. Second, the specific energy

conductance kE is equal to the energy conductance � divided by the size of the
organism, kE = v=`A. The rationale behind this scaling relation is that energy

is mobilized across membranes, which have a surface area proportional to that

of the organism. Third, the surface-area specific ingestion rate is proportional
to size fImg = `A[Im℄, in which [Im℄ is the (constant) volume-specific ingestion

rate, following a primary scaling relationship in DEB theory.

6.2.2 The periodic environment

The resource density X0 is externally forced by the incoming resource density
function X0;in(t). This incoming density has a sinoidal shape which is specified

by the amplitude �, the average incoming resource density or productivity X0;in
and the period length T0, such that the density is always positive:X0;in(t) = � X0;in(1 + � sin(2�t=T0)) , 1 + � sin(2�t=T0) > 00 , 1 + � sin(2�t=T0) � 0: (6.4)

The relative starvation period Ts=T0 is defined as the fraction of the total

period in which the incoming resource density X0;in is lower than its averageX0;in. This fraction can be changed by deforming the sinus, while keeping amp-

litude, offset and total period constant. This is done by taking the ith power of
the resource function as follows: X0;in(t) = X0;in(1+2�(((1+ sin(2�t=T0))=2)i�1=2), with i = 0; 1000. For i = 1 this equation becomes equation (6.4). Then,

the relative starvation period corresponding to each i was calculated with an
empirically fitted function: Ts=T0 = 1� (1 +pi )�1.

The shape coefficient  is a measure for the shape of the environmental

cycle: at  = 1 it is a perfect sinus, while at  = 0 it is block-shaped. The shape
deformation was done by taking the jth root of the sinus: X0;in(t) = X0;in(1 +� sin(2�t=T0)1=j) for sin(2�t=T0) > 0, and X0;in(t) = X0;in(1�� sin(�2�t=T0)1=j)
for sin(2�t=T0) < 0, with j = 1; 100. Then, j was converted into  to corres-
pond linearly to the range of shapes:  = expf�0:15(j � 1)g. Figure 6.3A

shows how amplitude, period and offset and the other properties are defined.

6.2.3 Evolutionary equilibria

In nature, body size is the result of several interrelated factors. Here, however,
we treat it as a single ‘compound’ trait that is subject to evolution. Body size

is inherited from parents to offspring, but due to sloppy heredity small differ-

ences may occur. Mutants with a different body size may invade and replace
the resident population or simply go extinct. A series of such replacements will

lead to phenotypic change of the population. To find the evolutionary equi-
librium, i.e. the body size to which the organisms will eventually evolve, we

use Adaptive Dynamics (AD) theory; this theory helps to analyze phenotypic
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evolution under frequency-dependent selection [16, 17, 23, 45]. The invasion

fitness of a mutant smut is defined as its long-term per capita growth rate r
while being rare in the environment E(`res) set by the resident population at

its ecological equilibrium: smut = r(`mut; E(`res)), where `res and `mut are the
trait values `A of the resident and the mutant population, respectively. Because

the resident population is at its ecological equilibrium, individuals belonging to

this population always have a zero invasion fitness, sres = r(`res; E(`res)) = 0.
Mutants with a negative invasion fitness will die out, but mutants with a posit-

ive invasion fitness may replace or coexist with the resident population.

In constant environments, the mutant invasion fitness is equal to the spe-
cific growth rate of the mutant: smut = Rmut(`mut; E(`res)) � h. In this paper,

however, we study a system in which the incoming resource density is not
constant but periodic; as a result, the environment does not only depend on

the resident trait value `res, but also on time t. This makes the calculation of

the mutant invasion fitness more complicated, but in [31, 46] it is shown that
it comes down to the mutant’s growth rate averaged over the environmental

cycle period T0:smut = T�10 Z T00 Rmut(`mut; E(t; `res))dt � h: (6.5)

The expected direction of phenotypic change is proportional to the local
fitness or selection gradient, i.e. the derivative of the fitness function with

respect to the body size of the mutant evaluated at the body size of the resident:��`mut
smut = �� `mut

s(`mut; E(t; `res))����`mut=`res

: (6.6)

A deterministic approximation of the evolutionary trajectory of the body

size can be obtained with use of the ‘canonical equation’ of Adaptive Dynamics
[17]. For periodic systems this involves the additional assumption that the

mutant invasion is slow with respect to the dynamics of the periodic attractor.
For a monomorphic population this comes down to:

d`res

dt = 12 k X1`3res

��`mut
smut; (6.7)

where k is the mutation-rate parameter involving the fraction of mutations per

birth and the mean size of the mutational step; X1=`res
3 is the mean population

size (in number of rodents per hectare).

Eventually, the population will reach a body size at which the fitness gradi-
ent has vanished: ��`mut

smut = 0: (6.8)

Such a ‘singular strategy’ is an evolutionary equilibrium, which is found by in-

tegration of the canonical equation. In a constant environment, the population
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will continue to evolve until reaching this equilibrium body size. The used

methods and the evolutionary dynamics of this system are discussed in more
detail in [31].

6.2.4 Evolutionary trajectories

Evolution is a slow process, and the environment (seasonality) may change
faster than the phenotype of the organisms. As a result, the evolutionary equi-

librium may never be reached. In these cases, not only the evolutionary equilib-

rium discussed above, but also the evolutionary trajectories of body size are of
interest. These trajectories can be deterministically approximated with use of

the canonical equation of AD theory (Equation (6.7)). However, in AD theory,
it is assumed that mutations are rare, such that the resident population has

reached a population-dynamical equilibrium before a next mutation occurs.

This implies that, by that time, all other populations consisting of individuals
with smaller invasion fitnesses have gone extinct. This may be unrealistic, es-

pecially when studying evolution in a changing environment. Therefore, the

evolutionary trajectories were determined by means of stochastic simulations
instead, in which no equilibrium assumption is required.

In the first simulation, the body size response of rodents was studied over
a period of almost one precession cycle (from 20,000 years ago until now).

The temporal change in seasonality during this interval was incorporated in

the function for the incoming resource density by multiplying the amplitude �
of the seasonal cycle by the precession cycle �p, which thus amounted to:X0;in(t) = X0;in(1 + �p � sin(2�t=T0)). The precession cycle was calculated as�p = 1 + �p sin(2�t=Tp), with a period Tp of 21,000 yr. Because no resource
or precipitation data were available for this area at this interval, values for the

amplitudes, � and �p, had to be assumed. The amplitude � of the seasonal cycle
was set to � = 0:7, to study specifically the evolutionary dynamics in the vicin-

ity of the bifurcation point. The amplitude �p of the precession cycle was set to

a value smaller than one, �p = 0:25, so that a certain amount of seasonality re-
mained throughout the whole period. Note that, on the northern hemisphere,

seasonality is high at precession minima (e.g., at 11,000 years ago), while it is

low at precession maxima. Seasonality thus follows a pattern that is opposite
to precession.

Mutations in the maximum body size were assumed to be normally dis-
tributed around the parent maximum body size with � = 0:02. Mutants were

assumed to enter the system with the same reserve density as their parent and,

because they were assumed to be rare, with a very low initial biomass density,
corresponding to that of 10�20 adults per hectare; the threshold for extinc-

tion was also set to 10�20 individuals per ha. To limit the number of potential

lineages, they were grouped in size classes with a width of log10(0:005). The
mutation rate k was set to 0:5� 10�4 per birth.

In the second simulation, we focus on a longer interval in the late Mio-
cene in Central Spain (10-8 million years ago, Teruel Basin) [13]. For this

interval and area, theoretical precipitation values were calculated at the most
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extreme precession maxima and minima of the last million years, and at zero

precession. These precipitation values were calculated with a climate model
of intermediate complexity using present-day boundary conditions [55]. The

use of these boundary conditions is not problematic, as small-mammal com-
munity structure shows that Late Miocene levels of rainfall in Spain were not

very different from today’s levels [14]. Obliquity was considered fixed in these

calculations and was set to the lowest value found in the last million years.
The climate model results show (relative) amplitudes of precipitation rates

of 0.62 at precession minima, 0.34 at precession maxima, and 0.37 at zero pre-

cession. To translate the precipitation rate into the incoming resource densities,
it was assumed that a minimum of 1 mm d�1 of precipitation was minimally re-

quired for resources to be produced. Above this minimum precipitation value,
the incoming resource density was assumed to be linearly related to precipit-

ation rate. Calculated as such, one arrives at amplitudes of 1.05 at the most

extreme precession minima, 0.51 at the most extreme precession maxima, and
0.68 at zero precession.

The temporal change in seasonality was calculated by modifying the pre-

cession cycle �p by three longer cycles: �p = 1+�1�2�3(�+sin(2�t=Tp). These
cycles, calculated as �i = 12 (1 + �i sin(2�(t+ Tdi)=Ti), have periods Ti of f100,

400, 2400g kyr, and delays Tdi of f20,0,1100g kyr, respectively [34]. Their
amplitudes, �i=f0.6, 0.8, 0.6g, were based on the relative importance of the

three cycles calculated by Laskar et al. [34] and, for their absolute values,

on the differences in amplitudes of the incoming resource densities calculated
above; � was set to a value of 0.2 as to incorporate the asymmetry in the distri-

bution of precipitation minima and maxima around the average precipitation

as appeared in the theoretical precipitation values predicted by the climate
model. The amplitude of the incoming resource density function was set to� = 0:68, which is the amplitude in incoming resource density at zero preces-
sion calculated above.

Simulation results were compared to data on rodent teeth sizes from this

period, derived from an exceptionally dense and well-dated record (24.5-2.5
million years ago) of fossil small teeth. These fossil teeth were collected from

fluviatile and lacustrine (lake) sediments in Central Spain [11]. Tooth size

changes were traced in the two best-represented Progonomys-Occitanomys and
Hispanomys lineages (mouse- and hamster-like forms, respectively, belonging

to the family Muridae). Changes in lake and small-river sediments have been
found to be controlled by astronomically-forced climate change [1], and tooth

size is a good estimator for body size [36].

6.3 Results

6.3.1 Effects of seasonality

Figure 6.1 shows the density fluctuations of resources and rodents on a

population-dynamical time scale, at which the adult body size is constant. Re-
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Figure 6.1: Density fluctuations on an ecological time scale: Incom-

ing resource density X0;in (short-dashed curve), resource density X0
(dotted curve), rodent energy density e1 (continuous curve) and rodent

biovolume density X1 (long-dashed curve) plotted against time (years);

energy density is a dimensionless variable, the other variables were nor-

malized to the average incoming resource density X0;in.

sources X0 (dotted curve) are transformed into rodent reserves e1 (continuous

curve) and then into rodent biovolume X1 (long dashes). It can be seen that all
variables follow the forced fluctuations of the incoming resource density X0;in
(short dashed curve), though each with an increased delay and a decreased

amplitude. This illustrates the buffering function of the reserves, smoothing
out variations in the resource availability. Muller and Nisbet [48] studied the

physiological response on an ecological time scale, of an organism following
DEB-rules, in more detail. They showed that a variable food supply stimulates

growth, increases mortality and may enhance reproduction.

Figure 6.2 shows the evolutionary equilibria of body size (continuous and
dashed curves) against the amplitude � of the environmental cycle; both period

length and offset are kept constant. When the amplitude becomes larger than

the offset, periods with zero food occur. The evolutionary equilibrium at the
continuous curve is stable, and thus an ‘evolutionary attractor’, which means

that the population will evolve towards it. The dashed curve denotes an un-
stable equilibrium, or an ‘evolutionary repellor’: above the line evolution is dir-

ected towards larger body sizes, whereas below the line it is directed towards

smaller body sizes. The dotted curve denotes the body sizes above which re-
production is never smaller than zero, such that the organisms always have

sufficient energy reserves to pay their maintenance; this curve was named the

‘adequate’ body size. The figure shows that body size value at the evolution-
ary equilibrium increases with amplitude. At � = 0:75, the stable and unstable
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Figure 6.2: The effect of seasonality on the evolutionary equilibrium of

body size. The figure plots the logarithm of the body length in centimeters

against the amplitude � of the environmental cycle. The continuous curve

denotes the stable evolutionary equilibrium (attractor); the dashed curve

denote the unstable evolutionary equilibrium (repellor); dotted curves de-

note the ‘adequate’ body size, above which the reserves always suffice the

to pay the maintenance costs.

equilibria (continuous and dashed curves) come together and the evolution-

ary equilibria ‘disappear’; this is a so-called ‘tangent bifurcation’. At this and

smaller amplitudes, the environment will select for ever smaller body sizes. A
similar phenomenon was also found in [22].

Figure 6.3B-E show how the evolutionary equilibrium of body size is af-

fected by various other cycle characteristics (Figure 6.3A), while the unchanged
characteristics are kept at their default values. The evolutionary equilibrium in-

creases considerably with cycle period T0 (Figure 6.3B). Productivity (offset)
has a much smaller effect (Figure 6.3C); only at small productivities that are on

average below the saturation constant, the body size at the evolutionary equi-

librium decreases. At very small offsets, the population goes extinct. Relative
starvation period �s has a two-sided effect (Figure 6.3E): body size decreases

both for shorter and for longer starvation periods. The shape of the environ-

mental periodicity  has only a small effect on body size. At sharper transitions
between the good and the bad season (smaller values of ) the evolutionary

equilibrium increases slightly in value.

6.3.2 Effects of variations in seasonality

Figure 6.4 shows the results of the first simulation. In response to the si-
nusoidal change in seasonality (lower continuous curve), the body size also
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Figure 6.3: The effect of various environmental cycle characteristics (A)

on the evolutionary equilibria of body size (B-E). The figures plot the

logarithm of body size in centimeters against period length T0 (B), aver-

age incoming resource availability X0;in (C), the relative starvation periodTs=T0 (D), and the shape coefficient  (E). Continuous curves denote the

stable evolutionary equilibrium (attractor); dashed curves denote the un-

stable evolutionary equilibrium (repellor); dotted curves denote the ‘ad-

equate’ body size above which the reserves always suffice to pay the main-

tenance costs.
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Figure 6.4: Average adult body sizes predicted (upper continuous curve)

in the last 20000 years, resulting from a simulation in which the sea-

sonality (lower continuous curve) is varied according to the changes in

precession. The gray areas around the average size indicate the range of

body sizes that are present in the system simultaneously.

changes sinusoidally. Grey tones indicate the range of body sizes simultan-
eously present in the system. Note that the body size response is out of phase

with the change in seasonality.

Figure 6.5 shows the results of the second simulation, together with rodent
teeth sizes of Progonomys-Occitanomys and Hispanomys lineages derived from

fossil teeth from the late Miocene period. Tooth size in both lineages shows a

drop in all studied elements (first and second upper and lower molars) between
9.7 and 8.9 million years ago. The model simulates this drop very well.

6.4 Discussion

Model results show a positive relation between the amplitude of the environ-

mental cycle and the body size at the evolutionary equilibrium (Figure 6.2).

As amplitude corresponds to the variability and therefore to the seasonality
of the environment, these results support the seasonality hypothesis. This, in

turn, implies that latitudinal differences in body size (Bergmann’s rule) may be
attributed to differences in seasonality indeed.

Our model is the first model that clearly supports the seasonality hypo-

thesis, contrasting most sharply with that of [53], who found that variability
selects for smaller sizes. The contrasting results originate from the structural

differences between the models that were used. In the model of Shertzer and

Ellner [53], energy storage is treated as an additional feature that is only used
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in times of need. In contrast, in DEB theory the energy reserves are given a

much more central role and are more closely linked to other physiological pro-
cesses such as growth and reproduction. Assimilates derived from food are

added to the reserves, which then fuel all other processes including mainten-
ance, growth and reproduction. As a result, growth and reproduction do not

depend directly on the available food resources, but on the reserves. This gives

the reserves a broader interpretation than is generally the case: reserve mater-
ial is not only set aside for later use (such as fat storages), but it consists of

all material that is available for metabolic use, now or later. As a consequence

of their central role, the reserves and their dynamics are fully embedded in
the model. The assumptions underlying these reserve dynamics also lead to

various body size scaling-relationships. One of these is the scaling of storage
capacity (maximum energy density [Em℄) with body size, which relationship is

supported by empirical data [40, 51]. In the model of Shertzer and Ellner [53],

however, the size of the energy storage is not physiologically limited, and en-
ergy capacity and body size evolve independently. The contrasting findings

illustrate the great importance of a physiologically based model structure.

Of the studied cycle characteristics, period length has the largest impact on
the evolutionary equilibrium of body size (Figure 6.3B). Though period lengths

other than a year may not be relevant for most rodent species, they may be for
other species, as both longer and shorter environmental periodicities exist (e.g.

daily, tidal and El Niño cycles). Also the relative duration of the good and bad

seasons is of importance (Figure 6.3C). Figure 6.3D shows that smaller environ-
mental productivity leads to smaller body sizes, which is also found by Shertzer

and Ellner [53]. This result may be explained by the lower maintenance and

reproduction costs of small individuals, as well as by their higher relative food
intake rate. Also, it may be related to the density dependence of the fitness

measure, as increased mortality during the bad season reduces competition
during the good season. Furthermore, the relative amplitude � was found to

have considerably more effect than the absolute amplitude (�X0;in), which can

be seen when comparing Figures 6.2 and 6.3D. Finally, the cycle shape did not
have much effect on the evolution of body size (Figure 6.3E), indicating that

the organisms are not very sensitive to the low resource densities experienced

during the transition periods between good and bad seasons.
Figures 6.2 and 6.3 also show that, for the used set of parameter values,

the evolutionary equilibrium of body size is always smaller than the adequate
body size. This indicates that it is costly to be large, and it is better to break

down structural biomass for paying maintenance in times of need. Of course,

this only holds when breaking down biomass is not costly itself. If it would
be more costly, the evolutionary equilibrium would shift in the direction of the

(larger) adequate body size. This would, however, not lead to qualitatively

different conclusions, as the curves of adequate body sizes follow those of the
evolutionary equilibrium, though at a higher value. Yet, the population would

become less sensitive to small amplitudes, and an evolutionary equilibrium
would still exists at lower seasonalities.

Temporal changes in seasonality and the body size response over time were
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studied by means of two simulations. The pattern resulting from the first simu-

lation (Figure 6.4) resembles very well the one observed in the fossil record of
bushy-tailed woodrats from the Great Basin and Colorado Plateau, as studied

by Smith et al. [54]. This body size response was attributed to (astronomically-
triggered) climatic change (temperature) since the Last Glacial maximum [54].

Our results illustrate that these evolutionary patterns may as well be explained

by changes in seasonality. We realize, however, that the forced change in sea-
sonality used in the simulation, though based on [34], may be different from

the actual seasonality as was experienced by the woodrats, as large local differ-

ences exist in seasonality patterns in the Great Basin and Colorado area [27].
Moreover, the influence of the retreating glacial sheet may not be neglected

and does suggest a large role for temperature changes as well.
The Late Miocene simulation results (Figure 6.5) also fit the empirical ob-

servations of the rodent fossil record well. During the interval 9.6-9.2 million

years ago, which is characterized by intermediate levels of seasonality without
extreme winters or summers, body sizes attain lower values, as is shown by the

decrease in tooth size. The continuation of smaller body sizes between 8.9-8.6

million years ago, shown in the empirical data, could be attributed to lower
absolute levels of food due to smaller amplitudes of obliquity (Figure 6.5), as

small obliquity values could have favoured high-latitude glaciation [56] and
an overall more arid climate. This decrease is not shown in the simulated body

size response, because changes in obliquity were not considered. Lower aver-

age temperature related to glaciation might also have contributed to a lower
mean body size in this period.

As we expected on basis of the widespread recognition of climate cycles in

sediments, cyclical patterns in body size are empirically observed indeed, e.g.
in the fossil record of Miocene rodents (Figure 6.4a), in the fossil record of

the woodrats mentioned above [54], and in the fossil records of Late Pleisto-
cene and Holocene fossil rodents [24]. Our simulation results show that these

cyclical patterns may be attributed to periodic changes in seasonality. How-

ever, the simulations also show that the peaks (largest and smallest values) of
body size are not by definition reached at seasonality maxima and minima. On

closer inspection, Figure 6.4 shows that seasonality does not correlate with the

resulting body size, but rather with the direction of evolution. This is becauseC Figure 6.5: A: Fossil teeth sizes of Progonomys-Occitanomys and His-

panomys lineages collected from fluviatile and lacustrine sediments in

Central Spain. Tooth size is a good estimator of body size. M1=first up-

per molar, M2=second, m1=first lower molar, m2=second lower molar.

Data after [12]. B: Average body size (upper continuous curve) from 10

to 8 Myr ago, resulting from a simulation in which the seasonality (lower

continuous curve) is varied according to the changes in precession in that

period. The gray areas around the average size indicate the range of body

sizes that are present simultaneously in the system.
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the organisms do not reach the predicted evolutionary end point immediately.

Instead, they need time to evolve towards this equilibrium, and the direction
of evolution has changed before they have reached it. This type of body size re-

sponse, which is out of phase with seasonality, may be obtained only when the
body size value at the evolutionary equilibrium increases sufficiently steeply

with seasonality, such as is found here close at the tangent bifurcation point.

If the evolutionary equilibrium body size values increases less steeply with
seasonality, evolution will be able to keep up with the changes in seasonality,

and variations in body size and in seasonality will be in phase. When season-

ality varies symmetrically around the bifurcation point, the body size response
may be perfectly cyclical, and body size may be exactly the same at the begin-

ning and end of each cycle. This is for instance the case in Figure 6.4, where the
amplitude � of the seasonal cycle was given the exact value of the bifurcation

point. In case seasonality varies asymmetrically around the tangent bifurca-

tion, body size response will also get a directional component. This is the case,
for example, in Figure 6.5, where the organisms have a larger size at the end

than at the beginning of the simulation. In this case, body size will only return

at its start value when the system is reset, for example due to a mass extinction
in which all larger organisms go extinct.

Please note that in this study we deliberately left out complex behaviors and
adaptations such as hoarding and torpor to single out the effects of seasonality

on body size. We realize, however, that these factors may affect the starvation

rate considerably, and thus the evolutionary outcomes. Hence, it would be very
interesting to extend our current model to include these factors and study their

combined effects on the evolution of body size. This also holds for the adaptive

change of allocation patterns [48, 50], which may lead to counter-intuitive res-
ults, such as why in some cases body size is not related to starvation time [28].

Other important factors include thermo-regulation, predation ability and vul-
nerability. These factors may, for example, lead to an evolutionary equilibrium

of body size that exists also at small seasonalities.
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7

General Discussion

In this thesis, the evolution of community metabolism was studied by applic-

ation of AD theory [1, 2, 4, 8] to models based on DEB theory [6, 7, 9]. In
Chapters 2 to 4 a model was used that deals with a population of mixotrophic

organisms, which could specialize into different trophic functions (autotrophic
or heterotrophic assimilation). In Chapters 5 and 6 a model was used that

deals with a size-structured population of which the (purely heterotrophic) or-

ganisms could evolve towards different body sizes. Variations were made on
both the mixotrophy model and the size-structured model by including two,

instead of one, adaptive traits (Chapter 2 and 5) and by considering a hetero-

geneous instead of a homogeneous environment (Chapters 4 and 6).
In this final chapter, the differences between these two models and model

variations are discussed, and the implications of these differences to the mod-
eling of realistic evolutionary communities. First the differences with respect

to the approach to specialization are discussed, as well as how these differ-

ences affect the possibilities to define realistic trade-offs (Section 7.1). Then,
differences in system structure and scope are discussed, and how these differ-

ences relate to the difference in approach to specialization (Section 7.2). In

Section 7.3, differences in the considered number of adaptive traits and in the
shape of the trade-offs are discussed, and the consequences for the resulting

community structure. Finally, in Section 7.4, results are summarized, and pos-
sibilities for improving evolutionary community models are discussed.

7.1 Specialization into and within functional groups

One of the essential differences between the population in the mixotrophy
model (used in Chapters 2 to 4) and that in the size-structured model (used

in Chapters 5 to 6) is their potential for specialization. The mixotrophic or-
ganisms are capable of specialization into trophic functions, which will lead

to various functional groups (autotrophs and heterotrophs). In contrast, the

size-structured population is capable of specialization within a trophic func-
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tion, which will lead to diversity wihtin a functional group (heterotrophs of

different body sizes).
A problem in evolutionary community models is that all physiological func-

tions, traits and trade-offs need to be defined beforehand. Therefore, the or-
ganisms cannot acquire any new trophic functions during the evolutionary pro-

cess; all potential material pathways and the maximum number of pure species

(species that are fully specialized on one trophic function) are already known
from the start. This sets boundaries to the system’s development, especially

when focusing on specialization into different trophic functions: new pure pop-

ulations or species will only arise as long as their trophic pathways allow for
it; though new substrates or (waste) products of the existing populations may

be added to the system, these cannot be utilized unless the required function
was defined already in the primary population or species. This is illustrated by

Figure 7.1, which shows a diagram of the begin stage and a possible end stage

of the mixotrophy model system.

C

VAH

respAH deathAH

assHassA

C D

VH

respH

deathH
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respA

deathA

VA

assH

D

Figure 7.1: Schematic representation of the mixotrophy model at the be-

ginning (left) and end of its development (right). The mixotrophy model

consists of two substitutable carbon substrates, DIC (C) and detritus (D);

the mixotrophic population (VAH) is capable of both assimilatory path-

ways, while the specialized populations (VA and VH) are capable of either

of these.

In the size-structured model, that focuses on specialization within a func-

tional group, again various substrates are available, but now all are used by the

same metabolic function, in this case heterotrophic assimilation. The modeling
advantage of this approach is that only one physiological mechanism (or set

of mechanisms) is involved in the evolutionary process. As a result, new pop-
ulations or species may arise as long as new substrates become available, for

which no additional physiology, traits, or trade-offs are required. Figure 7.2

shows the possible development of a size structured system with three sub-
strates. This system is a schematic representation of the model system studied

in Chapter 5, where prey with a range of sizes were available as substrate.

This approach allows for even more flexibility in community development
when the organisms themselves act as a substrate to other organisms, resulting
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Figure 7.2: Schematic representation of a size-structured model at the

beginning (left) and end of its development (right). In this model, three

substrates of different sizes Ci are present; the organisms in each popula-

tion have a different size, and consist of an energy reserve (Ei) and struc-

tural biomass (Vi). Dashed arrows indicate weak or non-existing links.

in predation among predators. In this case, each new population will form a
new substrate and, in theory, the system may endlessly develop more popula-

tions and more trophic levels. A diagram of such a development is shown in
Figure 7.3. Predation among predators was briefly studied in Section 5.5.3.

Another difficulty of specialization into trophic functions is the formulation

of the trade-offs. This is because the involved physiological mechanisms in-
volved with these functions do not directly interfere with the other, such that

they may operate in parallel. Therefore, interactions between trophic functions

are mainly indirect and often far from clear. This results in trade-off functions
that are either based on unknown mechanisms, or not based on mechanisms

at all. In either case, a more or less arbitrary trade-off will result. Yet, these
trade-off functions are very important, as they largely determine the outcome

of the evolutionary process (see Section 7.3). The often used rationale behind

simple trade-off functions, stating that energy can only be spent once, does not
hold for trade-offs between trophic functions, because trophic functions yield,

rather than cost, energy. The large number of symbionts illustrates that in some

cases a trade-off may not even exist, and it suggests that the separation of func-
tions between species may sometimes have a phylogenetical or environmental

origin rather than one related to physiological or morphological trade-offs.
In contrast, when studying specialization within a trophic function, the

trade-off lies within one trophic function and can be derived on basis of more

specific and concrete mechanisms. For example, when the involved machinery
can process only one resource item at a time and parallel handling is thus im-

possible, a trade-off arises automatically due to differences in handling times

and energy yields of the various prey items that lead to differences in their prof-
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Figure 7.3: This size-structured model considers predation among pred-

ators, i.e. the predators themselves can act as prey; at death, the energy

reserves (Ei) are recycled into the basal substrate (V0).
itability. Though a trade-off within a trophic function is thus more easily found,

an often encountered problem is that, in many of the studied systems, the most

obvious trade-off is a linear one. This will not lead to interesting results like
intermediate trait values or multiple coexisting populations (see Section 7.3).

7.2 System structure

The approach to specialization discussed above is closely related to the system

scope and structure. This applies in particular to the system boundaries, which

can be open or closed. The mixotrophy system, for example, includes both
autotrophic and heterotrophic functions that enable a full carbon recycling (see

Figure 7.1). In nature, fluxes involved in the carbon recycling take place over
large spatial (maybe even global) scales and large (evolutionary) time scales.

Considering the mixotrophy system closed for mass is in correspondence with

these large scales and the complete material cycling. Note that the system is
still open for energy (light), which is necessary to keep it from its thermody-

namic equilibrium. The size-structured system, in contrast, considers special-

ization only within the scope of heterotrophic assimilation. Hence, the system
can represent only part of an ecosystem and relies on other subsystems to per-

form complementary functions like autotrophic assimilation. Though recycling

processes may be taken into account (see Figure 7.3), these are not expected to
result in full material recycling. Hence, considering the size-structured system
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to be open for mass is required by its smaller scope and incomplete recycling.

It was found that opening a system for mass affects its evolutionary out-
comes. In Chapter 2 it was shown that, in a closed system, the evolutionary

outcomes are determined only by parameter values that are intrinsic to the or-
ganisms, such as physiological constants; system properties such as the total

nitrogen content or incoming light intensity do not to have any effect. This is

changed when the system is opened for mass; in that case the trait values at
the singular strategies come to depend on boundary fluxes as well.

Another system property that was found to affect evolution, is environ-

mental heterogeneity. As was shown in Chapter 4, a spatial gradient facilitates
evolutionary branching by creating locally different environments (habitats).

Obviously, different habitats allow for niche differentiation, which is an im-
portant source of biodiversity. Spatial heterogeneity of the environment was

also found to affect the role of other system properties, such as mixing intens-

ity and total nitrogen content. These properties could acquire effect on the
evolutionary outcomes through their effect on the spatial gradient. Besides

spatial heterogeneity, also temporal heterogeneity may exist. The evolutionary

analysis of temporal heterogeneity, however, requires very different techniques
(Floquet theory) and was studied in Chapter 6.

Environmental heterogeneity not only affects the evolutionary outcomes,
but also the process of evolution. It facilitates evolutionary branching by locally

increasing the density dependence [3]. A similar argument probably holds for

closing the system for mass. In a closed system, the effects of density depend-
ence are not diluted (literally) by the in- or outflux of material. Therefore,

closing the system for mass is also expected to facilitate evolutionary branch-

ing.

7.3 Adaptive traits and trade-offs

Two other factors that were found to play important roles in the evolution-
ary outcomes of the community models, are the number of adaptive traits and

the precise shape of the trade-off function. The number of adaptive traits de-

termines the dimensionality of the trait space, and therefore the ‘potential’
of the resulting community in terms of network structure. In case of a one-

dimensional trait space, the community structure will at best evolve to a food
chain. With a two- or more dimensional trait space it may evolve to a more

complex and realistic food web. Food chains are characterized by a linear hier-

archy, in which the ranking of the organisms can be expressed by a single value;
food chains only have integer trophic levels. In contrast, in food webs the no-

tion of ‘trophic level’ is replaced by ‘trophic position’ which may take any value

and form a continuum [11]. Also, the hierarchy in food webs is often am-
biguous, because species are characterized by two or more traits, and different

rankings result when based on either of these.
Note that the dimensionality of the trait space is determined only by the

‘effective’ number of adaptive traits, for which only the number of independent
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traits counts. Independent traits are not coupled or traded off with other traits,

directly nor indirectly. An indirect trade-off is used in the mixotrophy model in
Chapter 2, where the adaptive trait values for autotrophic and heterotrophic

affinity are traded off through a cost function. An example of a direct trade-off
is used in the mixotrophy system in Chapters 3 and 4, in which the two affin-

ities for autotrophic and heterotrophic assimilation were assumed to add up to

unity, such that they could be represented by a single trait value. An example of
an indirect coupling is present in the size-structured system used in Chapter 5,

where the organisms are characterized by their prey-size preference and their

body size; these two traits are indirectly coupled by the functional response.
A direct coupling between two traits exists when their mutation distributions

are covariant. An example of complete covariance is present in for instance
the model of Loeuille and Loreau [10], in which the prey-size preference of

the predator is determined directly by its size, such that the predator-prey size

ratio is fixed.
Indirect or direct trait dependencies decrease the dimensionality of the sys-

tem. They may reduce the system structure from a true food web into a set of

overlapping food chains and, in case of complete dependency, into a true food
chain. An example of a model that considers two totally independent traits is

that of Ito and Ikegami [5], which results in rather complex community struc-
tures indeed. However, the two traits that they considered are related to the

organism’s ability and vulnerability to predation, and the assumption that the

two traits are totally independent is not very realistic.
While the number of traits determines the potential of the resulting network

structure, the shape of the trade-off functions largely determine the number of

populations to which the system may actually evolve. For a linear trade-off
function, in most cases only one population will result with a trait value at one

of the boundaries or extremes of the trait space. For a non-linear trade-off func-
tion, the result is determined by the precise shape of this function. Concavely

curved trade-off functions will often lead to one population at an intermediate

trait value, while convexly curved trade-off functions may lead to two popu-
lations each at one of the extremes of the trait space. More complexly curved

trade-off functions may lead to more than two populations, which trade-offs

may arise from functions with multiple peaks, such as polynomes of higher
degrees. Also, more complexly curved shaped trade-off curves may arise from

a bounded trait space, or from an indirect trade-off. In these cases, however,
the requirements for evolutionary branching may become more complicated as

well (Chapter 2).

7.4 Conclusions

In this thesis, the evolution of community metabolism was studied. Many

factors were found to influence the evolutionary process and outcomes of model
communities. One of the most important was found to be the choice for special-

ization into functional groups (as in the mixotrophy model) or within a func-
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tional group (as in the size-structured model). Focusing on different trophic

functions may lead to complete ecosystems that include various functional
groups, but such models are limited in the flexibility of their development.

In contrast, models focusing on specialization within a functional group have
a smaller scope, but are more flexible in their development. Also, the trade-off

between trophic functions is often indirect or may not even exist, which leads

to complex requirements for, or intrinsic disadvantages to specialization, while
within a trophic funcion, more concrete and direct trade-offs may exist.

Environmental heterogeneity was found to overrule intrinsic disadvantages

to specialization by creating locally different environments. This suggests that
environmental heterogeneity is an important cause of specialization, especially

in case of specialization into trophic functions. Heterogeneity also leads to an
advantage for having energy reserves, which has large implications for body

size as well. Other important factors were found to be the number of adaptive

traits and the shape of the trade-off functions. The number of traits determ-
ines the network potential, while the shape of the involved trade-off functions

largely determine the number of populations that will actually result. Open-

ing the system for mass will provide the boundary fluxes with influence on the
evolutionary outcomes; in closed systems only intrinsic properties will be of

importance.
Unsurprisingly, including more realism in evolutionary community mod-

els complicated the evolutionary analysis considerably. Because DEB models

consist of two state-variables for each population and an explicitly formulated
environment, analytical solutions are often not available. Introducing, on top

of that, an indirect and physiologically-based trade-off, a two-dimensional trait

space, or heterogeneities in the environment made the analysis even more dif-
ficult. The models had to be simplified in various ways (Sections 1.2.1 and

1.3.2), and bifurcation techniques had to be applied to analyze the models
(Chapter 3). Fortunately, DEB models are well suitable for analysis by bi-

furcation techniques, because unrealistic switches are avoided, for example

by using synthesizing units (instead of Liebig’s law) to model simultaneous
substrate limitation, which avoids switches hampering the application of bi-

furcation techniques (see Section 3.2.1).

Despite of all the realistic features that were studied, the resulting com-
munities remained unrealistically simple. Even at the end of their develop-

ment, most model systems consisted of only two or three populations, while in
natural systems the number of populations is enormous. Though some com-

parisons with real data could be made, this discrepancy hampered a large-scale

testing of the evolutionary outcomes resulting from the models with the com-
munity structure and functioning of real world (eco)systems. Although ex-

periments allow for isolation of simple (sub)systems, the studied evolutionary

outcomes are not suitable for testing in experimental set ups either. Not only
would the evolutionary time scale require extremely long experimental dura-

tion, also would it be difficult to induce evolution specifically in the traits under
investigation.

The models should thus be improved in order to lead to larger number of
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populations with a more complex network structures, such that a better com-

parison with real ecosystems could be made. This could be done by considering
multiple adaptive traits that are totally independent, or by defining well-chosen

convexly curved trade-offs between these traits, both almost certainly leading
to (a series of) evolutionary branching events, and thus to an increased biod-

iversity and complex network structures. However, the resulting models can

hardly be considered realistic, even though some of their parts may be process-
based, if such important parts like the trade-offs are not.

Alternatively, more realistic and complex ecosystem structures could evolve

from models in which various realistic features are combined. These models
should then allow for specialization both into and within trophic functions, in-

clude both temporal and spatial heterogeneities, and they should, besides evol-
utionary processes, also include processes that allow for qualitative changes of

community structure on ecological time scales, such as migration and phen-

otypic plasticity. Even with all these realistic features, evolutionary branch-
ing events are not guaranteed. Apart from the fact that realistic process-based

trade-offs between trophic functions are difficult to find, the resulting trade-offs

will often be indirect and complexly shaped, such that evolutionary branching
will occur only under very specific conditions or parameter values. On the

other hand, linear trade-offs will not lead to evolutionary branching either.
Even when seemingly realistic food web structures would result, these models

would be very difficult to analyze, because of their very complexity.

A solution to this problem, as was also employed in the second part of this
thesis (Chapters 5 and 6), is to focus first on subsystems, and thus on spe-

cialization within a trophic function (producers, consumers, detritivores, etc).

Though the resulting models systems have a smaller scope and are not cap-
able of a full material recycling, the underlying dynamics and trade-off func-

tions can be fully based on physiological mechanisms. Of course, combining
these various subsystems into a full ecosystem model will not be easy either.

Therefore, modeling the community metabolism of complete and evolutionary

ecosystems still remains a challenge.
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Summary

The aim of this thesis was to include more realism in evolutionary community

models. This was done by combining Adaptive Dynamics theory with models

based on Dynamic Energy Budget theory, and by including various realistic
features, such as multiple adaptive traits, and inhomogeneities in time and

space.
At first, specialization into different trophic functions was studied. The

process of specialization into different trophic functions may correspond to

the development of a simple (single-species) community into a more complex
(multiple-species) community. To study this process, a model of a population

of mixotrophic organisms was used. Mixotrophs are capable of both auto-

trophy and heterotrophy, i.e., they can use both inorganic and organic carbon
as a material and energy source. The mixotrophs were considered to have two

adaptive traits, representing the organism’s affinities for the autotrophic and
heterotrophic assimilatory pathway. Evolution in these two traits enabled the

organisms to specialize in autotrophic and heterotrophic assimilation. It was

then studied under which conditions the population would split into two pop-
ulations, an autotrophic one in which the organisms have lost their abilities

for heterotrophy, and an heterotrophic one in which the organisms have lost

their abilities for autotrophy. This specialization process is referred to as ‘evol-
utionary branching’, and provides the system with a means for autonomously

increasing its biodiversity.
It was found that the occurrence of evolutionary branching was largely de-

termined by the way the two adaptive traits are traded off. In many evolution-

ary modeling studies, simple, direct, and convex-shaped trade-offs are assumed
that will guarantee evolutionary branching. However, simple and direct trade-

offs do not always exist, especially between two different trophic functions.

Therefore, in the mixotrophy model, an indirect and physiologically-based
trade-off function was used. This trade-off function was based on costs and be-

nefits that are involved with having a high affinity for either or both autotrophy
and heterotrophy. It was found that such an indirect trade-off function com-

plicates the requirements for evolutionary branching considerably. Also, the

shape of the trade-off curve was greatly affected by the constraints on the trait
values. As a result, only at intermediate cost levels and when an explicit ad-

vantage to pure strategies existed, would evolutionary branching occur. These

results suggest that specialization of mixotrophs into separate autotrophs and
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heterotrophs in particular, and specialization into different trophic functions in

general, is not a common event.
Initially, the mixotrophy system was assumed to be homogeneous and closed

for mass. As a result, environmental properties such as the total nutrient con-
tent did not have any effect on evolution. In order to study more closely the

role of environmental factors on the evolutionary outcomes, the mixotrophs

were placed in a spatially heterogeneous environment, a mixed water column
with a light-intensity gradient. It was found that a spatial heterogeneity fa-

cilitated the process of ecological specialization by providing locally different

environments (habitats). Furthermore, it was found that environmental prop-
erties could also acquire influence on evolution, through their effect on the

spatial gradient. As such, the organism’s intrinsic disadvantage to specializ-
ation could be overcome at intermediate mixing and high nutrient contents.

This makes environmental heterogeneity a very important factor for inducing

specialization, especially in case of specialization into different trophic func-
tions, where indirect or non-existing trade-offs create complex requirements

or intrinsic disadvantages to evolutionary branching. Furthermore, the model

provided a new explanation for why mixotrophs are often more dominant in
oligotrophic waters, while specialist strategies are associated with eutrophic

systems.
In the second part of the thesis, (Chapters 5 and 6) focus was shifted from

specialization into trophic functions, to specialization within a trophic function.

In this case, evolution allowed the organisms to specialize, not by increasing
or decreasing the ability or affinity for a certain metabolic pathway, but by

increasing the affinity of a given pathway for one or another substrate. The

advantage of this approach is that the system’s development is much more
flexible, and that a mechanistic and realistic trade-off is more easily derived.

For studying specialization within a function, I focused on body size as the
main adaptive trait. Body size is an obvious and important morphological prop-

erty with many functional and physiological implications. Differences in body

size are associated with differences in scale of time and space in which the
organisms live, and they reflect differences in physiological processes and life

histories. From the basic assumptions of DEB theory various body-size scal-

ing relationships can be derived and understood, which makes this modeling
framework very suitable for studying body-size related processes.

For studying evolution of body size, a predator-prey model was used in
which the predators had an adaptive body size. Predator body size, together

with its prey-size preference, determine which predator-prey size combinations

are established, and thus largely define the structure of a community. There-
fore, we studied the joint evolution of these two traits. The resulting model

could explain various empirical observations, such as the triangular distribu-

tion of predator-prey size combinations, the island rule, and the difference
in predator-prey size ratios between filter feeders and raptorial feeders. The

model also revealed key factors for the evolution of predator-prey size ratios.
Capture mechanisms turned out to have a large effect on this ratio, while prey-

size availability and competition for resources only help explain variation in
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predator size, not variation in predator-prey size ratio. Furthermore, predation

among predators was identified as an important factor. Together, these factors
explained a wide range of predator-prey size ratios, and thus provided insight

in the complex community structures found in nature.
As the environment was again considered to be homogeneous in space and

time, the energy reserves formed a burden rather than a profit to the organ-

isms involved, slowing down their reproduction rates. This, of course, does
not do justice to the important role of reserves in the real world. Therefore,

a temporal fluctuation was introduced in the incoming resource densities, and

the effects on the evolution of body size were studied. It was found that the
evolutionary body size increases with increasing variability of the environment.

As such, it is the first model to support the ‘seasonality hypothesis’. This hypo-
thesis states that variable climates, characterized by large annual cycles, select

for large body sizes. This result emphasizes the importance of basing model

dynamics on physiological processes. Simulations across geological time scales
illustrated that evolutionary patterns in body size may be a response to tem-

poral variability in seasonality related to the Milankovitch cycles.

In summary, the results presented in this thesis show the impact of various
realistic factors on the evolution of community metabolism. In the last chapter

it is argued that these factors are all linked to each other, and to the choice
for studying specialization into or within a trophic function. It is concluded

that, to result in the complex community structures as are observed in nature,

one should probably combine various of these factors into one model. This,
however, will be very difficult, and it is suggested that we better focus first on

small subsystems. Of course, combining several of these subsystems into a full

ecosystem model will not be easy either. Therefore, modeling the community
metabolism of complete and evolutionary ecosystems still remains a challenge.
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Samenvatting

De natuur bestaat niet uit een verzameling van losse soorten, maar uit groepen

soorten die elkaar helpen, tegenwerken of opeten. Deze groepen soorten vor-

men dus levensgemeenschappen. De opbouw of ‘structuur’ van zo’n gemeen-
schap wordt grotendeels bepaald door het aantal soorten en het type interacties

dat zij onderling aangaan. Deze structuur is belangrijk voor het functioneren
van de gemeenschap als geheel. Het bepaalt bijvoorbeeld of een gemeenschap

met veranderingen of verstoringen kan omgaan.

De structuur van de levensgemeenschap staat niet vast, maar kan veran-
deren. Soorten kunnen bijvoorbeeld veranderen, maar er kunnen ook soorten

bijkomen of juist uitsterven. Een belangrijk proces dat bij dergelijke verande-

ringen een rol speelt is evolutie. Evolutie kan namelijk leiden tot de aanpassing
van soorten, maar soms ook tot het ontstaan van totaal nieuwe soorten.

Evolutionaire processen zijn over het algemeen erg langzaam en vinden
dus plaats over lange tijdschalen. Daardoor lijkt het soms of er helemaal niets

verandert en lijkt ook de structuur van levensgemeenschappen vaak constant.

Mede hierdoor wordt ook in veel van de wiskundige modellen, die van biolo-
gische levensgemeenschappen gemaakt worden, de structuur van de gemeen-

schap vaak als onveranderlijk beschouwd. In de praktijk betekent dit dat er

van te voren wordt vastgelegd hoeveel soorten er aanwezig zijn in het model-
systeem, en welke eigenschappen deze soorten precies hebben. Toch kunnen

de veranderingen in de gemeenschaps-structuur juist erg belangrijk zijn. Dit
is met name het geval als er sprake is van langdurige processen, zoals bijvoor-

beeld bij klimaatsveranderingen, bij het nemen van maatregels voor natuurbe-

heer of bij het duurzaam exploiteren van natuurlijke bronnen.
In dit proefschrift staan de veranderingen van levensgemeenschappen cen-

traal. Deze veranderingen worden bestudeerd met behulp van wiskundige mo-

dellen, waarin evolutionaire processen worden nagebootst. Er bestaan al wel
andere model-studies over de evolutie van biologische gemeenschappen, maar

daarin wordt over het algemeen gebruik gemaakt van erg eenvoudige model-
len die de complexe biologische en fysiologische processen in de natuur niet

goed omvatten. Zulke eenvoudige modellen kunnen daardoor leiden tot on-

realistische resultaten. Vaak wordt er in deze modellen ook slechts rekening
gehouden met een enkele eigenschap of strategie die kan evolueren, terwijl

in werkelijkheid vele eigenschappen tegelijkertijd kunnen evolueren. Tevens

wordt er meestal een eenvoudig verband verondersteld tussen de kosten en
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baten van een strategie of eigenschap. In het echt is dit verband vaak veel

ingewikkelder. Ten slotte wordt er over het algemeen van uitgegaan dat de
model-organismen leven in een sterk vereenvoudigde omgeving. Zo’n leefom-

geving is overal hetzelfde (homogeen), terwijl in de natuur de leefomgeving
plaatselijk of tijdelijk juist heel erg kan verschillen (heterogeen).

In dit proefschrift wordt er meer realisme in de modellen gebracht, en

wordt er bestudeerd wat het effect hiervan is op de evolutie van de levensge-
meenschappen. Dit wordt onder andere gedaan door de modellen te baseren

op de zogenaamde Dynamic Energy Budget (DEB) theorie. Dit is een modelleer-

raamwerk, waarmee de groei en voortplanting van vrijwel elke soort kan wor-
den gemodelleerd. De theorie bestaat uit fysiologische regels voor voedsel

opname en verwerking, die voortkomen uit een beperkt aantal aannames.
Naast de DEB theorie wordt gebruik gemaakt van de Adaptive Dynamics

(AD) theorie. Deze theorie helpt bij het analyseren van evolutionaire proces-

sen. In tegenstelling tot andere methodes om evolutionaire processen te analy-
seren, houdt AD theorie rekening met een aantal realistische factoren, waaron-

der dichtheidsafhankelijkheid (de optimale strategie ligt niet vast, maar hangt

af van wat soortsgenoten doen) en de bereikbaarheid van de strategie (evolu-
eert de soort wel naar de optimale strategie toe?).

Naast het combineren van DEB theorie en AD theorie, wordt er ook meer
realisme in de levensgemeenschaps-modellen gebracht door meerdere eigen-

schappen tegelijkertijd te laten evolueren. Tevens zijn de kosten- en baten-

functies realistischer gemaakt, door deze te baseren op fysiologische processen.
Ten slotte worden ook de effecten van een heterogene (en dus realistischere)

leefomgeving bestudeerd.

In het eerste deel van het proefschrift ligt de focus op specialisatie tussen
‘trofische functies’. Trofische functies zijn de ecosysteem processen die de orga-

nismen in het systeem uitvoeren, of de interactie die zij hebben met dergelijke
processen. Voorbeelden van trofische functies zijn fotosynthese, respiratie of

stikstofomzetting, maar in dit proefschrift bestudeer ik ‘autotrofie’ en ‘hetero-

trofie’. Autotrofe organismen kunnen (zoals de meeste planten) zelf organisch
materiaal aanmaken uit zonlicht; heterotrofe organismen (de meeste dieren)

kunnen zelf geen organisch materiaal maken, maar moeten dat binnen halen

door het eten van andere planten of dieren.
Het model wordt opgestart met één enkele soort van organismen die zowel

autotroof als heterotroof zijn, ook wel ‘mixotrofen’ genaamd. Feitelijk kunnen
deze organismen dus alles zelf (zowel het aanmaken van organisch materiaal

als het omzetten ervan) en hebben ze dus geen andere soorten voor het ver-

vullen van deze trofische functies. Mixotrofie komt vrij veel voor, met name in
algen, ookal is dat niet algemeen bekend.

De mixotrofen in het model hebben twee evolutionaire eigenschappen, één

die bepaalt hoe goed de organismen zijn in autotrofie en de andere die bepaalt
hoe goed ze zijn in heterotrofie. Door middel van evolutie in deze twee ei-

genschappen kunnen de mixotrofen zich gaan specialiseren in één of in beide
trofische functies. Zo kan er de speciale situatie ontstaan waarbij de mixotrofe

soort zich opsplitst en er twee aparte soorten ontstaan, een die helemaal auto-
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troof is en een die helemaal heterotroof is. Zo’n evolutionaire splitsing wordt in

het Engels ‘evolutionary branching’ genoemd en geeft de levensgemeenschap
de kans om het aantal soorten te vergroten en zo zijn structuur aan te passen.

Het al dan niet plaatsvinden van een dergelijke evolutionaire splitsing hangt
grotendeels af van de precieze kosten en baten die zijn verbonden aan de evo-

lutionaire eigenschappen. In het geval van de mixotrofen zijn deze kosten en

baten gebaseerd op fysiologische processen, waardoor ze ingewikkelder uit-
pakken dan vaak het geval is in evolutionaire modellen. Het blijkt dat een

evolutionaire splitsing hierdoor alleen onder zeer specifieke fysiologische om-

standigheden voor kan komen, en alleen als het fysiologisch gezien voordelig
is. Deze resultaten suggereren dus dat specialisatie van mixotrofen in aparte

auto- en heterotrofen niet voor de hand ligt. In iets algemenere bewoordingen
zou gesteld kunnen worden dat specialisatie tussen trofische functies niet vaak

voor zal komen. Dit zou een verklaring kunnen vormen voor het feit dat er

in de natuur zoveel mixotrofen voorkomen, maar bijvoorbeeld ook dat er zo-
veel symbionten bestaan. Symbionten zijn organismen van twee verschillende

soorten die nauw met elkaar samenwerken, door beide een verschillende tro-

fische functie uit te voeren. Deze symbionten zijn vaak zodanig met elkaar
verbonden, dat zij feitelijk één organisme vormen. Bekende voorbeelden van

symbionten zijn korstmossen en koralen.
In eerste instantie (en zoals in de meeste modellen) is uitgegaan van een

eenvoudige, homogene omgeving. Daardoor hebben omgevingseigenschappen

(zoals de totale hoeveelheid voedingsstoffen in het systeem) totaal geen effect
op de evolutie van het systeem. Om het effect van een meer realistische, hete-

rogene omgeving te bestuderen, zijn de mixotrofen vervolgens in een (virtuele)

waterkolom geplaatst. In deze waterkolom dringt aan de oppervlakte veel licht
door, maar wordt het naar beneden toe steeds donkerder. Het blijkt dat een

dergelijke licht-gradiënt het evolutionaire proces in gang kan zetten. Dat komt
omdat de leefomgeving op sommige plekken (nabij de oppervlakte) gunstiger

is voor autotrofen, en op andere plekken (nabij de bodem) gunstiger is voor

heterotrofen. Dankzij de heterogeniteit van de omgeving kan een evolutionaire
splitsing dus ook plaatsvinden als er niet aan de bovengenoemde fysiologische

voorwaarden wordt voldaan. Kortom, een heterogene leefomgeving speelt een

erg belangrijke rol bij specialisatie. Dit is met name het geval bij specialisatie
tussen verschillende trofische functies, waar vaak geen duidelijk fysiologisch

voordeel, maar eerder een nadeel hangt aan het specialiseren in een van die
functies. Tevens kan het model verklaren waarom mixotrofen veel voorkomen

in voedsel-arme omgevingen, en minder in voedselrijke omgevingen.

In het tweede gedeelte van dit proefschrift is de focus verlegd van speciali-
satie tussen trofische functies naar specialisatie binnen trofische functies. Ik heb

me hierbij niet meer gericht op mixotrofen die zich splitsen in auto- en hetero-

trofen, maar op heterotrofe organismen die zich specialiseren op verschillende
prooien. Hierbij is lichaamsgrootte gekozen als de belangrijkste evolutionaire

eigenschap. Lichaamsgrootte is een in het oog springende en belangrijke ei-
genschap, die gekoppeld is aan veel fysiologische processen. Grote diersoorten

hebben bijvoorbeeld een langzamere hartslag, ze leven over het algemeen lan-



166 Samenvatting

ger, hebben grotere territoria en ze hoeven minder frequent te eten. Lichaams-

grootte speelt een belangrijke rol in de DEB theorie en de theorie verklaart veel
van de waargenomen relaties tussen lichaamsgrootte en fysiologie. Dit maakt

de theorie bij uitstek geschikt voor het modelleren van evolutionaire verande-
ringen in lichaamsgrootte.

Eerst is de relatie tussen de grootte van een predator (roofdier) en een

prooi bestudeerd. Immers, de grootte van een predator en zijn voorkeur voor
een bepaalde prooi-grootte bepalen grotendeels de structuur van een levens-

gemeenschap. Er wordt hiervoor een model gebruikt met prooien van ver-

schillende (maar vaste) lichaamsgroottes, en met een predator waarvan de
lichaamsgrootte kan evolueren. Het resulterende model kan verschillende fe-

nomenen verklaren, zoals bijvoorbeeld waarom een predator meestal groter is
dan zijn prooi (maar niet altijd) en het fenomeen dat op eilanden grote soor-

ten kleiner worden (en kleine soorten juist groter). Het model laat ook zien

dat er verschillende typen factoren bestaan, die allemaal een ander effect op
predator-grootte en prooikeuze hebben. Samen kunnen deze factoren leiden

tot de complexe levensgemeenschappen zoals die in de natuur voorkomen.

In deze predator-prooi studie is opnieuw uitgegaan van een homogene om-
geving. In zo’n gelijkmatige omgeving zijn energie reserves vrijwel niet nodig,

en vormen ze eerder een last dan een voordeel. Dat komt omdat er overal en
altijd evenveel voedsel voorhanden is en het dus niet nodig is om een voor-

raad aan te leggen. Ook nu wordt er weer een heterogeniteit in het model

ingebouwd. Dit keer niet een ruimtelijk verloop (zoals bij de licht-gradiënt),
maar een fluctuatie in de tijd (verschillend voedselaanbod in de verschillende

seizoenen). Het blijkt dat de hoeveelheid energie reserve en de daaraan ver-

bonden lichaamsgrootte toenemen met de variabiliteit van de omgeving. Deze
resultaten ondersteunen de zogenaamde ‘seizoens-hypothese’. Deze hypothese

stelt dat variabele klimaten (hete zomers en koude winters) selecteren op een
toename in lichaamsgrootte. Hoewel de onderliggende verklaring al eerder

werd bedacht, bestond er nog geen model die dit verschijnsel ook daadwer-

kelijk liet zien. Dit komt doordat de andere modellen teveel aan fysiologisch
detail missen. Dankzij de DEB theorie, doet het model in deze studie dat wel.

Dit resultaat benadrukt opnieuw het belang van het opnemen van voldoende

mate van realisme in modellen van biologische levensgemeenschappen.
Kortom, dit proefschrift laat zien wat de impact is van een aantal realisti-

sche factoren op de evolutie van levensgemeenschappen. In het laatste hoofd-
stuk wordt bovendien besproken dat (en hoe) deze factoren samenhangen met

elkaar en met de keuze voor het bestuderen van specialisatie tussen of binnen

trofische functies. Een van de conclusies is dat, om de complexiteit van levens-
gemeenschappen in de natuur te benaderen, verschillende factoren moeten

worden gecombineerd in één model. Dit levert echter grote praktische proble-

men op, en daarom kan het onderzoek beter eerst gericht worden op kleinere
sub-systemen. Voor het bestuderen van het volledige system, moeten deze sub-

systemen dus weer gecombineerd worden. Ook dat zal een lastige opgave zijn,
en daarom blijft het modelleren van evolutionaire levensgemeenschaps model-

len voorlopig nog een uitdaging.
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