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Abstract

We present the state of the art of the development of DEB theory, and the expected developments in the

near future within the molecular, physiological and ecological domains. The degree of formalization in

the set-up of the theory, with its roots in chemistry, physics, thermodynamics, evolution and the consistent

application of Occam’s razor, is discussed. We place the various contributions in the theme issue within this

theoretical setting, and sketch the scope of actual and potential applications.
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I. REACHING OUT FOR GENERALITY

In Physics, there is a quest for a unified theory. Physical theories have a broad spectrum of

application, a strong mathematical background and are subject to numerous empirical tests. In

contrast, in Biology, mathematical theory has played a secondary role because Biology is fre-

quently seen as a science of exceptions and particular cases, with little interest in abstraction and

generalization. Exceptions are the research being done in the fields of Theoretical Biology and

Mathematical Biology. However, Theoretical and Mathematical Biology have frequently been

carried out without a concern for empirical testing. When this concern appears, models are of

narrow application, reducing their theoretical breadth. The Dynamic Energy Budget (DEB) the-

ory starts from the Dutch tradition of Theoretical and Mathematical Biology, but couples it with a

fundamental concern in producing general theory that is subjected to careful empirical testing.

DEB theory aims to capture the quantitative aspects of metabolism at the individual level for

organisms of all species. It builds on the premise that the mechanisms that are responsible for the

organization of metabolism are not species specific [49, 52]. This hope for generality is supported

by (i) the universality of physics and evolution and (ii) the existence of widespread biological

empirical patterns among organisms [96]. Table I synthesizes the essential criteria for any general

model for the metabolism of individuals. We explore the links between DEB theory and each of

the proposed criteria in the following paragraphs.

DEB theory is explicitly based on the conservation of mass, isotopes, energy and time, includ-

ing the inherent degradation of energy associated with all processes. So it complies to criteria 1 -

table I.

The DEB theory is biologically implicit, so it applies to all species. Species-specific restrictions

of DEB models are explained and predicted by the theory (criterion 5 - table I). For example,

consider the most important difference between DEB models, the number of reserves (biomass

components that fuel metabolism) and structures (biomass components that have maintenance

needs) that are delineated. This depends on the degree of coupling of the various substrates an

organism needs. Animals feed on other organisms, which couples uptake of the various substrates

(proteins, carbohydrates, lipids, nutrients) tightly and explains why a single reserve and structure

is appropriate for them. This does not hold for plants, for instance, where multiple reserves and

structures (root, shoot) are required. This means that the applicability of a model can be judged a

priori.
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1 Consistency with other scientific knowledge: The models must be based on explicit assumptions that

are consistent with thermodynamics, physics, (geo)chemistry and evolution.

2 Consistency with empirical data: The assumptions should be consistent with empirical patterns.

3 Life-cycle approach: The assumptions should cover the full life cycle of the individual, from initiation

of development to death.

4 Occam’s razor: The general model should be as simple as possible (and not more). The predictions

should be testable in practice, which typically constrains its maximum complexity substantially

(quantified in terms of number of variables and parameters).

5 Taxon-specific adaptations: Restrictions that make a model applicable to particular taxa only, should:

(a) be consistent with an explicit evolutionary scenario; (b) be explicit to allow the prediction that

the model will apply to those species.

TABLE I: Criteria for general explanatory models for the energetics of individuals

The structure of DEB theory is such that there is a smooth merging and splitting of reserves

and structures, which is a key feature in response to evolutionary changes in acquisition strategies

[50, 52, 53, 56, 60, 105]. It is possible to smoothly convert one DEB model into another, according

to an evolutionary scenario which makes DEB species-specific models consistent with an evolu-

tionary scenario (criterion 5 - table I). This includes organisms that evolved from the merging of

ancestors such as the mitochondria and chloroplasts that once had an independent existence, and

many of the symbioses (e.g. corals) that exist today.

In an attempt to be explicit on consistency with empirical observations (criterion 2 - table I),

we organised generally observed patterns in empirical data on various aspects of energetics, life-

stages and stoichiometry in Tables II and III, [96]. DEB theory has an explanation for each of

them. Many empirical models, such as Droop’s model for the nutrient limited growth of algae and

Huggett and Widdas’ model for foetal growth, are special cases of DEB theory (see Table IV).

The large collection of empirical support for all these findings that accumulated in the literature

and the bits of evidence that people working with DEB accumulated during the 30 years of DEB

research makes DEB theory presently the best tested quantitative theory in biology[52].

The pragmatic application of Occam’s razor (criterion 4 - table I) in the construction of DEB
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theory privileged the smallest (possible) number of state-variables, the smallest (possible) number

of parameters, constant functions instead of linear and linear functions instead of non-linear. For

example, the variable stoichiometry of organisms, exposed to different food levels, is explained,

in the DEB standard model, by describing biomass as two aggregated chemical compounds with

constant chemical compositions and variable relative amounts.

Biomass is assumed to consist of one or more reserves and one or more structures. The dynam-

ics of these metabolic pools is followed using five concepts of homeostasis, which are all meant

for simplification and enhancing the testability of model predictions. The various forms of home-

ostasis are linked to the principle (criterion 1 - table I) that organisms have increased their control

over metabolism during evolution allowing for some adaptation to environmental changes in short

periods.

Strong homeostasis: metabolic pools do not change in composition and can be conceived as

generalized compounds, i.e. mixtures of a large number of compounds of constant chemical

composition and thermodynamic properties. The individual feeds on substrate (food, X)

and produces products (faeces, water, carbon dioxide, ammonia, etc), biomass (reserve E

and structure V ) and gametes (reserve allocated to reproduction). The standard DEB model

(but not DEB models in general) assumes a fixed chemical composition for food. All (gener-

alised) compounds have constant thermodynamic properties, such as mass-energy couplers

(chemical potentials) and mass-entropy couplers (specific entropies). Strong homeostasis

imposes constant conversion coefficients on all aggregated chemical reactions occurring in

the organism including assimilation, dissipation and growth, which comes with stoichio-

metric constraints. The combination of stoichiometric constraints and variations in the com-

position of biomass (reserve/structure ratio) leads to rather complex patterns at the various

levels of organisation.

Weak homeostasis: the individual as a whole does not change in composition during growth

in environments with constant food availability (possibly after an adaptation period). The

composition (controled by the ratio of reserve to structure) varies with the level of food

availability. This implies constraints on the dynamics of reserve relative to structure.

Structural homeostasis: the individual does not change shape during growth, which controls

how surface area relates to volume as they change in time. This simplifies the control of
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metabolism since some processes are proportional to surface area while others are propor-

tional to volume. Transport processes, including food uptake, uptake and elimination of

toxicants, osmosis and heat transfer, are proportional to surface area which is compatible

with the description of these processes in non-equilibrium thermodynamics (criterion 1 -

table I). In contrast, most maintenance costs are linked to (structural) mass (turnover), so to

volume. The scaling of feeding relative to maintenance controls ultimate body size. Only

the standard DEB model makes use of structural homeostasis, not the wider class of uni-

and multi-variate DEB models.

Acquisition homeostasis: the individual eats what it needs (demand systems), rather than what

is available (supply systems). Species can be ranked on the supply-demand spectrum; no

species can follow the demand rules into the extreme (food must obviously be available

at some minimum level). All demand systems are animals which have typically a higher

behavioural flexibility and a lower metabolic flexibility. Demand systems evolved from

supply systems and most are endothermic.

Thermal homeostasis: the individual (endotherms, mainly birds and mammals) heats the body to

a constant temperature. This behaviour has an energetic cost, that might be significant under

particular conditions, but it allows these species a higher independence over the environment

since all metabolic rates depend on temperature.

The state variables of DEB theory are the structure(s), the reserve(s) and the level of maturity.

The level of maturity controls life stage transitions that cover the full life cycle of the organism

(criterion 3 - table I).

Consistency with the evolutionary principle (criterion 1 - table I) that organisms inherit parents’

characteristics in a sloppy way allowing for some adaptation to environmental changes across

generations makes the set of parameter values in DEB individual-specific. Selection leads to

evolution characterized by a change in the species’ parameters (mean) values. The differences

between the mean parameters values of different species are an evolutionary amplification of the

differences between the parameters values of individuals.

Parameters of the standard DEB model can be classified into two classes: size independent

parameters which only depend on the very local physico-chemical sub-organismal (cell) condi-

tions (but not on body size) and design parameters which depend on the maximum size of the

individual. Size independent parameters are assumed to be constant across species because cells
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are metabolically similar, regardless of the species or body size (see table III) which is consistent

with Occam’s razor (criterion 4 - table I) and evolution (criterion 1 - table I). The DEB body size

scaling relationships predict how these parameter values change as a function of the maximum

size of the species [52, 96].

The first focus of DEB theory is the individual level, but it has many implications for the

sub- and supra-organismic levels [49, 52, 58, 75]. There is a direct coupling of sub-organismal

processes to the individual level. For instance, hormonal regulation might stimulate growth and

reproduction in particular situations, but it will not occur if substrate is not available. This testifies

that our understanding of regulation processes must come from a multi-level analysis. There is

also a direct coupling of the individual to the supra-individual level. For instance, the processes

of food selection, feeding and product formation at the individual level directly link to interaction

between individuals and species, in terms of competition, predation and syntrophy. These are key

processes at the population level.

II. METABOLIC ORGANIZATION IN THE STANDARD DEB MODEL

We here present the DEB standard model that will be used as a departure point for the papers

published in this volume. This model considers an isomorphic individual (structural homeostasis),

which might be a flea or a whale that feeds on a single type of food (substrate). Other substrates

(such as dioxygen) are assumed to be non-limiting. The standard model is assumed to be appropri-

ate for most animals. Univariate DEB models allow for variations in shape during development,

as an extension of the standard model. Multivariate DEB models account for several food types,

several reserves (to allow for more metabolic flexibility, e.g., bacteria and phototrophs such as

microalgae) and several structures (such as roots and shoots of plants, or body parts (organs)), see

[52]. Figure 1 summarizes the standard DEB model while Tables VI, VII and V summarize the

notation.

Table VI lists the state variables of the standard DEB model; we here use time (T), length

(L), mass (M ) and energy (E) to present the standard DEB model. Mass can be quantified in

gram (which allows for changes in chemical composition) or C-moles (which does not allow for

changes in composition); we here use the latter quantification. Strong homeostasis allows for

simple relationships between quantification in volume, mass and energy because specific densities,

molecular weights and chemical potentials, are constant for all compounds. The length-description
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ME - Reserve

MV - Structure

Food: MX

Offspring: MER

Mobilisation

Somatic 
Maintenance

Growth

Feeding    

Maturity 
Maintenance

MH - Maturity

Reproduction

Maturation

XAJ&

ECJ&

ESJ&

EAJ&

EGJ&EJJ&ERJ&

VGJ&

Assimilation     

FIG. 1: Metabolism in a DEB individual. Circles are processes and rectangles are state variables. Arrows

are flows of food J̇XA, reserve J̇EA, J̇EC , J̇EM , J̇ET , J̇EG, J̇ER, J̇EJ or structure J̇V G. The full square is

a fixed allocation rule (the κ rule) and the full circles are priority allocation rules.

allows us to deal with shape of the structure. The basic variable is volumetric structural length L,

i.e. the cubic root of structural volume. We need surface areas L2 for food uptake and volumes

V = L3 for maintenance; we treat the volume-specific structural mass [MV ] ≡ MV /V as a

constant (strong homeostasis). The mass-description allow us to deal with mass conservation, the

energy-description with energy conservation and the entropy description (not presented in table

VI) with irreversibilities [97]. Entropy balances can only be made when energy balances are

known, which in their turn can only be made when mass balances are known.

The total biomass of the individual (in C-moles) has contributions from reserve, structure and

the reproduction buffer: ME +MV +MER. Maturity has no mass or energy, it is information that

reflects the level of metabolic learning; stage transitions (from embryo to juvenile to adult) occur

when maturity exceeds threshold values. We quantify maturity as cumulated mass of reserve
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invested in maturity, but this invested mass dissipates into the environment as products (carbon

dioxide, water, ammonia, heat).

None of the state variables can be measured directly, only indirectly (a problem known as

hidden variables). This complicates the practical testability, and necessitates the development

of auxiliary theory apart from core theory (that deals with mechanisms) to link measurements

to model predictions [59]. The solution of the problem of hidden variables is that a set of

measured variables is linked to a set of hidden variables. This involves the estimation of a

set of parameters from several data sets simultaneously, simulating the development of appro-

priate statistical theory for such more advanced applications. The software package DEBtool

(http://www.bio.vu.nl/thb/deb/deblab) is developed specifically for this purpose. The auxiliary

theory exploits the strong homeostasis assumption that is also used by the core theory, together

with the rule that a well-chosen physical length measure Lf (e.g. the head-body length excluding a

tail) is proportional to the volumetric structural length L, i.e. the cubic root for structural volume:

L = δMLf , where δM is the constant shape coefficient, see [59].

Fig. 1 presents an overview of the various processes that are delineated by the standard DEB

model. In our description of the various processes below, we assume that temperature is con-

stant. In the standard DEB model all rates depend on temperature in the same way to avoid that

conversion efficiencies (from food to reserve, structure, offspring, products) become temperature

dependent; multiple-reserve systems are more flexible in this respect.

Reserve dynamics drives metabolism

The core of DEB theory is that metabolism is fuelled by the mobilisation of reserve J̇EC during

all life stages (embryo, juvenile and adult); reserve being replenished by assimilation J̇EA after

the maturity threshold for birth has been passed,

dME

dt
= J̇EA − J̇EC , (1)

with J̇EA = 0 for embryos (they do not feed), i.e., maturity MH < M b
H . This not only explains

why embryos can grow (i.e. increase structure) without feeding, but also why starving individuals

can for some time survive and pay maintenance costs without dying [96].

The flux of mobilised reserve equals the sum of all metabolic activities, excluding feeding (and
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assimilation)

J̇EC = J̇ES + J̇EG + J̇EJ + J̇ER (2)

i.e. somatic (S) and maturity maintenance (J), maturation (or reproduction, R) and growth (G).

In combination with the constraint that mobilisation only depends on the amounts of reserve

and structure, weak homeostasis implies that the mobilisation rate is (see [96])

J̇EC = ME

(
v̇

L
− ṙ
)

(3)

where specific growth rate ṙ = 1
V

dV
dt

and structural length L can vary (see Eq. 10), but energy

conductance v̇ is constant. The residence time of ‘molecules’ in the reserve is tE = ME/J̇EC , so

the energy conductance for a fully-grown individual (ṙ = 0 at L = L∞) equals v̇ = L∞/tE . This

relationship provides a simple interpretation of energy conductance as a parameter. The indepen-

dence of the reserve dynamics of food availability provides the individual with some protection

against environmental fluctuations and some control over its own metabolism; J̇EA typically varies

wildly, but J̇EC always varies slowly.

With the combination of Eq. 1 and 3 and the definition of surface specific maximum assim-

ilation rate J̇EA = {J̇EA}V 2/3, the dynamics of the reserve density mE = ME/MV amounts

to:
dmE

dt
=

1

MV

dME

dt
− ṙmE =

v̇

L

(
{J̇EA}
v̇[MV ]

−mE

)
. (4)

which is independent of the specific growth rate ṙ. If assimilation is at the maximum {J̇EA} =

{J̇EAm} then the reserve density mE goes to a maximum value. This

mEm =
{J̇EAm}
v̇[MV ]

(5)

is independent of the organism body size; only the embryo can exceed this maximum, because it

obtained its reserve from the mother.

It turns out to be convenient to introduce the scaled reserve density e = mE/mEm; this dimen-

sionless quantity varies between 0 and 1.

Feeding and assimilation

Embryos do not feed; only juveniles and adults. Feeding only depends on substrate (food) den-

sity and amount of structure, not partaking in the other metabolic interactions. The heat increment
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of feeding suggests that there are processes associated with food processing only, i.e., that food

goes through a set of chemical reactions that transform it into reserves [96]. This is the assimila-

tion process that is characterized by a yield coefficient yEX of reserve on food that is assumed to

be constant (for a given type of food) due to the strong homeostasis assumption.

Food uptake J̇XA at food density X is linked to assimilation J̇EA as

J̇XA =
J̇EA

yEX

= f(X)
J̇EAm

yEX

with J̇EAm = {J̇EAm}V 2/3 (6)

where the scaled functional response f(X) = X
X+K

is a monotonous increasing function of food

density X with 0 ≤ f(X) ≤ 1, with half saturation constant K = {J̇XAm}/{Ḟm}, where {Ḟm} is

the maximum specific searching rate. The scaled functional response f results from the idea that

the individual behaves as a Synthesising Unit (SU) [47] with two sequential behavioural modes:

searching and handling (including digestion and other metabolic work). Many extensions of this

idea have been proposed. The original formulation of the behaviour SUs is stochastic but the

standard DEB model only uses the mean feeding rate.

The maximum surface-specific assimilation rate {J̇EAm} is assumed to be constant, which is

explained by the fact that digestion and other food processing activities depend on mass transport

processes that occur through surfaces.

At constant food density, the reserve density evolves to m∗E = f {J̇EAm}
[MV ]v̇

≡ fmEm (see Eq. 5),

which is independent of size and proportional to the scaled functional response. The scaled reserve

density e = mE/mEm equals the scaled functional response f in equilibrium.

Allocation

DEB’s κ-rule for the allocation of mobilised reserve states that there is a constant fraction κ,

with 0 ≤ κ ≤ 1, of mobilised reserve that is allocated to the soma (somatic maintenance and

growth), i.e.,

J̇ES + J̇EG = κJ̇EC and J̇EJ + J̇ER = (1− κ)J̇EC . (7)

Somatic maintenance has priority over growth (i.e. increase in structure) and maturity maintenance

has priority over maturation or reproduction. The ultimate size an individual can reach directly

results from the competition between somatic maintenance and growth. Reproduction and growth

do not compete directly with each other, which explains why they can occur simultaneously, as

listed in the stylised empirical facts in Table II.
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Static and dynamic generalisations of the κ-rule allow for the accurate description of the growth

of body parts (including tumours), and the relationship with energetics. In particular fields, such as

in fisheries research, it is standard to let growth directly compete with reproduction dynamically.

This can be done by allowing κ to be a function of structure. The partitionability requirement for

reserve dynamics (which is implied by weak homeostasis) allows this dependence [48, 96]. How-

ever, the dependence of κ on structure makes κ a design parameter implying that the maximum

surface area specific assimilation rate can no longer be proportional to maximum length [96]. The

consequence is that scaling relationships such as the interspecific Kleiber’s Law would be lost as

implied properties of the model. Moreover, if κ would depend on size, the von Bertalanffy growth

curve no longer applies at constant food density. This empirical evidence together with the fact

that the inverse von Bertalanffy growth rate increases linearly in the ultimate length (see Table II)

is strong support of the assumption that κ is generally constant.

Somatic and maturity maintenance

The need to allocate energy to maintenance is intimately related with the second law of ther-

modynamics because the level of maturity, i.e., complexity of the organism, would decrease in the

absence of energy spent on its maintenance.

Somatic maintenance is the use of reserve to fuel the set of processes that keep the organism

alive, where J̇EM and J̇ET are the reserve flows allocated to volume, e.g., protein turnover, and to

surface maintenance costs, e.g., heating in endotherms:

J̇ES = J̇EM + J̇ET = [J̇EM ]L3 + {J̇ET}L2 (8)

The volume-specific somatic maintenance costs [J̇EM ] are assumed to be constant; the turnover of

structure comprises a big proportion of these costs, but they also include activity, for instance. The

surface-specific somatic maintenance costs {J̇ET} are only positive for particular taxa (endotherms

and osmotic work for freshwater species). It is convenient to introduce the heating length LT =

{J̇ET}/[J̇EM ]. This turns out to be the reduction in ultimate length due to surface-linked somatic

maintenance.

Ultimate length L∞ (when ṙ = 0) follows from the balance between assimilation and mainte-

nance and does not depend on growth. Growth ceases if κJ̇EC = J̇ES (cf Eq. 7). Using Eq. 3 and

5, the result is L∞ = fLm − LT with maximum length Lm = κ{J̇EAm}/[J̇EM ].
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Reserve is assumed to require no maintenance, as empirically supported by the fact that freshly

produced eggs almost exclusively consist of reserve and hardly respire (see [96] for a detailed

explanation). Reserves do not need turnover; they have a limited residence time due to assimilation

and mobilisation. In fully grown individuals the residence time amounts to tE = L∞/v̇, but it is

shorter in smaller individuals. This explains why babies need to feed more frequently than adults.

Maturity maintenance is the use of reserve to maintain the complexity of the structure where

J̇EJ is the reserve flow allocated to this process and k̇J is the maturity maintenance rate coefficient:

J̇EJ = k̇JMH . (9)

The J̇EJ is constant in adults since for them maturity is constant, MH = Mp
H .

Growth

Growth is the increase of structure; the specific growth rate ṙ follows from the reserve dynamics

(Eq. 3), the κ-rule (Eq. 7) and the somatic maintenance costs (Eq. 8). The result is

dMV

dt
= J̇V G = J̇EG yV E = ṙMV with ṙ = v̇

e/L− (1 + LT/L)/Lm

e+ g
(10)

where J̇EG is the mobilised reserve allocated to growth and yV E is the yield of structure on reserve.

Maximum length Lm, heating length LT , investment ratio g are all given in Table VII. Now the

specific growth rate ṙ is specified, the mobilisation rate J̇EC in Eq. 3 is specified as well, so is the

residence time tE of ‘molecules’ in the reserve during ontogeny.

For any constant food level the scaled reserve density e settles at the level of the scaled func-

tional response e = f and the dynamics of structural length L = V 1/3 = (MV /[MV ])1/3 simplifies

to von Bertalanffy growth for juveniles and adults:

dL

dt
= ṙB(L∞ − L) with ṙB =

k̇M/3

1 + e/g
=

1

3/k̇M + 3fLm/v̇
(11)

where the somatic maintenance rate coefficient k̇M is given in Table VII. The inverse of the von

Bertalanffy growth rate ṙB is thus linearly increasing with ultimate length, as listed in the stylised

empirical facts in Table II.

If allocation of reserve to soma is not sufficient to pay the somatic maintenance costs, structure

can shrink:

d

dt
MV = −J̇V S

(
1− min(J̇ES, J̇EC)

J̇ES

)
with J̇V S = [J̇V M ]L3 + {J̇V T}L2 (12)
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where the somatic maintenance costs J̇V S , if paid from structure, have the same set-up as those

paid from reserve (see Eq. 8). A natural simplification is to assume that [J̇V M ]

[J̇EM ]
= {J̇V T }
{J̇ET }

, but this

ratio should be larger than one for thermodynamic reasons. Death by starvation occurs if structure,

relative to the maximum the individual once had, decreases below a minimum. This minimum

fraction is for supply systems typically smaller than for demand systems, but even for demand

systems, empirical support for shrinking exists [25]. Most species seem to avoid shrinking, e.g. by

using the reproduction buffer to cover the somatic maintenance costs.

In extreme cases species can sport suicide reproduction, and convert part of their structure to

gametes before dying.

Maturation and reproduction and initial state of the individual

Maturation is the use of reserve J̇ER to increase the level of maturity, MH . This level controls

qualitative changes in metabolism (life-stage events). The initiation of feeding occurs at birth

when MH = M b
H . The initiation of allocation to reproduction occurs at puberty when MH =

Mp
H ; it is coupled to the ceasing of maturation. Other life history events, such as cell division,

metamorphosis or other stage transitions (e.g. to the pupal stage) occur also at threshold values

for MH .

Multicellular organisms typically have three life stages: embryo, juvenile, adult. At the start of

development, age a is set to zero, structure MV and maturity MH are zero, M0
V = 0 and M0

H = 0,

and the initial amount of reserve M0
E is such that the reserve density mE at birth equals that of the

mother at egg formation; the maternal effect as listed in the stylised empirical facts in Table II.

This fully specifiesM0
E; for an efficient algorithm to obtainM0

E , see [51]. Dividing unicellulars are

treated as juveniles; division of maturity follows that of structure and division occurs if maturation

exceeds a threshold.

The allocation to maturity (in embryos and juveniles) or reproduction (in adults) is

J̇ER = (1− κ)J̇EC − k̇JMH (13)

The change in maturity (in embryos and juveniles) is given by

d

dt
MH = J̇ER

k̇′J
k̇J

if MH < Mp
H (14)

where k̇′J = k̇J if J̇ER > 0, but for shrinking maturity (rejuvenation), it is a free constant param-

eter. Empirical evidence for rejuvenation induced by starvation is presented in [103]. The hazard

13



rate due to starvation is proportional to the difference between the maximum maturity level that

the individual has reached and the actual level.

The reproduction buffer fills at rate J̇ER for MH = Mp
H . The details of the conversion of the

reproduction buffer of females to a number of eggs is rather species-specific, typically including

requirements on temperature and filling of the buffer; the conversion of the reproduction buffer of

males to sperm is typically linked to female reproductive behaviour. The simplest buffer handling

rule is to produce an egg as soon as the reproduction buffer allows; this rule involves no new

parameters. The conversion of the content of the reproduction buffer to one or more eggs involves

an overhead cost of the reproduction process, i.e. a fraction (1− κR) of the converted buffer (and

so of the reserve allocated to reproduction J̇ER) dissipates, and a fraction κR is fixed into eggs.

The cost per egg equals the initial amount of reserve M0
E .

The reproduction rate in terms of numbers of eggs per time, is a delta function of time. Ig-

noring the effect of the reproduction buffer, and treating reproduction as a continuous process, the

reproduction rate would amount to Ṙ = κRJ̇ER/M
0
E .

Foetal development is a variation on egg production, where the mother does not fill a repro-

duction buffer, but directly adds to the reserve of the foetus, bypassing its digestive system. This

process can, therefore, not be seen as a feeding process from the foetal perspective.

Three organising fluxes in metabolism

An implication of strong homeostasis is that the different types of aggregated chemical reac-

tions occurring in the organism have constant stoichiometries. These reactions are assimilation

(X → E + P ), growth (E → V + P ) and dissipation (E → P ), where dissipation is defined as:

J̇ED = J̇ES + J̇EJ + (1− κR)J̇ER, (15)

and κR = 0 for the embryo and juvenile stages. Thus, metabolic transformation has 3 degrees

of freedom; the flow of any compound (e.g. dioxygen), produced or consumed, in the organism

is a weighted sum of these three organising flows. The method of indirect calorimetry (see Table

III) is a particular case: the flow of heat is a weighted average of the fluxes of carbon dioxide,

dioxygen and nitrogenous waste. Since, reserve is key to the ability to delineate these three fluxes

(without reserve we would have two), the empirical success of the method of indirect calorimetry

gives strong support to the topology of the standard DEB model.
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Ageing

The hazard rate ḣ, i.e., the probability of dying, due to ageing, is taken to be proportional to the

density of damage compounds (e.g. modified proteins):

d

dt
ḣ = q̈ − ṙḣ, (16)

where ṙḣ is the dilution by growth and q̈ the change in ageing acceleration which is propor-

tional to the density of damage inducing compounds (e.g. changed mitochondrial DNA). Damage

compounds are generated by damage inducing compounds at a rate proportional to the metabolic

activity measured by the reserve mobilisation rate (see Eq. 3). The production of damage induc-

ing compounds is again taken to be proportional to the reserve mobilisation rate (as quantifier for

the respiration rate, excluding contributions from assimilation, which are supposed to have local

effects only).

The change in ageing acceleration is given by

d

dt
q̈ = (q̈

L3

L3
m

sG + ḧa)e(
v̇

L
− ṙ)− ṙq̈ (17)

where ṙq̈ is the dilution by growth and the factor e( v̇
L
− ṙ) is proportional to the mobilisation

rate; cf Eq. 3. The proportionality factor (q̈ L3

L3
m
sG + ḧa) increases linearly with q̈ because damage

inducing compounds promote their own production. This expression involves two new parameters,

the Weibull ageing acceleration ḧa and the Gompertz stress coefficient sG. The latter parameter is

close to zero for most ectotherms, but for endotherms it is typically positive. It can be shown that

if the growth period is short relative to the life span, both the Weibull and the Gompertz ageing

models result, see Table IV. For further details on ageing see van Leeuwen et al. [64].

Parameters

Each individual is characterized in DEB theory by a set of primary parameters: the surface-

area specific searching rate (feeding) {Ḟm}, the surface-area specific maximum assimilation rate

(assimilation) {J̇EAm}, the yield of reserve on food (digestion) yEX and of structure on reserve

(growth) yV E , the energy conductance (mobilisation of reserve) v̇, surface and volume specific

somatic maintenance costs {J̇ET} and [J̇EM ], the specific maturity maintenance k̇J , the fraction of

mobilised reserve allocated to soma κ, the reproduction efficiency κR, the maturity threshold levels
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that trigger the onset of feeding and reproduction M b
H and Mp

H , the Weibull ageing acceleration

ḧa and the Gompertz stress coefficient sG. This amounts to 14 primary parameters including

the two ageing parameters and excluding parameters for species-specific handling rules for the

reproduction buffer. The details of death by starvation involve another 4 parameters; these can

be avoided by letting the individual die upon shrinking or starvation induced rejuvenation. One

can argue about the status of the mass-volume coupler [MV ]; this parameter relates measurements

with no impact on processes.

The standard DEB model is meant to be the simplest in the DEB-family that still has all essen-

tial features, a canonical form. Many applications need extensions of various types; the specifica-

tion of respiration, for instance, requires the elemental composition of various compounds (food,

faeces, reserve, structure). We agree with Nisbet and McCauley [74] that some other applications,

such as in population and ecosystem dynamics, require simplifications.

Most applications allow setting κR = 1 and k̇J = k̇M ; the latter equality implies that maturity

density, MH/MV , remains constant and metabolic switches occur at fixed amounts of structure.

This means that the maturity thresholds can be replaced by structure thresholds and maturity can

be avoided as state variable. If reproduction occurs with one offspring at a time, the reproduction

buffer can be avoided as state variable. If investment in heating (or osmosis) is small, we have

{J̇ET} = 0 and sG = 0. Ageing is not always an important cause of death in field situations; the

ageing acceleration and the hazard rate can be avoided as state variables under those conditions,

and the two ageing parameters are lost. All simplifications together reduce the standard DEB

model to 2 state variables (reserve and structure) and 9 parameters, while it still covers a full

specification of feeding, digestion, maintenance, development, growth and reproduction over the

full life cycle of the individual. This amounts to 9/6 = 1.5 parameter per process; we think a

remarkable simplicity. Typical applications involve only a subset of these parameters because

they do not involve all processes.

Co-variation of parameter values

A rough estimation of DEB parameters for each species can be made with the scaling relation-

ships, i.e., based only on the species maximum size and a reference species; the accuracy of this

estimation increases with the similarity between the species. The design parameters are {J̇EAm}

and ḧa, which scale with maximum length, M b
H and Mp

H , which scale with maximum volume. All
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the other primary parameters are independent of size, so also independent of the maximum size of

a species. The body-size scaling relationships can also be used partially, making optimal use of all

data at hand [52, 59] to detect species-specific deviations from the general trend.

These rules also determine how properties that can be written as functions of the primary pa-

rameters depend on maximum length. An example is the respiration rate (i.e. the use of dioxy-

gen). It works out to be approximately proportional to weight to the power 3/4, both inter- and

intra-specifically (see the list of stylised facts in Table II), but for very different reasons. The

weight-specific respiration rate decreases intra-specifically because growth decreases (and so the

contribution of the overhead costs of growth to respiration); it decreases inter-specifically in fully

grown adults because reserve density increases with the maximum size of a species and somatic

maintenance is only paid for structure. The explanation offered by DEB theory also allows to

understand taxon-specific variations in the scaling of respiration, since quite a few parameters

contribute to the result and evolutionary adaptations cause deviations of parameters from the mean

pattern. Many alternative attempts to explain the scaling of respiration fail to distinguish between

intra- and inter-specific comparisons, probably due to the similarity of the numerical behaviour.

Many scaling relationships work out differently for intra- and inter-specific comparisons. Feed-

ing scales with surface intra-specifically, but with volume inter-specifically, while maximum re-

production increases with size intra-specifically but decreases with size inter-specifically.

The remarkable prediction for life span is that it scales with length if the Gompertz stress

coefficient is positive (as expected for endotherms), but life span hardly scales with length if it is

zero (as expected for ectotherms) which is consistent with empirical data (see table II).

III. CORNERSTONES OF (RESEARCH IN) DEB THEORY

The sub-individual level

The links that DEB theory establishes between the sub- and supra-individual levels give the

theory a high explanatory power. This characteristic together with the high amount of throughput

data becoming available at the sub-individual level allowed the use, test and development of DEB

models at this organization level [64, 77, 109].

Vinga et al. [109] use DEB theory for a top-down approach to understand the dynamic be-

haviour of metabolites. The consistency with the individual level in the DEB context poses con-
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straints on the sub-organismal organisation such as the size of the reserve fluxes that are associated

with assimilation, dissipation and growth: J̇EA, J̇ED and J̇EG. This translates into constraints on

the overall amount of each aggregated chemical compound and the rates of aggregated chemical

reactions. Vinga et al. compare the DEB approach with the Biochemical Systems Theory (BST)

in modeling in vivo data of lactic acid bacteria under various conditions. In contrast with DEB

theory, BST is a bottom-up approach that models each chemical compound and each chemical

reaction explicitly. The complementarity between the two approaches might bring new ideas and

insights to unsolved problems such as the mechanisms underlying gene expression or the mecha-

nisms underlying ageing [64].

Pecquerie et al. [77] develop DEB theory further to provide a framework for stable isotope

dynamics. The fundamental processes of the standard DEB model - assimilation, dissipation and

growth - are further detailed into their anabolic and catabolic transformations to account for the

mass balance of stable isotopes. Isotope dynamics reveals features that remain hidden in aggregate

mass dynamics: the turnover rate of structure. This turnover process has a catabolic as well as an

anabolic component. Since turnover has a substantial contribution to somatic maintenance, it is

also of importance to energetics. This DEB module on isotope dynamics will allow for the correct

interpretation of the increasing amount of data becoming available on isotope ratios contributing

to the identification of trophic web structures, the reconstruction of individual life histories, and

the tracking of the flow of elemental matter through ecosystems.

Leeuwen et al. [64] review the DEB-based approaches to ageing and link them to current

research at the molecular/cellular level. The authors link alternative ageing DEB-based modelling

approaches with different cellular senescence processes. This is a first step towards a fundamental

understanding of the link between mechanisms of cellular senescence and the individual level.

The individual level

DEB theory allows for a mass, energy and entropy description of all fluxes. This set-up is most

useful to study the internal concentration of specific compounds such as isotopes [77], reactive

oxygen species [64] and toxicants [39, 110] that affect the performance of organisms. The mode

of action of a compounds is, in the context of DEB theory, defined by the parameters that are

affected. When the internal concentration increases, more and more parameters become affected,

but at a sufficiently low concentration only a single parameter is affected, but the consequences
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might be complex, involving feeding, growth and reproduction. For example, an increase in the

specific maintenance rate, [J̇EM ], leads directly to a decrease in growth, and ultimately also to a

smaller adult that reproduces less. Another toxicant might decrease the efficiency of reproduction,

κR, which decreases the rate of reproduction [38], but does not affect growth or feeding. Jager

and Klok compare several DEB approaches for analysing the toxicity of copper in the earthworm

Dendrobaena octaedra: the Kooijman-Metz formulation [57] (which has no reserve or maturity),

the DEBtox approach [54] (which has no explicit maturity) and the DEB3 approach [52]. Results

on mortality and growth rate for the DEBtox and the DEB3 approach were similar. Ducrot et al.

use the DEBtox model to assess the toxicity data of diquat on the gastropod Lymnaea stagnalis,

where they include data on embryo development, making full use of the life-cycle features of DEB

theory in variable environments, which is crucial for environmental risk assessment.

The population level

The step from the individual to the population level requires extra rules for the interaction

between individuals and for transport of resources in the environment. The simplest interaction

rule for the standard DEB model is that individuals only interact via competition. The standard

bookkeeping technique to follow the performance of populations as collections of individual are

(hyperbolic) partial differential equations (pde’s). Diekmann and Metz [11] present a wider math-

ematical framework that removes some of the shortcomings of pde’s in this context. The standard

DEB model has some features, however, that still cause mathematical problems including the ex-

istence of metabolic events (birth, puberty), the fact that eggs are not infinitesimally small and

last but not least, DEB is deterministic (apart from the survival module). Some of these problems

can be removed. For example, SU-dynamics (which is used to specify feeding) is stochastic by

nature and differences between individuals can be implemented using different parameter values.

Including this stochasticity has dramatic effects on population dynamics [55].

Other problems, however, are rather fundamental and call for individual-based approaches or

a fully stochastic framework. For example, when feeding on a single resource in homogeneous

space, the DEB rules imply that small (young) individuals can rather easily outcompete the large

(old) individuals, perhaps to an extend that is not very realistic. There are several DEB solutions

to this problem. Nisbet and McCauley [74] consider survival to be maturity-dependent; with this

feature they have been able to understand the occurrence of daphnid population oscillations under
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particular conditions, using a reduced version of the DEB individual dynamics. They beautifully

illustrate that not all details are important under all conditions; if food density is rather constant and

different food levels are not compared, reserve and maturity typically play a minor role. Kearney

et al. [42], on the contrary, consider that food quality required by the individual depends on

size. Large individuals mainly have to cover their maintenance cost (reproduction is low at the

carrying capacity, where competition is strongest), which represents work that can be covered by

carbohydrates and lipids. Small individuals, however, need to grow; so they need a protein-rich

resource.

The step from the individual to the population levels can be done using a variety of schemes,

all with there own benefits and problems. Jager and Klok [39] use DEB-structured individuals in

matrix and continuous Euler-Lotka population models to extrapolate toxic effects from individuals

to populations. Kooi and van der Meer [46] use a physiological structured population to model the

dynamics of a population in a semi-chemostat environment where reproduction is a discrete event

process. In the case of organisms that reproduce by division, the transition from the individual to

the population is simpler, because organisms can be considered as V1-morphs, i.e. individuals that

change in shape during growth such that their surface area is proportional to volume. In this case,

the population behaves as the individuals lumped together; a population of few big individuals

behaves identical to that of many small ones if the sum of their masses match. The individual level

completely drops out of the equations. This is the case for the microalgae of Lorena et al. [67] and

Poggiale et al. [81], where population performance directly links to sub-cellular physiology.

The ecosystem level

Since DEB theory specifies the interaction between the individual and its environment dynam-

ically, it has no problems with variable environments at all. This volume has a nice collection of

examples, where these variations are explicitly used to study the underlying organisation. Ducrot

et al. [110] use this feature when analysing the effects of a weed control agent when the concen-

trations vary in time; they show how DEB-based models can capture observed survival patterns

where typical models fail. Lorena et al. [67] model microalgae populations in a chemostat with a

variable light regime and study how the biochemical composition of microalgae depends on light.

More specifically they discuss the relationship between chlorophyll, biomass and the production

of exopolimeric substances; key features in the interpretation of remote sensoring data. Pecquerie

20



et al. [77] evaluate how variations in isotope concentrations in the environment work out for the

organism. They do not make the common assumption that isotope dynamics is at equilibrium, and

include the full metabolism in their analysis. Troost et al. [107] adjust DEB individual models

for cockles and mussels to a specific site by adjusting the functional response. With this model

they detected food preferences in cockles and mussels, inferring about the role of detritus and

intra-specific competition under field situations.

Kearney et al. [42] position DEB theory in a wider ecological setting, linking it to the theories of

Biophysical Ecology and the Geometric Framework for Nutrition. The combination of these fields

stimulates the development of models at their interfaces that can shed more light on the detailed

interaction of organisms and their environment. Biophysical Ecology provides a framework for

the climatic niche of an organism (distribution limits as constrained by heat and water balances)

making use of spatial environmental data while the Geometric Framework for Nutrition provides a

way to determine the nutritional niche of an organism (distribution limits as constrained by dietary

needs) making use of information on the availability of food. These theories presently make use

of allometrically derived static mass and energy budgets. By using DEB theory, these theories can

model physiological rates across the life cycle under variable food and climatic environments and

establish links between individuals and their functional traits and population. This is an essential

step towards the goal of building predictive niche models that can tackle questions such as the

impact of climate change on a species distribution.

Synthesizing Units

The kinetics of Synthesizing Units (SUs) [47, 52] is an essential building block for the dynam-

ics of multiple reserve and/or multiple structure organisms. SUs can be conceived as generalized

enzymes. Their dynamics is based on classic enzyme kinetics, but with an important modifica-

tion with far-reaching consequences. Where enzyme-kinetics links the product flux to substrate

concentrations, SU-kinetics links it to arrival fluxes of substrate at the enzyme. Concentration

is a problematic concept in spatially structured cells and active transport of substrates and prod-

ucts deviates substantially from diffusive transport implied by classic enzyme kinetics. Poggiale

et al. [81] interpret the different types of co-limitation in an SU context: the independent nutri-

ent co-limitation (two limiting macro-nutrients) corresponds to the case of parallel complementary

substrates, the biogeochemically dependent co-limitation (the ability to acquire a macro-nutrient is
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dependent on the supply of a micro-nutrient) corresponds to the case of sequential complementary

substrates and the biochemical substitution co-limitation corresponds to the case of substitutable

substrates. Poggiale et al. [81] further demonstrate that nutritional details are of importance at

the ecosystem level, which illustrates that biology is in great need for coherence across levels of

organisation. Lorena et al. [67] use SU-dynamics to model the co-limitation of photosynthesis

by light and carbon dioxide and the co-limitation of growth by a carbon and nitrogen reserves.

Kearney et al. [42] use SU-dynamics to transform food into separate nutrient reserve pools, and

then regulate the assignment of mobilised reserves from each pool into maintenance, structure,

maturity maintenance and reproductive output.

Parameters

The generality of DEB theory allows the use of more parsimonious models (fewer parame-

ters) to describe accurately experimental data under different environmental conditions. The DEB

model for glycolysis in Lactococcus lactis uses much less parameters than a comparable BST

model [109], while it better catches the differences between growth under aerobic and anaero-

bic conditions; also the DEB model for microalgae [67] performed better than other published

microalgae models.

DEB rate parameters depend on temperature. Van der Veer et al. [108] compare the temper-

ature tolerance (this is the set of temperatures for which the Arrhenius relationship applies) and

temperature sensitivity for a variety of marine species. Their results suggest that the width of the

temperature tolerance range increases with the optimal growth temperature. Differences in life

history strategies of related species translated nicely in differences in parameter values. High op-

timal growth temperatures, large tolerance ranges and high sensitivities are linked to low specific

assimilation rates and low specific maintenance costs.

Although DEB theory does not use any optimisation argument, it remains thought-provoking

to study to what extent parameter values, or life history traits, are optimal, or at least could be

seen as an outcome of an evolutionary optimisation process. The theory of adaptive dynamics is

ideal for this, because there is no need to specify any explicit optimisation criterion. Moreover

it includes interactions between organisms and their environment in a natural way and long-term

consequences of changes in traits; the outcome depends on the realism of the ecosystem model.

Kooi and van der Meer [46] study the handling rules of the reproduction buffer of Macoma under
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seasonal forcing. They successfully capture the observed spawning behaviour of this iteroparous

species, which spawns once a year in spring, but the timing of the spawning is still off (autumn).

Application of adaptive dynamics with seasonal forcing is an impressive tour de force; more re-

search is required to understand why Macoma spawns in spring. Moreover, Kooi and van der

Meer [46] demonstrate that the techniques that they use are a special case of bifurcation the-

ory [106], which can lead to cross-fertilisation.

Although a lot has been done already, the development of DEB theory has only started. Al-

most all contributions in this volume illustrate this in different ways. Future developments should

include, for instance, extensions into the sub- and supra-individual levels. The behavioural time

scale is important for animals and humans in particular; behaviour includes food searching, food

selection, sleeping, social interaction, parental care, etc. Quite a few behavioural extensions have

already been proposed using SU-dynamics; this needs to be explored more systematically using

a further formalization of DEB theory, including multiple reserve and multiple structure systems.

Detailed studies in plant biology are painfully lacking, while DEB theory has a lot to offer in this

field; DEB models for plants have been proposed [52], but not yet tested against data. Contacts

with the molecular levels are slowly getting shape, but, again, a lot of work still needs to be done.

This also holds for contacts with the planetary level; the development of DEB-based biogeochem-

ical climate models still needs to take shape [50].

IV. CONCLUDING REMARKS

Given the richness of biodiversity on Earth, general explanatory models have to be lean, cap-

turing taxon-specific phenomena in modules that extend the core that is not taxon-specific. For

particular applications (e.g. in ecosystem dynamics) the standard DEB model will be too complex,

for other applications (e.g. in medicine and molecular biology) not detailed enough. This directly

relates to the time scales of interest. Simplifications as well as extensions should be done, re-

specting a natural order in time scales, where the standard DEB model deals only with the slowest

processes at the individual level. It makes little sense to include very fast processes, while slower

processes are not included. Extensions should be consistent with the existing assumptions; many

have already been developed.

Balancing realism at a detailed level against simplicity (in terms of numbers of parameters

and variables) depends on subjective judgement and context. Although the standard DEB model is
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simple relative to the complex biological reality, estimating its parameters on the basis of published

data is a challenge. Extensions make this problem worse, not easier, and we believe that obtain-

ing accurate estimates for the primary parameters should generally have priority over extensions.

We made a systematic start in the add my pet program (http://www.bio.vu.nl/thb/deb/deblab) and

hope that the collection extends rapidly and improves in quality. We hope that a new generation

of scientists will collect data in the light of DEB theory that allow the accurate estimation of its

parameters and further critical testing of the underlying assumptions.
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Stylized Facts Empirical Evidence

Feeding During starvation, organisms are able to reproduce animals [31, 43, 44]

During starvation, organisms are able to grow animals [12, 23, 86, 90, 100, 114]

During starvation, organisms are able to survive animals [65, 99]

for some time bacteria [63]

Growth The growth of isomorphic organisms at abundant animals [7, 18, 22, 89, 92, 101]

food is well described by the von Bertalanffy

growth curve [2, 82]

For different constant food levels the inverse von animals [24, 33, 102, 112] [52, pp.48]

Bertalanffy growth rate increases linearly with ultimate length [82]

Many species do not stop growing after reproduction has animals [41, 94]

started, i.e., they exhibit indeterminate growth [29, 61]

Holometabolic insects are an exception

Fetuses increase in weight approximately proportional to cubed time [34] animals [34, 115]

The von Bertalanffy growth rate of bacteria [48, pp.276-282]

different species corrected for a common body yeasts [48, pp.276-282]

temperature decreases almost proportional to animals [48, pp.276-282]

maximum body length

Reproduction Reproduction increases with size intra-specifically animals [52, pp69,323][78]

but decreases with size inter-specifically

Respiration Freshly laid eggs do not use dioxygen in significant amounts animals [5, 79, 87, 113]

The use of dioxygen increases with decreasing mass in animals

embryos and increases with mass in juveniles and adults [5, 10, 79, 84, 87, 91, 113]

The use of dioxygen scales approximately with body weight raised animals [10, 84, 91]

to a power close to 0.75 [45]

Organisms show a transient increase in metabolic rate animals [6, 28, 40, 73, 88]

after ingesting food (heat increment of feeding)

Ageing Lifespan increases with size for endotherms, animals [19, 85]

but is independent of size in ectotherms

TABLE II: Stylized facts and empirical evidence on feeding, growth, reproduction, respiration and death.
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Stylized Facts Empirical Evidence

Stoichiometry Chemical body composition of well- and animals [8, 16, 31, 70]

poorly-fed organisms differ yeasts [27]

Chemical body composition of organisms growing animals [9, 20, 37, 62, 98]

at constant food density becomes constant

Energy Dissipating heat is a weighted sum of three mass flows:

Dissipation carbon dioxide, dioxygen and nitrogenous waste animals [93]

Cells Cells in a tissue are metabolically very similar

regardless the size of the organism [72]

TABLE III: Stylized facts and empirical evidence on stoichiometry, energy dissipation and cells.
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Author Year Model

Lavoisier 1780 multiple regression of heat against mineral fluxes

Gompertz 1825 survival probability for ageing [26]

Arrhenius 1889 temperature dependence of physiological rates

Huxley 1891 allometric growth of body parts [36]

Henri 1902 Michaelis Menten kinetics

Blackman 1905 bilinear functional response [4]

Hill 1910 Hill’s functional response [30]

Thornton 1917 heat dissipation [104]

Putter 1920 von Bertalanffy growth of individuals [82]

Pearl 1927 logistic population growth [76]

Fisher and Tippitt 1928 Weibull aging [21]

Kleiber 1932 respiration scales with body weight raised to 3/4

Mayneord 1932 cube root growth of tumours [69]

Monod 1942 growth of bacterial populations [71]

Emerson 1950 cube root growth of bacterial colonies [17]

Huggett and Widdas 1951 foetal growth [34]

Weibull 1951 survival probability for aging [111]

Best 1955 difusion limitation of uptake [3]

Smith 1957 embryonic respiration [95]

Leudeking and Piret 1959 microbial product formation [66]

Holling 1959 hyperbolic functional response [32]

Marr and Pirt 1962 maintenance in yields of biomass [68, 80]

Droop 1973 reserve (cell quota) dynamics [13–15]

Rahn and Ar 1974 water loss in bird eggs [83]

Hungate 1975 digestion [35]

Beer and Anderson 1997 development of salmonid embryos [1]

TABLE IV: Empirical models that turn out to be special cases of DEB models, or very good numerical

approximations to them.

35



Compound Process

X Substrate (food) X Feeding

E Reserve A Assimilation

V Structure C Mobilisation

P Products M Somatic maintenance (volume related)

Mi Mineral compound i T Somatic maintenance (surface related)

S Somatic maintenance (total)

J Maturity maintenance

G Growth

R Reproduction or maturation

TABLE V: List of symbols of compounds and processes.
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State Variable Dimensions Interpretation

MV = [MV ]V ;EV = µVMV ;V = L3 #, e, L3 Structure

ME ;E = µEME #, e Non-allocated reserve

MER;EER = µEMER #, e Reserve in reproduction buffer

MH # Cumulated reserve allocated to maturation

q̈ T−2 Ageing acceleration

ḣ T−1 Hazard rate

Variable Dimensions Interpretation

t T time

X #L−3 Substrate density

mE # #−1 Reserve density

e = mE

mEm
– Scaled reserve density

L L Volumetric structural length V 1/3

f – Scaled functional response

J̇θφ #T−1 Mass flow associated with process φ and compound θ

Ṙ eggs T−1 Reproduction rate

TABLE VI: List of symbols of variables. Dimensions: – dimensionless; T time; L length; # mass in moles

or C-moles; Symbols with {·} are per unit surface area, [·] are per unit of structural volume and dots above

are per unit time. φ = A,C, S, T,M, J,G,R and θ = X,E, V .
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Parameter Dimensions Interpretation

{Ḟm} l3 L−2 T−1 Surface-specific maximum searching rate

{J̇EAm} #L−2 T−1 Surface-specific maximum assimilation rate

[MEm] = {J̇EAm} v̇−1 #L−3 Maximum reserve density

mEm = [MEm] [MV ]−1 # #−1 Maximum molar reserve density

[J̇EM ], [J̇VM ] #L−3 T−1 Volume-specific maintenance rate

{J̇ET }, {J̇V T } = {J̇ET } [J̇V M ]

[J̇EM ]
#L−2 T−1 Surface-specific maintenance rate

yEX # #−1 Yield of reserve on substrate (food)

yV E # #−1 Yield of structure on reserve

v̇ L T−1 Energy conductance

κ – Fraction of mobilised reserve allocated to soma

κR – Fraction of reserve allocated to reproduction that is fixed in eggs

g = v̇[MV ]

κ{J̇EAm}yV E
– Investment ratio

k̇M = yV E [J̇EM ]
[MV ] T−1 Somatic maintenance rate coefficient

k̇J , k̇′J T−1 Maturity maintenance rate coefficient

Lm = κ{J̇EAm}
[J̇EM ]

L Maximum length

LT = {J̇ET }
[J̇EM ]

L Heating length

M b
H # Threshold of maturity at birth

Mp
H # Threshold of maturity at puberty

M0
E # Initial amount of reserve

TABLE VII: List of parameters. Dimensions: – dimensionless; T time; l environmental length; L structural

length; # moles or C-moles; Symbols with {·} are per unit surface area, [·] are per unit of structural volume

and dots above are per unit time. Chemical compound and process specifiers appear as subscripts to other

variables.
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