

What does the DEB model enlighten on the physiology of a marine bivalve *Crassostrea gigas*?

Results from a collective work presented by M. Alunno-Bruscia¹

(S. Pouvreau, I. Bernard, Y. Bourlès, D. Maurer, M. Alunno-Bruscia, M. Rumèbe, N. Néaud-Masson, D. Leguay, C. Arnaud, P. Goulletquer, B. Kooijman)

Ifremer

¹ Ifremer, Site expérimental d'Argenton, Presqu'île du Vivier, 29840 Argenton, France http://www.ifremer.fr/argenton

Material & methods: Modelling procedure

DEB parameters values (Pouvreau et al. 2006, Bourlès et al. in prep.)

Parameters	Symbol	Dimension	Estimate	References
Half saturation coefficient	Xκ	= f (food q	uantifier)	Bourles et al., in prep.
Max. surface area-specific ingestion rate	{ p _{Xm} }	J.cm ⁻² .d ⁻¹	560	Van der Veer et al., 2006
Assimilation efficiency	AE	%	75	Van der Veer et al., 2006
Maximum storage density	[E _M]	J.cm ⁻³	2295	Van der Veer et al., 2006
Volume-specific costs for structure growth	[E _G]	J.cm ⁻³	1900	Van der Veer et al., 2006
Volume-specific maintenance costs	[p _M]	J.cm ⁻³ .d ⁻¹	24	Van der Veer et al., 2006
pC fraction spent on maintenance + growth	к	-	0,45	Van der Veer et al., 2006
Structural volume at puberty	VP	cm ⁻³	0,4	Pouvreau et al., 2006
Fraction of reproduction energy fixed in eggs	K _R	-	0,7	Pouvreau et al., 2006
Temperature threshold trigger. spawn.	T _s	C	20-22	Bourles et al., unpubl. data
Gonado-somatic index trigger. spawn.	GI	%	35-43	Bourles et al., unpubl. data
Arrhenius temperature	TA	К	5800	Van der Veer et al., 2006
Low boundary temperature	TL	К	276	Bourles et al., in prep.
Upper boundary temperature for maint.	T _{H maint}	К	308	Bourles et al., in prep.
Upper boundary temperature for ing.	T _{H ing}	К	299	Bourles et al., in prep.
Ifremer				

Discussion

> Main outputs:

- ✓ The DEB model developed for *C. gigas* (cf. Pouvreau *et al.* 2006 JSR n°56; modified by Bourles *et al.* 2007) provided <u>satisfying simulations</u> in Arcachon Bay.
- ✓ Variability in growth and reproduction of *C. gigas* is mainly due variability in temperature and food.
- ✓ Phytoplankton counts provided the best simulations of oyster mass. Using chlorophyll a results in over estimating oyster growth, especially in summer and autumn.
- ✓_Discrepancies with chlorophyll *a* are likely due to:
 - ✓ Some 'part' of total chlorophyll *a* is not available for oysters (picoplankton ?);
 - \checkmark The quota per cell is not constant and depends on other environmental parameters.

> Some problems need to be solved:

- ✓ The current model still suffers some imperfections:
 - ✓ Over-estimation of the flesh mass during phytoplankton blooms (e.g. in 1989 & 1996)
 - ✓ Under-estimation when [food] is low (e.g. in 1990, 1993 & 1996)
 - \checkmark The model relies on the calibration of X $_{\rm K}$ and is not fully 'generic' yet.
 - ✓ The next step will consist in testing the model in other envionments.

Ifremer

