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0.3 Project Proposal

Motivation

Ecosystems, such as the open ocean, tend to be extremely diverse and complex. Many factors

contribute to their complexity: biological, physical and chemical components, inflow of water,

various time scales in both space and time and human influences. So far, the present models

do not seem to adequately describe the complex adaptive system characteristics of an aquatic

ecosystem.

Many attempts have been made in the past to model ecosystems such as estuarine envi-

ronments or the sea. One of the main complications is that realistic models, which integrate

biology, chemistry and physics, become very complex. Such models need many variables and

parameters∗1 to describe all the processes accounted for. For various reasons, complex mod-

els do not in general contribute much to a better understanding of ecosystem structure and

functioning. They are difficult to test, parts of their structure is uncertain, and many of their

parameters are poorly known. With some patience computer simulations can be tuned by

1The ∗ denotes the presence of an entry in the glossary at the end of the proposal
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changing parameter values to fit data sets, but the predictive power remains limited. Uncer-

tainties in the, sometimes small, amount of data add to the limitations of the usefulness of a

complex model.

Important notions for characterisation of any marine ecosystem are resilience, durability

and self-organisation. To reflect these notions in a model, the system is often described in

terms of biological, chemical and physical interactions between a set of chosen state variables.

The result is a complex dynamical ecosystem model. Examples of such models are ERSEM,

the European Regional Seas Ecosystem Model [1, 2] and the GEM, a Generic Ecological Model

[6].

A more straightforward way to describe an ecosystem is by considering the changes of the

distribution of the different species in the system in time, the so called AMOEBE approach.

However, the dynamical properties of an ecosystem cannot be described by only considering

the biological components of the system. For example, the North West European Shelf Pro-

gram [13] shows that the productivity in the North Sea is largely determined by the variable

input of Atlantic water and the weather.

Important aspects of ecosystems are their structure, i.e. the biomass distribution over the

various trophic levels∗, and their function, generally understood as the cycling of the various

nutrients. Study of these aspects is rather difficult in complex models. The aim of this project

is to study the coupling between ecosystem structure and functioning starting from more

simple models that capture only the bare essentials of the system.

Aims and Methodology

We will try to reach an understanding of the function/structure coupling using a different and

totally new approach. We start from a very simple single-species community of mixotrophs∗,

and allow the community to develop into a more complex (and realistic) multi-species system

following an accelerated evolutionary process. The process is realistic, autonomous and, most

important, self-organising. The multi-species community will have competing producers∗,

specialised and non-specialised decomposers∗, and a food web of consumers∗, with small

and large body sizes (and associated differences in physiological time scales). The cycling

of energy and nutrients in the community will be followed in a homogeneous space, and in

a space with an one-dimensional spatial structure, to allow for gradients in light and redox-

potential and settling to built up sediments. Below we describe how this self-organising

evolutionary process is constructed, using the DEB∗-model.

What we hope to find, by following this line, is a (rather) simple mathematical description

for the emerging nutrient cycling and biomass distributions. Ultimately, such a model can be

used in hydrodynamically explicit physical-chemical models for the description of specific

systems, such as the North Sea or open ocean.

The DEB-model

The development of a mixotroph into an autotroph or a heterotroph∗, and a specialisation

of heterotrophs into decomposers, or carnivores, is only possible if all these life forms can

be captured in a single modelling framework. The DEB theory offers such a framework, and

specifies the processes of substrate (nutrient, light, food) uptake and use (for the purposes of

maintenance∗, growth∗, development, reproduction) of all life forms. It includes the process

of aging, and body size scaling relationships. A summary of the theory is given in Section 0.4.
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Accelerated evolution The behaviour of a single-species community of mixotrophs is char-

acterised by the parameters in the DEB-model. For instance, the ability for autotrophic

assimilation∗ is one of the parameters. The value is a measure for the efficiency of au-

totrophic assimilation. In the model described in the Appendix these parameters are

given for the complete community. The organisms only differ in parameter values and

in the values of the state variables (body size and amounts of reserves). The parameters

remain fixed for each individual but the state variables change as the organisms follow

their life cycles. To understand evolution over the generations, we need to distinguish

the different organisms in the community. This can be modelled by specifying a set of

rules:

1. When the body size of an organism reaches a threshold value it will divide or start

reproduction.

2. The characteristics (one or more parameters) of (one of) the daughters can differ

from that of the mother, even a mutation (a jump in the parameter value) might

occur.

3. Death occurs in a discrete manner. More precisely, every time interval, every or-

ganism has a certain probability to die. The probability depends on internal and

external factors.

The characteristics that can be altered are the efficiency for autotrophic and heterotrophic

assimilation. The costs for growing are related to these changes. The rules have several

consequences for the model in Appendix 0.4. First, the destiny of all the individuals has

to be traced separately since their behaviour is different. Second, death and parameter

settings are stochastic events; as a consequence, the model is no longer deterministic.

Such an approach allows simulation of an evolutionary process. The difference in pa-

rameter values permits individuals to compete for resources in an effective way. As a

consequence, reproduction is more rapid for some organisms and they are copied more

frequently. In combination with death (by starvation, predation, aging) this mechanism

results in selection of these organisms.

One of the questions that is interesting to us is the coexistence of individuals with differ-

ent specialities. Under which conditions can these individuals coexist? In other words,

can different specialised groups coexist within a single community of mixotrophs, with-

out competitive exclusion?

We do realise that, without the ocean context, such a system is mainly of theoretical

interest. However, we think that it represents the simplest ecosystem that is capable of

full nutrient recycling. It is only through the understanding of such very simple artificial

ecosystems, that we might hope to understand more realistic (and much more complex)

ecosystems in full depth. Moreover, in simple models, the effect of parameter changes

can be studied in sufficient detail.

Species-diversity and stability The increase in bio-diversity allows a specialisation of func-

tions, which enhance metabolic∗ versatility. In the department of Theoretical Biology, a

project parallel to this proposal is in progress. It compares the function/structure cou-

pling in a series of simple deterministic models: an one-species community of mixotrophs,
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a three-species community of producers, consumers, and decomposers, and a more-

species community with a simple food web structure. We plan to compare the findings

in these models with the function/structure coupling in our self-organising commu-

nity. More precisely, we shall try to quantify the stability of the self-organising system.

However, the standard methods to quantify stability do not apply to stochastic models,

therefore new methods have to be developed and applied. If successful, the new meth-

ods are also applied to the sequence of simple deterministic models in order to compare

the results.

Body size scaling relationships While the DEB theory deals with mechanisms, at the same

time simple rules are implied for the covariation of parameter values among species.

Parameter values do not vary independently, but tend to co-vary in a very special way.

If the parameters of the DEB model for all species are plotted in the parameter-space,

and each species is characterised by a single point, the points will scatter around a

single line in this space. Many life-history features, such as maximum body sizes, re-

production rates, life spans, travelling rates and distances, can be written as functions

of the parameters. As a result, these features also covary in a predictable (if sometimes

complex) way [8, 10, 3]. We will allow a ’diffusion’ of parameters along the line in the

parameter-space, and thus allow segregation of body sizes, and the associated scales in

time and space in which the organisms live. (Whales live on time/space scales that are

very different from that of copepods). We expect to find that species with large body-

size will be rare. It is their impact on the function and the stability of the system that

we want to evaluate.

0.4 A concise description of the DEB mixotroph model

A mixotroph is an organism that has both photoautotrophic and heterotrophic capabilities to

acquire energy and nutrients. This, for instance, occurs in photoautolithotrophic cyanobac-

teria [15, 16] and in chemoautolithotrophic bacteria [7]. We focus on the assimilation of

carbon dioxide, ammonium, light, and organic compounds. In particular, we can study a

non-trivial mixotroph community by analysing the situation where the organic compounds,

i.e. detritus, originate from the organism itself (from aging). The organism’s heterotrophic

capabilities also allow uptake of organic compounds. Therefore, the mixotrophs are both a

source and a sink of organic compounds, and thus we obtain resource recycling.

We are interested in the chemical elements C, H, O, and N, with ammonium as the only

inorganic nitrogen source. Although nitrate is more abundant in real systems, organisms

excrete ammonium, so the inclusion of nitrate requires the inclusion of ammonium as well.

The carbon dioxide is represented by dissolved inorganic carbon. Water H and oxygen O are

always taken to be available ad libitum. Therefore, the only potentially limiting compounds

left are N and C, while light may also be limiting. We study a system that is closed for mass.

However, the source of light is outside the system, which makes it open for energy. The

temperature is taken to be constant.

Any organism is described in terms two components: structure and reserves. Each of these

components has a given fixed stoichiometry∗. As the amount of reserves relative to structure

can vary in time, overall biomass composition is not fixed. However, the scope for variation

in this composition is restricted. There are several reasons for modelling an organism in this

particular way, for details we refer to [10] pg. 20–23. In this approach the organism can be
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characterised by two state variables∗: mass of reserves and structural mass (in units carbon).

Due to aging individual organisms may die. As the organism is composed of structure and

reserves we also delineate two types of detritus, namely dead structure and dead reserves.

This yields another two state variables: mass of dead reserves and dead structure (in units

carbon). The digestion efficiencies by the mixotroph for the different types of detritus might

differ. The last two state variables we can introduce are mass of free carbon and mass of free

nitrogen. However, it is possible to eliminate these two extra variables since the total amount

of nitrogen and carbon is conserved.

The changes in the state variables are specified in terms of fluxes∗. Each of the fluxes rep-

resent different transformations: autotrophic and heterotrophic assimilation, growth, death

and maintenance. Schematically, the different processes are shown in Figure 1. The changes

in the state variables are given by a system of coupled ordinary differential equations. For the

exact equations we refer to [12].

Reserves

Structure

Growth

Nitrogen + Light + Carbon

Autotrophic Ass.

Dead Structure

Dead Reserves
Death

Death

Nitrogen + Carbon

Maintainance

Nitrogen + Dead Structure Nitrogen + Dead Reserves

Heterotrophic Ass. Heterotrophic Ass.

Figure 1: Schematic overview of the different transformations

As long as the mixotroph has a single type of (generalized) reserve, light, C and N are

required simultaneously to growth autotrophically. Due to the spatial structure of the aquatic

environment, the delineation of an N-reserve and a C-reserve must be considered. This con-

struct allows the organism to accumulate carbohydrates at the surface, and nutrients at the

bottom of the photozone, when the wind takes care for the vertical migrations.

The appendix describes some preliminary results by Claudia Mulder that might serve as a

first orientation to the problem.

1 Time schedule

year 1 Literature study on DEB theory, Adaptive Dynamics theory and community physiol-

ogy. Comparison of model formulations that include 0, 1 and 3 reserves. Dynamics

of vertical structure with diurnal and seasonal forcing of light and temperature. (Sin-

gle species). Analysis of horizontal spatial structure using ocean circulation simulation

software. Orientation on software to simulate individual based dynamics.
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year 2 Adaptive dynamics studies that allow for specialization of mixotroph into auto- and

heterotrophic activities. Analysis of speciation process, stability and invasibility issues.

(Three species)

year 3 Advanced adaptive dynamics studies that allow for specialization of decomposition ac-

tivities, and consumer food webs subjected to body size scaling relationships. (Many

species problem)

year 4 Attempts to simplify the complex dynamics, in order to understand the observe phe-

nomena.
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Glossary

assimilation Generation of reserves from substrates (food, nutrients, light)

consumer Any organism which consumes other organisms

DEB Initials of the Dynamic Energy Budget model or theory. The term ‘dynamic’ refers to the

contrast with the frequently used Static Energy Budget models, where the specifications

of the individual do not change explicitly in time

decomposer Organism such as bacteria and fungi that break organic materials down into

simpler compounds and eventually into inorganic materials.

flux An amount of mass or energy per unit of time. An energy flux is physically known as a

power

growth Increase in structural mass or structural volume

heterotroph An organism that uses organic compounds as a source of energy; Photo-autotrophs

use light

maintenance A rather vague term denoting the collection of energy-demanding processes

that life seems to require to keep going, excluding all production processes. We also

exclude heat production in endotherms

mixotroph An organism that is both photoautotroph and chemo-heterotroph

nutrients Inorganic substrates used for the synthesis of reserves; carbon dioxide and ammo-

nia are examples, and light is also included for convenience

parameter A quantity in a model that describes the behaviour of state variables. It is usually

assumed to be a constant

producer Any autotroph capable of synthesising organic material, thus forming the basis of

the food web

respiration The consumption of oxygen, or the production of carbon dioxide. Both fluxes

have a relationship with the use of energy.

state variable A variable which determines, together with other state variables, the be-

haviour of a system. The crux of the concept is that the collection of state variables,

together with the input, determines the behaviour of the system completely

trophic level Any of the feeding levels that energy passes through as it proceeds through the

ecosystem
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A Adaptive dynamics applied to the DEB mixotroph model

by Claudia Mulder

A.1 Introduction

Ecosystems generally consist of various species. These species represent three basic func-

tions: Producer, consumer and decomposer. In modelling ecosystems one may either focus

on species level or on the functional level. The disadvantage of the species level is that such

models rapidly become very complex. Because ecosystem normally consists of many species, a

species-based model will have a large number of parameters and variables. As a consequence,

the analysis is difficult and few general insights are to be expected.

Models based on the functional approach tend to be much simpler as only a small number

of functions is involved. Although general insights can be expected this approach also has its

drawbacks. First, species-specific results are not possible because species are not considered

explicitly. Second, the choice of the functional variables implies that the different functions

are given beforehand. Moreover, it is possible that different functions co-occur in a single

organism. The modeller should decide whether or not such an organism is part of the model.

Therefore, the model cannot explain why such an organism should exist.

To understand the co-occurrence of different functions in a single organism one can model

in an evolutionary context. Suppose a model organism is in principle able to perform all the

basic functions. Furthermore, suppose that these basic functions may vary quantitatively in

their contribution to the total metabolism. In such a model organisms may evolve that spe-

cialise in one of the basic functions. This model may therefore explain which conditions lead

to the evolution of producers, consumers and decomposers. Also, the model may indicate key

characteristics of these functions. For example, decomposers are often bacteria, characterised

by their small size. If the model indicates that the decomposition functions is always linked

to small cell size, the model would explain the role of the bacteria.

This study explores the possibility to model ecosystems in an evolutionary context. We

start with a mono-species ecosystem in which the single species combines all basic functions.

The species is allowed to evolve and may loose one or two of the basic functions. Evolution

of a mono-species population may lead to a poly-species ecosystem. The original population

splits in two or more subpopulations where each subpopulation specialises in certain func-

tions. The aim of this study is to explain under which conditions such specialisation might

occur.

First, we discuss part of the formal framework developed for modelling adaptive dynamics

and evolutionary strategies, Section A.2. Next, we apply this theory to the Dynamic Energy

Budget model for a mixotroph community, Section A.3. We end with the results and conclu-

sions obtained by applying the the adaptive dynamics theory to this specific model, Section

A.4.

A.2 Adaptive dynamics

In [4] the concept of evolutionarily singular strategies is introduced as a generalisation of

ESS-concept [14]. Here, we shortly recall the important ideas for modelling adaptive dynam-

ics. We confine ourselves to the notions that are needed to understand the application of this

theory to the DEB-mixotroph model, cf. Section A.3
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Consider a population with state-vector N ∈ Re n, for instance the different physiological

states of the individuals. In such a population state-vector different types can be distin-

guished. We assume that the difference in type are characterised by a vector x ∈ Re k. Such a

vector is referred to as strategy. A strategy is simply a collection of parameters by which the

behaviour of the individual, and therefore of the population, is represented. Assume that the

dynamics of the population is given by

∂E

∂t
= f(N, E, x)

∂N

∂t
= M(x, E)N

(1)

where E ∈ Re m stands for the different environmental state variables. These can be for

instance the available nutrients. Assume moreover that the system has only one equilibrium

(Ex, Nx).
The concept of evolution and mutation is brought in via the strategy x. We formulate the

following question: What is the destiny of an initially rare mutant with a (different) strategy

y that appears in an equilibrium population of x-strategists, does the mutant survive or does

it go extinct? It is this question we aim to answer.

Since the mutant is rare the (equilibrium) environment Ex, determined by the x-strategists,

is not modified by the presence of the mutants. Therefore, as a first order approximation, the

growth of the mutant is determined by the leading eigenvalue ρ(y, Ex) of the matrix M(y, Ex).
Moreover, because the mutant is rare, we can also assume that during invasion the environ-

ment is still in equilibrium and therefore constant E = Ex. Although the mutant grows or

goes extinct the effect of this does not affect the environment significantly. Until of course the

mutants reached a considerable size. Right after the mutant is introduced its growth will ex-

hibit transient behaviour. After the transient phase the specific growth rate becomes constant.

This constant is called ’the mutants fitness’. If the mutants fitness is positive the mutant can

maintain itself and invade in the resident population, if it is negative the mutant goes extinct.

To formally define the mutants fitness one needs to distinguish two different time scales

[5], Chapter 2. A global time scale t in which the environment does not change, and a smaller

time scale τ , τ << t in which the transient behaviour right after mutation is described. In

terms of the smaller time scale τ one should consider the long-term behaviour of the growth

rate to obtain the mutants fitness. In this context the mutants fitness is defined by

sx(y) = lim
τ→∞

ρ(y, Ex). (2)

In Section A.3.2 we show how this definition applies to our model. The sign of sx(y) deter-

mines the behaviour of the mutant. If sx(y) < 0 the mutant dies out, whereas if sx(y) > 0 it

will spread.

A.2.1 Evolution and the fitness’ gradient

During evolution mutations are small, i.e. ‖ρmut − ρres‖ << 1. An approximation of the

mutants fitness is obtained by expansion.
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sρres(ρmut) = sρres(ρres) +∇ρmutsρres(ρmut)
∣

∣

ρmut=ρres
· (ρmut − ρres) +

O(‖ρmut − ρres‖
2), (ρmut → ρres)

≈∇ρmutsρres(ρmut)
∣

∣

ρmut=ρres
· (ρmut − ρres).

(3)

Hence, the gradient field ∇ρmutsρres(ρmut)|ρmut=ρres determines the direction in which the

population evolves. When the population reaches the neighbourhood of a ‘singular strat-

egy’ x∗, where the gradient becomes zero, the evolutionary behaviour of the population is

determined by the second derivative. Depending on the properties of the second derivative

in x∗ the evolutionary behaviour can be characterised. In the case of an one-dimensional

strategy parameter the possible behaviour is completely classified in [4]. In particular, in the

one-dimensional case it is possible to obtain evolutionary branching in a singular strategy.

A.2.2 Coexistence

Two strategies x and y in a population do not always (in the long term) give rise to a di-

morphic population. Suppose a population initially consists of two different strategies, say

x and y. If sx(y) > 0 the x-strategists cannot push out the y-strategists because once the y-

strategists are rare the positive mutants fitness guarantees their survival. In the same manner

we see that sy(x) > 0 implies that the x-strategists can never go extinct. A sufficient condition

for coexistence of two different strategies in one population can therefore be expressed in

terms of the mutants fitness.

A sufficient condition for polymorphism is not straightforward from the mutants fitness.

If n strategies x1, . . . , xn have the the property that sxi
(xj) > 0 for all i and j then polymor-

phism is not guaranteed. Because when there are n strategies the environment for one of

them is determined by the other n− 1 strategies. Whereas the mutants fitness sx(y) assumes

that the environment for y is determined by x only. It might therefore happen that in a popu-

lation with the strategies x, y, z, the x and y-strategists establish an equilibrium in which the

z-strategists cannot survive, although sx(z) > 0 and sy(z) > 0.

A.3 The DEB mixotroph model

The dynamic energy budget theory provides a simple model for growth of a facultative pho-

toautotroph with chemo-heterotrophic capabilities. The organism is described by only one

reserve component and one structural component. Both components are taken to be gen-

eralized compounds. The rules of Synthesizing Units are used for interactions among the

uptake processes. Parallel processing is used for the uptake of the various nutrients and light.

Whereas, the merging of autotrophic and heterotrophic activities is modelled by sequential

processing.

We focus on the assimilation of carbon dioxide, ammonium and light. The two organic

compounds that can be assimilated are dead reserves and dead structure, these organic com-

pounds originate from aging. The DEB mixotroph model describes the process of resource

recycling in a closed environment, as driven by light. A simple diagram of the metabolism of

the mixotroph is given in Figure 2

To understand how the assimilation is modelled we refer to [11, 9]. The assimilation and

other fluxes as well as the precise equations are given in Appendix B.
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Figure 2: Diagram of the metabolism of a mixotroph. Resources (light L, carbon dioxide

C, ammonium N , detritus DE and DV ), reserves, E, and structural mass, V , and the basic

transformations (assimilation A, growth G, and maintenance M) are indicated. Water H
and di-oxygen O are assumed to be non-limiting. The excretion of ammonium and carbon

dioxide in association with the basic transformations is not indicated. The death process H
that converts reserves E into detritus DE , and structural mass V into detritus DV is also

not indicated. The gray area indicates the assimilation apparatus of the cell, a subset of the

structural mass where no compounds accumulate.

A.3.1 Strategy

As strategy parameters we introduce ρEE
, ρEV

and ρEA
∈ (0, 1]. In Appendix B these param-

eters occur in the different uptake fluxes. The parameter ρEE
is concerned with the uptake

of reserve detritus, the parameter ρEV
with the uptake of structure detritus and the param-

eter ρEA
with the uptake via the autotrophic route. These parameters are a measure for the

efficiency of the different uptake routes. Moreover, we model the maximal uptake fluxes to

depend on the values of ρ = (ρEE
, ρEV

, ρEA
) according

jEA,Am = jA
EA,AρEA

jEE ,AHEm = jE
EE ,AHE

ρEE

jEV ,AHV m = jV
EV ,AHV

ρEV
.

(4)

The new parameters jA
EA,A, jE

EE ,AHE
and jV

EV ,AHV
represent the absolute maximal fluxes that

can be reached (when ρ = 1).

By modelling the strategy in this way it is obvious what happens in the long term when

mutations are allowed. Since, the higher the values of ρ the better the uptake of nutrients

and detritus. Therefore, the growth rate will be larger, and the ‘best’ organisms are those

which have ρ = 1. As a consequence, one can show that allowing mutants in a population of

ρ-strategists will ultimately lead to a population with strategy more or less ρ = 1.

The three different strategies of obtaining resources require different biochemical machin-

ery. For instance, the autotrophic route demands the presence of an electron transport chain,

which consists of several enzymes. Likewise, the dependence on heterotrophic resource ac-

quisition involves specialised enzyme systems. Increased efficiency in a particular uptake
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route can be accomplished by increasing the amount of machinery involved. In other words,

there is price tag attached to an increase in efficiency. In the context of DEB theory we repre-

sent this price tag by the conversion parameters yA
EV , yE

EV and yV
EV . The conversion efficiency,

which is modelled in DEB by the parameter yEV , represents how many units of reserves are

needed to obtain one unit of structure. The higher the value the less efficient growth is. We

model the conversion efficiency to depend on the ρ-strategy of the population according

yEV (ρ) = yEV + yA
EV ρEA

+ yE
EV ρEE

+ yV
EV ρEV

. (5)

The parameter yEV represents the basic conversion efficiency (it can be seen that yEV ≥ 1
should be chosen). The higher the values of ρ the less efficient conversion from reserves to

structure is. This is the price that is payed for increasing the efficiency. As a result, higher

values of ρ lead to smaller growth rates.

Modelling the maximal uptake fluxes according to 4 and the conversion efficiency to 5 it

is a priori not clear what the evolutionary behaviour of a population of ρ-strategists is. Higher

values of ρ are both good and bad for the populations growth rate, as well as lower values of

ρ.

A.3.2 The fitness of mutants

As explained in Section A.3.1 we consider a population whose characteristics are determined

by the parameters ρ = (ρEE
, ρEV

, ρEA
). We are interested in the effect of a rare mutant with

different strategy, which we denote by ρmut. More precisely, can such an mutant manifest

itself or will it get extinct? In Section A.2 we explained that the mutants behaviour can be

characterised by the sign of the mutants fitness sρres(ρmut).
To understand how the mutants fitness relates to a mixotrophic organism we look at its

growth. A mixotrophic organism as modelled by DEB consists of two components (state

variables), reserves XE and structure XV . The growth of the organism is reflected in both

these components. The environment E introduced in Section A.2 is, in the mixotroph model,

given by the remaining state variables

E = {XN , XC , XDV
, XDE

}.

The Equations (11)1−4 describe the dynamics of the environment E, cf. (1)1. From the

Equations (11)5,6 we obtain that the specific growth rate for reserves sE and structure sV , as

a function of the strategy ρ and the environment E, is given by

sV = sV (m, ρ)

= jV,G(m, ρ) + jV,H(m, ρ)

sE = sE(m, ρ, E)

=
1

m
(jE,A(m, ρ, E) + jE,G(m, ρ) + jE,M (ρ) + jE,H(m, ρ)),

(6)

where

m =
XE

XV
.
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Equation (6) shows that the growth rates do not depend on the reserves XE and structure

XV explicitly but only on their quotient, the reserve density, m.

Assume that the resident population, of which the strategy is denoted by ρ = ρres, reached

its equilibrium. In particular this implies sV = sE = 0 for the ρres-strategists. Assume,

moreover, that the mutant population is rare, i.e.,

XV ρmut << XV ρres ,

XEρmut << XEρres .

Then the equilibrium is, in a first order approximation, determined by the resident popula-

tion, In particular, the environment equilibrium only depends on the strategy of the resident

population, i.e. E = Eρres . Therefore, a good approximation of the specific growth rates of

the mutant population are, cf. (6),

sV = sV (mρmut , ρmut)

= jV,G(mρmut , ρmut) + jV,H(mρmut , ρmut)

sE = sE(mρmut , ρmut, Eρres)

=
1

mρmut

(jE,A(mρmut , ρmut, Eρres) + jE,G(mρmut , ρmut)

+ jE,M (ρmut) + jE,H(mρmut , ρmut)),

(7)

where

mρmut =
XEρmut

XV ρmut

.

Hence, the specific growth rates of the mutants depend on the reserve density mρmut , the

strategy ρmut itself and the equilibrium environment values of the ρres-strategists, Eρres . We

derive an expression for the mutants fitness sρres(ρmut) in three steps

1. In Appendix C we prove that the long-term specific growth rate of reserves and structure

of a mutant ρmut in a resident environment ρres are the same. In other words: if

the reserves of a mutant grow, so does its structure and vice versa. This allows us to

derive the mutants fitness by only considering one of the two components (reserves or

structure) of the organism since they grow the same anyway. Otherwise it might happen

that the reserves of the mutant grow, whereas the structure decays. In this case we do

not know if the mutant grows or not.

2. From Appendix C we find that in a good approximation

mρmut =
jE,A(ρmut, Eρres)

k̇E

. (8)

From which we see that mρmut can be expressed in terms of ρmut and Eρres
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3. In Appendix D we show that we do not have to calculate the equilibrium values of the

environment Eρres explicitly. We prove that

jE,A(ρmut, Eρres) = jE,A(ρmut, ρres). (9)

We can express the assimilation flux of a rare ρmut-strategist in a ρres-population by

only knowing the strategies and, of course, the remaining parameters, none of the state

variables is needed. We believe this purely has to do with the type of model.

From 1, 2 and 3 it follows that

sρres(ρmut) = sE(mρmut , ρmut, Eρres)

= sV (mρmut , ρmut)

= sV (
1

k̇E

jE,A(ρmut, Eρres), ρmut)

= sV (
1

k̇E

jE,A(ρmut, ρres), ρmut)

=
(k̇E − ḣ†)jE,A(ρmut, ρres)− k̇E k̇MyEV (ρmut)

jE,A(ρmut, ρres) + k̇EyEV (ρmut)
,

(10)

which, together with (5), (17) and (24) yields an analytic expression for the mutants fitness.

A.4 Results and Conclusions

The mutants fitness depends only on the values of ρ and the limited amount of parameters

summarised in Table A.4. The evolutionary behaviour is fully characterised by the values of

these parameters. In particular, we find that the evolutionary behaviour is independent of the

total amount of carbon XC+ and nitrogen XN+. However, the total amount of carbon and

nitrogen determines which of the nutrients is limiting. We conclude that neither nitrogen nor

carbon limitation does affect the evolutionary behaviour.

k̇EA
[mol/ mol d] yEV [mol/ mol]

k̇EH
[mol/ mol d] yA

EV [mol/ mol]

k̇EV
[mol/ mol d] yE

EV [mol/ mol]

k̇EE
[mol/ mol d] yV

EV [mol/ mol]

ρEH
[ - ] ḣ† [1/ d]

yDV E [mol/ mol] k̇E [1/ d]

yDEE [mol/ mol] k̇M [1/ d]

Table 1: Relevant parameters for the mutants fitness function.
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A.4.1 Evolution

The gradient of the fitness function is used to study the evolutionary behaviour of our sys-

tem, cf. Section A.2. If mutations are small, i.e. ‖ρmut − ρres‖ is small, the vector field

∇ρmutsρres(ρmut)|ρmut=ρres gives the directions in which the resident population on the long

term evolves. The mathematica notebook ‘FitnessFunction.nb’ calculates the mutants fitness

(10) and its gradient ∇ρmutsρres(ρmut)|ρmut=ρres given the parameter values in Table A.4. As

an example consider Figure 3 that is produced by ‘FitnessFunction.nb’.
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Figure 3: Vectorfield ∇ρmutsρres(ρmut)|ρmut=ρres for the parameters in Appendix B and yA
EV =

yE
EV = yV

EV = 0.

Figure 3 shows the behaviour when there is no price tag attached to an increase in effi-

ciency. As we already predicted in A.3.1 this situation evolves to ρ = (1, 1, 1).
Suppose we choose a large value for yA

EV , which means that the biochemical machinery

involved in uptake via the autotrophic route is ’expensive’. We expect evolution to a strategy

with a smaller ρEA
value. This is indeed the case as can be seen from Figure 4. Large and

small values of ρEA
turn out to be evolutionary unfavourable.

The gradient of the mutants fitness shows how a population of ρ-strategists evolves in

time when small mutations are allowed. However, it is not possible to see if a population

with a certain ρ-strategy can even exist with the given choice of parameters. For example:

In the parameter setting chosen for Figure 4 it can be shown that not a single population

ρ-strategists can maintain themselves, they simply all go extinct! The evolutionary behaviour

and the survival of a population ρ-strategists are completely different issues.

A.4.2 Singular strategy

As we discussed in Section A.2.1 the behaviour in the neighbourhood of a singular strategy

ρ∗, i.e. where the gradient is zero, depends on the properties of the second derivative of the

mutants fitness function in ρ∗. A program was written to find zero’s of the gradient vector
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Figure 4: Vectorfield ∇ρmutsρres(ρmut)|ρmut=ρres for the parameters in Appendix B and yE
EV =

yV
EV = 0 and yA

EV = 15.

field for different choices of the parameters in Table A.4. We did a random search in feasible

intervals for the different parameters. So far we did not manage to find a parameter setting

for which a singular strategy ρ∗ lies within the cube. Evolution always seems to ‘hit’ the lateral

faces of the ρ-cube.

The evolutionary behaviour at the boundary of the cube is not a priori clear. In the two

examples of Figure 3 and 4, evolution leads to a population with one or more of the strategy

values maximal. As an example consider Figure 3, suppose that evolution leads to a popula-

tion of ρ-strategists with ρEA
= 1. Since the gradient field at the lateral face ρEA

= 1 points

outwards, the ρEA
strategy resides at one. Therefore, the behaviour of the population is de-

termined by the projection of the gradient onto the lateral face ρEA
= 1, the component of

the gradient in ρEA
-direction does not affect the evolutionary behaviour. Thus, we can reduce

to a two dimensional domain, as is illustrated in Figure 5.

There is no singular strategy for the projection of the gradient vector field in this lateral

face. We see that evolution leads to a population with either ρEV
= 1 or ρEE

= 1. Suppose

that evolution leads to a population of ρ-strategists with ρEV
= 1. The vector field points

outwards at ρEV
= 1, so the ρEV

strategy resides at one. Thus, we can reduce the dimension

once more by considering the lateral edge ρEA
= 1 ∩ ρEV

= 1. The components in ρEA
and

ρEV
direction do not affect the evolutionary behaviour. We obtain the one dimensional vector

field in Figure 6.

Finally, the population ends up at ρ = (1, 1, 1), for this particular choice of parameters.

However, it might also occur that evolution hits a lateral face or edge of the cube where

the projection of gradient field has a zero and therefore a singular strategy. In that case

one can expect interesting evolutionary behaviour depending on the behaviour of the second

derivative of the mutants fitness in the plane or edge of projection. It is reasonable to expect

evolutionary branching or perhaps some of the other phenomena described in [4].
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Figure 5: Projection of the gradient of the mutants fitness for the vector field in Figure 3 on

the lateral face ρEA
= 1.
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Figure 6: Projection of the gradient of the mutants fitness for the vector field in Figure 5 on

the lateral edge ρEA
= 1 ∩ ρEV

= 1.

B The DEB mixotroph model equations

The system has 6 state variables: the concentrations of 2 minerals and 4 organic compounds.

The changes are specified in terms of 22 fluxes; the 6 compounds (labelled C, N , DV , DE , V ,

E) partake in 6 transformations (labelled AA, AHV , AHE , G, M , H). The changes are given

by

d

dt
XC = XV (jC,AA

+ jC,AHV
+ jC,AHE

+ jC,G + jC,M )

d

dt
XN = XV (jN,AA

+ jN,AHV
+ jN,AHE

+ jN,G + jN,M )

d

dt
XDV

= XV (jDV ,AHV
+ jDV ,H)

d

dt
XDE

= XV (jDE ,AHE
+ jDE ,H)

d

dt
XV = XV (jV,G + jV,H)

d

dt
XE = XV (jE,A + jE,G + jE,M + jE,H)

(11)
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Specification of fluxes

Auxiliary variables

fCH
=

(1+z−1

C )

1+z−1

C f−1

C +
jL,FK
−jL,F

−

(

zCfC+
−jL,F
jL,FK

)

−1 , fC = 1
1+x−1

C

; xC = XC

KC

jEA,AA
=

jEA,Am

(

1+z−1

N
+z−1

CH
−(zN+zCH

)−1

)

1+z−1

N f−1

N +z−1

CH
f−1

CH
−(zNfN+zCH

fCH )
−1 , fN = 1

1+x−1

N

; xN = XN

KN

jEE ,AHE
= jEE ,AHEm

(

1 + x−1
NE

+ x−1
DE

− (xNE
+ xDE

)−1
)−1

,

xNE
= XN/KNE

; xDE
= XDE

/KDE

jEV ,AHV
= jEV ,AHV m

(

1 + x−1
NV

+ x−1
DV

− (xNV
+ xDV

)−1
)−1

,

xNV
= XN/KNV

; xDV
= XDV

/KDV

jEH ,AH
=

(

k̇−1
EHM + (ρEE

jEE ,AHE
+ ρEV

jEV ,AHV
)−1
)−1

=
(

k̇−1
EHM + αEE

(ρEE
jEE ,AHE

)−1
)−1

,

k̇EHM = αEE
k̇EE

+ (1− αEE
)k̇EV

; αEE
=
(

1 +
ρEV

jEV ,AHV

ρEE
jEE,AHE

)−1

jE,A =
(

k̇−1
EM + (ρEA

jEA,AA
+ ρEH

jEH ,AH
)−1
)−1

=
(

k̇−1
EM + αEA

(ρEA
jEA,AA

)−1
)−1

,

k̇EM = αEA
k̇EA

+ (1− αEA
)k̇EH

; αEA
=
(

1 +
ρEH

jEH,AH

ρEA
jEA,AA

)−1

(12)

Organic fluxes

jE,AA
= αEA

jE,A

jE,AHE
= αEE

(1− αEA
)jE,A

jE,AHV
= (1− αEE

)(1− αEA
)jE,A

jDE ,AHE
= −yDEEjE,AHE

jDV ,AHV
= −yDV EjE,AHV

jV,G = mk̇E−yEV k̇M

m+yEV

with m = XE/XV

jE,G = −yEV jV,G

jE,M = −yEV k̇M

jV,H = −ḣ†
m

yEV +m

jDV ,H = ḣ†
m

yEV +m

jE,H = −ḣ†
m2

yEV +m

jDE ,H = ḣ†
m2

yEV +m

(13)

Mineral fluxes

jC,AA
= −jE,AA

jC,AHV
= −jDV ,AHV

− jE,AHV

jC,AHE
= −jDE ,AHE

− jE,AHE

jC,G = −jV,G − jE,G

jC,M = −jE,M

jN,AA
= −nNEjE,AA

jN,AHV
= −nNV jDV ,AHV

− nNEjE,AHV

jN,AHE
= −nNEjDE ,AHE

− nNEjE,AHE

jN,G = −nNV jV,G − nNEjE,G

jN,M = −nNEjE,M
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Parameters and provisional values

XC+ 1000 µM jL,F −5 mol/ mol d nNE 0.2 –

XN+ 150 µM jL,FK 25 mol/ mol d nNV 0.1 –

KC 500 µM jEA,Am 2.5 mol/ mol d zC 10 –

KN 0.1 µM jEV ,AHV m 1.5 mol/ mol d zN 10 –

KNE
0.001 µM jEE ,AHEm 2 mol/ mol d zCH

10 –

KNV
0.001 µM k̇EA

10 mol/ mol d ρEA
0.9 –

KDV
2500 µM k̇EH

10 mol/ mol d ρEH
0.8 –

KDE
1000 µM k̇EE

5 mol/ mol d ρEE
0.9 –

yDV E 4 mol/ mol k̇EV
5 mol/ mol d ρEV

0.7 –

yDEE 2.5 mol/ mol ḣ† 0.45 1/ d k̇M 0.1 1/ d

yEV 1.0 mol/ mol k̇E 0.6 1/ d

C Kinetics of the reserve density

Concentrating on de reserve density m we find that the Equations (11) and the explicit ex-

pressions for the fluxes in Appendix B imply that m follows a first order kinetics given by

dm

dt
= (sE(m, ρ)− sV (m, ρ)m

= −k̇E(m−
jE,A

k̇E

).
(14)

In Appendix B we find that jE,A = jE,A(ρ, E). Therefore:

1. The flux jE,A does not depend on XE and XV (or m).

2. In equilibrium the flux jE,A can be considered constant since the environment state

variables E are time-independent.

Hence, the solution m of (14) converges to the constant value

m −→
jE,A(ρ, E)

k̇E

(t −→∞).

The positive parameter 1
k̇E

determines a characteristic time scale for the speed of convergence.

It can be thought of as the ratio of the maximum assimilation capacity and the maximum

storage capacity. In Figure 7 the convergence to the new reserve density after mutation is

shown. As a result we find that in the long-term the reserve density m of a rare mutant

population (characterised by ρmut) invading in an equilibrium resident population of ρres-

strategists is

mρmut =
jE,A(ρmut, Eρres)

k̇E

.

The reserve density of the mutant converges to a constant value and consequently the reserves

XE and structure XV of the mutant change equally fast because XE ∼ XV , (t −→∞), this

is illustrated in Figure 7.
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Figure 7: Reserve densities, reserves and structure for resident and mutant strategists. At

time t = 40 a small fraction of the total reserves and structure mutates. After mutation the

reserve density rapidly changes to the new equilibrium value. The reserves and the density

of the resident population hardly changes. The reserves and structure of the mutant grow

equally fast in the ’long’ term.

D The assimilation flux jE,A

For further convenience we define the shorter notations for the expressions in Equations

(12)2,3,4.

jEA,AA,max =
jA
EA,A

(

1 + z−1
N + z−1

CH
− (zN + zCH

)−1
)

1 + z−1
N f−1

N + z−1
CH

f−1
CH

− (zNfN + zCH
fCH

)−1 ,

jE,AHE ,max = jE
EE ,AHE

(

1 + x−1
NE

+ x−1
DE

− (xNE
+ xDE

)−1
)−1

,

jE,AHV ,max = jV
EV ,AHV

(

1 + x−1
NV

+ x−1
DV

− (xNV
+ xDV

)−1
)−1

.

(15)

The purpose of this notation is to show that these fluxes jEA,AA,max, jEA,AA,max and jEA,AA,max

only depend on the environment E and not on any of the strategies. The advantage of these

auxiliary variables (15) is that we can, using (4), write the assimilation fluxes (12)2,3,4 for

either mutant / or resident strategists in a resident population as

jEA,AA
= ρEAmut/resjE,AA,max(Eρres),

jE,AHE
= ρEEmut/resjE,AHE ,max(Eρres),

jE,AHV
= ρEV mut/resjE,AHV ,max(Eρres).

(16)

These assimilation fluxes depend linearly on the strategy, and further only on the environment

determined by the resident strategists.

We claim that we only need an analytic expression for the fluxes (15) in terms of ρres to

find an analytic expression for jE,A(ρmut, Eρres). To understand why we combine the Equa-

tions (12)5,6 and (16) for the mutants strategy and find indeed that
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jE,A(ρmut, Eρres) =
1

k̇−1
EM + 1

ρ2

EAmut
jEA,AA,max(Eρres )+ρEH

jEH,AH
(ρmut,Eρres )

,

k̇EM = αEA
k̇EA

+ (1− αEA
)k̇EH

,

αEA
=

(

1 +
ρEH

jEH ,AH

ρ2
EAmutjEA,AA

, max

)−1

,

jEH ,AH
(ρmut, Eρres) =

1

k̇−1
EHM + 1

ρ2

EEmut
jEE,AHE,max(Eρres )+ρ2

EV mut
jEV ,AHV ,max(Eρres )

,

k̇EHM = αEE
k̇EE

+ (1− αEE
)k̇EV

,

αEE
=

(

1 +
ρ2

EV mutjEV ,AHV ,max

ρ2
EEmutjEE ,AHE ,max

)−1

.

(17)

Remains to be shown that (15) can be expressed explicitly in terms of ρres and other

parameters. This we show in a series of steps: Assume the system is in Equilibrium and the

resident population consists of ρres-strategists. Then, (11)5 gives jV,G + jV,H = 0 from which

we obtain using (13)6,9

m =
yEV k̇M

k̇E − ḣ†
. (18)

We expressed m in terms of the known parameters, which implies that jV,G can be expressed

in known parameters, yielding

jV,G =
k̇M ḣ†

k̇M + k̇E − ḣ†
. (19)

Equations (18) and (19) imply that we can express other several fluxes in terms of known

parameters, namely the organic fluxes (13)7,9,10,11,12. As a result, first, we can, by using

jE,A + jE,G + jE,M + jE,H = 0, cf. (11)5, express jE,A in terms of standard parameters. This

gives in terms of m and jV,G

jE,A = yEV (k̇M + jV,G) +
ḣ†m

2

yEV + m
. (20)

And second, we find jE,AHV
and jE,AHE

explicitly from jDV ,AHV
+jDV ,H = jDE ,AHE

+jDE ,H =
0, cf. (11)3,4, which gives

jE,AHV
=

ḣ†
yDV E

m

yEV + m
,

jE,AHE
=

ḣ†
yDEE

m2

yEV + m
.

(21)
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From Equations (13)2,3, (20) and (21) we find

αEA
= 1−

jE,AHE
+ jE,AHV

jE,A
,

αEE
=

jE,AHE

jE,AHE
+ jE,AHV

.

(22)

Since we know αEA
, αEE

and jE,A we are nearly done. We can use the Equations (12)5,6 to

find expressions for jEA,AA
, jE,AHE

and jE,AHV
. Therefore, we obtain

k̇EM = αEA
k̇EA

+ (1− αEA
)k̇EH

,

k̇EHM = αEE
k̇EE

+ (1− αEE
)k̇EV

,

jEA,AA
=

1

ρEAres

αEA

j−1
E,A − k̇−1

EM

jEH ,AH
=

ρEAres

ρEH

jEA,AA
(α−1

EA
− 1),

jEE ,AHE
=

1

ρEEres

αEE

j−1
EH ,AH

− k̇−1
EHM

,

jEV ,AHV
=

ρEEres

ρEV res

jEE ,AHE
(α−1

EE
− 1).

(23)

Finally, combining (15), (16) for the resident strategists and (23)3,5,6 we obtain the required

expressions

jEA,AA,max =
jEA,AA

ρEAres

=
1

ρ2
EAres

αEA

j−1
E,A − k̇−1

EM

,

jE,AHE ,max =
jEA,AHE

ρEEres

=
1

ρ2
EEres

αEE

j−1
EH ,AH

− k̇−1
EHM

,

jE,AHV ,max =
jEA,AHV

ρEV res

=
ρEEres

ρ2
EV res

jEE ,AHE
(α−1

EE
− 1).

(24)

Note that the strategy of the resident population is indeed represented in these expressions.

They do not depend however on the specific environment E equilibria but only on the param-

eters. When we substitute the explicit equations (24) in (17) we find jE,A = jE,A(ρmut, ρres)
explicitly.
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