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Chapter 1

Introduction

1.1 Preface and summary

The invention of the bow and arrow may rank in social impact with the invention of the
art of kindling ¯re and that of the wheel. It must have been in prehistoric times that the
¯rst missile was projected by means of a bow. Where and when we do not know, perhaps
even in di®erent parts of the world at about the same time. Thenman was able to hunt
game and to engage his enemies at a distance.

In the 15th century the bow in the "civilized" world was superseded on battle ¯elds
by the ¯re-arm and became an instrument for pastime. Today, archery is a modern,
competitive sport.

The mechanics of the bow and arrow became a subject of scienti¯c research after the
bow had lost its importance as a hunting and war weapon. In the1930's C.N. Hickman,
P.E. Klopsteg [6] and others performed experiments and mademathematical models. Their
work both improved the understanding of the action of the bowand in°uenced the design
of the bow strongly.

In this thesis a mathematical simulation is made of the mechanical performance during
the projection of the arrow by means of a bow. Because nowadays fast computers are
available, we are able to cope with more advanced models, which are supposed to supply
more detailed results. The °ight of the arrow through the air and the way it penetrates
the target is beyond the scope of this thesis.

Characteristic for the bow are the slender elastic limbs. The bow is braced by putting
a string shorter than the bow between the tips of the limbs. Wedistinguish between three
di®erent types of bows on the ground of the interplay between string and limbs. For bows
of the ¯rst type, the "non-recurve" bows, the limbs have contact with the string only at
their tips. The Angular bow used in Egypt and Assyria and the famous English wooden
longbow are non-recurve bows. In almost all Asia a bow made ofwood, horn and sinew
was used. In braced situation the string lies along a part of the limbs near the tips. Along
this length and often further these limbs are sti®; they do notdeform during the drawing
of the bow. These bows are called "static-recurve" bows. More recently bows are designed
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6 CHAPTER 1. INTRODUCTION

made of wood and man-made materials such as glass or carbon ¯bres imbedded in resin.
For these bows the string also lies along the limbs in the braced situation for a short
length. However, the limbs are now elastic along their wholelength. These bows are called
"working-recurve" bows. In this thesis we restrict to bows of the mentioned three types
which are symmetric, so we do not discuss the interesting asymmetric bow of Japan.

In Chapter 2 we deal with bracing and drawing bows of all threetypes. The limbs are
considered as beams for which the Bernoulli-Euler equationholds. In each situation, the
equations form a system of coupled ordinary di®erential equations with two-point boundary
conditions. A shooting method is described by which this system is solved. As a result of
this, the problem is reduced to the solution of two non-linear equations with two unknowns.
Attention is payed to the problem of ¯nding starting points for the secant-Newton method
which is used for solving these two equations.

After loosing, part of the energy accumulated in the limbs istransferred to the arrow.
In Chapter 3 we deal with the dynamics of the non-recurve bow.The bow is assumed to be
clamped in the middle. The string is assumed to be without mass and to be inextensible.
The governing equations are the equations of motion for the limbs. These equation are
derived using Hamilton's principle, the internal as well asthe external damping having
been neglected. There are two independent variables, the length coordinate along the bow
and the time coordinate and there are six unknown functions.The boundary conditions at
the tips contain the equation of motion for the arrow. A numerical solution is obtained by
means of a ¯nite-di®erence method. A Crank-Nicolson scheme isused, then for each time
step a system of non-linear equations has to be solved. This has been done by a modi¯ed
Newtonian method. The solutions of previous times are used to obtain starting points. At
the moment of release the solution of the shooting method as described in Chapter 2 is
used as starting point.

In Chapter 4 the string is elastic and possesses mass. A part of this chapter deals also
with the non-recurve bow, of which we consider now also the vibratory motion of bow and
string after arrow exit. Then the governing equations form two coupled systems of partial
di®erential equations. Besides time, for one system the length coordinate along the limbs
and for the other one the length coordinate along the string is the independent variable.
At the tips these systems are linked by the boundary conditions.

The main object of Chapter 4 is the dynamics of the static-recurve bow. For this type
it is necessary to take into account that the string has contact with the tips during the
¯rst part of the shooting and after a beforehand unknown time with the part of the ears
between tips and string-bridges. In this case but also when the arrow leaves the string, the
boundary conditions change abruptly at a moment which has tobe calculated. Because of
lack of time we have to leave the dynamics of the working-recurve bow out of consideration.

In this thesis we do not deal with proofs of existence and convergence of the numerical
methods. We did try, however, to obtain an insight into the accuracy of the developed
methods. For example, the analytic solution of a linearizedproblem is compared with the
obtained numerical solution. This is done in Section 4.13.

The mathematical simulation is used for theoretical experiments. The aim of these
experiments is to get insight into the in°uence of di®erent quantities which determine the
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action of the bow and arrow. This supplies the possibility tocompare several types of bows
which have been developed in di®erent human societies. This is also done in Chapter 4.
It appears that the static-recurve bow is not inherent better than the long straight bow.
The meaning of the word inherent in this context is given in Sections 1.7 and 1.9 of this
introduction. When the di®erent properties of the materials, wood, horn and sinew, are
deliberately used, more energy per unit of mass can be storedin the limbs of the Asiatic
bow than in those of the wooden bow. Further, the static-recurve bow can be made shorter
without the loss of much quality. Their shortness makes themhandier and suitable for the
use on horseback.

Chapter 2 and 3 are reprints of published papers and Chapter 4that of an unpublished
one. As a result of this each chapter begins with an introductory section in which we give
a short outline of archery and each chapter has a separate list of references; sometimes a
reference is a chapter of this thesis.

In this introduction we quote from various books and papers given in Lake and Wright
[11]. This is an indexed catalogue of 5,000 articles, books,¯lms, manuscripts, periodicals
and theses on the use of the bow, from the earliest times up to the year 1973.

1.2 De¯nitions and classi¯cations

In this section we give the nomenclature of the di®erent partsof the bow and arrow and
the classi¯cation of bows we have used.

Characteristic features of the bow are the slender elastic "stave" and the light string,
shorter than the stave, see Figure 1.1. Mostly there is a sti®part in the middle of the
bow, called the "grip", "handle" or "riser section". The parts on both sides of this grip
are called the "limbs". Because the bow is usually held vertical or nearly vertical, we can
speak of the "upper limb" and of the "lower limb". The "back" of a limb is the side facing
away from the archer, the "belly" the opposite side.

The string is fastened between both ends of the stave. For that purpose often grooves
are notched in these ends, the "tips" or "nocks". The string is generally provided with
"loops", which ¯t in the grooves, and sometimes it is tied to one or to both ends

The bow is "braced" or "strung" when the string is set on the bow. The distance
between the grip on the belly side and the string in that situation is called the "brace
height" or "¯stmele". This distance is adjusted by changing the length of the string, for
example by twisting it. In general the bow is braced only whenin use, because most
materials of which limbs are made get a "permanent set" when loaded for a long time; the
bow "follows the string". As an old proverb says: "a bow long bent at last waxed weak"

Now the bow is ready for use, that is to propel a projectile to its "target". This
projectile is mostly an arrow. An arrow consists of a shaft with at one end the "head",
"point" or "pile", often a separate piece attached to the shaft in one way or another and at
the other end the "nock", see Figure 1.2. To stabilize the °ight of the arrow often "vanes",
together known as "°etching", are bound, slightly spiral wise or not, to the shaft near the
nock.



8 CHAPTER 1. INTRODUCTION

Figure 1.1: The parts of the bow.

Figure 1.2: The parts of the arrow.
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The nock is provided with a groove in which the string slightly sticks when the arrow
is set on the string, called "nocking". The place at the string where the arrow nock meets
the string is called the "nocking point".

After the arrow is set on the string, the archer pulls the bow from braced situation into
"fully drawn" situation, this action is called "drawing". T o that end he hooks for instance
two or three ¯ngers or the thumb of the "shaft hand" on the string. With the other hand,
the "bow hand", the archer holds the bow at the grip. During drawing a force is exerted
upon the grip by the bow hand applying at the so-called "pivotpoint" on the belly side
of the grip, and by the shaft hand upon the string at the nocking point. Both forces are
opposite to each other and are approximately aligned with the "line of aim". The line of
aim is by de¯nition the line through the centre line of the pointed arrow in fully drawn
situation. The Static-Force-Draw (sfd ) curve shows the force exerted by the shaft hand as
function of the distance of the nocking point from the grip onthe back side. This distance
in the fully drawn situation is called the "draw". The drawing force in that situation is
called the "weight" of the bow. Note that bow weight does not pertain to the actual weight
caused by gravity.

After "aiming", the arrow is loosed or released by stretching the ¯ngers or the thumb
of the shaft hand, called "loosing". The bow is held in its place with the bow hand. The
force acting upon the arrow as function of the position of thenocking point arrow is given
by the Dynamic-Force-Draw (dfd ) curve. The arrow is guided at the grip by the knuckle
of the index ¯nger or over the thumb of the bow hand or by an "arrow rest". The velocity
of the arrow when leaving the string is called the "muzzle velocity" or "initial velocity".
The functioning of a bow and arrow is divided into two parts. The "interior" ballistics
deals with the phenomena until arrow exit. The "exterior" ballistics deals with the °ight
of the arrow through the air. The arrow, in its °ight, is sloweddown by the "drag" or
resistance of the air.

The bow we described thus far actually is a "bow hand". Besides the hand bow there
are the "cross bow", for instance the "foot bow", and the "compound bow". The rather
short bow stave of the cross bow, the "prod", is ¯xed to a cross stave, the "stock". The
relatively short arrow is now called the "bolt", which is guided through a straight groove
in the stock. To span a cross bow, loading mechanics were developed such as the windlass
or the cranequin, by which very powerful bows could be handled. In fully drawn situation
the string sticks behind a lock, so the archer aims without e®ort. The bow is released by
uncoupling the catch mechanism, the prod always held horizontally.

In North America, the ¯rst compound bow was reportedly built in 1938 by a physicist
called Claude Lapp. This bow has pulleys with eccentric bearings at the end of the rather
sti® elastic limbs.

We now return to the hand bow and when in the following the wordbow is mentioned
always the hand bow is meant. Already in the braced situationenergy is stored in the limbs
and to a small extent also in the string. By drawing "additional energy" is accumulated.
After release part of this latter amount of energy is converted into kinetic energy of the
arrow.

The classi¯cation we use is based on the geometrical shape andthe elastic properties of
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Figure 1.3: Non-recurve bow in three situations: (a) unbraced, (b) braced and (c) fully drawn.

the limbs of the bow. In Figure 1.3 we show a "non-recurve" bowin unbraced, braced and
fully drawn situation. These bows have contact with the string only at their tips. When
the string has contact with the limbs also at other points, wecall the bow "recurved" or
"re°exed" because in that case the limbs of the unbraced bow are curved backwards, this
is by de¯nition away from the archer. We distinguish between two types of recurved bows,
namely the "static-recurve" bow and the "working-recurve"bow which we discuss now
separately.

In the case of the static-recurve bow, see Figure 1.4, the outermost parts of the limbs
are sti®. These parts are called "ears" or "rigid-end pieces". The elastic part of a limb
between grip and ear is called the "working part of the limb".In the braced situation the
string rests on the "string-bridges", situated at the bend of the ears. These string-bridges
are hollowed out sometimes, to receive the string and retainit in its place. This prevents
the string from slipping beside the limb and giving it a fataltwist. When these bows are
about half drawn, the string leaves the string-bridges and has contact with the limbs only
at the tips. After release, at a certain moment before arrow exit. the string touches the
string-bridges again.

In the case of a working-recurve bow the parts near the tips are elastic and bend during
the ¯nal part of the draw. Figure 1.5 shows a working-recurve bow in unbraced, braced
and fully drawn situation. When drawing the bow the length ofcontact between string
and limb gradually decreases until the point where the string leaves the bow coincides with
the tip of the limb and remains there during the ¯nal part of the draw. After release the
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Figure 1.4: Static-recurve bow in three situations: (a) unbraced. (b) braced and (c) fully drawn.

phenomena happen in reversed order to prevent the possibility of a twist of the limbs in the
case of a working-recurve bow, grooves are present on the belly side of the limbs starting
at the notch and extending su±ciently far in the direction of the grip.

We note that bows belonging to each of the three types may be symmetric or more or
less asymmetric. Here symmetry with respect to the horizontal plane through the pivot
point and the nocking point is meant.

1.3 Construction of bows and arrows

In this section we brie°y discuss the structure of bows. We introduce some classi¯cations,
but contrary to those given in the former section these are dispensable with respect to
our mathematical modelling dealt with in a following section. The materials employed in
making strings and arrows are touched upon at the end of this section.

In principle bows of all three types, non-recurve, static-recurve and working-recurve,
symmetric or asymmetric, may be "self" bows or "composite" bows. When only one kind
of material is used a bow is called a self bow. Mostly the material used is wood. Then
the bow is a processed branch or part of the stem of a tree. Thistype of bow was very
widely distributed over the world. In most parts of Africa, South America and Melanesia
it has never been superseded by another kind of bow. These bows are straight bows, hence
"non-recurve" bows. Also self bows solely made of horn or of bronze or steel have been
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Figure 1.5: Working-recurve bow in three situations: (a) unbraced, (b) braced and (c) fully
drawn.

found. In Sweden bows of steel were ¯rst produced in 1935 and later also in England.
These self bows were non-recurve or working-recurve bows.

The famous English longbow, also an example of a self bow, is generally made of Yew
(Taxus Baccata). In this case, the relatively soft "sapwood" constitutes about one-quarter
of the thickness of the limb and it is situated at the back side. The remaining part of the
limb is formed by sti® "heart wood".

A composite bow is a bow of which the limbs consist of more thanone material. Com-
monly there is a skeleton or core which after completion forms the middle part of the limbs
in a cross section. Application of materials on the back sideof the core is called "backing",
just as the material itself. When materials are applied to the belly side of the core it is
called "facing". The backing of some bows is formed by cords plaited of animal sinews
and lashed to the wooden core at various points along the limbs. This is called a "free
backing" and these bows, non-recurve or static-recurve bows, were almost exclusively used
by Eskimos. In the case of "close backing" the layer on the back side is glued to the core.
The Indians in North America sometimes used close backing. At the tips the limbs were
bent a little backwards, away from the archer, to counteractthe e®ects of a permanent set,
but they still are non-recurve bows by de¯nition. Another kind of composite bow which
is also a non-recurve bow is the "Angular bow", found in Egyptand Assyria. In braced
situation the limbs of these bows fall straight back formingthe equal sides of an isosceles
triangle of which the string is the basis. Often wood sinew and horn were employed in
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making these bows.
In Asia the core of a composite bow was made of wood, its belly side was faced with

horn and its backing consisted of sinew. Its construction issometimes said to parallel the
make-up of living things:

`Just as man is made of four component parts (bone, °esh, arteries and blood)
so is the bow made of four component parts. The wood in the bow corresponds
to the skeleton in man, the horn to the °esh, the sinew to the arteries, and the
glue to the blood.'

These bows, generally static-recurve bows, were used by theMongolian races of Eastern
Asia. They reached their highest development in India, in Persia and in Turkey.

In the 1960's bows with a wooden core of maple and a backing andfacing of glass ¯bres
(more recently carbon ¯bres) imbedded in strong synthetic resin were designed. Hence,
these bows, called "laminated bows" are composite bows and are often of the working-
recurve type. They possess a long rigid middle section, the handle. These handles are
generally cut-out, so that the arrow can pass it in the vertical "median plane" of the
bow, see Figure 1.6 in which we show a part of a so called "centre shot" bow in braced
con¯guration. Observe that the arrow does not make an exact angle of 90 degrees with the
string in braced situation. The "nocking height" is the distance above the 90 degrees line
from the arrow rest. Further, the pivot point lies below the point where the arrow passes
the bow over the arrow rest.

"Stabilizers", a pair of extending metal arms, are often attached to the handle sec-
tion. When the limbs can be separated from the handle the bowsare called "take-down"
bows/indexbow!take-down. In that case the handle often is made of magnesium alloy, and
is provided with a "pistol-grip".

Many kinds of bows are slightly asymmetric. In the case of some Asiatic bows the upper
limb, which is somewhat longer than the lower, is called the "shooting" limb because it
is said to account for most of the shooting. A striking example of an asymmetric bow is
the typical Japanese bow of which the upper limb is almost twice the length of the lower
one. It is constructed of bamboo strips which are glued together by means of ¯sh-glue.
The sides are ¯nished o® with strips of hazewood. Today also glass¯bre Japanese bows are
available.

Many kinds of ¯bres have been used in making strings. In formertimes natural ¯bres
were used, animal ¯bres (silk and sinew) and vegetable ¯bres (hemp, linen, cotton and strips
of bamboo or rattan). For a long time the Belgian strings madeof long-¯bered Flemish
°ax were famous. Recently, man-made ¯bres such as dacron and kevlar are developed.

There are many di®erent ways of fastening a string to a bow, forexample by knots
or loops. Because woody materials do not lend themselves easily to tying by knots, such
strings are fastened to the limbs by means of di®erent, more °exible ¯bres. The string
of the static-recurve bow in Asia often had separate end-loops knotted to each end of its
centre part. Actually, the knots rest on the string-bridgeswhen the bow is braced.

We conclude with a short discussion of the materials used forthe arrow. The con-
struction of the arrow changed gradually to adapt it to special purposes. The arrow head
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Figure 1.6: Middle part of modern bow of right-handed archer in braced situation (a) front view
and (b) side view.

is often a separate piece of material such as stone, bone, wood, bronze or steel. Many
di®erent forms of heads, barbed or not, are known. In former days the shafts were made
of reed, cane or wood, later on of glass¯bre and today often of aluminum. Sometimes the
shafts were made of two kinds of wood, "footed arrows". the part near the head being the
footing. For °etching feathers of such birds as eagles, crows, geese and turkeys, have been
used. Today plastic vanes are available.

1.4 Mathematical modelling

In this section we discuss some general aspects of making a mathematical simulation of
the mechanical performance of the bow and arrow. In the next two sections we give a
more detailed account. A number of former mathematical models developed up to now are
considered in Section 1.5, while in Section 1.6 the model given in this thesis is discussed.

Making a model of the bow and arrow starts with a description of the process of
propelling the arrow using principles of mechanics. Doing this, assumptions are made in
order to obtain equations which can be solved. Models based on fewer simpli¯cations are
supposed to yield more accurate and detailed results, but onthe other hand they certainly
are more di±cult to handle. To which extent the mathematical approach is useful depends
largely on the grade of validity of the assumptions. A comparison with experimentally
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obtained results gives insight into this matter.
Up to now all models, our model included, presume the existence of two planes with

respect to which the bow is symmetric. The (vertical) medianplane intersects the limbs
and string of the braced bow lengthwise, see Figure 1.6. The other (horizontal) plane is
perpendicular to the ¯rst one and intersects it along the linethrough the pivot point on the
grip and the nocking point on the string. This implies, apartfrom equality of upper and
lower limb, that the bow is centre shot, that the pivot point is on the line of aim, that the
nocking height is zero and that the nocking point coincides with the middle of the string.
Further, the limbs, the string and the arrow are assumed to move in the median plane.
This presupposes that the grip is ¯xed in its position and the arrow is released without
lateral movement. During the process of acceleration it is assumed that gravitation forces
are negligible.

Figure 1.7: Illustration of archer's paradox (after Klopsteg [6, page 187 ]).

In [8] and in articles in [6], Klopsteg gives an explanation of the so-called "archers
paradox" which is related to a classic non-centre shot bow. In Figure 1.7 we show the
position of the arrow in two situations, the braced and the fully drawn situation. The
angle between the arrow and the median plane of the bow di®ers in these two positions.
For the fully drawn bow this angle is about 1.5 degrees and in the braced situation 6
degrees. Hence, if the arrow would be a stave, rigid with respect to bending and if it
slips along the grip then it deviates about 4.5 degrees from the line of aim at the moment
it leaves the string. Rendtor® suggested in 1913 that the ability of bending of the arrow
could be an important property with respect to this. In 1932 Klopsteg photographed a bow
discharging an arrow and found that the arrow "snakes" its way around the grip Figure 1.8
is after Klopsteg and shows the shape of the arrow at a number of consecutive times. The
shaded circle indicates the position of the cross section ofthe grip. The arrow performs
about one and a quarter vibrations before it departs from thebow. The oscillations take
place approximately about the line of aim and there is no departure of the arrow as a whole
from this line. The oscillations persists for a considerable time after arrow exit.

These ¯ndings show that the dynamic properties of the arrow must be correctly matched
to those of the bow. The eigenfrequency of the arrow, depending on its mass and bending
sti®ness distributions, must be adjusted to avoid the hitting of the bow by the rear end
of the arrow. As measure of sti®ness of an arrow the concept "spine" is introduced. This
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Figure 1.8: Schematic representation of the
phases of the arrow in its passage by the bow,
based on the evidence from speed-°ash photog-
raphy (after Klopsteg [6, page 182]).

is the de°ection of the centre of the shaft, measured in some unit, when a weight is hung
at that point while the arrow is supported at the base of the nock and at the shoulder of
the head. In [6, page 231] Nagler and Rheingans derive mathematically that for any given
bow and archer, the spine of all arrows should be constant, regardless of arrow mass.

Photographs revealed that in reality the bow hand has not a ¯xed position but moves
after loosing and that the motion of the string is not exactlyin the median plane. Reasons
for this can be found. First, the release of the string over the ¯nger tips or thumb and
second, the angular acceleration of the arrow out of the median plane mentioned above
cause some lateral de°ections of the system.

The introduction of lateral movements makes the problem much more di±cult. Then
the arrow has to be treated like a °exible beam, pushed at the rear end and hampered
with respect to its sideways movement at the grip. Further, one has to know the response
of the body of the archer to the force of the bow exerted on the bow hand.

In Section 4.8, we investigate the in°uence of the freedom of the grip to move away
from the bow hand of the archer in the direction of shooting, asituation which may occur
when the bow is shot "open-handed". In all other cases the bowis assumed to be clamped
at the grip.

Up to now no mathematical model takes internal nor external damping of limbs and
string into account. In practice the vibrations of the limbsand string after arrow exit
tend to zero rather soon, indicating the existence of damping. Other possibly less serious
assumption are that the arrow passes the grip without friction and that the arrow is set
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Figure 1.9: Bow with two linear elastic hinges
and rigid limbs, Hickman's model and Marlow's
model.

loosely on the string, so without "nocking tension".

1.5 Former mathematical models

Starting in 1929 Hickman published on archery from a physical point of view. In [5] he
develops an analytical method to determine the dynamic forces, the accelerations and
velocities of the arrow, string and bow limbs. His model, though very simple, reveals
already some of the characteristics of the bow and arrow. He replaces the °exible limbs by
rigid ones, which are connected to the grip by linear elastichinges, see Figure 1.9. The mass
of the rigid limbs is concentrated at the tips where the string is connected to the limbs.
The place and strength of the elastic hinges and the masses atthe tips are determined
using measured quantities of the real bow, so that the essence of the mechanical behavior
of the limbs of the model and of the limbs of the real bow treated as slender elastic beams,
for small de°ections be alike. The string is assumed to be inextensible and its mass is
accounted for by adding one third of it (we call this the addedmass) to the mass of the
arrow. After this manipulation the string can be considerednot only inextensible but also
as massless.

Under general conditions all the additional energy stored in the elastic hinges by draw-
ing this bow from braced situation into fully drawn situation is transferred to the arrow
and the added mass which possess both the same speed at arrow exit, see also Appendix
of Chapter 3.

After departure of the arrow, in Hickman's model the limbs and string with the con-
centrated added mass in the middle oscillate around the braced situation. At this stage
the total energy in hinges, limbs and string equals the potential energy in the hinges in
braced situation plus the kinetic energy of the added mass ofarrow exit.

This simple model shows a characteristic feature of the bow.During the ¯rst part of the
period the arrow is accelerated, the limbs absorb energy as kinetic energy. In the ¯nal part,
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however, this energy is transferred by the string to the arrow and added mass. Further,
we observe the importance of the lightness of the string, fora smaller added mass means
more kinetic energy in the arrow. If the mass of the string were zero, even all additional
energy accumulated in the bow during the draw would be imparted to the arrow.

In his explanatory article on the physics of the bow and arrow[8], Klopsteg introduces
the concept of so-called "virtual mass"; "the mass which, ifit were moving with the speed
of the arrow at the instant the latter leaves the string, would have precisely the kinetic
energy of the limbs and the string at that moment". He measured experimentally that the
virtual mass is in fact a constant for some bow shooting arrows with di®erent masses. We
discuss this concept in Section 3.5 and Section 4.9. Klopsteg introduces also a "¯gure of
merit" of a bow, "representing the limiting velocity that th e bow could impart to an arrow
with mass approaching to zero". He uses his concepts for the explanation of several facts
well-known to archers.

Schuster in [16] deals with the ballistics of the working-recurve bow. He made a math-
ematical model assuming the recurved limbs to be a part of a circle which unroll along the
initial tangent, see Figure 1.10 where we show such a bow in various situations. The string
is assumed to be inextensible and it possesses a constant mass per unit of length and the
half parts free from the limbs are straight.

Schuster uses the Lagrangian formalism to obtain the equations of motion. He considers
a limb having a °exible core of uniform thickness which is sandwiched between two sheets
of longitudinal ¯bres of an elastic material. As the limb rolls out the ¯bres on the inside
of the limb (the back side of the limb) are elongated and thoseon the outside (the belly
side) are compressed. In this way he obtains an expression for the potential energy in the
limbs. For normalization a point on an experimentalsfd curve of a commercially available
working-recurve bow was used.

The equations of motion are integrated numerically by meansof a computer. Schuster
shows plots of thesfd curve and displacement, velocity and acceleration of the arrow as
function of time before arrow exit. During these calculations the string was taken to be
without mass. He also gives an approximation of the amount ofenergy which is transferred
to the arrow when the string possesses mass and ¯nds that the action of the string is almost
equal to that of an added mass, i.e. one third of the mass of thepart of the string being
not in contact with the limbs and connected to the arrow, at the moment the arrow leaves
the string. He assumes that arrow exit occurs when the stringis stretched.

In [13] Marlow comments on Schuster's paper. With respect tothe distribution of the
energy on the di®erent parts of the bow, he shows that the action of the string equals
exactly that of the added mass mentioned above, if the arrow leaves the string when the
latter is stretched. However, Marlow argues that arrow exitdoes not occur at that moment
but somewhat later.

In [14] Marlow obtains results using a model for a non-recurve bow which resembles
Hickman's. The limbs are replaced by rigid ones, connected by linear elastic hinges to the
grip as in Figure 1.9. However, the place and strength of the elastic hinges and the amount
of mass at the tips, are determined di®erently. The place of the hinges is at the end of the
grip where it meets the limbs. The strength is determined using the measuredsfd curve



1.5. FORMER MATHEMATICAL MODELS 19

Figure 1.10: Working-recurve bow, Schuster's model.

of the real bow. The mass at the tips are chosen So that the moment of inertia of it with
respect to the place of the hinge equals that of the "frozen" limbs with respect to the same
point.

Marlow replaces the string by two equal rods connected to each other at the place
of the arrow and to the tips of the limbs by hinges. Both rods are rigid with respect
to bending but elastic in longitudinal direction with a constant mass per unit of length.
His re¯nement of Hickman's model is this introduction of the elasticity of the string. In
this case it is no longer possible to ¯nd a solution of the equations of motion in closed
form. These equations are obtained by using the Lagrangian formalism and their solution
is approximated numerically.

Finally, we mention a mathematical model for the interior ballistics given by Beckho®
in [2] and [1]. In [2] Beckho® deals with statics. He determines the weight of a bow
found in the neighbourhood of Vrees. He uses a linearized beam theory and introduces
parameters for adoptions. His results agree well with experiments; the calculated weight
and amount of additional energy di®er slightly from those of areplica. In a footnote in his
paper on a bow found in Nijdam [1] Beckho® suggests a simple method to calculate the
part of the additional energy which is transferred to the arrow when it leaves the string.
The considerations given in this thesis show that it is not that easy.

At the end of this section we discuss for the sake of completeness also mathematical
models for the exterior ballistics of the arrow. Exterior ballistics describes the °ight of the
arrow through the air. In all these models the arrow is treated as a point mass. A very
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simple model is obtained by neglecting the resistance of thearrow in air. The path of the
arrow is a parabola, depending on the initial velocity and the angle of elevation, but not
on the mass of the arrow.

Earlier mathematical models of the exterior ballistics were given by English [3], Higgins
[7] and Rheingans in [6], page 236. Rheingans assumes that the drag varies as velocity
squared. The constant of proportionality, the so-called "drag constant", is the sum of
three terms. The ¯rst term is proportional to a coe±cient depending on the form of the
head and the diameter of the shaft squared. It accounts for the head-on resistance. The
second term accounts for the skin friction of the shaft. Thisterm is proportional to length
and diameter of the shaft. The third term re°ects the skin friction of the °etching and is
proportional to the area of both sides of feathers. The threeconstants of proportionality
and the coe±cient depending on the form of the head can be determined by wind tunnel
tests.

Further, Rheingans gives a de¯nition of the ballistic coe±cient which is proportional to
the mass of the arrow and inversely proportional to the drag constant. Having determined
the ballistic coe±cient, the path of the arrow is found by solving numerically an initial
value problem for a system of two coupled ordinary di®erential equations the equations of
motion for the arrow.

1.6 Our mathematical model

The main subject of this thesis is the development of a mathematical model for the interior
ballistics of the bow and arrow. In our model the limb is considered a slender inextensible
elastic beam subjected to large deformations. The string isable to withstand tensile forces
only in the longitudinal direction. As for the models described in Section 1.5, it is, because
of the symmetry, su±cient to deal with one half, the upper half, of the bow.

In Chapter 2 we deal with the static deformation of all three types of bows, non-recurve,
static-recurve and working-recurve. The main objective isto ¯nd the sfd curve. The string
is assumed to be inextensible. The adoptions of the theory toan elastic string, however,
is easy.

From the braced situation to fully drawn situation in each position of the middle of the
string the limb is de°ected by a force in the string, while the middle of the bow is clamped.
The de°ection curve of an elastic beam, especially when largeelastic deformations may
occur, is called the "elastica". In each position we have to ¯nd the elastica as well as the
force in the string. The drawing force can be determined afterwards.

In the case of the non-recurve bow, the governing equations for each position form
a system of coupled ordinary di®erential equations with two-point boundary conditions.
This system consists of two geometric equations and the Bernoulli-Euler equation, which
states that the change of the curvature with respect to the unloaded situation, at any
point is proportional to the bending moment at that point in the limb. The constant of
proportionality is called the "bending sti®ness" or °exural rigidity. The limb is assumed
to be perfectly rigid in shear.
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Basically the same holds for the static-recurve bow. In the case of the working-recurve
bow the part of the limb in contact with the string remains undeformed. The boundary
conditions are now prescribed at the point where the string leaves the limb, while this
point is unknown a priori and has to be calculated as part of the solution. Then we have
a so-called free boundary value problem.

Many articles have been written on related subjects, see Gorski [4], who gives a review
of literature and a bibliography on large deformation of beams. In [18] Wang and Watson
solve a problem very similar to ours. Characteristic for problems related to beams subjected
to large displacements is the existence of more than one solution.

Our numerical approach is the same for the three types of bows. A simple shooting
method is used, by which the problem is transformed into the problem of the solution
of two non-linear equations for two unknowns. Attention is payed to the problem of
¯nding starting points for the secant-Newton method which weused for solving these two
equations. If the solution is not unique the developed method seems to yield all the possible
relevant solutions (we do not have proof).

In Chapter 3 we deal with the dynamics of the non-recurve bow between release of arrow
and its departure from the string. Part of the solution is thedfd curve. In Chapter 3
the string is also assumed to be inextensible and without mass. In that case the governing
equations are the equations describing the motion of the limb, which is considered a slender
inextensible beam. The boundary conditions are ¯xed by the fact that the bow is clamped
in the middle and that the arrow assumed to be a mass point, is connected to the tip by a
string without mass. Woodall in [19] considers a di®erentialelement of the beam in order
to obtain the governing equations. We use Hamilton's principle. The rotatory inertia of
the cross section of the limb is neglected and also in the dynamic case the Bernoulli-Euler
equation is assumed. The equations form a system of coupled non-linear partial di®erential
equations with two independent variables, one space and onetime coordinate, and with
initial and boundary conditions.

A ¯nite-di®erence method is developed to solve the equations numerically. The values
of the unknown functions in points of a grid covering the partof interest in the plane of
the two independent variables is dealt with. At consecutivetimes a system of non-linear
equations has to be solved. To that end we use a Newtonian method. As starting point the
solutions at former times are extrapolated. At the instant of release the solution obtained
by the method described in Chapter 2 is used.

No proof of stability and convergence of the ¯nite-di®erence scheme is given. Instead,
we check the accuracy of the results by means of computer experiments, for instance by
bisecting the mesh width of the grid. Also mechanically inspired reasoning indicates that
the equations are solved correctly. Further we compare our solution with one obtained
by means of a commercially available ¯nite-element method. The velocities of the arrow
predicted by the two methods agree well; the di®erence for onebow and arrow combination
is less than 2%. The dynamic force draw (dfd ) curve produced by the ¯nite-element
method agrees roughly with ours but it does show some non-physical oscillations.

In the Section 3.6 we calculate the behaviour of the normal forces in the limb at the
instant of release for the case of concentrated masses at thetip of the limb. We show that
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in our model a discontinuity of this force occurs. The ¯nite-di®erence scheme is adapted,
so that this phenomenon cannot generate unrealistic oscillations of the solution.

The dynamics of the static-recurve bow is the main subject ofChapter 4.
Another subject is again the non-recurve bow, but now with a string which is elastic,

obeying Hooke's law, and which possesses mass per unit of length. Hooke's law states that
the longitudinal force in the string is proportional to the relative elongation. The constant
of proportionality is called the "strain sti®ness" The equations of motion for the string were
given by Roos, Schweigman and Timman in [15]. In this case thegoverning equations form
two systems of partial di®erential equations, one convective space coordinate along the
limb and another one along the string. These systems are linked by boundary conditions
at the tip of the bow. Further we consider in Chapter 4 the vibratory motion of bow and
string after the arrow has left the string. Also the in°uence of the grasp of the grip by
the bow hand is dealt with, as we mentioned in Section 1.4. Besides clamping the grip by
the bow hand, the bow hand is allowed to be open in which case the hand can exert only
a force on the bow in the direction of the shooting and the bow is able to move in that
direction.

In all these cases, so for the static-recurve bow as well, theboundary conditions change
abruptly when some condition is ful¯lled. In the case of the static-recurve bow this happens
at the moment the string touches the string-bridges again before arrow exit. For both types
of bows, non-recurve and static-recurve, the boundary conditions change at the moment
the arrow leaves the string or when the bow departs from the bow hand if the bow is shot
open-handed.

The equations are solved numerically using the ¯nite-di®erence method described in
Chapter 3, adapted to the more general problem of Chapter 4. In Section 4.13 we check the
¯nite-di®erence method again. To that end a vibrating cantilever with a rigid body ¯xed to
the free end is considered. The de°ections remain small, so that the elementary linearized
beam theory applies. The Laplace transform technique is used to obtain an analytical
solution. This solution is compared with the one produced byour ¯nite-di®erence method.

Unfortunately lack of time prevents us from dealing in a su±ciently accurate way with
the interesting problem of the dynamics of a working-recurve bow and the essentially
asymmetric Japanese bow.

1.7 Units of measurement

We now discuss the units of measurement we use in this thesis.We start with some remarks
on dimensional analysis.

As far as we know no paper on the mechanics of bow and arrow deals with the technique
of dimensional analysis, although in [12] Langhaar gives anapplication of it to an archery
bow. Some simple results obtained by applying dimensional analysis are the following.
First, the weight of a bow is approximately (because the string is in reality slightly exten-
sible) proportional to the bending sti®ness of the limbs. Second, the part of the additional
energy stored in the fully drawn bow which is transferred to the arrow, remains the same
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when all the masses mass of limbs, string and arrow are multiplied by the same constant.
Because we have the equations of equilibrium and equations of motion at our disposal,

dimensional analysis boils down to making these equations dimensionless. We choose in
the case of statics two (draw and weight) and in the case of dynamics three (draw, weight
and mass of one limb) "fundamental parameters". The other parameters which determine
the action of the bow and arrow combination together with thefundamental parameters,
appear in the dimensionless equations multiplied or divided by an appropriate combination
of the fundamental parameters. The resulting quantities are called the "dimensionless
parameters". We de¯ne the "inherent properties" of a bow and arrow combination to be
those which depend only on these parameters.

The selection of the fundamental parameters is not unique. The motivation to take
draw, weight and mass of one limb is the following. The maximum draw and weight depend
on the stature of the archer. His "span" determines the maximum draw and his strength
the maximum weight, so both have physical limitations. In practice the minimum mass of
one limb has technical limitations. By taking these three parameters as fundamental, we
compare automatically bows with the same draw, weight and mass of one limb with each
other when we deal with the dimensionless equations of motion.

As units of measurement for the length, force and mass we use cm, kg force and kg mass,
respectively. From this it follows that the unit of time the second is used, thus the velocity
in cm/sec, acceleration in cm/sec2, and so on. We apologize for this complication.

In literature forces, for example the weight, are usually given in pounds (1 pound=0.14536
kg force); lengths, for example the draw, in inches (1 inch=2.514 cm); masses, for example
the mass of the bow, in pounds avoirdupois (1 pound=0.14536 kg mass) but mass of the
arrow often in grains (1 grain=0.00006148 kg mass).

1.8 Variety in archery

In this section we give a short enumeration of the varieties in archery. The purpose for
which the bow is used has to be considered in the judgment of the performance of a bow.
The performance will be the subject of the next section in which we de¯ne coe±cients
which give information about the quality of a bow.

Already old cave paintings in Spain, France and parts of Africa show hunting scenes.
These make dear that the bow held an important place with the hunters in prehistoric
times. In our time hunting with bow and arrow as pastime is popular in some parts of
North America.

In history many world empires were founded and maintained for some time owing to
the superior performance of their bows and the skilled use made of them by the archers
(English yeoman) or horseman (Asiatic nomadic hordes). In the 15th century the bow
disappeared from the battle ¯elds in the "civilized" world. On the Continent of Europe
the hand bow was already superseded for the most part by the cross bow (Genoese and
Swiss mercenary cross bowmen). The cross bow is a powerful weapon which demands less
training and skill, but is also much slower in operation. It was prohibited by Pope Innocent
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II in 1139, as being: "deathly and hateful to God and un¯t to be used among Christians".
For hunting and warfare good penetration capacity of the arrow is required. As men-

tioned in the preface we do not deal with the mechanics of the penetration of the projectile
into the target. It is evident that it depends on the shape of the head of the arrow and the
material of the target. A large kinetic energy of the arrow atthe moment of impact and
perhaps also a large linear momentum are indispensable. Thevelocity of the arrow has to
be not too small in order to get a °at trajectory of the arrow.

Foot soldiers and hunters in open spaces can use rather long bows, for example about
the height of the archer. On the other hand, a hunter in a wooded area and a mounted
archer are unable to handle a long bow easily.

As has been said already nowadays archery has a certain importance as a pastime. We
distinguish between three types of pastime archery, which proceed from the archery used
for hunting or for military practice

In the ¯rst type of pastime archery the archer tries to hit somekind of mark. By the
17th century in England, shooting was done at "rovers" or at "clout". Roving consists
of shooting at marks unknown beforehand, the winner of each °ight selecting the next
mark. The clout is a small white target on the ground shot at from a known, rather large
distance. These two forms have now changed into ¯eld archery and target archery. There
is a large variety in ¯eld archery, by which the archers proceed round a course shooting at
di®erent distances and at di®erent marks. In the case of targetshooting arrows are shot at
faces divided into a number of zones and at di®erent but known distances. In this form it
became very popular at ¯rst in England and later also in North America. Target archery
events were included in the Olympic Games of 1900, 1904, 1908and 1920 and again since
1972. It is now the most popular form, practiced in many countries all over the world.

In England the famous longbow, which contributed to its victories in the Middle Ages,
was used. Later, when archery became popular in America, theEnglish example was fol-
lowed with respect to equipment (use of longbow), competitive events, and so on. Nowa-
days, the laminated, centre-shot, take-down bow with stabilizers is almost solely seen on
shooting meetings.

Popinjay is also an old form of shooting at marks. It consistsof shooting down feathered
"birds" from a tall mast. For instance in some parts of Europe, France, Belgium, Holland
and Northern Germany, it was very popular. In Belgium it is still a public game. The cross
bow has been used for Popinjay shooting, but also the same kind of bows as for target
shooting.

For forms of archery belonging to this type, accuracy is mostimportant. With respect
to mathematical modelling this is a feature di±cult to handle. Each shot di®ers from
the proceeding one because the loose or the movement of the bow arm may vary, this in
contrast with the use of a perfect shooting machine. However, even in that case not every
shot is exactly the same. For example, when six arrows are shot the mass of these arrows
may di®er slightly or the weather conditions may change. Hence, ¯rst all the parameters
which determine the action of a bow and arrow combination have to be as constant as
possible and second the action of the bow must not exaggeratesmall di®erences in these
parameters. Some of the parameters are already ¯xed by the bowyers (manufacturers of
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bows and arrows) for instance the mechanical properties of the material of the limbs. Other
parameters are determined by the archer himself, such as theweight of the arrow or the
brace height.

The second type of pastime archery is °ight shooting. The purpose of °ight shooting
is to shoot an arrow as far as possible. The Turkish bowmen became famous because of
their skill in °ight shooting. Turkish archery reached the zenith of its achievement in the
15th century and had a revival as a sport in the 19th century.

For °ight shooting a very short, recurved composite bow (which were powerful) were
used. The arrows were very light and often shorter than the draw, so that a so-called
"siper" had to be used to guide the arrow along the grip. Todaylaminated bows are used
for °ight shooting.

In this case it is easy to judge the performance of a bow. For, with respect to the
interior ballistics, the muzzle velocity is very importantand has to be as large as possible.

Finally there is ceremonial target archery, by which hitting the target is secondary but
unity of mind, body and bow is most important. For this form the Japanese use their
typical asymmetric bow.

1.9 Quality coe±cients

In this section we discuss some quality coe±cients, which areintroduced in order to com-
pare the mechanical performance of bows more easily. These coe±cients are numbers
associated with quantities of which the importance dependson the ¯elds of application of
the bow. The quality coe±cients will be dimensionless and areformed by means of the
dimensionless parameters. They measure in this way the inherent performance of a bow.

With respect to statics we introduce the "static quality coe±cient" q, being the dimen-
sionless amount of additional energy, which equals the areabelow the sfd curve. In the
case of real bows, the bow returns to its braced shape after each shot, as a result of internal
and external damping. Then, using energy conservation, themaximum available energy
which can be imparted to the arrow equals the additional energy and is accumulated in the
bow while drawing it from braced situation into fully drawn situation. In Section 4.5 we
show that this is also true when damping is neglected and the bow is clamped in the middle
or shot open-handed. Some °ight shooters loose with a trust ofthe bow hand against the
grip. If this is accompanied with a move in the direction of the shooting then the during
this action supplied energy can be transferred to the arrow together with the additional
energy.

In practice only a part of the additional energy is transferred to the arrow. The kinetic
energy of the arrow at arrow exit equals the area below thedfd curve. The "e±ciency"
´ , our second quality coe±cient, is de¯ned as this kinetic energy divided by the additional
energy.

The third quality coe±cient is the muzzle velocity º made dimensionless in the manner
we described in Section 1.7.

The amount of kinetic energy and linear momentum of the arrowwhen leaving the
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string can be calculated easily using the quality coe±cients. The kinetic energy is the
product of the static quality coe±cient and the e±ciency and the linear momentum is this
amount of kinetic energy divided by half the muzzle velocity.

The in°uence of the dimensionless parameters can be determined just by changing each
parameter separately. Such an investigation delivers which parameters are most signi¯cant.
The smoothness of action may be important with respect to themagni¯cation of di®erences
in handling of the bow. The behaviour of the acceleration force acting upon the arrow and
the so-called "recoil force", as function of time are salient factors which determine whether
the bow is a so-called sweet bow or not. The recoil force, which is felt by the archer, is
the force exerted by the bow on the bow hand. Sometimes the word "kick" is used when
a jerk is felt after release of the arrow.

Finally the three fundamental parameters, discussed in Section 1.7, namely draw,
weight and mass of one limb are of course important. Men strong enough to pull heavy
bows, or tall men with long arms, or those who have materials with excellent mechani-
cal properties at their disposal and know how to use them in making a bow, are always
favoured.

Note that when the strength of materials of limbs and string is taken into account,
the maximum occurring bending moments in the limbs and maximum tensile force in the
string have to be kept within certain bounds. In Section 4.8 we brie°y deal with these
quantities.

In our theoretical approach the performance (static quality coe±cient, e±ciency, muz-
zle velocity, smoothness of action) is considered as a function de¯ned on the space spanned
by the parameters of the bow. We divided the set of parametersinto two groups, the
fundamental parameters and the dimensionless parameters.The dimensionless quality
coe±cients depend only on the dimensionless parameters. Representations of di®erent
existing types of bows form clusters in the dimensionless parameter space. This space is
in¯nitely dimensional, because some of these parameters arefunctions of the length coordi-
nate along the limb, for example the mass distribution. If these functions are approximated
by polynomials or splines of some ¯nite degree, which has to belarge enough in order to get
reasonable approximations, the dimensionless parameter space becomes ¯nite dimensional.

1.10 Comparison of di®erent mathematical models

In this section we compare the di®erent mathematical models mentioned in Sections 1.5
and 1.6. To that end we use results of our calculations on basis of these di®erent models,
about the mechanical action of a speci¯c bow given by Hickman in [8], referred to as H
bow.

In Section 2.5 we determine the static performance of the H bow by means of Hickman's
model and by means of our model. Thesfd curves look very similar, the di®erence in
the calculated weights is less than 3%, the static quality coe±cients di®er less than 2%.
In Section 3.5 we deal with the dynamic performance of the H bow provided with an
inextensible string without mass. The e±ciency of this bow calculated with Hickman's
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model is 100%, our model yields 89%.
In Section 1.5 the same bow but now with an elastic string withmass, referred to as

~H bow, is considered. Marlow's model predicts a weight of this bow about 25% smaller
than our model. His static quality coe±cient is almost 5% larger. The e±ciency of the H
bow using Marlow's model equals 74% and using our model 81%. This results in a small
di®erence in the calculated dimensionless muzzle velocities. The dfd curve, calculated
using Marlow's model shows heavy oscillations of the acceleration force acting upon the
arrow.

These results show that Hickman's model, being very simple,gives rather good pre-
dictions for the static performance of the H bow. Observe that for other bows it may be
not this good, because he adapted his model to some of the characteristics of the H bow.
Marlow's model does not seem to be an improvement of Hickman's, although his model
for the string is more realistic. For, the combination of rigid limbs rotating about elastic
hinges and an elastic string gives unreliable results and unrealistic heavy oscillations in the
dfd curve.

Observe that we do not discuss the results of Schuster's model [16], because we are not
able to deal accurately enough with the dynamic performanceof the working-recurve bow.

As mentioned in Section 1.4, in all models, including our model, the lateral movements
of bow, string and arrow are neglected Unfortunately, thesemotions seem to be an impor-
tant factor with respect to the utility of the bow for shooting at marks, where accuracy
is indispensable. Hence, one cannot expect to get an overallpicture of the performance
of a bow used for target shooting. For instance, the in°uence of the mass of the grip and
of the stabilizers on the lateral movements and the twistingof the bow round the vertical
axis, called "torque", is beyond our scope. The same holds for the in°uence of the nocking
height (Figure 1.6).

For °ight shooting these small random movements have almost no in°uence on the
range of the arrow. For hunting and in the old times warfare, these lateral movements are
of some importance.

Finally a remark on the validity of the use of the Bernoulli-Euler equation. Many
text books on strength of materials, e.g. Timoshenko [17], show how the bending sti®ness
depends on the shape and the dimensions of the cross section and the physical properties
of the materials and discuss the presumptions which are made. We note that, especially in
the case of the ancient composite bow, the assumption that the Bernoulli-Euler equation
holds, may lead to inaccuracies. With respect to a simple bowmade of wood the di±culty
arises that wood is a rather incalculable material, see Kollmann et al. [9, 10]. Also for the
physical properties of the material of the string, the application of Hooke's law can be said
to be questionable.
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1.11 Comparison of the mechanical performance of
di®erent types of bows

In this ¯nal section of the introduction we discuss the performance of di®erent types of
bows. We use the quality coe±cients given in Section 1.9, keeping in mind the remarks
given in the last paragraphs of Section 1.10.

In order to gain insight into the in°uence of a change of the parameters on the action of
the bow, we change these parameters separately one by one, starting with one bow of each
type. In what follows we mention only those in°uences of parameters which are striking.

In Sections 2.5 and 3.5 we start with a non-recurve bow, described by Hickman in [8]
which we called the H bow. The static performance depends strongly on the brace height
and length of the bow. As expected, it becomes less good for a larger brace height and a
shorter bow. Short straight bows have a tendency to "stack".This is the property of a
bow to be drawn easily for a large part of the draw length and tobuild up to full weight
rapidly as the string comes to full draw. Stacking goes hand in hand with a small static
quality coe±cient. On the other hand a short bow possesses a larger e±ciency but when
the bow becomes too short, the arrow leaves the string beforethe string is stretched. A
longer bow has a more smooth action by which the string keeps agood contact with the
arrow.

With respect to dynamics, the mass of the arrow is most important. A light arrow
yields a small e±ciency but also a larger muzzle velocity. If the arrow is too light, however,
the arrow leaves the string before the string becomes taut. So, in practice there is a lower
bound for the mass of the arrow.

The e®ect of concentrated masses at the tips appeared to be negligible with respect
to the mentioned two dynamic quality coe±cients, namely e±ciency and muzzle velocity.
Obviously, as in Hickman's model, the absorbed energy in these masses is recovered before
the arrow leaves the string.

In Section 4.7 we deal with the in°uence of the strain sti®ness and mass of the string.
From the point of view of statics the in°uence of the elasticity of the string is small. As
to dynamics if the number of strands changes (mass is about directly and strain sti®ness
about inversely proportional to number of strands), there are two e®ects which counteract
each other. More strands mean a heavier string and thereforea smaller e±ciency, but it
also means a sti®er string and hence a larger e±ciency.

We repeat in Section 4.9 the above mentioned changes of parameters, but now for a
bow called the KL bow, which resembles a bow described by Klopsteg in [6]. It di®ers
from the H bow because its limbs possess more mass per unit of length near the tip and
the string is extensible and possesses mass. So this bow is more realistic. Further we deal
in that section with the vibratory motion of limbs and string after arrow exit.

Roughly speaking the in°uence of the change of parameters forthe KL bow is the same
as in the case of the H bow. In Figure 1.11 we show the static quality coe±cient q of the
KL bow as function of the dimensionless half lengthL of the bow and in Figure 1.12 the
e±ciency ´ and muzzle velocityº as function of the dimensionless half massma of the
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Figure 1.11: Static quality coe±cient q as function of the dimensionless half bow lengthL for
di®erent types of bows. Solid line: straight bow KL, dashed line: static-recurve bow PE and
dotted line: angular bow AN.

arrow. Concentrated masses at the tips or heavier limbs nearthe tips in combination with
an elastic string, appear to be disadvantageous now. Further, for small brace heights the
string slaps against the grip after arrow exit. This means that a minimum brace height has
to be used. Archers often wear a "bracer" on the bow arm to protect this arm from the
blow of the string. In many cases, for instance when the bow has no grip, the force in the
string becomes negative after arrow exit. At that moment thestring becomes slack. When
the string suddenly is stretched again, it is possible that akick is felt by the archer. At
the end of Section 4.9 we discuss the angular bow denoted by ANbow. The static quality
coe±cient of this bow, especially when it is short, is much better than that of the straight
KL bow of the same length, see Figure 1.11. Unfortunately thee±ciency of the angular
bow is worse, still the muzzle velocity is better than that ofthe corresponding straight KL
bow when both are not too long.

The static-recurve bow is the subject of Section 4.11. Starting with a bow, referred to
as PE bow which resembles the old Asiatic bow depicted in manybooks and articles, we
change the parameters as we did for the KL bow. The introduction of rigid ears produces
a larger static quality coe±cient, see Figure 1.11. The e±ciency, however, is worse than
that of the straight KL bow, having the same length, see Figure 1.12. This is largely due
to heavy ears. We stated already that concentrated masses atthe tip in combination with
an elastic string are disadvantageous. Thedfd curve of the PE bow oscillates severely, so
it seems to be an unpleasant bow to shoot with.

The in°uence of the change of all parameters look the same as those in the case of the
KL bow. For instance; a light arrow implies a large muzzle velocity.
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Figure 1.12: E±ciency ´ and muzzle velocity º as function of dimensionless half massma of
arrow. Solid line: straight bow KL, dashed line: static-recurve bow PE.

To sum up the results, we notice that the dimensionless muzzle velocities of all the
bows we have considered, keeping the mass of the arrow constant, di®er relatively little.
The values lie between 1.72 and 2.06. The in°uence of a change of the mass of the arrow
is almost the same for the di®erent types. The short angular bow and static-recurve bow
do not have a better inherent performance than the long straight KL bow.

So far the dimensionless parameters. The discussion of the change of the fundamental
parameters is the same for both types of bows, non-recurve and static-recurve ones. In
Section 4.12 we deal with this subject. As already mentioned(Section 1.7 of this intro-
duction) the draw and weight have physical limitations and the mass of one limb has a
technical limitation. This means that at this place the mechanical properties appear on
the stage. These properties determine the maximum amount ofenergy that can be stored
in the limbs and string of the bow.

In order to get an insight into this we consider in Section 4.12 a number of bows
described in literature, of which the draw, weight, mass of the arrow and sometimes mass
of the bow are given. These data indicate that more energy perunit of mass of the limb can
be stored in the ancient Asiatic composite bow than in simplewooden bow. However, much
of this energy is already stored in the bow in the braced situation, and this energy is not
available for the shooting. Nevertheless, the main reason for the fact that the short Asiatic
static-recurve bow had a good performance, is that excellent materials have deliberately
been put to use. As we mentioned already, the dimensionless muzzle velocity and therefore
also the kinetic energy, of the short static-recurve bow is reasonable in contrast with this
quantity for a short straight bow. The shortness of these bows made them suitable for the
use on horseback.
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Concerning the performance of the working-recurve bow, we deal in Section 4.5 with
the statics of a modern recurve bow and of a bow with an excessive recurve. The static
quality coe±cient of the ¯rst mentioned bow, used for target shooting is rather small.
Obviously, for shooting at marks less importance is attached to the static performance.
Data of mechanical properties of the materials used for modern bows indicate that a large
amount of energy per unit of mass can be stored in these bows.

The other bow dealt with in Section 4.5 resembles a bow developed by Hickman [6,
page 50]. The limbs are semicircles, curving away from the archer when at rest, resembling
a ¯gure 3. The sfd curve of this bow even decreases over some interval, just as in the case
of the compound bow. In 1948 Hickman shot at a °ight shooting meeting further than
many who were using bows twice as strong! This information shows that the dynamics of
a working-recurve bow is an interesting subject for future research.
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Chapter 2

On the static deformation of the bow 1

2.1 Summary

The storage of deformation energy in a bow with or without recurve is considered. Some
numerical examples are discussed. For a simple bow it is shown that theoretically a shooting
e±ciency of hundred percent is possible.

2.2 Introduction

The bow and arrow have been invented by mankind already in prehistoric times. During
many millineries it was its most e®ective long range weapon and hunting device. Nowadays
it is used in archery, a sport practiced by many people all over the world.

A bow can store energy as deformation energy in its elastic arms or limbs. Its special
feature is that this energy, delivered by the relatively slow human body, can be quickly
released to a light arrow in a very e®ective way. Probably essential for the e®ectiveness of
the transformation of the deformation energy into kinetic energy of the arrow is the string,
as light and inextensible as possible, which couples bow andarrow.

The main object of this paper is to discuss the statics of the bow. It will be represented
by an in¯nitely thin elastic line endowed with bending sti®ness, which is a function of a
length parameter along this line. In the unbraced situation, which is the situation of the
bow without string, the elastic line can be curved in the "opposite" direction. It turns
out that this curvature called recurve is important with respect to the way in which the
deformation energy can be stored. When drawing a bow, in general the force exerted by
the archer on the string, will increase. So in order to keep a bow in fully drawn position,
the maximum force, called the weight of the bow must be exerted by the archer while he
aims at the target. Hence one of the objectives for more relaxed shooting is that this force
is not too large while still a su±cient amount of deformation energy is stored in the bow. A
properly chosen recurve is one of the possibilities to achieve this. It will be shown that by

1B.W. Kooi and J.A. Sparenberg, On the static deformation of a bow Journal of Engineering Mathe-
matics 14(1):27-45 (1980)
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such a recurve it even is possible that the drawing force can decrease in the neighbourhood
of maximum draw. Such a phenomenon is well known in the nonlinear theory of elasticity.

We will not discuss here the "compound" bow, invented about ¯fty years ago by a
physicist named Claude Lapp [2]. This bow uses, in order to cause the just mentioned
e®ect of the decreasing drawing force, pulley's with eccentric bearings at the end of the
elastic limbs.

Much research has been carried out already on the bow and arrow. For a general
background we refer to the article of Klopsteg [6], where many aspects of bow and arrow
are thoroughly discussed from a physical point of view. Other papers are for instance [5]
and [8] where by making simplifying assumptions, calculations of the stored energy have
been carried out. In this paper we use the theory of elastica with large deformations as
discussed for instance by Frisch-Fay [4]. Because nowadayscomputers are available the
non linear deformation of our model can be calculated without further simpli¯cation It
turns out that it can happen, al be it for not too realistic bows, that there is more than
one solution to the problem.

In calculating properties of bows it is the intention to obtain an insight in what makes
a bow a good bow, in this paper from the static point of view only. Besides by a number
of parameters, length of the bow, ultimate drawing force andsome others, the static
behaviour of a bow is determined by two functions namely its shape without string, and
its distribution of bending sti®ness. These functions have to be chosen in one way or
another. This means that there is a large measure of freedom which is not so easy to
catalogue. It is not the aim of this paper to give a full account of possibilities however in
the section on numerical results some trends are shown. In a following paper we hope to
return to this subject in a more exhaustive way. We remark that when the dynamics of a
bow is considered even a third function, the mass distribution, comes into play.

We have also applied our theory to two ancient bows. One is an Asiatic bow of the 14th

century and is described in [7]. The other one is much older and is possibly constructed
§ 3500 years ago [3].

It must be remarked that in general it is not possible that allthe deformation energy
stored statically in the bow can be transferred, during the dynamic process of shooting, as
kinetic energy to the arrow. This depends on the way in which the kinetic energy of the
arms or limbs can be recovered. It is shown in the Appendix 2.6, for a simple model of
a bow, when the mass of the string can be neglected and when it is inextensible, that all
the deformation energy stored in this bow can be transformedinto kinetic energy of the
arrow. Hence, no kinetic energy is left behind in the arms.

2.3 Formulation of the problem

We will consider bows which are symmetric or nearly symmetric with respect to some line,
in the latter case we treat them approximately as being symmetric. The bow is placed in
a Cartesian coordinate system (x; y), the line of symmetry coincides with thex axis. Its
midpoint coincides with the origin O. The upper half is drawn in Figure 2.1. We assume
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Figure 2.1: Three situations of the working-recurve bow: a) unbraced, b) braced, c) partly
drawn.

the bow to be inextensible and of total length 2L. In our theory it will be represented by
an elastic line of zero thickness, along which we have a length coordinates, measured from
O hence 0· s · L . This elastic line is endowed with bending sti®nessW(s).

In Figure 2.1.a the unbraced situation (without string) is drawn. The geometry of the
bow is described by the local angleµ0(s) between the elastic line and they axis, where
µ0(s) is a given function ofs. Because the bow possesses recurve it is predominantly curved
to the left.

In Figure 2.1.b the bow is braced by applying a string of totallength 2l(l < L), which
also is assumed to be inextensible. In the braced position noforce in the x direction is
exerted on the string which intersects thex axis under an angle of 90±. It is possible for a
bow with recurve as is drawn in Figure 2.1 that a values = sw < L exists such that for
values ofs with sw · s · L the string lies along the bow. We assume that in that case
there is no friction between bow and string. The string ats = sw has to be tangent to the
bow of which the curvature forsw · s · L is the same as the curvature in the unbraced
situation. However, it is also possible that for a bow with less or without recurve, the
string starts from the tip, then sw = L and the string can make a non zero angle with the
tangent to the bow at the tip (Figure 2.4). Instead of the length of the string the brace
height or "¯stmele" jOH j can be used as a basic quantity of the braced position.

In Figure 2.1.c the bow is pulled by forceF (b) into a partly drawn position where the
middle of the string has thex-coordinate b. Also in this situation the string can still lie
partly along the bow for values ofs with sw(b) · s · L and the same considerations hold
as were given for the region of contact in the braced situation. To each bow belongs a
value b= jODj for which it is called fully drawn. The forceF (jODj) is called the "weight"
of the bow and the distancejODj is its "draw".

In our theory we have to consider only the upper half of the bow, clamped atO. The
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Bernoulli-Euler equation, which we assume to be valid for the elastic line, reads

M (s) = W(s)
¡ dµ

ds
¡

dµ0

ds

¢
; 0 · s · L : (2.1)

Besides (2.1x) we have two geometric equations

dy
ds

= cosµ ;
dx
ds

= sin µ ; 0 · s · L : (2.2)

The moment M (s) is caused by the tension forceK (b) in the string, we ¯nd

M (s) = K (b)h(s) = K (b)
¡
bcos®¡ x(s) cos®¡ y(s) sin ®

¢
; 0 · s · sw ; (2.3)

where h(s) (Figure 2.1.c) is the length of the perpendicular from the point (x; y) to the
string and ®(b) is the angle between the string and they axis, reckoned positive in the
indicated direction. There are three boundary conditions at s = 0, namely

µ(0) = µ0(0) ; x(0) = y(0) = 0 : (2.4)

Besides we have a geometrical condition with respect to the length of the string. In our
model the thickness of the elastic line is assumed to be zero hence the length of the parts
of bow and string which are in contact with each other are equal and we ¯nd

¡
b¡ x(sw)

¢2
+

¡
y(sw)

¢2
=

¡
l ¡ (L ¡ sw)

¢2
: (2.5)

When b is prescribed the equations (2.1), (2.2) and (2.3) togetherwith the conditions
(2.4) and (2.5) are su±cient to determine the situation of thebow hence also the unknown
functions µ(s); x(s); y(s) and M (s) and the unknown constantssw(b); K (b) and ®(b).

It is clear that

M (s) = 0 ; sw · s · L ; (2.6)

hence it follows from (2.1) that for the region of contact of string and bow, the bow has
kept its curvature of the unbraced situation as has been mentioned previously. Thus

µ(s) = µ0(s) +
¡
µ(sw ¡ µ0(sw)

¢
; sw · s · L : (2.7)

We want to calculate the forceF (b) (Figure 2.1.c) from which follows the energyA
stored in the bow when it is brought from the braced positionb = jOHj into the fully
drawn position b= jODj. We have

A =
Z jOD j

jOH j
F (b) db : (2.8)
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This amount of energy must be equal to the di®erence between the deformation energy of
the bow in the fully drawn position and the deformation energy in the braced position.
Hence we have another representation ofA

A =
£Z L

0
W(s)

¡
µ0(s ¡ µ0s)

¢2
ds

¤b= jOD j

b= jOH j
; (2.9)

which can be used to check the computations.
We now introduce dimensionless quantities by

(x; y; s;L; l) = ( x; y; s; L; l ) jODj ; M = M jODjF (jODj) ; K = K F (jODj) ;

W = W jODj2F (jODj) ; A = A jODjF (jODj) : (2.10)

In (2.10) we have used the still unknown forceF (jODj) to obtain dimensionless quantities,
however, this sometimes makes it more simple to compare numerical results for several
types of bows.

Also we introduce the angle

' = µ ¡ µ0 ; (2.11)

then after combining (2.1) and (2.3) the relevant equationsbecome

W
d'
ds

= K
¡
(b¡ x)cos®¡ ysin®

¢
; 0 · s · sw ; (2.12)

' (s) = ' (sw) ; sw · s · L ; (2.13)
dx
ds

= sin( ' + µ0) ;
dy
ds

= cos(' + µ0) ; 0 · s · L ; (2.14)
¡
b¡ x(sw)

¢2
+

¡
y(sw)

¢2
=

¡
l ¡ L + sw

¢2
; (2.15)

' (0) = x(0) = y(0) = 0 : (2.16)

In the next section a method to solve these equations is discussed.

2.4 Numerical solution of the equation of equilibrium

In this section we consider some aspects of the numerical method used to solve the equations
(2.12)¢ ¢ ¢(2.16). We take forb a ¯xed value

jOHj

jODj
· b · 1 : (2.17)

When b passes through this range the bow changes from its braced position to its fully
drawn position. First we assume the bow to be partly or fully drawn hence not to be in
the braced position. The length 2l of the string is prescribed.
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Figure 2.2: The bow de°ected by a force ~K ,
making an angle ~® with the y axis, at the arm
AB .

The unknown forceK exerted on the bow by the string passes through the point (b;0)
and makes an unknown angle® with the y-axis. We make some choice~K and ~® for the
values of K and ®, and solve the equations (2.12) and (2.14) starting ats = 0 where
we satisfy the initial conditions (2.16). We assume the functions W(s) and µ0(s) to be
continuous andW(s) ¸ ² > 0. Then it is not di±cult to show that the solution exists and
is unique. A Runge-Kutta method is used to obtain this solution.

There are two possibilities which can occur. First, when continuing the solution of
(2.12) and (2.14) for a suitable choice of~K and ~®, we reach a pointA with a value of
s = ~sw < L for which

' (~sw) = ¡ ~®¡ µ0(~sw) ; (2.18)

in words, a value ofs for which the tangent at the bow is parallel with the chosen direction
~® of the force ~K . After this the undeformed part AT (Figure 2.2), is added to complete
the "bow" hence

' (s) = ¡ ~®¡ µ0(~sw) ; ~sw · s · L : (2.19)

Second, there is no ~sw < L that satis¯es (2.18), the solution is continued untils = L, then
the point A coincides with the tip T of the bow.

So, we have found a de°ected positionOAT of the bow which in fact is caused by
connecting to the bow, ats = ~sw in the ¯rst case or at s = L in the second one, a rigid
bar AB perpendicular to the direction ~®, at the end of which acts the force~K . This is
illustrated in Figure 2.2 for the ¯rst case.

The force ~K and the angle ~® have to be determined such thatjA ¡ B j = 0 and the
"distance" between the point (b;0) and the tip T, measured fromA to T along the bow
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Figure 2.3: Determination of the
zero's of f 1 = 0 and f 2 = 0.

equalsl. These two conditions are written as

f 1( ~K; ~®) def=
¡
x(~sw) ¡ b

¢
cos ~®+ y(~sw) sin(~®) = 0 ; (2.20)

and

f 2( ~K; ~®) def= y(~sw) ¡ (l ¡ L + ~sw) cos ~® = 0 ; (2.21)

respectively. The problem is now to solve numerically thesetwo non-linear equations with
respect to ~K and ~®.

For the solution of (2.20) and (2.21) a Newtonian method is chosen. Starting points in
the ®; K plane for this method have to be close enough to a zero point ofboth f 1 and f 2

to ensure convergence. To obtain starting points we could compute the values off 1 and
f 2 in all nodal points of a grid placed over a suitable chosen region G of the (®; K) plane,
where the zero's are expected. This, however, would be rather time consuming.

Another method is developed, in which we move step by step forinstance along the line
f 2(®; K) = 0. After each step we check for a change of sign off 1(®; K). Such a change of
sign gives an approximation of a zero of bothf 1 and f 2. This procedure has been realized
as follows.

For a given valueb we take ® "too small" for instance ® = 0 and using a properly
chosen step size we increaseK , starting at K = 0 and keep a = 0. Hence we move along
the boundary of the regionG, which is a rectangle as drawn in Figure 2.3. Calculating the
values off 2 along this boundary a zero off 2 can be located approximately by its change
of sign in between two succeeding grid points. In Figure 2.3 this point is in betweenP
and Q. By linear interpolation a better approximation (®1 = 0; K 1) for the zero of f 2 is
found and f 1(®1; K 1) is calculated. Now the values off 2 at R and S are calculated. When
there is a change of sign betweenQ and R, R and S or S and P we know through which
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side the linef 2=0 leaves the rectangleP QRS. A linear interpolation again gives a better
approximation (®2; K 2) for a zero off 2 and f 1(®2; K 2) is calculated. Whenf 1(®1; K 1) and
f 1(®2; K 2) have di®erent signs these points are chosen as starting points for the Newtonian
method. When there is no change in sign off 1 we have to start with the adjacent rectangle,
of which one side contains the last found approximation for azero of f 2. This procedure
is repeated until we reach the boundary of regionG again.

It is assumed that the functionsf 1 and f 2 behave su±ciently smooth with respect to
the size of the grid placed at the regionG. This causes no trouble in practice.

In this way possibly a number of zero's of the equations (2.20) and (2.21) can be found.
Each of these correspond to an equilibrium situation of the bow, while the midpoint of the
string has the coordinates (b;0). Not all of these equilibrium situations need to be stable.

We now discuss the braced position which corresponds tob = jOH jjODj¡ 1 in (2.17).
This value of b called the brace height or ¯stmele, is a basic quantity for theadjustment
of a bow. We know that ® = 0 hence we use only equation (2.20) in order to determine
the unknown forceK . This is done by increasingK stepwise from zero and checking for
a change in sign off 1. By iteration K can be determined su±ciently accurate. Then
equation (2.21) gives us the half lengthl of the string.

The braced position of the bow can also be determined by prescribing the half length l
of the string. Then equations (2.20) and (2.21) can be considered as equations for the two
unknownsb and K , again ® = 0. A procedure analogous to the one prescribed in the ¯rst
part of this section can be used to satisfy both (2.20) and (2.21). Small changes however
in the length 2l of the string can cause rather large variations of the ¯stmeleb. Because
this is in general the more important quantity, the ¯rst method to calculate the braced
position of the bow is recommended.

To check our program we have compared solutions obtained by it with solutions ob-
tained by other methods. We can take the bending sti®nessW constant and the bow
straight in unbraced situation, µ0(s) ´ 0. For given values ofl and b our program yields
the values ofK and ®. Now we can use the theory of the largely de°ected cantilever
described in [4] to compute the strain energy, due to bendingcaused by the force de¯ned
by K and ®. The elliptic integrals needed for this computation are obtained by linear
interpolation of values in the tables given in [1]. The results agreed very well and di®ered
only by an amount of 0.1%.

Another check has been made by using, in the case of a bow without recurve the ¯nite
element programmarc of the marc Analysis Research Corporation. Also these results
agreed with ours, a comparison of the drawing forceF (b) showed discrepancies of only
0.5%.

2.5 Some numerical results

As we mentioned already, it is important for a bow to possess asu±cient amount of
deformation energy at full draw, kept in check by a not too large ultimate force or weight.
The measure in which the bow meets this demand can be described to a certain extent by
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a dimensionless numberq, called the static quality coe±cient. Suppose we have an amount
of deformation energyA in the bow in the situation of full draw b= jODj and the force is
F , then

q =
A

F (jODj)jODj
= A ; (2.22)

where the second equality follows from (2.10). The dimensionless deformation energyA
depends on a number of parameters and functions,

q = A(L; W (s); µ0(s); jOH j or l) ; 0 · s · L : (2.23)

This number q is also a measure for the concavity of the functionF = F (b). When we
compare two bows with the same value ofjODj, one with a largerq then the other, the
¯rst bow is from the static point of view the best because it canstore more deformation
energy "per unit of weight". Sometimes another de¯nition ofq is given by replacingjODj
in (2.22) by jOHj. Then however whenjOHj is changed the just mentioned property is no
longer valid. It is clear that q can not give a decisive answer to questions about shooting
e±ciency. In the case of a real bow the length'sjOHj and jODj have to be measured from
a reasonably chosen elastic line representing the bow, to the midpoint of the string.

One of our objectives is to get insight into the dependency ofq on the quantities denoted
in (2.23). To this end we start with the bow described in [5] and change in a more or less
systematic way its parameters and functions.

Some bows possess a nearly rigid central section of which thegrip forms part of, its
length is denoted by 2L0. From the ends of this section start the elastic limbs each of
length L 1 the half length of the bow isL = L0 + L1. For the grip, hence for 0· s · L0,
we put W(s) = 1 .

The units we use are the cm (=0.3937 inch) and the kg force (=2.205 lbs). Because
in the literature characteristic lengths are often given ininches by "simple" numbers, for
instanceL0 = 4 inch, jODj = 28 inch, these lengths expressed in cm sometimes suggest an
accuracy, which is not intended. The same holds for lbs and kg. In the following we do
not mention anymore the dimensions of a quantity, it is tacitly understood that a length
is expressed in cm, a force in kg, a bending sti®ness in kg cm2, an energy in kg cm and an
angle in radians.

The bow (H bow) discussed in [5] by Hickman has the following characteristics

L = 91:4 ; L0 = 10:2 ; µ0(s) ´ 0 ; jOHj = 15:2 : (2.24)

The bending sti®ness distribution fors > L0 is a linear function

W(s) = 1 :30 105
L ¡ s

L
; L0 · s · L : (2.25)

For future reference we mentionW(L0) = 1 :15 105. For the draw of the bow we have
chosenjODj = 71:1 which is slightly di®erent from the value used in [5]. However when
we compare Hickman's theory with this one, his results are corrected for this di®erence.
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(a) (b)

Figure 2.4: (a) Some shapes of the dimensionless deformations of the H bow. (b) Dimensionless
force-draw curve of the H bow.

It follows from (2.25) that W(L) = 0. Because we use the Euler-Bernoulli equations
this is not a di±culty from the theoretical point of view, because the limit of the curvature
of the elastic line for s ! L remains ¯nite. However, in order to avoid computational
complications we put

W(s) = 7 :69 ; (2.26)

whenever in (2.25) the values ofW(s) become smaller than 7:69. This interpretation has
to be given also to other bending sti®ness distributions which occur later on.

A number of times we consider the consequences of a change of one or more character-
istic quantities of the H bow. This means that only these quantities are varied while the
other ones are the same as those given above. We remark that our results for the weight
of a bow F (jODj) and for the deformation energyA, are linearly dependent oņ when
we replaceW(s) by ¸W (s). Hence, it is easy to adjust the weight of a described bow to a
desired value by multiplyingW(s) by a suitable ¸ . The quality factor q is independent of
¸ .

In Figure 2.4.a we have drawn a number of dimensionless deformations of this bow
up to its fully drawn position and in Figure 2.4.b its dimensionless force-draw curve both
calculated by this theory. When curves given by Hickman are made dimensionless there
is an excellent agreement with ¯gure the numbers with dimension show some di®erence.
Numerical results theory and of this one are given in Table 2.1.

In Table 2.2 we show the in°uence of a change of the length of thegrip L 0 and the
brace heightjODj of a H bow. It is seen that the largest value ofq occurs for the smallest
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Table 2.1: Comparison between Hickman's theory and this theory.

Hickman this theory
F (jODj) 15.1 15.5
A 444 450
q 0.414 0.407

Table 2.2: In°uence of length of grip L 0 and of brace heightjOH j on the H bow.

L0 5.08 10.2 15.2
jOHj 12.7 15.2 17.8 12.7 15.2 17.8 12.7 15.2 17.8
F (jODj) 13.9 14.0 14.1 15.4 15.5 15.7 17.3 17.4 17.6
A 417 408 398 460 450 439 510 500 488
q 0.423 0.411 0.397 0.420 0.407 0.393 0.415 0.403 0.389

grip and smallest brace height and the smallest value ofq for the largest grip and largest
brace height, however this di®erence is not very spectacular.

In Table 2.3 we give the in°uence of a change of the lengthL of a H bow. It follows
that the weight of the bow increases strongly when the bow becomes shorter while there
is, as in Table 2.2, only a weak in°uence on the quality factorq.

We next discuss the in°uence of a change of the bending sti®nesson the H bow. We
choose

Wn (s) = 1 :15 105
¡ L ¡ s

L ¡ L0

¢̄
n ; L0 · s · L; n = 1; 2; 3; 4 : (2.27)

with ¯ 1 = 0, ¯ 2 = 1=2, ¯ 3 = 1, ¯ 4 = 2. We refer with respect to W(L) = 0, to (2.26)
and the remark belonging to it. The bending sti®nessW 3(s) is equal toW(s) from (2.25).
With increasing values ofn the relative °exibility of the tip becomes larger. The results are
given in Table 2.4. We ¯nd that an increase of the sti®ness of thetip causes some increase
of q, and that the bending sti®ness distribution has only a modestfavourable in°uence on
q for n changing from 3 to 1.

Table 2.3: In°uence of the length L on the H bow.

L 81.3 86.4 91.4 96.5 102
F (jODj) 24.6 19.3 15.5 12.7 10.5
A 687 551 450 373 312
q 0.393 0.400 0.407 0.413 0.417
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Table 2.4: In°uence of the bending sti®nessW (s) on the H bow.

W1(s) W 2(s) W3(s) W 4(s)
F (jODj) 23.6 19.6 15.5 9.02
A 701 576 450 229
q 0.417 0.414 0.407 0.356

Figure 2.5: The two types of recurveµ0;1(s) and
µ0;2(s) considered in Table 2.5.

We now consider the in°uence of two recurve shapes denoted byµ0;1(s) and µ0;2(s) on
the H bow. The ¯rst one is very simple,µ0;1(s) = ¡ 0:12, the second oneµ0;2(s), is given
by the unbraced shape of the bow in the (x; y) plane in Figure 2.5, where for reference also
µ0;1(s) is drawn. For each of these bows we have usedW 2(s) as well asW3(s) as bending
sti®ness distribution. The results are given in Table 2.5. For reference we also give in this
table the straight bow µ0(s) = 0, which already is given in Table 2.4 under the headings
W 2(s) and W3(s). It is seen that both recurves have statically a favourablein°uence on
the bow because the coe±cientq is in both cases larger thanq belonging to µ0(s) ´ 0.
The recurve µ0;2(s) has the highest values ofq. The best one of theseq = 0:575 (which
is a rather large value) occurs forW3(s) which has a more °exible tip thanW2(s). It is
remarkable that this is opposite to that of recurvesµ0(s) and µ0;1(s) where the highestq
occurs forW 2(s).

Next we consider two bowsB1 and B2 also with recurve of which the unbraced situation
however, di®ers from those of the bows we considered up to now.The bow B1 drawn in
Figure 2.6.a is a normal modern recurve bow for target shooting.
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Table 2.5: In°uence of recurve on the H bow for two bending sti®ness distributions.

µ0(s) ´ 0 µ0;1(s) µ0;2(s)
F (jODj) 19.6 25.0 38.4

W2(s) A 576 776 1510
q 0.414 0.437 0.554
F (jODj) 15.5 20.1 29.2

W3(s) A 450 607 1200
q 0.407 0.424 0.575

(a)

(b)

(c) (d)

Figure 2.6: (a), (b) a modern recurve bowB1, µ0(s) and W(s), (c), (d) a bow with strong recurve
B2, µ0(s) and W (s).
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Table 2.6: Two recurve bowsB1 and B2.

L L 0 jOH j jODj F (jODj) A q
B1 84.2 28.4 17.4 62.5 13.6 362 0.426
B2 81.9 14.8 15.2 71.1 13.6 854 0.883

Figure 2.7: The dimensionless force draw
curves of B1, B2 and the bow B3 of Table 2.4
(µ0;2(s), s3(s)).

The di®erence with bows considered before is that the elasticlimb starts at the end
s = L 0 of the rigid section in the direction of the archer. Its measured bending sti®ness
distribution is given in Figure 2.6.b. The bowB2 has an excessive recurve (Figure 2.6.c).
Its bending sti®ness varies linearly from the rigid section to the tip (Figure 2.6.d). In
Table 2.6 we give the parameters of these bows and the calculated quantities F (jODj), A
and q.

It is remarkable that the static quality coe±cient q of B2 is very high with respect to
all the bows we have considered. The reason is that the main part of its force draw curve
is strongly convex as can be seen from the dimensionless force draw curve of Figure 2.7,
where also the curves of bowB1 and of the bowB3 denoted by (µ0;2(s), s3(s)) in Table 2.5
are given. This shape of force draw curve (bowB2) resembles the force draw curve of the
compound bow mentioned in the introduction, here however nopulley's are needed. In
Figure 2.8 we have drawn the dimensionless deformation curves ofB1 and B2.

We emphasize that it is not clear thatB2 will be a good bow for shooting because
our considerations are only based on statics. However, it seems worthwhile to investigate
the dynamic behaviour of this bow, which will depend also on the choice of the mass
distribution of the elastic limbs.

The following bow resembles an Asiatic bow ([7, plate 18]). It has a rather strong
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(a) (b)

Figure 2.8: (a) Dimensionless deformations of theB1 bow. (b) Dimensionless force-draw curve
of the B2 bow.

Table 2.7: Bending sti®ness of the bow of Vrees.

s 0 15.2 27.5 35.8 44 64.5 69.8 83.8
W(s) 10¡ 4 35.4 27.0 23.8 21.7 16.6 5.31 3.24 1.26

recurve. We have tried to guess a bending sti®ness so that its calculated braced and fully
drawn position resemble the photographs given in [7]. Opposite to the bows discussed up
to now this bow has a rigid tip which is strengthened by a ridge. A di±culty is that this
bow does not show too clearly a line of symmetry, it even is said that the upper limb is the
shooting limb which "accounts for most of the shooting". In Figure 2.9 we give its chosen
bending sti®ness distribution. For 0· s · L0 = 6:24 and for 46:8 = L 2 · s · L = 63:5
we take W = 1 . The brace heightjOHj = 18:4 and the drawjODj = 76:2. Figure 2.10
gives the dimensionless deformation curves and force draw curve. From Figure 2.10.a we
have also an impression of its unbraced shape. Calculated quantities are F (jODj) = 22:7,
A = 586 and q = 0:339. Hence its static quality factorq is rather low.

We also consider a bow found in the neighbourhood of Vrees which is described by
Beckho® [3]. The quantities measured or guessed, given in that paper are L = 83:8,
L0 = 0, jOHj = 17, jODj = 70, µ0(s) = 0 and W(s) is given in Table 2.7. The weight
and deformation energy calculated in [3] and by this theory are given in Table 2.8. The
reason for the discrepancies between the two calculations is possibly that Beckho® used a
linearized theory and other approximations. It is remarkable that q is the same in both
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Figure 2.9: Chosen bending sti®-
ness of "Asiatic bow".

(a) (b)

Figure 2.10: (a) Dimensionless deformation curves of the "Asiatic bow". (b) Dimensionless
force-draw curve of the "Asiatic bow".
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Table 2.8: Comparison of results of [3] and this theory.

Beckho® this theory
F (jODj) 27.2 45.1
A(jODj) 748 1240
q 0.393 0.393

Figure 2.11: Bending sti®ness of
bow with three braced positions
shown if Figure 2.12.

theories.
At last we give an example of the possibility of more than one braced situation of a

bow. This phenomenon is liable to happen because our theory is non linear and it can
be expected to occur when the tip of the bow is rather °exible with respect to its central
parts. In order to ¯nd several situations we prescribe the length 1 of the string instead of
the brace height or ¯stmele. We have chosenL = 90:4, L0 = 10:2, l = 82:9. Its bending
sti®nessW(s) is given in Figure 2.11 andµ0(s) follows from Figure 2.12. The three braced
positions are drawn in Figure 2.12 and denoted by 1, 2 and 3. When we perturb these
shapes in a number of ways, it was numerically found that 1 and3 possibly belong to a
local minimum of the deformation energy and 2 belongs to a maximum. In other words it
seems that the shapes 1 and 3 are stable and 2 unstable although this has not been proved
analytically.

1 2 3
A(jOH j) 1090 1120 1080
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Figure 2.12: Three possible equilibrium posi-
tions.

2.6 A model of a bow with 100% shooting e±ciency

Although the main subject of this paper is the static deformation of a bow we will show,
as is already announced in the introduction, the essential importance of the string for a
good shooting e±ciency.

A shooting e±ciency of 100% can easily be obtained if the modelof the bow is unrealistic
simple. Consider a bow of which the elastic limbs and the string are without mass, then
it is dear that all the deformation energy is transformed into kinetic energy of the arrow
which is assumed to have a non-zero ¯nite mass. The assumptionof a string without
mass seems acceptable, however, the assumption of limbs without mass is not at all in
correspondence with reality. Therefore we now discuss a more realistic model.

The bow consists of a rigid grip of length 2L0 and two rigid limbs of length L1 (Fig-
ure 2.13.a) which are connected each to the grip by means of anelastic hinge (S for the
upper limb) of strength k > 0. The moment of inertia of the limb with respect toS is J .
The string of length 2l is inextensible and without mass, the mass of the arrow ism > 0.
The assertion is that this bow (Figure 2.13.a) converts all the deformation energy of the
elastic hinge into kinetic energy of the arrow. From Figure 2.13.a it follows that

L1 cos' · l ¡ L0 < L 1 ; ' 0
def= arccos

¡ l ¡ L0

L1

¢
· ' < ' e

def= ¼¡ arccos
¡ L0

L1 + l

¢
: (2.28)

Also from that ¯gure we ¯nd for the x coordinate» of the end of the arrow

» = L1 sin' +
¡
l2 ¡ (L1 cos' + L0)2

¢1=2
: (2.29)

Writing down the equations of motion of limbs and arrow we ¯nd after a straight forward
analysis,

Ä»
¡
J +

m
2

Q2(' )
¢

= JQ0(' ) _' 2 ¡ k(' ¡ ~' )Q(' ) : (2.30)
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(a) (b)

Figure 2.13: Two bows each with two elastic hinges and rigid limbs.

where

Q(' ) =
£
L1 cos' + L1

(L1 cos' + L0) sin '
¡
l2 ¡ (L1 cos' + L0)2

¢1=2

¤
¸ 0 ; ' 0 · ' < ' e ; (2.31)

and ~' < ' 0 is the angle of zero moment of the elastic hinge. Because it can be shown that
Q0(' ) · 0 it follows from (2.30) that

Ä» · 0 ; ' 0 · ' < ' e : (2.32)

An important conclusion results from this equation. Duringthe stretching of the bow
(Figure 2.13.a) the arrow keeps its contact with the string which, along straight lines,
connects the arrow end to the tips of the limbs.

Next we consider the bow of Figure 2.13.b. The only di®erence between this bow and
the previous one is that now the rigid limbST2 has an in¯nitely sharp bend atT1. During
positions as drawn this bow behaves exactly as the one of Figure 2.13.a, henceÄ» · 0.
When, however,T2 ¡ T1 coincides partly with the string we can describe the processof
shooting after that situation, by a bow of which the limb isST1 and of which the half
length of the string is (l ¡ j T1 ¡ T2j). It is easily proved that _» is continuous during this
transition and hence also for this bow we haveÄ» · 0 for all possible values of' . This
means thatmutates mutandis, for this bow the same conclusion (below (2.32) holds.

Now consider the situation that the string is nearly stretched

' 0 · ' · ' 0 + ² ; (2.33)
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for a small number ² > 0. From (2.32) it follows that the arrow is still in contact with
the string. Suppose that for these values of' the angular velocity of the limb is non-zero,
hence that a positive number± exists with

0 < ± · ¡ _' (' ) : (2.34)

Then it follows from (2.29)

lim
' ! ' 0

_»(' ) = lim
' ! ' 0

Q(' ) _' = ¡1 : (2.35)

However, this is impossible because then the kinetic energyof the arrow becomes in¯nite
while the deformation energy of the bow is ¯nite. Hence we have

lim
' ! ' 0

_' (' ) = 0 : (2.36)

This means that theoretically by the action of the inextensible string without mass all the
kinetic energy of the rigid limbs is conveyed to the arrow, how large J and how smallm
may be. This holds for both bows of Figure 2.13, it holds analogously for bows with rigid
limbs with more sharp bends

That these models are not too unrealistic follows for the type of Figure 2.13.a from [9]
where on analogous device, a catapult, is described. The elastic hinges are made of strongly
twisted cables to which rigid limbs are connected. The bow ofFigure 2.13.b resembles a
Turkish °ight bow [7, page 105]. There it is remarked that the ancient bowyers tried to
keep the elastic parts of the limbs as short as possible in order to obtain a good shooting
e±ciency. With other words they tried to realize an elastic hinge in each of the limbs. The
purpose of the bend atT1 in the rigid limb in Figure 2.13.b is to increase the value ofq.

By choosing nonlinear elastic hinges, which are not di±cult to design, it is of course
possible to obtain force-draw curves of the type ofB2 of Figure 2.7, hence to obtain a
high static quality factor q. When contact between string and arrow remains during the
shooting, with other words when the acceleration of the arrow is non positive, also 100%
shooting e±ciency can be obtained.

It seems likely that suitably designed bows with more elastic hinges or even continuously
distributed elasticity, can also have theoretically an e±ciency of 100%. An analytic proof
however will be more complicated in that case.
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Chapter 3

On the mechanics of the bow and
arrow 1

3.1 Summary

Some aspects of the dynamics of the bow and arrow have been considered. The governing
equations are derived by means of Hamilton's principle. Theresulting nonlinear initial-
boundary-value problem is solved numerically by use of a ¯nite-di®erence method. The
in°uence of the characteristic quantities on the performance of a bow is discussed.

3.2 Introduction

This paper deals with the interior ballistics of the bow and arrow, hence with the phe-
nomena which happen between the moment of release of the arrow and the moment that
the arrow leaves the string. This subject is amply investigated experimentally by Hickman
and Klopsteg [1]. Hickman used also a mathematical model. Inorder to be able to get nu-
merical results without the help of a computer his model had rather severe simpli¯cations.
Because of these simpli¯cations only bows with speci¯c features could be dealt with. We
hope that this article will add to the understanding of the action of rather general types
of bows, by giving more accurate and detailed numerical results.

We are concerned with bows of which the °exible parts (limbs) move in a °at plane,
and which are symmetric with respect to the line of aim. The arrow will pass through
the midpoint of the bow, as in the case of a "centre-shot bow".We assume that the bow
is clamped at its midpoint by the bow hand. The bows are allowed to possess a mild
"recurve" of "re°ex". This means that the limbs of the bow in unstrung situation are
allowed to be curved away from the archer, however, not too strongly.

We will consider the how as a slender inextensible beam. The dynamic boundary
conditions at the tips of the elastic limbs follow from the connection of the tips, by means

1B.W. Kooi, On the mechanics of the bow and arrowJournal of Engineering Mathematics 15(2):119-145
(1981)
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of a string, to the end of the arrow. The initial deformation of the bow is given by its
shape in the fully drawn position, the initial velocities are zero. Also in our theory some
assumptions have been made. Most of these result from the useof the Euler-Bernoulli
equation for the elastic line which represents the bow. Further, the mass of the string is
taken to be zero, the string is assumed to be inextensible andthe arrow is taken to be
rigid. Neither internal or external damping nor hysteresisare taken into account.

Nonlinear vibrations of beams have been studied by many authors. Most of them are
concerned with periodic motions. Woodall [7] obtains the governing equations of motion
by considering a di®erential element of a beam. Wagner [6] andlater Verma and Krishna
Murthy [5] applied Hamilton's principle. However, in [6] and [5] the constraint which follows
from the fact that the beam is assumed to be inextensible is not taken into account in the
variational problem itself, but is used afterwards. This makes their equations di®er from
ours in Section 3.3 Hamilton's principle is used and a physical meaning of the Lagrange
multiplier connected to the inextensibility of the bow is given. This has been done by
comparing our equations with those obtained by Woodall. In the static case such a method
was already applied by Schmidt and Da Deppo [4].

In Section 3.4 a ¯nite-di®erence method to solve the equationsof motion numerically
is described. The results are compared with the results of a ¯nite-element method.

The performance of a bow and arrow depends on a number of parameters, the length of
the bow, the brace height or the length of the string, the draw, the mass of the arrow and
the mass of concentrated masses at the tips (if any). It depends also on three functions,
namely the distributions of bending sti®ness and mass along the bow and the shape of
the bow in its unstrung situation. In order to get insight into the in°uence of the afore
mentioned quantities, in Section 3.5 these quantities are changed systematically, starting
from a bow described by Hickman [1, page 69]. Besides the static quality coe±cient, already
introduced in [2], two dynamic quality coe±cients are introduced. One is the e±ciency
and the other is related to the velocity of the arrow when it leaves the string, sometimes
called the muzzle velocity. These three numbers cannot giveby themselves a complete
insight into what makes a bow a good one, for instance, with respect to target shooting,
°ight shooting or hunting. Also other subjects become important, such as smoothness of
the recoil of the bow, its manageability, and so on. Wheneverit is possible our results are
compared with experimental and theoretical results given in [1].

Although it belongs clearly to the interior ballistics of a bow and arrow, we will not
discuss in this paper the interesting "archers paradox". This is the phenomenon that the
elastic arrow, during the shooting period of a conventionalnon-centre-shot bow, carries
out a vibrational motion. Because we only consider centre-shot bows,the assumption that
the arrow be rigid with respect to bending is without loss of generality.

In Section 3.6 some attention is paid to the behaviour of the normal or longitudinal
force in our model of the bow, at the moment the arrow is released. When concentrated
masses at the tips are present, the normal force seems to havea jump at that moment.
This jump disappears when in an approximate way extensibility of the bow is simulated.
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3.3 Equations of motion

In this section the equations of motion of the bow and the dynamic boundary conditions
are derived by means of Hamilton's principle. The equationsof motion can also be obtained
by applying the linear momentum and angular momentum balance of a di®erential element
of the bow, as is done for instance by Woodall [7].

First we introduce the quantities which ¯x, with respect to our problem, the features of
bow and arrow. The total length of the inextensible bow is denoted by 2L. The bow will be
represented by an elastic line, along which we have a length coordinate s, measured from
the midpoint, hence 0· s · L. This elastic line is endowed with bending sti®nessW(s)
and mass per unit of lengthV(s). The rigid arrow has a mass 2ma, where the factor 2 is
inserted for convenience later on. In addition, there may beconcentrated massesmt at each
of the tips, representing the mass of the horns used to fastenthe string or arti¯cially added
masses. The bow is placed in a Cartesian coordinate system (x; y), the x-axis coinciding
with the line of am and the origin O with the centre of the bow. Because the bow is
symmetric with respect to the line of aim, only the upper halfof the bow is dealt with in
what follows. The unbraced situation (Figure 3.1.a) is given by the functions x = x0(s)
and y = y0(s) or by the angleµ(s) between they-axis and the tangent to the bow, reckoned
positive in clockwise direction. Becauses is the length parameter the functionsx0(s) and
y0(s) have to satisfy x0

0
2(s) + y0

0
2(s) = 1, where the prime indicates di®erentiation with

respect tos. L0 is the half length of the rigid part in the middle of the bow, called the
"grip", thus for 0 · s · L0 we haveW(s) = 1 .

In Figure 3.1.b the braced situation is depicted. The distancejOH j is the "brace height"
or "¯stmele". The length of the inextensible string, used to brace the bow, is denoted by
2l(l < L). It is possible that, when recurve is present, the string lies along part of the bow
in the braced situation. However, in this paper we assume thestring to have contact with
the bow only at the tips in all situations, static or dynamic. Hence, only bows without
recurve or with moderate recurve will be considered. In Figure 3.1.c the bow is in fully
drawn position. The geometry in this position is described by the functions x = x1(s) and
y = y1(s) (x0

1
2 + y0

1
2 = 1), or by the angle µ1(s). The distance jODj is called the "draw"

and the forceF (jODj) is the "weight".
The following short notation of a speci¯c bow and arrow combination will be used:

B(L; L0; W(s); V(s); µ0(s); ma; mt ; jOHj or l; (3.1)

jODj; F (jODj); mb) ;

where the brace heightjOHj or half of the length l of the string can be given. Furthermb

is half of the mass of the limbs, the °exible parts of the bow, so

mb =
Z L

L 0

V(s) ds : (3.2)

The variables before the semicolon in (3.1) together with the draw jODj determine com-
pletely the features of the bow, while the quantities behindthe semicolon are used when
we introduce dimensionless variables.



58 CHAPTER 3. MECHANICS OF THE BOW AND ARROW

Figure 3.1: Three situations of the non-recurve bow: a) unbraced, b) braced, c) fully drawn.

We now derive the equations of motion of bow and arrow. For simplicity we take
L0 = 0; if this is not the case the obtained equations have to be changed in an obvious
way. The Bernoulli-Euler equation (which is assumed to be valid) reads

M (s; t) = W(s)
¡
x0y00¡ y0x00+ µ0

0

¢
; 0 · s · L ; (3.3)

whereM (s; t) is the resultant bending moment at a cross section (see Figure 3.2 for sign).
We recall that because the bow is symmetric with respect to the line of aim, we con¯ne
ourselves to its upper half, clamped at the originO. The potential energy Ap of the
deformed upper half is its bending energy

Ap = 1=2
Z L

0

M
2
(s; t)

W(s)
ds : (3.4)

The kinetic energyAk is the sum of the kinetic energy of the upper half of the bow, half
the kinetic energy of the arrow and the kinetic energy of the concentrated mass at the tip.
Then when a dot indicates di®erentiation with respect to timet,

Ak = 1=2
Z L

0
V(s)

¡
_x

2
+ _y

2¢
ds + 1=2ma

_b
2

+ 1=2mt

¡
_x

2
(L; t) + _y

2
(L; t)

¢
; (3.5)

whereb is the x-coordinate of the end of the arrow or the middle of the string, which can
be expressed in the coordinates of the tip of the bow by

b(t) = x(L; t) +
¡
l
2

¡ y2(L; t)
¢1=2

; (3.6)

because the string is assumed to be inextensible.
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The string is also assumed to be without mass, hence it contributes neither to the
potential nor to the kinetic energy. Because the bow is inextensional we have the constraint

x0
1

2 + y0
1

2 = 1 ; 0 · s · L : (3.7)

We introduce

¤ = Ak ¡ Ap +
Z L

0
¸ (s; t)

¡
x0

1
2 + y0

1
2 ¡ 1

¢
ds ; 0 · s · L ; (3.8)

where ¸ (s; t) is an unknown Lagrangian multiplier to meet the constraint(3.7). Then by
Hamilton's principle we have to ¯nd an extremum of

Z t1

t0

¤ dt ; (3.9)

hence

±
Z t1

t0

¤ dt = 0 ; (3.10)

for ¯xed initial time t = t0 and ¯xed ¯nal time t = t1.
Because the bow is clamped at the originO, we have fors = 0 the geometric boundary

conditions

x(0; t) = y(0; t) = 0 ; y0(0; t) = y0(0) : (3.11)

By standard methods of calculus of variations and using (3.11) we ¯nd the Euler equations
as necessary conditions for the extremum of (3.9)

V Äx = ( y00M )0¡ 2(¸ x0)0+ ( y0M )00; (3.12)

and

VÄy = ¡ (x00M )0¡ 2(¸ y0)0¡ (x0M )00: (3.13)

Also the dynamic boundary conditions ats = L follow from the variational procedure,
they become

M (L; t) = 0 ; (3.14)

ma
Äb+ mt Äx(L; t) = 2 ¸ (L; t)x0(L; t) ¡ y0(L; t)M

0
(L; t) (3.15)

ma
y(L; t)Äb

b¡ x(L; t)
+ mtÄy(L; t) = ¡ 2¸ (L; t)y0(L; t) ¡ x0(L; t)M

0
(L; t) (3.16)

The initial conditions which complete the formulation of the problem are

x(s;0) = x1(s) ; y(s;0) = y1(s) ; _x(s;0) = _y(s;0) = 0 ; 0 · s · L : (3.17)



60 CHAPTER 3. MECHANICS OF THE BOW AND ARROW

Figure 3.2: Forces and moments on a di®eren-
tial element of the bow.

Although it is not necessary for the computations, we look for a physical meaning of the
function ¸ (s; t). In Figure 3.2 the resultant forces and moments acting on a di®erential
element of the bow are shown. The momentum balance in thex- and y-direction gives

V Äx = ( Tx0)0¡ (Qy0)0 ; (3.18)

and

VÄy = ( Ty0)0+ ( Qx0)0 ; (3.19)

respectively, whereT(s; t) is the normal force andQ(s; t) the shear force on a cross-section
(see Figure 3.2). If the rotatory inertia of the cross-section of the bow is neglected, the
moment balance of the element gives

M
0
(s; t) = ¡ Q(s; t) : (3.20)

Comparing equations (3.18) and (3.19), using (3.20) to replaceQ by M
0
, with (3.12) and

(3.13), we ¯nd the physical meaning of

¸ (s; t) = ¡ 1=2T +
M

W
(M ¡ Wµ0

0) ; 0 · s · L : (3.21)

Substitution of (3.21) in the boundary conditions (3.15) and (3.16) yields

ma
Äb+ mt Äx(L; t) = ¡ T(L; t)x0(L; t) ¡ y0(L; t)M

0
(L; t) ; (3.22)

and

ma
y(L; t)Äb

b¡ x(L; t)
+ mt Äy(L; t) = T(L; t)y0(L; t) ¡ x0(L; t)M

0
(L; t) : (3.23)

Equations (3.22) and (3.23) connect the deformation of the bow at s = L to the force
components in thex- and y-direction, exerted by the string and by the massmt the tip.
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The functions x1(s) and y1(s) occurring in the initial conditions (3.17) satisfy the
equations of static equilibrium, with b = jODj, obtained from (3.18), (3.19) and (3.20)
by putting the left-hand sides of the ¯rst two mentioned equations equal to zero. The
two relations (3.3) and (3.7) remain unchanged. Besides we have the boundary conditions
(3.11), (3.14), (3.22) and (3.23), where in the latter two wehave to replace the ¯rst term
on the left-hand sides by¡ 1=2F (jODj) and ¡ 1=2y1(L)F (jODj)=(b¡ x1(L)), respectively.
The weight of the bow F (jODj) is unknown and has to be determined in the course of
the solution of these equations. In Equation (3.6)b has to be replaced by its known value
jODj, the draw of the bow. The static deformations are discussed in [2].

The acceleration (or dynamic) force on the arrow, denoted byE, is given by

E(t) = ¡ 2ma
Äb(t) : (3.24)

and the recoil forceP, which is the force of the bow exerted on the bow hand (reckoned
positive in the positive x-direction) by

P(t) = 2
¡
M

0
(0; t)y0

0(0) + T(0; t)x0
0(0)

¢
: (3.25)

We introduce dimensionless quantities in the following way

(x; y; s;L; L0; l ) = ( x; y; s; L; L 0; l) jODj ;

(T ;F ; E; P) = ( T; F; E; P ) F (jODj) ;

M = M jODjF (jODj) ; W = W jODj2F (jODj) ; V = V mb=jODj;

(ma; mt ) = ( ma; mt ) mb ; t = t
¡
mbjODj=F (jODj)

¢1=2
: (3.26)

where we used the a priori unknown weightF (jODj) of the bow to make the quantities
dimensionless. In the following we will systematically label quantities with dimension by
means of a bar "{ " quantities without bar are dimensionless. Quantities, when they have
dimensions, will be expressedunless stated otherwise, by means of the following units:
length in cm, force in kg force, mass in kg mass and time in 0.03193 sec.

If the velocities u(s; t) = _x(s; t) and v(s; t) = _y(s; t) are introduced the system of six
nonlinear partial di®erential equations for the six functions x; y; u; v; M; T of two indepen-
dent variabless 2 [L0; L] and t > 0 assumes the form

V _u = ( Tx0)0+ ( M 0y0)0 ; (3.27)

V _v = ( Ty0)0¡ (M 0x0)0 ; (3.28)

_x = u ; (3.29)

_y = v ; (3.30)

x02 + y02 = 1 ; (3.31)

M = W(x0y00¡ y0x00+ µ0
0) : (3.32)
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The boundary conditions ats = L0 become

x(L0; t) = x0(L0) ; y(L0; t) = y0(L0) ; x0(L0; t) = x0
0(L0) ; (3.33)

and at s = L(t > 0),

M (L; t ) = 0 ; (3.34)

ma
Äb+ mt Äx(L; t ) = ¡ T(L; t )x0(L; t ) ¡ M 0(L; t )y0(L; t ) ; (3.35)

may(L; t )Äb¡ mt Äy(L; t )
¡
b(t) ¡ x(L; t )

¢
=

¡
T(L; t )y0(L; t ) ¡ M 0(L; t )x0(L; t )

¢¡
b(t) ¡ x(L; t )

¢
; (3.36)

with

b(t) = x(L; t ) +
¡
l2 ¡ y2(L; t )

¢1=2
; (3.37)

The initial conditions (3.17) become

x(s;0) = x1(s) ; (3.38)

y(s;0) = y1(s) ; (3.39)

u(s;0) = v(s;0) = 0; L0 · s · L : (3.40)

The dimensionless dynamic forceE and recoil forceP are given by

E(t) = ¡ 2ma
Äb ; (3.41)

and

P(t) = 2
¡
M 0(L0; t)y0

0(L0) + T(L0; t)x0
0; (L0)

¢
: (3.42)

The ¯nite-di®erence method discussed in the next section can be used for the solution
of both the static and the dynamic equations. In [2] the static problem, which is a two-
point boundary-value problem for a system of ordinary di®erential equations, is solved by
means of a shooting method.

3.4 Finite di®erence equations

In order to obtain approximations for the solution of the partial di®erential equations
(3.27)¢ ¢ ¢(3.32) with boundary conditions (3.33)¢ ¢ ¢(3.36) and initial conditions (3.38)¢ ¢ ¢
(3.40) we use a ¯nite-di®erence method. We consider the grid

s = j ¢ s ; j = 0(1) ns ; ns¢ s = L ¡ L0 ; (3.43)

and

t = k¢ t ; k = 0(1) nt ; (3.44)
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Figure 3.3: Grid placed over
the s; t-plane.

nt being an integer large enough to cover the time interval of interest grid points are
indicated by "£ " in Figure 3.3. To satisfy the boundary conditions externalmesh points
are introduced, (L0 ¡ ¢ s; k¢ t) and (L + ¢ s; k¢ t), with k = 0(1) nt , indicated by "4 " and
"2 ", respectively. The value of a functionf (s; t) at the grid point ( j ¢ s; k¢ t) is denoted
by f j;k and of h(s) and g(t) by ht and gk , respectively.

There are many di®erence schemes possible to approximate thedi®erential equations.
For instance the term (Tx0)0(j ¢ s; k¢ t) can be approximated by

Tj;k
x j +1 ;k ¡ 2x j;k + x j ¡ l;k

¢ s2
+

Tj + l;k ¡ Tj ¡ 1;k

2¢ s
x j +1 ;k ¡ x j ¡ 1;k

2¢ s
; (3.45)

but also by

¡
Tj +1 =2;k

x j +1 ;k ¡ x j;k

¢ s
+ Tj ¡ 1=2;k

x j;k ¡ x j ¡ 1;k

¢ s

¢
=¢ s : (3.46)

In the last case the normal forceT is de¯ned at each time level only at points just in
between the grid points (3.43), indicated by "±" in the boundary conditions (3.35) and
(3.36), can at timet = k¢ t for instance be approximated by

3=2 Tns ¡ 1=2;k ¡ 1=2 Tns ¡ 3=2;k : (3.47)

The same kind of approximation (3.45) and (3.46) can be used for the other terms on the
right-hand sides of (3.27) and (3.28). The constraint (3.31) can be approximated at the
grid points, yielding for point (j ¢ s; k¢ t)

¡ x j +1 ;k ¡ x j ¡ 1;k

2¢ s

¢2
+

¡ yj +1 ;k ¡ yj ¡ 1;k

2¢ s

¢2
= 1 : (3.48)

When we approximate this constraint at points in the middle of the grid points we obtain

¡ x j;k ¡ x j ¡ 1;k

¢ s

¢2
+

¡ yj;k ¡ yj ¡ 1;k

¢ s

¢2
= 1 : (3.49)
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The type of approximation (3.46) in combination with (3.49)turned out to be satisfactory
because it is well matched to the boundary conditions.

Two di®erence operators are de¯ned

±f j;k =
f j +1 =2;k ¡ f j ¡ 1=2;k

¢ s
; ¢ f j;k = 0:5 (±f j +1 =2;k ¡ ±f j ¡ 1=2;k ) : (3.50)

If we use (3.46), and take a weighted average by means of the factor ¹ of forward and
backward approximations of each of the four equations (3.27)¢ ¢ ¢(3.30) we ¯nd

Vj (uj;k +1 ¡ uj;k )=¢ t = ¹
¡
±(T±x) j;k +1 + ±(±M±y)j;k +1

¢
+ (1 ¡ ¹ )

¡
±(T±x) j;k + ±(±M±y)j;k

¢

; j = 0(1) ns ; (3.51)

Vj (vj;k +1 ¡ vj;k )=¢ t = ¹
¡
±(T±y) j;k +1 + ±(±M±x)j;k +1

¢
+ (1 ¡ ¹ )

¡
±(T±y) j;k + ±(±M±x)j;k

¢

; j = 0(1) ns ; (3.52)

(x j;k +1 ¡ x j;k )=¢ t = ¹u j;k +1 + (1 ¡ ¹ )uj;k ; j = 0(1) ns ; (3.53)

(yj;k +1 ¡ yj;k )=¢ t = ¹v j;k +1 + (1 ¡ ¹ )vj;k ; j = 0(1) ns ; (3.54)

Using (3.49) we approximate (3.31) and (3.32) by

(±xj ¡ 1=2;k+1 )2 + (¢ yj ¡ 1=2;k+1 )2 = 1 ; j = 0(1) ns + 1 ; (3.55)

and

M j;k +1 = Wj

¡
¢ x j;k +1 ±2yj;k +1 ¡ ¢ yj;k +1 ±2x j;k +1 + µ0

0(j ¢ s)
¢

; j = 0(1) ns ; (3.56)

For ¹ = 1=2 these equations become the Crank-Nicolson scheme and the truncation
error is O(¢ t2) + O(¢ s2). For ¹ = 1 we have the fully implicit backward time di®erence
scheme, then the truncation error isO(¢ t) + O(¢ s2).

The boundary conditions (3.33) are approximated by

x0;k+1 = x0(L0) ; y0;k+1 = y0(L0) ; (3.57)

and

y0
0(L0) ¢ x0;k+1 = x0

0(L0) ¢ y0;k+1 ; (3.58)

Before writing down the boundary conditions ats = L we mention that besides the
x-coordinateb of the arrow. it appeared to be advantageous to introduce also its velocity

c def= _b ; (3.59)
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as another unknown function. Then the three boundary conditions (3.34)¢ ¢ ¢(3.36) at s = L
are approximated by the di®erence relations

Mns ;k+1 = 0 ; (3.60)

ma (ck+1 ¡ ck)=¢ t + mt (uns ;k+1 ¡ uns ;k)=¢ t =

¡ ¹
£
(3=2Tns ¡ 1=2;k+1 ¡ 1=2Tns ¡ 3=2;k+1 )(xns +1 ;k+1 ¡ xns ¡ 1;k+1 )+

(yns+1 ;k+1 ¡ yns ¡ 1;k+1 )(¡ 4Mns ¡ 1;k+1 + Mns ¡ 2;k+1 )
¤

¡ (1 ¡ ¹ )
£
(3=2Tns ¡ 1=2;k ¡ 1=2Tns ¡ 3=2;k )(xns +1 ;k ¡ xns ¡ 1;k ) +

(yns+1 ;k ¡ yns ¡ 1;k )(¡ 4Mns ¡ 1;k + Mns ¡ 2;k )
¤

; (3.61)
¡
¹y ns ;k+1 + (1 ¡ ¹ )yns ;k

¢
ma (ck+1 ¡ ck)=¢ t ¡

¡
¹ (bk+1 ¡ xns ;k+1 ) + (1 ¡ ¹ )(bk ¡ xns ;k)

¢
mt (vns ;k+1 ¡ vns ;k)=¢ t =

£
¹ (bk+1 ¡ xns ;k+1 ) + (1 ¡ ¹ )(bk ¡ xns ;k )

¤

£
¹ [(3=2Tns ¡ 1=2;k+1 ¡ 1=2Tns ¡ 3=2;k+1 )(yns +1 ;k+1 ¡ yns ¡ 1;k+1 )¡

(xns +1 ;k+1 ¡ xns ¡ 1;k+1 )(¡ 4Mns ¡ 1;k+1 + Mns ¡ 2;k+1 )]

+ (1 ¡ ¹ )[(3=2Tns ¡ 1=2;k ¡ 1=2Tns ¡ 3=2;k )(yns +1 ;k ¡ yns ¡ 1;k ) ¡

(xns +1 ;k ¡ xns ¡ 1;k )(¡ 4Mns ¡ 1;k + Mns ¡ 2;k )]
¤

: (3.62)

Finally we take as approximations for (3.37) and (3.59)

(bk+1 ¡ xns ;k+1 )2 + y2
ns ;k+1 = l2 ; (3.63)

and

(bk+1 ¡ bk)=¢ t = ¹c k+1 + (1 ¡ ¹ )ck ; (3.64)

respectively. The dynamic forceE (3.41) is approximated by

Ek+1 = ¡ 2ma(ck+1 ¡ ck)=¢ t ; (3.65)

and the recoil forceP (3.42) by

Pk+1 = 2
¡
(M1;k+1 ¡ M ¡ 1;k+1 )y0

0(L0) + 1 =2 (T1=2;k+1 + T¡ 1=2;k+1 )x0
0(L0)

¢
: (3.66)

At t = 0 the initial values of the unknown functionsx; y; u; v are given by (3.38)¢ ¢ ¢(3.40).
The ¯nite di®erence approximation for the static equations can be found in a straightfor-
ward way from equations (3.51)¢ ¢ ¢(3.64).

At each time, hence for eachk¢ t(k = 0(1) nt ), we have to solve a set of nonlinear
equations, which is done by means of a Newtonian method. For this method it is essential
to have reliable starting values or the unknowns

i) The equations for the static case, fort = 0.
Starting values for the solution of the static ¯nite di®erenceequations are obtained
by using the values computed by means of the program described in [2]. The reason
that we revise these values by means of the static ¯nite di®erence scheme, is that the
values obtained in this way are better matched to the ¯nite di®erence scheme for the
dynamic equations.
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ii) The dynamic case, fromt = 0 to t = ¢ t; (k = 0) .
We use as starting values of the unknowns at time level At the values obtained in 3.4.
In order to avoid the use of the values of the accelerations att = 0 we take ¹ = 1.
In Section 3.6 we return to this.

iii) The dynamic case, fromt = k¢ t to t = ( k + 1)¢ t; (k = 1( i )nt )
The starting values for the time level (k + 1)¢ t of the unknownsx; y; u; v; M; b and
c are obtained from the equations (3.51)¢ ¢ ¢(3.54), (3.56), (3.60)¢ ¢ ¢(3.62) and (3.64),
with ¹ = 0. This means that we explicitly calculate these values from the ¯nal results
at the preceding time levelk¢ t. From these starting values we calculate the values
at the time level (k + 1)¢ t with ¹ = 1=2. Hence the further dynamic development
for t > ¢ t is determined by a Crank-Nicolson scheme.

In order to get accurate information about the way in which the arrow leaves the string,
the mesh width ¢t in the t-direction is chosen continuously smaller from a certain time,
at which the string is nearly stretched. Because the di®erence scheme is a two-time-level
one with approximations for only ¯rst-order derivatives with respect to time, no special
provisions are needed.

For instance, in [3] numerical methods to solve related problems are analysed. In
the nonlinear case only for speci¯c problems stability and convergence of some di®erence
schemes can be proved analytically. Here no proof is given ofthe stability and convergence
of our di®erence scheme, however,we have checked our method numerically. First, in the
static case, we compare automatically (see i) the results ofthe ¯nite-di®erence method with
the results obtained with the program described in [2]. The di®erence between the weight
of the bow computed by both programs appears to be about 0.5%,if we take ns = 64.
Second the total energyAp + Ak (equations (3.4) and (3.5)) has to be constant during the
motion. Third, we can investigate the convergence of the di®erence equations by re¯ning
the grid. We consider the special bow

B(91:44; 10:16; W(s); V(s); µ0 ´ 0; 0:0125; 0; jOHj = 15:24;

71:12; 15:53; 0:1625): (3.67)

The bending sti®nessW(s) and the mass distributionV(s) are given by

W(s) = 1 :30 105
¡ L ¡ s

L

¢
; (3.68)

and

W(s) = 7 :69 if 1:30 105
¡ L ¡ s

L

¢
· 7:69 ; (3.69)

V(s) = 4 :52 10¡ 3
¡ L ¡ s

L

¢
: (3.70)

The value at the tip of W(s) (3.69) is necessary in order to avoid di±culties in the
calculation. This bow (H bow) is also discussed by Hickman in[1, page 69].
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Table 3.1: Dependence ofb, c, a and Ap + Ak on ¢ t, ¢ s = 1 :27 cm, t = 0 :0157 sec.

¢ t sec b cm c cm/sec a cm/sec2 Ap + Ak

4:9089 10¡ 4 16.379 ¡ 5544 ¡ 147704 560.48
2:4544 10¡ 4 16.375 ¡ 5548 ¡ 139432 560.43
1:2272 10¡ 4 16.373 ¡ 5549 ¡ 132578 560.41

Table 3.2: Dependence ofb;c;a and Ap + Ak on ¢ s, ¢ t = 1 :2272 10¡ 4 sec,t = 0 :0157 sec.

¢ s cm b cm c cm/sec a cm/sec2 Ap + Ak

5.08 16.06 ¡ 5583 ¡ 136392 569.8
2.54 16.24 ¡ 5563 ¡ 132585 563.6
1.27 16.37 ¡ 5549 ¡ 132578 560.4

In Tables 3.1 and 3.2 we show the dependence of some calculated dynamic quantities
on the mesh widths ¢t and ¢ s, respectively. The quantities are thex-coordinateb(cm) of

the end of the arrow, the velocityc = _b (cm/sec), the accelerationa = _c (cm/sec2) and the
energyAp + Ak (kgfcm). The values are given for a ¯xed timet = 0:0157 sec, which is near
to the time at which the arrow leaves the string (0.01662 sec). The same can be done for
other times, then the results are similar with respect to convergence. From these tables it
seems reasonable that with decreasing values of ¢t and ¢ s the solutions of the di®erence
equations "converge". The energy for ¢t = 1:2272 10¡ 4 sec and ¢s = 1:27 cm di®ers
about 0.5% from its value 557.207 kgfcm at timet = 0. A fourth check is to compare our
results with those obtained by the use of the ¯nite-element program marc of the marc
Analysis Research Corporation. This has been done for the bow

B(91:44; 10:16; W; V ; µ0 ´ 0; 0:01134; 0; l = 89:34;

70:98; 15:43; 0:1589); (3.71)

where the bending sti®nessW(s) and the mass distributionV(s) are given by

W(s) = 1 :15 105
¡ L ¡ s

L ¡ L0

¢
; (3.72)

and

W(s) = 7 :69 if 1:15 105
¡ L ¡ s

L ¡ L0

¢
· 7:69 ; (3.73)

V(s) = 3 :91 10¡ 3
¡ L ¡ s

L

¢
: (3.74)
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Table 3.3: Comparison between ¯nite-di®erence and ¯nite-element solution.

¯nite elements ¯nite di®erence
t b cm c cm/sec b cm c cm/sec
0:501 10¡ 2 63.69 ¡ 2739 63.53 ¡ 2795
0:501 10¡ 2 45.47 ¡ 4399 44.98 ¡ 4480
0:501 10¡ 2 25.69 ¡ 5449 24.84 ¡ 5537

Figure 3.4: Acceleration of arrow. ±: ¯nite ele-
ment and |: ¯nite di®erence.

In the marc program the functionsW and V are approximated by step functions and
both the bow and the string are taken slightly extensible. The number of elements used
was eight, and±t = 0:001 sec. For the ¯nite-di®erence scheme we used ¢t = 0:001 sec
and ¢ s = 1:27 cm. The values ofb and c are given in Table 3.3 for several values oft.
In Figure 3.4 the accelerationa of the arrow in cm/sec2 as function of the time in sec,
computed by both programs is drawn. We conclude that there isa reasonable agreement
between the results with respect to thex-coordinate b and the velocity c of the arrow.
The acceleration curve obtained by using themarc -program is, however, oscillating in a
non-physical way.

3.5 Some numerical results

In [2] the so called static quality coe±cient, denoted byq, was de¯ned. This quantity is
given by

q =
A

jODjF (jODj)
; (3.75)
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whereA is the energy stored in the bow by deforming it from the bracedposition into the
fully drawn position. This energy reads

A =
Z jOD j

jOH j
F (b) db=

£Z L

0
W(s)

¡
µ0(s) ¡ µ0

0(s)
¢2

ds
¤b= jOD j

b= jOH j
: (3.76)

We now introduce two dynamic quality coe±cients´ and º in order to be able to
compare more easily the performance of di®erent bows in combination with various arrows.
This e±ciency ´ of a bow is de¯ned by

´ =
mac2

l

A
; (3.77)

where cl is the muzzle velocity. The productq´ is a measure for the energy imparted to
the arrow. It is evident that in all kinds of archery we want this quantity to be as large
as possible. However, it cannot be on its own an appropriate measure of the performance
of the bow. If we let for instance increase the massma of the arrow inde¯nitely, then the
e±ciency (3.77) tends to its largest value, namely one, henceq´ tends to its largest value
q, however, the muzzle velocitycl tends to zero. Klopsteg [1, page 162], mentioned the
cast as another criterion of the quality of a bow. He de¯nes thecast as the property of a
bow that enables it to impart velocity to an arrow of stated mass. So, a second dynamic
quality coe±cient can be de¯ned by

º =
¡ q´

ma

¢1=2
= cl ; (3.78)

where the last equality follows from (3.75), (3.77) and (3.26). Thus, if the weight, draw
and mass of the limbs are stated, thenº is a measure for the muzzle velocity of a given
arrow. In order to show on which dimensionless quantitiesº depends, we write

º = cl (L; L 0; W(s); V(s); µ0(s); ma; mt ; jOH j or l) ; 0 · s · L : (3.79)

For °ight shooting the quality coe±cient º is important because thenº is wanted to
be su±ciently large. For hunting (but certainly for target shooting) it is not easy to ¯nd
a criterion for the good performance of bow and arrow. What wecan state is that the
bow has to shoot "sweetly" and without an unpleasant recoil.By this we mean that the
acceleration of the arrow should happen smoothly enough andthat the recoil forceP (3.42)
should be not too large or °uctuating too strongly.

One of our objectives is to get insight into the in°uence of thequantities which deter-
mine a bow on the numbersq, ´ and º , and on the behaviour of the forcesE(b) and P(b).
To this end we start with the H bow.

B(1:286; 0:143; W(s); V(s); µ0 ´ 0; 0:0769; 0; jOH j = 0:214; 1; 1; 1); (3.80)

and change in a more or less systematic way its parameters. The bending sti®nessW and
the mass distributionV in (3.80) are given by (3.68), (3.69) and (3.70) of which the values
have been made dimensionless by using (3.26)
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Figure 3.5: sfd and dfd curves. Hickman's
theory and this theory.

If the three quantities q, ´ and º are known, the muzzle velocitycl (cm/sec) can be
computed. Using (3.78) and (3.26) we ¯nd

cl = 31:32º
¡ F (jODj)jODj

mb

¢1=2
cm=sec; (3.81)

where the number 31.32 is caused by the choice of our units. The kinetic energy (kgfcm)
imparted to the arrow of mass 2ma follows from

mac2
l = maº 2F (jODj)jODj = ´qF (jODj)jODj : (3.82)

These equations show the dependence of the two important quantities, the muzzle velocity
(3.81) and the kinetic energy of the arrow (3.82), on the weight draw and mass of the limbs.
For the H bow (3.67) we haveF (jODj) = 15:53 kgf, jODj = 71:1 cm andmb = 0:1625 kg,
and the computed values ofq, ´ and º are 0.407, 0.89 and 2.16, respectively. Thus for this
bow, cl = 5578 cm/sec andmac2

l = 400 kgf cm.
The shooting time (the time interval between the loosing of the arrow and its leaving

the string) appeared to be 0.01662 sec.
In Figure 3.5 we have drawn the dimensionless static-force-draw (sfd ) curve F (b), and

dynamic-force-draw (dfd ) curve E(b), calculated by our theory for the H bow. Also the
curves obtained by Hickman's theory [1, page 69], are drawn.The sfd -curves coincide
with each other within drawing accuracy. As can be seen from Figure 3.5 thedfd -curve
obtained by using the ¯nite-di®erence method is gradually decreasing. There is no jump
in the force on the arrow att = 0. The ¯nite-di®erence method will in general give an
e±ciency which is smaller than one. Thex-coordinateb of the arrow for which the force
at the arrow is zero, hence the value ofb where the arrow leaves the string, is a bit smaller
than the brace height.

Hickman used a simple model (H model) which consists of two rigid limbs without
mass, connected each to the grip by means of a linear elastic hinge The strength of these
hinges is determined in some way by the elastic properties ofthe real bow. The mass of
the real limbs is accounted for by concentrated masses at thetips of the limbs. Because
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Figure 3.6: Shapes of limbs of H bow.

of these masses the force on the arrow has, when calculated bymeans of the H model, a
jump at time t = 0. In [2] it is proved that the e±ciency ´ of a H model bow is always 1.
That is why in Figure 3.5 the area below thesfd curve and the area below thedfd curve,
calculated by means of the H model, are equal.

We mention that in the ¯gures given by Hickman in [1, pages 5 and7], the acceleration
of the arrow measured experimentally, and hence also the force on the arrow, is zero at time
t = 0, which is in contradiction with his own model. The dynamicforce on the arrow in our
theory at that moment is, if there are no concentrated massesat the tips mt = 0), equal
to the static force in fully drawn position (see Section 3.6)The shapes of the limbs of the
H bow for some positions of the arrow, both static and dynamic, are shown in Figure 3.6.
For b = 1 both shapes are the same. After loosing the arrow ¯rst the outer parts of the
limbs stretch themselves. The released bending energy is used to accelerate both the arrow
and the limbs. For a certain value ofb the shape in the dynamic and static case are nearly
the same. After that the outer parts of the limbs are decelerated and become more sharply
bent than in the static case. Now the inner parts of the limbs become more stretched and
loose their bending energy.

In Figure 3.7 the dfd curve and the recoil forceP, as a function of the position of
the end of the arrowb, are drawn. It can be seen that although the forceE at the arrow
decreases after release of the arrow, the recoil forceP increases and becomes more than
two times the weight of the bow. We note that at a certain moment it becomes negative;
this means that the archer has to pull instead of to push the bow at the end of the shooting
in order to keep the grip at its place. In modern archery, however, it is practice to shoot
open-handed. But then it is impossible for an archer to exerta force on the bow directed
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Figure 3.7: Dynamic force E(b) and recoil force
P(b) for the H bow.

to himself and the assumption that the bow is clamped at the grip, is violated. Possibly
less kinetic energy will be recovered from the bow when negative recoil forces occur if the
bow is shot open-handed. In this paper we adhere to the assumption that the grip of the
bow is clamped.

Klopsteg [1, page 141], carried out experiments to investigate the motion of the bow
hand while the arrow is being accelerated. He ¯nds, besides other movements, always a
small excursion of this hand backwards after the loose. He states:

`A satisfactory explanation for the slight backward motionis that during the
20 or 30 thousands of a second after the loose, a very considerable force is being
exerted by the string on the arrow and consequently an equal backward force is
exerted by the handle of the bow on the bow hand. During this brief impulse
the instantaneous value of the force may rise to several hundred pounds, but
lasting for an exceedingly few thousands of a second.'

This explanation is in contradiction with the results shownin Figure 3.7. The dynamic
force E at the arrow and the forceP at the bow hand are not equal at all.

In what follows we consider the consequences of a change of one characteristic quantity
of the H bow at a time, the other ones being kept the same. The values of the static
quality coe±cient q given in the following tables are computed by means of the program
described in [2]. Only if the smoothness of thedfd curve or the behaviour of the recoil
force P di®ers clearly from the smoothness of that curve in the case ofthe H bow, this is
explicitly mentioned.

The in°uence of a change of the length of the grip 2L0 is shown in Table 3.4. In [1, page
18], the e®ect of a rigid middle section, a grip, is also deal t with. This is an interesting
subject because it is known that a bow which bends throughoutits whole length is not a
pleasant bow to shoot. It has a so-called "kick". Because Hickman did not found striking
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Table 3.4: In°uence of grip length 2L 0.

L0 0 0.0714 0.143 0.214
q 0.415 0.411 0.407 0.403
n 0.88 0.88 0.89 0.90
º 2.18 2.18 2.16 2.16

Table 3.5: In°uence of brace height jOH j.

jOH j 0.0714 0.107 0.143 0.179 0.214 0.250
q 0.444 0.438 0.430 0.420 0.407 0.392
´ 0.91 0.91 0.90 0.89 0.89 0.88
º 32.29 2.28 2.25 2.21 2.16 2.12

theoretical di®erences with respect to the static properties of two bows, one withL0 = 0
and the other with L0 = 0:143, he states:

`The greatest di®erence between these two types of bows is dueto dynamic
conditions.'

However, it is seen from Table 3.4 that the values ofq, ´ and º nearly do not change.
From our calculations it follows that the behaviour of the dynamic forceE and of the
recoil forceP, are almost the same for the two types. Hence also with respect to these
dynamic properties no dear di®erences appear in our theory. In Table 3.5 the in°uence of
the brace height is shown. In [1, page 21], Hickman makes the following statement based
on experiments:

`The arrow velocity increases with increase in bracing height up to a certain
point, after which it slowly decreases with additional increases in bracing height.
The bracing height for maximum arrow velocity depends principally on the
length of the bow.'

This does not agree with the results of our theory. From Table3.5 we see that there is
always a small decrease of the arrow velocity when the brace height is increased. This is
due to both static (q) and dynamic (º ) e®ects.

To investigate the in°uence of the length 2L of the bow we considered ¯ve di®erent
lengths. From Table 3.6 we ¯nd that there is almost no perceptible change in the e±ciency
´ of the bow henceº shows the same tendency asq.

Now we consider the in°uence of the distribution of the bending sti®nessW and the
massV along the bow. We take

Wn (s) = W(L0)
¡ L ¡ s
L ¡ L0

¢̄
n ; L0 · s · L ; (3.83)
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Table 3.6: In°uence of length 2L .

L 1.143 1.214 1.286 1.357 1.429
q 0.393 0.400 0.407 0.413 0.417
´ 0.88 0.88 0.89 0.89 0.89
º 2.12 2.15 2.16 2.18 2.21

Table 3.7: In°uence of bending sti®nessW and of massV .

W(s) W1 W2 W3 W3

V(s) V3 V1 V2 V3 V4

q 0.417 0.414 0.407 0.407 0.407 0.407 0.407
´ 0.93 0.91 0.89 0.74 0.81 0.89 0.97
º 2.25 2.21 2.16 1.98 2.08 2.16 2.28

and

Vn (s) = V(L0)
¡ L ¡ s
L ¡ L0

¢̄
n ; L0 · s · L : (3.84)

wheren = 1; 2; 3; 4 and ¯ 1 = 0, ¯ 2 = 1=2, ¯ 3 = 1, ¯ 4 = 2. A value of ¯ n chosen in (3.84)
needs not to be the same as the one chosen in (3.83). In order toavoid numerical di±culties
we take again

Wn (s) = 10 ¡ 4 if W(L0)
¡ L ¡ s
L ¡ L0

¢̄
n · 10¡ 4 ; (3.85)

The results of changingW and V separately are given in Table 3.7. We conclude
that if the mass distribution V is taken to be linear (V3), the constant bending sti®ness
distribution ( W1) is the best, due to both static (q) and dynamic(́ ) e®ects. If the bending
sti®nessW is linear (W) then the mass distributionV4, which has light tips, is undoubtedly
the best. We refer to Figure 3.8 for itsdfd curve.

In Table 3.8 W and V are changed simultaneously. The results in this table show that
the quantities q, ´ and º of the bow nearly depend only on the ratio of the two functions
W and V. However, as can be seen from Figure 3.8 thedfd curve of the bow with W3

and V3 is far more smooth than those of the other two bows. It shows that although the
e±ciency of a bow with uniform distributions of bending sti®ness and mass is acceptable,
it will shoot almost surely unpleasant.

We now consider the in°uence of the shape of the bow in unbracedsituation. This
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Table 3.8: In°uence of bending sti®nessW and of massV .

W; V W1; V1 W2; V2 W3; V3

q 0.417 0.414 0.407
´ 0.87 0.86 0.89
º 2.16 2.15 2.16

Figure 3.8: dfd curves for bows (W1; V1),
(W2; V2), (W3; V3) and (W3; V4).
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Figure 3.9: Three types of recurve µ0;1(s),
µ0;2(s) and µ0;3(s).

shape is determined by the functionµ0(s). We choose

µ0;1 = 0 ; 0 · s · L0 ; µ0;1 = ¡ 0:12 ; L0 · s · L ; (3.86)

µ0;2 = 0 ; 0 · s · L0 ; µ0;2 = ¡ 0:5
s ¡ L0

L ¡ L0
; L0 · s · L ; (3.87)

µ0;3 = 0 ; 0 · s · L0 ; µ0;3 = 0:12¡
s ¡ L0

L ¡ L0
; L0 · s · L ; (3.88)

The three forms are drawn in Figure 3.9. The H bow in unbraced situation is straight,
hence it is part of the y-axis,µ0 ´ 0. The unbraced situations (3.86), (3.87) and (3.88) are
called to possess recurve as we mentioned before. We have to choose a moderate recurve
in order to agree with the assumption that the string has contact with the bow only at the
tips of the bow. It is seen from Table 3.9 that the e±ciency of the recurved bows is slightly
smaller than the e±ciency of the H bow (µ0 ´ 0). In the case ofµ0;3 however, there is a
more important favourable in°uence of the recurve on the static quality coe±cient q. This
agrees with the experience of Hickman [1, pages 22, 24 and 50]. In [2] a bow with even a
coe±cient q equal to 0.833 is described. However, for this bowthe string lies partly along
the bow during some time interval. In a following paper we hope to be able to describe
the dynamic performance of such a bow.

We stress that for a bow with a shape given byµ0;3 the recoil forceP at the bow hand
is positive at all times in between loosing the arrow and its leaving the string (Figure 3.10).
This is in contradiction to all other bows mentioned so far.

Next the in°uence of the mass of the arrow is considered. In Table 3.10 the consequences
of changingma are collected. Now also the product ofq and ´ is given, being a measure
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Table 3.9: In°uence of shape of unbraced bow.

µ0 µ0 ´ 0 µ0;1 µ0;2 µ0;3

q 0.407 0.424 0.457 0.487
´ 0.89 0.83 0.81 0.83
º 2.16 2.14 2.19 2.29

Figure 3.10: Dynamic force E(b) and recoil
force P(b) for recurve µ0;3.

of the energy imparted to the arrow. The factorq is 0.407 in all cases. The ¯rst and
last given arrow masses in Table 3.10 are of little practicalimportance, however, they
show what happens in the case of a light or heavy arrow. When the mass of the arrow is
somewhat smaller than the smallest mass mentioned in this table the force exerted on the
arrow by the string becomes zero before the string is stretched and hence our theory may
be no longer valid. We remark that the decrease of the e±ciencywith the decrease of the
arrow mass, shown in Table 3.10, does not occur in the H model.Table 3.10 shows further
that although the e±ciency of a bow shooting a light arrow is bad, the muzzle velocity will
be high, a fact already mentioned in many books about archery.

In [1, page 167], Klopsteg de¯nes the concept of virtual mass as: mass which, if it were
moving with the speed of the arrow at the instant the latter leaves the string, would have
precisely the kinetic energy of the limbs and the string at that instant. If K h denotes the
half of the virtual mass then

A = ( ma + K h) c2
l : (3.89)



78 CHAPTER 3. MECHANICS OF THE BOW AND ARROW

Table 3.10: In°uence of mass of arrow 2ma, q = 0 :407.

ma 0:0192 0:0384 0:0769 0:1538 0:3077
´ 0.48 0.69 0.89 0.98 0.98
q´ 0.20 0.28 0.36 0.40 0.40
º 3.20 2.72 2.16 1.63 1.14

Figure 3.11: sfd curve F (b) and dfd curves
E(b) of H bow, di®erent arrow masses 2ma, Ta-
ble 3.10.

If we de¯ne K h = K h=mb we obtain by using (3.77)

K h = ma
¡ 1 ¡ ´

´

¢
: (3.90)

Klopsteg continues:

`That the virtual mass is in fact a constant, has been determined in many
measurements with a large number of bows.'

However, if we computeK h using (3.90) for three values ofma = 0:0384; 0:0769; 0:1538, we
get K h = 0:017; 0:010; 0:003, respectively. So, by our theoryK h is de¯nitely not indepen-
dent of the mass of the arrow in the case of the H bow.

In Figure 3.11 we depict onesfd curve and a number ofdfd curves for di®erent values
of ma. If the mass ma becomes larger thedfd curve approaches thesfd curve. With
respect to the maximum value of the recoil forceP we note that, if ma tends to in¯nity,
we get a quasi-static situation and hence alsoP as a function ofb will follow closely the
sfd curve. It appeared that the maximum value ofP increases if the mass of the arrow
decreases. Forma = 0:0192 we even get a maximum value ofP equal to about 5 times the
weight a of the bow.

Finally the in°uence of concentrated massesmt at each of the tips of a bow is described.
For that purpose we give the parametermt three di®erent, non-zero values. In Table 3.11
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Table 3.11: In°uence of concentrated tip massesmt , q = 0 :407.

mt 0 0:0769 0:1538 0:2307
´ 0.89 0.87 0.84 0.82
º 2.16 2.15 2.11 2.08

Figure 3.12:dfd curves for H bow with masses
mt at the tips, Table 3.11.

the value ofq is 0.407 in all cases. From this table it follows that the e±ciency decreases
slightly if the mass mt at the tips increases. In Figure 3.12 thedfd curves are drawn.
It is seen that the forceE on the arrow possesses a jump at the timet = 0. This jump
becomes larger whenmt increases. Most of the energy used to accelerate at early instants
the concentrated masses at the tips is transferred later on to the arrow. This follows from
the fact that the forces on the arrow grow with increasing values of in the region where
the string becomes more stretched.

In [1, page 47], Hickman describes an experiment made to ¯nd the e®ect of the mass
at the bow tips. We quote:

`Measurements of velocities for di®erent weight arrows showed that a load of
400 grain (0.02592 kg) added to the arrow weight, reduced thevelocity by about
42 feet per second or 25 percent. In contrast to this, the sameload added to
the tips only reduced the velocity, even for a light arrow, byabout 1 1=2 feet
per second or approximately one percent.'

From Table 3.10, third and fourth column, it follows that if we increase the half arrow
massma by 0.0769, the velocity decreases by 24.8 percent. From Table 3.11, ¯rst and
second column, it follows that if we add a massmt = 0:0769 to each of the tips the velocity
decreases only by 0.7 percent. Although we do not know what type of bow Hickman used
for his experiment, his ¯ndings agree qualitatively with these results.
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Figure 3.13: Normal force T(L; t ) at tip, both static and dynamic for di®erent values of ns.

3.6 On the behaviour of the normal force T at t = 0

In this section we discuss the behaviour of the normal or longitudinal force T in the bow
at the time the arrow is released,t = 0. In an early attempt we took for the ¯rst time step,
from t = 0 to t = ¢ t in the ¯nite-di®erence scheme (Section 3.4)¹ = 1=2. For the initial
values of the unknownx; y; M and T we took their values in the static fully drawn position.
When massesmt 6= 0 were present at the tips we found that the resulting solution a non-
physical oscillatory character, indicating that the initial values for the unknowns were not
su±ciently accurate. To improve the procedure, a fully implicit backward-time di®erence
scheme (¹ = 1) for the ¯rst step ( k = 0) is chosen (Section 3.4, ii)). In this way the initial
values of the normal forceT are not used. We will now show that the static values ofT
cannot be used with respect to our method as initial values, when concentrated masses at
the tips are present.

In Figure 3.13 the normal forceT(L; t ) at the tip is drawn as a function of time, for a
very small time interval after the release of the arrow. Thisnormal force is calculated by
the method described in Section 3.4, for the bow has

B(91:49; 10:16; W(s); V(s); µ0 ´ 0; 0:0125; 0:0125; jOHj = 15:29;

71:12; 15:53; 0:1625); (3.91)

where W and V are de¯ned by (3.68), (3.69) and (3.70). From (3.91) it is seenthat
mt = ma = 0:0125. If we extrapolate the dynamic normal forceT(L; t ) with t > 0 to time
zero, we ¯nd a value unequal to the static normal forceT1(L) at the tip. This static force
is indicated at the vertical axis of Figure 3.13. The magnitude of the jump appeared to be
dependent on the massmt at the tip. It is zero for mt = 0. For increasing values ofmt it
¯rst increases but then decreases, such that formt ! 1 the jump tends to zero again.
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Figure 3.14: Normal force T(L; t ) at tip for di®erent values of ° . 4 : ° = 1, ± : ° = 10,
+ : ° = 100, £ : ° = 10000 and | : ° = 1 .

This jump phenomenon seems to be related to the inextensibility of the bow by which
possibly longitudinal disturbances can be transferred instantaneously. In order to inves-
tigate this we replaced the constraint (3.31), expressing the inextensibility of the bow by
the relation

T(s; t) = 1 =2°U (s)
¡
x02 + y02 ¡ 1

¢
; (3.92)

where U(s) is the distribution function of the strain sti®ness (cross-sectional area times
Young's modulus) of the bow and° is a parameter.

Increasing values of° correspond to less extensibility of the bow. In Figure 3.14 the
normal force is shown as a function of time, again immediately after the release of the
arrow. The sti®ness parameter° ranges through the values 1, 10, 100, 10000. Also the
curve for an inextensible bow (° ! 1 ) is drawn. It can be seen that, if the bow is de¯nitely
extensible,° = 1; 10 or 100, the normal force at the tip is continuous with respect to time
at t = 0. If the strain sti®ness is increased the obtained curve "converges" to the curve in
the inextensible case and a jump appears. For values ofs, L0 · s · L, we observed the
same behaviour of the normal force.

We mention that for a consistent treatment of an extensible bow the Euler-Bernoulli
equation (3.32) has to be changed also, because then the parameter s is no longer the
length parameter. However, by the foregoing results it is atleast reasonable that the
inextensibility of the bow has a strong in°uence on the behaviour of T after the release of
the arrow.
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Chapter 4

The static recurve bow

4.1 Summary

In a former paper we dealt with some aspects of the dynamics ofthe non-recurve bow, of
which the string was assumed to be inextensible and without mass. One aim of this paper
is to investigate the in°uence of the elasticity and mass of the string on the non-recurve
bow. The main object is to discuss the dynamics of the static-recurve bow. The governing
equations of motion lead to a system of non-linear partial di®erential equations with initial
and boundary conditions. These boundary conditions vary abruptly in the course of the
dynamic process. Numerical solutions are obtained using a ¯nite-di®erence method. The
vibratory motion of the bow after the arrow has left the string is described for a clamped
bow as well as for a bow shot open-handed.

4.2 Introduction

The bow is a mechanical device to propel a projectile, which is generally an arrow. To that
end a string, shorter than the bow, is placed between the tipsof the bow. Then holding
the middle of the bow in place with the "bow" hand, the string is drawn with the other
hand, the "shaft" hand. During this, additional energy is stored in the elastic limbs and
to a lesser extend also in the string. A part of this energy is,after release, transferred to
the arrow.

One way to di®erentiate between types of bows is to do this on the ground of the shape
of the unstrung bow. Then we distinguish between the non-recurve bow, the static-recurve
and the working-recurve bow. A recurved or re°exed bow is a bowof which the limbs are
in unstrung situation curved away from the archer if he/she holds the unstrung bow just
like during shooting. For such a bow it is possible that in thestrung conditions the string
lies along part of the limbs.

In the case of a non-recurve bow the string has contact with the bow only at the tips in
all situations, static or dynamic. The bow with °exible straight limbs (straight-end bow)
Figure 4.1.a, but also a bow of which the °exible limbs meet at an angle (Angular bow),

83
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Figure 4.1: Shapes of di®erent types of bows: (a) and (b) non-recurve, (c)static-recurve and (d)
working-recurve.

see Rausing [16] and Figure 4.1.b, and even a bow with a slightre°ex are non-recurve bows
by de¯nition.

The static-recurve bow is a bow which possesses rigid, strongly curved outer parts
(ears) of the limbs. In the braced situation the string restsupon the string-bridges, see
Figure 4.1.c. These string-bridges are ¯tted to prevent the string from slipping past the
bow. If such a bow is drawn, at some moment the string leaves the bridges and has contact
with the bow only at the tips. Because the ears are sti®, they donot deform when the bow
is drawn. After release the string touches at a certain moment the string-bridges again
before the arrow leaves the string. Some Tartar, Chinese, Persian, Indian and Turkish are
static-recurve bows, see Rausing [16], Payne-Gallwey [14], Latham and Paterson [10], Faris
and Elmer [4], or Balfour [1].

The entire limbs of a working-recurve bow are °exible. In the braced situation the string
has contact with the bow along a part of the limbs near the tips, see Figure 4.1.d. The
length of those parts diminishes with increasing draw-length. If the draw-length exceeds
a certain value the string leaves the limbs from the tips. After release both phenomena
occur in reversed order before arrow exit. Essential di®erence between the static-recurve
and working-recurve is that for the static-recurve the points of contact of string and limbs
change abruptly from tip to string-bridge or inversely. Forthe working-recurve the points
where the string leaves the limbs change gradually. Most modern bows are working-recurve
bows.

In [9] we dealt with the statics of all three types of bows. In [8] we considered the
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dynamics of the non-recurve bows. We assumed the string to beinextensible and without
mass and stopped the computations at the moment the arrow leaves the string. In this
paper we investigate the in°uence of the mass and elasticity of the string on a non-recurve
bow. Further we consider the behaviour of the bow and string after the arrow has left
the string. This is done for two di®erent cases, one by which the bow is clamped and
the other for a bow shot open-handed. The main object of this paper is the dynamics of
the static-recurve bow. The dynamics of the working-recurve bow will be the subject of a
forthcoming paper.

In reality a static-recurve bow is very complicated. It nearly always is made of wood,
horn and sinew, hold together with glue and protected from the weather by a thin covering
of tree bark, lacquer or leather. This holds also to a certainextend for the English longbow,
where the di®erent properties of sapwood and heartwood are deliberately put to use. In
spite of this, these bows are considered as an inextensible elastic line endowed with bending
sti®ness and mass distribution, which depend on the properties of the employed materials
and structure of the bow. Other assumptions are the symmetryof the bow with respect
to the line of aim, the bow is centre-shot and the rigid arrow is released without lateral
de°ections. Also neither internal or external damping nor hysteresis are taken into account.
The absence of damping throws some measure of uncertainty into our calculations especially
for what happens after the arrow has left the string.

In Section 4.3 we derive the governing equations of motion ofthe static-recurve bow. For
such a bow a simple lumped parameter model for the string is used. The dynamic process
of shooting is divided in a number of time intervals which arebounded by characteristic
events. These events are: the string touches the string-bridges again, the bow leaves the
bow hand and the arrow leaves the string. During each of thesetime intervals, of which the
length is not known beforehand, we have the same system of partial di®erential equations,
however the boundary conditions are di®erent. The initial conditions are determined for
the ¯rst time interval by the static fully drawn position and f or the succeeding intervals
by the end conditions of the preceding interval.

In the second part of Section 4.3 we give the equations of a string now considered as a
continuum. This mathematical model for the string is used only for non-recurve bows. In
this case we get at each time interval two systems of partial di®erential equations de¯ned
on two space intervals, one along the bow, the other along thestring. These systems are
connected by the boundary conditions at one end of each spaceinterval.

In order to obtain a numerical approximation of the solutionof the equations of motion
we use a ¯nite-di®erence method. In Section 4.4 a ¯nite-di®erence scheme is given for the
static-recurve bow. After that, the ¯nite-di®erence equations for the motion of a string
considered as a continuum, are discussed. These equations are, with the exception of the
boundary conditions, the same as the equations of motion in the case of a re¯ned lumped
parameter model for the string.

In [9] and [8] we introduced quality coe±cients to be able to compare the performance
of di®erent bows. One coe±cient is related to the amount of energy stored in the bow in
pulling it from the braced situation to full draw. Another one is the e±ciency, which is the
percentage of energy put into the bow that is imparted to the arrow. Finally, the muzzle
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velocity, this is the velocity of the arrow when it leaves thebow. For °ight shooting, a form
of shooting with the object of reaching the greatest distance, it is the last mentioned quality
coe±cient which is important. For target shooting and hunting the e±ciency is important
and also the smoothness with which the bow delivers its power. In Section 4.5 we re-
examine the de¯nitions of these quality coe±cients. They are used in Sections 4.6¢ ¢ ¢4.12
in order to judge the performance of a bow.

Hickman [6] and recently Marlow [12] developed mathematical models for a type of
a non-recurve bow. They used a model where the elasticity of the limbs is concentrated
in two elastic hinges. The mass of the limbs is accounted for by concentrated masses
placed at the rigid limbs. Hickman assumed the string to be inextensible. Marlow dropped
this assumption and he claims that the results of his elasticstring considerations are in
reasonable agreement with experiment and remove the long standing discrepancy between
theory and practice. However, in Section 4.6 we show that hismodel can yield unreliable
results. It turns out that when the model for the string is replaced by a more realistic one
possessing elasticity, however keeping the limbs rigid androtating about elastic hinges,
unrealistic heavy oscillations of the acceleration force acting upon the arrow may occur.

In Section 4.7 we discuss the in°uence of the strain sti®ness and mass of the string of
a non-recurve bow. Changing both parameters simultaneously gives us the opportunity to
deal with the in°uence of the number of strands of a string. Increasing this number makes
a string sti®er hut also heavier. These e®ects have an oppositein°uence on the shooting
performance. It appears that there exists an optimum numberof strands. At the end of
Section 4.7 we compare our results with those obtained experimentally by Hickman in [6].

The vibratory motion of the bow after the arrow has left the string is investigated in
Section 4.8. It appears that the tensile force in the string attains its maximum after arrow
exit. This maximum force determines among others the numberof strands needed to make
the string strong enough. In the second part of Section 4.8 wediscuss the in°uence of the
mass of the grip when the bow is shot open-hand.

In Section 4.9 we start with a straight-end bow and change some of its parameters one
by one. In [8] we followed the same procedure, there we started with a bow described by
Hickman in [6]. The bow we are interested in now is more realistic; the string is extensible
and possesses mass while the tips of the limb have non-zero mass per unit of length and
bending sti®ness.

In Section 4.10 we consider again the model of a bow consisting of a grip, two elastic
hinges, two rigid limbs and an inextensible string. However, in this case the limbs have
a sharp bend, hence the bow resembles a static-recurve bow. It is possible to reveal with
this simple model some essential favourable features of a static-recurve bow.

The static-recurve bow is also the subject of Section 4.11. We have no accurate experi-
mental information with respect to these bows. The shape of the unstrung bow, as depicted
in a number of books and papers shows a large variety. Therefore we deal in Section 4.11
with a few bows which seem to be representative for the static-recurve bow. The lack of
detailed information however, makes that we have to be cautious with the interpretation of
the results. Yet, it is likely that the performance of a static-recurve bow di®ers not much
from the performance of a long straight-end bow. For a comparable performance, however,



4.3. THE EQUATIONS OF MOTION 87

it can be chosen shorter and this makes the static-recurve bow easier in operation.
In Section 4.12 we compare the performance of some bows, non-recurve and static-

recurve, mentioned in literature. The results obtained in Section 4.9 and Section 4.11 are
used to explain the di®erences in the performances.

In Section 4.13 we check the ¯nite-di®erence procedure developed in Section 4.4. To
that end we consider a vibrating beam with small de°ections, hence the linearized theory
applies. Numerical solutions by means of our ¯nite-di®erencemethod are compared with
the results obtained by an analytic method.

4.3 The equations of motion

In the ¯rst part of this section we give the equations of motionfor a static-recurve bow.
The mass of the extensible string is distributed as point masses over the two tips and
the arrow. In the second part we give the equations of motion for an extensible string
possessing mass per unit of length. The string is then considered as a continuum. These
string equations will be used for non-recurve bow.

Figure 4.2 shows a static-recurve bow placed in a Cartesian coordinate system (x; y)
in the unbraced, braced and fully drawn situation. Because the bow is assumed to be
symmetric with respect to the line of aim coinciding with thex-axis, we restrict attention
to the upper half of the bow. The length coordinates along the bow is measured from
the midpoint, placed at O. For 0 · s · L0 we have half of the rigid part in the middle
of the bow, called "grip". The mass of this grip is denoted by 2mg. The °exible part
L0 · s · L2 or the "working part of the limb", is endowed with bending sti®nessW(s)
and mass per unit of lengthV(s). For L2 · s · L, where 2L is the total length of the
bow measured along it from tip to tip, there is a "rigid end piece" or "ear". Its mass and
moment of inertia with respect to the centre of gravity (xcg; ycg) are denoted byme and
J e, respectively.

The time dependent variables in the unbraced situation (Figure 4.2.a) are provided
with a subscript "0". The shape of the bow in this situation isgiven by the functionµ0(s),
(L0 · s · L2), which is the angle between they-axis and the tangent to the bow, reckoned
positive in clockwise direction.

In Figure 4.2.b the bow is braced with a string connected to the bow at the tip, where
the loop ¯ts in the nock, of which the place is denoted by (xt ; yt ). We see that in this
situation the string leaves the bow from the string-bridge with coordinates (xb; yb). The
length of the string without load is denoted by 2l0. We assume that the material of the
string obeys Hooke's law; the strain sti®ness is denoted byUs. The string possesses in
unstrung situation a mass per unit of lengthV s and its total mass is 2ms . The distance
jOHj, see Figure 4.2.b, is as usual called the "brace height".

When the bow changes from the braced situationb= jOHj, whereb is the x-coordinate
of the middle of the string, to the fully drawn situation b = jODj, see Figure 4.2.c, at a
certain moment the string leaves the bridge. After this it has contact with the bow only
at the tip. The distance jODj is called the "draw" and the forceF (jODj), exerted in the
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Figure 4.2: Three situations of the static-recurve bow: a) unbraced, b)braced, c) fully drawn.

middle of the string in the x-direction, the "weight" of the bow. In the fully drawn position
the time dependent variables are provided with a subscript "1".

By releasing the drawn string at timet = 0 and holding the bow at its place with the
bow hand, an arrow with mass 2ma is propelled. We assume a that the limbs and string
and arrow move in a °at plane, the (x; y)-plane.

The force acting upon the arrow, positive in negativex-direction is referred to asE.
During the acceleration at some momentt = tb, the string touches the string-bridge again.
From that moment a part of the string, between the tip and the bridge, sticks to the bow.
We assume that this part slips along the bow without friction.

If the acceleration of the arrow becomes negative, the arrowleaves the string. The
moment is denoted byt l and the velocity of the arrow at that moment is called the muzzle
velocity, denoted bycl .

If the bow is shot open-handed then it is impossible for an archer to exert a force on
the bow directed to himself. This means that after the timet = tp, the moment the force
exerted on the bow hand, the recoil forceP reckoned positive in the positivex-direction,
becomes negative, the centre of the bow will move away from the archer. One of the
physical constants which determine the motion of the bow fort > tp in this case is the
mass of the grip 2mg. Unless stated otherwise we assume that the bow is shot clamped;
then the mass of the grip is unimportant.

As in [8] we introduce dimensionless quantities by using thedraw jODj, the force
F (jODj) and massmb of one of the limbs, as units of length, force and mass, respectively.
The massmb is given by

mb =
Z L 2

L 0

V(s) ds + me : (4.1)

Dimensionless quantities are denoted without a bar "{ ", so we have, for instance,l0 =
l0 jODj, E = E F (jODj), mg = mg mb and t = t jODj=F (jODj)1=2. Quantities having
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dimensions will be expressed, unless stated otherwise, in the following units: length in cm,
force in kg force, mass in kg mass and time in .03193 sec

We introduce a short hand notation for a bow and arrow combination which resembles
the one used in [8], however, because here the problem is moregeneral, a larger number of
parameters is needed. We de¯ne a bow B by

B(L; L 0; W(s); V(s); µ0(s); ma; mt ; J t ; me; J e; mg; (4.2)

xcg0 ; ycg0
; xb0 ; yb0

; xt0 ; yt0
; L2; Us; ms; jOHj or l;

jODj; F (jODj); mb)

For me = 0, J t = J e = 0; mg = 0, xcg0 = xb0 = x t0 = x0(L), ycg0
= yb0

= yt0
= y0(L),

L2 = L, Us = 1 , ms = 0 we have a non-recurve bow dealt with in [8]. The parameters
mt and J t are in the case of the static-recurve bow zero, however,in the case of the non-
recurve bow they are the mass and moment of inertia respectively of rigid bodies ¯xed to
the bow at both tips. We now turn to the equations of motion. The limb is considered
as an inextensible elastic beam, by which we neglect damping, shear and rotary inertia To
avoid complications we use, as we mentioned already in the case of a static-recurve bow, a
very simple mathematical model for the string. The elastic constant (tensile force divided
by the relative elongation) is equal to the strain sti®ness ofthe string Us. The mass of
the string is accounted for by placing one third of the mass ofthe string 2ms at the end of
the string where it ¯ts in the nock of the limb and one sixth at the other end, where the
arrow contacts the string. The equations which describe themotion of the °exible part of
the limb are; s 2 [L0; L2], t > 0, "_"= @

@t "
0"= @

@s

V _u = ( Tx0)0+ ( M 0y0)0 ; (4.3)

V _v = ( Ty0)0¡ (M 0x0)0 ; (4.4)

_x = u ; (4.5)

_y = v ; (4.6)

where M (s; t) is the resultant bending moment andT(s; t) the normal force reckoned
positive when it causes tension in the limbs. Because we assume the limbs to be inextensible
and the Euler-Bernoulli equation to be valid, we have

x0
1

2 + y0
1

2 = 1 ; (4.7)

M = W(x0y00¡ y0x00+ µ0
0) : (4.8)

The boundary conditions ats = L0, for 0 < t · tp, read

x(L0; t) = x0(L0) ; y(L0; t) = y0(L0) ; y0
0(L0)

x0(L0; t) = x0
0(L0)y0

0(L0); (4.9)

In this time interval the bow is clamped and the recoil forceP equals

P(t) = 2
¡
M 0(L0; t)y0

0(L0) + T(L0; t)x0
0; (L0)

¢
: (4.10)
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For t > t p the ¯rst equation of (4.9) has to be replaced, if the bow is shotopen-handed,
by the equation of motion for the grip in thex-direction

mg _u(L0; t) = M 0(L0; t)y0
0(L0) + T(L0; t)x0

0; (L0) : (4.11)

The boundary conditions ats = L, are connected with the forceK in the string by the
three equations of motion for the ear. These equations read,for 0 < t · tb

me _ucg = ¡ T(L2; t)x0(L2; t) ¡ M 0(L2; t)y0(L2; t) +
K (b¡ xt )

l
; (4.12)

me _vcg = T(L2; t)y0(L2; t) ¡ M 0(L2; t)x0(L2; t) +
Ky t

l
; (4.13)

Je(y0(L2; t) _u0(L2; t) ¡ x0(L2; t) _v0(L2; t)) =

M (L2; t) ¡ T(L2; t)hT + M 0(L2; t)hQ + Kh K ; (4.14)

where

ucg = u(L2; t) + ( ycg0 ¡ y0(L2))u0(L2; t) + ( xcg0 ¡ x0(L2))v0(L2; t) ; (4.15)

vcg = v(L2; t) + ( ycg0 ¡ y0(L2))v0(L2; t) + ( xcg0 ¡ x0(L2))u0(L2; t) ; (4.16)

and

hT = ( xcg0 ¡ x0(L2))y0
0(L2) ¡ (ycg0 ¡ y0(L2))x0

0(L2) (4.17)

hQ = ( xcg0 ¡ x0(L2))x0
0(L2) ¡ (ycg0 ¡ y0(L2))y0

0(L2) (4.18)

hK =
£¡

x0(L2; t)yt + y0(L2; t)(b¡ xt )
¢¡

(xt0 ¡ xcg0 )x
0
0(L2) + ( yt0 ¡ ycg0)y

0
0(L2)

¢

f y0(L2; t)yt ¡ x0(L2; t)(b¡ xt )g
¡
(xt0 ¡ xcg0 )y

0
0(L2) ¡ (yt0 ¡ ycg0)x

0
0(L2)

¢¤
=l(t) ; (4.19)

with

xt = x(L2; t) +
¡
yt0 ¡ y0(L2)

¢
x0(L2; t) +

¡
xt0 ¡ x0(L2)

¢
y0(L2; t) ; (4.20)

yt = y(L2; t) +
¡
yt0 ¡ y0(L2)

¢
y0(L2; t) + ( xt0 ¡ x0(L2))x0(L2; t) ; (4.21)

The x-coordinate of the middle of the stringb is given by

b(t) = xt + ( l2 ¡ y2
t )1=2 : (4.22)

The time tb, the moment the string touches the bridge again, is the time upon which the
following equation is satis¯ed

¡
x0(L2; t)yb + y0(L2; t)(b¡ xb)

¢¡
(xt0 ¡ xb0 )x0

0(L2) + ( yt0 ¡ yb0 )y
0
0(L2)

¢
+

¡
y0(L2; t)yb ¡ x0(L2; t)(b¡ xb)

¢¡
(xt0 ¡ xb0 )y0

0(L2) ¡ (yt0 ¡ yb0 )x
0
0(L2)

¢
= 0 ; (4.23)

where

xb = x(L2; t) +
¡
yb0 ¡ y0(L2)

¢
x0(L2; t) +

¡
xb0 ¡ x0(L2)

¢
y0(L2; t) ;

(4.24)

yb = y(L2; t) +
¡
yb0 ¡ y0(L2)

¢
y0(L2; t) +

¡
xb0 ¡ x0(L2)

¢
x0(L2; t) : (4.25)
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For t > t b the following changes in the formulas have to be made. In (4.12) the term
K (b¡ xt )=l has to be replaced byK (b¡ xb)=(l ¡ hb), in (4.13) the term Ky t=l by Ky b=(l ¡ hb)
and in (4.14) hK is given by

hK =
£¡

x0(L2; t)yb + y0(L2; t)(b¡ xb)
¢¡

(xb0 ¡ xcg0 )x
0
0(L2) + ( yb0 ¡ ycg0)y

0
0(L2)

¢

¡
y0(L2; t)yb ¡ x0(L2; t)(b¡ xb)

¢¡
(xb0 ¡ xcg0 )y

0
0(L2) ¡ (yb0 ¡ ycg0 )x

0
0(L2)

¢¤

=(l(t) ¡ hb) ; (4.26)

with

h2
b = ( xt0 ¡ xb0 )2 + ( yt0 ¡ yb0 )

2 : (4.27)

Equation (4.22) has to be replaced by

b(t) = xb +
¡
(l ¡ hb)2 ¡ y2

b

¢1=2
: (4.28)

The relation between the force in the string and its length is

K = Us(l ¡ l0)=l0 ; t ¸ 0 : (4.29)

This equation is also valid fort > t b because of our assumption that the string experiences
no friction force from the bridge. The mass at the end of the string which has contact with
the bow is taken part of the ear. So, the massme in (4.12) and (4.13) is actually the mass
of the ear plus one third of the mass of the string 2ms. In the same way the moment of
inertia of the ear Je is adapted.

We denote the velocity of the arrow by

c = _b : (4.30)

Then the equation of motion for the arrow becomes

¡ 1=2E(t) + 1 =3ms _c = ( ma + 1=3ms)_c = ¡ K (b¡ xt )=l ; 0 < t · tb ; (4.31)

and

¡ 1=2E(t) + 1 =3ms _c = ( ma + 1=3ms)_c = ¡ K (b¡ xb)=(l ¡ hb) ; tb < t : (4.32)

The arrow leaves the string when the force E becomes negative. We denoted this moment
by t l . For t > t l , in the boundary conditions (4.31) or (4.32) we have to putma equal to
one sixth of the mass 2ms of the string. In addition to the equations of motion and the
boundary conditions we have to give the initial values of thedependent variables. The
initial values of the unknown functionsx; y; M; T; b; K are the values of these functions
occurring in the fully drawn position and the velocitiesu; v and c are zero fort = 0. The
bow in fully drawn position is described by a boundary value problem for a system of ordi-
nary di®erential equations. These equations are obtained byputting the left-hand sides of
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(4.3)¢ ¢ ¢(4.6), (4.12)¢ ¢ ¢(4.14). equal to zero. Further the bow is clamped,bequals 1 and the
left-hand side of (4.31) equals¡ 1=2, while F (jODj) occurring in M = M=(jODjF (jODj)),
W = W =(jODj2F (jODj), U = U=F (jODj) and K = K=F (jODj) is unknown.

We now derive the equations of motion for a string treated as acontinuum, only able to
withstand tensile forces. Longitudinal and transverse vibrations of the string are possible.
We use this model in the case of non-recurve bows, then the string has contact with the
bow only at the tip We recall that the string possesses in the unstrung situation a mass per
unit of length Vs, that the material of the string obeys Hooke's law, with strain sti®ness
Us. Furthermore we assume thatVs and Us are uniform distributed along the unloaded
string.

We introduce a length coordinater along the string, measured from the point of attach-
ment of the string to the bow, thus 0· r · l(t), where l(t) is still an unknown function of
time. Using dimensionless quantities in the way mentioned before, the equations of motion
for the string become, for 0· r · l(t), t > 0,

Vs _us = ( Kx 0
s)

0 ; (4.33)

Vs _vs = ( Ky 0
s)

0 ; (4.34)

_xs = us ; (4.35)

_ys = vs ; (4.36)

where "¢" indicates the material derivative and "0"= @
@r. The functions xs(r; t ) and ys(r; t )

are thex- and y-coordinates of the string, respectively. The velocities in x- and y-direction
are denoted byus(r; t ) and vs(r; t ), respectively. The tensile forceK (r; t ) in the string is
in this model a function of r as well ast. Hooke's law reads

K (r0; t) = Us
@r(r0; t)

@r0
; 0 · r0 · l0 ; t ¸ 0 ; (4.37)

and the equation which expresses thatr is the length coordinate

(x0
s)

2 + ( y0
s)

2 = 1 ; 0 · R0 · l0 ; t ¸ 0 ; (4.38)

We note that when the string is taken to be inextensible the obtained equations agree with
equations (4.3)¢ ¢ ¢(4.8) for the bow with W(s) = 0 :

The boundary conditions atr = 0 are linked to the boundary conditions of the bow at
s = L, where the string contacts the limb. Although we consider for this model only non-
recurve bows, it is possible that at the tip of the elastic limb we have a rigid body possessing
massmt and moment of inertiaJt with respect to the tip. The boundary conditions, which
form the equations of motion for the rigid body become, fort > 0

mt _u(L; t ) = ¡ T(L; t )x0(L; t ) ¡ M 0(L; t )y0(L; t ) + K (0; t)x0
s(0; t) ; (4.39)

¡ mt _v(L; t ) = ( T(L; t )y0(L; t ) ¡ M 0(L; t )x0(L; t ))( b(t) ¡ x(L; t )) + K (0; t)y0
s(0; t) ; (4.40)

Jt (y0(L; t ) _u0(L; t ) ¡ x0(L; t ) _v0(L; t )) = M (L; t ) : (4.41)
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The boundary conditions atr = l become in this case

¡ 1=2E(t) = ma _u(l; t ) = ¡ K (l; t )x0
s(l; t ) ; (4.42)

and

ys(l; t ) = 0 ; (4.43)

where l = l(t) and (4.43) takes into account the assumed symmetry with respect to the
line of aim, thex-axis. The time the arrow leaves the string is determined by the condition
E(t) = 0. For t > t l , ma is zero in (4.42). Thex-coordinate of the middle of the string
xs(l; t ) is as in the case of the static-recurve bow denoted byb(t) and the velocity us(l; t )
again by c(t).

The equations of motion of the limb and the boundary conditions at s = L0 are the
same as those for the static-recurve bow. The initial conditions are obtained from the
equations of motion in the same way as we did for the static-recurve bow.

In order to get numerical approximations for the solution ofthe problem discussed in
this section, we develop in the next section a ¯nite-di®erenceprocedure.

4.4 Finite-di®erence equations

In this section we give the ¯nite-di®erence scheme used to get numerical approximations
for the solution of the equations of motion given in the previous section. We deal ¯rst with
the static-recurve bow and after that with the non-recurve bow in which case we use the
continuum model for the string.

We consider a grid, with respect to the elastic part of the limb in the s; t-plane;L0 ··
L2, t ¸ 0. The gridpoints are denoted by (j ¢ s; k¢ t), where j = ¡ 1(1)ns + 1, ns¢ s =
L2 ¡ L0 and k = 0(1) nt , nt an integer large enough to cover the time interval of interest.
In order to get a concise notation we introduce the followingdi®erence operators

±f j;k =
f j +1 =2;k ¡ f j ¡ 1=2;k

¢ s
; ¢ f j;k = 0:5 (±f j +1 =2;k ¡ ±f j ¡ 1=2;k ) : (4.44)

If we use a weighted average of forward and backward approximation, equations (4.3)¢ ¢ ¢
(4.8) become

Vj (uj;k +1 ¡ uj;k )=¢ t = ¹
¡
±(T±x) j;k +1 + ±(±M±y)j;k +1

¢
+ (1 ¡ ¹ )

¡
±(T±x) j;k + ±(±M±y)j;k

¢

; j = 0(1) ns ; (4.45)

Vj (vj;k +1 ¡ vj;k )=¢ t = ¹
¡
±(T±y) j;k +1 + ±(±M±x)j;k +1

¢
+ (1 ¡ ¹ )

¡
±(T±y) j;k + ±(±M±x)j;k

¢

; j = 0(1) ns ; (4.46)

(x j;k +1 ¡ x j;k )=¢ t = ¹u j;k +1 + (1 ¡ ¹ )uj;k ; j = 0(1) ns ; (4.47)

(yj;k +1 ¡ yj;k )=¢ t = ¹v j;k +1 + (1 ¡ ¹ )vj;k ; j = 0(1) ns ; (4.48)

1 =( ±xj ¡ 1=2;k+1 )2 + ( ±yj ¡ 1=2;k+1 )2 ; j = 0(1) ns + 1 ; (4.49)

M j;k +1 = Wj

¡
¢ x j;k +1 ±2yj;k +1 ¡ ¢ yj;k +1 ±2x j;k +1 + µ0

0(j ¢ s)
¢

; j = 0(1) ns ;
(4.50)
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respectively. The boundary condition (4.9) ats = L0 becomes for 0< (k + 1)¢ t < t p

x0;k+1 = x0(L0) ; y0;k+1 = y0(L0) ; y0
0(L0)¢ x0;k+1 = x0

0(L0)¢ y0;k+1 : (4.51)

For tp < (k + 1)¢ t and when the bow is shot open-handed, the ¯rst equation has to be
replaced by the approximation of (4.11)

mg(u0;k+1 ¡ u0;k)=¢ t = ¹
¡
¢ M0;k+1 y0

0(L0) + 1 =2 (T1=2;k+1 + T¡ 1=2;k+1 )x0
0(L0)

¢

(1 ¡ ¹ )
¡
¢ M0;ky0

0(L0) + 1 =2 (T1=2;k + T¡ 1=2;k )x0
0(L0)

¢
: (4.52)

To compute the recoil forceP(t) (4.10) we use the formula

Pk+1 = 2
¡
¢ M0;k+1 y0

0(L0) + 1 =2 (T1=2;k+1 + T¡ 1=2;k+1 )x0
0(L0)

¢
: (4.53)

When this force becomes zero we havet = tp.
For 0 · (k + 1)¢ t · tb the boundary conditions ats = L2 (4.12)¢ ¢ ¢(4.14) are approxi-

mated by

me(ucgk +1 ¡ ucgk )=¢ t =

¹
¡
¡ 1=2=;(Tns +1 =2;k+1 + Tns ¡ 1=2;k+1 )¢ xns ;k+1 ¡ ¢ Mns ;k+1 ¢ yns ;k+1 + K ¢;k+1 (bk+1 ¡ xtk +1 )=l¢;k+1

¢

(1 ¡ ¹ )
£
¡ 1=2 (Tns +1 =2;k + Tns ¡ 1=2;k )¢ xns ;k ¡ ¢ Mns ;k¢ yns ;k + K ¢;k(bk ¡ xtk )=l¢;k

¤
; (4.54)

me(vcgk +1 ¡ vcgk )=¢ t =

¹
¡
¡ 1=2 (Tns +1 =2;k+1 + Tns ¡ 1=2;k+1 )¢ yns ;k+1 ¡ ¢ Mns ;k+1 ¢ xns ;k+1 + K ¢;k+1 ytk +1 =l¢;k+1

¢

(1 ¡ ¹ )
¡
¡ 1=2 (Tns+1 =2;k + Tns ¡ 1=2;k )¢ yns ;k ¡ ¢ Mns ;k¢ xns ;k + K ¢;kytk =l¢;k

¢
; (4.55)

and

Je

¡
(¹ ¢ yns ;k+1 + (1 ¡ ¹ )¢ yns ;k)(¢ uns ;k+1 ¡ ¢ uns ;k)=¢ t¡

(¹ ¢ xns ;k+1 + (1 ¡ ¹ )¢ xns ;k)(¢ vns ;k+1 ¡ ¢ vns ;k)=¢ t
¢

=

¹
¡
Mns ;k+1 ¡ 1=2 (Tns+1 =2;k+1 + Tns ¡ 1=2;k+1 )hT + ¢ Mns ;k+1 hQ + K ¢;k+1 hK k +1

¢
+

(1 ¡ ¹ )
¡
Mns ;k ¡ 1=2 (Tns+1 =2;k + Tns ¡ 1=2;k )hT + ¢ Mns ;khQ + K ¢;khK k

¢
; (4.56)

wherehT and hQ are given by (4.17) and (4.18), respectively. The velocities of the centre
of gravity of the ear in the x- and y-direction are approximated by

ucgk +1 = uns ;k+1 + ( ycg0 ¡ y0(L2))¢ uns ;k+1 + ( xcg0 ¡ x0(L2))¢ vns ;k+1 ; k = 0(1) nt ; (4.57)

and

vcgk +1 = vns ;k+1 + ( ycg0 ¡ y0(L2))¢ vns ;k+1 ¡ (xcg0 ¡ x0(L2))¢ uns ;k+1 ; k = 0(1) nt ; (4.58)

The distancehK between the centre of gravity of the ear (xcg; ycg) and the string, equation
(4.19) becomes, for 0· (k + 1)¢ t · tb

hK k +1 =
£¡

¢ xns ;k+1 ytk +1 + ¢ yns ;k+1 (bk+1 ¡ xtk +1 )
¢¡

(xt0 ¡ xcg0 )x0
0(L2) + ( yt0 ¡ ycg0)y

0
0(L2)

¢
+

¡
¢ yns ;k+1 ytk +1 ¡ ¢ xns ;k+1 (bk+1 ¡ xtk +1 )

¢¡
(xt0 ¡ xcg0 )y0

0(L2) + ( yt0 ¡ ycg0)x
0
0(L2)

¢¤
=l¢;k+1 :

(4.59)
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The x- and y-coordinates of the tip (4.20) and (4.21) become,for k = ¡ 1(1)nt and

xtk +1 = xns ;k+1 + ( yt0 ¡ y0(L2))¢ xns ;k+1 + ( xt0 ¡ x0(L2))¢ yns ;k+1 ; k = 0(1) nt ; (4.60)

and

ytk +1 = yns ;k+1 + ( yt0 ¡ y0(L2))¢ yns ;k+1 + ( xt0 ¡ x0(L2))¢ xns ;k+1 ; k = 0(1) nt ; (4.61)

while the x coordinate of the middle of the string is approximated

bk+1 = xtk +1 + ( l2
¢;k+1 ¡ y2

tk +1
)1=2 ; (4.62)

for 0 · (k + 1)¢ t · tb. The time tb is ¯xed by the moment that the approximation of the
left-hand side of equation (4.23) becomes zero, or if
¡
¢ xns ;k+1 ybk +1 + ¢ yns ;k+1 (bk+1 ¡ xbk +1 )

¢¡
(xt0 ¡ x0(L2))x0

0(L2) + ( yt0 ¡ y0(L2))y0
0(L2)

¢
+

¡
¢ yns ;k+1 ¡ ¢ xns ;k+1 (bk+1 ¡ xbk +1 )

¢¡
(xt0 ¡ x0(L2))y0

0(L2) ¡ (yt0 ¡ y0(L2))x0
0(L2)

¢
= 0 :

(4.63)

For tb < (k + 1)¢ t the approximations of the boundary conditions are obtainedin the
same manner. Equation (4.29), which connects the force in the string to its elongation,is
approximated by

K ¢;k+1 = Us
l¢;k+1 ¡ l0

l0
; k = ¡ 1(1)nt : (4.64)

The equations which apply to the motion of the arrow (4.30)¢ ¢ ¢(4.32) become

(bk+1 ¡ bk)=¢ t = ¹c k+1 + (1 ¡ ¹ )ck ; k = ¡ 1(1)nt ; (4.65)

and for 0 · (k + 1)¢ t · tb, with ma(ck+1 ¡ ck)=¢ t = Ek+ ¹

(ma + 1=3ms)(ck+1 ¡ ck)=¢ t = ¹
¡
¡ K ¢;k+1 (bk+1 ¡ xtk +1 )=l¢;k+1

¢
+

(1 ¡ ¹ )
¡
¡ K ¢;k (bk ¡ xtk )=l¢;k

¢
; (4.66)

while for tb < (k + 1)¢ t,

(ma + 1=3ms)(ck+1 ¡ ck)=¢ t = ¹
¡
¡ K ¢;k+1 (bk+1 ¡ xbk +1 )=(l¢;k+1 ¡ hb)

¢
+

(1 ¡ ¹ )
¡
¡ K ¢;k (bk ¡ xtk )=(l¢;k ¡ hb)

¢
; (4.67)

The time t l is ¯xed by Ek+1 = 0. For ( k + 1)¢ t > t l , hence when the arrow has left the
string, the massma has to be replaced by one sixth of the mass of the string 2ms, as we
discussed.

We now turn to the ¯nite-di®erence approximations for the equations (4.33)¢ ¢ ¢(4.43),
the equations of motion and boundary conditions for the string. To that end we consider
a grid in the r0; t-plane; 0· r0 · l0 ; t ¸ 0 The grid points are denoted by (h¢ r0; k¢ t),
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whereh = ¡ 1(1)nr + 1, nr ¢ r0 = l0. We attach for this grid to the di®erence operators±
and ¢ the following meaning

±fh;k =
f h+1 =2;k ¡ f h¡ 1=2;k

±rh;k
; ¢ f h;k = 0:5 (±fh+1 =2;k ¡ ±fh¡ 1=2;k ) : (4.68)

Then (4.32)¢ ¢ ¢(4.36) can be approximated by

¢ r0Vs0 (ush;k +1 ¡ ush;k )=¢ t = ¹± (K±xs)h;k +1 + (1 ¡ ¹ )±(K±xs)h;k ; h = 0(1) nr ; (4.69)

¢ r0Vs0 (vsh;k +1 ¡ vsh;k )=¢ t = ¹± (K±ys)h;k +1 + (1 ¡ ¹ )±(K±ys)h;k ; h = 0(1) nr (4.70)

(xsh;k +1 ¡ xsh;k )=¢ t = ¹u sh;k +1 + (1 ¡ ¹ )ush;k ; h = 0(1) nr ; (4.71)

(ysh;k +1 ¡ ysh;k )=¢ t = ¹v sh;k +1 + (1 ¡ ¹ )vsh;k ; h = 0(1) nr ; (4.72)

Equations (4.37) and (4.38) give

K h¡ 1=2;k+1 = Us(
±rh¡ 1=2;k+1

¢ r0
¡ 1) ; h = 0(1) nr + 1 ; (4.73)

and

(±xsh ¡ 1=2;k +1
)2 + ( ±ysh ¡ 1=2;k +1

)2 = 1 ; h = 0(1) nr + 1 ; (4.74)

respectively.
The approximations for the boundary conditions atr0 = 0, equations (4.39)¢ ¢ ¢(4.41),

resemble those given in (4.54)¢ ¢ ¢(4.56). They are approximated by

mt (uns ;k+1 ¡ uns ;k)=¢ t =

¹
¡
¡ 1=2 (Tns +1 =2;k+1 + Tns ¡ 1=2;k+1 )¢ xns ;k+1 ¡ ¢ Mns ;k+1 ¢ yns ;k+1 +

1=2 (K 1=2;k+1 ±xs1=2;k +1
+ K ¡ 1=2;k+1 ±xs¡ 1=2;k +1

)
¢

+

(1 ¡ ¹ )
¡
¡ 1=2 (Tns+1 =2;k + Tns ¡ 1=2;k )¢ xns ;k ¡ ¢ Mns ;k¢ yns ;k+

1=2 (K 1=2;k+1 ±xs1=2;k +1
+ K ¡ 1=2;k±xs¡ 1=2;k

)
¢

; (4.75)

mt (vcgk +1 ¡ vcgk )=¢ t =

¹
¡
¡ 1=2 (Tns +1 =2;k+1 + Tns ¡ 1=2;k+1 )¢ yns ;k+1 ¡ ¢ Mns ;k+1 ¢ xns ;k+1 +

1=2 (K 1=2;k+1 ±ys1=2;k +1
+ K ¡ 1=2;k+1 ±ys¡ 1=2;k +1

)
¢

+

(1 ¡ ¹ )
¡
¡ 1=2 (Tns+1 =2;k + Tns ¡ 1=2;k )¢ yns ;k ¡ ¢ Mns ;k¢ xns ;k+

1=2 (K 1=2;k+1 ±ys1=2;k +1
+ K ¡ 1=2;k±ys¡ 1=2;k

)
¢

; (4.76)

and

Jt

¡
(¹ ¢ yns ;k+1 + (1 ¡ ¹ )¢ yns ;k )(¢ uns ;k+1 ¡ ¢ uns ;k)=¢ t¡

(¹ ¢ xns ;k+1 + (1 ¡ ¹ )¢ xns ;k)(¢ vns ;k+1 ¡ ¢ vns ;k)=¢ t
¢

=

¹M ns ;k+1 + (1 ¡ ¹ )Mns ;k ; k = ¡ 1(1)nt ; (4.77)



4.4. FINITE-DIFFERENCE EQUATIONS 97

In a similar way we get for equation (4.41)

Ek+ ¹ = ma(usn r ;k +1 ¡ usn r ;k )=¢ t =

¡ ¹
¡
1=2 (K n r +1 =2;k+1 ±xsn r +1 =2;k +1

+ K n r ¡ 1=2;k+1 ±xsn r ¡ 1=2;k +1
)
¢

¡ (1 ¡ ¹ )
¡
1=2 (K n r +1 =2;k±xsn r +1 =2;k

+ K n r ¡ 1=2;k±xsn r ¡ 1=2;k
)
¢

(4.78)

When Ek+1 = 0, we have t = t l . For t l < (k + 1)¢ t, ma in (4.78) equals 0.
We note that there are some di®erences between the ¯nite-di®erence scheme given in

this section and the scheme given in [8], even in those cases in which they could have been
chosen the same. First, the last equation of (4.51) is the di®erence approximation of the
last equation of (4.9) instead of the approximation ofy0(L0; t) = y0

0(L0), t > 0, as is done
in [8]. Actually if y0

0(L0) = 1, the method described in [8] is unsuited to the computations
carried out there and in this paper. In all the computations of which the results were
given in [8], we used already equation (4.51). Second, in (4.66), (4.67) and (4.78) the index
of E is k + ¹ instead of k + 1. In this way we get a better convergence of the forceE
acting upon the arrow, with respect to ¢t. Third, in the boundary conditions at s = L2

(4.54)¢ ¢ ¢(4.56) and (4.75)¢ ¢ ¢(4.77) only central di®erence approximations with respect to
s are used, so in (4.45) and (4.46)j has to range untons. In [8] we used non-central
di®erence approximations, but mainly because of (4.56) and (4.77) they are replaced here
by central di®erence approximations.

We pay now some attention to (4.69) and (4.70), which are the approximations of
(4.33) and (4.34), respectively. Like the length of the string, the mass per unit of length
Vs occurring in (4.33) and (4.34) is a function of time. However, conservation of mass for
the part of the string betweenr0 = ( h ¡ 1=2)¢ r0 and r0 = ( h + 1=2)¢ r0, h = 1(1) nr ¡ 1
gives

±rh;k Vsk = ¢ r0Vs0 ; k ¸ 0 : (4.79)

(Vs _us)h;k +1 =2 = ±(Kx 0)h;k +1 =2 ; (4.80)

and multiply both terms by ±rh;k +1 =2, we get using (4.79)

¢ r0Vs0 _ush;k +1 =2
= ±rh;k +1 =2±(Kx 0)h;k +1 =2 ; h = 1(1) nr ¡ 1 : (4.81)

The ¯nite-di®erence approximation (4.69) is obtained from this equation in a straightfor-
ward manner. The same holds for equation (4.70). It is easy toshow that (4.69)¢ ¢ ¢(4.74)
are also the equations of motion for a lumped parameter modelfor the string. In that
model we have mass points ¢r0Vs0 (thus 2ms=nr ), at equal distances ¢r0, attached to
each other by springs, with strain sti®nessUs and without mass. The ¯nite-di®erence
schemes given in this section form a set of non-linear equations for each time step. As in
[8] we solve these equations with a Newtonian method, in the course of which we solve
the occurring system of linear equations by means of a Gaussian elimination method with
partial pivoting. The matrix is adopted only in the ¯rst itera tion of each time step. As
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starting values for the Newtonian method for the static calculations we use the results of a
shooting method, developed in [9]. Because the string was assumed to be inextensible and
the ear was reckoned with by putting the bending sti®nessW(s) for L2 · s · L very large
with respect to the mean bending sti®ness of the °exible part ofthe limb, we had to make
some alterations in the procedure described in [9]. In orderto get starting values for the
next time steps we extrapolate the results of the preceding calculations. For reasons given
in the Section 4.13 we use¹ = 1 for the ¯rst time step, from t = 0 to t = ¢ t, or for k = 0.
The ¢ t used for this ¯rst step is taken small with respect to its magnitude used in the
following steps. For the succeeding steps,k > 0, we use¹ = 1=2, thus a Crank-Nicolson
scheme.

We adhere to that scheme untiltk+1 ¸ tb (string touches bridge again in the case of
static-recurve bows) ortk+1 ¸ tp (bow leaves bow hand) ortk+1 ¸ t l (arrow leaves string).
In these cases we iterate with respect to ¢t until we ¯nd accurate approximations for tb,
tp and t l . During this iteration we have to avoid that ¢ t becomes too small, in order to
ensure the convergence of the Newtonian method. After such an iteration the mesh-width
in the time direction ¢ t is restored, except for the iteration fort l . In that case we use
¹ = 1 for t > t l , thus a fully implicit backward time di®erence scheme. This is done to
avoid instabilities in the numerical process. To obtain a su±cient accurate approximation
we continue the process fort > t l with a ¢ t to a certain extend smaller than the one used
for t · t l .

During the computations of some bows is appears that the tensile force in the string
becomes negative. In that situation the Newtonian method fails to converge and we are
forced to stop the computations. Note that a string can only withstand tensile forces and
for negativeK equation (4.73), Hooke's law, is no longer valid.

In Section 4.13 we carry out a check on the numerical method described in this section.
We compare the results obtained by means of the ¯nite-di®erence method with the analytic
solution in the case of a vibrating beam with small de°ections.

The numerical results mentioned in Section 4.6¢ ¢ ¢4.12 are obtained by using the nu-
merical method given in this section.

4.5 The quality coe±cients

In this section we discuss three coe±cients, one static quality coe±cient and two dynamic
quality coe±cients. These coe±cients have been introduced inour previous papers [9] and
[8], pertaining to an inextensible string. The static quality coe±cient q is given by

q =
A

jODjF (jODj)
; (4.82)

whereA is the energy stored in the bow by deforming it from the bracedposition into the
fully drawn position. We can compute this amount of energy intwo ways. First, if F (b) is
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the static force-draw curve (sfd curve),

A =
Z b= jOD j

b= jOH j
F (b)db : (4.83)

Second, it is the potential energy stored in the fully drawn bow, denoted byAD minus
the potential energy stored in the bow in the braced situation, denoted byAH . In both
cases the potential energy is the bending energy in the limbsplus the strain energy in the
string. Thus

A = AD ¡ AH =
Z L 2

L 0

W(s)
¡
µ0(s) ¡ µ0

0(s)
¢2

ds + Us(l ¡ l0)2=l0

¯
¯b= jOD j

b= jOH j
(4.84)

Note that q is the dimensionless amount of energy put into the bow by drawing it from
the braced situation into full draw.

One of the dynamic quality coe±cients is the e±ciencý de¯ned by

´ =
mac2

l

A
(4.85)

wherecl is the muzzle velocity, the velocity of the arrow at the moment it leaves the string.
Hence´ A is the amount of energy imparted to the arrow. IfE(b) is the dynamic-force-draw
curve (dfd curve), then we have

´ A =
Z b= jOD j

b= bl

E(b)db : (4.86)

where bl is the x-coordinate of the middle of the string att = t l the moment the arrow
leaves the string.

The second dynamic quality coe±cient is the dimensionless muzzle velocity º ,

º =
¡ q´

ma

¢1=2
= cl ; (4.87)

In the second part of this section we show that for common bowsthe maximum value
of ´ is 1 or stated otherwise the maximum amount of energy that canbe transferred to
the arrow equalsA.

At arrow exit, the part of AD that is not transferred to the arrow is kinetic energy in
limbs and string, denoted byAK , plus potential energy in limbs and string, denoted by
AP . Conservation of energy implies that

AD = ´ A + AK + AP : (4.88)

Suppose now

AP ¸ AH ; (4.89)
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then, using (4.84), (4.88) this assumption yields

´ A + AK · A ; (4.90)

and becauseAK ¸ 0,

´ A · A or ´ · 1 : (4.91)

Hence it remains to show that under general conditions assumption (4.89) is valid. To
that end we use the principle of stationary potential energy. It states: \Among the set
of all admissible con¯gurations the state of equilibriums characterized by the stationary
property of the potential energy". In our case the continuumwe consider is the two limbs
and the string together. The admissible con¯gurations for symmetric bows are those by
which the middle of the grip and the middle of the string are onthe line of aim. There
are no external forces in the braced situation, so the mentioned potential energy is the
potential energy in the limbs and the string.

If we assume that the equilibrium in the braced situation is stable, then the principle
yields that for all admissible con¯gurations in the neighbourhood, of the braced situation,
AH is a local minimum of the potential energy. If we assume further that there is only one
state of equilibrium for the braced situation (and this is true for common bows), thenAH

is the global minimum of the potential energy. Because the con¯guration of the limbs and
string at t = t l is an admissible con¯guration, we have (4.89)AP ¸ AH .

In [9] we gave an example of the possibility of more than one braced situations of a not
too realistic bow. In that case we had one unstable and two stable con¯gurations. Then
it is possible to start from one stable braced situation which does not possess the global
minimum potential energy. If the bow terminates its motion after release of the arrow in
the second stable braced situation with the global minimum of the potential energy, then
(4.89) may be violated. Then it is possible that́ > 1. For such a bow the archer has
to bring the limbs from the second braced situation into the ¯rst one after each shot, by
which he stores already some energy in the limbs and string, but this amount of energy
stays out of sight in the de¯nition of the e±ciency given by (4.85).

In the case of the static-recurve bow (or working-recurve bow) the afore mentioned
conclusions hold when the string can not slip past the limbs.When this happens, the bow
does not return to its braced Situation, but it turns itself inside out and the results of this
accident can be unpleasant both for bow and archer (see [pagexxix][10]). We have in this
case actually the same situation as we described just above.Note that (4.91) also holds
when a string breaks.

In the following sections we use the quality coe±cients when we compare the perfor-
mance of di®erent bow and arrow combinations.

4.6 Comparison of three mathematical models

In this section we compare a number of calculated results obtained by three di®erent
mathematical models of bows. One model was developed by Hickman in [6] (H model),
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another in [12] by Marlow (M model). The third model is the onedescribed in this paper
(C model).

To that end we compare the results with respect to one realistic bow, the H bow. This
H bow resembles a bow described by Hickman and has not to be confused with the H model
of some bow. Using the notation of (4.2) the H bow is given by

H(91:44; 10:16; W; V ; µ0 ´ 0; 0:0125; 0; 0; 0; 0; 0; 0;

91:44; 0; 91:44; 0; 91:44; 1 ; 0; jOHj = 15:24; 71:12; 15:53; 0:1625): (4.92)

The bending sti®nessW(s) and mass distribution V(s) along the limb are given by

W(s) = 1 :30 105
¡ L ¡ s

L

¢
; (4.93)

and

V(s) = 4 :52 10¡ 3
¡ L ¡ s

L

¢
: (4.94)

In [8] we dealt already with this H bow, which possesses an inextensible string without
mass. Because we drop in this paper the assumption the stringto be without mass and
inextensible, we have to specify these quantities. For the mass of the string we take the
mass Hickman mentioned in [6], being 0.0068 kg. In [6], page 251, Taylor discusses the
bow string. He measured the strain sti®ness of a string made ofone strand of linen. If we
take a string with 12 strands, we get a strain sti®ness (4.29) or (4.37)

Us = 2040 kgf : (4.95)

We call the H bow with an elastic string,Us = 2040 kgf and mass, 2ms = 0:0068 kg theeH
bow, it is thus given by

eH(91:44; 10:16; W; V ; µ0 ´ 0; 0:0125; 0; 0; 0; 0; 0; 0;

91:44; 0; 91:44; 0; 91:44; 2040; 0:0068; jOHj = 15:24;

71:12; 15:59; 0:1625): (4.96)

whereW and V are given by (4.93) and (4.94).
Hickman invented his model for a bow with bending sti®ness (4.93) (apart from a scalar

factor), which is a linear function of the distance from the tip, being zero at the tip. As
a result, the limb bends in a true arc of a circle for a small load at the tip, perpendicular
to the limb. Then the °exible limb is replaced by a rigid one, connected to the grip by
an elastic hinge S, see Figure 4.3. The place of this hinge is chosen so that the tip of the
°exible limb and that of the rigid limb travel almost along the same path when the bow is
drawn. In this way he ¯nds the length of the rigid limb L1 to be 3=4 of the length of the
°exible limb. Hence in the H modelL 0 is the length of the grip plus 1=4 of the lengths of
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Figure 4.3: Bow with two elastic hinges and
rigid limbs.

the °exible limb. In order to determine the strengthk of the elastic hinge, with neutral
position the y-axis, Hickman demands the de°ection of the tip of the rigid limb to be equal
to that of the °exible limb, both loaded with the same su±ciently small force at the tip,
perpendicular to the limb.

Next he assumed the mass of the rigid limb to be concentrated at the tip, which is
not essential because the dynamics of the limb is determinedby its moment of inertia J
with respect to the hinge. This massmt follows from the demand that the frequencies of
free vibrations of the elastic limb and rigid limb are the same. The de°ection during the
oscillatory motion of the elastic limb is assumed to be the same as its de°ection in the case
of a static force acting upon the tip of the limb perpendicular to this limb, which causes
the same de°ection of the tip. The concentrated mass at the tipappears to be 1=15 of the
mass of one °exible limb.

Hickman assumes the string to be inextensible and its mass 2ms is accounted for by
adding 1=3 of it to the mass of the arrow 2ma. In [12] Marlow replaces the °exible limb
also by a rigid limb connected to the grip by an elastic hinge.However, the place of this
hinge and its strengthk are determined di®erently. In this M model the hinge is placed
at the point the grip meets the limb. So the lengthL 1 of °exible and rigid limb are equal.
For the evaluation of the strength of the elastic hinge, Marlow uses the second derivative
of the function A(b) (4.83) at the point where b equals the brace heightjOH j. We have
using (4.83)

d2 A

d b
2

¯
¯
¯
¯
b= jOH j

=
d F

d b

¯
¯
¯
¯
b= jOH j

: (4.97)

The inertia of the limb is, as in the previous H model, taken into account by placing a
concentrated mass at the rigid limb. This mass possesses moment of inertia with respect
to the place of the hinge equal to that of the unde°ected °exiblelimb. If the concentrated
mass is placed at the tip then it is in the case of the H bow 1=6 of the mass of one °exible
limb.

The string is treated as a rod, rigid with respect to shear andbending, but elastic in
its length direction as given by Hooke's law. Marlow assumesthat the elongation of the
string during the motion is the same as its elongation for a static tensile force which causes
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Table 4.1: Characteristic constants of eH bow in H and M model.

L1 L0 jOH j k dF
db

jODj mt 2ma 2ms Us

H model 60.96 30.48 15.24 15.92 | 71.12 0.0108 0.025 0.0068 -
M model 81.28 10.16 15.24 | 0.55 71.12 0.0271 0.025 0.0068 2040

the same elongation of the whole string.
The obtained equations of motion cannot be solved analytically. Marlow used a simple

Newtonian integration method, but we apply a more accurate Runge-Kutta method.
The third model (C model) used in this paper is the one we discussed in Section 4.3.

The limbs are considered as slender beams and they are represented by elastic lines which
are endowed with bending sti®nessW(s) and mass per unit of lengthV(s). In order to
avoid di±culties in the calculations using the C model we takefor the bending sti®ness
given in (4.93)

W(s) = 7 :69 if 1:30 105
¡ L ¡ s

L

¢
· 7:69 ; (4.98)

For the string we assume that neither internal nor external damping is present.
Before we compare the results obtained by using the three mathematical models H,

M and C, we have to specify some characteristic constants forthe M model. Instead of
the brace height, Marlow took the half length of the string ofthe real bow in unloaded
situation as a characteristic quantity. To facilitate comparison of the results of the M model
with those of the H and C model correctly we adhere to the braceheight as a physical
constant of the M model. The derivative (4.97), also one of the characteristic constants in
the M model, is obtained from computations with the C model with, according to Marlow,
an inextensible string. We approximate this derivative by

dF

db

¯
¯
b= jOH j

¼
3F (jOHj + 2¢ b) ¡ 4F (jOH j + ¢ b) + F (jOH j

2¢ b
(4.99)

In our calculations we took ¢b= ( jODj ¡ j OHj)=40, yielding dF
db

¯
¯
b= jOH j

= 0:55 kgf/cm.

However, if we had taken ¢b two times as large, the approximation of the derivative
di®ers more than 2 per cent from this value. It is clear that if one uses a measuredsfd
curve, this inaccuracy may be larger. In Table 4.1 we collectthe characteristic constants
belonging to the H and the M model, which both represent theeH bow given in our C model
by (4.96).

Figure 4.4 shows thesfd and dfd curves of the H bow. They re°ect that thesfd
curves for the H and the C model nearly coincide. Thesfd curve calculated by means of
the M model deviates clearly from these curves, while also the weight of the H bow predicted
by the M model di®ers considerably from those predicted by theother two models. Further
the jump at time t = 0 of the force acting upon the arrow (F (jODj) ¡ E(t = 0)) is for
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Figure 4.4: sfd and dfd curves of H bow: { {
{ H model, | { | M model and || C model.

the M model larger than that computed by means of the H model. This e®ect is mainly
produced by the di®erence in the magnitude of the massmt at the tip. It is seen that with
our C model there is no jump at all at the moment of release of the arrow. Thedfd curves
of all three models di®er, although the curves belonging to the H and C model have some
correspondence. The character of the one calculated by the Mmodel is, however, strongly
di®erent from the other ones.

Figure 4.5 shows thesfd and dfd curves of the eH bow computed by means of the
M and C model. The sfd curves nearly di®er from those of the H bow, and the same
conclusions hold. Thedfd curve in the M model shows that the acceleration forceE(b)
acting upon the arrow, for an elastic string oscillates strongly round this function for an
inelastic string (compare Figure 4.4). The amplitude is nearly equal to the jump in the
force on the arrow at timet = 0 in the case of an inelastic string. The frequency with
which the dfd curve of the M model oscillates depends also on the strain sti®ness of the
string. When this strain sti®nessUs increases the same happens to the frequency. In fact
in the it Us ! 1 thesedfd curves do not converge point-wise to thedfd curve of the
H bow with an inelastic string. It seams that even for a bow with a conventional sti®ness
of the string, but certainly when the string is rather sti®, the M model yields unreliable
results with respect to thedfd curve when no damping is introduced. This holds most
probably for any model with rigid limbs.

As we remarked already, it follows from Figure 4.4 that the force on the arrowE at
t = 0 equals the weight of the bowF (jODj) in the C model when, as is assumed here,
no concentrated masses are present at the tips of the real bow. This elucidates why the
dfd curve in Figure 4.5 computed by means of the C model does not oscillate and for
Us ! 1 the dfd curve does change gradually into thedfd curve of the H bow which has
an inextensible string.

In Table 4.2 we give the static quality coe±cientq, the e±ciency ´ and the muzzle
velocity º of the H bow and of theeH bow, which follow from the three di®erent models. In
order to investigate the in°uence of the mass and elasticity of the string purely we changed
these two quantities also separately.



4.6. THREE MODELS 105

Figure 4.5: sfd and dfd curves of eH bow: |
{ | M model and || C model.

The numbers show that the direction of the in°uence of the elasticity of the string with
respect to the static quality coe±cient predicted by both models M and C, is the same.
However, theq's predicted by the M model are much larger than those predicted by the
C model.

In [9] we showed that the H and M model yield an e±ciencý = 1, when the string
is inextensible and without mass. This value di®ers a lot fromthat computed with the
C model, being´ = 0:885. If the string is inextensible and possesses a mass 2ms, then the
e±ciency in the H model can be calculated analytically. It becomes

´ =
ma

ma + 1=3ms
(4.100)

This value is almost equal to the value predicted by the H and Mmodel, namely 0.9167 and
0.9174, respectively. However, both e±ciencies di®er much from the e±ciency computed
by means of the C model, being 0.836. With respect to the in°uence of the elasticity of the
string the results in Table 4.2 show that this in°uence on the e±ciency is in the C model
much smaller than that in the M model.

In [12] Marlow claims that his elastic string model gives an explanation for the long-
standing discrepancy between theory (the H model yields an e±ciency ´ over 91%) and
experiment (Marlow measured an e±ciency of 80% for more popular bows). However, the
values of the e±ciencies given in Table 4.2 reveal that the elasticity of the string accounts
for this discrepancy only partly.

Even for the H bow with a string possessing mass, the C model predicts an e±ciency
of 83.6% instead of an e±ciency more than 91% predicted by the Hand M model. So, the
discrepancy originates mainly because of the replacement of the °exible limb by a rigid
limb connected to the grip by an elastic hinge.

In the case of the elastic string the muzzle velocities givenby the M model di®er not
too much from those of the C model. For an inextensible stringthe H and M model yield
both very large muzzle velocities whether the mass of the string is zero or not.

Summarizing this section, we have found that in comparison with our theory it seems
that any rigid limb model combined with an elastic string cangive inaccurate results with
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Table 4.2: Quality coe±cients of H bow and of eH bow computed by means of the three models.

H model M model C model
2ms Us 1 2ms Us 1 2400 2ms Us 1 2400

q 0 0.415 0 0.429 0.423 0 0.407 0.404
0.0068 0.415 0.0068 0.429 0.4230.0068 0.407 0.404
2ms Us 1 2ms Us 1 2400 2ms Us 1 2400

´ 0 1 0 1 0.806 0 0.885 0.868
0.0068 0.9167 0.0068 0.9174 0.7390.0068 0.836 0.807
2ms Us 1 2ms Us 1 2400 2ms Us 1 2400

º 0 2.32 0 2.36 2.11 0 2.16 2.14
0.0068 2.23 0.0068 2.27 2.02 0.0068 2.11 2.06

respect to the three quality coe±cientsq, ´ and º , and the shape of thedfd curve.

4.7 In°uence of mass and sti®ness of string on per-
formance of H bow

The in°uence of mass and sti®ness of the String on the performance of the H bow, hence
on the quality numbers q, ´ and º , is dealt with in this section. This completes the
investigation, started in [8] of the in°uence of parameters on the performance of the H bow.

In Table 4.3 we change in a systematic way the strain sti®nessUs and mass 2ms of
the string, both separately and simultaneously. The third and fourth 5 row from above
show the in°uence of the strain sti®ness on the weightF (jODj) and on the static quality
coe±cient q. We recall that the brace height is the same in all the cases. Hence, the
length 2l0 of the string in unstrung condition is di®erent for di®erent values ofUs. We ¯nd
an increase of the weightF (jODj) and a decrease of the static quality coe±cientq with
decreasing sti®ness. The in°uences are relatively small.

The lowest row gives the values of the e±ciencý and muzzle velocityº for several
values of the sti®ness of the string without mass. We concludefrom this row: the sti®er
the string the better the e±ciency and the larger the muzzle velocity. The third and fourth
column in Table 4.3 indicate for an inextensible string: thelighter the string the higher
the e±ciency and muzzle velocity. So, when we change the number of strands (mass is
about directly and sti®ness about inversely proportional tothe number of strands) there
are two e®ects which counteract each other, hence the in°uenceof the number of strands
is not dear beforehand.

In order to investigate this in°uence we change the strain sti®ness and mass of the
string simultaneously. On the diagonal in Table 4.3 these results are collected. It shows
that the e±ciency of the H bow decreases when we take more than 12 strands, the number
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Table 4.3: In°uence of mass 2ms and strain sti®nessUs of string on H bow.

nos. strands 36 24 18 12 6 3
Us 1 8160 4080 3060 2040 1020 510
F (jODj) 15.53 15.54 15.56 15.57 15.59 15.65 15.75
q 0.407 0.406 0.406 0.405 0.404 0.400 0.395

nos. strands 36 24 18 12 6 3
Us 1 8160 4080 3060 2040 1020 510
2ms ´ º ´ º ´ º ´ º ´ º ´ º ´ º
0.0272 .709 1.94 .698 1.92
0.0136 .742 1.98 .728 1.96
0.0102 .771 2.02 .754 1.99
0.0068 .836 2.11 .807 2.06
0.0034 .850 2.12 .809 2.05
0.0017 .869 2.15 .807 2.04
0 .885 2.16 .881 2.16 .877 2.15 .874 2.15 .868 2.14 .853 2.11 .831 2.07

of strands corresponding to 2ms = 0:0068 kg andUs = 2040 kgf. Apparently when the
string has reached a certain sti®ness, the disadvantage of becoming heavier has more e®ect
than the advantage of becoming sti®er. For the H bow with number of strands between 3
and 12 the e±ciency and muzzle velocity hardly depend on the number of strands. Here
the two e®ects neutralize each other.

In Figure 4.6 we give thedfd curves of the H bow with changing number of strands.
For heavy strings we see that the inertia of the string makes the force E(b) go down
sharply after the loose of the arrow. During the second part of the shooting process,
the force E(b) increases more than in case of a light string and the kineticenergy of the
string is transferred into the arrow. This phenomenon resembles the energy absorption and
restitution by concentrated mass at the tip of a bow with elastic limbs, as will be discussed
in Section 4.9. The rather small oscillation with a high frequency occurring with the heavy
strings may be physically unrealistic because of damping, which has been ignored in our
theory. For light strings the dfd curves, but also the recoil forceP(t) and tensile force
in string K (t) are rather smooth because of the elasticity of the string. Note that for a
string made of 12 strands, thex-coordinate of the middle of the string (b = 11:04 cm)
is rather small at the moment the arrow leaves the string, in comparison with the brace
height (jOH j =15.24 cm.)

Hickman investigated experimentally in [6], page 45, the e®ect of the mass of the string
on the e±ciency and muzzle velocity. He measured the muzzle velocities of four di®erent
arrows, each shot from bows made of three di®erent kinds of wood. Because Hickman
changed the number of strands he changed the strain sti®ness as well as the mass of the
string. lie came to the conclusion that the velocity of the arrow is reduced about the same
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Figure 4.6: dfd curves of H bow, di®erent num-
bers of strands, Table 4.3.

Table 4.4: Comparison Hickman's rule with C model.

nos. strands 36 24 18 12 6
´ º ´ º ´ º ´ º ´ º

C model 0.698 1.92 0.728 1.96 0.754 1.99 0.807 2.06 0.809 2.05
Hickman's rule 0.679 1.89 0.762 2.00 0.785 2.03 0.807 2.06 0.830 2.09

amount as if the arrow were increased in mass by one third of the increase in mass of the
string, while the string was kept the same. We have checked ifthis is in agreement with
results from the C model.

To that end we start with the ~H bow and compute the e±ciencý and muzzle velocity
º of the same bow with the same string, but shooting an arrow with an adapted mass
according to Hickman's rule. We recall that we assumed as standard values a string with
12 strands and an arrow with 2ma = 0:025 kg. For instance in the case of a string with
24 strands, the adapted mass of the arrow 2ma equals 0:0250 + 0:0022 = 0:0272 kg. The
obtained e±ciencies and muzzle velocities are in Table 4.4 compared with those computed
by means of the C model, which were given in Table 4.3. We conclude that there are
some deviations The results obtained with the C model (see also Figure 4.6 Suggest that
the occurring longitudinal and transverse vibrations, of which the frequencies depend on
the number of strands, can a®ect the performance of a bow favourably or unfavourably.
Further, we note that Hickman's rule does not re°ect that massand elasticity of the string
are coupled and that the elasticity in°uences also the e±ciency.

The °ight shooters in Asia made their strings light. The mass of these strings of new
and extremely strong wound silk, was half the mass of the strings used for other bows with
the same ultimate drawing force or weight, see [10, page 20].See also [1, page 101], where
it is remarked that the strings used in °ight shooting are always thin and that all archers
agree on this speci¯cation. Also Ascham notes inToxophilus that: "the great stringe is
slower for the cast", see Hodgkin [7, page 74].



4.8. FIBRATORY MOTION 109

(a) (b)

Figure 4.7: Vibratory motion of limb and string of the ~H bow: (a) t < t l and (b) t ¸ t l .

4.8 Fibratory motion of a bow before and after arrow
exit

The vibratory motion of the limbs and string is the subject ofthis section. We pay
attention to the bending momentM (s; t), normal forceT(s; t) in the limb tensile force in
string K (r; t) and the recoil forceP(t) on the bow hand. Finally we discuss the in°uence
of the mass of the grip when a bow is shot open-handed.

Figure 4.7 shows the shape of limb and string of the~H bow, de¯ned in (4.96), for
t < t l (Figure 4.7.a) and for t ¸ t l (Figure 4.7.b). The con¯gurations of the upper half
of the bow are shown in unbraced situation (i = 0), braced situation (i = 1=2) and at
times t i ; i = 1(1)16, marked in Figure 4.8 on thet-axis. We stopped the computations
after about three quarters of an oscillation of limb and string after arrow exit. Because
we neglect damping this vibratory motion holds on fort ¸ t16. For a real bow we have a
damped free vibration and the bow returns quickly to its static braced situation. Hence,
our calculations are only relevant for about one time periodof vibration.

The amplitude of the vibration after arrow exit is rather large. The x-coordinate of
the middle of the string xs(l; t) = b(t) ranges between 4.0 cm and 24.7 cm, while the brace
height is 15.24 cm. This means that there is not much space left for the bow hand; in
Section 4.9 we return to this subject.

Note that in our model discussed in Section 4.3, the arrow leaves the string at the
moment the acceleration forceE on the arrow becomes negative. Doing this we assumed
that the tension of the nock of the arrow on the string is zero.In [7, page 110], Hodgkin
mentions that the width of the nock should be so that:
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Figure 4.8: Times t i ; i = 1(1)16, plotted on the t-axis.

The whole arrow will just hang on your particular bow string without falling
o®.

For the ~H bow the weight of the arrow is 0.025 kgf and this is rather small with respect to
the weight of the bow 15.59 kgf. Nevertheless a variation in this nock-tension may cause
some variation in the moment of is rather small with respect to the weight of the bow
15.59 kgf. Nevertheless a variation in this nock-tension may cause some variation in the
moment of separation of arrow from the string and the vibratory motion of the bow after
arrow exit.

We proceed with a discussion in which way the energy stored inthe limbs and string
in fully drawn position is distributed between arrow, limbsand string as kinetic energy or
potential energy. In the braced situation the bending energy in the limbs of the ~H bow is
107.21 kgf cm and the strain energy in the string is 28.62 kgf cm. In the fully drawn situation
these amounts are 568.64 kgf cm and 14.95 kgf cm, respectively. So, A = 447:74 kgf cm is
stored in the bow by pulling it from the braced situation to full draw. The e±ciency of
the ~H bow is 0.807, thus 361.46 kgf cm is imparted to the arrow. This means that at the
moment the arrow leaves the string att = t l = 0:0181 sec, 222.11 kgf cm remains behind
in the limbs and string. This energy stored in limbs and string is, at t = t l the sum of the
potential energy in the limbs 85.85 kgf cm, the potential energy in the string 65.90 kgf cm
kinetic energy in the limbs 32.86 kgf cm and kinetic energy inthe string 37.62 kgf cm.
Hence, of the energy available,about 80.7% is put to good use, 7.3% is kinetic energy in
limbs, 8.4% is kinetic energy in string and 3.6% is additional potential energy in limbs and
string.

There is much more potential energy in the string att = t l than in the braced situation
(65.90; 28.62), the reverse holds for the limbs (85.85; 107.21), yielding that the total
potential energy at t = t l di®ers not too much from its value it in the braced situation
(151.75; 135.83). Note further that there is more kinetic energy in the string than in the
limbs at t = t l . In Table 4.5 we give the amounts of energy in the parts, limb,string and
arrow of the ~H bow.

In Table 4.6 we collected these values in the case of the H bow (inextensible string
without mass). In that case 107.21 kgf cm is stored in the limbs as bending energy in the
braced situation. By pulling the bow from this situation into the fully drawn position an
additional amount of energyA = 449:99 kgf cm is stored, making the bending energy in
the pulled bow 557.20 kgf cm. Att = t l = 0:017 sec, 398.26 kgf cm has been imparted to
the arrow, hence the e±ciency is 85.5%. The potential energy in the limbs at that moment
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Table 4.5: Energy in parts of ~H bow in a number of situations.

limbs string total bow arrow
energy pot. kin. pot. kin. pot. kin. kin.
braced 107.21 0 28.62 0 135.83 0 0
fully drawn 568.64 0 14.95 0 583.59 0 0
arrow exit 85.85 32.86 65.90 37.62 151.75 70.48 361.64

Table 4.6: Energy in parts of H bow in a number of situations.

limbs string total bow arrow
energy pot. kin. pot. kin. pot. kin. kin.
braced 107.21 0 0 0 107.21 0 0
fully drawn 557.20 0 0 0 557.20 0 0
arrow exit 151.72 7.26 0 0 151.72 7.26 398.26

is 151.73 kgf cm and the kinetic energy in the limbs 7.26 kgf cm. Thus, at t = t l of the
original available energy, 1.6% is present as kinetic energy and 9.9% as additional potential
energy in the limbs. The total energy which remains in the H bow is 158.99 kgf cm.

Comparing the numbers given in Table 4.6 for the H bow with those for the~H bow given
in Table 4.5, we conclude that the potential energyAD in fully drawn position is for both
bows about the same amount higher than the potential energyAH in the braced situation.
Hence, about the same amount of energyA is available. With respect to dynamics, it
appears that at the moment the arrow leaves the string, thereis much more kinetic energy
AK in limbs and string of the H bow than in the limbs of the ~H bow. However, less
additional potential energyAP ¡ AH has remained in the~H bow. Note that this amount
AP ¡ AH is for a bow with one stable braced situation always positive, see Section 4.5, and
that the energy in fully drawn situation stored in the limbs is for the ~H bow more than for
the H bow.

These results show the action of a light and sti® string. Because of its lightness less
kinetic energy is in the string and because of its sti®ness it prohibits the limbs to move fast
at the moment the arrow separates from the string. The amountof energy which remains
in the bow after arrow exit equals

(1 ¡ ´ )A ; (4.101)

hence the e±ciency is also an important quantity with respectto the vibratory motion of
the bow after arrow exit.

We now turn to a discussion of the bending momentM (s; t) and the normal force
T(s; t) in the limb, respectively. Both quantities are essential to the computations of the
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(a) (b)

Figure 4.9: Bending moment M (s; t)t i < t l : (a) t < t l and (b) t ¸ t l .

occurring stresses in the ¯bers of the limbs. In order to prevent the bow to be damaged
this stress must not exceed the permissible stress.

Figure 4.9.a shows the bending moment as function of the length coordinate s for
successive timest i ; i = 1(1)7, thus before and at the moment the arrow leaves the string.
The broken line is the distribution along the limb of the bending moment in the static
braced situation. It follows that the bending moments during the shooting 0< t · t l

are smaller than the bending moments in the fully drawn position of the bow, with the
exception of the part of the limb near the grip In Figure 4.9.bwe show the curves for
i = 1 and i = 8(1)16, thus in fully drawn position and after the arrow hasleft the string.
These curves re°ect that the bending moments fort > t l are smaller than those in the
fully drawn position, but now with the exception of the outerpart of the limb. However,in
both parts the di®erences are rather small. So it seems to be allowed to use the function
M 1(s) = M (s;0) for the evaluation of the maximum strain caused by bending.

The normal force is given in Figure 4.10.a fort < t l ; i = 1(1)7 and in Figure 4.10.b for
t < t l ; i = 8(1)16. The broken line is the curve in the braced situationIn contrast with the
bending moment the normal force is in the braced situation larger than in the fully drawn
situation. Figure 4.10.a shows that this force increases sharply in a short period before
the arrow separates from the string. At momentt = t l the normal force is already larger
than in the braced situation. After arrow exit the force rises even further and obtains its
maximum when the middle of the string is nearest to the grip, con¯guration i = 9. This
maximum normal force is about 3 times the value in braced situation.

Note that at time t9 the bending moment is rather small, see Figure 4.10. Besidesthe
bending moment and normal force the shape of the cross-section has to be known to be
able to compute the stresses caused by the bending moment andthe normal force. In a
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(a) (b)

Figure 4.10: Normal force T(s; t i ): (a) t < t l and (b) t ¸ t l .

next paper we return to this subject, but we remark already that for common bows the
stresses caused by the bending moment are much larger than those caused by the normal
force.

In the previous section we changed the number of strands of the string in order to ¯nd
its in°uence on the performance of one speci¯c bow, the H bow de¯ned in (4.92). But, of
course, the tensile strength of the material of the string and the maximum tensile force
in the string impose a condition on the number of strands one has to use to save it from
breakage. The tensile strength of the string is a given physical constant. The tensile force
K is in the static case a function ofbalone and during the dynamics of shooting a function
of b or t and of r , which is the length coordinate along the string. It appearshowever that
in the dynamic caseK changes only slight as function ofr , therefore only its value at the
middle of the string K (l; t) will be given.

In Figure 4.11 we plotted the tensile forceK in the static and dynamic case for the
H bow as well as for the~H bow, in the dynamic case for 0· t · t l . First, we note that
the elasticity and mass of the string have little in°uence on the forceK in the string in
both cases. In the static case, starting from the braced position b = jOH j = 15:24 cm,
K decreases ¯rst, passes through a minimum and increases slightly up to a value in the
fully drawn position, b = jODj = 71:12 cm which is smaller than its value in the braced
situation.

After the arrow is releasedK decreases again after which it increases when the string
becomes stretched. Its magnitude att = t l is much larger than in the braced situation.
However, this value appears not to be the maximum force whichthe string has to withstand.

In Figure 4.12 we give the acceleration forceE, the recoil forceP and the tensile force
K in the string as function of time t in sec for the ~H bow. The momentE becomes zero
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Figure 4.11: Tensile forceK in string in static
and dynamic case: | H bow and { { eH bow.

indicates the time the arrow leaves the string (t = t l ). It shows that for t ¸ t l the tensile
force K oscillates between two values, of which the maximum is the value we are looking
for. The maximum is for the ~H bow 57.7 kgf, about 2.2 times its magnitude in the braced
situation, being 25.7 kgf.

In [6, page 252] Taylor decreased the strength of the string to the breaking point and
found that the maximum dynamic force is usually about twice the maximum static force
in the string. Taylor mentioned that K reaches a maximum as the string becomes taut.
From Figure 4.12 it follows that the peak is reached after arrow exit. In [3] Paterson states:

Figure 4.12:E; P and K as function of t in case
of eH bow; 2 indicates moment the arrow passes
grip.

`That the maximum impact on the string is about ¯ve times the weight of the
bow.'

The bow in question was a 40 Lb steel bow. For the~H bow we ¯nd a peak tensile force
of about 3.7 times the weight of the bow. Because we don't knowthe physical constants
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of the bows, arrows and strings used for the experiments, we are not able to compare our
results with the quoted results, but they are certainly not contradictory.

That the peak force in the string occurs after arrow exit is inagreement with the
experience of most archers that, although a bow string mightbreak, the arrow ¯nds its
way to the target apparently una®ected. Indeed, if the breaking strength is larger than
K (t = t l ) being 39.1 kgf, but smaller than the peak, 57.7 kgf, the string breaks at a moment
the arrow is already on its way.

This knowledge is used by °ight shooters. In [11] Learn describes the bow and string
and arrow Drake used in shooting a mile. Drake built an footbow with a weight over three
hundred pounds. Learn writes:

`This tremendous strength of the bow made it impossible to make a string, that
will shoot the arrow and not break. If you put turnes on the string in order to
make it unbreakable you would not be able to put the nock on thestring.'

However, in the previous section we found that the muzzle velocity for rather heavy strings
decrease with increasing number of strands. This, togetherwith the fact that breakage of
the string after exit of the arrow does not a®ect its °ight and that a °ight shooter can a®ord
to break the string every shot, shows that it is even not desirable to use an unbreakable,
hence a heavy, string.

After the maximum the tensile forceK decreases and becomes fairly small at a mini-
mum. In the case of the H bow, thus with an inextensible stringwithout mass,K becomes
even zero.

Figure 4.12 shows also the recoil forceP, the force exerted by the~H bow on the bow
hand if this bow is clamped. Fort · t l the maximum recoil force is about 31.4 kgf, about
the same as in the case of the H bow. We observe that fort ¸ t l , P(t) oscillates round
the t-axis with a rather large amplitude of about 55 kgf, thus almost four times the weight
of the bow! Note that these large °uctuations inP occur after the nock of the arrow has
passed the grip. The muzzle velocity is about 5330 cm/sec andthe distance between the
nock and the grip at t = t l equals, as already mentioned 11.04 cm, so the time the arrow
needs to travel this distance is 0.0021 sec. This time is rather small compared with the
shooting time, being 0.0181 sec. In Figure 4.12 the "2 " on the t-axis indicates the moment
tg = 0:0202 sec the nock of the arrow passes the grip. Thus movementsof the bow hand
caused by a jerking recoil force after this momentt do not a®ect the °ight of the arrow.
This means that if we want to judge the performance of a bow, the behaviour of the recoil
force for t · tg is more important for the accuracy of the shooting and its behaviour for
t ¸ tg determines whether the bow is possible a pleasant how to shoot or not.

For a clamped real bow with internal and external damping in limbs and string,K and
P will converge to their magnitude in the static braced situation, being 25.7 kgf and 0 kgf,
respectively.

A subject close to the preceding one is the in°uence of the massof the grip 2mg when
a bow is shot open-handed. In that case the bow leaves the bow hand at the moment
the recoil forceP becomes negative,t = tp. It appears that the e±ciency and the muzzle
velocity of the arrow hardly depend on the mass of the grip, see Table 4.7. Further the
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Table 4.7: In°uence of mass of grip 2mg on performance of~H bow shot open-handed,q = 0 :404.

mg 0 0:0406 1
´ 0.807 0.807 0.807
º 2.06 2.06 2.06

maximum force in the string is for the H bow shot open-handed with mg = 0, slightly
smaller (about 53 kgf) than its value when the~H bow is clamped (then 57.7 kgf). We
conclude that, for e±ciency´ , muzzle velocityº , maximum force in string and behaviour
of the acceleration forceE, shooting a bow open-handed gives no disadvantages.

The Arab archers, see [10, page 43], used a very tight hold on the grip:

`The pressure on the grip will give a hold as strong as a building, so that the
bow will neither deviate no turn in the hand'

In [1, page 49], it is said that:

`Although archers throughout the world have agreed that strong and accurate
shooting depends upon a ¯rm hold upon the grip, so that the ¯ngertips all but
bleed, the Persians maintained that the opposite, a loose hold upon the grip
insured strength and accuracy.'

The modern target archer employs also a loose grip, to avoid twisting which can occur with
a tight grip. This twisting tendency, either horizontally or vertically, throws the arrow o®,
see Nagler [6, page 194]. To prevent loss of the bow after shotthe archer uses a wrist strap
or a ¯nger strap.

Modern bows possess stabilizers, a pair of extending metal arms attached to the handle
section, the sti® part in the middle of the bow which we calledthe grip. These arms are
provided with a heavy knob on the end, giving the stabilizersa large moment of inertia
with respect to the y-axis. One of the actions of stabilizers is to reduce bow "torque" or
the twisting of the bow on the pivot of the hand round they-axis Because we assume in
our model (Section 4.3) that the limbs and arrow move in the (x; y)-plane, it is not possible
to use this model to compute the in°uence of the magnitude of the mentioned moment of
inertia. However, the action of the stabilizers is qualitatively dear.

Another e®ect of these stabilizers is that they add mass to thegrip. Because the handle
section of a modern take down bow is rather long, its mass is byitself already rather large.
Hence, for modern bows 2mg the mass of the grip is much larger then for ancient bows. In
this section we found that the performance of the bow shot open-handed hardly depends
on this mass. However, a heavy grip gives a smaller recoil because the bowhand has some
elasticity. Unfortunately our model developed in Section 4.3 is unsuited to deal with this
phenomenon, because we assumed the bow to be ¯xed in the middlewhen the recoil force
is positive.
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Table 4.8: Energy in parts of KL bow in a number of situations.

limbs string total bow arrow
energy pot. kin. pot. kin. pot. kin. kin.
braced 0.095 0 0.0276 0 0.1226 0 0
fully drawn 0.5155 0 0.0137 0 0.5292 0 0
arrow exit 0.0663 0.0491 0.0681 0.0344 0.1344 0.0835 0.3112

4.9 Systematic change of parameters of a straight-end
bow

In [8] we changed, starting with the H bow, length of the grip,brace height, length of
bow, bending sti®ness and mass distribution along the limbs,shape of the unstrung how,
mass of the arrow and put concentrated masses at the tip. In Section 4.7 of this paper we
completed this study of the H bow by varying the strain sti®ness and mass of the string.
We also compared if possible our calculated results with experimental ones given in [6].
In this section we change some of the parameters mentioned above one by one, but now
starting from a more realistic bow and are able to give numerical results related to what
happens after the arrow has left the string, for instance thepeak tensile force in the string
and the behaviour of the recoil force. At the end of this section we deal with an angular
how.

We start with a bow which we call the KL bow, given by

KL(1 :286; 0:1429; W; V; µ0 ´ 0; 0:0769; 0; 0; 0; 0; 0; 0;

1:286; 0; 1:286; 0; 1:286; 1:286; 131; 0:0209; 0:214; 1; 1; 1) ; (4.102)

with bending sti®ness and mass distribution

W(s) = W(L0)
¡ (L ¡ s)

L ¡ L0

¢
; L0 · s · ²3; W(s) = 1 =3 W(L0); ²3 · s · L ; (4.103)

and

V(s) = V(L0)
¡ (L ¡ s)

L ¡ L0

¢
; L0 · s · ²3; V(s) = 1 =3 V(L0); ²3 · s · L ; (4.104)

whereW(L0) = 1:409 andV(L0) = 1:575 and²3 = L0 + 2=3 (L ¡ L0).
With respect to the ~H bow the KL bow possesses more mass per unit of length near

the tip to support the string. Apart from some minor details the KL how is dealt with by
Klopsteg in [6]. The computed values forq, ´ and º are 0.407, 0.765 and 2.01, respectively.
In Figure 4.13 we show thesfd curve anddfd curve of this KL bow and in Table 4.8 we
give the amounts of energy in di®erent parts of the KL bow in thebraced and fully drawn
situation and at the moment the arrow leaves the string. Comparing these results with
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those of Table 4.5, after we made the latter ones dimensionless, shows that more kinetic
energy is left behind in the limbs of the~H bow. The maximum recoil force fort · t l is
P = 2:3 and the maximum tensile force in the string isK = 4:3. For the ~H bow these
values were 2.10 and 3.7, respectively. After the peak the force in the string becomes
negative.

Before we discuss the consequences of the change of parameters, we describe the sit-
uations in which we stop the calculations. If nothing special happens we stop after one
complete oscillation of limb and string. After one oscillation we know the information we
are looking for; e±ciency´ , muzzle velocityº , maximum recoil force fort · t l , peak tensile
force in string and behaviour of the recoil force fort > t l .

Figure 4.13: sfd and dfd curve of KL bow.

In the case of the KL how and the H bow (Section 4.8) we mentioned already the
possibility that the force in the string becomes negative. When this happens we are forced
to stop the calculations because then the Newtonian method fails to converge. Figure 4.14.a
shows the shape of the how and string of the KL how at that moment, which occurred
after arrow exit. The distance between the tip of the limb andthe x-axis approximates
the length l0 of the string is unloaded situation and the force in the string becomes zero.
This phenomenon can happen also fort · t l , if we take the mass of the arrow very small.

We also stop the computations when thex-coordinate of the middle of the stringb
becomes negative, then the string has passed the grip. Actually, because the how is sup-
ported by the how hand, we should stop the computations whenb becomes smaller than
some positive value in order to require some space for the howhand. In Figure 4.14.b we
depict the shape of the limb and string whenb becomes negative for the KL how with a
concentrated mass at the tip withmt = 0:0769.

Finally we stop when the string hits the limb near the tip, because then the string
passes the limb. The shape of limb and string at the moment this occurs for the KL how
with ma = 0:0384, are shown in Figure 4.14.c. It appears that the limb haspassed the
unstrung shape of the bow which coincides with a part of they-axis. Obviously, because of
a rather large dynamic force in the string it is stretched to such on extend that the length
of the string exceeds the length of the bow.
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(a) (b) (c)

Figure 4.14:Calculated shapes of limb and string: (a) STOP=1, (b) STOP=2 and (c) STOP=3.
Arrows indicate global direction of motion of limb and strin g.

For convenience we introduce the variable STOP, of which thedomain is 0, 1, 2 and 3.
If STOP=0; nothing special happens and we stop after one complete oscillation, STOP=1;
then the force in the string becomes negative, STOP=2; the string hits the grip and
STOP=3; the string hits the limb near the tip.

It is clear that situations occurring with STOP=2 and STOP=3 have to be avoid.
Whether this is also the case with STOP=1 is not dear when thishappens after arrow
exit, but it does not seem to be a pleasant situation; perhapsit causes a so called "kick".
We return to this in the discussion of Table 4.10.

We now change the parameters in (4.102) before the semicolon, one by one. Note that
W(L0) is ¯xed by the requirement F (jODj) = 1 and that F (jODj) is linearly dependent
on ¸ when we replaceW(s) and U(r 0) by ¸ W(s) and ¸ U(r 0). Hence, it is easy to adjust
the weight of a described bow (1 in this case) to a desired value by multiplying W(s) and
U(r 0) by a suitable ¸ . V (L0) is ¯xed by the requirement mb = 1. Thus if we change
one parameter thenW(L0) and V(L0) may change. In equations (4.90) and (4.91) of [8]
we suggest thatW(L0) and V(L0) are the same for di®erent bending sti®ness and mass
distributions along the limb, but that is wrong. In this section we give for the sake of
completeness the values ofW(L0) and V(L0) in all situations. With the discussion of
the results we mention the behaviour of the tensile forceK and recoil forceP only when
it di®ers strongly from the behaviour in the case of the~H bow described in the former
Section 4.8.

First we change the brace heightjOH j to investigate its in°uence on the performance of
the KL bow. In Table 4.9 we collected the results. The e±ciencý is nearly independent
of the brace height. The static quality coe±cientq and the muzzle velocityº diminish
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Table 4.9: In°uence of the brace height on KL bow, V (L 0) = 1 :575.

jOH j 0:179 0:214 0:250 0:286
W(L0) 1.419 1.409 1.397 1.385
q 0.418 0.407 0.393 0.378
´ 0.763 0.765 0.766 0.765
º 2.04 2.01 1.98 1.94
STOP 3 1 0 0
min b(t) ¼ 0 0.02 0.10 0.14

with increasing brace height. For the smallest mentioned brace heightjOH j = 0:179, we
have STOP=3, the string hits the limb near the tip with a con¯guration which resembles
the one of Figure 4.14.c. For the two largest brace heights mentioned in Table 4.9 we
have STOP=0. It turns out that the minimum distance between the middle of the string
and grip during the vibratory motion after arrow exit, denoted by minf b(t)g in Table 4.9,
increases with increasing brace height as can be expected. Thus the requirement to have
enough space for the bow hand yields a minimum brace height one has to use.

In [6, page 18], Hickman mentions that a bow which bends throughout its whole length,
hence without rigid grip, is not a pleasant bow to shoot because it is likely to have an
unpleasant "kick". Hence, it is interesting to change the Length of the grip 2L0 and by
comparing the obtained results, to investigate if something special happens that indicates
the possibility of a kick for L0 = 0.

In Table 4.10 we give the results. We change the brace height as well as the length of
the grip. The in°uence of the brace height on the three qualitycoe±cients appears in the
casesL0 = 0 and L0 = 0:286 to be the same as forL0 = 0:143, the case we dealt with in
Table 4.9. From Table 4.10 we conclude further that a longer grip gives a smaller static
quality coe±cient but also a larger e±ciency, so leaving the muzzle velocity about the same

The behaviour of the recoil force fort < t l is for all bows referred to in Table 4.10, about
the same. Thus, with respect to the dynamic behaviour fort < t l there is no indication
for the occurrence of a kick for a bow without a grip. However,for t > t l the behaviour
of the tensile force in the stringK changes with varyingL0 and jOH j, what is re°ected
by the change of the variable STOP. If STOP=1, the tensile force in the string becomes
negative and in reality the string will become slack. When the string is suddenly stretched
again it is possible that a kick is felt by the bow hand of the archer. It is tempting to
claim that this explains the occurrence of a kick. The results in Table 4.10 suggest that for
smaller brace height the tensile force in the string becomesnegative for a bow without or
with a short grip. However,it indicates also that for a larger brace height the tensile force
becomes negative just for bow with a long grip. To the knowledge of the author no book
or paper mentions this latter phenomenon.

The third parameter we change, while we leave all the other ones given in (4.102) of the
KL bow unperturbed, is the length 2L of the bow. Table 4.11 gives the quality coe±cients.
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Table 4.10: In°uence of length of grip 2L 0 on KL bow, also di®erent values forjOH j.

L0 0 0.143 0.286
jOH j 0:214 0:250 0:286 0:214 0:250 0:286 0:214 0:250 0:286
W(L0) 1.945 1.934 1.922 1.409 1.397 1.385 0.972 0.960 0.948
V(L0) 1.4 1.4 1.4 1.575 1.575 1.575 1.8 1.8 1.9
q 0.412 0.399 0.384 0.407 0.393 0.378 0.399 0.385 0.370
´ 0.745 0.747 0.747 0.765 0.766 0.765 0.788 0.786 0.782
º 2.00 1.97 1.93 2.01 1.98 1.94 2.02 1.99 1.94
STOP 2 1 0 1 0 0 0 1 1

Table 4.11: In°uence of the length 2L on the KL bow.

L 1:429 1:286 1:143 1:0 0:8571 0:7857 0:7143
W(L0) 2.095 1.409 0.881 0.491 0.221 0.1237 0.0495
V(L0) 1.4 1.575 1.8 2.1 2.52 2.8 3.15
q 0.414 0.407 0.394 0.372 0.327 0.284 0.206
´ 0.751 0.765 0.783 0.800 0.795 | |
º 2.01 2.01 2.01 1.97 1.84 | |
STOP 2 1 1 1 1 1 1

We observe that the static quality coe±cientq decreases when a bow is taken shorter. In
Figure 4.15 we depicted thesfd curve for bows with di®erent lengths of the limbs. It
shows that the short bow has a tendency to stack. Stacking is the property of a bow to
be drawn easily to the last few inches and to build up to full weight rapidly as the string
comes to full draw. For the KL bow with L = 1:286, the force in the string is in the braced
situation larger than in the fully drawn situation. For the short bow with L = 0:7143, it is
the reverse. Further this static forceK is for the whole rangejOH j · b · j ODj de¯nitely
smaller for the shortest bow than for the longer KL bow.

Figure 4.16 shows thedfd curves for di®erent lengths 2L. We conclude that the
dynamic behaviour of the short bow is inferior to that of the long bow. For bows even
shorter than the mentioned ones, for instanceL = 0:7143, the acceleration forceE becomes
negative shortly after release (STOP=1, fort < t l by which the string becomes slacked.
Hence, a minimum length for a straight end bow has to be used inorder to get an e®ective
bow.

We turn now to the in°uence of the distribution of the bending sti®nessW(s) and
massV(s). In Table 4.12 we changeW and V simultaneously, where we use the following
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Figure 4.15: In°uence of length 2L on KL bow:
F (b) and K (b), Table 4.11.

Figure 4.16: dfd curve of KL bow, di®erent
lengths, Table 4.11.

notation

Wn (s) = Wn (L0)
¡ (L ¡ s)

L ¡ L0

¢̄
n ; L0 · s · ²n ; Wn (s) = 1 =3 Wn (L0) ; ²n · s · L ; (4.105)

and

Vn (s) = Vn (L0)
¡ (L ¡ s)

L ¡ L0

¢̄
n ; L0 · s · ²n ; Vn (s) = 1 =3 Vn (L0) ; ²n · s · L ; (4.106)

where: ²1 = L, ²n = L ¡ (L ¡ L0) (1=3)1=¯ n for n = 2; 3; ¯ 1 = 0, ¯ 2 = 1=2, ¯ 3 = 1.
For n = 3 these functions correspond to those de¯ning the KL bow (4.102)¢ ¢ ¢(4.104).
In [8] it appeared that for three bowsn = 1; 2; 3 with an inextensible string without

mass and²2 and ²3 almost equal to L, the muzzle velocities are almost equal. From
Table 4.12 we conclude that this is not the case for the bows given by (4.102) with (4.105)
and (4.106). For the bow with a uniform bending sti®ness and mass distribution (W1; V1)
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Table 4.12: In°uence of bending sti®nessW (s) and massV (s) on the KL bow.

W; V W1; V1 W2; V2 W3; V3

W(L0) 0.96 1.16 1.409
V(L0) 0.875 1.289 1.575
q 0.412 0.409 0.407
´ 0.704 0.744 0.765
º 1.94 1.99 2.01
STOP 2 2 1

the muzzle velocity is smaller than for the other two bows. InFigure 4.17 we give thedfd
curves forn = 1; 2; 3. It is seen that thedfd curve for a bow with (W1; V1) is less smooth
than the dfd curve of a bow with (W2; V2) or (W3; V3). This combined with the rather low
e±ciency makes this bow inferior to the other two bows, of which the one with (W3; V3)
is the best. In the two casesn = 1 and n = 2 the string hits the grip (STOP=2). The
shapes of limb and string when this happens resemble the one shown in Figure 4.14.b.

The next parameter we deal with is the mass of the arrow 2ma. Table4.13 gives e±-
ciencies and muzzle velocities for the KL bow shooting arrows with di®erent masses. It is
seen that although the e±ciency of the KL bow shooting a light arrow is bad, its muzzle
velocity will be high.

In [8] we discussed the concept of virtual mass, de¯ned by Klopsteg in [6, page 167].
This virtual mass, denoted byK h, is given by

K h = ma

¡ 1 ¡ ´
´

¢
: (4.107)

Klopsteg found experimentally that this virtual mass is a constant for a large numbers of
bows. For the H bow (inextensible string without mass), the virtual masses for the ¯rst
three arrow masses given in Table 4.13 are 0.017, 0.010 and 0.003, respectively. When
we compute these virtual masses, using the e±ciencies given for the KL bow, we obtain
0.038, 0.024 and 0.017, respectively. Hence, for the more realistic KL bow, the virtual
mass depends less on the mass of the arrow, but it is certainlynot a constant. When the
lightest arrow is shot, the string hits the limb near the tip after arrow exit, STOP=3. In
Figure 4.14.c. we show the shape of limb and half of string at the moment this happens.
Because the e±ciency is small, a large amount of energy remains behind in the limbs and
string, obviously large enough to stretch the string to a length longer than the length of
the bow, permitting the limbs to pass they-axis. As for the H bow (see [8]) the maximum
recoil forceP for t < t l increases for decreasing massma. For the KL bow, these values
are 3.1, 2.4, 1.8 and 1.4 for arrow masses 0.0384, 0.0769, 0.1538 and 0.3077, respectively.

For the heaviest two arrows we have STOP=0. Figure 4.18 showsthe curves E(t),
K (t) and P(t) for both masses 0.1538 and 0.3077. For the heaviest (ma = 0:3077) a the
oscillations of the recoil force are less intense, but the maximum force in the string is only
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Figure 4.17: dfd curves for bows (W1; V1),
(W2; V2) and (W3; V3), Table 4.12.

Table 4.13: In°uence of mass of arrow 2ma on the KL bow, q = 0 :407, W (L 0) = 1 :409, V (L 0) =
1:575.

ma 0.0384 0.07169 0.1538 0.3077
´ 0.505 0.765 0.898 0.931
º 1.94 2.01 1.54 1.11
STOP 2 1 0 0

slightly smaller than in the case of the KL bow shooting an arrow with massma = 0:1538.
In the limit, when ma tends to in¯nity, the e±ciency tends to 1 and the energy in the
limbs equals at arrow exit, the amount of potential energy inthe limbs in braced situation.
Hence, fort ¸ t l , the recoil forceP tends to zero and the forceK in the string tends to its
value in the braced situation.

In [8] we found that the e®ect of concentrated masses at the tips of the H bow is rather
small, in agreement with the ¯ndings of Hickman in [6, page 47]. From Table 4.14, however,
we conclude that the performance of the KL bow depends on the mass of the tips more
strongly. For the H bow the presence of mass at the tip withmt = 0:0769 reduced the
e±ciency from 0.89 to 0.87 (see [8]), but for the KL bow from 0.765 to 0.695. In Figure 4.19
we draw thedfd curves for di®erent values ofmt . These curves show clearly the in°uence
of the mass at the tip in combination with the elasticity of the string. In [8] we showed
that, when concentrated masses are present and an inextensible string without mass is
used, there is a jump in the force on the arrow at timet = 0, just as in the case of the H
model. The dfd curves formt 6= 0 in Figure 4.19 re°ect a tendency to oscillate like the
dfd curves in Figure 4.5, obtained by using the M model in the caseof a bow with an
elastic string with mass. As in the case of the M model the amplitude of this oscillation
is larger for heavier tips. We remark that for very heavy tipsor for moderately heavy tips
combined with the use of a rather sti® string, the °uctuationsof the force in the string
become very large and that in those situations damping may become important. In both
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Figure 4.18: E(t), K (t) and P(t) for KL bow with di®erent arrow masses: ma = 0 :1538 and
ma = 0 :3077, Table 4.13.

cases with massesmt = 0:0384 and 0.0769 the string hits the grip at a certain moment
t ¸ t l (STOP=2).

Figure 4.19:dfd curve for KL bow with masses
mt at the tips, Table 4.14.

Next we consider the in°uence of a rigid body possessing a moment of inertia Jt , but
without mass, placed at the tip. In Table 4.15 we changed the moment of inertia of the
rigid body, keeping all the other parameters the same as the ones given in (4.102) for the
KL bow. A rigid body with Jt = 9:8 10¡ 5 is for instance a rod of the length 1=14 ¯xed in
the middle of this rod at the tip with on both sides a mass equalto the half of the half
mass of the arrowma = 0:0769. ForJt = 1:56 10¡ 3 this rod is 4=14 long.

In order to get the in°uence of the moment of inertia purely, wetake the massmt

zero, notwithstanding the fact that a actual rigid body with non-zero moment of inertia
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Table 4.14: In°uence of concentrated tip masses on the KL bow,q = 0 :407, W (L 0) = 1 :409,
V (L 0) = 1 :575.

mt 0 0.0384 0.0769
´ 0.765 0.721 0.695
º 2.01 1.95 1.92
STOP 1 2 2

Table 4.15: In°uence of moment of inertia Jt on the KL bow, q = 0 :407, W (L 0) = 1 :409,
V (L 0) = 1 :575.

Jt 0 9:8 10¡ 5 3:9 10¡ 4 8:8 10¡ 4 1:56 10¡ 3

´ 0.765 0.765 0.765 0.761 0.785
º 2.01 2.01 2.01 2.00 2.00
STOP 1 1 1 1 2

possesses some mass. It means that the just mentioned rods are very long, by which the
masses tend to zero for a ¯xed moment of inertia Table 4.15 shows that the performance
of the KL bow scarcely depends onJt . This is in contrast with the in°uence of the point
massesmt , see Table 4.14.

We investigate now the in°uence of the sti®ness and mass of the string in the case of
the KL bow. We changed both quantities simultaneously in Table 4.16, this in order to
simulate a change of the number of strands employed in makingthe string. For statics, the
sti®nest string yields the largest static quality coe±cientq. With respect to the e±ciency
and muzzle velocity the sti®ness and mass corresponding to that of the KL bow give best
results. For the most elastic and lightest string mentionedin Table 4.16, the string hits
the grip after the arrow has left the string (STOP=2), while for the other two strings the
force in the string becomes negative (STOP=1).

Table 4.16: In°uence of numbers of strands of the string on the KL bow,V (L 0) = 1 :575.

Us 66 131 197
ms 0.0105 0.0309 0.0314
W(L0) 1.404 1.409 1.410
q 0.403 0.407 0.408
´ 0.750 0.765 0.744
º 1.98 2.01 1.99
STOP 2 1 1
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Table 4.17: In°uence of shape of bow in unbraced situation on the KL bow,V (L 0) = 1 :575.

µ0(L0) · 0 W(L0) q ´ º STOP min b(t)
0 0 1.409 0.407 0.765 2.01 1 0.02
¡ 0:12 0 1.097 0.425 0.710 1.98 2 0
0 ¡ 0:5 0.905 0.452 0.680 2.00 2 0
0:12 ¡ 1:0 0.770 0.464 0.673 2.02 3 |
0 0.1 1.590 0.389 0.795 2.01 1 0.06

Finally, we deal with the in°uence of the shape of the unstrungbow given byµ0(s). We
con¯ne our attention to bows for which this function is given by

µ0(s) = µ0(L0) + · 0
s ¡ L0

L ¡ L0
; L0 · s · L (4.108)

whereµ0(L0) and · 0 are two parameters.µ0(L0) is the angle at which the limb is ¯xed to
the grip (if this parameter is negative then the limb is said to be set back in the grip) and· 0

is apart from the constant 1=(L ¡ L0) the curvature of a circle part of which coincides with
the limb in unstrung situation. In Table 4.17 we changed these parameters; forµ0(L0) = 0
and · 0=0 we have the KL bow again. In [8] we dealt with bows for whichµ0(L0) = ¡ 0:12,
· 0 = 0 and µ0(L0) = 0, · 0 = ¡ 0:5 and µ0(L0) = 0 :12, · 0 = ¡ 1, but in those cases the
bending sti®ness and mass distributions were di®erent and thestring was inextensible and
without mass. The results show that the static performance is better for bows with more
re°exed limbs, · 0 = ¡ 0:5 and · 0 = ¡ 1. Moreover the e±ciency in these cases is worse,
so that the dimensionless muzzle velocity is nearly independent of the shape of the how
in unstrung position (at least for the shapes we consider by which µ0(L0) and · 0 change
simultaneously)

Hickman in [6, page 22], notes that many bows take a permanentset after they have
been used a great deal. In order to gain insight into this phenomenon we take the case
· 0 = 0:1. Hence, we consider a how which "follows the string", of which the unstrung
shape is a part of a circle with a rather small curvature. The static quality coe±cient is
smaller than that of the KL bow. However, the e±ciency is larger so that the dimensionless
muzzle velocity of both bows is again nearly unaltered. Notethat the min b(t) is much
larger in the case of the bow with some permanent set.

Besides bows with unstrung shape given by (4.108), we consider also angular bows (see
Figure 4.1.b) which are also non-recurve bows, as we mentioned in the introduction. These
bows were used in Egypt and Assyria. In [13] angular bows are depicted which have been
found in the tomb of Tutankhamun. The bows do not possess a grip, L0 = 0, and have
a characteristic bend in the middleµ0(L0 = 0) > 0. For the distribution of the bending
sti®ness and mass along the limb we take those given by (4.103)and (4.104) again. The
values of the parametersm;Jt ; ma; Us; ms are equal to their values in (4.102). Using these
data, the unstrung shape of the bow is ¯xed by the requirement that the limbs fall straight
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back in braced situation. The equation of equilibrium of thebow in braced situation for
the angular bow with µ0(s) ´ 0, reads

K 1=2(jOH j ¡ x1=2(s)) = W(s)µ0
0(s) ; 0 · s · L ; (4.109)

where x1=2(s) is the x-coordinate andK 1=2 the tensile force in the string. This formula
yields the curvature as a function of the length coordinate s,apart from a constant which
we call also· 0 as in (4.108), which ¯xes the forceK 1=2. We get

µ0(s) = arcsin( jOH j=L) + · 0 s=L ; 0 · s · 2=3 L ; (4.110)

and

µ0(s) = arcsin( jOH j=L) + · 0
¡
s=L ¡ 3=2 (s=L ¡ 2=3)2

¢
; 2=3 L · s · L ; (4.111)

Thus only for 0 · s · 2=3 L the unstrung shape of the limb is part of a circle. By means
of (4.110) and (4.111) the constraint that the bow is an angular bow is satis¯ed for a
bow with bending sti®ness given by (4.103), as we have assumedNext we have to choose
the three parametersL, · 0 and jOH j. For L = 0:7857, · 0 = ¡ 1 and jOH j = 0:214 the
unstrung bow resembles closely the bows shown in [13]. We call this bow the AN bow, it
is determined by

AN(0:7857; 0; W; V; µ0; 0:0769; 0; 0; 0; 0; 0;

¡ 0:1551; 0:7427; ¡ 0:1551; 0:7427; ¡ 0:1551; 0:7427; 0:7857; 131; 0:0209; 0:214; 1; 1; 1) ;
(4.112)

whereW and V are given by (4.103) and (4.104) andµ0 by (4.111). This bow is shown in
various situations in Figure 4.20, note the angular form in braced situation.

Figure 4.20: Angular bow AN in
various situations. Note the angular
form in braced situation, the limbs
form the equal sides and the string
the basis of an isosceles triangle.

In Figure 4.21 we have drawn thesfd and dfd curve of this bow. Its static quality
coe±cient q = 0:395, its e±ciency´ = 0:716 and its muzzle velocityº = 1:92 In Table 4.18
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Figure 4.21:sfd and dfd curve of the AN bow.

Table 4.18: Energy in parts of angular bow AN in a number of situations.

limbs string total bow arrow
energy pot. kin. pot. kin. pot. kin. kin.
braced 0.1461 0 0.0115 0 0.1576 0 0
fully drawn 0.5493 0 0.0033 0 0.5526 0 0
arrow exit 0.1380 0.0573 0.0385 0.0359 0.1765 0.0932 0.2961

we give the amounts of energy in the di®erent parts of the AN bowfor a number of
situations. If we compare the quality coe±cients of the AN bowwith those of the KL
bow, we ¯nd that less recoverable energy is available (q = 0:395;q = 0:407), its e±ciency
is smaller (́ = 0:716;´ = 0:765), hence its muzzle velocity is smaller (º = 1:92;º = 2:O).
After arrow exit the force in the string K attains a maximum, being 5.O, which is larger
than in the case of the KL bow, where it was 4.3. After this peakforce it becomes zero,
so we have STOP=1, just as with the KL bow. In Figure 4.22 we show the forcesE, K
and P as functions of time in the case of the AN bow.

The shape of thedfd curve resembles that of the KL bow withL = 0:8571 given in
Figure 4.16, merely the oscillations are less intense. As a consequence,the acceleration force
E acting upon the arrow remains positive during the shooting process, this in contradis-
tinction to its behaviour in the case of the short KL bow with same lengthL = 0:7857.
The amount of energy bound up in the pulled AN bow is slightly larger than in the case of
the KL bow, see Table 4.18. (AD = 0:5526;AD = 0:5292). This holds also for the potential
energies stored in di®erent parts in the AN bow at corresponding times. The amounts of
kinetic energy are about the same for both bows at arrow exit.

In Table 4.19 we change the lengthL of the AN bow, while the other parameters are
kept the same as those given in (4.112). With increasing length the static quality coe±cient
q increases, but forL = 1:000 andL = 1:286 the di®erence is only small. In Figure 4.23
we show thesfd and dfd curves of the AN bow with L = 1:286 besides those of the
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Table 4.19: In°uence of length 2L on performance of the angular AN bow.

L W(L0) V(L0) q ´ º STOP
1.286 1.409 1.4 0.453 0.652 1.96 3
1.000 1.097 1.8 0.450 0.689 2.01 3
0.8571 0.905 2.1 0.421 0.704 1.96 3
0.7857 0.770 2.3 0.395 0.716 1.92 1

AN bow with L = 0:7857. Note the path of thesfd curve for the ¯rst part of the draw.
The force F (b) is for a very small region negative, indicating that the braced situation
with jOH j = 0:214 in an unstable one. ForjOH j = 0:232 we have a stable con¯guration.
Therefore we take this situation, in which the limb is not straight, as braced situation. The
e±ciency diminishes with increasing length. ForL = 1:000 the muzzle velocity attains its
largest value, being equal to that of the KL how. Thus in contradiction with the results
for the KL bow given in Table 4.11, the longest bow does not possess the largest muzzle
velocity.

In this section we considered the performance of a bow as a function of the dimensionless
parameters given before the semicolon in (4.2) which ¯x the characteristics of a non-recurve
bow, namely the KL how. In [8] and Section 4.7 of this paper thestarting point was the
H bow. Comparing the results obtained in [8] and in Section 4.7 with those given in this
section, one can obtain insight into the in°uence of the elastic string with mass together
with the sti®er and heavier part near the tip of the limb. Note that we changed in this
section the bending sti®ness and mass distribution along thelimb simultaneously and also
the strain sti®ness and mass of the string. Because the bending sti®ness of the limb of the
H bow at the tip nearly vanishes, the ¯nite-di®erence procedure developed in Section 4.4
fails when we put a rigid body possessing a moment of inertia at the tip.

At the end of this section we changed besides the shape of the unstrung how also
some other parameters. This in order to consider angular bows. A change of the shape
of the KL bow in unbraced situation (µ0(s)) is, to a certain extend, also the subject of
Section 4.11, in which we consider the static-recurve bow. In Section 4.12 we deal with
the in°uence of the three parameters with dimensionjODj, F (jODj) and mb behind the
semicolon in (4.2) for non-recurve bows as well as for static-recurve bows.

4.10 A simple mathematical model for the static-recurve
bow

We consider again the very simple type of symmetric bow consisting of a grip, two rigid
limbs, two elastic hinges and an inextensible string without mass. This bow has by its
symmetry only one degree of freedom. The aim of this section is to gain insight into the
principles of the action of a static-recurve bow before we consider in section 4.11 a more
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Figure 4.22: Calculated accelera-
tion force E, string force K and re-
coil force P as function of time t
for the AN bow. The calculation is
stopped when the force in the string
K becomes zero.

realistic model of it.
In Figure 4.24 we show a bow with a straight rigid limb ST1, referred to as a SB bow

(Figure 4.24.a) and a static-recurve bow with a rigid limb ST2 possessing a sharp bend at
T1, called a CB bow (Figure 4.24.b)

The half length of the grip is denoted byL 0. The rigid limb is connected to this grip
by means of the elastic hinge S of strengthk > 0. The moment of inertia of the limb with
respect to S is in both casesJ . The length of the limb is denoted byL1, measured in
the case of a CB bow along the limb ST12. The string of half length l is inextensible and
without mass.

The angle ' denotes for both types of bows the angle between ST1 and the y-axis
and a is the angle between the string and thisy-axis, both angles positive as indicated in
Figure 4.24. For ' = ' 0 we have the unbraced situation, hence' 0 is the angle of zero
moment of the elastic hinge. In the braced situationb = jOHj the angle ' is denoted by
' 1=2 and in the fully drawn situation b = jODj we have' = ' 1 and ® = ®1.

In the case of a CB bow, because of the su±ciently strong bend inthe limb, the string
lies along T1T2 in the braced situation. If such a bow is drawn, at a certain moment the
string leaves the bridge at T1 and the string has contact with the bow only at T2. The
angle ' in that situation is denoted by ' b The action of a CB bow can be described by
the action of two SB bows, one for' < ' b and the other for ' > ' b. These two SB bows
are referred to as the SB1 bow and SB2 bow, respectively. The length of the grip, strength
of the hinge and moment of inertia of the limb are for both bowsthe same as those of the
CB bow. The length of the limb of the SB1 bow equals the distance ST1 in the case of the
CB bow, the half length of the string isl ¡ j T1T2j and the angles' 0, ' 1=2 and ' 1 are equal
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Figure 4.23: sfd and dfd curves of AN bow,
di®erent lengths, Table 4.19.

to the corresponding ones of the CE bow. For the SE bow, the length of the limb equals
jST2j, the half length of the string l, ' 0 is the angle between they-axis and the line ST2 of
the CE bow in unbraced situation whileb in fully drawn position equals jODj of the CB
bow.

Note that it is not the intention to give a model for a bow, likethe H model or M model
dealt with in Section 4.6. In that case we should have to give rules to determine strength
and place of the elastic hinge and moment of inertia of the limb from the dimensions of
the bow and the distributions of the bending sti®ness and massalong the elastic limbs.

Also in this section we introduce dimensionless quantities. As unit of mass we use
15J=L

2
(this value corresponds with the mass of one °exible limb, with the use of the H

model, see Section 4.6). The weightF (jODj) and draw jODj are used as unit of force and
length, respectively. Again we drop the bar in the case of dimensionless quantities, for
instanceL1 = L1 jODj.

The static quality coe±cient q (4.82) for a SB bow can he calculated as

q =
(' 1 ¡ ' 0)2 ¡ (' 1=2 ¡ ' 0)2

' 1 ¡ ' 0

L1 sin(' 1 + ®1)
2 sin®1

: (4.113)

The two factors at the right hand side of equation (4.113) have a simple physical meaning.
The ¯rst factor is the energy put into the two elastic hinges bybringing the bow from the
braced situation (' = ' 1=2) into the fully drawn position ( ' = ' 1) divided by the moment
exerted on one hinge at full draw.

In Figure 4.25 we draw the moment action upon the hinge as a function of ' , divided
by the ¯nal moment in the fully drawn situation for two SB bows only di®ering in their
value ' 0. The ¯rst factor in (4.113) equals the area below this line between' = ' 1=2 and
' = ' 1, shaded in Figure 4.25. We conclude that the smaller the angle ' 0 the larger the
¯rst factor in (4.113), and therefore the q when all the other parameters are taken the
same.

The numerator in the second factor is the distance between the string and hinge in fully
drawn position. The sin®, in the denominator of the second factor enters in the formula
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(a) (b)

Figure 4.24: Bows with two elastic hinges and rigid limbs: (a) SB and (b) CB bow.

because we are interested in the amount of energy per weight and not per force in the
string in fully drawn situation. The larger L1, the larger the second factor and it appears
that q shows the same tendency. This is, however, not clear beforehand because also the
¯rst factor changes for di®erent values ofL1.

Equation (4.113) holds also for a CB bow. In that case the parameters occurring in
(4.113) belong to the SB2 bow except the parameter' 1=2; its value is the ' 1=2 of the SB1

bow minus the angle between the lines ST2 and ST1.
In what follows we give the results for one speci¯c SB bow and one CB bow referred to

as the bow SB and the bow CB respectively. The characteristicconstants of these bows
are given in Table 4.20. In this table also those of the bow SB1 and SB2 belonging to the
bow CB in the manner described above, are given. The other constants are the same for
all the bows, they are:L0 = 0:4286,J = 0:0440,ma = 0:0769, wherema is the half mass
of the arrow.

In the last column of Table 4.20 we give the static quality coe±cients q. Comparison
of the bow SB with the bow CB shows a better static performanceof the bow CB. Thus,
because of the ears we are able to put more energy in the hingesby bringing it from the
braced situation into the fully drawn situation. The static quality coe±cient of the bow
CB appears to he much larger than that of the bow SB1. For the bow CB the second
factor of the right-hand side is larger than that in the case of the bow SB1, while the ¯rst
factor is for both bows the same. Often the action of the ears of the static-recurve bow is
explained by the leverage of its ears. This explanation ¯ts mentioned e®ect.

However, we can also compare the static performance of the bow CB with that of a
bow called CB3. The characteristic constants of this bow are also given in Table 4.20. The
length L1 equals that of the bow SB2 and its neutral position coincides with they-axis.
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Figure 4.25: Moment M exerted an elastic hinge as function of angle of rotation' .

Table 4.20: Comparison of di®erent bows.

bow L1 jOH j jODj l ' 0 ' 1=2 ' 1 q
SB 0.8571 0.2143 1 | 0 0.2527 0.5852 0.415
CB 0.8571 0.2143 1 | 0 0.3272 0.7308 0.51
SB1 0.666 0.2143 0.9623 | 0 0.3272 0.7308 0.392
SB2 0.8126 | 1 1.2503 ¡ 0:1665 ¡ 0:1665 0.5643 0.564
SB3 0.8126 0.2143 1 | 0 0:2699 0.6181 0.411

Figure 4.26: sfd curve of CB bow, together
with those of SB1 and SB2 bow, Table 4.20.
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The static quality coe±cient of the bow CB3 is also larger than that of the bow SB3. In
this case it is due to a larger ¯rsts factor of the right-hand side of (4.113), while the second
factor is now equal for both bows CB and SB3. In this way it is justi¯ed to state that
the good static performance of the bow CB is due to the e®ectiveset back of the limbs in
unstrung situation.

In Figure 4.26 we show thesfd curve of the bow CB. The dashed lines complete the
sfd curves of the bows SB1 and SB2. The sfd curve of the bow CB is more convex then
that of the bow SB1 indicating that its static coe±cient is larger. The bow SB2 possesses
no braced situation because for this bowl ¡ L0 < L 1; thus ' 1=2 = ' 0 = ¡ 0:1665 From
Figure 4.26 we conclude that the static quality coe±cient of this bow is extreme large, it
appears to be 0.564. However, this SB2 bow has a very bad dynamic performance as we
will see.

In [9] we showed that the e±ciency of the bows SB, CB, SB1 and SB3 equal 1. Thus
for these bows all the energy put into the bow by the archer in bringing it from the braced
situation into the fully drawn situation, is used to propel the arrow. For the SB2 bow we
have, as said before,l ¡ L0 < L 1, hence one of the requirements stated in [9] to ensure
E(b) · 0 for jOH j < b < jODj is violated. In Figure 4.27 we draw thedfd curves of
the bows CB, SB1 and SB2 and it appears that the acceleration forceE acting upon the
arrow becomes negative for someb > jOH j in the case of the bow SB2. From Figure 4.27
we conclude that in the case of the SB2 bow less energy is transferred to the arrow (the
amount ´q imparted to the arrow equals the area below thedfd curve) than in the case
of the CB bow. This despite the fact that more energy is available.

Figure 4.27 shows further a discontinuity at the time' equals' b thus with the transition
of SB2 to SB1, of the acceleration forceE. We recall that the velocity of the arrow _b is
continuous during this transition (see [9]). So, at that time t = tb we have a situation
which resembles the situation att = 0; if we take an elastic string then the discontinuity
disappears

Because of the presence of the ears we expect that thedfd curve of a static-recurve bow
with an elastic string and elastic limbs oscillates, at least for a model without damping.
But if we replace the elastic limbs by rigid ones then, because of the added mass at the
tip of the rigid limb in order to account for the mass of the limb, these oscillations will be
to heavy as in the case of the M model. Therefore we do not elaborate this model further.
However, these dynamic considerations show that we have to reckon with the possibility of
a sharp alternation of the acceleration forceE or even a discontinuity, when an inextensible
or nearly inextensible string touches the string bridges ofthe static-recurve bow again.

In the next section we deal with these static-recurve bows with continuously distributed
elasticity of the working part of the limbs. The ears remain rigid. Because the string is
assumed to be elastic, the expected di±culties with respect to the use of a ¯nite-di®erence
method when the solution varies fast or even discontinuous as function of time, do not
occur using the method described in Section 4.4.
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Figure 4.27: dfd curve of CB bow, together
with those of SB1 and SB2 bow, Table 4.20.

4.11 Static-recurve bow

In this section we examine the in°uence of the rigid ears of static-recurve bows. To do
this, we could change one by one the nine parameters (4.2) which determine the action
of the ears. These parameters are: coordinates of centre of gravity ( xcg0 ; ycg0) coordinates
of the string bridge (xb0 ; yb0 ) coordinates of the tip where the string is attached to the
bow (xt0 ; yt0 ), mass me, moment of inertia Je with respect to centre of gravity and the
coordinates of this place at which the ear is attached to the elastic limb, which follows
from L2. This would consume a tremendous amount of computing time and would yield
an unsurveyable amount of information. Moreover, the otherparameters mentioned in
(4.2) a®ect the static and dynamic performance of the bow as well. Therefore we consider
a static-recurve bow with features ¯xed by only a few parameters which remain to de¯ne.
A change of these new parameters corresponds with a simultaneous change of some of
the parameters and functions given in (4.2). We hope that thebows discussed here will
reveal already the speci¯c properties of the static-recurvebow. For the selection of the new
parameters we were guided by ¯gures and other data given in several books and papers
[14, 10, 4, 1].

As we mentioned earlier in the introduction to this paper, the old static-recurve bow
are mostly composite bows. Such a bow is formed by the union ofstaves of wood and horn
combined with sinew. This makes it di±cult to determine the bending sti®ness along the
elastic line which represents in our model the working part of the limb. Further, the place
where the grip ends and the limb starts (L0) and where the elastic working part ends and
the ear starts (L2) are not ¯xed unambiguously, because for real bows the transitions are
gradual.

The results given in this section are obtained by using the model for the static-recurve
bow given in Section 4.3, which adds parts of the mass of the string as concentrated masses
to arrow and tip. In Section 4.7 we found that the use of such a model for the string causes
some inaccuracy in the case of the straight-end bow and possibly this will also he the case



4.11. STATIC-RECURVE BOW 137

for the static-recurve bow.
In Figure 4.28 we show the unbraced, braced and fully drawn situation of the type of

static-recurve bow which is the main theme of this section. The ear is made up of two
straight, rigid pieces each of length 1=2Le, whereLe is the length of the ear;Le

def= L ¡ L2.
The angle between those two pieces is denoted byµt , reckoned positive in the indicated
direction. The ear starts in a direct line with the end of the working part of the limb, of
which the unbraced shape is given by

µ0(s) ´ 0 ; 0 · s · L0 ; µ0(s) = µ0(L0) + · 0
s ¡ L0

L2 ¡ L0
; L0 · s · L2 : (4.114)

The limb is set back in the grip at an angle¡ µ0(L0) (the set back is positive asµ0(L0) < 0)
and the working part of the limb coincides with a part of a circle with curvature · 0=(L2 ¡
L0).

The distributions of the bending sti®ness and mass are

W(s) = W(L0)
L ¡ s

L ¡ L0
; L0 · s · L2 ; (4.115)

and

V(s) = V(L0)
L ¡ s

L ¡ L0
; L0 · s · L2 ; (4.116)

respectively. The mass distribution along the ear,L2 · s · L, is chosen to be constant
and equal toV(L2). The massme and moment of inertiaJe of the ear with respect to its
centre of gravity are given by

me = V(L2)Le ; (4.117)

and

Je = me

¡
1=12 + (1 + cosµt )

¢
(1=2Le)2 ; (4.118)

respectively. Note thatV(L0) is now ¯xed by the requirement

mb =
Z L 2

L 0

V(s)ds+ me = 1 : (4.119)

This type of bow in unbraced position is entirely determinedby the parametersLe, µt ,
µ0(L0), · 0, L and the coordinatesx0(L0), y0(L0) of the end points of the grip, being equal
to 0 and L0, respectively. The coordinates of the point where the working part of the limb
is connected without bend to the ear are

x0(L2) =
Z L 2

L 0

sinf µ0(L0) + · 0
s ¡ L0

L2 ¡ L0
gds; (4.120)
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Figure 4.28: A static-recurve bow in various situations.

and

y0(L2) = L0 +
Z L 2

L 0

cosf µ0(L0) + · 0
s ¡ L0

L2 ¡ L0
gds; (4.121)

For the other mentioned coordinates we ¯nd

xb0 = x0(L2) + 1 =2Le sin(µ0(L2) + · 0 ; (4.122)

xb0 = x0(L2) + 1 =2Le cos(µ0(L2) + · 0 ; (4.123)

xt0 = x0(L2) + 1 =2Lef (1 + cosµt ) sin(µ0(L2) + · 0) ¡ sinµt cos(µ0(L2) + · 0)g ; (4.124)

yt0 = y0(L2) + 1 =2Lef (1 + cosµt ) cos(µ0(L2) + · 0) ¡ sinµt sin(µ0(L2) + · 0)g ; (4.125)

xcg0 = 1=4(xt0 + 2xb0 + x0(L2)) ; (4.126)

ycg0 = 1=4(yt0 + 2yb0 + y0(L2)) : (4.127)

We now introduce a bow, denoted by PE which, using the notation of (4.2) is de¯ned
by

PE(1:000; 0:1429; W; V; µ0 ´ 0; 0:0769; 0; 0; 0:4; 0:0025; 0;

¡ 0:0464; 0:7589; 0; 0:7857¡ 0:1856; 0:8929; 0:5714; 131; 0:0209; 0:25;

1; 1; 1) : (4.128)

The functionsW(s) and V(s) are given by (4.115) and (4.116), respectively, withW(L0) =
0:2304, andV(L0) = 1 :867. The parametersL0, ma, Us and ms are equal to their values
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Table 4.21: Energy in parts of PE bow in a number of situations.

limbs string total bow arrow
energy pot. kin. pot. kin. pot. kin. kin.
braced 0.1515 0 0.0100 0 0.1625 0 0
fully drawn 0.5879 0 0.0053 0 0.5932 0 0
arrow exit 0.1271 0.0980 0.0506 0.0279 0.1777 0.1271 0.2884

in the case of the KL bow de¯ned in (4.102), the brace heightjOH j is now 0:25 instead of
0.214, the lengthL is 1 instead of 1:286.

This bow will be used as a starting point for changing parameter values. The ¯ve
parameters which can be calculated from (4.128) are:Le = 0:428, µt = 60±, µ0(L0) = 0,
· 0 = 0, L = 1:000. The unbraced, braced and fully drawn situation of the PEbow are
shown in Figure 4.29. The computed quality coe±cients of it are; q = 0:432, µ = 0:668
and º = 1:94. In Figure 4.30 we give thesfd curve and thedfd curve and in Table 4.21
the amounts of energy in the di®erent parts of the PE bow for a number of situations.
In the following we still call a bow a PE bow when 'some' of its parameters have been
altered, the not mentioned parameters are tacitly assumed to be equal to the original
ones. A comparison of the performance of the PE bow with that of the KL bow dealt
with in Section 4.9, shows that there is more energy available in the fully drawn PE bow
(q = 0:432;q = 0:407). However, the e±ciency of the PE bow is much lower (´ = 0:668;́ =
0:765) and this causes a smaller dimensionless muzzle velocity (nu = 1:94;º = 2:01).
Further, the amount of energy in the braced PE bow is larger than that in the braced KL
bow (see Table 4.8) (AH = 0:1575;AH = 0:0950). However, it is interesting to note that
the energy in its string is smaller (0.010;0.0276). This is partly due to the di®erence in
length of the strings but also to the forceK in the string of the braced PE bow, being
smaller than K in case of the KL bow (1.19;1.71). Thus in spite of the fact that there is
more potential energy in the limbs in braced situation of thePE bow,the force in its string
is smaller. We shall return to this subject later.

The sfd curve of the PE bow (Figure 4.30) possesses a bend at the moment the string
leaves the string bridges, just as thesfd curve of the CB bow dealt with in the previous
section (see Figure 4.26). The rate of increase of the forceF (b) is during the ¯nal part of
the draw much smaller than during the ¯rst part, in which the string has contact with the
bridge. This agrees with [10, page xxvii]:

`When the bow was about half drawn, the rigid end-pieces (or ears) began to
act as levers so that the draw could be continued with less increase in the weight
than would have been the case without them.'

For the PE bow the string leaves the bridge whenb¼ 0:5.
The dfd curve of the PE bow oscillates. This oscillating behaviour of the acceleration

forceE(b) resembles the behaviour shown in Figure 4.18 where we investigated the in°uence
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Figure 4.29: PE bow in vari-
ous situations.

Figure 4.30: sfd and dfd curve of PE bow.
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Figure 4.31: E(t), K (t) and P(t)
for PE bow.

of the presence of concentrated masses at the tip. The jumpF (jODj) ¡ E(0) is due to
the model for the string we use in this section. To the mass 2ma of the arrow we added
2=3ms which gets the same acceleration as the arrow, hence the acceleration force at the
arrow for t = 0, E(0) equalsma=(ma + 1=3ms). From Figure 4.30 we conclude that the
static-recurve bow PE imparts its energy less smooth to the arrow than the ~H and KL
bow. The tensile force in the stringK and the recoil forceP have the same behaviour as
can be seen in Figure 4.31 where we show the three functionE(t), K (t) and P(t). The
maximum tensile force in the string equals 4:0; this is lower than in the case of the KL
bow where is was 4:3. The maximum recoil force fort · t l is larger; 2:7 for the PE bow
and 2:3 for the KL bow. After the arrow has left the string, the recoil force P reaches the
value ¡ 4:5. The force in the string becomes negative after the peak, sofor our computing
program we have STOP=1 (Section 4.9)

In what follows we change the parametersµt , L , µ0(L0) and · 0. Instead of Le we
consider as a parameter this length divided by the length of the limb, thus Le=(L ¡ L0)
will be changed. The behaviour of the recoil forceP and of the tensile forceK will be
discussed if it di®ers signi¯cantly from that in the case of thePE bow

First we change only the angleµt . Table 4.22 gives the static quality coe±cients for the
PE bow with varying µt . Starting with µt = 0 the static quality coe±cient q increases with
increasingµt , it passes a maximum in the range 55± · µt · 65± after which it diminishes
again. In Figure 4.32 we show thesfd curves of PE bows withµt = 0±, µt = 30± and
µt = 60±. For µt = 0± we have a straight bow and the string has no contact with the string
bridge in all situations. This is also the case for the PE bow with µt = 30± as can be seen
in Figure 4.33, in which we show the shape of this bow in various situations. Therefore the
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Figure 4.32: sfd curves for PE bow with µt =
0±, µt = 30± and µt = 60±, Table 4.22.

Figure 4.33: PE bow with
µt = 30± in various situations.

sfd curves in Figure 4.32 of these two bows withµt = 0± and µt = 30± increase without a
bend.

The dynamic quality coe±cients of the PE bow withµt = 0±, 30±, 45±, 60± and 75± are
given in Table 4.23 (L = 1:000). In the range 30± · µt · 60± the e±ciency decreases with
increasing angleµt . This negative in°uence is so large that it overshadows the positive
in°uence of a largerµt on the static performance (Table 4.22). The maximum muzzle
velocity and also the maximum amount of energy imparted to the arrow, of which the
mass is given in (4.128), is obtained forµt = 30±.

In Figure 4.34 we give thedfd curves of the PE bows withµt = 0±, µt = 30± and
µt = 60±. The oscillations of thedfd curve for the bow with µt = 0± are slightly less than
those in the case of the bow withµt = 60±.

The second parameter we change is the length 2L of the bow. In Table 4.23 we give
the results forL = 1:286, 1:000 and 0:7857. We changed also the angleµt .
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Table 4.22: In°uence of angleµt on static quality coe±cient q.

µt 0± 15± 30± 45± 55± 60± 65± 75± 90±

q 0.373 0.387 0.397 0.419 0.430 0.432 0.431 0.423 0.396

Table 4.23: In°uence of length L and angleµt on PE bow.

L 1.286 1.000 0.7857
µt 0± 30± 45± 60± 0± 30± 45± 60± 75± 0± 30± 45± 60±

W (L 0) 1.076 .7982 .6761 1.409 .3873 .3061 .2669 .2304 .1960 .1069 .0891 .0754 .0640
V(L 0) 1.4 1.4 1.4 1.575 1.867 1.867 1.867 1.867 1.867 2.489 2.489 2.489 2.489
q 0.400 0.441 0.470 0.407 0.373 0.397 0.419 0.432 0.423 0.301 0.314 0.310 0.314
´ 0.770 0.740 0.652 0.765 0.782 0.788 0.730 0.668 0.693 0.796 0.809 0.789 0.723
º 2.00 2.06 2.00 2.01 1.95 2.02 2.00 1.94 1.95 1.77 1.82 1.79 1.72

In the case of the longest bow,L = 1:286,q attains its maximum in the neighbourhood
of µt = 45± instead of 60± for the PE bow with L = 1:000. The di®erence for each length
L = 1:286,L = 1:000 andL = 0:7857 between the value ofq for µt = 0± and the maximum
q is 0:070, 0:059 and 0:013, respectively. It follows that for longer bows the in°uence of
µt on q is larger. Possibly this decrease in the di®erences is causednot only by the change
of length L, but also by the decrease of the length of the earsLe when the bow becomes
shorter; Le = 1=2(L ¡ L0) in all the cases. Further, this maximum value ofq diminishes
with decreasing lengthL, being 0.470, 0.432 and 0.314, respectively. In the case of the
shortest bow the static quality coe±cient as function ofµt attains two maxima, one in the
range 0± · µt · 45± and another in 45± · µt · 75±. The sfd curves of the four bows with
the greatest values ofq for each length are shown in Figure 4.35. The con¯gurations of

Figure 4.34: dfd curves for PE bow with µt =
0±, µt = 30± and µt = 60±, Table 4.23. For sfd
curves see Figure 4.32.
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Figure 4.35: sfd curves for PE bow, di®erent
lengths and angleµt , Table 4.23.

Figure 4.36: PE bow with
L = 1 :286, µt = 45± in vari-
ous situations.

Figure 4.37: PE bow with
L = 0 :7857, µt = 30± in var-
ious situations.
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Figure 4.38: PE bow with
L = 0 :7857, µt = 60± in var-
ious situations.

three of these bows,L = 1:286,µt = 45± and L = 0:7857,µt = 30± and µt = 60± in various
positions are shown in Figure 4.36, Figure 4.37 and Figure 4.38, respectively. The one with
L = 1:000, µt = 60± was already shown in Figure 4.29. Note that the angle betweenthe
string and the y-axis is rather large for the shortest bowsL = 0:7857 (Figure 4.37 and
Figure 4.38). This has a negative in°uence on the static performance of these bows.

For dynamics, changingµt has more in°uence on the e±ciency in the case of longer
bows,L = 1:286 andL = 1:000. In these cases the values of´ for µt = 0± are 0:118, 0:114,
better than the values of´ for which q is maximum. For the shortest bowL = 0:7857 with
µt = 30± the e±ciency ´ is slightly better, while for µt = 60±, ´ is 0:073 smaller than´ for
µt = 0±. The dfd curves for the PE bow withL = 1:286, µt = 45±, L = 1:000, µt = 60±

and L = 0:7857,µt = 60± are given in Figure 4.39. The oscillations of thedfd curve of
the shortest bow are more intense than those of the PE bow. Theacceleration forceE
becomes even negative for short intervals of time. In the simple mathematical model for
the string (third paragraph of this section), which we use inthis section, the string is able
to withstand negative tensile forces. We did not apply STOP=1 for this calculation, but
assumed that the arrow sticks to the string at those short intervals of time and leaves the
string when it becomes stretched.

Just as for the bow of lengthL = 1:000 we ¯nd that also for bows of lengthL = 1:286
and L = 0:7857 the greatest muzzle velocityº is obtained with µ = 30± . For L = 1:286
this is a bow where the string leaves the bridge almost immediately when it is drawn. For
L = 0:7857 we have forµt = 30± the same situation as forL = 1:000. The string has no
contact with the string bridge in all situations, see Figure4.37. In Figure 4.40 thedfd
curves of the bows withµt = 30± and di®erent lengths are shown. The shapes of these
curves resemble strongly those given in Figure 4.39 and the same remark has to be made
with respect to the negative tensile force in the string.

We shorten now the relative length of the ear with respect to the length of the limb
(L ¡ L0). In Table 4.24 we give the results. As expected, the static quality coe±cients
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Figure 4.39: dfd curves of PE bow, di®erent
lengths and angleµt , Table 4.23.

Figure 4.40: dfd curves of PE bow, µt = 30
and di®erent lengths, Table 4.23.

Figure 4.41: dfd curves of PE bow, short and
light ears, L l

L ¡ L 0
= 1=3, Table 4.24.
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Table 4.24: In°uence of the quotient L e
L ¡ L 0

on the performance of the PE bow.

L 1.286 1.000 0.7857
µt 45± 45± 60± 60± 60± 60±

Le=(L ¡ L0) 1/2 1/3 1/2 1/3 1/2 1/3
W(L0) 0.6761 0.9222 0.2304 0.3140 0.0640 0.820
V(L0) 1.4 1.575 1.867 2.100 2.489 2.800
q 0.470 0.445 0.432 0.408 0.314 0.296
´ 0.652 0.719 0.668 0.753 0.723 0.784
º 2.00 2.04 1.94 2.00 1.72 1.74

are smaller than those which belong to the corresponding bows with longer ears, for the
three bow lengths. But the e±ciencies are much better and thisproduces a somewhat
higher muzzle velocity. In Figure 4.41 we show thedfd curves of the bows mentioned
in Table 4.24 with Le = 1=3(L ¡ L0), those having relatively short ears. Comparison of
these curves with those given in Figure 4.39 reveals that theamplitude of the oscillations
is smaller for shorter and hence lighter ears. We conclude from these results that it is
advantageous to use long but also light ears. Technical limitations determine of course
what is realizable.

We now direct our attention to the in°uence of the two parameters µ0(L0) and · 0,
which determine the set back and the curvature of the workingpart of the limb, see
Equation (4.114). First we deal with PE bows with a straight working part of the limb,
· 0 = 0, set back in the grip at an angle¡ µ0(L0). The quality coe±cients are given in
Table 4.25. A negative angleµ0(L0), thus a positive set back, appears to be advantageous
both for statics and dynamics. Second, we consider PE bows with · 0 = 0, · 0 = ¡ 1 and
· 0 = ¡ 2. In Table 4.26 we give the quality coe±cientsq, ´ and º of these bows. Of these
three bows the strongest curved one· 0 = ¡ 2 possesses the largest static quality coe±cient
q. Notwithstanding its smallest e±ciency, its muzzle velocity is the best º = 2:01. For
· 0 = ¡ 1 and · 0 = 0 we ¯nd º = 1:99 andº = 1:94, respectively. In Table 4.26 we changed
for L = 1:000 and· 0 = ¡ 1 also the angleµt . The di®erence between the static quality
coe±cients forµt = 0± and µt = 30± is much smaller than in the case· 0 = 0, see Table 4.23.

The muzzle velocityº for µ0 = 30± is the best, just as in the case of a straight working
part of the limb, · 0 = 0. However, now the range ofº with changing µt is smaller. Thus
the shape of the ear as a function ofµt is less important for a bow with a curved °exible
part.

Further, we changed for· 0 = ¡ 1 the length of the bow. The static quality coe±cients
of the bows with · 0 = ¡ 1 are unquestionably better than those of bows with· 0 = 0 with
same lengthL and angleµt , see Table 4.23. The characteristic behaviour with respectto
sharp bends of thesfd curves given in Figure 4.42 resembles that of the bows given in
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Figure 4.42: sfd curves of PE bow with · 0 =
¡ 1 di®erent lengths and angleµt , Table 4.26.

Figure 4.43: dfd curves of PE bow with · 0 =
¡ 1 di®erent lengths and angleµt , Table 4.26.
For sfd curves see Figure 4.42.

Figure 4.44:PE bow with · 0 = ¡ 1
in various situation. Note that the
braced and the fully drawn position
are nearly the same as those given
in Figure 4.29 for the PE bow.



4.11. STATIC-RECURVE BOW 149

Table 4.25: In°uence of the angleµ0(L 0) on the performance of the PE bow,V (L 0) = 1 :86.

µ0(L0) ¡ 5± 0± 5±

W(L0) 0.2077 0.2304 0.2576
q 0.437 0.432 0.421
´ 0.684 0.668 0.648
º 1.97 1.94 1.89

Figure 4.35. This holds also for thedfd curves given in Figure 4.43 (· 0 = ¡ 1) compared
with the corresponding ones of Figure 4.39 (· 0 = 0). The amplitude of the oscillations for
the bows with · 0 = ¡ 1 tend to be slightly smaller. In spite of this, for the longest two
bows,L = 1:286 andL = 1:000, the e±ciency of the bow with· 0 = ¡ 1 is smaller and by
this the muzzle velocity is not that amount higher as we expected in connection with the
static quality coe±cient. For the two static-recurve bows with L = 0:7857,µt = 60± the
e±ciencies are nearly the same, so in these cases a largerq yields a larger muzzle velocity.

The unbraced, braced and fully drawn position of the PE bow with · 0 = ¡ 1 is shown
in Figure 4.44. Note that the braced and the fully drawn position are nearly the same as
those given in Figure 4.29 for the PE bow. This appears also tobe true for the other two
bows with length L = 1:286 andL = 0:7857. This feature is used in what follows.

We next want to gain insight into the static action of a bow with a strongly curved
elastic part of the limb. To this end we compare two bows, the PE bow (4.128),· 0 = 0,
and a bow named PȨ. The latter one di®ers from the PE bow only by its bending
sti®ness which işW (s), where ¸ is some scalar 0< ¸ · 1, W(s) is given by (4.115) with
W(L0) = 0 :2304, and the unbraced shape of the °exible part of the limb. For the new bow
PE¸ we adhere to the relevant quantities a superscript (¸ ). The question we will consider
is the following; what is the shape of the °exible part of the unbraced PȨ bow, for which
at full draw ( jODj = 1) the PE ¸ bow has nearly the same shape and weight (F (jODj) = 1)
as the PE bow. The strings of both bows are now assumed to be inextensible.

Equation (4.8) gives the relation between the bending moment and curvature along the
limb of the PE bow in fully drawn situation.

M1(s) = ¡ W(s)µ0
1(s) ; L0 · s · L2 : (4.129)

For the PE¸ bow (4.8) reads, withW ¸ (s) = ¸W (s)

M ¸
1 (s) = ¡ ¸W (s)f (µ¸

1 )0(s) ¡ (µ¸
0 )0(s)g ; L0 · s · L2 : (4.130)

The bending moment and curvature in fully drawn situation are in both cases assumed to
be the same, so

(µ¸
0 )0(s) =

¸ ¡ 1
¸

µ0
1(s) ; L0 · s · L2 : (4.131)
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Table 4.26: In°uence of shape of unbraced working part of the limb,µ0(L 0) = 0.

L 1.286 1.000 0.7857
µt 45± 60± 60± 0± 30± 45± 60± 60± 60± 60±

· 0 0 ¡ 1 0 ¡ 1 ¡ 1 ¡ 1 ¡ 1 ¡ 2 0 ¡ 1
W(L0) 0.6761 0.3173 0.2304 0.1769 0.1563 0.1418 0.1259 0.0867 0.0640 0.0400
V(L0) 1.4 1.4 1.867 1.867 1.867 1.867 1.867 1.867 2.489 2.489
q 0.470 0.535 0.432 0.437 0.445 0.472 0.491 0.511 0.314 0.351
´ 0.652 0.575 0.668 0.718 0.710 0.665 0.619 0.604 0.723 0.731
º 2.00 2.00 1.94 2.02 2.03 2.02 1.99 2.01 1.72 1.63

The curvature of the working part of the limbs of the PE bow andthe PE¸ bow appear to
be almost constant in fully drawn as well as in braced situation This means that we can
use for the PȨ bow an unbraced shape which is circular, hence characterized by a number
· ¸

0. In fully drawn situation the curvature is approximated by

µ0
1(s) ¼ K 1h1(L0)=W(L0) def= · 1=(L2 ¡ L0); (4.132)

and in the braced situation

µ0
1=2(s) ¼ K 1=2h1=2(L0)=W(L0)

def= · 1=2=(L2 ¡ L0); (4.133)

where hi (L0)( i = 1=2; 1) is the distance between the end point of the grip (0; L0) and
the string (see Figure 4.28),K 1(i = 1=2; 1) is as previously the force in the string and
· i (i = 1=2; 1) is the curvature, apart from the factor 1=(L2 ¡ L0).

The index 1=2 indicates the braced situation and 1 indicates the fully drawn situation
as before. For the values of the quantities on the right-handside of (4.132) and (4.133)
we take values computed by means of our model, in which the limb is considered as a
slender elastic beam. These values can also be approximatedin a straightforward manner
without using our model, but we do not elaborate this. Using (4.132) the· ¸

0 of the PE¸

bow becomes

· ¸
0 =

1 ¡ ¸
¸

· 1 : (4.134)

We now give an example. For the PE bow we have:K 1 = 0:8684, h1(L0) = 0 :725,
W(L0) = 0 :2304,K 1=2 = 1:188 andh1=2(L0) = jOH j = 0:25. Then (4.132) and (4.133)
yield · 1 = 1:17 and · 1=2 = 0:55. For the PȨ bow we take the one from Table 4.26 with
µ0 = 60±, L = 1:000, µ0(L0) = 0, · 0 = ¡ 1, W(L0) = 0:1259. Hence we have to take
¸ = 0:1259=0:2304 = 0:5464. Substituting ¸ = 0:5464 and· 1 = 1:17 in (4.134), we ¯nd
· ¸

0 = ¡ 0:97, which is nearly equal to the correct value¡ 1 given in Table 4.26.
Changing the parameteŗ yields a class of bowsf PE¸ g, of which the unbraced form

of the °exible part of the limb is a part of a circle with a curvature characterized by
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the coe±cient · ¸
0 given by (4.134). For bows belonging to this class the staticquality

coe±cient, expressed in· ¸
0 and in some parameters of the PE bow (· ¸

0 =0), becomes

q =
Z L 2

L 0

W(s)
(L2 ¡ L0)2

¡
· 2

1 ¡ · 2
1=2 ¡

· ¸
0

· 1 ¡ · ¸
1=2

(· 1 ¡ · 1=2)2
¢
ds (4.135)

by which we assumed, as has been mentioned earlier, the string to be inextensible. For
¸ = 1 we have approximately the static quality coe±cient of the PE bow again. Equation
(4.135) yieldsq = 0:430,q = 0:499 andq = 0:526 for· 0 = 0 ( ¸ = 1), · 0 = ¡ 1 (¸ = 0:5464)
and · 0 = ¡ 2 (¸ = 0:3763), respectively. The corresponding exact values from Table 4.26
are q = 0:432, q = 0:491 andq = 0:511, respectively. It follows that Equation (4.135)
gives a rather good approximation for the static quality coe±cient of a bow belonging to
the classf PE¸ g, anyhow for the character of the dependency ofq on · 0. From (4.135) we
conclude that q increases for decreasing values of· 0. We now give an approximation for
the force in the string in braced situation for the class of bows f PE¸ g. The equation of
equilibrium of the PE bow in braced situation reads

M1=2 = K 1=2h1=2 = ¡ W(s)µ0
1=2 ; L0 · s · L2 ; (4.136)

and for the bow PȨ

M ¸
1=2 = K ¸

1=2h¸
1=2 = ¡ ¸W (s)

¡
(µ0

1=2
¸ )0(s) ¡ (µ0

0
¸ )0(s)

¢
; L0 · s · L2 ; (4.137)

The shape of both bows in braced situation is nearly the same,(µ0
1=2)0(s) ¼ (µ0

1=2
¸ )0(s),

L0 · s · L2. Using (4.133) we get

K ¸
1=2 ¼ K 1=2

¡ µ0
1

µ0
1=2

+ ¸ (1 ¡
µ0

1

µ0
1=2

)
¢

; (4.138)

or by (4.132), (4.133) and (4.134)

K ¸
1=2 ¼ K 1=2

¡ · 1

· 1=2
+

· 1

· 1 ¡ · ¸
0

(1 ¡
· 1

· 1=2
)
¢

; (4.139)

For · 0 = ¡ 1 (¸ = 0:5464) this formula yieldsK (
1=20:5464)¼ 1:79 and we computed, using

the model developed in Section 4.3, 1.70, so there is a rathergood agreement.
In [5, page 81], Gordon writes

`...considerable force had to be applied to a bow which is initially bent in the
opposite or "wrong" direction, before it could be strung.'

This does not agree with our results; in the case of the straight-end KL bow dealt with in
Section 4.9, the force in the string was 1:71 and in the PE bow with · 0 = ¡ 1 it is 1:70.
Equation (4.137) shows that· ¸

1=2 increases witḩ but a comparison of the unstrung shape
of the PE bow with · 0 = ¡ 1, given in Figure 4.44, with those depicted in many books
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Table 4.27:Energy in parts of the PE bow with · 0 = ¡ 1 in a number of situations, (Figure 4.44).

limbs string total bow arrow
energy pot. kin. pot. kin. pot. kin. kin.
braced 0.5755 0 0.0204 0 0.5959 0 0
fully drawn 1.0817 0 0.0053 0 1.0867 0 0
arrow exit 0.5324 0.1346 0.0844 0.0312 0.6168 0.1658 0.3040

and papers indicates that its curvature is already on the large side. So with respect to
the force in the string which one has to apply to a bow, it is notmore di±cult to brace
a static-recurve bow than a straight-end bow. Although the bow is shorter and has an
opposite curved unstrung shape, it will be more complicatedto disentangle the unstrung
situation and to transfer it into the braced one.

Gordon mentions that:

`...the archer is no longer starting to draw the bow from an initial condition of
zero stress and strain.'

This does agree with our ¯nding that already in the braced situation a large amount of
energy is stored in a static-recurve bow with curved elasticlimbs. In Table 4.27 we give
the amounts of energy in the parts of the PE bow with· 0 = ¡ 1 in a number of situations.
The energy in the braced bow, being 0:5959, is even larger than the energy put into the
bow by drawing it from braced situation into fully drawn, being 0:491.

Balfour in [2] mentions:

`...greater skill and dexterity are called for in stringingthe strongly re°exed
Asiatic bows, than are needed for any bow of simple or "single-stave" type. I
can speak from experience and know how di±cult and risky it is.'

Indeed, a static-recurve bow in braced situation has a tendency to capsize. In that situation
we have static equilibrium, thus the potential energy, in limbs and string, is a minimum
for this con¯guration among all the admissible con¯gurationsin the "neighbourhood" (see
Section 4.5).

For bows whereby the string has contact with the bridge, those admissible ¯gurations
are con¯gurations in which the string lies against the stringbridges. However, if we permit
the string to slip past these bridges then the braced situation does not need to be a con-
¯guration of a minimum potential energy and much energy (see Table 4.27) is disengaged
when the bow is able to spring back into its unbraced form. In [14, page 6], Payne-Gallwey
notes that separate loops are knotted to each end of the middle part of the string. These
loops ¯t into the nocks of the bow and rest, when the bow is braced, upon small ivory
bridges which are hollowed out to receive them and which, in this way, assist to retain the
string in its place. Such a danger holds for ears with a su±ciently large µt for instance not
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for the ones of Figure 4.33 or Figure 4.37, where the ear can even be taken straight,however
with a bend at its connection with the working part of the limb.

We next show the in°uence of the remaining parameters given in(10.15) before the
semicolon; the length of the gripL0, distribution of bending sti®nessW(s) and of mass
V(s) along the bow, mass of the arrow 2ma, strain sti®ness and mass of the stringUs and
2ms and the brace heightjOH j. In Table 4.28 we collect the results obtained by changing
one parameter at a time (L0, ma and jOH j) or two parameters simultaneously (W(s),
V(s) and Us, ms), where the not mentioned parameters are those of the PE bow given in
(4.128). It follows that the in°uences of the parameters are roughly speaking the same as
in the case of the KL bow, dealt with in Section 4.9. An exception has to be made for the
in°uence of jOH j, which we will consider more closely.

We note that a larger brace height yields, as in the case of theKL bow, a smaller
static quality coe±cient but in the case of the PE bow a larger e±ciency, so that the
muzzle velocity º remains nearly the same. In Table 4.28 we give with changingjOH j
also the values of minb(t), the smallestx-coordinate of the middle of the string fort > t l .
Comparing these values with those given in Table 4.9 for the KL bow, reveals that for
jOH j = 0:250 both values are almost the same (0.09;0.10). However, for jOH j = 0:286 it
is in the case of the PE bow larger (0.19;0.14). This propertyis favourable for the Turkish
°ight shooters who used a grooved horn in order to be able to shoot arrows shorter than
the draw-length (see also Section 4.12).

Figure 4.45: Dimensionless
deformation curves of the
"Asiatic bow". Compare Fig-
ure 2.10.a in [9].

In that situation the min b(t) has to be larger than the length of the grooved horn.
From [4, page 175] we quote:

the groove is contrived to let the archer engender greater force by enabling the
bow string to be drawn further than the length of the arrow would normally
permit. However, it may not project more than about half a foot (6 inches)
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Table 4.28: In°uence of a number of parameters on the performance of the PEbow.

L0 q ´ º W(L0) V(L0) min b(t)
0 0.453 0.622 1.92 0.3469 1.6 |
0.1429 0.432 0.668 1.94 0.2304 1.867 |
W; V
W(s) ´ W(L0); V(s) ´ V(L0) 0.433 0.594 1.83 0.1802 1.167 |
4:115; 4:116 0.432 0.668 1.94 0.2304 1.4 |
ma

0.0384 0.432 0.493 2.36 0.2304 1.867 |
0.0769 0.432 0.668 1.94 0.2304 1.867 |
0.1538 0.432 0.772 1.47 0.2304 1.867 |
ms; Us

0.0105, 66 0.430 0.681 1.95 0.2300 1.867 |
0.0209, 131 0.432 0.668 1.94 0.2304 1.867 |
0.0418, 262 0.433 0.644 1.90 0.2307 1.867 |
jOH j
0.25 0.432 0.668 1.94 0.2304 1.867 0.09
0.25 0.432 0.668 1.94 0.2304 1.867 0.19
0.25 0.432 0.668 1.94 0.2304 1.867 0.23

Figure 4.46:sfd and dfd curves of the "Asiatic
bow". Compare sfd curve with the one given in
Figure 2.10.b in [9].
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from the belly without getting in the way of the string and, for that reason, it
cannot reduce the length of an available arrow by more than that amount. For
example, a thirty inch draw would require an arrow of about twenty-¯ve and a
half inches, which is, in fact the real length of many extant Turkish shafts.'

The dimensionless length of the groove is in this example 6=30 = 0:20. The results
given in Tables 4.9 and 4.28 show that the use of a groove with astraight-end bow would
require a large brace height and this implies a bad performance, while in the case of a
static-recurve bow the brace height can remain moderate andit has a less disadvantageous
in°uence on its performance.

Finally we consider an Asiatic bow described in [10] by Latham and Paterson, where a
reconstruction of it is shown in plate 18. In [9] we dealt withthe statics of that bow. We
showed earlier its con¯guration in unbraced, braced and fully drawn situation, its static
quality coe±cient and the sfd curve. In Figure 4.45 we show the bow in various situations
again, but now computed with the model developed in Section 4.3 for the static-recurve
bow. The bending sti®ness as a function ofs for 6.24 cm = L 0 · s · L2 = 46:8 cm is
the same as that chosen in [9]. There we tried to guess the bending sti®ness 80 that the
calculated braced and fully drawn shape of the bow resembledthose of the reconstructed
bow shown on the photographs in [10]. ForL2 · s · L we take now straight parts which
connect the tip (xt0 ; yt0

) and the end of the working part of the limb (x0(L 2); y0(L2)) with
the bridge (xb0 ; yb0

). The length L of this bow is 63.5 cm and the drawjODj = 76:2 cm,
so the dimensionless lengthL becomes 0:833. The brace heightjOHj = 18:4 cm.

In [10] nothing is said about the distribution of the mass along the limb. We assumed
this mass distribution to be uniform. The coordinates of thecentre of gravity of ear, mass
of ear and moment of inertia with respect to centre of gravityare computed using formulas
which resemble the Equations (4.117), (4.118), (4.126). The dimensionless mass of the
arrow and mass and strain sti®ness of the string are taken the same as those in the case
of the PE bow given in (4.128).

Under these assumptions the bow is given by

B(0:833; 0:08; W; V = V0 = 1:33; µ0; 0:0769; 0; 0; 0:2910; 0:00105; 0

; ¡ 0:2554; 0:6706; ¡ 0:2733; 0:6435¡ 0:3358; 0:6603; 0:6125; 131; 0:0209; 0:2417;

1; 1; 1) : (4.140)

The dimensionless quality coe±cients are;q = 0:332, ´ = 0:726 andº = 1:77. The static
quality coe±cient q di®ers slightly from the value given in [9], there it was 0:339. In that
article we assumed the bending sti®nessW(s) for 0 · s · L0 and L2 · s · L to be about
20 times the mean bending sti®ness of the °exible part of the limb. However, if we take
this factor equal to 200 instead of 20 we obtainq = 0:331 and this nearly equals the value
of q calculated with the model of Section 4.3, when the stringis chosen to be inextensible.
This result shows that the assumption that grip and ears are rigid, introduces some extra
inaccuracies because the ¯rst mentioned factor 20 seems to berealistic. That the static
quality coe±cient of the bow is 0:333 and not 0:331 is caused by the elasticity of the string.
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As in the case of the short bows, Tables 4.23 and 4.26 the static quality coe±cient q is
poor, the e±ciency is rather good and the muzzle velocityº is bad. The sfd curve and
dfd curve are shown in Figure 4.46. Thedfd curve oscillates just as in the case of the
short PE bow, see Figure 4.39, 4.40, 4.41 and 4.43. Thus also this Asiatic bow does not
seem to be a pleasant bow to shoot with.

In [10, page 104] it is said:

If, in shooting, it is your wish to outdistance your competitors you should use
a bow with short working part of the limb and choose a light arrow.'

In Section 2.6 we brought this already forward with the discussion of the simple H model
(see Section 4.6). However, the results of this section indicate that long sti® ears are not
advantageous if they are also heavy. The statement given in the last bit of the sentence
quoted above, agrees with our results, see Tables 4.13 and 4.28.

Note that for a bow with a straight part of the limb and L = 0:7857 orL = 1:000, the
bend in the ear, ¯xed by the angleµt yielding the maximum muzzle velocityº is so small
that the string is free from the string-bridges in all situations. Pictures of old Asiatic bows
in many books and papers show braced bows at which the string touches the string-bridges.
But, the angle between the vertical and the outer part of ear (between bridges and nock)
in braced situation is generally small and in a few cases the string is even free from the
"string-bridges".

We found in this section that a short static-recurve bow possesses no inherent better
performance than a longer straight-end bow. Inherent properties of the bow are those ¯xed
by dimensionless parameters given before the semicolon in (4.2). In Section 4.12, where we
investigate the in°uence of the three parameters behind the semicolon in (4.2), the draw
jODj, the weight F (jODj) and the mass of the limbmb, we return to this subject.

4.12 In°uence of draw, weight and mass of limb

In Section 4.9 and 4.11 we studied the in°uence of the dimensionless parameters, given
before the semicolon in (4.2), on the static and dynamic behaviour of a bow. This has been
done in Section 4.9 for the non-recurve bow KL and in Section 4.11 for the static-recurve
bow PE. In this section we continue with an investigation of the in°uence of the three
parameters with dimension given behind the semicolon in (4.2), namely: the drawjODj,
the weight F (jODj) and the massmb of one limb, for both types of bows. To that end we
consider a number of bows described in [14] and [15].

We recollect formulas for four important quantities. First, the amount of energyA put
into the bow by drawing it from the braced situation into the fully drawn situation is given
by (4.82)

A = qF (jODj)jODj : (4.141)

Second, the muzzle velocitycl , (3.81) in [8], by

lc = 31:32º f d
1=2
bv g cm/sec (4.142)
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where

dbv
def=

F (jODj)jODj
mb

: (4.143)

The number 31.32 is caused by the choice of our units. Third, the amount of energy
transferred to the arrow, using (4.87)

mac2
l = maº 2f F (jODj)jODjg = ´qF (jODj)jODj : (4.144)

Fourth, the linear momentum of the arrow at arrow exit

2macl = 62:64 maº f d
1=2
bp g = 62:64

´q
º

f d
1=2
bp g (4.145)

where

dbp
def= F (jODj)jODjmb : (4.146)

Of these four expressions, the ¯rst part contains only dimensionless quality coe±cients
which depend on the dimensionless parameters, the part between braces depends only on
the parameters with dimension;jODj, F (jODj) and mb.

From (4.142)¢ ¢ ¢(4.146) we conclude that for large values ofcl , mac2
l and 2macl it is

advantageous to have the draw and weight as large as possible. Equations (4.142) and
(4.143) indicate that the mass of the bowmb has to be small to ensure a large muzzle
velocity cl . But, on the other hand (4.145) and (4.146) show thatmb has to be large in
order to obtain a large linear momentum of the arrow. As already mentioned, for °ight
shooting a large initial velocity cl of the arrow is essential. For hunting or warfare both
kinetic energy and linear momentum are important. A large initial velocity produces a °at
trajectory of the arrow in which case it requires less space in a vertical direction.

The maximum weight and draw depend on the build of the archer.His strength deter-
mines the maximum weight and his span or the greatest distance between the bow hand
and the ear, cheek or chin the maximum draw, so both have physical limitations. The
minimum mass of the limb has technical limitations. Constants such as the admissible
stress, Young's modulus, speci¯c mass of the material of the bow enter into the problem.
How this minimum massmb depends on these various parameters is beyond the scope of
this paper. Nevertheless, this dependence is of major importance for the construction of a
good bow.

We now show how the results given in Section 4.9 and 4.11 can beused to approximate
the quality coe±cients of bows with values of dimensionless parameters di®erent from those
mentioned in these sections. One way to deal with the three functions W(s), V(s) and
µ0(s), 0 · s · L, is to approximate them by functions in a ¯nite dimensional space, for
instance by polynomials or splines of some ¯nite degree whichhas to be not too small in
order to get reasonable approximations. In this way the three functions are ¯xed each by a
number of parameters, which together with the other 18 parameters before the semicolon
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in (4.2) represent a bow. In the Sections 4.9 and 4.11 we changed some parameters sepa-
rately or simultaneously. ForW and V we changed only one parameter, the exponent¯ n

see (4.105) and (4.106) and forµ0(s) we had two parameters, namelyµ0(L0) and · 0, see
(4.108) and (4.114). Hence, the dimension of the parameter space we dealt with, was 23.
Representations of di®erent types of practical bows form clusters in the parameter space or
stated otherwise, for some type of bow the range of the parameters is by de¯nition limited.
From this point of view, we approximated in Section 4.9 the partial derivatives with respect
to the parameters in one point (representing the KL bow) in the cluster of the non-recurve
bow C including the AN bow) and in Section 4.11 in one point (representing the PE bow)
in the cluster of the static-recurve bows. The static quality coe±cient q and the e±ciency
´ of bows represented by points in the neighbourhood of the KL bow or PE bow can be
approximated by using the ¯rst order terms of the Taylor expansion in mentioned points,
in which the derivatives are replaced by their ¯nite-di®erence approximations. Then the
dimensionless muzzle velocityº follows from these approximated values ofq and ´ and the
dimensionless mass ma of the arrow, see (4.87).

In order to elucidate this procedure we consider a KL bow. Forthe three parameters
with dimension behind the semicolon we take,jODj = 71:12, F (jODj) = 28:1 and mb =
0:13. Then this bow is given by

KL(91:46; 10:16W; V ; µ0 ´ 0; 0:01; 0; 0; 0; 0; 0; 0

91:46; 0; 91:46; 0; 91:46; 91:46; 3681; 0:0027; 15:24;

71:12; 28:1; 0:13) : (4.147)

The bending sti®nessW(s) and mass per unit of lengthV(s) are given by

W(s) = 200; 263
¡ (L ¡ s)

L ¡ L0

¢
; L0 · s · L0 + 2=3(L ¡ L 0) ;

W(s) = 66; 754; L0 + 2=3(L ¡ L0) · s · L ; (4.148)

and

V(s) = 0 :0029
¡ (L ¡ s)

L ¡ L0

¢
; L 0 · s · L0 + 2=3(L ¡ L 0) ;

V(s) = 0 :001; L 0 + 2=3(L ¡ L0) · s · L : (4.149)

Starting with this bow we will calculate the characteristicquantities of two neighbouring
bows which di®er from it by their lengths, which are chosen as 2L = 194:95 and 2L =
172:72. Hence we leave the cross section of the limb near the grip (s = L 0) unaltered as
well as the number of strands of the string, the length of the grip 2L0 and the brace height
jOHj. In the functional dependency (4.148) and (4.149) we changethe length L, further
we have also in the new situationµ0(s) ´ 0. In practice we could start with a stave of
wood 194.95 cm long, shaped so that the distributions of the bending sti®ness and mass
become those given by (4.148) and (4.149) withL = 97:47. The length of the string has to
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be chosen so that the brace height becomes 15.24, see (4.147). We shorten this bow twice.
After each shortening we have to taper the limbs so that the distributions of the bending
sti®ness and mass become those of (4.148) and (4.149) again with L the actual half length
of the bow. Further we have to shorten the string in order to keep the brace height 15.24.

For the calculation of the weight F (jODj) of the bows with length 2L = 194:95 and
2L = 172:72 we use the formula for the dimensionless bending sti®nessW(L0) (see (3.26)
in [8])

W(L0) =
W(L 0)

F (jODj)jODj2
: (4.150)

Since the cross-section of the limb near the grip is unaltered, jW(jL0) has the same numer-
ical value as given in (4.148),jW(jL0) = 200; 263. The dimensionless valueW(L0) however
will change (4.150), becauseF (jODj) will be di®erent for the bows with di®erent lengths.
The two parameters which have changed by the process of lengthening or shortening the
KL bow, are L and Us, hence we can approximateW(L0) by

W(L0) = W(L0)
¯
¯
KL bow +

@W(L0)
@L

¯
¯
KL bow(L ¡ L

¯
¯
KL bow)

+
@W(L0)

@Us

¯
¯
KL bow(Us ¡ Us

¯
¯
KL bow) : (4.151)

The dimensionless strain sti®nessUs can be written as

Us =
Us

F (jODj)
= W(L0)f

UsjODj2

W(L0)
g ; (4.152)

where the factor between braces at the right-hand side of (4.152) is the same for the three
bows with di®erent lengths, because of our assumptions. Substitution of (4.152) in (4.151)
yields

¡
W(L0) ¡ W(L0)

¯
¯
KL bow

¢¡
1 ¡

UsjODj2

W(L0)

@W(L0)
@Us

¯
¯
KL bow

¢
=

@W(L0)
@L

¯
¯
KL bow(L ¡ L

¯
¯
KL bow) : (4.153)

From Table 4.16 (in°uence ofUs ) we get

@W(L0)
@Us

¯
¯
KL bow ¼

W(L0)
¯
¯
Us =197

¡ W(L0)
¯
¯
Us =131

197¡ 131
=

1:410¡ 1:409
66

= 1:5 10¡ 5 : (4.154)

This number shows that the in°uence of the strain sti®ness on the weight of the bow is
negligible. From Table 4.11 (in°uence ofL).

@W(L0)
@L

¯
¯
KL bow ¼

W(L0)
¯
¯
L =1 :429

¡ W(L0)
¯
¯
L =1 :286

1:429¡ 1:286
=

2:095¡ 1:409
0:1430

= 4:8 : (4.155)
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Substitution of (4.154) and (4.155) into (4.153) yields

(W(L0) ¡ 1:409)(1¡ 0:0014) = 4:8(1:3706¡ 1:286) ) W(L0) = 1 :8155; (4.156)

and with (4.150)

F (jODj) =
200; 263

1:8155 71:122
= 21:8kgf : ; (4.157)

For 2L = 172:72 we obtain in the same wayF (jODj) = 34:6 kgf.
The mass of one limbmb changes linearly with the length of the limb (L ¡ L0). So,

we havemb = 0:1396 for 2L = 194:95 andmb = 0:1218 for 2L = 172:72. When the same
arrow with mass ma = 0:010 kg is shot from the three bows, then the dimensionless a
masses arema = 0:0716 for 2L = 194:95 andma = 0:0821 for 2L = 172:72. The mass of
the string changes almost linearly with the length of the limb, so the dimensionless mass
ms remains almost unchanged.

As already remarked the parameterUs changes according to (4.152). Meanwhile we
see (4.154) that the in°uence of the strain sti®ness of the string on the static performance
is negligible and we assume that the same holds for the e±ciency. Note that a change of
both parametersms and Us separately in Table 4.16 would have given more information.

Using the data given in Table 4.11 (in°uence ofL) and Table 4.13 (in°uence ofma) the
static quality coe±cients becomeq = 0:411 for 2L = 194:95 andq = 0:401 for 2L = 172:72
and the e±ciencies becomé = 0:721 and´ = 0:783, respectively

In Table 4.29 we collect the results. In this table we give also the dimensionless muzzle
velocity º , the factorsdbv and the muzzle velocitycl in cm/sec, the kinetic energy and the
linear momentum of the arrow in kg cm/sec These results show that a shorter bow can
deliver a larger muzzle velocitycl , although its dimensionless muzzle velocityº is smaller.
This can be understood by the following reasoning. First, shorter bows are sti®er. From
Table 4.11 we conclude thatW(L0) decreases sharply with decreasing length and (4.150)
shows that the smallerW(L0) the larger the weight F (jODj) of the bow jODj and W(L 0)
being the same in all cases. Second, shorter bows are lighterFor, V(L0) increases with
decreasing length and a largerV(L0) implies a lighter limb. This follows from

V(L0) =
V(L0)jODj

mb
(4.158)

where we haveV(L0) and jODj kept the same.
Both factors imply the dbv to be larger for shorter bows. The e®ect of its sti®ness is

much larger than that of its lightness and this implies thatdbp is also larger for shorter
bows. Further, the static quality coe±cient q and the muzzle velocityº increase with
increasing length and the reverse holds for the e±ciencý. This all combined shows an
increase of the muzzle velocity, kinetic energy and linear momentum of the arrow with
decreasing length in the way described above.

We now pay attention to the in°uence of a permanent set of a bow.We dealt already
with this phenomenon in Section 4.9, see Table 4.17. Thus in this situation we have
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Table 4.29: In°uence of length 2L on performance of KL bowjODj = 71:12 cm, ma = 0 :01 kg.

2L W(L0) F (jODj) 2mb q ´ º dbv dbp cl mac2
l macl

194.95 1.812 21.9 0.278 0.411 0.721 2.03 11,205 216.5 6,730 462 135
182.88 1.409 28.1 0.260 0.407 0.765 2.01 15,373 259.8 7,805 622 156
172.72 1.144 34.6 0.246 0.401 0.783 1.96 20,006 302.7 8,695 772 174

computed values for various parameters at our disposal, this in contrast with the cases that
just have been treated. The unbraced shape of the bow which "followed the string" was
chosen to be a part of a circle with curvature ¯xed by· 0 = 0:1, see (4.108). We compare
the performance of the bow given by (4.147) with a bow, with the same dimensionless
parameters, except the parameter· 0, namely · 0 = 0:1 instead of· 0 = 0. In Table 4.30
we give the results. The dimensionless parametersW(L0), V(L0), q, ´ and º were already
given in Table 4.17. Using (4.150), (4.158) and the fact thatW(L 0) and V(L0) are the
same for both bows as well asjODj, we ¯nd for the bow with · 0 = 0:1, F (jODj) = 24:9
and mm = 0:13. Because the product ofq and ´ is for both bows about the same, the
smaller weight of the bow with permanent set implies a smaller dav , dap, cl , aac2

l and 2aacl .
In [6, page 22] Hickman studied also the in°uence of a permanent set and he found that it
reduces the cast of the bow. This agrees with our results, although the conception "cast"
has never been de¯ned properly. Note that we assumed the bending sti®nessW(L0) to be
the same for both bows. In practice a decrease of the weight may be caused by a change
of this entity when the bow has been used for some time.

In what follows we consider a number of bows described in [14]and [15]. Of these bows
the draw, weight, the mass of the arrow and sometimes the massof the limbs and part of
the remaining parameters are given. When the massmb is not known we use instead of
dav and dap the quantities

dav =
F (jODj)jODj

ma
(4.159)

and

dap = F (jODj)jODjma (4.160)

for the estimation of the performance of the bow and arrow combinations.
Then, by (4.144) we have

cl = ( q´)1=2d
1=2
av (4.161)

and by (4.145)

2macl = 2 ( q´)1=2d
1=2
ap (4.162)
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Table 4.30: In°uence of a permanent set of the KL bow,jODj = 71:12 cm, mb = 0 :13 kg.

· 0 W(L0) V (L0) F (jODj) q ´ º dbv dbp cl mac2
l macl

0 1.409 1.575 28.1 0.407 0.765 2.01 15,373 259.8 7,805 622 156
0.1 1.590 1.575 24.9 0.389 0.795 2.01 13,623 230.0 7,350 548 146

Because only a few parameters of all those which determine completely the performance
of a bow and arrow combination are given in [14] and [15], we are able to give only rough
estimates for the quality coe±cientsq, ´ and º . All bows mentioned by Pope in [15] were
shot repeatedly at least six times and the greatest distancewas recorded. The elevation at
which each arrow was projected was approximately 45± from the horizontal.

We consider ¯rst a straight-end bow. In [15, page 31], Pope describes an experiment
with a replica of an English longbow. He started with a bow 6 feet 4.75 inches (194.95
cm) long. When drawn 28 inches (71.12 cm) it weighed 53 pounds(23.6 kgf) and shot
a °ight arrow with mass 310 grains (0.020 kg), 185 yards (16916cm). Then Pope cut
down the bow to a length of 6 feet (182.88 cm), it weighed then 62 pounds (28.1 kgf),and
shot the arrow 227 yards (20757 cm). This bow has been again cut down to a length of 5
feet 8 inches (172.72 cm) and the limbs were tapered a tri°e. Its weight, when drawn 28
inches (71.12 cm) became 70 pounds (31.8 kgf) and shot the arrow 245 yards (22403 cm).
Because Pope's information about the bow is not complete, weare not in a position to
imitate his experiments theoretically. However, a comparison of his data with the results
in Table 4.29 shows that the trends of the in°uence of shortening a bow, with respect to
weight and muzzle velocity or range, are the same. In Table 4.31 we give the factorsdav

in kgf cm/kg and dap in kgf cm kg for the three bows Pope mentioned.
Second, we consider a number of static-recurve bows. In whatfollows we have some-

times the situation in which the weight of the bow is given fora draw di®erent from the
draw used during shooting the arrow. In these cases we approximate the weight of the bow
using the slope of thesfd curve of the static-recurve bows with di®erent lengths, given in
Figure 4.35, forb= 1 with

F (jODj + ¢) = F (jODj) +
@F

@b

¯
¯
b= jOD j

¢ = F (jODj) +
@F
@b

¯
¯
b= jOD j

F (jODj)

jODj
¢ (4.163)

For L = 1:286 a ¯nite di®erence approximation yields@F
@b

¯
¯
b=1

¼ 1 and for L = 0:7857
we have@F

@b

¯
¯
b=1

¼ 2:5
First, we consider two Tartar bows described by Pope in [15, page 23]. Both were 74

inches (187.96 cm) long. One weighed 1 1=2 pounds (.6804 kg) avoirdupois and pulled 30
pounds (13.6 kgf) when drawn 28 inches (71.12 cm). It shot a °ight arrow 310 grains (0.020
kg) in weight 100 yards (9140 cm). Thus for this bow we haveL = 1:32, ma = 0:0294,
dav = 97; 000 kgfcm/kg and dap = 9:7 kgfcm/kg. The other bow weighed 3 1=4 pounds
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Table 4.31: Comparison of various bows described in [14] and [15].

type ref. F (jODj) jODj 2ma 2mb 2L 2ms range dav dap

23.6 71.12 0.020 | 195 | 17,000 168,000 16.8
longbow [15] 28.1 71.12 0.020 | 188 | 21,000 200,000 20.0

31.8 71.12 0.020 | 173 | 22,500 226,000 22.6
Tartar [15] 13.6 71.12 0.020 0.680 188 | 9,140 97,000 9.7

46 73.66 0.020 1.47 188 0.057 16,000 339,000 33.9
46 73.66 0.020 1.47 188 0.170 8,230 339,000 33.9

Tartar [15] 47.6 76.2 0.113 1.47 188 0.057 9,600 64,000 191.4
47.6 76.2 0.113 1.47 188 0.170 9,140 64,000 191.4

Turkish [15] 39 73.66 0.013 | 122 | 24,300 442,000 28.7
39 73.66 0.020 | 122 | 22,860 287,000 28.7

Turkish [14] 69 71.12 0.014 0.354 114 | 32,930 701,000 34.4.7

(1.5 kg) avoirdupois and when drawn 28 inches (71.12 cm) it pulled 98 pounds (44.45 kgf).
The same °ight arrow 310 grains (.020 kg) in weight drawn 29 inches (73.66 cm) shot only
90 yards (8230 cm) with a heavy string of 6 ounces (.17 kg) and 175 yards (16,000 cm)
with a light string, 2 ounces (.0567 kg) in weight. 1f we approximate the weight of the
bow when drawn 73.66 cm by 46 kgf thendav becomes 339; 000 kgfcm/kg anddap = 33:9
kgfcm kg. Pope shot also a war arrow 4 ounces (0.1134 kg) ap in weight with this bow.
Drawing that arrow 30 inches (76.22 cm), the weight is than 47.6 kgf approximately, it
°ew only 100 yards (9140 cm). In this casedav equals about 64,000 anddap about 191.4
and the dimensionless mass of thema arrow ma equals 0.0769. Using the light string again
2 ounces (0.0567 kg) in weight, the same arrow °ew only 5 yards further, thus 105 yards
(9600 cm).

Pope describes also a replica of a Turkish composite bow withwhich he hoped to
exceed the American °ight record of 290 yards (26,500 cm) madeby Maxson in 1891.
Unfortunately, Pope does not mention the mass of the bow. This bow weighed 85 pounds
(38.56 kgf) when drawn 29 inches (73.66 cm) and its length was48 inches (121.92 cm).
It cast the arrow 310 grains (0.020 kg) in weight, 25O yards (22.860 cm). In that case
dav equals 287,000 anddap = 28:7. A 25-inch °ight arrow, 200 grains (0.013 kg) in weight
(shot with a groove) Pope was able to shoot 266 yards (24,300 cm). In this case we have
dav = 442; 000 anddap = 18:7.

In [14, page 3], Payne-Gallwey describes also a Turkish bow.The length of this bow
is 45 inches (114.3 cm), it weighed 12 1=2 ounces (0.354 kg) avoirdupois and pulled when
drawn 25 2 inches (64.77 cm) 118 pounds (53.5 kgf). When drawn28 inches (71.12 cm)
the weight is approximated by 69 kgf. Thendav = 701; 000 anddap = 34:4. He shot 12
arrows, half an ounce (0.0142 kg) in weight each and the distance they travelled averaged
360 yards (32,900 cm). The dimensionless mass of the arrowma = 0:04 for this bow arrow
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combination.
In Table 4.31 we collect the results. Besidesdav and dap , one has to know the two

quality coe±cients q and ´ to be able to estimate the performance of each bow-arrow
combination, but as we mentioned earlier we can give only rough approximations for these
coe±cients because of lack of detailed information.

Comparison of the longbow with the weakest Tartar bow shows that the larger dav of
the longbow is directly translated into a greater range. Obviously the product q´ is for
both bows about the same when we assume the range to be about proportional to the
square of the initial velocity of the arrowcl , see (4.161). The rather short range of the
huge Tartar bow is partly caused by the heavy string, as Pope pointed out experimentally.
For a heavy string gives a bad e±ciency. In Section 4.7 we dealtwith the in°uence of the
mass of the string and we found that our results agree fairly well with the results obtained
by using Hickman's rule. Hickman took the mass of the string into account by adding one
third of this mass to the mass of the arrow. In that case an approximation of the maximum
e±ciency becomes (4.100)

max´ ¼
ma

ma + 1=3ms
(4.164)

In the case of the static-recurve bow only the middle part of the string, thus not the loops
which rest against the ears at the moment the arrow leaves thestring, has to be taken into
account. The mass of the middle part of the heavy string is about 0.7 times the total mass
of the string, thus 0.040 kg. In this case (4.164) yields a maximum e±ciency ´ = 0:34. For
the lighter string this value becomes, using the same approximations 0.60. This explains
why the range when the light string is used, is about double the range when the heavy
string is used. The dimensionless mass of the arrow, being only 0.0136,is very small and
the results given in Table 4.28 show that this causes a small e±ciency too. This elucidates
the relative short range, even in the case of the light string, despite the largedav . A war
arrow is heavier, so in that case ¯rst the maximum e±ciency according to (4.164) with the
above made remarks with respect to the part of the string one has to account for, becomes
larger, namely 0.74 and 0.89 for 2ma = :170 and 2ms = 0:057, respectively. Second, the
dimension less mass of the arrow is larger and this implies that the e±ciency is not too
much smaller than the mentioned maxima. However, the factordav is small for such a
bow-arrow combination. This implies the small muzzle velocity. Note that dap is very large
for this bow shooting the heavy arrow. Using the above ap mentioned facts with respect
to static quality coe±cient and e±ciency, (4.161) indicates that the linear momentum of
the war arrow is large.

For each bow there exists a minimum dimensionless mass of thearrow for which the
arrow sticks to the string until the latter is stretched. Because short bows are light, the
minimum is also small. Further, the mass of the string compared with the mass of the
arrow is small and (11.23) indicates that the e±ciency can be good. On the other hand,
from Tables 4.23 and 4.26 we conclude that the static qualitycoe±cient of such a short
bow is rather bad in comparison with its value for longer bows. Despite this bad static
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quality coe±cient, the large factor dav makes the short static-recurve bow in combination
av with a light arrow well adapted to °ight shooting.

In order to reduce the mass of the arrow and the drag of the arrow in the air, the Turk
shot °ight arrows shorter than the draw of the bow. This was made possible by using a
horn groove siper") which they wore on the thumb ([14, page 11]) or which was strapped
to the wrist ([10, page 106]) of the bow hand. These grooves guided the arrow in safety
past the side of the bow. In Section 4.11 we saw that after arrow exit the string remains
free from such a groove when static-recurve bows with moderate brace heights are used. In
[14] Payne-Gallwey mentions that °ight arrows were shot from600 to 800 yards (55,000 cm
to 73,150 cm) by certain famous Turkish archers. In [10, page109], Latham and Paterson
write that the greatest recorded distance achieved with a hand bow is 972 yards (88,880
cm). It was shot by the Ottoman sultan Selim III in 1798. In June 1967 Harry Drake shot
851 yards 2 feet 9 inches (77,870 cm) and in September 1977 DonBrown shot 1,164 yards
2 feet 9 inches (106,520 cm).

For hunting and warfare the maximum range of the arrow is not adecisive quantity.
Then the amount of kinetic energy (4.144) is more important and also the linear momentum
(4.162). In that case, a heavier arrow gives a large e±ciency and thus better performance,
however, there is some bound. Very heavy arrows obtain a verysmall velocity and besides
the increase of the kinetic energy with increasing mass of the arrow diminishes.

In [16] Rausing deals with the origin and development of the composite bow. He argues
that the fact the static quality coe±cient of the short static-recurve bow to be larger than
that of the short straight bow disposes the statement of Pitt-Rivers, Balfour, Clark and
also Beckho®:

`the composite bow has no inherent superiority over the wooden self-bow, so
long as the latter was made from the most favourable kinds of timber and
expertly used.'

In Section 4.11 we saw already that the short static-recurvebow has no inherent better
performance than the long straight-end bow. On the other hand, much more energy per
unit of mass of limb can be stored in the fully drawn compositebow than in the wooden
bow. This must be the reason for the better performance of thestatic-recurve bow, if its
performance was better. Further, a short static-recurve bow is easier in operation and is
therefore suited for the use on horse back.

4.13 Another check on our numerical method

The ¯nite-di®erence method used in [8] met four requirements.First, in the case of static
deformations, agreement with the solution of the shooting method described in [9]. Second,
the sum of the potential and kinetic energy has to be constantduring the dynamic process
of shooting. Third, convergence of the results when the gridused in the ¯nite-di®erence
method, was re¯ned. Fourth, agreement with the solution obtained by using the ¯nite-
element method [8]. To be able to tackle the problems stated in Section 4.3 of this paper,
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Figure 4.47: Cantilever beam, de°ection of
force Ft and moment M t at the free end.

we had to introduce some changes in the ¯nite-di®erence schemeof [8] and besides we
made some improvements (See Section 4.4). After every change we checked the results
and found that the method described in Section 4.4 of this paper meets the ¯rst three
requirements mentioned above. Because of the improvements, the convergence we got was
even better that the convergence described in Section 4.4 of[8]. In this section we carry
out still another check.

The that end we consider a very simpli¯ed model of a bow, shown in Figure 4.47. In
this case the bow is a straight beam of length 1 with constant bending sti®nessW = 1
and constant mass distributionV = 1. In the undeformed situation it coincides with part
of the y-axis and is clamped at the originO. At the free end there is ¯xed a rigid body
with mass mt and moment of inertia Jt . Another massma is connected to the free end
of the beam by an inextensible string without mass as drawn inFigure 4.47. This mass
ma is allowed to move parallel to thex-axis. The length of this string is chosen so that in
the de°ected situation ma is at place (1,1). This initial de°ection is caused by a forceFt

acting upon ma and a bending momentM t applied upon the free end (Figure 4.47). The
external force actionsFt and M t are removed at timet = 0.

We assumeFt and M t to be su±ciently small, so that the elementary linearized beam
theory can be applied. Then the equations of motion become

Äx(y; t) = ¡ x0000(y; t) ; 0 < y < 1 ; t > 0 : (4.165)

The boundary conditions are fort > 0,

x(0; t) = x0(0; t) = 0 ; (4.166)

Jt Äx0(1; t) = ¡ x00(1; t) ; (ma + mt )Äx(1; t) = x000(1; t) : (4.167)

The initial conditions read

x(y; 0) = ¡ 1=6 Fty3 + 1=2 (Ft + M t )y2 ; _x(y; 0) = 0 ; 0 · y · 1 : (4.168)

Here the prime indicates partial di®erentiation with respect to y. We observe that these
equations are the linearized versions of the equations of Section 4.3.
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In order to obtain an analytic solution we use the Laplace transform technique with
respect to the time variablet. The Laplace transform of the functionx(y; t), occurring in
equations (4.165)¢ ¢ ¢(4.168), denoted byX (y; p) equals

X (y; p) =
Z 1

0
expf¡ ptgx(y; t)dt def= X 1(y; p) + X 2(y; p) ; (4.169)

where

X 1(y; p) = ¡ (1=6 Fty3 + 1=2 (Ft + M t )y2)=p ; (4.170)

and

X 2(y; p) =
£
A(sinh

p
ipy ¡ sin

p
ipy) + B(cosh

p
ipy ¡ cos

p
ipy)

¤
=pC (4.171)

with

A(p) = ¡ Ft

¡
cos

p
ip + cosh

p
ip ¡ ip

p
ipJ t (sinh

p
ip + sin

p
ip)

¢

¡ M t
¡p

ip sinh
p

ip ¡ sin
p

ip + ( ma + mt )ip(cosh
p

ip ¡ cos
p

ip)
¢

;

B(p) = ¡ Ft

¡
sin

p
ip + sinh

p
ip ¡ ip

p
ipJ t (cosh

p
ip ¡ cos

p
ip)

¢

+ M t

¡p
ip cosh

p
ip + cos

p
ip ¡ (ma + mt )ip(sin

p
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p
ip)

¢
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p
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£
1 + cos

p
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p
ip cosh

p
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p
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p
ip)

¡ Jt ip
p

ip(sinh
p
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ip cosh
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p

ip ¡ cosh
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ip)
¤

; (4.172)

where p is a complex variable. This complex-valued functionX (y; p) has simple poles,
which are the zeros of the functionC(p) in (4.172), on the imaginary axis. It is easy to
show that there is no singularity in the originp = 0, this re°ects the fact that the cantilever
vibrates about its position of equilibrium x = 0. The inverse Laplace transformx(y; t) of
X (y; p) is

x(y; t) =
1

2¼i
lim

¯ !1

Z ° + i¯

° ¡ i¯
expf ptgX (y; p)dp ; (4.173)

wherey > 0. Because the poles ofX (y; p) are simple andX 2(y; p) has a so called fractional
form, x(y; t) can be represented formally by an in¯nite series, in¯nite because there is an
in¯nite number of poles.

The formal solution becomes

x(y; t) = 2
1X

n=1

cos(q2
n t)xn (y) ; (4.174)
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where

xn (y) =
£
Ft f¡ sinqn (1 ¡ y) + sinh qn (1 ¡ y) +

coshqn sinqny ¡ cosqny sinhqn + sin qn coshqny ¡ cosqn sinhqny

+ q3
nJt (¡ cosqn (1 ¡ y) ¡ coshqn (1 ¡ y) ¡

sinhqn sinqny + cosqny coshqn + cosqn coshqny + sin qn sinhqny)g

+ M t f qn (¡ cosqn (1 ¡ y) + cosh qn (1 ¡ y) +

sinhqn sinqny ¡ cosqny coshqn + cosqn coshqny + sin qn sinhqny)

+ ( ma + mt )q2
n (sin qn (1 ¡ y) + sinh qn (1 ¡ y) +

coshqn sinqny ¡ cosqny sinhqn ¡ sinqn coshqny + cosqn sinhqny)g
¤

=
£
q4

n f (sin qn coshqn ¡ sinhqn cosqn )(ma + mt + 1) + 2( ma + mt )qn sinqn sinhqn

+ 3Jtq2
n (sinhqn cosqn + sin qn coshqn )

q3
n (¡ 2J ¡ t coshqn cosqn + 4( ma + mt )Jt (1 ¡ coshqn cosqn ))

¡ (ma + mt )Jtq4
n (sin qn coshqn ¡ sinhqn cosqn )g

¤
: (4.175)

The qn 2 R, n = 1; 2¢ ¢ ¢occurring in (4.174) and (4.175) follow from

1 + cosqn coshqn ¡ (ma + mt )qn (sin qn coshqn ¡ sinhqn cosqn )

¡ Jtq3
n (sinhqn cosqn + sin qn coshqn ) + ( ma + mt )Jtq4

n (1 ¡ cosqn ¡ coshqn ) = 0 ; (4.176)

To obtain an expression for the function Äx(y; 0), 0 · y · 1, we use the initial value
theorem ([17, page 185, theorem 4]). This theorem states that, if the function f(t) satis¯es
the inequality jf (t)j < M expf ®tg, for all t > 0, M being a positive constant, then

lim
p!1

Z 1

0
expf¡ ptgf (t)dt = lim

t#0
f (t) : (4.177)

We consider separately two di®erent cases. FirstFt 6= 0, mt 6= 0, ma 6= 0, M t = 0 and
Jt = 0, than we get

Äx(y; 0+ ) = 0 ; 0 · y < 1 ; Äx(1; 0+ ) =
¡ Ft

ma + mt
: (4.178)

Second,Ft 6= 0, mt 6= 0, ma 6= 0, M t 6= 0 and Jt 6= 0, then we have besides (4.178).

Äx0(1; 0+ ) =
¡ M t

Jt
: (4.179)

In what follows we compare the analytic solution of the linearized version of the problem
(in fact a numerical approximation) with the numerical approximation obtained by using
the ¯nite-di®erence method of Section 4.4.

As a matter of fact we can compare the analytic solution with the results of two ¯nite-
di®erence schemes. The ¯rst scheme is given in Section 4.4. Thesecond scheme is the
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Figure 4.48: Acceleration Äx(1; t) of the free end: (top) ¯nite di®erence and (bottom) analytic
situation, bow (4.180).

linearized version of the ¯rst one, it is a ¯nite- di®erence scheme which belongs to the
equations of motion (4.165)¢ ¢ ¢(4.168). It turned out that for the cases we will consider,
the results of both schemes are almost equal. So, in the following we mention only results
obtained by the non-linear di®erence scheme.

First, we consider the bow

B(1; ¡ 1; 1; 1; 0:1; 0; 0; 1 ; 0; 0:95; 1; 1; 1) : (4.180)

In Figure 4.48 we draw the analytic solution for the caseFt = 0:15,mt = 0, ma = 0:1, M t =
0, Jt = 0 of the function Äx(1; t) and the approximation of this function, or actually E=ma,
calculated by means of the ¯nite-di®erence method. We conclude for this acceleration of
the free end, that there is not a point wise agreement betweenthe analytic solution and
the approximation. Taking the highly °uctuating behaviour of the analytic solution into
account, this is not surprising. For the ¯nite-di®erence approximation neglects higher order
terms in the Taylor expansion of the solution. However, there is good global resemblance.
This is also expressed by the fact that the integral of these functions from t = 0, hence the
velocities of the free end _x(1; t) show a good correspondence, see Figure 4.49.
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Figure 4.49: Velocity _x(1; t) of the free end: (top) ¯nite di®erence and (bottom) analytic situa-
tion, bow (4.180).

Further for lim t # 0 the acceleration Äx(1; t) converges to the value given by (4.178) for
the analytic solution as well as for the approximation.

This notwithstanding the fact that there are large °uctuations of the solution near the
free end shortly after removal of the external forces. These°uctuations are connected
to the discontinuity as a function of y of limt#0 Äx(y; t) at the free end y = 1, given by
equations in (A.14). It is also this discontinuity which causes some problems with the use
of the crank-Nicolson scheme. In this scheme fork = 0, the second term on the right-hand
side of equation (4.45) forj = ns is 0, according to the solution of the static equations, but
it has to possess a value given by equation (4.178),¡ Ft =(ma + mt ). So, one way to solve
the di±culties is to adjust the value of the mentioned term. However, for a real bow, thus
solving the non-linear equations of motion, we have no analytic expression at our disposal.
One can also drop equations (4.45) and (4.46) forj = ns and use in the boundary conditions
at the tip non-symmetric ¯nite-di®erences, as we did in [8]. But especially because of the
presence of a rigid body possessing a moment of inertia (Equation (4.14) or (4.41)) we did
not use this scheme in this paper. Another way to avoid the useof the acceleration at the
free end fort = 0 is applied in this paper by taking ¹ = 1, thus a fully implicit backward
time di®erence-scheme for the ¯rst time step. In [8] we used already this method in order
to avoid the use of the normal forceT at t = 0 in the case of a bow with an inextensible
string and concentrated masses at the tips.

Figure 4.50 shows the acceleration of the free end as function of time, both the analytic
solution, in the caseFt = 0:075,mt = 0, ma = 0:1, M t = 0:05, Jt = 0:1, and the numerical
approximation in the case of the bow

B(1; ¡ 1; 1; 1; 0:1; 0; 0:1; 1 ; 0; 0:95; 1; 0:1505; 1) ; (4.181)
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Figure 4.50: Acceleration Äx(1; t) of the free end: (top) ¯nite di®erence and (bottom) analytic
situation, bow (4.181).

where we adapted the boundary conditions of the static ¯nite-di®erence equations in an
obvious way, in order to take the bending momentM t = 0:05 exerted at the free end, into
account. In Figure 4.51 we draw the velocity _x(1; t), the analytic solution as well as the
numerical approximation. From the Figures 4.50 and 4.51 thesame conclusions can be
drawn as those given above. Again the values of Äx0(1; t) converge fort # 0 to the value
given by (4.179).

The obtained results show the limitedness of the utility of the ¯nite-di®erence method
when the solution which is approximated is rather unsteady.However, for a real bow there
are good reasons to presume the solutions to be smoother. First, the mass and sti®ness
distribution along most bows are not constant for the limbs are tapered to the tips. In [8] we
compared already the performance of a bow with constant sti®ness and mass distribution
with that of a bow with limbs tapered o®, and we found that thedfd curve of the last
mentioned bow was much smoother. Second, for a real bow the string possesses elasticity
and computations showed that this elasticity gives some smoothing e®ect.



172 CHAPTER 4. THE STATIC RECURVE BOW

Figure 4.51: Velocity _x(1; t) of the free end: (top) ¯nite di®erence and (bottom) analytic situa-
tion, bow (4.181).
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aiming, 9
archer, 53
archers paradox, 15
arrow, 53, 81

footed, 14
head, 7
nock, 7
point, 7
rest, 9

back, 7
backing, 12

close, 12
free, 12

ballistics
exterior, 9
interior, 9, 53

beam
inextensible, 53

belly, 7
bending sti®ness, 33, 35
bolt, 9
boundary conditions, 94
bow, 53

eH, 102
Angular, 12, 81
Asiatic, 34
centre-shot, 53
composite, 11
compound, 9, 34
cross, 9
foot, 9
H, 99
hand, 9
laminated, 13
nock, 7

non-recurve, 5, 10, 81, 91
recurved, 81
re°exed, 81
self, 11
static-recurve, 5, 81, 83, 91
straight-end, 81
symmetric, 53
tip, 7, 35, 53, 81
working-recurve, 6, 81

bow hand, 9, 53, 81
brace height, 7, 55
braced, 7

centre shot, 13
centre-shot, 83
curve

Dynamic-Force-Draw, 9
Static-Force-Draw, 9

damping, 83
distribution

bending sti®ness, 54, 83
mass, 54, 83

drag constant, 20
draw, 9, 55, 85
drawing, 9, 33

ear, 82
ears, 10
e±ciency, 54
elastic line, 33, 35, 54, 83
energy

kinetic, 56
potential, 56

equation
Euler, 57
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Euler-Bernoulli, 54

facing, 12
¯gure of merit, 18
¯stmele, 7, 35
°etching, 7
°ight shooting, 54, 84
fully drawn, 9

grip, 7, 55, 86
pistol, 13

handle, 7
heart wood, 12
heartwood, 83
hinge, 51
hunting, 54, 67
hysteresis, 54

kick, 70

limb, 7, 53, 81
lower, 7
shooting, 13
upper, 7

line of aim, 9
longbow, 83
loosing, 9

mass distribution, 34, 46
median plane, 13
method

¯nite-di®erence, 53, 83, 85
¯nite-element, 54
Newtonian, 39

model
C, 99
H, 98
lumped parameter, 83
M, 99

multiplier
Lagrangian, 57

muzzle velocity, 9, 54, 84

nocking, 9

height, 13
point, 9
tension, 17

performance, 54
permanent set, 7
pile, 7
pivot point, 9
position

braced, 55, 82, 85
fully drawn, 55, 83, 85
unbraced, 55, 85
unstrung, 81

principle
Hamilton, 53

problem
initial-boundary-value, 53

prod, 9

quality coe±cients, 83

recoil, 67
recurve, 53
recurved, 10
re°exed, 10
release, 81

sapwood, 12, 83
scheme

Crank-Nicolson, 96
¯nite-di®erence, 91

shaft hand, 9, 81
shot

open-handed, 69
spine, 15
stabilizer, 13
stave, 7
stock, 9
string, 7, 33, 81, 83

bridges, 82
elastic, 84
elasticity, 83
loop, 7
mass, 83, 84
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strain sti®ness, 84
string-bridges, 10
strung, 7

target, 7
target shooting, 54

unbraced, 10

vanes, 7
virtual mass, 18

weight, 9, 55, 86


