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Chapter 1

Introduction

1.1 Preface and summary

The invention of the bow and arrow may rank in social impact wh the invention of the
art of kindling re and that of the wheel. It must have been in pehistoric times that the
“rst missile was projected by means of a bow. Where and when we dot know, perhaps
even in di®erent parts of the world at about the same time. Theman was able to hunt
game and to engage his enemies at a distance.

In the 15" century the bow in the "civilized" world was superseded on liie “elds
by the re-arm and became an instrument for pastime. Today, @hery is a modern,
competitive sport.

The mechanics of the bow and arrow became a subject of scientiesearch after the
bow had lost its importance as a hunting and war weapon. In th#930's C.N. Hickman,
P.E. Klopsteg [6] and others performed experiments and madethematical models. Their
work both improved the understanding of the action of the bovand in°uenced the design
of the bow strongly.

In this thesis a mathematical simulation is made of the mecimécal performance during
the projection of the arrow by means of a bow. Because nowadafast computers are
available, we are able to cope with more advanced models, alhiare supposed to supply
more detailed results. The °ight of the arrow through the air ad the way it penetrates
the target is beyond the scope of this thesis.

Characteristic for the bow are the slender elastic limbs. Thbow is braced by putting
a string shorter than the bow between the tips of the limbs. Wdistinguish between three
di®erent types of bows on the ground of the interplay betweetriag and limbs. For bows
of the rst type, the "non-recurve" bows, the limbs have contat with the string only at
their tips. The Angular bow used in Egypt and Assyria and thedmous English wooden
longbow are non-recurve bows. In almost all Asia a bow made wbod, horn and sinew
was used. In braced situation the string lies along a part ohe limbs near the tips. Along
this length and often further these limbs are sti®; they do nadleform during the drawing
of the bow. These bows are called "static-recurve" bows. Merecently bows are designed
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made of wood and man-made materials such as glass or carbonedimbedded in resin.
For these bows the string also lies along the limbs in the brad situation for a short

length. However, the limbs are now elastic along their wholength. These bows are called
"working-recurve" bows. In this thesis we restrict to bows bthe mentioned three types
which are symmetric, so we do not discuss the interesting asgnetric bow of Japan.

In Chapter 2 we deal with bracing and drawing bows of all thregypes. The limbs are
considered as beams for which the Bernoulli-Euler equatidrolds. In each situation, the
equations form a system of coupled ordinary di®erential edians with two-point boundary
conditions. A shooting method is described by which this stem is solved. As a result of
this, the problem is reduced to the solution of two non-lingaequations with two unknowns.
Attention is payed to the problem of nding starting points for the secant-Newton method
which is used for solving these two equations.

After loosing, part of the energy accumulated in the limbs isransferred to the arrow.
In Chapter 3 we deal with the dynamics of the non-recurve bowlhe bow is assumed to be
clamped in the middle. The string is assumed to be without masand to be inextensible.
The governing equations are the equations of motion for thénibs. These equation are
derived using Hamilton's principle, the internal as well aghe external damping having
been neglected. There are two independent variables, thedgh coordinate along the bow
and the time coordinate and there are six unknown functionsThe boundary conditions at
the tips contain the equation of motion for the arrow. A numeical solution is obtained by
means of a nite-di®erence method. A Crank-Nicolson schemeuised, then for each time
step a system of non-linear equations has to be solved. Thiashbeen done by a modi ed
Newtonian method. The solutions of previous times are used tbtain starting points. At
the moment of release the solution of the shooting method agstribed in Chapter 2 is
used as starting point.

In Chapter 4 the string is elastic and possesses mass. A pafttiois chapter deals also
with the non-recurve bow, of which we consider now also thebratory motion of bow and
string after arrow exit. Then the governing equations formwo coupled systems of partial
di®erential equations. Besides time, for one system the léhgoordinate along the limbs
and for the other one the length coordinate along the stringsithe independent variable.
At the tips these systems are linked by the boundary conditits.

The main object of Chapter 4 is the dynamics of the static-rerve bow. For this type
it is necessary to take into account that the string has conta with the tips during the
“rst part of the shooting and after a beforehand unknown time \vth the part of the ears
between tips and string-bridges. In this case but also whehe arrow leaves the string, the
boundary conditions change abruptly at a moment which has tbe calculated. Because of
lack of time we have to leave the dynamics of the working-reote bow out of consideration.

In this thesis we do not deal with proofs of existence and cogngence of the numerical
methods. We did try, however, to obtain an insight into the acuracy of the developed
methods. For example, the analytic solution of a linearizedroblem is compared with the
obtained numerical solution. This is done in Section 4.13.

The mathematical simulation is used for theoretical expaments. The aim of these
experiments is to get insight into the in°uence of di®erent qurities which determine the



1.2. DEFINITIONS AND CLASSIFICATIONS 7

action of the bow and arrow. This supplies the possibility taompare several types of bows
which have been developed in di®erent human societies. Thssalso done in Chapter 4.
It appears that the static-recurve bow is not inherent bette than the long straight bow.
The meaning of the word inherent in this context is given in S#ions 1.7 and 1.9 of this
introduction. When the di®erent properties of the materialswood, horn and sinew, are
deliberately used, more energy per unit of mass can be storedthe limbs of the Asiatic
bow than in those of the wooden bow. Further, the static-reaue bow can be made shorter
without the loss of much quality. Their shortness makes therhandier and suitable for the
use on horseback.

Chapter 2 and 3 are reprints of published papers and Chaptertdat of an unpublished
one. As a result of this each chapter begins with an introducty section in which we give
a short outline of archery and each chapter has a separatet It references; sometimes a
reference is a chapter of this thesis.

In this introduction we quote from various books and papersigen in Lake and Wright
[11]. This is an indexed catalogue of 5,000 articles, bookBns, manuscripts, periodicals
and theses on the use of the bow, from the earliest times up tbet year 1973.

1.2 De nitions and classi cations

In this section we give the nomenclature of the di®erent parf the bow and arrow and
the classi cation of bows we have used.

Characteristic features of the bow are the slender elastistave" and the light string,
shorter than the stave, see Figure 1.1. Mostly there is a sti@art in the middle of the
bow, called the "grip", "handle" or "riser section”. The parts on both sides of this grip
are called the "limbs". Because the bow is usually held vedal or nearly vertical, we can
speak of the "upper limb" and of the "lower limb". The "back" of a limb is the side facing
away from the archer, the "belly" the opposite side.

The string is fastened between both ends of the stave. For thpurpose often grooves
are notched in these ends, the "tips" or "nocks". The stringd generally provided with
"loops", which 't in the grooves, and sometimes it is tied to oe or to both ends

The bow is "braced" or "strung" when the string is set on the bw. The distance
between the grip on the belly side and the string in that situion is called the "brace
height" or " stmele". This distance is adjusted by changing he length of the string, for
example by twisting it. In general the bow is braced only whem use, because most
materials of which limbs are made get a "permanent set" whewoaded for a long time; the
bow "follows the string”. As an old proverb says: "a bow long ént at last waxed weak"

Now the bow is ready for use, that is to propel a projectile tots "target”. This
projectile is mostly an arrow. An arrow consists of a shaft wh at one end the "head",
"point” or "pile", often a separate piece attached to the sh# in one way or another and at
the other end the "nock", see Figure 1.2. To stabilize the °ighof the arrow often "vanes",
together known as "°etching”, are bound, slightly spiral wig or not, to the shaft near the
nock.
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Figure 1.2: The parts of the arrow.
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The nock is provided with a groove in which the string slightt sticks when the arrow
is set on the string, called "nocking". The place at the strig where the arrow nock meets
the string is called the "nocking point".

After the arrow is set on the string, the archer pulls the bowrbm braced situation into
"fully drawn" situation, this action is called "drawing". T o that end he hooks for instance
two or three ngers or the thumb of the "shaft hand" on the string. With the other hand,
the "bow hand", the archer holds the bow at the grip. During dawing a force is exerted
upon the grip by the bow hand applying at the so-called "pivotpoint” on the belly side
of the grip, and by the shaft hand upon the string at the nockig point. Both forces are
opposite to each other and are approximately aligned with #"line of aim”. The line of
aim is by de nition the line through the centre line of the poited arrow in fully drawn
situation. The Static-Force-Draw (sfd ) curve shows the force exerted by the shaft hand as
function of the distance of the nocking point from the grip orthe back side. This distance
in the fully drawn situation is called the "draw". The drawing force in that situation is
called the "weight" of the bow. Note that bow weight does not prtain to the actual weight
caused by grauvity.

After "aiming", the arrow is loosed or released by stretchig the ngers or the thumb
of the shaft hand, called "loosing". The bow is held in its plee with the bow hand. The
force acting upon the arrow as function of the position of thaocking point arrow is given
by the Dynamic-Force-Draw @fd ) curve. The arrow is guided at the grip by the knuckle
of the index nger or over the thumb of the bow hand or by an "arra rest". The velocity
of the arrow when leaving the string is called the "muzzle vetity" or "initial velocity".
The functioning of a bow and arrow is divided into two parts. he "interior" ballistics
deals with the phenomena until arrow exit. The "exterior" bdlistics deals with the °ight
of the arrow through the air. The arrow, in its °ight, is sloweddown by the "drag" or
resistance of the air.

The bow we described thus far actually is a "bow hand". Besidethe hand bow there
are the "cross bow", for instance the "foot bow", and the "corpound bow". The rather
short bow stave of the cross bow, the "prod", is xed to a crosgave, the "stock". The
relatively short arrow is now called the "bolt", which is guded through a straight groove
in the stock. To span a cross bow, loading mechanics were deped such as the windlass
or the cranequin, by which very powerful bows could be handie In fully drawn situation
the string sticks behind a lock, so the archer aims without e®o The bow is released by
uncoupling the catch mechanism, the prod always held horiatally.

In North America, the rst compound bow was reportedly built n 1938 by a physicist
called Claude Lapp. This bow has pulleys with eccentric baags at the end of the rather
sti® elastic limbs.

We now return to the hand bow and when in the following the wordbow is mentioned
always the hand bow is meant. Already in the braced situatioanergy is stored in the limbs
and to a small extent also in the string. By drawing "additioral energy" is accumulated.
After release part of this latter amount of energy is conveed into kinetic energy of the
arrow.

The classi cation we use is based on the geometrical shape dhd elastic properties of
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Figure 1.3: Non-recurve bow in three situations: (a) unbraced, (b) braed and (c) fully drawn.

the limbs of the bow. In Figure 1.3 we show a "non-recurve" bow unbraced, braced and
fully drawn situation. These bows have contact with the stmg only at their tips. When
the string has contact with the limbs also at other points, wecall the bow "recurved" or
"re°exed" because in that case the limbs of the unbraced bowercurved backwards, this
is by de nition away from the archer. We distinguish betweenwo types of recurved bows,
namely the "static-recurve” bow and the "working-recurve"bow which we discuss now
separately.

In the case of the static-recurve bow, see Figure 1.4, the eumost parts of the limbs
are sti®. These parts are called "ears" or "rigid-end pieces'The elastic part of a limb
between grip and ear is called the "working part of the limb".In the braced situation the
string rests on the "string-bridges”, situated at the bend bthe ears. These string-bridges
are hollowed out sometimes, to receive the string and retaihin its place. This prevents
the string from slipping beside the limb and giving it a fataltwist. When these bows are
about half drawn, the string leaves the string-bridges andds contact with the limbs only
at the tips. After release, at a certain moment before arrowxé. the string touches the
string-bridges again.

In the case of a working-recurve bow the parts near the tips @elastic and bend during
the nal part of the draw. Figure 1.5 shows a working-recurve dv in unbraced, braced
and fully drawn situation. When drawing the bow the length ofcontact between string
and limb gradually decreases until the point where the stripleaves the bow coincides with
the tip of the limb and remains there during the nal part of the draw. After release the
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Figure 1.4: Static-recurve bow in three situations: (a) unbraced. (b) braced and (c) fully drawn.

phenomena happen in reversed order to prevent the possityilof a twist of the limbs in the
case of a working-recurve bow, grooves are present on thelypside of the limbs starting
at the notch and extending suzciently far in the direction of the grip.

We note that bows belonging to each of the three types may bersynetric or more or
less asymmetric. Here symmetry with respect to the horizoak plane through the pivot
point and the nocking point is meant.

1.3 Construction of bows and arrows

In this section we brie°y discuss the structure of bows. We inbduce some classi cations,
but contrary to those given in the former section these are sjpensable with respect to
our mathematical modelling dealt with in a following sectio. The materials employed in
making strings and arrows are touched upon at the end of thigstion.

In principle bows of all three types, non-recurve, staticeacurve and working-recurve,
symmetric or asymmetric, may be "self" bows or "composite” ws. When only one kind
of material is used a bow is called a self bow. Mostly the matal used is wood. Then
the bow is a processed branch or part of the stem of a tree. Thigoe of bow was very
widely distributed over the world. In most parts of Africa, Suth America and Melanesia
it has never been superseded by another kind of bow. These Isaave straight bows, hence
"non-recurve” bows. Also self bows solely made of horn or ofdmze or steel have been
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\ working limb
string \

grip
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Figure 1.5: Working-recurve bow in three situations: (a) unbraced, (b) braced and (c) fully
drawn.

found. In Sweden bows of steel were rst produced in 1935 anddaalso in England.
These self bows were non-recurve or working-recurve bows.

The famous English longbow, also an example of a self bow, engrally made of Yew
(Taxus Baccata). In this case, the relatively soft "sapwoddconstitutes about one-quarter
of the thickness of the limb and it is situated at the back sideThe remaining part of the
limb is formed by sti® "heart wood".

A composite bow is a bow of which the limbs consist of more thame material. Com-
monly there is a skeleton or core which after completion forgsrthe middle part of the limbs
in a cross section. Application of materials on the back sid# the core is called "backing”,
just as the material itself. When materials are applied to tb belly side of the core it is
called "facing". The backing of some bows is formed by corddagied of animal sinews
and lashed to the wooden core at various points along the lirmb This is called a "free
backing" and these bows, non-recurve or static-recurve beywere almost exclusively used
by Eskimos. In the case of "close backing" the layer on the baside is glued to the core.
The Indians in North America sometimes used close backing.t &e tips the limbs were
bent a little backwards, away from the archer, to counteracthe e®ects of a permanent set,
but they still are non-recurve bows by de nition. Another kird of composite bow which
is also a non-recurve bow is the "Angular bow", found in Egypaind Assyria. In braced
situation the limbs of these bows fall straight back forminghe equal sides of an isosceles
triangle of which the string is the basis. Often wood sinew @nhorn were employed in
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making these bows.

In Asia the core of a composite bow was made of wood, its bellige was faced with
horn and its backing consisted of sinew. Its construction sometimes said to parallel the
make-up of living things:

“Just as man is made of four component parts (bone, °esh, aries and blood)
so is the bow made of four component parts. The wood in the bowrcesponds
to the skeleton in man, the horn to the °esh, the sinew to the adries, and the
glue to the blood.’

These bows, generally static-recurve bows, were used by th@ngolian races of Eastern
Asia. They reached their highest development in India, in Rsia and in Turkey.

In the 1960's bows with a wooden core of maple and a backing afiading of glass bres
(more recently carbon bres) imbedded in strong synthetic n were designed. Hence,
these bows, called "laminated bows" are composite bows andeaoften of the working-
recurve type. They possess a long rigid middle section, theddle. These handles are
generally cut-out, so that the arrow can pass it in the vertial "median plane" of the
bow, see Figure 1.6 in which we show a part of a so called "centshot" bow in braced
con guration. Observe that the arrow does not make an exact gie of 90 degrees with the
string in braced situation. The "nocking height" is the distince above the 90 degrees line
from the arrow rest. Further, the pivot point lies below the pint where the arrow passes
the bow over the arrow rest.

"Stabilizers”, a pair of extending metal arms, are often atiched to the handle sec-
tion. When the limbs can be separated from the handle the bovese called "take-down"
bows/indexbow!take-down. In that case the handle often is ade of magnesium alloy, and
is provided with a "pistol-grip".

Many kinds of bows are slightly asymmetric. In the case of s@Asiatic bows the upper
limb, which is somewhat longer than the lower, is called theshooting” limb because it
is said to account for most of the shooting. A striking exampl of an asymmetric bow is
the typical Japanese bow of which the upper limb is almost twe the length of the lower
one. It is constructed of bamboo strips which are glued togetr by means of sh-glue.
The sides are nished o® with strips of hazewood. Today alsagé bre Japanese bows are
available.

Many kinds of bres have been used in making strings. In formeéimes natural bres
were used, animal bres (silk and sinew) and vegetable bresé€mp, linen, cotton and strips
of bamboo or rattan). For a long time the Belgian strings madef long- bered Flemish
°ax were famous. Recently, man-made bres such as dacron and/ke are developed.

There are many di®erent ways of fastening a string to a bow, fexample by knots
or loops. Because woody materials do not lend themselvesilyat tying by knots, such
strings are fastened to the limbs by means of di®erent, more fble bres. The string
of the static-recurve bow in Asia often had separate end-Ips knotted to each end of its
centre part. Actually, the knots rest on the string-bridgesvhen the bow is braced.

We conclude with a short discussion of the materials used ftne arrow. The con-
struction of the arrow changed gradually to adapt it to spe@il purposes. The arrow head
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Figure 1.6: Middle part of modern bow of right-handed archer in braced stuation (a) front view
and (b) side view.

is often a separate piece of material such as stone, bone, diobronze or steel. Many
di®erent forms of heads, barbed or not, are known. In former ylathe shafts were made
of reed, cane or wood, later on of glass bre and today often dfueninum. Sometimes the
shafts were made of two kinds of wood, "footed arrows". the panear the head being the
footing. For °etching feathers of such birds as eagles, crogwgeese and turkeys, have been
used. Today plastic vanes are available.

1.4 Mathematical modelling

In this section we discuss some general aspects of making ahmenatical simulation of
the mechanical performance of the bow and arrow. In the nexivb sections we give a
more detailed account. A number of former mathematical motkedeveloped up to now are
considered in Section 1.5, while in Section 1.6 the model givin this thesis is discussed.
Making a model of the bow and arrow starts with a description fothe process of
propelling the arrow using principles of mechanics. Doindis, assumptions are made in
order to obtain equations which can be solved. Models based fewer simpli cations are
supposed to yield more accurate and detailed results, but d¢ine other hand they certainly
are more dixcult to handle. To which extent the mathematical gproach is useful depends
largely on the grade of validity of the assumptions. A compé&on with experimentally
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obtained results gives insight into this matter.

Up to now all models, our model included, presume the existem of two planes with
respect to which the bow is symmetric. The (vertical) mediamplane intersects the limbs
and string of the braced bow lengthwise, see Figure 1.6. Théher (horizontal) plane is
perpendicular to the rst one and intersects it along the linghrough the pivot point on the
grip and the nocking point on the string. This implies, apartfrom equality of upper and
lower limb, that the bow is centre shot, that the pivot point is on the line of aim, that the
nocking height is zero and that the nocking point coincidesithh the middle of the string.
Further, the limbs, the string and the arrow are assumed to me in the median plane.
This presupposes that the grip is xed in its position and the aow is released without
lateral movement. During the process of acceleration it issaumed that gravitation forces
are negligible.

braced situation full draw
- line of aim erip ‘ I median plane of bow ‘
= = A - M — 1
- arrow string

Figure 1.7: lllustration of archer's paradox (after Klopsteg [6, page 187 ).

In [8] and in articles in [6], Klopsteg gives an explanationfahe so-called "archers
paradox" which is related to a classic non-centre shot bow.nIFigure 1.7 we show the
position of the arrow in two situations, the braced and the flly drawn situation. The
angle between the arrow and the median plane of the bow di®ersthese two positions.
For the fully drawn bow this angle is about 1.5 degrees and irhé braced situation 6
degrees. Hence, if the arrow would be a stave, rigid with resgt to bending and if it
slips along the grip then it deviates about 4.5 degrees frorhé line of aim at the moment
it leaves the string. Rendtor® suggested in 1913 that the dky of bending of the arrow
could be an important property with respect to this. In 1932 Kopsteg photographed a bow
discharging an arrow and found that the arrow "snakes" its waaround the grip Figure 1.8
is after Klopsteg and shows the shape of the arrow at a numbef @nsecutive times. The
shaded circle indicates the position of the cross section thie grip. The arrow performs
about one and a quarter vibrations before it departs from thé&ow. The oscillations take
place approximately about the line of aim and there is no depare of the arrow as a whole
from this line. The oscillations persists for a considerabltime after arrow exit.

These ndings show that the dynamic properties of the arrow nat be correctly matched
to those of the bow. The eigenfrequency of the arrow, dependion its mass and bending
sti®ness distributions, must be adjusted to avoid the hittig of the bow by the rear end
of the arrow. As measure of sti®ness of an arrow the concept itsg' is introduced. This
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Figure 1.8: Schematic representation of the
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phases of the arrow in its passage by the bow,

based on the evidence from speed-°ash photog-
raphy (after Klopsteg [6, page 182]).

is the de°ection of the centre of the shaft, measured in someiyrnwhen a weight is hung
at that point while the arrow is supported at the base of the nck and at the shoulder of
the head. In [6, page 231] Nagler and Rheingans derive mathegially that for any given

bow and archer, the spine of all arrows should be constant,g&rdless of arrow mass.

Photographs revealed that in reality the bow hand has not a & position but moves
after loosing and that the motion of the string is not exactlyin the median plane. Reasons
for this can be found. First, the release of the string over #h nger tips or thumb and
second, the angular acceleration of the arrow out of the medi plane mentioned above
cause some lateral de°ections of the system.

The introduction of lateral movements makes the problem micmore dixcult. Then
the arrow has to be treated like a °exible beam, pushed at the ae end and hampered
with respect to its sideways movement at the grip. Further, we has to know the response
of the body of the archer to the force of the bow exerted on theolw hand.

In Section 4.8, we investigate the in°uence of the freedom ofi¢ grip to move away
from the bow hand of the archer in the direction of shooting, aituation which may occur
when the bow is shot "open-handed". In all other cases the bawassumed to be clamped
at the grip.

Up to now no mathematical model takes internal nor external @mping of limbs and
string into account. In practice the vibrations of the limbsand string after arrow exit
tend to zero rather soon, indicating the existence of dampin Other possibly less serious
assumption are that the arrow passes the grip without friciin and that the arrow is set
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concentrated mass

elastic hinge string

arrow

Figure 1.9: Bow with two linear elastic hinges
and rigid limbs, Hickman's model and Marlow's
model.

loosely on the string, so without "nocking tension".

1.5 Former mathematical models

Starting in 1929 Hickman published on archery from a physitaoint of view. In [5] he
develops an analytical method to determine the dynamic foes, the accelerations and
velocities of the arrow, string and bow limbs. His model, thagh very simple, reveals
already some of the characteristics of the bow and arrow. Heplaces the °exible limbs by
rigid ones, which are connected to the grip by linear elastiinges, see Figure 1.9. The mass
of the rigid limbs is concentrated at the tips where the strig is connected to the limbs.
The place and strength of the elastic hinges and the massesthe tips are determined
using measured quantities of the real bow, so that the essenaf the mechanical behavior
of the limbs of the model and of the limbs of the real bow treatkas slender elastic beams,
for small de’ections be alike. The string is assumed to be irtexsible and its mass is
accounted for by adding one third of it (we call this the addednass) to the mass of the
arrow. After this manipulation the string can be consideredot only inextensible but also
as massless.

Under general conditions all the additional energy storechithe elastic hinges by draw-
ing this bow from braced situation into fully drawn situation is transferred to the arrow
and the added mass which possess both the same speed at armity see also Appendix
of Chapter 3.

After departure of the arrow, in Hickman's model the limbs ad string with the con-
centrated added mass in the middle oscillate around the brad situation. At this stage
the total energy in hinges, limbs and string equals the pot#ial energy in the hinges in
braced situation plus the kinetic energy of the added mass afrow exit.

This simple model shows a characteristic feature of the bowuring the rst part of the
period the arrow is accelerated, the limbs absorb energy asdtic energy. In the nal part,
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however, this energy is transferred by the string to the arm and added mass. Further,
we observe the importance of the lightness of the string, far smaller added mass means
more kinetic energy in the arrow. If the mass of the string werzero, even all additional
energy accumulated in the bow during the draw would be impaet to the arrow.

In his explanatory article on the physics of the bow and arroy8], Klopsteg introduces
the concept of so-called "virtual mass"; "the mass which, it were moving with the speed
of the arrow at the instant the latter leaves the string, woull have precisely the kinetic
energy of the limbs and the string at that moment". He measurkexperimentally that the
virtual mass is in fact a constant for some bow shooting arr@wvith di®erent masses. We
discuss this concept in Section 3.5 and Section 4.9. Klopgttroduces also a " gure of
merit" of a bow, "representing the limiting velocity that the bow could impart to an arrow
with mass approaching to zero". He uses his concepts for theptanation of several facts
well-known to archers.

Schuster in [16] deals with the ballistics of the working-ceirve bow. He made a math-
ematical model assuming the recurved limbs to be a part of arclie which unroll along the
initial tangent, see Figure 1.10 where we show such a bow inriaus situations. The string
is assumed to be inextensible and it possesses a constant snaesr unit of length and the
half parts free from the limbs are straight.

Schuster uses the Lagrangian formalism to obtain the equatis of motion. He considers
a limb having a °exible core of uniform thickness which is samdched between two sheets
of longitudinal bres of an elastic material. As the limb rols out the bres on the inside
of the limb (the back side of the limb) are elongated and thosen the outside (the belly
side) are compressed. In this way he obtains an expressiontlee potential energy in the
limbs. For normalization a point on an experimentakfd curve of a commercially available
working-recurve bow was used.

The equations of motion are integrated numerically by meansf a computer. Schuster
shows plots of thesfd curve and displacement, velocity and acceleration of the raw as
function of time before arrow exit. During these calculatins the string was taken to be
without mass. He also gives an approximation of the amount ehergy which is transferred
to the arrow when the string possesses mass and nds that thetiaa of the string is almost
equal to that of an added mass, i.e. one third of the mass of thpgart of the string being
not in contact with the limbs and connected to the arrow, at tle moment the arrow leaves
the string. He assumes that arrow exit occurs when the string stretched.

In [13] Marlow comments on Schuster's paper. With respect tine distribution of the
energy on the di®erent parts of the bow, he shows that the aaticof the string equals
exactly that of the added mass mentioned above, if the arrovedves the string when the
latter is stretched. However, Marlow argues that arrow exitloes not occur at that moment
but somewhat later.

In [14] Marlow obtains results using a model for a non-recuevbow which resembles
Hickman's. The limbs are replaced by rigid ones, connecteg bnear elastic hinges to the
grip as in Figure 1.9. However, the place and strength of théastic hinges and the amount
of mass at the tips, are determined di®erently. The place oféhhinges is at the end of the
grip where it meets the limbs. The strength is determined usg the measuredsfd curve
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Figure 1.10: Working-recurve bow, Schuster's model.

of the real bow. The mass at the tips are chosen So that the momeof inertia of it with
respect to the place of the hinge equals that of the "frozeninhbs with respect to the same
point.

Marlow replaces the string by two equal rods connected to daother at the place
of the arrow and to the tips of the limbs by hinges. Both rods ar rigid with respect
to bending but elastic in longitudinal direction with a consant mass per unit of length.
His re nement of Hickman's model is this introduction of the Esticity of the string. In
this case it is no longer possible to nd a solution of the equians of motion in closed
form. These equations are obtained by using the Lagrangiaarimalism and their solution
is approximated numerically.

Finally, we mention a mathematical model for the interior bdistics given by Beckho®
in [2] and [1]. In [2] Beckho® deals with statics. He determas the weight of a bow
found in the neighbourhood of Vrees. He uses a linearized be#heory and introduces
parameters for adoptions. His results agree well with experents; the calculated weight
and amount of additional energy di®er slightly from those of geplica. In a footnote in his
paper on a bow found in Nijdam [1] Beckho® suggests a simplethosl to calculate the
part of the additional energy which is transferred to the amw when it leaves the string.
The considerations given in this thesis show that it is not tat easy.

At the end of this section we discuss for the sake of completss also mathematical
models for the exterior ballistics of the arrow. Exterior blistics describes the °ight of the
arrow through the air. In all these models the arrow is treat as a point mass. A very
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simple model is obtained by neglecting the resistance of tlagrow in air. The path of the
arrow is a parabola, depending on the initial velocity and ta angle of elevation, but not
on the mass of the arrow.

Earlier mathematical models of the exterior ballistics wer given by English [3], Higgins
[7] and Rheingans in [6], page 236. Rheingans assumes that tirag varies as velocity
squared. The constant of proportionality, the so-called "chg constant”, is the sum of
three terms. The rst term is proportional to a coexcient depewling on the form of the
head and the diameter of the shaft squared. It accounts for ¢hhead-on resistance. The
second term accounts for the skin friction of the shaft. Thigserm is proportional to length
and diameter of the shaft. The third term re°ects the skin frition of the °etching and is
proportional to the area of both sides of feathers. The threeonstants of proportionality
and the coezcient depending on the form of the head can be deteined by wind tunnel
tests.

Further, Rheingans gives a de nition of the ballistic coexciet which is proportional to
the mass of the arrow and inversely proportional to the dragonstant. Having determined
the ballistic coezxcient, the path of the arrow is found by soling numerically an initial
value problem for a system of two coupled ordinary di®erentiaquations the equations of
motion for the arrow.

1.6 Our mathematical model

The main subject of this thesis is the development of a matheatical model for the interior
ballistics of the bow and arrow. In our model the limb is condered a slender inextensible
elastic beam subjected to large deformations. The string &ble to withstand tensile forces
only in the longitudinal direction. As for the models desched in Section 1.5, it is, because
of the symmetry, su+cient to deal with one half, the upper half of the bow.

In Chapter 2 we deal with the static deformation of all three ypes of bows, non-recurve,
static-recurve and working-recurve. The main objective i® nd the sfd curve. The string
is assumed to be inextensible. The adoptions of the theory tm elastic string, however,
is easy.

From the braced situation to fully drawn situation in each paition of the middle of the
string the limb is de°ected by a force in the string, while the rniddle of the bow is clamped.
The de°ection curve of an elastic beam, especially when largéastic deformations may
occur, is called the "elastica". In each position we have to dhthe elastica as well as the
force in the string. The drawing force can be determined afteards.

In the case of the non-recurve bow, the governing equationsrfeach position form
a system of coupled ordinary di®erential equations with twpeint boundary conditions.
This system consists of two geometric equations and the Bewili-Euler equation, which
states that the change of the curvature with respect to the Unaded situation, at any
point is proportional to the bending moment at that point in the limb. The constant of
proportionality is called the "bending sti®ness" or °exural igidity. The limb is assumed
to be perfectly rigid in shear.
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Basically the same holds for the static-recurve bow. In thease of the working-recurve
bow the part of the limb in contact with the string remains undeformed. The boundary
conditions are now prescribed at the point where the stringeves the limb, while this
point is unknown a priori and has to be calculated as part of # solution. Then we have
a so-called free boundary value problem.

Many articles have been written on related subjects, see Gt [4], who gives a review
of literature and a bibliography on large deformation of beas. In [18] Wang and Watson
solve a problem very similar to ours. Characteristic for pf@ems related to beams subjected
to large displacements is the existence of more than one da@a.

Our numerical approach is the same for the three types of bow#\ simple shooting
method is used, by which the problem is transformed into therpblem of the solution
of two non-linear equations for two unknowns. Attention is pyed to the problem of
“nding starting points for the secant-Newton method which weused for solving these two
equations. If the solution is not unique the developed metldoseems to yield all the possible
relevant solutions (we do not have proof).

In Chapter 3 we deal with the dynamics of the non-recurve bowdbween release of arrow
and its departure from the string. Part of the solution is thedfd curve. In Chapter 3
the string is also assumed to be inextensible and without m&sin that case the governing
eguations are the equations describing the motion of the lbmwhich is considered a slender
inextensible beam. The boundary conditions are xed by the & that the bow is clamped
in the middle and that the arrow assumed to be a mass point, i®onected to the tip by a
string without mass. Woodall in [19] considers a di®erenti@lement of the beam in order
to obtain the governing equations. We use Hamilton's prinple. The rotatory inertia of
the cross section of the limb is neglected and also in the dyna case the Bernoulli-Euler
equation is assumed. The equations form a system of couplezhrinear partial di®erential
equations with two independent variables, one space and otime coordinate, and with
initial and boundary conditions.

A nite-di®erence method is developed to solve the equationsmerically. The values
of the unknown functions in points of a grid covering the parof interest in the plane of
the two independent variables is dealt with. At consecutivéimes a system of non-linear
equations has to be solved. To that end we use a Newtonian meth As starting point the
solutions at former times are extrapolated. At the instant drelease the solution obtained
by the method described in Chapter 2 is used.

No proof of stability and convergence of the nite-di®erencelseme is given. Instead,
we check the accuracy of the results by means of computer expeents, for instance by
bisecting the mesh width of the grid. Also mechanically insged reasoning indicates that
the equations are solved correctly. Further we compare ouplstion with one obtained
by means of a commercially available nite-element method. e velocities of the arrow
predicted by the two methods agree well; the di®erence for dmew and arrow combination
is less than 2%. The dynamic force drawdfd ) curve produced by the nite-element
method agrees roughly with ours but it does show some non-igal oscillations.

In the Section 3.6 we calculate the behaviour of the normalries in the limb at the
instant of release for the case of concentrated masses at thgeof the limb. We show that
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in our model a discontinuity of this force occurs. The nite-é®erence scheme is adapted,
so that this phenomenon cannot generate unrealistic osailions of the solution.

The dynamics of the static-recurve bow is the main subject &hapter 4.

Another subject is again the non-recurve bow, but now with atgng which is elastic,
obeying Hooke's law, and which possesses mass per unit ogten Hooke's law states that
the longitudinal force in the string is proportional to the relative elongation. The constant
of proportionality is called the "strain sti®ness" The equabns of motion for the string were
given by Roos, Schweigman and Timman in [15]. In this case tigeverning equations form
two systems of partial di®erential equations, one convectivspace coordinate along the
limb and another one along the string. These systems are lidk by boundary conditions
at the tip of the bow. Further we consider in Chapter 4 the vibatory motion of bow and
string after the arrow has left the string. Also the in°uence bthe grasp of the grip by
the bow hand is dealt with, as we mentioned in Section 1.4. Bdes clamping the grip by
the bow hand, the bow hand is allowed to be open in which caseetihand can exert only
a force on the bow in the direction of the shooting and the bows iable to move in that
direction.

In all these cases, so for the static-recurve bow as well, theundary conditions change
abruptly when some condition is ful Tled. In the case of the sttic-recurve bow this happens
at the moment the string touches the string-bridges again lb@re arrow exit. For both types
of bows, non-recurve and static-recurve, the boundary cotidns change at the moment
the arrow leaves the string or when the bow departs from the lohand if the bow is shot
open-handed.

The equations are solved numerically using the nite-di®erea method described in
Chapter 3, adapted to the more general problem of Chapter 4n Section 4.13 we check the
“nite-di®erence method again. To that end a vibrating cantileer with a rigid body xed to
the free end is considered. The de’ections remain small, saththe elementary linearized
beam theory applies. The Laplace transform technique is wbké¢o obtain an analytical
solution. This solution is compared with the one produced bgur nite-di®erence method.

Unfortunately lack of time prevents us from dealing in a sutz@ntly accurate way with
the interesting problem of the dynamics of a working-recuev bow and the essentially
asymmetric Japanese bow.

1.7 Units of measurement

We now discuss the units of measurement we use in this thesie start with some remarks
on dimensional analysis.

As far as we know no paper on the mechanics of bow and arrow deaith the technique
of dimensional analysis, although in [12] Langhaar gives application of it to an archery
bow. Some simple results obtained by applying dimensionahaysis are the following.
First, the weight of a bow is approximately (because the stng is in reality slightly exten-
sible) proportional to the bending sti®ness of the limbs. Sewd, the part of the additional
energy stored in the fully drawn bow which is transferred tohte arrow, remains the same
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when all the masses mass of limbs, string and arrow are muligd by the same constant.

Because we have the equations of equilibrium and equatiorfsnootion at our disposal,
dimensional analysis boils down to making these equationgrknsionless. We choose in
the case of statics two (draw and weight) and in the case of dgmics three (draw, weight
and mass of one limb) "fundamental parameters”. The other pameters which determine
the action of the bow and arrow combination together with thfundamental parameters,
appear in the dimensionless equations multiplied or divideby an appropriate combination
of the fundamental parameters. The resulting quantities & called the "dimensionless
parameters”. We de ne the "inherent properties" of a bow and mow combination to be
those which depend only on these parameters.

The selection of the fundamental parameters is not unique. HE motivation to take
draw, weight and mass of one limb is the following. The maxinm draw and weight depend
on the stature of the archer. His "span" determines the maxiom draw and his strength
the maximum weight, so both have physical limitations. In pactice the minimum mass of
one limb has technical limitations. By taking these three pameters as fundamental, we
compare automatically bows with the same draw, weight and nsa of one limb with each
other when we deal with the dimensionless equations of matio

As units of measurement for the length, force and mass we use, &g force and kg mass,
respectively. From this it follows that the unit of time the sscond is used, thus the velocity
in cm/sec, acceleration in cm/set, and so on. We apologize for this complication.

In literature forces, for example the weight, are usually gen in pounds (1 pound=0.14536
kg force); lengths, for example the draw, in inches (1 inch=214 cm); masses, for example
the mass of the bow, in pounds avoirdupois (1 pound=0.14536@ knass) but mass of the
arrow often in grains (1 grain=0.00006148 kg mass).

1.8 \Variety in archery

In this section we give a short enumeration of the varietiesviarchery. The purpose for
which the bow is used has to be considered in the judgment ofettperformance of a bow.
The performance will be the subject of the next section in wbih we de ne coezxcients
which give information about the quality of a bow.

Already old cave paintings in Spain, France and parts of Afta show hunting scenes.
These make dear that the bow held an important place with the unters in prehistoric
times. In our time hunting with bow and arrow as pastime is poplar in some parts of
North America.

In history many world empires were founded and maintained fasome time owing to
the superior performance of their bows and the skilled use o of them by the archers
(English yeoman) or horseman (Asiatic nomadic hordes). Inhe 18" century the bow
disappeared from the battle elds in the "civilized" world. On the Continent of Europe
the hand bow was already superseded for the most part by theosss bow (Genoese and
Swiss mercenary cross bowmen). The cross bow is a powerfuhpen which demands less
training and skill, but is also much slower in operation. It vas prohibited by Pope Innocent
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II'in 1139, as being: "deathly and hateful to God and un't to be sed among Christians".

For hunting and warfare good penetration capacity of the aow is required. As men-
tioned in the preface we do not deal with the mechanics of theepetration of the projectile
into the target. It is evident that it depends on the shape oflhe head of the arrow and the
material of the target. A large kinetic energy of the arrow athe moment of impact and
perhaps also a large linear momentum are indispensable. T¥eocity of the arrow has to
be not too small in order to get a °at trajectory of the arrow.

Foot soldiers and hunters in open spaces can use rather longws, for example about
the height of the archer. On the other hand, a hunter in a woodkarea and a mounted
archer are unable to handle a long bow easily.

As has been said already nowadays archery has a certain imjaoice as a pastime. We
distinguish between three types of pastime archery, whichrqceed from the archery used
for hunting or for military practice

In the rst type of pastime archery the archer tries to hit somekind of mark. By the
17" century in England, shooting was done at "rovers" or at "cloti. Roving consists
of shooting at marks unknown beforehand, the winner of eachght selecting the next
mark. The clout is a small white target on the ground shot at 'om a known, rather large
distance. These two forms have now changed into eld archeryéd target archery. There
is a large variety in eld archery, by which the archers proceeround a course shooting at
di®erent distances and at di®erent marks. In the case of targdtooting arrows are shot at
faces divided into a number of zones and at di®erent but knowrsthnces. In this form it
became very popular at rst in England and later also in North Anerica. Target archery
events were included in the Olympic Games of 1900, 1904, 120&] 1920 and again since
1972. It is now the most popular form, practiced in many counies all over the world.

In England the famous longbow, which contributed to its vicbries in the Middle Ages,
was used. Later, when archery became popular in America, tlinglish example was fol-
lowed with respect to equipment (use of longbow), competi# events, and so on. Nowa-
days, the laminated, centre-shot, take-down bow with stalizers is almost solely seen on
shooting meetings.

Popinjay is also an old form of shooting at marks. It consistsf shooting down feathered
"birds" from a tall mast. For instance in some parts of EuropeFrance, Belgium, Holland
and Northern Germany, it was very popular. In Belgium it is sill a public game. The cross
bow has been used for Popinjay shooting, but also the same &iof bows as for target
shooting.

For forms of archery belonging to this type, accuracy is mostnportant. With respect
to mathematical modelling this is a feature ditcult to handle Each shot di®ers from
the proceeding one because the loose or the movement of thevkeom may vary, this in
contrast with the use of a perfect shooting machine. Howevegven in that case not every
shot is exactly the same. For example, when six arrows are sliloe mass of these arrows
may di®er slightly or the weather conditions may change. Heagc rst all the parameters
which determine the action of a bow and arrow combination havto be as constant as
possible and second the action of the bow must not exaggeratmall di®erences in these
parameters. Some of the parameters are already xed by the bysvs (manufacturers of
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bows and arrows) for instance the mechanical properties dfed material of the limbs. Other
parameters are determined by the archer himself, such as theight of the arrow or the
brace height.

The second type of pastime archery is °ight shooting. The pugse of °ight shooting
is to shoot an arrow as far as possible. The Turkish bowmen lz@ce famous because of
their skill in °ight shooting. Turkish archery reached the zaith of its achievement in the
15" century and had a revival as a sport in the 19 century.

For °ight shooting a very short, recurved composite bow (whit were powerful) were
used. The arrows were very light and often shorter than the dw, so that a so-called
"siper" had to be used to guide the arrow along the grip. Todajaminated bows are used
for °ight shooting.

In this case it is easy to judge the performance of a bow. For,itlv respect to the
interior ballistics, the muzzle velocity is very importantand has to be as large as possible.

Finally there is ceremonial target archery, by which hittirg the target is secondary but
unity of mind, body and bow is most important. For this form the Japanese use their
typical asymmetric bow.

1.9 Quality coexcients

In this section we discuss some quality coexcients, which amg&roduced in order to com-
pare the mechanical performance of bows more easily. Thessezcients are numbers
associated with quantities of which the importance dependm the elds of application of
the bow. The quality coezcients will be dimensionless and armrmed by means of the
dimensionless parameters. They measure in this way the imbat performance of a bow.

With respect to statics we introduce the "static quality coecient” q, being the dimen-
sionless amount of additional energy, which equals the aréalow the sfd curve. In the
case of real bows, the bow returns to its braced shape afteichahot, as a result of internal
and external damping. Then, using energy conservation, thmaximum available energy
which can be imparted to the arrow equals the additional engy and is accumulated in the
bow while drawing it from braced situation into fully drawn stuation. In Section 4.5 we
show that this is also true when damping is neglected and theoty is clamped in the middle
or shot open-handed. Some °ight shooters loose with a trust tife bow hand against the
grip. If this is accompanied with a move in the direction of te shooting then the during
this action supplied energy can be transferred to the arronwogether with the additional
energy.

In practice only a part of the additional energy is transfered to the arrow. The kinetic
energy of the arrow at arrow exit equals the area below théfd curve. The "exciency"
", our second quality coezxcient, is de ned as this kinetic eneygdivided by the additional
energy.

The third quality coezxcient is the muzzle velocity® made dimensionless in the manner
we described in Section 1.7.

The amount of kinetic energy and linear momentum of the arrowhen leaving the
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string can be calculated easily using the quality coexcients The kinetic energy is the
product of the static quality coexcient and the exciency and the linear momentum is this
amount of kinetic energy divided by half the muzzle velocity

The in°uence of the dimensionless parameters can be determihjust by changing each
parameter separately. Such an investigation delivers whigparameters are most signi cant.
The smoothness of action may be important with respect to thenagni cation of di®erences
in handling of the bow. The behaviour of the acceleration foe acting upon the arrow and
the so-called "recoil force", as function of time are salieéfactors which determine whether
the bow is a so-called sweet bow or not. The recoil force, whics felt by the archer, is
the force exerted by the bow on the bow hand. Sometimes the wlotkick" is used when
a jerk is felt after release of the arrow.

Finally the three fundamental parameters, discussed in Semn 1.7, namely draw,
weight and mass of one limb are of course important. Men strgrenough to pull heavy
bows, or tall men with long arms, or those who have materialsithi excellent mechani-
cal properties at their disposal and know how to use them in rkang a bow, are always
favoured.

Note that when the strength of materials of limbs and strings taken into account,
the maximum occurring bending moments in the limbs and maxiom tensile force in the
string have to be kept within certain bounds. In Section 4.8 & brie°y deal with these
guantities.

In our theoretical approach the performance (static qualt coexcient, exciency, muz-
zle velocity, smoothness of action) is considered as a fuioct de ned on the space spanned
by the parameters of the bow. We divided the set of parameteiato two groups, the
fundamental parameters and the dimensionless parameterd’he dimensionless quality
coezxcients depend only on the dimensionless parameters. Regentations of di®erent
existing types of bows form clusters in the dimensionless rpaneter space. This space is
in nitely dimensional, because some of these parameters do@actions of the length coordi-
nate along the limb, for example the mass distribution. If tese functions are approximated
by polynomials or splines of some nite degree, which has to te#ge enough in order to get
reasonable approximations, the dimensionless paramet@ase becomes nite dimensional.

1.10 Comparison of di®erent mathematical models

In this section we compare the di®erent mathematical modelsemtioned in Sections 1.5
and 1.6. To that end we use results of our calculations on basif these di®erent models,
about the mechanical action of a speci ¢ bow given by Hickmami[8], referred to as H
bow.

In Section 2.5 we determine the static performance of the H Wwdoy means of Hickman's
model and by means of our model. Thefd curves look very similar, the di®erence in
the calculated weights is less than 3%, the static quality excients di®er less than 2%.
In Section 3.5 we deal with the dynamic performance of the H hoprovided with an
inextensible string without mass. The ezxciency of this bow daulated with Hickman's
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model is 100%, our model yields 89%.

In Section 1.5 the same bow but now with an elastic string witlmass, referred to as
H bow, is considered. Marlow's model predicts a weight of thibow about 25% smaller
than our model. His static quality coexcient is almost 5% largr. The e+ciency of the H
bow using Marlow's model equals 74% and using our model 81%hig results in a small
di®erence in the calculated dimensionless muzzle veloatieThe dfd curve, calculated
using Marlow's model shows heavy oscillations of the acaelton force acting upon the
arrow.

These results show that Hickman's model, being very simplgjves rather good pre-
dictions for the static performance of the H bow. Observe thdor other bows it may be
not this good, because he adapted his model to some of the @mweristics of the H bow.
Marlow's model does not seem to be an improvement of Hickman'although his model
for the string is more realistic. For, the combination of rigd limbs rotating about elastic
hinges and an elastic string gives unreliable results and ngalistic heavy oscillations in the
dfd curve.

Observe that we do not discuss the results of Schuster's mofiE5], because we are not
able to deal accurately enough with the dynamic performanad the working-recurve bow.

As mentioned in Section 1.4, in all models, including our med the lateral movements
of bow, string and arrow are neglected Unfortunately, theseotions seem to be an impor-
tant factor with respect to the utility of the bow for shooting at marks, where accuracy
is indispensable. Hence, one cannot expect to get an overngiltture of the performance
of a bow used for target shooting. For instance, the in°uence the mass of the grip and
of the stabilizers on the lateral movements and the twistingf the bow round the vertical
axis, called "torque”, is beyond our scope. The same holdg fibe in°uence of the nocking
height (Figure 1.6).

For °ight shooting these small random movements have almostonin®uence on the
range of the arrow. For hunting and in the old times warfare,hese lateral movements are
of some importance.

Finally a remark on the validity of the use of the Bernoulli-Riler equation. Many
text books on strength of materials, e.g. Timoshenko [17]hew how the bending sti®ness
depends on the shape and the dimensions of the cross sectiod the physical properties
of the materials and discuss the presumptions which are madé/e note that, especially in
the case of the ancient composite bow, the assumption thatehBernoulli-Euler equation
holds, may lead to inaccuracies. With respect to a simple bawade of wood the ditculty
arises that wood is a rather incalculable material, see Kallann et al. [9, 10]. Also for the
physical properties of the material of the string, the apptiation of Hooke's law can be said
to be questionable.
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1.11 Comparison of the mechanical performance of
di®erent types of bows

In this nal section of the introduction we discuss the perfanance of di®erent types of
bows. We use the quality coexcients given in Section 1.9, keeg in mind the remarks
given in the last paragraphs of Section 1.10.

In order to gain insight into the in°uence of a change of the pameters on the action of
the bow, we change these parameters separately one by onartgtg with one bow of each
type. In what follows we mention only those in°uences of paraaters which are striking.

In Sections 2.5 and 3.5 we start with a non-recurve bow, desmed by Hickman in [8]
which we called the H bow. The static performance depends stigly on the brace height
and length of the bow. As expected, it becomes less good foraagker brace height and a
shorter bow. Short straight bows have a tendency to "stack".This is the property of a
bow to be drawn easily for a large part of the draw length and tbuild up to full weight
rapidly as the string comes to full draw. Stacking goes hana ihand with a small static
quality coexcient. On the other hand a short bow possesses adar exciency but when
the bow becomes too short, the arrow leaves the string befalee string is stretched. A
longer bow has a more smooth action by which the string keepsgaod contact with the
arrow.

With respect to dynamics, the mass of the arrow is most impaant. A light arrow
yields a small exciency but also a larger muzzle velocity. Ihie arrow is too light, however,
the arrow leaves the string before the string becomes tautoSin practice there is a lower
bound for the mass of the arrow.

The e®ect of concentrated masses at the tips appeared to be ligdigle with respect
to the mentioned two dynamic quality coexcients, namely exciacy and muzzle velocity.
Obviously, as in Hickman's model, the absorbed energy in tbe masses is recovered before
the arrow leaves the string.

In Section 4.7 we deal with the in°uence of the strain sti®nessi@ mass of the string.
From the point of view of statics the in°uence of the elasticit of the string is small. As
to dynamics if the number of strands changes (mass is abouteltly and strain sti®ness
about inversely proportional to number of strands), there @ two e®ects which counteract
each other. More strands mean a heavier string and therefosesmaller etciency, but it
also means a sti®er string and hence a larger exciency.

We repeat in Section 4.9 the above mentioned changes of paetsers, but now for a
bow called the KL bow, which resembles a bow described by Kktpg in [6]. It di®ers
from the H bow because its limbs possess more mass per unitesfgth near the tip and
the string is extensible and possesses mass. So this bow isenwealistic. Further we deal
in that section with the vibratory motion of limbs and string after arrow exit.

Roughly speaking the in°uence of the change of parameters tbe KL bow is the same
as in the case of the H bow. In Figure 1.11 we show the static ditya coe+cient q of the
KL bow as function of the dimensionless half length of the bow and in Figure 1.12 the
exciency = and muzzle velocity® as function of the dimensionless half mags, of the
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Figure 1.11: Static quality coexcient q as function of the dimensionless half bow length_ for
di®erent types of bows. Solid line: straight bow KL, dashed he: static-recurve bow PE and
dotted line: angular bow AN.

arrow. Concentrated masses at the tips or heavier limbs netire tips in combination with
an elastic string, appear to be disadvantageous now. Furtheor small brace heights the
string slaps against the grip after arrow exit. This means tht a minimum brace height has
to be used. Archers often wear a "bracer" on the bow arm to prett this arm from the
blow of the string. In many cases, for instance when the bow $iao grip, the force in the
string becomes negative after arrow exit. At that moment thestring becomes slack. When
the string suddenly is stretched again, it is possible that &ick is felt by the archer. At
the end of Section 4.9 we discuss the angular bow denoted by ANw. The static quality
coexcient of this bow, especially when it is short, is much badr than that of the straight
KL bow of the same length, see Figure 1.11. Unfortunately thetciency of the angular
bow is worse, still the muzzle velocity is better than that othe corresponding straight KL
bow when both are not too long.

The static-recurve bow is the subject of Section 4.11. Stamg with a bow, referred to
as PE bow which resembles the old Asiatic bow depicted in mamooks and articles, we
change the parameters as we did for the KL bow. The introduan of rigid ears produces
a larger static quality coexcient, see Figure 1.11. The ezciay, however, is worse than
that of the straight KL bow, having the same length, see Figw 1.12. This is largely due
to heavy ears. We stated already that concentrated massesthe tip in combination with
an elastic string are disadvantageous. Théfd curve of the PE bow oscillates severely, so
it seems to be an unpleasant bow to shoot with.

The in°uence of the change of all parameters look the same a®fie in the case of the
KL bow. For instance; a light arrow implies a large muzzle vetity.
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Figure 1.12: Etciency ~ and muzzle velocity © as function of dimensionless half massn, of
arrow. Solid line: straight bow KL, dashed line: static-recurve bow PE.

To sum up the results, we notice that the dimensionless muezlhelocities of all the
bows we have considered, keeping the mass of the arrow constdi®er relatively little.
The values lie between 1.72 and 2.06. The in°uence of a chandeh® mass of the arrow
is almost the same for the di®erent types. The short angular Wwoand static-recurve bow
do not have a better inherent performance than the long strght KL bow.

So far the dimensionless parameters. The discussion of thacge of the fundamental
parameters is the same for both types of bows, non-recurvedastatic-recurve ones. In
Section 4.12 we deal with this subject. As already mentionegbection 1.7 of this intro-
duction) the draw and weight have physical limitations and he mass of one limb has a
technical limitation. This means that at this place the mechnical properties appear on
the stage. These properties determine the maximum amount ehergy that can be stored
in the limbs and string of the bow.

In order to get an insight into this we consider in Section 42l a number of bows
described in literature, of which the draw, weight, mass othe arrow and sometimes mass
of the bow are given. These data indicate that more energy penit of mass of the limb can
be stored in the ancient Asiatic composite bow than in simpooden bow. However, much
of this energy is already stored in the bow in the braced sittian, and this energy is not
available for the shooting. Nevertheless, the main reasaoorfthe fact that the short Asiatic
static-recurve bow had a good performance, is that exceltematerials have deliberately
been put to use. As we mentioned already, the dimensionlessizale velocity and therefore
also the kinetic energy, of the short static-recurve bow iseasonable in contrast with this
guantity for a short straight bow. The shortness of these bosvmade them suitable for the
use on horseback.
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Concerning the performance of the working-recurve bow, weea in Section 4.5 with
the statics of a modern recurve bow and of a bow with an excessirecurve. The static
guality coezcient of the rst mentioned bow, used for target sboting is rather small.
Obviously, for shooting at marks less importance is attacketo the static performance.
Data of mechanical properties of the materials used for moehebows indicate that a large
amount of energy per unit of mass can be stored in these bows.

The other bow dealt with in Section 4.5 resembles a bow devpkx by Hickman [6,
page 50]. The limbs are semicircles, curving away from thecher when at rest, resembling
a gure 3. Thesfd curve of this bow even decreases over some interval, just aghe case
of the compound bow. In 1948 Hickman shot at a °ight shooting ne¢ing further than
many who were using bows twice as strong! This information sWs that the dynamics of
a working-recurve bow is an interesting subject for futureasearch.
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Chapter 2

On the static deformation of the bow 1

2.1 Summary

The storage of deformation energy in a bow with or without ragve is considered. Some
numerical examples are discussed. For a simple bow it is simiilvat theoretically a shooting
exciency of hundred percent is possible.

2.2 Introduction

The bow and arrow have been invented by mankind already in gnéstoric times. During
many millineries it was its most e®ective long range weapondhunting device. Nowadays
it is used in archery, a sport practiced by many people all owehe world.

A bow can store energy as deformation energy in its elasticras or limbs. Its special
feature is that this energy, delivered by the relatively sl human body, can be quickly
released to a light arrow in a very e®ective way. Probably essial for the e®ectiveness of
the transformation of the deformation energy into kinetic rergy of the arrow is the string,
as light and inextensible as possible, which couples bow aadow.

The main object of this paper is to discuss the statics of thedw. It will be represented
by an in nitely thin elastic line endowed with bending sti®nes, which is a function of a
length parameter along this line. In the unbraced situationwhich is the situation of the
bow without string, the elastic line can be curved in the "oppsite" direction. It turns
out that this curvature called recurve is important with repect to the way in which the
deformation energy can be stored. When drawing a bow, in geakthe force exerted by
the archer on the string, will increase. So in order to keep aotv in fully drawn position,
the maximum force, called the weight of the bow must be exedeby the archer while he
aims at the target. Hence one of the objectives for more rekeck shooting is that this force
is not too large while still a suxcient amount of deformation aergy is stored in the bow. A
properly chosen recurve is one of the possibilities to actsethis. It will be shown that by

1B.W. Kooi and J.A. Sparenberg, On the static deformation of abow Journal of Engineering Mathe-
matics 14(1):27-45 (1980)
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such a recurve it even is possible that the drawing force caectease in the neighbourhood
of maximum draw. Such a phenomenon is well known in the nonéar theory of elasticity.

We will not discuss here the "compound” bow, invented about t years ago by a
physicist named Claude Lapp [2]. This bow uses, in order to ese the just mentioned
e®ect of the decreasing drawing force, pulley's with ecceantbearings at the end of the
elastic limbs.

Much research has been carried out already on the bow and amo For a general
background we refer to the article of Klopsteg [6], where mgraspects of bow and arrow
are thoroughly discussed from a physical point of view. Othgapers are for instance [5]
and [8] where by making simplifying assumptions, calculams of the stored energy have
been carried out. In this paper we use the theory of elasticaitiv large deformations as
discussed for instance by Frisch-Fay [4]. Because nowadaysnputers are available the
non linear deformation of our model can be calculated withédurther simpli cation It
turns out that it can happen, al be it for not too realistic bows, that there is more than
one solution to the problem.

In calculating properties of bows it is the intention to obtan an insight in what makes
a bow a good bow, in this paper from the static point of view oyl Besides by a number
of parameters, length of the bow, ultimate drawing force andome others, the static
behaviour of a bow is determined by two functions namely itshepe without string, and
its distribution of bending sti®ness. These functions haveotbe chosen in one way or
another. This means that there is a large measure of freedonhieh is not so easy to
catalogue. It is not the aim of this paper to give a full accounof possibilities however in
the section on numerical results some trends are shown. Ina@léwing paper we hope to
return to this subject in a more exhaustive way. We remark thiawhen the dynamics of a
bow is considered even a third function, the mass distribugh, comes into play.

We have also applied our theory to two ancient bows. One is arsiatic bow of the 14"
century and is described in [7]. The other one is much older @ns possibly constructed
8§ 3500 years ago [3].

It must be remarked that in general it is not possible that allthe deformation energy
stored statically in the bow can be transferred, during the yhamic process of shooting, as
kinetic energy to the arrow. This depends on the way in whichhe kinetic energy of the
arms or limbs can be recovered. It is shown in the Appendix 2.6or a simple model of
a bow, when the mass of the string can be neglected and whenstinextensible, that all
the deformation energy stored in this bow can be transformedto kinetic energy of the
arrow. Hence, no kinetic energy is left behind in the arms.

2.3 Formulation of the problem

We will consider bows which are symmetric or nearly symmetriwith respect to some line,
in the latter case we treat them approximately as being symnéc. The bow is placed in
a Cartesian coordinate systemx;y), the line of symmetry coincides with thex axis. Its
midpoint coincides with the origin O. The upper half is drawn in Figure 2.1. We assume
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Figure 2.1: Three situations of the working-recurve bow: a) unbraced, B braced, c) partly
drawn.

the bow to be inextensible and of total length B. In our theory it will be represented by
an elastic line of zero thickness, along which we have a lehgioordinates, measured from
O hence 00 s- L. This elastic line is endowed with bending sti®ned4 (3).

In Figure 2.1.a the unbraced situation (without string) is dawn. The geometry of the
bow is described by the local angley(S) between the elastic line and they axis, where
o(S) is a given function ofs. Because the bow possesses recurve it is predominantly @av
to the left.

In Figure 2.1.b the bow is braced by applying a string of totalength 2(I < L), which
also is assumed to be inextensible. In the braced position farce in the X direction is
exerted on the string which intersects th& axis under an angle of 90 It is possible for a
bow with recurve as is drawn in Figure 2.1 that a valus = S5, < L exists such that for
values ofs with 5, - S - L the string lies along the bow. We assume that in that case
there is no friction between bow and string. The string as = S,, has to be tangent to the
bow of which the curvature fors, - S- L is the same as the curvature in the unbraced
situation. However, it is also possible that for a bow with Igs or without recurve, the
string starts from the tip, then s,, = L and the string can make a non zero angle with the
tangent to the bow at the tip (Figure 2.4). Instead of the lenth of the string the brace
height or ""stmele” jOHj can be used as a basic quantity of the braced position.

In Figure 2.1.c the bow is pulled by forcd (b) into a partly drawn position where the
middle of the string has thex-coordinateb. Also in this situation the string can still lie
partly along the bow for values ofs with 5,(b) - 5- L and the same considerations hold
as were given for the region of contact in the braced situatio To each bow belongs a
value b= jODj for which it is called fully drawn. The forceF (jOD)) is called the "weight"
of the bow and the distancgODj is its "draw".

In our theory we have to consider only the upper half of the bawlamped atO. The
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Bernoulli-Euler equation, which we assume to be valid for #helastic line, reads

idy  dp¢ =
& g 0 s L (2.1)

Besides (2.1x) we have two geometric equations

M(s) = W(s)

y _ e S o
dg—cosu, dg—smp,o S- L: (2.2)
The momentM (s) is caused by the tension forc& (b) in the string, we nd
_ . e ¢
M (3) = K(Bh(3) = K () bcos®; X(3)cos®| ¥(3)sin® : 0- 5- 5  (2.3)

where h(s) (Figure 2.1.c) is the length of the perpendicular from the pint (X;y) to the
string and ®(b) is the angle between the string and thg axis, reckoned positive in the
indicated direction. There are three boundary conditionstas = 0, namely

H(0) = (0) ; X(0) = y(0) =0 : (2.4)

Besides we have a geometrical condition with respect to thength of the string. In our
model the thickness of the elastic line is assumed to be zerenke the length of the parts
of bow and string which are in contact with each other are eqliand we nd

i ¢ i ¢ i ¢
"B X(S) “+ VS C= T (LS (2.5)

When bis prescribed the equations (2.1), (2.2) and (2.3) togethevith the conditions
(2.4) and (2.5) are suzxcient to determine the situation of thebow hence also the unknown
functions p(s); X(3); y(s) and M (s) and the unknown constantss,, (b); K (b) and &(b).

It is clear that

MGB5)=0;5,- 5- L; (2.6)

hence it follows from (2.1) that for the region of contact oftsing and bow, the bow has
kept its curvature of the unbraced situation as has been mdohed previously. Thus

i ¢
H(S) = to(S)+ M(Swi Ho(Sw) ;Sw- S- L: (2.7)
We want to calculate the forceF (b) (Figure 2.1.c) from which follows the energyA

stored in the bow when it is brought from the braced positiorb = jOH] into the fully
drawn position b= jODj. We have

A=  F(pdb: (2.8)
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This amount of energy must be equal to the di®erence betweeretdeformation energy of
the bow in the fully drawn position and the deformation energ in the braced position.
Hence we have another representation &f

A= W(§) "Asi ) % 45 B0 .

b=jOHj ’ (29)
0
which can be used to check the computations.
We now introduce dimensionless quantities by
(% y:5;L 1) = (xy;s;L;1) jODj ; M = M jODjF (jODj) ; K = K F(jODj) ;
W = W jODj’F (jODj) ; A = A jODjF (jODj) : (2.10)

In (2.10) we have used the still unknown forcg (jODj) to obtain dimensionless quantities,
however, this sometimes makes it more simple to compare numcal results for several
types of bows.

Also we introduce the angle

"= Hi b (2.11)
then after combining (2.1) and (2.3) the relevant equationsecome
d i ¢
WE: K (bj x)cos®; ysin® ; 0- s- s, ; (2.12)
"(s)="(sw)isw- s L; (2.13)
d— =sin(" + po) _y os(" +);0- s- L; (2.14)
ds ds ¢2 : ¢,
'bi X(Sw) Y(Sw) li L+sy " ; (2.15)
"(0)=x(0)=y(0)=0: (2.16)

In the next section a method to solve these equations is dissed.

2.4 Numerical solution of the equation of equilibrium

In this section we consider some aspects of the numerical imetl used to solve the equations
(2.12)¢ ¢@.16). We take forba xed value

JOJ

2.17
[OD] (2.17)

When b passes through this range the bow changes from its braced pios to its fully
drawn position. First we assume the bow to be partly or fully tchwn hence not to be in
the braced position. The length 2 of the string is prescribed.
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Figure 2.2: The bow de°ected by a forceK,
> X making an angle ® with the y axis, at the arm
AB.

The unknown forceK exerted on the bow by the string passes through the poinb(0)
and makes an unknown angl® with the y-axis. We make some choick and ® for the
values of K and ®, and solve the equations (2.12) and (2.14) starting a& = 0 where
we satisfy the initial conditions (2.16). We assume the futions W(s) and (s) to be
continuous andW (s) , 2> 0. Then it is not dixcult to show that the solution exists and
is unique. A Runge-Kutta method is used to obtain this solutin.

There are two possibilities which can occur. First, when ctinuing the solution of
(2.12) and (2.14) for a suitable choice ok and ® we reach a pointA with a value of
s=-s, <L for which

"(5w) = i ®i Lo(sw) (2.18)

in words, a value ofs for which the tangent at the bow is parallel with the chosen dection
® of the forceK'. After this the undeformed part AT (Figure 2.2), is added to complete
the "bow" hence

"(S)= i ® W(Sw); Sw- s+ L: (2.19)

Second, there is n@z< L that satis es (2.18), the solution is continued untils = L, then
the point A coincides with the tip T of the bow.

So, we have found a de°ected positio®AT of the bow which in fact is caused by
connecting to the bow, ats = s,, in the rst case or ats = L in the second one, a rigid
bar AB perpendicular to the direction®; at the end of which acts the forc&K'. This is
illustrated in Figure 2.2 for the rst case.

The force K and the angle®-have to be determined such thajA j Bj = 0 and the
"distance" between the point (;0) and the tip T, measured fromA to T along the bow
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equalsl. These two conditions are written as
' ¢
fo(K: ® L 'x(s4) i b cosB+ y(sy)Sin@ =0 : (2.20)

and

fo(K; ® € y(su)i (17 L+8)cos®=0; (2.21)
respectively. The problem is now to solve numerically thes@o non-linear equations with
respect tokK and ®.

For the solution of (2.20) and (2.21) a Newtonian method is dsen. Starting points in
the ®; K plane for this method have to be close enough to a zero pointlodth f, and f,
to ensure convergence. To obtain starting points we could mopute the values off ; and
f, in all nodal points of a grid placed over a suitable chosen rieg G of the (®; K) plane,
where the zero's are expected. This, however, would be rathiéne consuming.

Another method is developed, in which we move step by step fmistance along the line
f,(®; K) = 0. After each step we check for a change of sign of(®; K). Such a change of
sign gives an approximation of a zero of both; and f,. This procedure has been realized
as follows.

For a given valueb we take ® "too small" for instance ® = 0 and using a properly
chosen step size we increase, starting at K = 0 and keepa = 0. Hence we move along
the boundary of the regionG, which is a rectangle as drawn in Figure 2.3. Calculating the
values off, along this boundary a zero of , can be located approximately by its change
of sign in between two succeeding grid points. In Figure 2.3is point is in betweenP
and Q. By linear interpolation a better approximation (® = 0;K,) for the zero off, is
found andf 1(®;; K ;) is calculated. Now the values of , at R and S are calculated. When
there is a change of sign betwee@ and R, R and S or S and P we know through which
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side the linef ,=0 leaves the rectangle® QRS. A linear interpolation again gives a better
approximation (®;; K,) for a zero off , and f ;(®,; K») is calculated. Whenf ,(®;; K ;) and

f1(®; K,) have di®erent signs these points are chosen as starting geifor the Newtonian

method. When there is no change in sign éf we have to start with the adjacent rectangle,
of which one side contains the last found approximation for aero off,. This procedure
is repeated until we reach the boundary of regios again.

It is assumed that the functionsf, and f, behave suzciently smooth with respect to
the size of the grid placed at the regios. This causes no trouble in practice.

In this way possibly a number of zero's of the equations (2.2&nd (2.21) can be found.
Each of these correspond to an equilibrium situation of thedw, while the midpoint of the
string has the coordinates I§;0). Not all of these equilibrium situations need to be stable

We now discuss the braced position which corresponds o= jOHjjODji ! in (2.17).
This value of b called the brace height or stmele, is a basic quantity for thedjustment
of a bow. We know that® = 0 hence we use only equation (2.20) in order to determine
the unknown forceK . This is done by increasingK stepwise from zero and checking for
a change in sign off;. By iteration K can be determined suzciently accurate. Then
equation (2.21) gives us the half length of the string.

The braced position of the bow can also be determined by pre&ing the half length |
of the string. Then equations (2.20) and (2.21) can be consiced as equations for the two
unknownsb and K, again®= 0. A procedure analogous to the one prescribed in the rst
part of this section can be used to satisfy both (2.20) and (21). Small changes however
in the length 2 of the string can cause rather large variations of the stmelb. Because
this is in general the more important quantity, the rst method to calculate the braced
position of the bow is recommended.

To check our program we have compared solutions obtained kywith solutions ob-
tained by other methods. We can take the bending sti®ne8¥ constant and the bow
straight in unbraced situation, (S) ©~ 0. For given values ofl and b our program yields
the values ofK and ® Now we can use the theory of the largely de°ected cantilever
described in [4] to compute the strain energy, due to bendintpused by the force de ned
by K and ®. The elliptic integrals needed for this computation are olgined by linear
interpolation of values in the tables given in [1]. The restg agreed very well and di®ered
only by an amount of 0.1%.

Another check has been made by using, in the case of a bow withoecurve the nite
element programmarc of the marc Analysis Research Corporation. Also these results
agreed with ours, a comparison of the drawing forck (b) showed discrepancies of only
0.5%.

2.5 Some numerical results

As we mentioned already, it is important for a bow to possess sutcient amount of
deformation energy at full draw, kept in check by a not too lage ultimate force or weight.
The measure in which the bow meets this demand can be descdlde a certain extent by
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a dimensionless numbeg, called the static quality coexcient. Suppose we have an amou
of deformation energyA in the bow in the situation of full draw b= jODj and the force is
F, then

A

q= =————— = (2.22)
F(jODj)jODj

where the second equality follows from (2.10). The dimensiess deformation energyA
depends on a number of parameters and functions,

g= A(L;W(S); o(s);JOHj or I); 0- s- L: (2.23)

This number q is also a measure for the concavity of the functiokR = F(b). When we
compare two bows with the same value gDDj, one with a largerq then the other, the
“rst bow is from the static point of view the best because it carstore more deformation
energy "per unit of weight". Sometimes another de nition ofg is given by replacingjODj

in (2.22) by jOHj. Then however wherjOHj is changed the just mentioned property is no
longer valid. It is clear that g can not give a decisive answer to questions about shooting
exciency. In the case of a real bow the length®OHj and jODj have to be measured from
a reasonably chosen elastic line representing the bow, toetimidpoint of the string.

One of our objectives is to get insight into the dependency gfon the quantities denoted
in (2.23). To this end we start with the bow described in [5] ath change in a more or less
systematic way its parameters and functions.

Some bows possess a nearly rigid central section of which gy forms part of, its
length is denoted by 2,. From the ends of this section start the elastic limbs each of
length L, the half length of the bow isL = Ly + L. For the grip, hence for 0- s Ly,
we put W)= 1.

The units we use are the cm (=0.3937 inch) and the kgforce (=205 Ibs). Because
in the literature characteristic lengths are often given irinches by "simple" numbers, for
instanceL = 4 inch, jODj = 28 inch, these lengths expressed in cm sometimes suggest an
accuracy, which is not intended. The same holds for Ibs and kdn the following we do
not mention anymore the dimensions of a quantity, it is tacily understood that a length
is expressed in cm, a force in kg, a bending sti®ness in kgecan energy in kgcm and an
angle in radians.

The bow (H bow) discussed in [5] by Hickman has the followindharacteristics

L=914;Lo=10:2; w(s)~ 0; jOHj=15:2: (2.24)
The bending sti®ness distribution fols > L is a linear function

_ L _ _
W(s) = 1:30 16 'ES;LO- s- L: (2.25)
For future reference we mentiorW (Lo) = 1:15 1G. For the draw of the bow we have
chosenjODj = 71:1 which is slightly di®erent from the value used in [5]. Howewnevhen
we compare Hickman's theory with this one, his results are wected for this di®erence.
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(a) (b)

Figure 2.4: (a) Some shapes of the dimensionless deformations of the H o (b) Dimensionless
force-draw curve of the H bow.

It follows from (2.25) that W(L) = 0. Because we use the Euler-Bernoulli equations
this is not a ditculty from the theoretical point of view, because the limit of the curvature

of the elastic line fors ! L remains nite. However, in order to avoid computational
complications we put

W(s) = 7:69; (2.26)

whenever in (2.25) the values oW (s) become smaller than %B9. This interpretation has
to be given also to other bending sti®ness distributions wiioccur later on.

A number of times we consider the consequences of a changenaf or more character-
istic quantities of the H bow. This means that only these quaities are varied while the
other ones are the same as those given above. We remark that oesults for the weight
of a bow F(jODj) and for the deformation energyA, are linearly dependent on, when
we replaceW (3) by W (s). Hence, it is easy to adjust the weight of a described bow to a
desired value by multiplying W (s) by a suitable , . The quality factor q is independent of

In Figure 2.4.a we have drawn a number of dimensionless defations of this bow
up to its fully drawn position and in Figure 2.4.b its dimensbnless force-draw curve both
calculated by this theory. When curves given by Hickman are ade dimensionless there
is an excellent agreement with gure the numbers with dimensh show some di®erence.
Numerical results theory and of this one are given in Table 2.

In Table 2.2 we show the in°uence of a change of the length of tlgip L, and the
brace heightjODj of a H bow. It is seen that the largest value off occurs for the smallest
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Table 2.1: Comparison between Hickman's theory and this theory.

Hickman | this theory
F(jODj) | 15.1 15.5
A 444 450
q 0.414 0.407

Table 2.2: In°uence of length of grip Lo and of brace heightjOH| on the H bow.

Lo 5.08 10.2 15.2

JOH]j 12.7 | 152 | 178 |12.7 |15.2 | 178 |12.7 | 152 |17.8

F(jODj) | 13.9 | 14.0 | 14.1 | 154 | 155 |15.7 |17.3 [17.4 | 176

A 417 | 408 | 398 |460 |450 |439 |510 |500 | 488

q 0.423| 0.411| 0.397| 0.420| 0.407| 0.393| 0.415| 0.403| 0.389

grip and smallest brace height and the smallest value gffor the largest grip and largest
brace height, however this di®erence is not very spectacular

In Table 2.3 we give the in°uence of a change of the length of a H bow. It follows
that the weight of the bow increases strongly when the bow bemes shorter while there
is, as in Table 2.2, only a weak in°uence on the quality facta,.

We next discuss the in°uence of a change of the bending sti®nessthe H bow. We
choose

W, (s5)=1:15 1(5"%'_' > q‘r” Lo- 5- Lin=1:234: (2.27)
i Lo

with 73 =0, ,=1=2, 3=1, 4= 2. We refer with respect toW(L) = 0, to (2.26)
and the remark belonging to it. The bending sti®nes#/;5(s) is equal to W (3) from (2.25).
With increasing values ofn the relative °exibility of the tip becomes larger. The resul are
given in Table 2.4. We nd that an increase of the sti®ness of thig causes some increase
of g, and that the bending sti®ness distribution has only a modes$avourable in°uence on
g for n changing from 3 to 1.

Table 2.3: In°uence of the length L on the H bow.

813 [86.4 |91.4 | 965 | 102
(jOD)) | 24.6 [193 | 155 | 12.7 | 105
687 | 551 |450 |373 |312
0.393| 0.400| 0.407| 0.413| 0.417

Q > m|rl
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Table 2.4: In°uence of the bending sti®nessN (5) on the H bow.

Wi (S) | Wa(S) | W3(S) | Wa(S)
F(OD]) [ 236 |196 |155 |9.02
A 701 576 450 229
a 0.417 | 0.414 | 0.407 | 0.356

90)1(5)

. . . 7 Figure 2.5: The two types of recurve o.1(3) and
0010 Ho:2(3) considered in Table 2.5.

We now consider the in°uence of two recurve shapes denoted gy (S) and po2(S) on
the H bow. The rst one is very simple,po.1(S) = j 0:12, the second ongy.»(3), is given
by the unbraced shape of the bow in thex{ y) plane in Figure 2.5, where for reference also
o.1(S) is drawn. For each of these bows we have us®d,(s) as well asW(s) as bending
sti®ness distribution. The results are given in Table 2.5. Foeference we also give in this
table the straight bow [(S) = 0, which already is given in Table 2.4 under the headings
W,(3) and W3(s). It is seen that both recurves have statically a favourablén®uence on
the bow because the coezcieng is in both cases larger tharmg belonging to 1g(35) ~ 0.
The recurve [h2(S) has the highest values off The best one of these = 0:575 (which
is a rather large value) occurs foW;(s) which has a more °exible tip thanW,(3). It is
remarkable that this is opposite to that of recurvegu(s) and .1 (S) where the highestq
occurs forw,(3s).

Next we consider two bow$; and B, also with recurve of which the unbraced situation
however, di®ers from those of the bows we considered up to nolhe bow B; drawn in
Figure 2.6.a is a normal modern recurve bow for target shoog.
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Table 2.5: In°uence of recurve on the H bow for two bending sti®ness disthutions.

1l

0

50

45

Figure 2.6: (a), (b) a modern recurve bowB 1, po(3) and W (3), (c), (d) a bow with strong recurve

B>, to(S) and W(3).

(=)

_ H(S) "~ 0 Po,(3) | Ho2(S)
F(jODj) | 19.6 25.0 | 38.4
W,(3) | A 576 776 | 1510
q 0.414 0.437 | 0.554
F(jODj) | 15.5 20.1 | 292
W;(3) [ A 450 607 | 1200
q 0.407 0.424 | 0.575
7
50000
I
!
@] 50 558 3-7
17 A
S50 (b)
N 7
50000
‘ZO
= _IIOO X 0 50 571 3.7
() (d)
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Table 2.6: Two recurve bowsB; and B»,.

L Lo, |jOHj |jODj|F(jODj) |A |q
B, | 84.2| 284|174 | 625 | 13.6 362 | 0.426
B, | 81.9|14.8| 152 | 71.1 | 13.6 854 | 0.883

F ~
1
Figure 2.7: The dimensionless force draw
curves of By, B, and the bow B3 of Table 2.4
o b (Hls), S5(9).

The di®erence with bows considered before is that the elashimb starts at the end
S = Lg of the rigid section in the direction of the archer. Its meaged bending sti®ness
distribution is given in Figure 2.6.b. The bowB, has an excessive recurve (Figure 2.6.c).
Its bending sti®ness varies linearly from the rigid sectionotthe tip (Figure 2.6.d). In
Table 2.6 we give the parameters of these bows and the cal¢athquantities F (jODj), A
and q.

It is remarkable that the static quality coexcient q of B, is very high with respect to
all the bows we have considered. The reason is that the mainrpaf its force draw curve
is strongly convex as can be seen from the dimensionless éodraw curve of Figure 2.7,
where also the curves of boB; and of the bowB3 denoted by (.2(S), S3(S)) in Table 2.5
are given. This shape of force draw curve (bo®,) resembles the force draw curve of the
compound bow mentioned in the introduction, here however npulley's are needed. In
Figure 2.8 we have drawn the dimensionless deformation caes/ofB; and B».

We emphasize that it is not clear thatB, will be a good bow for shooting because
our considerations are only based on statics. However, iteses worthwhile to investigate
the dynamic behaviour of this bow, which will depend also onhe choice of the mass
distribution of the elastic limbs.

The following bow resembles an Asiatic bow ([7, plate 18]).t has a rather strong
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(a) (b)

Figure 2.8: (a) Dimensionless deformations of theB; bow. (b) Dimensionless force-draw curve
of the B, bow.

Table 2.7: Bending sti®ness of the bow of Vrees.

0 1521275/ 35.8| 44 | 64.5| 69.8| 83.8
(5)10'% | 35.4| 27.0| 23.8| 21.7| 16.6| 5.31| 3.24| 1.26

é| vl

recurve. We have tried to guess a bending sti®ness so that itdaulated braced and fully
drawn position resemble the photographs given in [7]. Opptsto the bows discussed up
to now this bow has a rigid tip which is strengthened by a ridgeA dizculty is that this
bow does not show too clearly a line of symmetry, it even is gidihat the upper limb is the
shooting limb which "accounts for most of the shooting". In kyure 2.9 we give its chosen
bending sti®ness distribution. For 0 s- Ly =6:24 and for468=1L, - S- L =63:5
we takeW = 1 . The brace heightjOHj = 18:4 and the drawjODj = 76:2. Figure 2.10
gives the dimensionless deformation curves and force drawuree. From Figure 2.10.a we
have also an impression of its unbraced shape. Calculatedagtities are F (jODj) = 22:7,
A =586 and q= 0:339. Hence its static quality factorq is rather low.

We also consider a bow found in the neighbourhood of Vrees wlhiis described by
Beckho® [3]. The quantities measured or guessed, given iratttpaper areL = 83:8,
Lo = 0, jOHj = 17, jODj = 70, (s) = 0 and W(S) is given in Table 2.7. The weight
and deformation energy calculated in [3] and by this theoryra given in Table 2.8. The
reason for the discrepancies between the two calculatiorssgossibly that Beckho® used a
linearized theory and other approximations. It is remarkale that q is the same in both
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Figure 2.9: Chosen bending sti®-
L ness of "Asiatic bow".
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Figure 2.10: (a) Dimensionless deformation curves of the "Asiatic bow". (b) Dimensionless
force-draw curve of the "Asiatic bow".
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Table 2.8: Comparison of results of [3] and this theory.

Beckho®| this theory
F(jODj) | 27.2 45.1
A(jODj) | 748 1240
q 0.393 0.393

49

W

1.10°

5.10°

1104t Figure 2.11: Bending sti®ness of
368 — bow with three braced positions
o $°L shown if Figure 2.12.

theories.

At last we give an example of the possibility of more than oneraced situation of a
bow. This phenomenon is liable to happen because our theos/non linear and it can
be expected to occur when the tip of the bow is rather °exible Wi respect to its central
parts. In order to nd several situations we prescribe the lagth 1 of the string instead of
the brace height or “stmele. We have choseh = 90:4, Lo = 10:2, [ = 82:9. Its bending
sti®nessW (s) is given in Figure 2.11 and(s) follows from Figure 2.12. The three braced
positions are drawn in Figure 2.12 and denoted by 1, 2 and 3. Wh we perturb these
shapes in a number of ways, it was numerically found that 1 an8 possibly belong to a
local minimum of the deformation energy and 2 belongs to a miamum. In other words it
seems that the shapes 1 and 3 are stable and 2 unstable althioulis has not been proved
analytically.

A(jOH]) | 1090] 1120 1080
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> x Figure 2.12: Three possible equilibrium posi-
tions.

2.6 A model of a bow with 100% shooting exciency

Although the main subject of this paper is the static deformton of a bow we will show,
as is already announced in the introduction, the essentiainportance of the string for a
good shooting exciency.

A shooting exciency of 100% can easily be obtained if the mod#ithe bow is unrealistic
simple. Consider a bow of which the elastic limbs and the st are without mass, then
it is dear that all the deformation energy is transformed inb kinetic energy of the arrow
which is assumed to have a non-zero nite mass. The assumptiof a string without
mass seems acceptable, however, the assumption of limbshaiit mass is not at all in
correspondence with reality. Therefore we now discuss a raaealistic model.

The bow consists of a rigid grip of length Ry and two rigid limbs of length L, (Fig-
ure 2.13.a) which are connected each to the grip by means of alastic hinge € for the
upper limb) of strength k > 0. The moment of inertia of the limb with respect toS is J.
The string of length 2 is inextensible and without mass, the mass of the arrow e > 0.
The assertion is that this bow (Figure 2.13.a) converts allne deformation energy of the
elastic hinge into kinetic energy of the arrow. From Figure .23.a it follows that

ilj LoC i Lo ¢
Licos - |j Lo<Lgq;' Od:efarccosI L =07 e edzef Yaj arccosI °o_". (2.28)
Ly Ly+ |
Also from that gure we nd for the x coordinate» of the end of the arrow
. ¢ »
»= Lysin' + 12 (Licos + Lg)? “2: (2.29)

Writing down the equations of motion of limbs and arrow we nd &er a straight forward
analysis,

¢
A3+ 2Q%) = 30T )21 KC i 9QC): (2.30)
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m(/)

(b)

Figure 2.13: Two bows each with two elastic hinges and rigid limbs.

where

£ L,cos + Lg)sin' ®©
Q(' )= Licos + Lij (s ) ¢
12i (Lycos + Lg)?

, 050 T e (2.31)

and'<' g is the angle of zero moment of the elastic hinge. Because indae shown that
QX' ) - 0t follows from (2.30) that

A0y <t L (2.32)

An important conclusion results from this equation. Duringthe stretching of the bow
(Figure 2.13.a) the arrow keeps its contact with the string Wich, along straight lines,
connects the arrow end to the tips of the limbs.

Next we consider the bow of Figure 2.13.b. The only di®erencetween this bow and
the previous one is that now the rigid limbST, has an in nitely sharp bend atT;. During
positions as drawn this bow behaves exactly as the one of Figu2.13.a, hence®- 0.
When, however, T, j T, coincides partly with the string we can describe the procesd
shooting after that situation, by a bow of which the limb isST; and of which the half
length of the string is (jj Tyi Tyj). Itis easily proved that ».is continuous during this
transition and hence also for this bow we havé*- 0 for all possible values of . This
means thatmutates mutandis for this bow the same conclusion (below (2.32) holds.

Now consider the situation that the string is nearly stretcled

"o o ot 2 (2.33)
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for a small number2 > 0. From (2.32) it follows that the arrow is still in contact with
the string. Suppose that for these values of the angular velocity of the limb is non-zero,
hence that a positive numbert exists with

O<x-j "("): (2.34)
Then it follows from (2.29)
lim »( )= lm Q()_=il : (2.35)

However, this is impossible because then the kinetic energf/the arrow becomes in nite
while the deformation energy of the bow is nite. Hence we have

lim ' ()=0: (2.36)

This means that theoretically by the action of the inextendile string without mass all the
kinetic energy of the rigid limbs is conveyed to the arrow, o large J and how smallm
may be. This holds for both bows of Figure 2.13, it holds anajously for bows with rigid
limbs with more sharp bends

That these models are not too unrealistic follows for the typ of Figure 2.13.a from [9]
where on analogous device, a catapult, is described. Thestiahinges are made of strongly
twisted cables to which rigid limbs are connected. The bow d&figure 2.13.b resembles a
Turkish °ight bow [7, page 105]. There it is remarked that the acient bowyers tried to
keep the elastic parts of the limbs as short as possible in erdto obtain a good shooting
exciency. With other words they tried to realize an elastic hige in each of the limbs. The
purpose of the bend afT; in the rigid limb in Figure 2.13.b is to increase the value of.

By choosing nonlinear elastic hinges, which are not ditcultd design, it is of course
possible to obtain force-draw curves of the type d8, of Figure 2.7, hence to obtain a
high static quality factor g. When contact between string and arrow remains during the
shooting, with other words when the acceleration of the arvois non positive, also 100%
shooting exciency can be obtained.

It seems likely that suitably designed bows with more elastihinges or even continuously
distributed elasticity, can also have theoretically an ext@ncy of 100%. An analytic proof
however will be more complicated in that case.
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Chapter 3

On the mechanics of the bow and
arrow 1

3.1 Summary

Some aspects of the dynamics of the bow and arrow have beensidered. The governing
equations are derived by means of Hamilton's principle. Theesulting nonlinear initial-
boundary-value problem is solved numerically by use of a retdi®erence method. The
in°uence of the characteristic quantities on the performareof a bow is discussed.

3.2 Introduction

This paper deals with the interior ballistics of the bow and aow, hence with the phe-
nomena which happen between the moment of release of the arrand the moment that
the arrow leaves the string. This subject is amply investigad experimentally by Hickman
and Klopsteg [1]. Hickman used also a mathematical model. brder to be able to get nu-
merical results without the help of a computer his model hadather severe simpli cations.
Because of these simpli cations only bows with speci ¢ feates could be dealt with. We
hope that this article will add to the understanding of the ation of rather general types
of bows, by giving more accurate and detailed numerical rdtsi

We are concerned with bows of which the °exible parts (limbs) ove in a °at plane,
and which are symmetric with respect to the line of aim. The aow will pass through
the midpoint of the bow, as in the case of a "centre-shot bow'We assume that the bow
is clamped at its midpoint by the bow hand. The bows are alloweto possess a mild
"recurve” of "re°ex". This means that the limbs of the bow in urstrung situation are
allowed to be curved away from the archer, however, not toorsingly.

We will consider the how as a slender inextensible beam. Thegréamic boundary
conditions at the tips of the elastic limbs follow from the conection of the tips, by means

1B.W. Kooi, On the mechanics of the bow and arrowJournal of Engineering Mathematics 15(2):119-145
(1981)
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of a string, to the end of the arrow. The initial deformation & the bow is given by its

shape in the fully drawn position, the initial velocities ae zero. Also in our theory some
assumptions have been made. Most of these result from the usfethe Euler-Bernoulli

equation for the elastic line which represents the bow. Fumer, the mass of the string is
taken to be zero, the string is assumed to be inextensible aride arrow is taken to be
rigid. Neither internal or external damping nor hysteresisare taken into account.

Nonlinear vibrations of beams have been studied by many awts. Most of them are
concerned with periodic motions. Woodall [7] obtains the gerning equations of motion
by considering a di®erential element of a beam. Wagner [6] alader Verma and Krishna
Murthy [5] applied Hamilton's principle. However, in [6] aml [5] the constraint which follows
from the fact that the beam is assumed to be inextensible is htaken into account in the
variational problem itself, but is used afterwards. This mkes their equations di®er from
ours in Section 3.3 Hamilton's principle is used and a physicmeaning of the Lagrange
multiplier connected to the inextensibility of the bow is gven. This has been done by
comparing our equations with those obtained by Woodall. Inhe static case such a method
was already applied by Schmidt and Da Deppo [4].

In Section 3.4 a nite-di®erence method to solve the equation$ motion numerically
is described. The results are compared with the results of aite-element method.

The performance of a bow and arrow depends on a number of parmters, the length of
the bow, the brace height or the length of the string, the drawthe mass of the arrow and
the mass of concentrated masses at the tips (if any). It depés also on three functions,
namely the distributions of bending sti®ness and mass alonget bow and the shape of
the bow in its unstrung situation. In order to get insight into the in°uence of the afore
mentioned quantities, in Section 3.5 these quantities ardhanged systematically, starting
from a bow described by Hickman [1, page 69]. Besides the stajuality coexcient, already
introduced in [2], two dynamic quality coexcients are introdiced. One is the exciency
and the other is related to the velocity of the arrow when it laves the string, sometimes
called the muzzle velocity. These three numbers cannot gilly themselves a complete
insight into what makes a bow a good one, for instance, with spect to target shooting,
°ight shooting or hunting. Also other subjects become impo&nt, such as smoothness of
the recoil of the bow, its manageability, and so on. Whenevétris possible our results are
compared with experimental and theoretical results givemi[1].

Although it belongs clearly to the interior ballistics of a low and arrow, we will not
discuss in this paper the interesting "archers paradox”. Tis is the phenomenon that the
elastic arrow, during the shooting period of a conventionahon-centre-shot bow, carries
out a vibrational motion. Because we only consider centréxst bows,the assumption that
the arrow be rigid with respect to bending is without loss of gnerality.

In Section 3.6 some attention is paid to the behaviour of theammal or longitudinal
force in our model of the bow, at the moment the arrow is relead. When concentrated
masses at the tips are present, the normal force seems to havgump at that moment.
This jump disappears when in an approximate way extensihii of the bow is simulated.
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3.3 Equations of motion

In this section the equations of motion of the bow and the dymaic boundary conditions
are derived by means of Hamilton's principle. The equationsf motion can also be obtained
by applying the linear momentum and angular momentum balarcof a di®erential element
of the bow, as is done for instance by Woodall [7].

First we introduce the quantities which x, with respect to ou problem, the features of
bow and arrow. The total length of the inextensible bow is dested by 2. The bow will be
represented by an elastic line, along which we have a lengtbardinate s, measured from
the midpoint, hence 0- s- L. This elastic line is endowed with bending sti®nes#/(s)
and mass per unit of lengthV (s). The rigid arrow has a mass #&,, where the factor 2 is
inserted for convenience later on. In addition, there may beoncentrated massesy; at each
of the tips, representing the mass of the horns used to fastére string or arti cially added
masses. The bow is placed in a Cartesian coordinate systermy(), the X-axis coinciding
with the line of am and the origin O with the centre of the bow. Because the bow is
symmetric with respect to the line of aim, only the upper halbf the bow is dealt with in
what follows. The unbraced situation (Figure 3.1.a) is give by the functions X = Xy(5)
andy = Y,(S) or by the anglep(S) between they-axis and the tangent to the bow, reckoned
positive in clockwise direction. Becauss is the length parameter the functionsx(s) and
Yo(3) have to satisfy X32(3) + y3%(5) = 1, where the prime indicates di®erentiation with
respect tos. Lo is the half length of the rigid part in the middle of the bow, céed the
"grip", thus for 0 - S+ Ly we haveW(s) = 1 .

In Figure 3.1.b the braced situation is depicted. The distazejOHj is the "brace height"
or ""stmele". The length of the inextensible string, used to lbace the bow, is denoted by
2I(I< L). Itis possible that, when recurve is present, the stringdis along part of the bow
in the braced situation. However, in this paper we assume ttering to have contact with
the bow only at the tips in all situations, static or dynamic. Hence, only bows without
recurve or with moderate recurve will be considered. In Figa 3.1.c the bow is in fully
drawn position. The geometry in this position is describedybthe functions X = X;(S) and
¥ = v1(3) (x92 + y?2 = 1), or by the angle 4 (S). The distancejODj is called the "draw"
and the forceF (jODj) is the "weight".

The following short notation of a speci ¢ bow and arrow combiation will be used:

B(L; Lo; W(3); V(3); ko(3); Ma; My; jOH] or; (3.1)
jODj; F(jODj);my) ;
where the brace heighfOHj or half of the length| of the string can be given. Furthemy
is half of the mass of the limbs, the °exible parts of the bow, so

my = V(3)ds: (3.2)

The variables before the semicolon in (3.1) together with thdraw jODj determine com-
pletely the features of the bow, while the quantities behindhe semicolon are used when
we introduce dimensionless variables.
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Figure 3.1: Three situations of the non-recurve bow: a) unbraced, b) braed, c) fully drawn.

_ We now derive the equations of motion of bow and arrow. For siticity we take
Lo = O; if this is not the case the obtained equations have to be ahged in an obvious
way. The Bernoulli-Euler equation (which is assumed to be 1id) reads

MsD= WE x5 v5%% 8% 0. 5. L (3:3)

whereM (5;1) is the resultant bending moment at a cross section (see Figu3.2 for sign).
We recall that because the bow is symmetric with respect to éhline of aim, we con ne
ourselves to its upper half, clamped at the origirD. The potential energy A, of the
deformed upper half is its bending energy
Z {2
A-1 MG
o W(S

ds : (3.4)

The kinetic energyAy is the sum of the kinetic energy of the upper half of the bow, #fa
the kinetic energy of the arrow and the kinetic energy of theancentrated mass at the tip.
Then when a dot indicates di®erentiation with respect to time,
Zr _ :
e — 2 ot =2 i o o, _C
Ac=1=2 V() X +¥ ds+1=2myb +1=2m; X (L;t)+ ¥ (L;t) ; (3.5)
0

whereb is the X-coordinate of the end of the arrow or the middle of the stringwhich can
be expressed in the coordinates of the tip of the bow by

o) = x(L; t) + 7 yA(L D¢1:2i (3.6)

because the string is assumed to be inextensible.
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The string is also assumed to be without mass, hence it coiittes neither to the
potential nor to the kinetic energy. Because the bow is ineghsional we have the constraint

X+ y¥=1;0-5- L: (3.7)
We introduce
Z . ¢
T A A (= 02 4 02 . ‘N, =. T -
o= Agij Ap+ ,(g,t) X1t Viti 1d5;0- 5 L; (38)
0

where |, (s;1) is an unknown Lagrangian multiplier to meet the constraint(3.7). Then by
Hamilton's principle we have to nd an extremum of

Z f
adi; (3.9)

hence
+ odt=0: (3.10)

for “xed initial time t =ty and xed nal time t = t;.
Because the bow is clamped at the origi®, we have fors = 0 the geometric boundary
conditions

X(0;1) = ¥(0;1) = 0 ; y40;f) = ¥,(0) : (3.11)

By standard methods of calculus of variations and using (3L1we nd the Euler equations
as necessary conditions for the extremum of (3.9)

VR= (yoW)°; 2( %9+ (yM)%; (3.12)
and
V=i (W% 2(¥9°% (xM): (3.13)

Also the dynamic boundary conditions ats = L follow from the variational procedure,
they become

M(L; ) =0 (3.14)

m.b+ mALC ©) =2 (CHRA D i yAT HM LT T) (3.15)
y(T Hb o e g ey ot O

Tﬁam + Tﬁtﬁ(l-’ t) | 2, (L1 t)yo(l-! t) | XO(L! t)M (L’ t) (316)

The initial conditions which complete the formulation of the problem are

X(s;0) = X1(3) ; Y(5;0) = y,(5) ; X(5;0) = ¥(5;0)=0;0- s- L: (3.17)
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Figure 3.2: Forces and moments on a di®eren-
tial element of the bow.

Although it is not necessary for the computations, we look foa physical meaning of the
function | (5;t). In Figure 3.2 the resultant forces and moments acting on ai®erential
element of the bow are shown. The momentum balance in tixe and y-direction gives

VR= (Tx9% (Qy9°; (3.18)
and
V= (Ty9%+ (Qx9°; (3.19)

respectively, whereT (5;1) is the normal force andQ(s;1) the shear force on a cross-section
(see Figure 3.2). If the rotatory inertia of the cross-sean of the bow is neglected, the
moment balance of the element gives

ACHERE G E (3.20)

Comparing equations (3.18) and (3.19), using (3.20) to remeQ by VO, with (3.12) and
(3.13), we nd the physical meaning of

“(s0)= | 10T + %(mi W0 5. L: (3.21)

Substitution of (3.21) in the boundary conditions (3.15) ad (3.16) yields

mb+ mALGD = i TCOKAGD 1 VWG OMIGD ; (3.22)
and
m IO | = TCORG D AT O . @29
bi x(L; 1)

Equations (3.22) and (3.23) connect the deformation of thedw at s = L to the force
components in thex- and y-direction, exerted by the string and by the massn; the tip.
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The functions X;(5) and y,(S) occurring in the initial conditions (3.17) satisfy the
equations of static equilibrium, with b = jODj, obtained from (3.18), (3.19) and (3.20)
by putting the left-hand sides of the rst two mentioned equaions equal to zero. The
two relations (3.3) and (3.7) remain unchanged. Besides waue the boundary conditions
(3.11), (3.14), (3.22) and (3.23), where in the latter two wéave to replace the rst term
on the left-hand sides by; 1=2F (jODj) and j 1=2y,(L)F (jODj)=(bj xXi(L)), respectively.
The weight of the bowF (jODj) is unknown and has to be determined in the course of
the solution of these equations. In Equation (3.6 has to be replaced by its known value
jODj, the draw of the bow. The static deformations are discussed [2].

The acceleration (or dynamic) force on the arrow, denoted b, is given by

E(0) =i Zmaﬁf) ; (3.24)

and the recoil forceP, which is the force of the bow exerted on the bow hand (reckahe
positive in the positive X-direction) by

P(D =2 ' W0:050) + TO:0%40) (3:29)

We introduce dimensionless quantities in the following way

X V:s;L; Lo ) = (xy;s;L; Lo 1) jODj ;

(T;F,E;P)=(T;F;E;P) F(jODj) ;

M = M jODjF(jODj) ; W = W jODj?F(jODj) ; V = V my=5jOD;j;
Y

(Ma; M) = (Ma;my) My; T=t ' M,ODj=F (jOD]) “2: (3.26)

= X

where we used the a priori unknown weighF (jODj) of the bow to make the quantities
dimensionless. In the following we will systematically ladd quantities with dimension by
means of a bar *" quantities without bar are dimensionless. Quantities, whn they have
dimensions, will be expressednless stated otherwiseby means of the following units:
length in cm, force in kgforce, mass in kg mass and time in 0133 sec.

If the velocities u(s;t) = x(s;t) and v(s;t) = y(s;t) are introduced the system of six
nonlinear partial di®erential equations for the six functios x; y; u; v; M; T of two indepen-
dent variabless 2 [Lo;L] andt > 0 assumes the form

Vu=(Tx)%+(MY9?; (3.27)
Vv =(Ty9% (M%9°; (3.28)
X=U; (3.29)
y=V; (3.30)
xZ+y®=1; (3.31)

M = WY y&%% 1) : (3.32)
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The boundary conditions ats = Lo become
X(Lo;t) = Xo(Lo) ; Y(Lo;t) = Yo(Lo) ; XYLo;t) = x5(Lo) ; (3.33)
and ats= L(t> 0),

M(L:t)=0 : (3.34)
mB+ mol(Lit) = § T(LXAL;t) | MALOYLD (3.35)
may(L; )8 moKL;t) bty i x(Lit) = ¢
"TLOYIL) | MALOXALE) B x(Lt) (3.36)

with

ot) = x(Lit)+ 17 yz(L;t)¢1:2; (3.37)

The initial conditions (3.17) become

X(8;0) = X1(s) ; (3.38)
y(s;0) = yi(s) ; (3.39)
u(s;0)=v(s;0)=0;Lg- s- L: (3.40)

The dimensionless dynamic forc& and recoil forceP are given by
E(t)= i 2m.B; (3.41)
and
[ 0 0 ¢
P(t)=2 MYLo;t)ys(Lo) + T(Lo;t)xS; (Lo) : (3.42)

The nite-di®erence method discussed in the next section cae lised for the solution
of both the static and the dynamic equations. In [2] the stat problem, which is a two-
point boundary-value problem for a system of ordinary di®enéial equations, is solved by
means of a shooting method.

3.4 Finite di®erence equations

In order to obtain approximations for the solution of the patial di®erential equations
(3.27)¢ ¢@.32) with boundary conditions (3.33¥ ¢@.36) and initial conditions (3.38¢ ¢ ¢
(3.40) we use a nite-di®erence method. We consider the grid

s=j¢s;j=01)ns; ng¢s=1Lj Lg; (3.43)
and

t=ke¢t; k=02Q)n;; (3.44)
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Figure 3.3: Grid placed over
the s;t-plane.

n; being an integer large enough to cover the time interval of terest grid points are
indicated by "£" in Figure 3.3. To satisfy the boundary conditions externaimesh points
are introduced, Loj ¢s;ke¢t)and (L +¢ s; ke t), with k =0(1) n;, indicated by "4 " and
"2", respectively. The value of a functionf (s;t) at the grid point (j ¢ s; k¢ t) is denoted
by f;x and of h(s) and g(t) by h; and gy, respectively.

There are many di®erence schemes possible to approximate di®erential equations.
For instance the term (Tx%9j ¢ s; k¢ t) can be approximated by

Xirt i X+ Xjie o Tienc i Tig ok Xjen i Xji 1k

T.
ik ¢ s2 2¢s 2¢s ’

(3.45)

but also by
iT- +1_2_ka +15k i Xjk Xik i Xjj 1k ¢:
S ¢s ¢s
In the last case the normal forceT is de ned at each time level only at points just in

between the grid points (3.43), indicated by #" in the boundary conditions (3.35) and
(3.36), can at timet = k¢ t for instance be approximated by

+ Tji 120 ¢s: (3.46)

3=2 Tnsi 1=2:k i 1=2 Tnsi 3=2:k . (347)

The same kind of approximation (3.45) and (3.46) can be usedrfthe other terms on the
right-hand sides of (3.27) and (3.28). The constraint (3.31can be approximated at the
grid points, yielding for point (j ¢ s; k¢ t)

P Xj+1:k i Xj;l;k¢2+iyj+1;ki Viiwk® L
=& BEELEEELE el 3.48
2¢Cs 2¢Cs ( )

When we approximate this constraint at points in the middle bthe grid points we obtain

X i X% 1Y i Yiiak®e
¢s ¢s

1: (3.49)
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The type of approximation (3.46) in combination with (3.49)turned out to be satisfactory
because it is well matched to the boundary conditions.
Two di®erence operators are de ned

fj+1=2;k i 1:ji 1=2;k

¢s

If we use (3.46), and take a weighted average by means of thetta * of forward and
backward approximations of each of the four equations (3.27¢(@.30) we nd

ifj;k = ; ¢ fj;k =05 (ifj +1=2:k i ifji 1=2;k) . (350)

- ¢ .
Vj (uj;k +1 i uj;k):(]:t =1 li(Tix)j;k w1t i(iMiy)j;k st (1 i 1)Ii(-rix)j;k + i(i'\/li)oj;k

; 1 =0(2)ns ; ¢ _ (3.5¢1)

Vi(Vik+1 i Vik)=¢t =1 IJ—f(TJ—“Y)j;k a + HEMEX)ja + (1 1)Ii(TiY)j;k + HEM1X)j
; 1 =0(1)ns ; (3.52)
(Xjk+1 T Xk)=Ct = ke + (1§ YUk 5 ] =0(Q)Ns ; (3.53)
YVik+1 i Yik)=Ct =ik (1§ *)Vik 5 ] =0(Q)ns; (3.54)

Using (3.49) we approximate (3.31) and (3.32) by
(%, 1=2;|<+1)2 +(C v, 1=2;|<+1)2 =1;j]=01)ns+1; (3.55)
and
i 2 . 2 Or: ¢ H
Mj;k 41 = Wj ¢ Xjik X Vik+1 i ¢ Yiik s X Xjk+1 t po(j ¢ S) = 0(1) Ng ; (3.56)

For * = 1=2 these equations become the Crank-Nicolson scheme and thentation
error is O(¢ t2) + O(¢ s?). For 1 =1 we have the fully implicit backward time di®erence
scheme, then the truncation error i0(¢ t) + O(¢ s2).

The boundary conditions (3.33) are approximated by

Xok+1 = Xo(Lo) ; Yok+1 = Yo(Lo) ; (3.57)
and
Yo(Lo) ¢ Xox+1 = Xg(Lo) ¢ Yoxs1 ; (3.58)

Before writing down the boundary conditions ats = L we mention that besides the
x-coordinate b of the arrow. it appeared to be advantageous to introduce alsts velocity

c®p; (3.59)
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as another unknown function. Then the three boundary condiins (3.34) ¢@.36) ats = L
are approximated by the di®erence relations

Mngk+r =0 ; (3.60)

Ma (%«1 i G)=Ct+ Me(Ungk+1 i Ungk)=Ct =

i 1 (B=2Tng; 1=2k+1 i 1F2Thgi 3241 ) (Xng+1 k41 [, Xnsi Lk+1 )+

(Yne+1k+1 . Ynei 1k+1)(i Mg 1k+1 + Mg 2i+1)

i (Li Y) (32T 12k i 122Th; 3:2;k)g<ns+1;k i Xnei 1k)

?yns+1;k i Ynsi 1x)(i 4M¢15i 1k ¥ Mng 2x) (3.61)

ily nek+l T (10 1)Yngk Ma(Cert i Ck)=¢¢t i

g (Ber i Xngger) + (17 2)(Bi Xngie) Mi (Vngiees T Vi) =0 1=

£1 (Ber1 i Xngke2) + (L0 2)(Bei Xngk)

P[(B=2Tngi 1z2k+1 i 172Thg; 3=2k+1 )(Yngs1ik+1 i Yngi 1k+1)i

(Xng+1k+1 T Xngi 1k+1)(i AMng; 1k+1 + Mg 2k+1)]

+(1§ YIB=2Tng 122k i 12Ty 3=2;k)(y8s+1;k i Ynsi 1K) i

(Xng+1ik i Xngi 1k)(i Mg 1k + Mg 2] (3.62)
Finally we take as approximations for (3.37) and (3.59)

(Bt i Xngkr1)® + Yiowar = 125 (3.63)
and
(1 i B)=¢t="1Ck +(1i *)&; (3.64)
respectively. The dynamic forceE (3.41) is approximated by
Eker = 1 2Ma(Cer i G)=C ] (3.65)
and the recoil forceP (3.42) by
Pert =2' (Magan i M; 11)Y0(Lo) + 122 (Tipuer + T, 1:2;k+1)X8(|-0)¢3 (3.66)

At t = O the initial values of the unknown functionsx; y; u; v are given by (3.38% ¢@.40).
The nite di®erence approximation for the static equations gabe found in a straightfor-
ward way from equations (3.51¢ ¢(@.64).

At each time, hence for eactk¢ t(k = 0(1)n,), we have to solve a set of nonlinear
equations, which is done by means of a Newtonian method. Fdri$ method it is essential
to have reliable starting values or the unknowns

i) The equations for the static case, for = 0.
Starting values for the solution of the static nite di®erenceequations are obtained
by using the values computed by means of the program describim [2]. The reason
that we revise these values by means of the static nite di®erescheme, is that the
values obtained in this way are better matched to the nite di®&nce scheme for the
dynamic equations.
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i) The dynamic case, fromt=0tot=¢ t; (k =0).
We use as starting values of the unknowns at time level At thealues obtained in 3.4.
In order to avoid the use of the values of the accelerations at= 0 we take ! = 1.
In Section 3.6 we return to this.

iii) The dynamic case, fromt = k¢ttot=(k+21)¢ t;(k =1(i)n,)
The starting values for the time level k + 1)¢ t of the unknownsx;y; u;v; M; b and
c are obtained from the equations (3.51)¢(@.54), (3.56), (3.60¥ ¢(@.62) and (3.64),
with 1 = 0. This means that we explicitly calculate these values fra the nal results
at the preceding time levelk¢ t. From these starting values we calculate the values
at the time level (k + 1)¢ t with * = 1=2. Hence the further dynamic development
fort> ¢t is determined by a Crank-Nicolson scheme.

In order to get accurate information about the way in which tke arrow leaves the string,
the mesh width ¢t in the t-direction is chosen continuously smaller from a certainrtie,
at which the string is nearly stretched. Because the di®erenscheme is a two-time-level
one with approximations for only rst-order derivatives with respect to time, no special
provisions are needed.

For instance, in [3] numerical methods to solve related prtdms are analysed. In
the nonlinear case only for speci ¢ problems stability and cwergence of some di®erence
schemes can be proved analytically. Here no proof is giventiog¢ stability and convergence
of our di®erence scheme, however,we have checked our methamerically. First, in the
static case, we compare automatically (see i) the resultsthie nite-di®erence method with
the results obtained with the program described in [2]. Thei®erence between the weight
of the bow computed by both programs appears to be about 0.5%,we take ny = 64.
Second the total energyA, + Ay (equations (3.4) and (3.5)) has to be constant during the
motion. Third, we can investigate the convergence of the di®@msce equations by re ning
the grid. We consider the special bow

B(91:44 1016, W(3);V(S); b~ 0;0:01250;jOHj = 15:24;
71:12 1553 0:1625): (3.67)

The bending sti®nes$§V (s) and the mass distributionV (3) are given by

- iT: s¢
W(s) = 1:30 16" L'E >, (3.68)
and
- iT: st
W(s)=7:69 if 1:30 1@'L'ES . 7:69; (3.69)

_ iL; s¢
V(s)=45210% L1 5" (3.70)

The value at the tip of W(s) (3.69) is necessary in order to avoid di+culties in the
calculation. This bow (H bow) is also discussed by Hickman ifi, page 69].
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Table 3.1: Dependence ob, ¢, aand Ap + Ay on ¢, ¢ 5=1:27 cm,t = 0:0157 sec.

¢t sec bcm | tem/sec| acmised | Ap + A
4:9089 104 | 16.379| j 5544 i 147704 | 560.48
2:4544 104 | 16.375| j 5548 i 139432 | 560.43
1:2272 104 | 16.373| j 5549 i 132578 | 560.41
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Table 3.2: Dependence ob;t;aand A, + Ag on ¢S, ¢ T =1:2272 10 4 sec,t = 0:0157 sec.

¢scm| bem | cem/sec| acmisec | Ap + Ag
5.08 16.06| i 5583 i 136392 | 569.8
2.54 16.24| | 5563 i 132585 | 563.6
1.27 16.37| i 5549 i 132578 | 560.4

In Tables 3.1 and 3.2 we show the dependence of some calcalatgnamic quantities
on the mesh widths ¢t and ¢ 5, respectively. The quantities are thex-coordinateb(cm) of

the end of the arrow, the velocityc = b(cm/sec), the acceleratiora = ©.(cm/sec?) and the
energyA,+ Ay (kgfcm). The values are given for a xed timd = 0:0157 sec, which is near
to the time at which the arrow leaves the string (0.01662 secyhe same can be done for
other times, then the results are similar with respect to carergence. From these tables it
seems reasonable that with decreasing values of &nd ¢5 the solutions of the di®erence
equations "converge". The energy for ¢ = 1:2272 104 sec and ¢s = 1:27 cm di®ers
about 0.5% from its value 557.207 kgfcm at timé= 0. A fourth check is to compare our
results with those obtained by the use of the nite-element mgram marc of the marc
Analysis Research Corporation. This has been done for thewo

B(91:44,1016,W;V ;W ~ 0;0:011340;1 = 89:34;
70:98 1543, 0:1589); (3.71)

where the bending sti®nes#/ (s) and the mass distributionV (s) are given by

- iCi st
W(s)=1:1516 =1 5" (3.72)
Li Lo
and
— . iLjs¢
W(s)=7:69 if 115 1@'__'; . 7:69: (3.73)
| 0

_ .iLj s¢
V(s)=3:9110° IES : (3.74)




68 CHAPTER 3. MECHANICS OF THE BOW AND ARROW

Table 3.3: Comparison between nite-di®erence and nite-element solutn.

‘nite elements | nite di®erence
t bcm | ccm/sec| bcecm | ©cm/sec
0:50110° | 63.69| j 2739 | 63.53] | 2795
0:501 102 | 45.47| ; 4399 44,98 | 4480
0:501 102 | 25.69| | 5449 | 24.84| ; 5537

Figure 3.4: Acceleration of arrow. +: nite ele-
ment and |: nite di®erence.

In the marc program the functionsW and V are approximated by step functions and
both the bow and the string are taken slightly extensible. Ta number of elements used
was eight, and+ = 0:001 sec. For the nite-di®erence scheme we used ¢ 0:001 sec
and ¢5 = 1:27 cm. The values ob and t are given in Table 3.3 for several values af
In Figure 3.4 the accelerationa of the arrow in cm/seé as function of the time in sec,
computed by both programs is drawn. We conclude that there s reasonable agreement
between the results with respect to thex-coordinate b and the velocity T of the arrow.
The acceleration curve obtained by using thenarc -program is, however, oscillating in a
non-physical way.

3.5 Some numerical results

In [2] the so called static quality coe+cient, denoted byg, was de ned. This quantity is
given by

0= === (3.75)
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whereA is the energy stored in the bow by deforming it from the bracegosition into the
fully drawn position. This energy reads
_ Zm T ¢,
A= F(b) db= W(s) ()i 1(s) “ds
jOH 0

%-jopj .

o (3.76)

We now introduce two dynamic quality coexcients” and © in order to be able to
compare more easily the performance of di®erent bows in condiion with various arrows.
This exciency = of a bow is de ned by

F o Ml 3.77)

where T is the muzzle velocity. The productq” is a measure for the energy imparted to
the arrow. It is evident that in all kinds of archery we want ths quantity to be as large
as possible. However, it cannot be on its own an appropriateeasure of the performance
of the bow. If we let for instance increase the mags, of the arrow inde nitely, then the
exciency (3.77) tends to its largest value, namely one, hencg tends to its largest value
g, however, the muzzle velocity, tends to zero. Klopsteg [1, page 162], mentioned the
cast as another criterion of the quality of a bow. He de nes theast as the property of a
bow that enables it to impart velocity to an arrow of stated mas. So, a second dynamic
guality coezcient can be de ned by

0 = iq_,¢1:2 =
Ma
where the last equality follows from (3.75), (3.77) and (36). Thus, if the weight, draw

and mass of the limbs are stated, thefl is a measure for the muzzle velocity of a given
arrow. In order to show on which dimensionless quantiti€s depends, we write

G ; (3.78)

° = q(L;Lo;W(S);V(S); o(S); mg; m;jOHj orl); 0- s- L: (3.79)

For °ight shooting the quality coexcient ° is important because ther® is wanted to
be suzciently large. For hunting (but certainly for target shooting) it is not easy to nd
a criterion for the good performance of bow and arrow. What wean state is that the
bow has to shoot "sweetly" and without an unpleasant recoilBy this we mean that the
acceleration of the arrow should happen smoothly enough atitht the recoil forceP (3.42)
should be not too large or °uctuating too strongly.

One of our objectives is to get insight into the in°uence of thguantities which deter-
mine a bow on the numberg, © and °, and on the behaviour of the force& (b) and P (b).
To this end we start with the H bow.

B(1:286 0:143 W (s);V(S); o~ 0;0:07690;jOHj =0:214;11; 1); (3.80)

and change in a more or less systematic way its parameters. el'bhending sti®nes8V and
the mass distributionV in (3.80) are given by (3.68), (3.69) and (3.70) of which thealues
have been made dimensionless by using (3.26)
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Figure 3.5: sfd and dfd curves. Hickman's
theory and this theory.

If the three quantities g, © and © are known, the muzzle velocityg, (cm/sec) can be
computed. Using (3.78) and (3.26) we nd
DN ¢
G = 31:32°|M 2 emesec; (3.81)
Mp
where the number 31.32 is caused by the choice of our units. &kinetic energy (kgfcm)
imparted to the arrow of mass B, follows from

m.T = m,°°F (jOD])jODj = "qF (jOD])jOD; : (3.82)

These equations show the dependence of the two important autidies, the muzzle velocity
(3.81) and the kinetic energy of the arrow (3.82), on the weigydraw and mass of the limbs.
For the H bow (3.67) we haveF (jODj) = 15:53 kgf,jODj = 71:1 cm andm, = 0:1625 kg,
and the computed values of, * and° are 0.407, 0.89 and 2.16, respectively. Thus for this
bow, ¢ = 5578 cm/sec andm,¢ = 400 kgfcm.

The shooting time (the time interval between the loosing oftte arrow and its leaving
the string) appeared to be 0.01662 sec.

In Figure 3.5 we have drawn the dimensionless static-forceaw (sfd ) curve F (b), and
dynamic-force-draw ¢ifd ) curve E(b), calculated by our theory for the H bow. Also the
curves obtained by Hickman's theory [1, page 69], are drawrlhe sfd -curves coincide
with each other within drawing accuracy. As can be seen fromigure 3.5 thedfd -curve
obtained by using the nite-di®erence method is gradually dezasing. There is no jump
in the force on the arrow att = 0. The nite-di®erence method will in general give an
exciency which is smaller than one. Thex-coordinate b of the arrow for which the force
at the arrow is zero, hence the value dfwhere the arrow leaves the string, is a bit smaller
than the brace height.

Hickman used a simple model (H model) which consists of twogiil limbs without
mass, connected each to the grip by means of a linear elastinde The strength of these
hinges is determined in some way by the elastic properties thie real bow. The mass of
the real limbs is accounted for by concentrated masses at thips of the limbs. Because
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Figure 3.6: Shapes of limbs of H bow.

of these masses the force on the arrow has, when calculatednbgans of the H model, a
jump at time t = 0. In [2] it is proved that the exciency = of a H model bow is always 1.
That is why in Figure 3.5 the area below thesfd curve and the area below the&lfd curve,
calculated by means of the H model, are equal.

We mention that in the gures given by Hickman in [1, pages 5 and)], the acceleration
of the arrow measured experimentally, and hence also the ¢eron the arrow, is zero at time
t = 0, which is in contradiction with his own model. The dynamicforce on the arrow in our
theory at that moment is, if there are no concentrated masse the tips m; = 0), equal
to the static force in fully drawn position (see Section 3.6Jhe shapes of the limbs of the
H bow for some positions of the arrow, both static and dynamj@are shown in Figure 3.6.
For b= 1 both shapes are the same. After loosing the arrow rst the dar parts of the
limbs stretch themselves. The released bending energy i€ddo accelerate both the arrow
and the limbs. For a certain value obthe shape in the dynamic and static case are nearly
the same. After that the outer parts of the limbs are deceletad and become more sharply
bent than in the static case. Now the inner parts of the limbs &come more stretched and
loose their bending energy.

In Figure 3.7 thedfd curve and the recoil forceP, as a function of the position of
the end of the arrowb, are drawn. It can be seen that although the forc& at the arrow
decreases after release of the arrow, the recoil foeeincreases and becomes more than
two times the weight of the bow. We note that at a certain momemnit becomes negative;
this means that the archer has to pull instead of to push the hwoat the end of the shooting
in order to keep the grip at its place. In modern archery, hower, it is practice to shoot
open-handed. But then it is impossible for an archer to exed force on the bow directed
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Figure 3.7: Dynamic force E (b) and recoil force
P (b) for the H bow.

to himself and the assumption that the bow is clamped at the g, is violated. Possibly
less kinetic energy will be recovered from the bow when negyat recoil forces occur if the
bow is shot open-handed. In this paper we adhere to the assumop that the grip of the
bow is clamped.

Klopsteg [1, page 141], carried out experiments to investite the motion of the bow
hand while the arrow is being accelerated. He nds, besideshet movements, always a
small excursion of this hand backwards after the loose. Heagts:

"A satisfactory explanation for the slight backward motionis that during the

20 or 30 thousands of a second after the loose, a very consadhés force is being
exerted by the string on the arrow and consequently an equaabkward force is
exerted by the handle of the bow on the bow hand. During this f impulse
the instantaneous value of the force may rise to several hued pounds, but
lasting for an exceedingly few thousands of a second.’

This explanation is in contradiction with the results shownin Figure 3.7. The dynamic
force E at the arrow and the forceP at the bow hand are not equal at all.

In what follows we consider the consequences of a change & olnaracteristic quantity
of the H bow at a time, the other ones being kept the same. The lugs of the static
quality coexcient g given in the following tables are computed by means of the pgoam
described in [2]. Only if the smoothness of thdfd curve or the behaviour of the recoil
force P di®ers clearly from the smoothness of that curve in the casetbé H bow, this is
explicitly mentioned.

The in°uence of a change of the length of the gripl? is shown in Table 3.4. In [1, page
18], the e®ect of a rigid middle section, a grip, is also deal it This is an interesting
subject because it is known that a bow which bends throughoutis whole length is not a
pleasant bow to shoot. It has a so-called "kick". Because Himan did not found striking
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Table 3.4: In°uence of grip length 2L .

Lo | O 0.0714| 0.143| 0.214
g | 0.415] 0.411 | 0.407| 0.403
n |0.88 | 088 |0.89 |0.90
°© 1218 | 218 |2.16 |2.16

Table 3.5: In°uence of brace heightjOH j.

JOHj | 0.0714| 0.107| 0.143| 0.179| 0.214| 0.250
q 0.444 | 0.438| 0.430| 0.420| 0.407| 0.392
’ 091 |0.91 [0.90 | 0.89 |0.89 | 0.88
° 3229 (228 | 225 | 221 | 216 | 212

theoretical di®erences with respect to the static properseof two bows, one withLy =0
and the other with Ly = 0:143, he states:

"The greatest di®erence between these two types of bows is tluaynamic
conditions.’

However, it is seen from Table 3.4 that the values af, ©~ and ° nearly do not change.
From our calculations it follows that the behaviour of the dpamic forceE and of the
recoil forceP, are almost the same for the two types. Hence also with respeéo these
dynamic properties no dear di®erences appear in our theorp Table 3.5 the in°uence of
the brace height is shown. In [1, page 21], Hickman makes th@léwing statement based
on experiments:

"The arrow velocity increases with increase in bracing héigup to a certain
point, after which it slowly decreases with additional inceases in bracing height.
The bracing height for maximum arrow velocity depends priripally on the
length of the bow.’

This does not agree with the results of our theory. From Tabl&.5 we see that there is
always a small decrease of the arrow velocity when the braceigiht is increased. This is
due to both static (g) and dynamic ) e®ects.

To investigate the in°uence of the length 2 of the bow we considered ve di®erent
lengths. From Table 3.6 we nd that there is almost no perceptie change in the exciency
"~ of the bow hence® shows the same tendency ag

Now we consider the in°uence of the distribution of the bendon sti®nesswW and the
massV along the bow. We take

iLijs¢,

Wa(s) = W(Lo)' -0

Lo s+ L; (3.83)
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Table 3.6: In°uence of length 2L.

L | 1.143| 1.214| 1.286| 1.357| 1.429
g | 0.393| 0.400| 0.407| 0.413]| 0.417
1088 [ 088 |0.89 [0.89 |0.89
° 1212 | 215 | 216 |2.18 | 221

Table 3.7: In°uence of bending sti®nes3V and of massV.

W(S) W, W, W, W,

V(S) V3 V; \, V3 \V/!

q 0.417] 0.414| 0.407| 0.407| 0.407| 0.407| 0.407
’ 0.93 {091 |0.89 |0.74 | 0.81 | 0.89 | 0.97
0 225 | 221 | 216 | 198 | 2.08 | 2.16 | 2.28

and

Va(s) = V(Lo)

56
Lis™ . . s L: (3.84)
|

Lij Lo
wheren =1;2;3;4and =0, ,=1=2, 3=1, 4=2. Avalue of |, chosen in (3.84)

needs not to be the same as the one chosen in (3.83). In ordeawid numerical dixculties
we take again

iLjs¢,

W, (s) =107 *if W(Lo) O

10 4; (3.85)

The results of changingW and V separately are given in Table 3.7. We conclude
that if the mass distribution V is taken to be linear {3), the constant bending sti®ness
distribution (W,) is the best, due to both static ) and dynamic( ) e®ects. If the bending
sti®nesaN is linear (W) then the mass distributionV,, which has light tips, is undoubtedly
the best. We refer to Figure 3.8 for itdfd curve.

In Table 3.8 W andV are changed simultaneously. The results in this table shovat
the quantities g, © and ° of the bow nearly depend only on the ratio of the two functions
W and V. However, as can be seen from Figure 3.8 tliéd curve of the bow with W3
and V3 is far more smooth than those of the other two bows. It shows # although the
exciency of a bow with uniform distributions of bending sti®nss and mass is acceptable,
it will shoot almost surely unpleasant.

We now consider the in°uence of the shape of the bow in unbraceduation. This
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Table 3.8: In°uence of bending sti®nes3V and of massV.

WV | Wq; Vi | Wo Vo | W3 V3
q 0.417 | 0.414 | 0.407
’ 0.87 0.86 0.89
° 2.16 2.15 2.16

75

Figure 3.8: dfd curves for bows Wi;Vy),

(W2; V), (W3; V3) and (Ws3; Vy).
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Figure 3.9: Three types of recurve po.1(S),
Ho;2(s) and po;3(s).

shape is determined by the functiony(s). We choose

bo1=0;0- s Lo; 1= 012; Lo- s+ L; (3.86)
i L

Pb2=0;0- s- Lo;po.Z:iO:SS' O Lo- s- L; (3.87)

' ' Li Lo
i L

ls=0:0- s- Lo; Los=0:12] f'_ Zilor s L (3.88)
| 0

The three forms are drawn in Figure 3.9. The H bow in unbracedtsation is straight,
hence it is part of the y-axis,l)y © 0. The unbraced situations (3.86), (3.87) and (3.88) are
called to possess recurve as we mentioned before. We havehioose a moderate recurve
in order to agree with the assumption that the string has comtct with the bow only at the
tips of the bow. It is seen from Table 3.9 that the exciency of th recurved bows is slightly
smaller than the exciency of the H bow [y ©~ 0). In the case ofpy.z however, there is a
more important favourable in°uence of the recurve on the stat quality coexcient g. This
agrees with the experience of Hickman [1, pages 22, 24 and. 30][2] a bow with even a
coezcient q equal to 0.833 is described. However, for this bdawe string lies partly along
the bow during some time interval. In a following paper we hapto be able to describe
the dynamic performance of such a bow.

We stress that for a bow with a shape given byy.; the recoil forceP at the bow hand
is positive at all times in between loosing the arrow and itehving the string (Figure 3.10).
This is in contradiction to all other bows mentioned so far.

Next the in°uence of the mass of the arrow is considered. In Teb3.10 the consequences
of changingm, are collected. Now also the product off and ~ is given, being a measure
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Table 3.9: In°uence of shape of unbraced bow.

Bo |l 0| toa | Moz | o3

q | 0.407 | 0.424| 0.457| 0.487
-~ 10.89 |0.83 |0.81 |0.83
o | 216 |214 |2.19 |2.29

Figure 3.10: Dynamic force E(b) and recoil
force P (b) for recurve po 3.

of the energy imparted to the arrow. The factorq is 0.407 in all cases. The rst and
last given arrow masses in Table 3.10 are of little practicamportance, however, they
show what happens in the case of a light or heavy arrow. Whendhmass of the arrow is
somewhat smaller than the smallest mass mentioned in thiskie the force exerted on the
arrow by the string becomes zero before the string is stretett and hence our theory may
be no longer valid. We remark that the decrease of the excienayith the decrease of the
arrow mass, shown in Table 3.10, does not occur in the H mod@&hkble 3.10 shows further
that although the exciency of a bow shooting a light arrow is bd, the muzzle velocity will
be high, a fact already mentioned in many books about archery

In [1, page 167], Klopsteg de nes the concept of virtual mass:amass which, if it were
moving with the speed of the arrow at the instant the latter laves the string, would have
precisely the kinetic energy of the limbs and the string at tht instant. If K}, denotes the
half of the virtual mass then

A=(m,+ K, T : (3.89)
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Table 3.10: In°uence of mass of arrow 2n,, q = 0:407.

m, | 0:0192| 0:0384| 0:0769| 0:1538| 0:3077
’ 048 |069 |0.89 |098 |0.98
q |020 |028 |0.36 |0.40 |O0.40
° 320 272 |216 |163 |1.14

Figure 3.11: sfd curve F(b) and dfd curves
E (b) of H bow, di®erent arrow masses @,, Ta-
ble 3.10.

If we de ne Ky, = K,=m, we obtain by using (3.77)

. . ,q:
Kp=m, Si " (3.90)

Klopsteg continues:

“That the virtual mass is in fact a constant, has been determéed in many
measurements with a large number of bows.’

However, if we computeKy, using (3.90) for three values o, = 0:0384 0:0769 0:1538, we
get K, = 0:017 0:010 0:003, respectively. So, by our theorKy, is de nitely not indepen-
dent of the mass of the arrow in the case of the H bow.

In Figure 3.11 we depict onesfd curve and a number ofdfd curves for di®erent values
of m,. If the massm, becomes larger thedfd curve approaches thesfd curve. With
respect to the maximum value of the recoil forc® we note that, if m, tends to in nity,
we get a quasi-static situation and hence alsB as a function ofb will follow closely the
sfd curve. It appeared that the maximum value ofP increases if the mass of the arrow
decreases. Fom, = 0:0192 we even get a maximum value &f equal to about 5 times the
weight a of the bow.

Finally the in°uence of concentrated masse®, at each of the tips of a bow is described.
For that purpose we give the parametem, three di®erent, non-zero values. In Table 3.11
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Table 3.11: In°uence of concentrated tip masseany, g = 0:407.

m; | O 0:0769| 0:1538| 0:2307
’ 0.89/0.87 |0.84 |0.82
°© 1216|215 |211 |2.08

Figure 3.12:dfd curves for H bow with masses
m; at the tips, Table 3.11.

the value ofq is 0.407 in all cases. From this table it follows that the etciecy decreases
slightly if the mass m, at the tips increases. In Figure 3.12 thelfd curves are drawn.
It is seen that the forceE on the arrow possesses a jump at the time= 0. This jump
becomes larger whem, increases. Most of the energy used to accelerate at earlytargs
the concentrated masses at the tips is transferred later oo the arrow. This follows from
the fact that the forces on the arrow grow with increasing vales of in the region where
the string becomes more stretched.

In [1, page 47], Hickman describes an experiment made to nddle®ect of the mass
at the bow tips. We quote:

"Measurements of velocities for di®erent weight arrows stemvthat a load of
400 grain (0.02592 kg) added to the arrow weight, reduced tkelocity by about
42 feet per second or 25 percent. In contrast to this, the sanead added to
the tips only reduced the velocity, even for a light arrow, byabout 1 1=2 feet
per second or approximately one percent.'

From Table 3.10, third and fourth column, it follows that if we increase the half arrow
massm, by 0.0769, the velocity decreases by 24.8 percent. From Tak®.11, rst and
second column, it follows that if we add a mass; = 0:0769 to each of the tips the velocity
decreases only by 0.7 percent. Although we do not know whatpg of bow Hickman used
for his experiment, his ndings agree qualitatively with thee results.
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Figure 3.13: Normal force T(L;t) at tip, both static and dynamic for di®erent values of ns.

3.6 On the behaviour of the normal force Tatt=0

In this section we discuss the behaviour of the normal or loitgdinal force T in the bow
at the time the arrow is releasedt = 0. In an early attempt we took for the rst time step,
fromt =0to t = ¢ t in the nite-di®erence scheme (Section 3.4) = 1=2. For the initial
values of the unknownx;y; M and T we took their values in the static fully drawn position.
When massesn; 6 0 were present at the tips we found that the resulting solutn a non-
physical oscillatory character, indicating that the initial values for the unknowns were not
suzciently accurate. To improve the procedure, a fully implkit backward-time di®erence
scheme { = 1) for the rst step ( k = 0) is chosen (Section 3.4, ii)). In this way the initial
values of the normal forcel are not used. We will now show that the static values of
cannot be used with respect to our method as initial values,hen concentrated masses at
the tips are present.

In Figure 3.13 the normal forceT (L;t) at the tip is drawn as a function of time, for a
very small time interval after the release of the arrow. Thisiormal force is calculated by
the method described in Section 3.4, for the bow has

B(91:49,10:16, W(3); V(3); b~ 0;0:01250:0125jOHj = 15:29;
71:12: 1553 0:1625): (3.91)

where W and V are de ned by (3.68), (3.69) and (3.70). From (3.91) it is seethat
m; = M, = 0:0125. If we extrapolate the dynamic normal forcé& (L;t) with t> O to time
zero, we nd a value unequal to the static normal forc&(L) at the tip. This static force
is indicated at the vertical axis of Figure 3.13. The magnitde of the jump appeared to be
dependent on the massn, at the tip. It is zero for m; = 0. For increasing values ofm, it
“rst increases but then decreases, such that fan, ! 1  the jump tends to zero again.
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Figure 3.14: Normal force T(L;t) at tip for di®erent values of °. 4 :° =1, +:° = 10,
+:°=100,£ :°=10000and |: °=1.

This jump phenomenon seems to be related to the inextensibjl of the bow by which
possibly longitudinal disturbances can be transferred itentaneously. In order to inves-
tigate this we replaced the constraint (3.31), expressindhé inextensibility of the bow by
the relation

LB 1 oo i¢. 6. %
T(s;t)=1=2°U(s)'xb + y0 | 1 : (3.92)

where U(s) is the distribution function of the strain sti®ness (crossectional area times
Young's modulus) of the bow and® is a parameter.

Increasing values of correspond to less extensibility of the bow. In Figure 3.1he
normal force is shown as a function of time, again immediatelfter the release of the
arrow. The sti®ness parametet ranges through the values 1, 10, 100, 10000. Also the
curve for an inextensible bow{ !1 )is drawn. It can be seen that, if the bow is de nitely
extensible,® = 1;10 or 100, the normal force at the tip is continuous with resge to time
at t = 0. If the strain sti®ness is increased the obtained curve "neerges" to the curve in
the inextensible case and a jump appears. For values®fLy - s - L, we observed the
same behaviour of the normal force.

We mention that for a consistent treatment of an extensible &w the Euler-Bernoulli
equation (3.32) has to be changed also, because then the paeter s is no longer the
length parameter. However, by the foregoing results it is aeast reasonable that the
inextensibility of the bow has a strong in°uence on the behavur of T after the release of
the arrow.
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Chapter 4

The static recurve bow

4.1 Summary

In a former paper we dealt with some aspects of the dynamics tbe non-recurve bow, of
which the string was assumed to be inextensible and withoutass. One aim of this paper
is to investigate the in°uence of the elasticity and mass of #hstring on the non-recurve
bow. The main object is to discuss the dynamics of the statiecurve bow. The governing
equations of motion lead to a system of non-linear partial @erential equations with initial
and boundary conditions. These boundary conditions vary abptly in the course of the
dynamic process. Numerical solutions are obtained using aite-di®erence method. The
vibratory motion of the bow after the arrow has left the strirg is described for a clamped
bow as well as for a bow shot open-handed.

4.2 Introduction

The bow is a mechanical device to propel a projectile, whick generally an arrow. To that
end a string, shorter than the bow, is placed between the tipsf the bow. Then holding

the middle of the bow in place with the "bow" hand, the string § drawn with the other

hand, the "shaft" hand. During this, additional energy is sbred in the elastic limbs and
to a lesser extend also in the string. A part of this energy isfter release, transferred to
the arrow.

One way to di®erentiate between types of bows is to do this onelground of the shape
of the unstrung bow. Then we distinguish between the non-reose bow, the static-recurve
and the working-recurve bow. A recurved or re°exed bow is a boaf which the limbs are
in unstrung situation curved away from the archer if he/she blds the unstrung bow just
like during shooting. For such a bow it is possible that in thestrung conditions the string
lies along part of the limbs.

In the case of a non-recurve bow the string has contact with ¢hbow only at the tips in
all situations, static or dynamic. The bow with °exible straight limbs (straight-end bow)
Figure 4.1.a, but also a bow of which the °exible limbs meet atraangle (Angular bow),

83
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Figure 4.1: Shapes of di®erent types of bows: (a) and (b) non-recurve, (Static-recurve and (d)
working-recurve.

see Rausing [16] and Figure 4.1.b, and even a bow with a sligbtex are non-recurve bows
by de nition.

The static-recurve bow is a bow which possesses rigid, stgiy curved outer parts
(ears) of the limbs. In the braced situation the string restsipon the string-bridges, see
Figure 4.1.c. These string-bridges are tted to prevent thetsng from slipping past the
bow. If such a bow is drawn, at some moment the string leavesetbridges and has contact
with the bow only at the tips. Because the ears are sti®, they dwt deform when the bow
is drawn. After release the string touches at a certain momethe string-bridges again
before the arrow leaves the string. Some Tartar, Chinese, ®8&n, Indian and Turkish are
static-recurve bows, see Rausing [16], Payne-Gallwey [14dtham and Paterson [10], Faris
and Elmer [4], or Balfour [1].

The entire limbs of a working-recurve bow are °exible. In thefaced situation the string
has contact with the bow along a part of the limbs near the tipssee Figure 4.1.d. The
length of those parts diminishes with increasing draw-letiy. If the draw-length exceeds
a certain value the string leaves the limbs from the tips. A#r release both phenomena
occur in reversed order before arrow exit. Essential di®eoenbetween the static-recurve
and working-recurve is that for the static-recurve the poits of contact of string and limbs
change abruptly from tip to string-bridge or inversely. Forthe working-recurve the points
where the string leaves the limbs change gradually. Most meih bows are working-recurve
bows.

In [9] we dealt with the statics of all three types of bows. Ing] we considered the
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dynamics of the non-recurve bows. We assumed the string to extensible and without
mass and stopped the computations at the moment the arrow hes the string. In this
paper we investigate the in°uence of the mass and elasticity the string on a non-recurve
bow. Further we consider the behaviour of the bow and stringfi@r the arrow has left
the string. This is done for two di®erent cases, one by whichehbow is clamped and
the other for a bow shot open-handed. The main object of thisaper is the dynamics of
the static-recurve bow. The dynamics of the working-recuevbow will be the subject of a
forthcoming paper.

In reality a static-recurve bow is very complicated. It nedy always is made of wood,
horn and sinew, hold together with glue and protected from # weather by a thin covering
of tree bark, lacquer or leather. This holds also to a certaiextend for the English longbow,
where the di®erent properties of sapwood and heartwood ardiblerately put to use. In
spite of this, these bows are considered as an inextensilkiséc line endowed with bending
sti®ness and mass distribution, which depend on the propes of the employed materials
and structure of the bow. Other assumptions are the symmetrgf the bow with respect
to the line of aim, the bow is centre-shot and the rigid arrowsi released without lateral
de’ections. Also neither internal or external damping nor hsteresis are taken into account.
The absence of damping throws some measure of uncertaintioiour calculations especially
for what happens after the arrow has left the string.

In Section 4.3 we derive the governing equations of motiontbie static-recurve bow. For
such a bow a simple lumped parameter model for the string isats The dynamic process
of shooting is divided in a number of time intervals which ardounded by characteristic
events. These events are: the string touches the string-ges again, the bow leaves the
bow hand and the arrow leaves the string. During each of theiene intervals, of which the
length is not known beforehand, we have the same system of tiardi®erential equations,
however the boundary conditions are di®erent. The initial calitions are determined for
the rst time interval by the static fully drawn position and f or the succeeding intervals
by the end conditions of the preceding interval.

In the second part of Section 4.3 we give the equations of aiay now considered as a
continuum. This mathematical model for the string is used dg for non-recurve bows. In
this case we get at each time interval two systems of partiai®erential equations de ned
on two space intervals, one along the bow, the other along tlstring. These systems are
connected by the boundary conditions at one end of each spaoterval.

In order to obtain a numerical approximation of the solutionof the equations of motion
we use a nite-di®erence method. In Section 4.4 a nite-di®erenscheme is given for the
static-recurve bow. After that, the nite-di®erence equatins for the motion of a string
considered as a continuum, are discussed. These equatiore avith the exception of the
boundary conditions, the same as the equations of motion ifé case of a re ned lumped
parameter model for the string.

In [9] and [8] we introduced quality coezxcients to be able to copare the performance
of di®erent bows. One coezcient is related to the amount of erggr stored in the bow in
pulling it from the braced situation to full draw. Another one is the exciency, which is the
percentage of energy put into the bow that is imparted to the mow. Finally, the muzzle
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velocity, this is the velocity of the arrow when it leaves théow. For °ight shooting, a form
of shooting with the object of reaching the greatest distamg it is the last mentioned quality
coezxcient which is important. For target shooting and huntirg the exciency is important
and also the smoothness with which the bow delivers its powedn Section 4.5 we re-
examine the de nitions of these quality coe+cients. They aresed in Sections 4.6¢ @.12
in order to judge the performance of a bow.

Hickman [6] and recently Marlow [12] developed mathematitanodels for a type of
a non-recurve bow. They used a model where the elasticity dig limbs is concentrated
in two elastic hinges. The mass of the limbs is accounted foy ltoncentrated masses
placed at the rigid limbs. Hickman assumed the string to be extensible. Marlow dropped
this assumption and he claims that the results of his elastistring considerations are in
reasonable agreement with experiment and remove the lon@stling discrepancy between
theory and practice. However, in Section 4.6 we show that hieodel can yield unreliable
results. It turns out that when the model for the string is repaced by a more realistic one
possessing elasticity, however keeping the limbs rigid amdtating about elastic hinges,
unrealistic heavy oscillations of the acceleration forcecting upon the arrow may occur.

In Section 4.7 we discuss the in°uence of the strain sti®nessdamass of the string of
a non-recurve bow. Changing both parameters simultaneoygjives us the opportunity to
deal with the in°uence of the number of strands of a string. Imeasing this number makes
a string sti®er hut also heavier. These e®ects have an oppositeience on the shooting
performance. It appears that there exists an optimum numbeof strands. At the end of
Section 4.7 we compare our results with those obtained expeentally by Hickman in [6].

The vibratory motion of the bow after the arrow has left the sting is investigated in
Section 4.8. It appears that the tensile force in the stringttins its maximum after arrow
exit. This maximum force determines among others the numbeif strands needed to make
the string strong enough. In the second part of Section 4.8 vdtscuss the in°uence of the
mass of the grip when the bow is shot open-hand.

In Section 4.9 we start with a straight-end bow and change saof its parameters one
by one. In [8] we followed the same procedure, there we statteith a bow described by
Hickman in [6]. The bow we are interested in now is more rediis the string is extensible
and possesses mass while the tips of the limb have non-zerossper unit of length and
bending sti®ness.

In Section 4.10 we consider again the model of a bow consigtiaf a grip, two elastic
hinges, two rigid limbs and an inextensible string. Howevelin this case the limbs have
a sharp bend, hence the bow resembles a static-recurve bowislpossible to reveal with
this simple model some essential favourable features of atst-recurve bow.

The static-recurve bow is also the subject of Section 4.11.8Mave no accurate experi-
mental information with respect to these bows. The shape dfi¢ unstrung bow, as depicted
in a number of books and papers shows a large variety. Therefove deal in Section 4.11
with a few bows which seem to be representative for the statrecurve bow. The lack of
detailed information however, makes that we have to be cawotis with the interpretation of
the results. Yet, it is likely that the performance of a statc-recurve bow di®ers not much
from the performance of a long straight-end bow. For a compaile performance, however,
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it can be chosen shorter and this makes the static-recurve Waeasier in operation.

In Section 4.12 we compare the performance of some bows, mecurve and static-
recurve, mentioned in literature. The results obtained in &ction 4.9 and Section 4.11 are
used to explain the di®erences in the performances.

In Section 4.13 we check the nite-di®erence procedure deysd in Section 4.4. To
that end we consider a vibrating beam with small de°ections,dnce the linearized theory
applies. Numerical solutions by means of our nite-di®ereneaethod are compared with
the results obtained by an analytic method.

4.3 The equations of motion

In the rst part of this section we give the equations of motionfor a static-recurve bow.
The mass of the extensible string is distributed as point mass over the two tips and
the arrow. In the second part we give the equations of motioroff an extensible string
possessing mass per unit of length. The string is then considd as a continuum. These
string equations will be used for non-recurve bow.

Figure 4.2 shows a static-recurve bow placed in a Cartesianardinate system X;Yy)
in the unbraced, braced and fully drawn situation. Becausehe bow is assumed to be
symmetric with respect to the line of aim coinciding with thex-axis, we restrict attention
to the upper half of the bow. The length coordinates along the bow is measured from
the midpoint, placed atO. For 0 - s - L, we have half of the rigid part in the middle
of the bow, called "grip". The mass of this grip is denoted by ®,. The °exible part
Lo - S- L, or the "working part of the limb", is endowed with bending st®nessW (s)
and mass per unit of lengthV(s). For L, - S - L, where 4 is the total length of the
bow measured along it from tip to tip, there is a "rigid end piee" or "ear". Its mass and
moment of inertia with respect to the centre of gravity Ky, Ycg) are denoted bym, and
J., respectively.

The time dependent variables in the unbraced situation (Figre 4.2.a) are provided
with a subscript "0". The shape of the bow in this situation isgiven by the function p,(s),
(Lo - s+ Ly), which is the angle between thg-axis and the tangent to the bow, reckoned
positive in clockwise direction.

In Figure 4.2.b the bow is braced with a string connected to #nbow at the tip, where
the loop ts in the nock, of which the place is denoted byX;;y;). We see that in this
situation the string leaves the bow from the string-bridge wth coordinates (Xy;yp). The
length of the string without load is denoted by 2. We assume that the material of the
string obeys Hooke's law; the strain sti®ness is denoted bi. The string possesses in
unstrung situation a mass per unit of lengthVs and its total mass is Ins . The distance
jOH|, see Figure 4.2.b, is as usual called the "brace height".

When the bow changes from the braced situation= jOHj, wherebis the X-coordinate
of the middle of the string, to the fully drawn situation b = jODj, see Figure 4.2.c, at a
certain moment the string leaves the bridge. After this it ha contact with the bow only
at the tip. The distance jODj is called the "draw" and the forceF (jODj), exerted in the
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Figure 4.2: Three situations of the static-recurve bow: a) unbraced, b)braced, c) fully drawn.

middle of the string in the X-direction, the "weight" of the bow. In the fully drawn position
the time dependent variables are provided with a subscriptl".

By releasing the drawn string at timet = 0 and holding the bow at its place with the
bow hand, an arrow with mass &1, is propelled. We assume a that the limbs and string
and arrow move in a °at plane, the K; y)-plane.

The force acting upon the arrow, positive in negativex-direction is referred to askE.
During the acceleration at some momerit = t,, the string touches the string-bridge again.
From that moment a part of the string, between the tip and the Ibidge, sticks to the bow.
We assume that this part slips along the bow without friction

If the acceleration of the arrow becomes negative, the arrol@aves the string. The
moment is denoted byt; and the velocity of the arrow at that moment is called the muZze
velocity, denoted byg;.

If the bow is shot open-handed then it is impossible for an drer to exert a force on
the bow directed to himself. This means that after the time = t,, the moment the force
exerted on the bow hand, the recoil forc® reckoned positive in the positivex-direction,
becomes negative, the centre of the bow will move away frometharcher. One of the
physical constants which determine the motion of the bow for > t, in this case is the
mass of the grip Z1y. Unless stated otherwise we assume that the bow is shot claetp
then the mass of the grip is unimportant.

As in [8] we introduce dimensionless quantities by using théraw jODj, the force
F (jODj) and massmy, of one of the limbs, as units of length, force and mass, respeely.

The massmy is given by

My=  V(5)ds+ mMe: (4.1)

Lo

Dimensionless quantities are denoted without a bﬂ{“, so we have, for instance], =
lo jODj, E = E F(jODj), my = my mp and t = t jODj=F (jODj)**?. Quantities having
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dimensions will be expressed, unless stated otherwise, netfollowing units: length in cm,
force in kgforce, mass in kg mass and time in .03193 sec

We introduce a short hand notation for a bow and arrow combirteon which resembles
the one used in [8], however, because here the problem is mgeaeral, a larger number of
parameters is needed. We de ne a bow B by

B(L; Lo; W(3); V(3); Ho(S); Ma; My; J¢; Me; Jo; Mg; (4.2)
Xegos Yoo ybO,Yto,ytO,Lg,Us,Tﬁs,]OHj or I;
jODj;f(J'ODJ);mb)

For Tﬁe = O; Jt = Je = O,Tﬁg = O’ 7090 = Ybo = Yto = YO(L)’ ycgo ybo yto VO(L)’
L,=1L,Us=1,ms =0 we have a non-recurve bow dealt with in [8]. The parameters
m; and J; are in the case of the static-recurve bow zero, however,inetftase of the non-
recurve bow they are the mass and moment of inertia respealy of rigid bodies xed to
the bow at both tips. We now turn to the equations of motion. Tte limb is considered
as an inextensible elastic beam, by which we neglect dampjraiear and rotary inertia To
avoid complications we use, as we mentioned already in theseaof a static-recurve bow, a
very simple mathematical model for the string. The elasticanstant (tensile force divided
by the relative elongation) is equal to the strain sti®ness dhe string Us. The mass of
the string is accounted for by placing one third of the mass diie string 2m; at the end of
the string where it ts in the nock of the limb and one sixth at the other end, where the
arrow contacts the string. The equations which describe th@otion of the °exible part of

the limb are; s 2 [Lo;L2], t> 0,""= 2"0= &
Vu = (Tx9%+ (MY9°; (4.3)
V= (TY)% (MXO°; 4.4
= U (4.5)
Y=V (4.6)

where M (s;t) is the resultant bending moment andT (s;t) the normal force reckoned
positive when it causes tension in the limbs. Because we asg&uithe limbs to be inextensible
and the Euler-Bernoulli equation to be valid, we have

XP2+ Y =1 (4.7)
M = WY y&®+ 1) : (4.8)

The boundary conditions ats = Lo, forO<t - t,, read

X(Lo;t) = Xo(Lo) ; Y(Lo;t) = Yo(Lo) ; Yo(Lo)
x{Lo;t) = xg(Lo)yo(Lo); (4.9)

In this time interval the bow is clamped and the recoil forcé® equals

P(t) = 2 M ALo; t)yg(Lo) + T(Lo;t)xg; (Lo) (4.10)
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For t > t , the rst equation of (4.9) has to be replaced, if the bow is shadbpen-handed,
by the equation of motion for the grip in thex-direction

MgU(Lo;t) = M YLo;t)yg(Lo) + T(Lo;t)xg; (Lo) : (4.11)

The boundary conditions ats = L, are connected with the forceK in the string by the
three equations of motion for the ear. These equations ready O <t - t,

K(bi x) .

Melgg = i T(L2t)XAL2it) i MALot)yALaost) + I (4.12)
Meeg = T(Lai YLD i ML DKL)+ (4.13)
Je(YAL2; t)udLost) i xY(L2;)vALost)) =
M(L2;t) i T(Lzt)hr + MYLz;t)hg + Khy ; (4.14)
where
Ueg = U(L2;t) + ( Veg i Yo(L2))uYLo; t) +( Xego | Xo(L2))VAL2;t) ; (4.15)
Veg = V(L2it) + (Ve i Yo(L2))VAL2it) + (Xeg i Xo(L2))uYL2;t) ; (4.16)
and
hr = (Xeg i Xo(L2)Y(L2) i (Ve i Yo(L2))X3(L2) (4.17)
hqg = (£Xcgo i Xo(L2))X3(L2) i (Yego |¢YO(|—2))Yo(|—2) (4.18)

hg = XO(int)Yt"' y°(L2,t)(b, X)) (Xt i Xego)Xg(L2) + (Vi i ngo)é/ (|—2)
Fy¥Last)ye i XYLz t)(bi X0)g (Xto i Xeg)Yo(L2) i (Vio i Yew)Xg(L2) =I(t);  (4.19)
with

i ¢ [ ¢
Xe = X(L2;t) + Vo i YO(L2)¢XO(|-2JU+ Xty i Xo(L2) YiL2;t) ; (4.20)
|
Ve = V(L2 )+ Yio i Yo(L2) YL2it) + (Xt i Xo(L2)XxY(L2;t) ; (4.21)
The x-coordinate of the middle of the stringb is given by
b(t) = x + (17§ yH)2: (4.22)

The time t,, the moment the string touches the bridge again, is the timepon which the
followmg equation is satis ed

_ XO(Lz t)ys + YL t)(bj a:(b) (Xtol Xop)X9(L2) + (Vi i ybo)yO(LZ) +
yo(l-z OYsi XAL2:)(Di Xo) (Xt i Xo)YS(L2) i (Yeo i Yno)Xo(L2 ) =0; (4.23)
where
i ¢ i ¢
Xo= X(L2;) + Vi i Yo(L2) XAL2;t)+ Xo i Xo(L2) YAL2t) ;
(4.24)
i ¢ i ¢
Vo= V(L) + Yo i Yo(L2) YAL2it)+ Xuy i Xo(L2) X{Lz;t) : (4.25)
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For t > t , the following changes in the formulas have to be made. In (2)lthe term
K (bj x¢)=Ihasto be replaced b (bj xp)=(li hy), in (4.13) the term Ky =l by Ky ,=(lj hy)
and in (4.14) hg is given by

£i ¢
he = . XLz Yo+ YAL2; (D] Xb& (Xbo i Xego)Xg(L2) + (Vo | ngo)yO(LZ&
yo(Lz,t)Ybl xAL2; t)(bi Xp) (Xbol Xego)Yo(L2) i (Yoo i Yego)Xg(L2)
=(I(t) i hy); (4.26)

with
h2 = (Xto i Xo)®+ (Yeo i Vo) (4.27)

Equation (4.22) has to be replaced by

B(t) = X+ (17 )2 y2 (4.28)
The relation between the force in the string and its length is
K=Uslij lg)=lp;t, O: (4.29)

This equation is also valid fort >t , because of our assumption that the string experiences
no friction force from the bridge. The mass at the end of the shg which has contact with
the bow is taken part of the ear. So, the mass, in (4.12) and (4.13) is actually the mass
of the ear plus one third of the mass of the string @g. In the same way the moment of
inertia of the ear J, is adapted.

We denote the velocity of the arrow by

c=h: (4.30)
Then the equation of motion for the arrow becomes
i 1I=2E(t)+1=8msc=(my+1=83mg)c=j K(bj x¢)=I; 0<t - tp; (4.31)
and
i 1I=2E(t)+1=83mgc=(my+1=3mg)c=j K(bj xp)=(Ii hp); tp<t: (4.32)

The arrow leaves the string when the force E becomes negatiW&e denoted this moment
by t,. Fort>t, in the boundary conditions (4.31) or (4.32) we have to puim, equal to
one sixth of the mass Ing of the string. In addition to the equations of motion and the
boundary conditions we have to give the initial values of thelependent variables. The
initial values of the unknown functionsx;y; M; T;b;K are the values of these functions
occurring in the fully drawn position and the velocitiesu; v and c are zero fort = 0. The
bow in fully drawn position is described by a boundary valuerpblem for a system of ordi-
nary di®erential equations. These equations are obtained pwutting the left-hand sides of
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(4.3)¢¢@.6), (4.12) ¢@.14). equal to zero. Further the bow is clampedyequals 1 and the
left-hand side of (4.31) equals 1=2, while F (jODj) occurring in M = M=(jODjF (jODj)),
W = W=jODj?F (jODj), U = U=F(jODj) and K = K=F (jODj) is unknown.

We now derive the equations of motion for a string treated as@ntinuum, only able to
withstand tensile forces. Longitudinal and transverse vitations of the string are possible.
We use this model in the case of non-recurve bows, then theisty has contact with the
bow only at the tip We recall that the string possesses in thenstrung situation a mass per
unit of length Vs, that the material of the string obeys Hooke's law, with stran sti®ness
Us. Furthermore we assume thatVs and Us are uniform distributed along the unloaded
string.

We introduce a length coordinata™ along the string, measured from the point of attach-
ment of the string to the bow, thus 0- 1 - I(f), wherel(t) is still an unknown function of
time. Using dimensionless quantities in the way mentionedetbore, the equations of motion
for the string become, for 0 r - I(t), t> O,

Veus = (Kx9)°; (4.33)
Vevs = (Ky )’ (4.34)
Xs = Us ; (4.35)
Ys = Vs (4.36)

where "¢' indicates the material derivative and '0'= @@r The functions xs(r; t) and ys(r; t)
are thex- and y-coordinates of the string, respectively. The velocitiesix- and y-direction
are denoted byus(r;t) and vg(r;t), respectively. The tensile force&K (r;t) in the string is
in this model a function ofr as well ast. Hooke's law reads

@(ro;t)
@s

and the equation which expresses that is the length coordinate

(x)?+(y)?=1;0- Ro- lo; t, O; (4.38)

We note that when the string is taken to be inextensible the dhined equations agree with
equations (4.3} ¢@.8) for the bow with W(s) =0:

The boundary conditions atr = 0 are linked to the boundary conditions of the bow at
s = L, where the string contacts the limb. Although we consider fahis model only non-
recurve bows, it is possible that at the tip of the elastic liro we have a rigid body possessing
massm; and moment of inertiaJ, with respect to the tip. The boundary conditions, which
form the equations of motion for the rigid body become, far> 0

meu(L;t) = | T(Lt)xAL;t) i MAL;t)yYL; t) + K (0; t)x2(0;t) ; (4.39)
i mv(Lt) = (T H)YAL ) | MYL XYL t))(t) i x(L;t)) + K (0;t)yd(0;t) ; (4.40)
JYAL UL ) i xAL VAL ) = M(Lit) (4.41)
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The boundary conditions atr = | become in this case

i 1=2E(t) = mau(lit) = | K(;t)x2(I;t) ; (4.42)

and
ys(it)=0; (4.43)
wherel = I(t) and (4.43) takes into account the assumed symmetry with rpect to the

line of aim, the x-axis. The time the arrow leaves the string is determined byhe condition
E(t) =0. For t>t,, m,is zero in (4.42). Thex-coordinate of the middle of the string
Xs(l;t) is as in the case of the static-recurve bow denoted liyt) and the velocity us(l;t)

again by c(t).

The equations of motion of the limb and the boundary conditios ats = L, are the
same as those for the static-recurve bow. The initial condins are obtained from the
equations of motion in the same way as we did for the staticgarve bow.

In order to get numerical approximations for the solution othe problem discussed in
this section, we develop in the next section a nite-di®erengezocedure.

4.4  Finite-di®erence equations

In this section we give the nite-di®erence scheme used to getnmerical approximations
for the solution of the equations of motion given in the prewus section. We deal rst with
the static-recurve bow and after that with the non-recurve bw in which case we use the
continuum model for the string.

We consider a grid, with respect to the elastic part of the lifm in the s;t-plane;Lg --
L,, t, 0. The gridpoints are denoted by j(¢ s; k¢ t), wherej = | 1(1)ng+ 1, nsCs =
L,j Lo andk =0(1)n, n; an integer large enough to cover the time interval of interés
In order to get a concise notation we introduce the followingi®erence operators

fj+1=2;k i 1:ji 1=2;k
¢s
If we use a weighted average of forward and backward approxation, equations (4.3% ¢ ¢
(4.8) become

i ¢ i ¢
Vi(Uik+1 i Uk )=Ct =1 HTEXjx+1 + HEMEYjer + (1§ 1) HTEXj + HEMEY

ifj;k =

; ¢ fj;k =05 (ifj +1=2:k i ifji 1=2;k) . (444)

;1 =0)ns; ¢ _ (4_4(]1;3)

Vi (Viksr i V)=t =1 IJ—f(TJ—“Y)j;k a + HEMEX)ja + (1 1)Ii(TiY)j;k + HEMEX)jx
;1 =0()ns ; (4.46)
(Xjk+1 i Xk )=Ct =Wk + (1§ ujx 5 ] =0(@Q)ns; (4.47)
(Vik+1 i Yix)=Ct =V + (10 )ik 5 ] =0(Q)ns; (4.48)
1=(£% 12001) *+ (2 122601)% 5 | =0(1)Ns +1 ¢ (4.49)

| . .
I\/Ij;k +1 :Wj ¢ Xj;k +1 izYj;k +1 1 ¢ yj;k +1 izXj;k +1 + Pg(l ¢ S) ;J = 0(1) Ns ;
(4.50)
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respectively. The boundary condition (4.9) ats = Lo becomes for & (k+1)¢ t<t,
Xok+1 = Xo(Lo) ; Yok+1 = Yo(Lo) ;y8(Lo)¢ Xok+1 = X8(|-o)¢ Yok+1 - (4.51)
For t, < (k+1)¢ t and when the bow is shot open-handed, the rst equation has toeb
replaced by the apprOX|mat|on of (4.11)
Mg(Ugk+1 | Uok)=Ct =1 ‘¢ M0k+1y (Lo) +1=2(T1ok+1 + T; 12241 )Xo(Lo)
@i n'e MoxYo(Lo) +1=2 (Tipk + T; 1= 2k)Xo(|—o) 1 (452)
To compute the recoll forceP (t) (4.10) we use the formula
P+ = 2'¢ Mo+t Yo(Lo) + 122 (Topper + T; 122, k+1)Xo(|-o) (4.53)
When this force becomes zero we have= t,.
ForO- (k+1)¢t- t,the boundary conditions ats = L, (4.12)¢ ¢@.14) are approxi-
mated by
me(uCgk+l i chk):(]:t =
|
1 1:2£:;(Tn5+1=2;k+1 + Tnei 122k+1 )¢ Xngk+1 i € Mugiks1 € Yngkear + Ktl;k+1(b<+1oi Xty oy ) =lek+1
(Xi 1) i 122 (Tnger=2k + Tngi 1226)€ Xngk i ¢ Mgk @ Yoo + Kgr(be i Xg )=le 5 (4.54)
m.e(chk+1 [ VCgk):q: t=
1 122 (Thgsr =241 + Thgi 122641 )€ Yngiker 0 € Minger € Xngar + K¢k+1thk+1 =lgk+1
[
(1i 1) i 1=2 (Tns+l =2;k + Tnsi 1=2;k)¢ Ynsik i ¢ Mns;k¢ Xng:k + Kt[;kytkzld;k ; (4-55)
and
[
Je (* ¢ V¥ngk+r (L7 1)C Ynow)(C Ungiksr i € Ung)=C¢ t&
(1 C¢ Xngiker (10 1)C Xngk)(€ Vw1 i CVng)=Ct = ¢
i
P Mpgk+t i 172 (Thgrr=2k+1 + Thgi 122k42)N7 + € My e hg + Kq;k+J¢th+l +
|
(Li *) Mnoki 122 (Thger=2k + Thgj 1=20)h7 + ¢ M khg + Kgkhg, s (4.56)
whereht and hg are given by (4.17) and (4.18), respectively. The velocigeof the centre
of gravity of the ear in the x- and y-direction are approximated by
Ucgis = Ungk+t + (Yego i Yo(L2))€ Ungik+1 + (Xegy i Xo(L2))C¢ Vngk+r sk =0(1) Ny 5 (4.57)
and
chk+1 = Vns;k+1 + (ycgo i yO(l—Z))¢ Vns;k+1 i (Xcgo i XO(LZ))¢ uns;k+1 ;k = 0(1) Nt ; (4-58)
The distancehk between the centre of gravity of the earXcgy; ycg) and the string, equation
(4.19) becomes, for@ (k+1)¢ t- tp

EK kel

i ¢
. ¢ Xng:k+1 Ytea +¢ Yneik+1 (bx+l i th+12t (Xto i XCgo)XO(LZ) +(yto i ycgo)yo(l-Zzt

|
CVnoktt Yo 1 € Xngikrt (Bers i Xy ) (Xtol Xego)Yo(L2) + (Vio i Yego)Xo(L2)  =loxer
(4.59)

¢
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The x- and y-coordinates of the tip (4.20) and (4.21) becomér k = j 1(1)n, and

Xty = Xngk+t ¥ (Yio i Yo(L2))® Xngker + (Xeg i Xo(L2))¢ Ynek+1 ;K =0(1)ny;  (4.60)

and

Yoo = Ynek+t ¥ (Yio i Yo(L2))€ Ynoker + (Xto i Xo(L2))¢ Xnok+1 ;K=0(2)n¢;  (4.61)

while the x coordinate of the middle of the string is approximated
ber = Xeew + (lGen i Vi)' (4.62)

forO- (k+1)¢ t- t,. The timetyis xed by the moment that the approximation of the
left-hand side of equation (4.23) becomes zero, or if

i ¢j ¢
O Xngik+1 Vb T ¢ Yngker (Berr i X&«_ﬂ) (Xto i Xo(Lz))Xg(Lz)"' (Vio i YO(Lz))ygéLz) +

I¢Yns;k+li ¢ Xnok+1 (Bes1 | Xneyy ) I(Xtoi Xo(L2))Yo(L2) i (Yo i Yo(L2))xg(Lz) =0 :
(4.63)

For t, < (k + 1)¢ t the approximations of the boundary conditions are obtainedah the
same manner. Equation (4.29), which connects the force indfstring to its elongation,is
approximated by

lewar i |
K orer = Usw k= L), (4.64)
0

The equations which apply to the motion of the arrow (4.30) ¢@.32) become
(B i B)=Ct="1Ck +(1§ *)ac; k=i L(D)n;; (4.65)
andfor0- (k+21)¢ t- t, with ma(c+1 i &)=Ct = Exs:

¢
(Mg +1=3ms)(Ce+1 i ck)=¢t=1'i K%ﬂ(bﬁli xtk+1)=l¢k¢1 +
(i *) i Ke(bei Xe)=lex (4.66)

while fort, < (k +1)¢ t,

i ¢
(Ma +1=3M)(Ceer | G)=Et =1 Keor (Ber | Xn, )ekor i )+
@i )i Keloei xe)=(exi o) ; (4.67)

The time t; is xed by Ex.; = 0. For (k+1)¢ t > t,, hence when the arrow has left the
string, the massm, has to be replaced by one sixth of the mass of the string®, as we
discussed.

We now turn to the nite-di®erence approximations for the equi#ons (4.33)¢ ¢®.43),
the equations of motion and boundary conditions for the stnig. To that end we consider
a grid in the ro;t-plane; 0- ro - lg; t, O The grid points are denoted by (¢ ro; k¢ t),

5
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whereh = j 1(1)n, +1, n, ¢ rg = lo. We attach for this grid to the di®erence operators
and ¢ the following meaning

Frt ot o 1mo
*+fhy = n+l Z'ilrh_k hi 172k . ¢ frhk =05 (FEfherok i £fh; 122) - (4.68)

Then (4.32)¢ ¢@.36) can be approximated by

CroVso(Uspy s i Usyy )=C t = 2 (KEXg)hk+1 + (1§ 1)HKEX)nk ; h=0()n, ; (4.69)
€ roVso(Vspy o i Ve )=¢ t = 1 (Ktys)nier + (17 T)HKxys)nk ; h=0(1)n, (4.70)

(XSh;k +1 i XSh;k ):¢ t="1u Shik +1 + (1 i ! )uSh;k , h= 0(1) ne, (4-71)
(ySh;k +1 | ysh;k ):q: t = 1V Shik +1 + (1 | ! )VSh;k ’ h = 0(1) nl’ ’ (472)
Equations (4.37) and (4.38) give

ir H =) +
Ky 1221 = us(“;;irz’“a 1); h=0(1)n, +1; (4.73)
and
(EXn, 10001 )2+ (2¥0 1500 ) =15 h=0(1)N, +1 ; (4.74)
respectively.

The approximations for the boundary conditions atro = 0, equations (4.39% ¢®.41),
resemble those given in (4.54)¢®.56). They are approximated by
Mi(Ungik+1 i Ungik)=C t =
! Ii 1=2 (The+1=2k+1 + Thgi 122k+1 )¢ Xngikt i ¢¢ Mhngk+1 ¢ Yngk+1 +
1=2 (K1 £% oy n + K12k £% 10, )
(i )i 122 (Toseran + Toug 12000 X | © Mo Yot
1=2 (K1 £y 00 + K12k EXs, 1054 ) (4.75)
Mi(Vege,y i Veg)=C t =
! Ii 1=2 (Ther1=2k+1 + Thgi 122k+1)¢ Yngket i¢¢ Migik+1 ¢ Xngke1 +
122 (K izokr1 ¥, gy + Ky 1z2ke1 Y6 1pyn ) F
(Li )1 122 (Toeazic + Ty 12108 Yage | € Mis® X+
122 (K mokr1 ¥, 0 + K122kt 1) (4.76)

and
i
Ji (€ ¥Yneker (17 1)C Yna)(@ Ungksr i € Ungik)=C t&

(P ¢ Xngiker F (10 1) Xngu)(€ Vigiker | E Vngw)=¢t =
M ngker (L7 P)Mpgs k= (@) ; (4.77)
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In a similar way we get for equation (4.41)

Ek+1 :ma(lzlsn,;kﬂ i uSnr;k):¢t:
|
i 1 1=2 (Knr+1=2;k+l ixsnr+1 =2;k +1 + Knri 1=2;k+1ix‘5nri 1=2;k + )

|
i (1 1)1=2(K ne+1=2k¥EXs, 1 op T Ko 1=2kEXs, 1:2;k) (4.78)

When Ey+1 =0, we havet = t,. Fort; < (k+1)¢ t, m, in (4.78) equals 0.

We note that there are some di®erences between the nite-di®®re scheme given in
this section and the scheme given in [8], even in those casesvhich they could have been
chosen the same. First, the last equation of (4.51) is the di@ace approximation of the
last equation of (4.9) instead of the approximation of/{Lo;t) = y3(Lo), t > 0, as is done
in [8]. Actually if y3(L0) = 1, the method described in [8] is unsuited to the computadns
carried out there and in this paper. In all the computations dwhich the results were
given in [8], we used already equation (4.51). Second, in&8), (4.67) and (4.78) the index
of E isk + 1 instead ofk + 1. In this way we get a better convergence of the forck
acting upon the arrow, with respect to ¢t. Third, in the boundary conditions ats = L,
(4.54)¢ ¢@.56) and (4.75F ¢@.77) only central di®erence approximations with respecbt
s are used, so in (4.45) and (4.46) has to range untons. In [8] we used non-central
di®erence approximations, but mainly because of (4.56) and.77) they are replaced here
by central di®erence approximations.

We pay now some attention to (4.69) and (4.70), which are theparoximations of
(4.33) and (4.34), respectively. Like the length of the stnig, the mass per unit of length
Vs occurring in (4.33) and (4.34) is a function of time. Howeverconservation of mass for
the part of the string betweenry = (hj 1=2)¢roandro=(h+1=2)¢ro, h=1(1)n,j 1
gives

¢

*rhkVs, = ¢ oV, ; K, O: (4.79)

(Vslls)h;k+1=2 = i(}<)((>h;k+1 =2, (480)
and multiply both terms by *fy.«+1 -2, We get using (4.79)
€ roVsoUsyy 1y, = k122 (KX Ypsr s h=1()n, j 1: (4.81)

The nite-di®erence approximation (4.69) is obtained from tis equation in a straightfor-
ward manner. The same holds for equation (4.70). It is easy 8how that (4.69)¢ ¢@&.74)
are also the equations of motion for a lumped parameter modgr the string. In that
model we have mass points fyVs, (thus 2ms=n;), at equal distances @, attached to
each other by springs, with strain sti®nes&)s and without mass. The nite-di®erence
schemes given in this section form a set of non-linear equats for each time step. As in
[8] we solve these equations with a Newtonian method, in the@wurse of which we solve
the occurring system of linear equations by means of a Gauwssielimination method with
partial pivoting. The matrix is adopted only in the rst itera tion of each time step. As
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starting values for the Newtonian method for the static calglations we use the results of a
shooting method, developed in [9]. Because the string wasasied to be inextensible and
the ear was reckoned with by putting the bending sti®ned¥/ (s) for L, - s- L very large
with respect to the mean bending sti®ness of the °exible part dfe limb, we had to make
some alterations in the procedure described in [9]. In ordéw get starting values for the
next time steps we extrapolate the results of the precedinglculations. For reasons given
in the Section 4.13 we usé = 1 for the rst time step, from t =0to t=¢ t, or fork = 0.
The ¢t used for this rst step is taken small with respect to its magriude used in the
following steps. For the succeeding stepk,> 0, we use! = 1=2, thus a Crank-Nicolson
scheme.

We adhere to that scheme untilty.; , t, (string touches bridge again in the case of
static-recurve bows) orty, , t, (bow leaves bow hand) ot.; , t; (arrow leaves string).
In these cases we iterate with respect to ttuntil we nd accurate approximations forty,
t, and t;. During this iteration we have to avoid that ¢t becomes too small, in order to
ensure the convergence of the Newtonian method. After such @eration the mesh-width
in the time direction ¢t is restored, except for the iteration fort,. In that case we use
1 =1 for t >t thus a fully implicit backward time di®erence scheme. Thisidone to
avoid instabilities in the numerical process. To obtain a stcient accurate approximation
we continue the process for>t, with a ¢ t to a certain extend smaller than the one used
fort - t.

During the computations of some bows is appears that the teites force in the string
becomes negative. In that situation the Newtonian method #is to converge and we are
forced to stop the computations. Note that a string can only whstand tensile forces and
for negative K equation (4.73), Hooke's law, is no longer valid.

In Section 4.13 we carry out a check on the numerical methodstgibed in this section.
We compare the results obtained by means of the nite-di®eremmethod with the analytic
solution in the case of a vibrating beam with small de°ections

The numerical results mentioned in Section 4¢6¢4.12 are obtained by using the nu-
merical method given in this section.

4.5 The quality coezxcients

In this section we discuss three coezcients, one static qulicoexcient and two dynamic
guality coexcients. These coezxcients have been introduced wur previous papers [9] and
[8], pertaining to an inextensible string. The static quaty coezxcient qis given by

A

9= ———— (4.82)
JODJjF (jODj)

whereA is the energy stored in the bow by deforming it from the bracegosition into the
fully drawn position. We can compute this amount of energy itwo ways. First, if F(b) is
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the static force-draw curve §fd curve),

_ Zjoo) _
A= F(B)db : (4.83)

b=jOH]

Second, it is the potential energy stored in the fully drawn bw, denoted byAp minus
the potential energy stored in the bow in the braced situatio, denoted by Ay . In both
cases the potential energy is the bending energy in the limiptus the strain energy in the
string. Thus

. . Z [ I ¢, L _ ‘_B:O_D
A=Api Au= WE) IR KG) ds+ Ui To)’=o 5:}5,4]]

Lo

(4.84)

Note that g is the dimensionless amount of energy put into the bow by dramg it from
the braced situation into full draw.
One of the dynamic quality coezcients is the etciency de ned by

m
= iqz (4.85)
A
whereg, is the muzzle velocity, the velocity of the arrow at the momert leaves the string.
Hence” A is the amount of energy imparted to the arrow. IE (b) is the dynamic-force-draw
curve (dfd curve), then we have

‘A = jE(B)olb : (4.86)

where by is the x-coordinate of the middle of the string att = t; the moment the arrow
leaves the string.
The second dynamic quality coexcient is the dimensionless mzie velocity®,

0O —

iq_'¢1=2 _

; 4.87
o T=a (4.87)

In the second part of this section we show that for common bowke maximum value
of ” is 1 or stated otherwise the maximum amount of energy that cabe transferred to
the arrow equalsA.

At arrow exit, the part of Ap that is not transferred to the arrow is kinetic energy in
limbs and string, denoted byAg, plus potential energy in limbs and string, denoted by
Ap. Conservation of energy implies that

KD = "A+ KK + Kp . (488)
Suppose now
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then, using (4.84), (4.88) this assumption yields

A+ A¢ - A; (4.90)
and becausédx . O,

A Aor’ - 1: (4.91)

Hence it remains to show that under general conditions assption (4.89) is valid. To
that end we use the principle of stationary potential energy It states: \Among the set
of all admissible con gurations the state of equilibriums dracterized by the stationary
property of the potential energy”. In our case the continuumwe consider is the two limbs
and the string together. The admissible con gurations for symetric bows are those by
which the middle of the grip and the middle of the string are orthe line of aim. There
are no external forces in the braced situation, so the mentied potential energy is the
potential energy in the limbs and the string.

If we assume that the equilibrium in the braced situation istable, then the principle
yields that for all admissible con gurations in the neighbothood, of the braced situation,
Ay is a local minimum of the potential energy. If we assume furdr that there is only one
state of equilibrium for the braced situation (and this is tue for common bows), themy
is the global minimum of the potential energy. Because the nayuration of the limbs and
string at T = {; is an admissible con guration, we have (4.89%p , Ay.

In [9] we gave an example of the possibility of more than onedwred situations of a not
too realistic bow. In that case we had one unstable and two gike con gurations. Then
it is possible to start from one stable braced situation whit does not possess the global
minimum potential energy. If the bow terminates its motion dter release of the arrow in
the second stable braced situation with the global minimumfahe potential energy, then
(4.89) may be violated. Then it is possible that > 1. For such a bow the archer has
to bring the limbs from the second braced situation into the st one after each shot, by
which he stores already some energy in the limbs and stringutbthis amount of energy
stays out of sight in the de nition of the e+ciency given by (4.8).

In the case of the static-recurve bow (or working-recurve g the afore mentioned
conclusions hold when the string can not slip past the limb3~hen this happens, the bow
does not return to its braced Situation, but it turns itself inside out and the results of this
accident can be unpleasant both for bow and archer (see [pageéx][10]). We have in this
case actually the same situation as we described just abovdote that (4.91) also holds
when a string breaks.

In the following sections we use the quality coexcients whenemcompare the perfor-
mance of di®erent bow and arrow combinations.

4.6 Comparison of three mathematical models

In this section we compare a number of calculated results @hed by three di®erent
mathematical models of bows. One model was developed by Hiekn in [6] (H model),
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another in [12] by Marlow (M model). The third model is the onelescribed in this paper
(C model).

To that end we compare the results with respect to one realistbow, the H bow. This
H bow resembles a bow described by Hickman and has not to be ftmed with the H model
of some bow. Using the notation of (4.2) the H bow is given by

H(91:44 1016,W;V ;= 0;0:01250;0;0;0;0;0;
91:44,0,91:44,0;91:44;1 ;0;jOHj = 15:24; 7112, 1553,0:1625): (4.92)
The bending sti®nes&V (s) and mass distribution V (3) along the limb are given by

W(s) = 1:30 16" Eit s¢. (4.93)

and

L s¢

V(s)=4:5210% : (4.94)

In [8] we dealt already with this H bow, which possesses an ktensible string without
mass. Because we drop in this paper the assumption the stribg be without mass and
inextensible, we have to specify these quantities. For theass of the string we take the
mass Hickman mentioned in [6], being 0.0068 kg. In [6], pag®l? Taylor discusses the
bow string. He measured the strain sti®ness of a string madearfe strand of linen. If we
take a string with 12 strands, we get a strain sti®ness (4.29) (4.37)

U, = 2040 kgf: (4.95)

We call the H bow with an elastic string,Us = 2040 kgf and mass, & = 0:0068 kg theR
bow, it is thus given by

A(91:44,10:16;W;V ;W ~ 0;0:01250;0;0;0;0; 0;
91:44; 0, 91:44; 0; 91:44; 2040 0:0068 jOHj = 15:24;
71:12 1559, 0:1625): (4.96)

whereW and V are given by (4.93) and (4.94).

Hickman invented his model for a bow with bending sti®ness @8) (apart from a scalar
factor), which is a linear function of the distance from theip, being zero at the tip. As
a result, the limb bends in a true arc of a circle for a small l@hat the tip, perpendicular
to the limb. Then the °exible limb is replaced by a rigid one, conected to the grip by
an elastic hinge S, see Figure 4.3. The place of this hinge I®sen so that the tip of the
°exible limb and that of the rigid limb travel almost along the same path when the bow is
drawn. In this way he nds the length of the rigid limb L; to be 3=4 of the length of the
°exible limb. Hence in the H modell, is the length of the grip plus E4 of the lengths of
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Figure 4.3: Bow with two elastic hinges and
rigid limbs.

the °exible limb. In order to determine the strengthk of the elastic hinge, with neutral
position the y-axis, Hickman demands the de°ection of the tip of the rigid inb to be equal
to that of the °exible limb, both loaded with the same suzciently small force at the tip,
perpendicular to the limb.

Next he assumed the mass of the rigid limb to be concentrated tne tip, which is
not essential because the dynamics of the limb is determindy its moment of inertia J
with respect to the hinge. This massn; follows from the demand that the frequencies of
free vibrations of the elastic limb and rigid limb are the sam. The de°ection during the
oscillatory motion of the elastic limb is assumed to be the s as its de°ection in the case
of a static force acting upon the tip of the limb perpendiculato this limb, which causes
the same de°ection of the tip. The concentrated mass at the tipppears to be £15 of the
mass of one °exible limb.

Hickman assumes the string to be inextensible and its masmg is accounted for by
adding 1=3 of it to the mass of the arrow 21,. In [12] Marlow replaces the °exible limb
also by a rigid limb connected to the grip by an elastic hingeHowever, the place of this
hinge and its strengthk are determined di®erently. In this M model the hinge is placed
at the point the grip meets the limb. So the lengthL, of °exible and rigid limb are equal.
For the evaluation of the strength of the elastic hinge, Madw uses the second derivative
of the function A(b) (4.83) at the point where b equals the brace heighfOHj. We have
using (4.83)

_dF

‘ bjor; 9D bjon

ZK

d

o

(4.97)

o,

The inertia of the limb is, as in the previous H model, taken ito account by placing a
concentrated mass at the rigid limb. This mass possesses nenmof inertia with respect
to the place of the hinge equal to that of the unde®ected °exiblédmb. If the concentrated
mass is placed at the tip then it is in the case of the H bow=b of the mass of one °exible
limb.

The string is treated as a rod, rigid with respect to shear antéending, but elastic in
its length direction as given by Hooke's law. Marlow assumehat the elongation of the
string during the motion is the same as its elongation for a atic tensile force which causes
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Table 4.1: Characteristic constants of 8 bow in H and M model.

L, L, |jOHj k & joDj m 2m, 2ms  Us
H model | 60.96 30.48 1524 1592 | 71.12 0.0108 0.025 0.0068 -
M model | 81.28 10.16 1524 | 0.55 71.12 0.0271 0.025 0.0068 2040

the same elongation of the whole string.

The obtained equations of motion cannot be solved analytitp Marlow used a simple
Newtonian integration method, but we apply a more accurate ihge-Kutta method.

The third model (C model) used in this paper is the one we disssed in Section 4.3.
The limbs are considered as slender beams and they are reprsd by elastic lines which
are endowed with bending sti®nesd/(sS) and mass per unit of lengthV (s). In order to
avoid ditculties in the calculations using the C model we takdor the bending sti®ness
given in (4.93)

_— . iLj s¢
W(s) = 7:69 if 1:30 16" 'Eg . 7:69; (4.98)

For the string we assume that neither internal nor external @mping is present.

Before we compare the results obtained by using the three nm&imatical models H,
M and C, we have to specify some characteristic constants fibre M model. Instead of
the brace height, Marlow took the half length of the string ofthe real bow in unloaded
situation as a characteristic quantity. To facilitate comgrison of the results of the M model
with those of the H and C model correctly we adhere to the bradeeight as a physical
constant of the M model. The derivative (4.97), also one of thcharacteristic constants in
the M model, is obtained from computations with the C model wh, according to Marlow,
an inextensible string. We approximate this derivative by

d_lf—_ o, 3F(jOHj +2¢ b) 4F(j9Hj +¢ b+ F(jOH]j (4.99)
db P=I0HI 2¢hb
In our calculations we took ¢h= (jODjjj OHj)=40, yielding %ib:jmj = 0:55 kgf/cm.

However, if we had taken db two times as large, the approximation of the derivative
di®ers more than 2 per cent from this value. It is clear that if me uses a measuresfd
curve, this inaccuracy may be larger. In Table 4.1 we collethe characteristic constants
belonging to the H and the M model, which both represent thB bow given in our C model
by (4.96).

Figure 4.4 shows thesfd and dfd curves of the H bow. They re°ect that thesfd
curves for the H and the C model nearly coincide. Thefd curve calculated by means of
the M model deviates clearly from these curves, while alsoghveight of the H bow predicted
by the M model di®ers considerably from those predicted by tlegher two models. Further
the jump at time t = 0 of the force acting upon the arrow E(jODj) i E(t = 0)) is for
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Figure 4.4: sfd and dfd curves of H bow: {{
{ H model, | { | M model and || C model.

the M model larger than that computed by means of the H model. Ais e®ect is mainly
produced by the di®erence in the magnitude of the masg at the tip. It is seen that with
our C model there is no jump at all at the moment of release of ¢harrow. Thedfd curves
of all three models di®er, although the curves belonging tog¢lH and C model have some
correspondence. The character of the one calculated by theriwbdel is, however, strongly
di®erent from the other ones.

Figure 4.5 shows thesfd and dfd curves of the@ bow computed by means of the
M and C model. Thesfd curves nearly di®er from those of the H bow, and the same
conclusions hold. Thedfd curve in the M model shows that the acceleration forck (b)
acting upon the arrow, for an elastic string oscillates strayly round this function for an
inelastic string (compare Figure 4.4). The amplitude is nely equal to the jump in the
force on the arrow at timet = 0 in the case of an inelastic string. The frequency with
which the dfd curve of the M model oscillates depends also on the strain®tiess of the
string. When this strain sti®nesdJs increases the same happens to the frequency. In fact
inthe it Us ! 1 thesedfd curves do not converge point-wise to thefd curve of the
H bow with an inelastic string. It seams that even for a bow wi a conventional sti®ness
of the string, but certainly when the string is rather sti®, tte M model yields unreliable
results with respect to thedfd curve when no damping is introduced. This holds most
probably for any model with rigid limbs.

As we remarked already, it follows from Figure 4.4 that the fce on the arrowE at
t = 0 equals the weight of the bowF (jODj) in the C model when, as is assumed here,
no concentrated masses are present at the tips of the real howhis elucidates why the
dfd curve in Figure 4.5 computed by means of the C model does nofcitlate and for
Us!1 thedfd curve does change gradually into théfd curve of the H bow which has
an inextensible string.

In Table 4.2 we give the static quality coexcientq, the exciency = and the muzzle
velocity © of the H bow and of theR bow, which follow from the three di®erent models. In
order to investigate the in°uence of the mass and elasticityf ¢the string purely we changed
these two quantities also separately.
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Figure 4.5: sfd and dfd curves of A bow: |
{| M model and || C model.

The numbers show that the direction of the in°uence of the eléisity of the string with
respect to the static quality coezxcient predicted by both moeéls M and C, is the same.
However, theq's predicted by the M model are much larger than those predietl by the
C model.

In [9] we showed that the H and M model yield an exciency = 1, when the string
is inextensible and without mass. This value di®ers a lot frorthat computed with the
C model, being” = 0:885. If the string is inextensible and possesses a mags;2then the
exciency in the H model can be calculated analytically. It bemmes

- ma
= o+ 1=3m. (4.100)
This value is almost equal to the value predicted by the H and Whodel, namely 0.9167 and
0.9174, respectively. However, both exciencies di®er muclorn the e+ciency computed
by means of the C model, being 0.836. With respect to the in°uea of the elasticity of the
string the results in Table 4.2 show that this in°uence on the £ciency is in the C model
much smaller than that in the M model.

In [12] Marlow claims that his elastic string model gives anxplanation for the long-
standing discrepancy between theory (the H model yields ak@ency =~ over 91%) and
experiment (Marlow measured an exciency of 80% for more populbows). However, the
values of the exciencies given in Table 4.2 reveal that the edicity of the string accounts
for this discrepancy only partly.

Even for the H bow with a string possessing mass, the C modeleglicts an exciency
of 83.6% instead of an exciency more than 91% predicted by thed&hd M model. So, the
discrepancy originates mainly because of the replacemerittbe °exible limb by a rigid
limb connected to the grip by an elastic hinge.

In the case of the elastic string the muzzle velocities givdsy the M model di®er not
too much from those of the C model. For an inextensible strinthe H and M model yield
both very large muzzle velocities whether the mass of the stg is zero or not.

Summarizing this section, we have found that in comparisonithi our theory it seems
that any rigid limb model combined with an elastic string cangive inaccurate results with
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Table 4.2: Quality coexcients of H bow and of A bow computed by means of the three models.

H model M model C model
2m; U, 1 2m; Us 1 2400 | 2mg U, 1 2400
qg|o0 0.415 | 0 0.429 0.4230 0.407 0.404
0.0068 0.415| 0.0068 0.429 0.4230.0068 0.407 0.404
2 Us 1 2 Us 1 2400 | 2m;, U, 1 2400
0 1 0 1 0.806| 0 0.885 0.868
0.0068 0.9167 0.0068 0.9174 0.73p0.0068 0.836 0.807
2m; U, 1 2m; U, 1 2400 | 2m;s Us 1 2400
°10 232 |0 2.36 211 1|0 2.16 2.14
0.0068 2.23 | 0.0068 2.27 2.02| 0.0068 211 2.06

respect to the three quality coexcientsg, © and ©, and the shape of thedfd curve.

4.7 In°uence of mass and sti®ness of string on per-
formance of H bow

The in°uence of mass and sti®ness of the String on the perforntanof the H bow, hence
on the quality numbersqg, = and °, is dealt with in this section. This completes the
investigation, started in [8] of the in°uence of parametersrothe performance of the H bow.

In Table 4.3 we change in a systematic way the strain sti®nekk and mass 21 of
the string, both separately and simultaneously. The third ad fourth 5 row from above
show the in°uence of the strain sti®ness on the weigkt(jODj) and on the static quality
coexcient g We recall that the brace height is the same in all the cases. eHce, the
length 2, of the string in unstrung condition is di®erent for di®erent Vaes ofUs. We nd
an increase of the weighf (jODj) and a decrease of the static quality coexcient] with
decreasing sti®ness. The in°uences are relatively small.

The lowest row gives the values of the exciency and muzzle velocity® for several
values of the sti®ness of the string without mass. We concluff®m this row: the sti®er
the string the better the exciency and the larger the muzzle vecity. The third and fourth
column in Table 4.3 indicate for an inextensible string: théighter the string the higher
the exciency and muzzle velocity. So, when we change the numbaf strands (mass is
about directly and sti®ness about inversely proportional tthe number of strands) there
are two e®ects which counteract each other, hence the in°uenaiethe number of strands
is not dear beforehand.

In order to investigate this in°uence we change the strain stiness and mass of the
string simultaneously. On the diagonal in Table 4.3 these sealts are collected. It shows
that the exciency of the H bow decreases when we take more tha@ &trands, the number
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Table 4.3: In°uence of mass 2g and strain sti®nessUs of string on H bow.

nos. strands | 36 24 18 12 6 3

Us 1 8160 | 4080 | 3060 | 2040 | 1020 | 510

F(jODj) | 15.53| 15.54| 15.56| 15.57| 15.59| 15.65| 15.75

q 0.407| 0.406| 0.406| 0.405| 0.404| 0.400| 0.395

nos. strands | 36 24 18 12 6 3

Us 1 8160 4080 3060 2040 1020 510
ZTTTS s (o] - o s (o] s o s (o] s o s o
0.0272| .709 1.94| .698 1.92
0.0136| .742 1.98 728 1.96
0.0102| .771 2.02 754 1.99
0.0068| .836 2.11 .807 2.06
0.0034| .850 2.12 .809 2.05
0.0017| .869 2.15 .807 2.04
0 .885 2.16| .881 2.16 .877 2.15 .874 215 .868 214 .853 2.11 .831 2.

of strands corresponding to @1 = 0:0068 kg andUs = 2040 kgf. Apparently when the
string has reached a certain sti®ness, the disadvantage otbming heavier has more e®ect
than the advantage of becoming sti®er. For the H bow with numbef strands between 3
and 12 the exciency and muzzle velocity hardly depend on the mber of strands. Here
the two e®ects neutralize each other.

In Figure 4.6 we give thedfd curves of the H bow with changing number of strands.
For heavy strings we see that the inertia of the string makeshe force E(b) go down
sharply after the loose of the arrow. During the second partfdhe shooting process,
the force E (b) increases more than in case of a light string and the kinetienergy of the
string is transferred into the arrow. This phenomenon resdutes the energy absorption and
restitution by concentrated mass at the tip of a bow with elasc limbs, as will be discussed
in Section 4.9. The rather small oscillation with a high fregency occurring with the heavy
strings may be physically unrealistic because of damping,hwh has been ignored in our
theory. For light strings the dfd curves, but also the recoil forcéP (f) and tensile force
in string K (t) are rather smooth because of the elasticity of the string. ®&e that for a
string made of 12 strands, thex-coordinate of the middle of the string b = 11:04 cm)
is rather small at the moment the arrow leaves the string, inamparison with the brace
height (jOHj =15.24 cm.)

Hickman investigated experimentally in [6], page 45, the e@eof the mass of the string
on the exciency and muzzle velocity. He measured the muzzleloeities of four di®erent
arrows, each shot from bows made of three di®erent kinds of wlooBecause Hickman
changed the number of strands he changed the strain sti®nessveell as the mass of the
string. lie came to the conclusion that the velocity of the apw is reduced about the same
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Figure 4.6:dfd curves of H bow, di®erent num-
bers of strands, Table 4.3.

Table 4.4: Comparison Hickman's rule with C model.

nos. strands 36 24 18 12 6

s o s o] s (o] s (o] s (o]
C model 0.698 1.92 0.728 1.96| 0.754 1.99 0.807 2.06| 0.809 2.05
Hickman's rule | 0.679 1.89 0.762 2.00 0.785 2.03 0.807 2.06| 0.830 2.09

amount as if the arrow were increased in mass by one third ofd@hncrease in mass of the
string, while the string was kept the same. We have checkedtkis is in agreement with
results from the C model.

To that end we start with the H bow and compute the exciency and muzzle velocity
° of the same bow with the same string, but shooting an arrow witan adapted mass
according to Hickman's rule. We recall that we assumed as si@dard values a string with
12 strands and an arrow with 2n, = 0:025 kg. For instance in the case of a string with
24 strands, the adapted mass of the arrown?, equals 00250 + 00022 = 0.0272 kg. The
obtained exciencies and muzzle velocities are in Table 4.4ropared with those computed
by means of the C model, which were given in Table 4.3. We coudk that there are
some deviations The results obtained with the C model (seesal Figure 4.6 Suggest that
the occurring longitudinal and transverse vibrations, of wich the frequencies depend on
the number of strands, can a®ect the performance of a bow favalbly or unfavourably.
Further, we note that Hickman's rule does not re°ect that massind elasticity of the string
are coupled and that the elasticity in°uences also the exciegyc

The °ight shooters in Asia made their strings light. The mass fothese strings of new
and extremely strong wound silk, was half the mass of the stigs used for other bows with
the same ultimate drawing force or weight, see [10, page 28e also [1, page 101], where
it is remarked that the strings used in °ight shooting are alwgs thin and that all archers
agree on this speci cation. Also Ascham notes ifloxophilusthat: "the great stringe is
slower for the cast", see Hodgkin [7, page 74].
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(a) (b)

Figure 4.7: Vibratory motion of limb and string of the H bow: (a) t< t, and (b) t, t.

4.8 Fibratory motion of a bow before and after arrow
exit

The vibratory motion of the limbs and string is the subject ofthis section. We pay
attention to the bending momentM (s;1), normal force T(5;1) in the limb tensile force in
string K (r; t) and the recoil forceP (t) on the bow hand. Finally we discuss the in°uence
of the mass of the grip when a bow is shot open-handed.

Figure 4.7 shows the shape of limb and string of thEl bow, de ned in (4.96), for
t < t, (Figure 4.7.a) and fort , t, (Figure 4.7.b). The con gurations of the upper half
of the bow are shown in unbraced situationi(= 0), braced situation (i = 1=2) and at
times t;;i = 1(1)16, marked in Figure 4.8 on thet-axis. We stopped the computations
after about three quarters of an oscillation of limb and stnig after arrow exit. Because
we neglect damping this vibratory motion holds on fot , t;s. For a real bow we have a
damped free vibration and the bow returns quickly to its stat braced situation. Hence,
our calculations are only relevant for about one time periodf vibration.

The amplitude of the vibration after arrow exit is rather large. The X-coordinate of
the middle of the stringXs(I; t) = b(t) ranges between 4.0 cm and 24.7 cm, while the brace
height is 15.24 cm. This means that there is not much spacetléér the bow hand; in
Section 4.9 we return to this subject.

Note that in our model discussed in Section 4.3, the arrow le&s the string at the
moment the acceleration forcde on the arrow becomes negative. Doing this we assumed
that the tension of the nock of the arrow on the string is zeroln [7, page 110], Hodgkin
mentions that the width of the nock should be so that:
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Figure 4.8: Times t;;i = 1(1)16, plotted on the t-axis.

The whole arrow will just hang on your particular bow string wthout falling
o®.

For the H bow the weight of the arrow is 0.025 kgf and this is rather snilawith respect to
the weight of the bow 15.59 kgf. Nevertheless a variation irhis nhock-tension may cause
some variation in the moment of is rather small with respecta the weight of the bow
15.59 kgf. Nevertheless a variation in this nock-tension maause some variation in the
moment of separation of arrow from the string and the vibratcy motion of the bow after
arrow exit.

We proceed with a discussion in which way the energy stored ihe limbs and string
in fully drawn position is distributed between arrow, limbsand string as kinetic energy or
potential energy. In the braced situation the bending eneygin the limbs of the H bow is
107.21 kgf cm and the strain energy in the string is 28.62 kghc In the fully drawn situation
these amounts are 568.64 kgfcm and 14.95 kgfcm, respecyiveo, A = 447:74 kgfcm is
stored in the bow by pulling it from the braced situation to ful draw. The exciency of
the H bow is 0.807, thus 361.46 kgfcm is imparted to the arrow. Thimeans that at the
moment the arrow leaves the string at = t;, = 0:0181 sec, 222.11 kgfcm remains behind
in the limbs and string. This energy stored in limbs and strig is, att = t; the sum of the
potential energy in the limbs 85.85 kgfcm, the potential emgy in the string 65.90 kgfcm
kinetic energy in the limbs 32.86 kgfcm and kinetic energy ithe string 37.62 kgfcm.
Hence, of the energy available,about 80.7% is put to good use3% is kinetic energy in
limbs, 8.4% is kinetic energy in string and 3.6% is additiomg@otential energy in limbs and
string.

There is much more potential energy in the string at = t; than in the braced situation
(65.90; 28.62), the reverse holds for the limbs (85.85; 1P¥), yielding that the total
potential energy att = t, di®ers not too much from its value it in the braced situation
(151.75; 135.83). Note further that there is more kinetic emgy in the string than in the
limbs att = t,. In Table 4.5 we give the amounts of energy in the parts, limkstring and
arrow of the H bow.

In Table 4.6 we collected these values in the case of the H boimextensible string
without mass). In that case 107.21 kgfcm is stored in the lingbas bending energy in the
braced situation. By pulling the bow from this situation into the fully drawn position an
additional amount of energyA = 449:99 kgfcm is stored, making the bending energy in
the pulled bow 557.20 kgfcm. Att = t;, = 0:017 sec, 398.26 kgfcm has been imparted to
the arrow, hence the exciency is 85.5%. The potential energy the limbs at that moment
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Table 4.5: Energy in parts of H bow in a number of situations.

limbs string total bow arrow
energy pot. kin. | pot. Kkin. pot. kin. | kin.
braced 107.21 O 28.62 0 135.83 0 0
fully drawn | 568.64 0 1495 0 583.59 0 0
arrow exit | 85.85 32.86 65.90 37.62 151.75 70.48 361.64

Table 4.6: Energy in parts of H bow in a number of situations.

limbs string total bow | arrow
energy pot. kin. | pot. kin. | pot. kin. | kin.
braced 107.21 O 0 0 107.21 O 0
fully drawn | 557.20 O 0 0 557.20 O 0
arrow exit | 151.72 7.26 0 0 151.72 7.26 398.26
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is 151.73 kgfcm and the kinetic energy in the limbs 7.26 kgfcnThus, att = t, of the
original available energy, 1.6% is present as kinetic engrgnd 9.9% as additional potential

energy in the limbs. The total energy which remains in the H bw is 158.99 kgfcm.

Comparing the numbers given in Table 4.6 for the H bow with thee for theA bow given
in Table 4.5, we conclude that the potential energyp in fully drawn position is for both
bows about the same amount higher than the potential energyy in the braced situation.
Hence, about the same amount of energl is available. With respect to dynamics, it
appears that at the moment the arrow leaves the string, theris much more kinetic energy
Ak in limbs and string of the H bow than in the limbs of theH bow. However, less
additional potential energyAp i Ay has remained in thed bow. Note that this amount
Ap i Ay is for a bow with one stable braced situation always positiyesee Section 4.5, and
that the energy in fully drawn situation stored in the limbs & for the H bow more than for

the H bow.

These results show the action of a light and sti® string. Begse of its lightness less
kinetic energy is in the string and because of its sti®ness itghibits the limbs to move fast
at the moment the arrow separates from the string. The amourdf energy which remains
in the bow after arrow exit equals

(1i

A

(4.101)

hence the etciency is also an important quantity with respecto the vibratory motion of

the bow after arrow exit.

~ We now turn to a discussion of the bending momemM (S;t) and the normal force
T(s;t) in the limb, respectively. Both quantities are essentiald the computations of the
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(a) (b)

Figure 4.9: Bending momentM (5;D)t < : (a) t< t, and (b) T, t.

occurring stresses in the bers of the limbs. In order to preme the bow to be damaged
this stress must not exceed the permissible stress.

Figure 4.9.a shows the bending moment as function of the lghgcoordinate s for
successive times;;i = 1(1)7, thus before and at the moment the arrow leaves the stig.
The broken line is the distribution along the limb of the benthg moment in the static
braced situation. It follows that the bending moments durig the shooting 0< t -
are smaller than the bending moments in the fully drawn posiin of the bow, with the
exception of the part of the limb near the grip In Figure 4.9.bwe show the curves for
i =1andi =8(1)16, thus in fully drawn position and after the arrow hasleft the string.
These curves re°ect that the bending moments for > t, are smaller than those in the
fully drawn position, but now with the exception of the outerpart of the limb. However,in
both parts the di®erences are rather small. So it seems to béwaked to use the function
M 1(3) = M (5;0) for the evaluation of the maximum strain caused by bending

The normal force is given in Figure 4.10.a far< t;;i = 1(1)7 and in Figure 4.10.b for
t< t;;i = 8(1)16. The broken line is the curve in the braced situatiorin contrast with the
bending moment the normal force is in the braced situation tger than in the fully drawn
situation. Figure 4.10.a shows that this force increases aiply in a short period before
the arrow separates from the string. At moment = t, the normal force is already larger
than in the braced situation. After arrow exit the force riss even further and obtains its
maximum when the middle of the string is nearest to the grip,an guration i = 9. This
maximum normal force is about 3 times the value in braced si&gion.

Note that at time tg the bending moment is rather small, see Figure 4.10. Besidbe
bending moment and normal force the shape of the cross-seantihas to be known to be
able to compute the stresses caused by the bending moment ahé normal force. In a
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(a) (b)

Figure 4.10: Normal force T(s;1;): (@) t< t, and (b) T, T.

next paper we return to this subject, but we remark already tht for common bows the
stresses caused by the bending moment are much larger thars$le caused by the normal
force.

In the previous section we changed the number of strands ofetlstring in order to nd
its in°uence on the performance of one speci ¢ bow, the H bow deed in (4.92). But, of
course, the tensile strength of the material of the string ahthe maximum tensile force
in the string impose a condition on the number of strands oneals to use to save it from
breakage. The tensile strength of the string is a given physil constant. The tensile force
K is in the static case a function obalone and during the dynamics of shooting a function
of bor t and of T, which is the length coordinate along the string. It appearbowever that
in the dynamic caseK changes only slight as function of, therefore only its value at the
middle of the string K (I; T) will be given.

In Figure 4.11 we plotted the tensile forc&k in the static and dynamic case for the
H bow as well as for thel bow, in the dynamic case for 0 t - t,. First, we note that
the elasticity and mass of the string have little in°uence onhe forceK in the string in
both cases. In the static case, starting from the braced ptisin b = jOHj = 15:24 cm,
K decreases rst, passes through a minimum and increases dlighup to a value in the
fully drawn position, b= jODj = 71:12 cm which is smaller than its value in the braced
situation.

After the arrow is releasedK decreases again after which it increases when the string
becomes stretched. Its magnitude at = t; is much larger than in the braced situation.
However, this value appears not to be the maximum force whithe string has to withstand.

In Figure 4.12 we give the acceleration fordg, the recoil forceP and the tensile force
K in the string as function of timet in sec for theA bow. The momentE becomes zero
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Figure 4.11: Tensile forceK in string in static
and dynamic case: | H bow and {{ K bow.

indicates the time the arrow leaves the stringt(= t,). It shows that for t | t, the tensile
force K oscillates between two values, of which the maximum is the lv@ we are looking
for. The maximum is for theH bow 57.7 kgf, about 2.2 times its magnitude in the braced
situation, being 25.7 kgf.

In [6, page 252] Taylor decreased the strength of the string the breaking point and
found that the maximum dynamic force is usually about twice hte maximum static force
in the string. Taylor mentioned that K reaches a maximum as the string becomes taut.
From Figure 4.12 it follows that the peak is reached after aow exit. In [3] Paterson states:

Figure 4.12:E; P andK as function off in case
of B bow; 2 indicates moment the arrow passes

grip.
“That the maximum impact on the string is about ve times the wéght of the
bow.’

The bow in question was a 40 Lb steel bow. For thBl bow we nd a peak tensile force
of about 3.7 times the weight of the bow. Because we don't knailve physical constants
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of the bows, arrows and strings used for the experiments, weeanot able to compare our
results with the quoted results, but they are certainly not ontradictory.

That the peak force in the string occurs after arrow exit is inagreement with the
experience of most archers that, although a bow string mighireak, the arrow nds its
way to the target apparently una®ected. Indeed, if the breakg strength is larger than
K (t = 1)) being 39.1 kgf, but smaller than the peak, 57.7 kgf, the strg breaks at a moment
the arrow is already on its way.

This knowledge is used by °ight shooters. In [11] Learn deslds the bow and string
and arrow Drake used in shooting a mile. Drake built an foothva with a weight over three
hundred pounds. Learn writes:

"This tremendous strength of the bow made it impossible to rka a string, that
will shoot the arrow and not break. If you put turnes on the sting in order to
make it unbreakable you would not be able to put the nock on thstring.'

However, in the previous section we found that the muzzle \adity for rather heavy strings
decrease with increasing number of strands. This, togetheiith the fact that breakage of
the string after exit of the arrow does not a®ect its °ight and tat a °ight shooter can a®ord
to break the string every shot, shows that it is even not desible to use an unbreakable,
hence a heavy, string.

After the maximum the tensile forceK decreases and becomes fairly small at a mini-
mum. In the case of the H bow, thus with an inextensible stringvithout mass, K becomes
even zero.

Figure 4.12 shows also the recoil forde, the force exerted by thed bow on the bow
hand if this bow is clamped. Fort - t, the maximum recoil force is about 31.4 kgf, about
the same as in the case of the H bow. We observe that for t;, P(f) oscillates round
the t-axis with a rather large amplitude of about 55 kgf, thus almst four times the weight
of the bow! Note that these large °uctuations inP occur after the nock of the arrow has
passed the grip. The muzzle velocity is about 5330 cm/sec atite distance between the
nock and the grip att = t; equals, as already mentioned 11.04 cm, so the time the arrow
needs to travel this distance is 0.0021 sec. This time is rahsmall compared with the
shooting time, being 0.0181 sec. In Figure 4.12 th@ " on the t-axis indicates the moment
ty = 0:0202 sec the nock of the arrow passes the grip. Thus movemeotshe bow hand
caused by a jerking recoil force after this momerit do not a®ect the °ight of the arrow.
This means that if we want to judge the performance of a bow, thbehaviour of the recoil
force fort - ty is more important for the accuracy of the shooting and its bedviour for
t, ty determines whether the bow is possible a pleasant how to shao not.

For a clamped real bow with internal and external damping inilnbs and string, K and
P will converge to their magnitude in the static braced situabn, being 25.7 kgf and 0 kgf,
respectively.

A subject close to the preceding one is the in°uence of the masisthe grip 2my when
a bow is shot open-handed. In that case the bow leaves the boand at the moment
the recoil forceP becomes negativef = t,. It appears that the etciency and the muzzle
velocity of the arrow hardly depend on the mass of the grip, seTable 4.7. Further the
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Table 4.7: In°uence of mass of grip 2my on performance ofA bow shot open-handed,q = 0:404.

my [0 | 0:0406] 1
~ 0.807| 0.807 | 0.807
o |206 |206 |206

maximum force in the string is for the H bow shot open-handeditkh my = O, slightly
smaller (about 53 kgf) than its value when thed bow is clamped (then 57.7 kgf). We
conclude that, for exciency”, muzzle velocity®, maximum force in string and behaviour
of the acceleration forceE, shooting a bow open-handed gives no disadvantages.

The Arab archers, see [10, page 43], used a very tight hold dretgrip:

"The pressure on the grip will give a hold as strong as a buifdj, so that the
bow will neither deviate no turn in the hand'

In [1, page 49], it is said that:

"Although archers throughout the world have agreed that stng and accurate
shooting depends upon a rm hold upon the grip, so that the ngetips all but

bleed, the Persians maintained that the opposite, a loose Idoupon the grip

insured strength and accuracy.'

The modern target archer employs also a loose grip, to avomisting which can occur with
a tight grip. This twisting tendency, either horizontally or vertically, throws the arrow o®,
see Nagler [6, page 194]. To prevent loss of the bow after stizd archer uses a wrist strap
or a nger strap.

Modern bows possess stabilizers, a pair of extending metais attached to the handle
section, the sti® part in the middle of the bow which we callethe grip. These arms are
provided with a heavy knob on the end, giving the stabilizera large moment of inertia
with respect to the y-axis. One of the actions of stabilizers is to reduce bow "tque" or
the twisting of the bow on the pivot of the hand round they-axis Because we assume in
our model (Section 4.3) that the limbs and arrow move in thex; y)-plane, it is not possible
to use this model to compute the in°uence of the magnitude of thmentioned moment of
inertia. However, the action of the stabilizers is qualitatvely dear.

Another e®ect of these stabilizers is that they add mass to tlyeip. Because the handle
section of a modern take down bow is rather long, its mass is ligelf already rather large.
Hence, for modern bowsT, the mass of the grip is much larger then for ancient bows. In
this section we found that the performance of the bow shot opéhanded hardly depends
on this mass. However, a heavy grip gives a smaller recoil hase the bowhand has some
elasticity. Unfortunately our model developed in Section.8 is unsuited to deal with this
phenomenon, because we assumed the bow to be xed in the middieen the recoil force
is positive.
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Table 4.8: Energy in parts of KL bow in a number of situations.

limbs string total bow arrow
energy pot. kin. pot. Kin. pot. kin. Kin.
braced 0095 O 0.0276 O 0.1226 O 0
fully drawn | 0.5155 O 0.0137 O 0.5292 0 0
arrow exit | 0.0663 0.0491 0.0681 0.0344 0.1344 0.0835 0.3112

4.9 Systematic change of parameters of a straight-end
bow

In [8] we changed, starting with the H bow, length of the gripbrace height, length of
bow, bending sti®ness and mass distribution along the limbshape of the unstrung how,
mass of the arrow and put concentrated masses at the tip. In &®n 4.7 of this paper we
completed this study of the H bow by varying the strain sti®nesand mass of the string.
We also compared if possible our calculated results with espmental ones given in [6].
In this section we change some of the parameters mentionedoab one by one, but now
starting from a more realistic bow and are able to give numeyal results related to what
happens after the arrow has left the string, for instance thpeak tensile force in the string
and the behaviour of the recoil force. At the end of this sean we deal with an angular
how.
We start with a bow which we call the KL bow, given by

KL(1:286 0:1429W;V; i~ 0;0:07690; 0; 0; 0; 0; O;
1:286 0; 1:286 0; 1:286 1:286 131, 0:0209 0:214; 1 1; 1) ; (4.102)

with bending sti®ness and mass distribution

_ i(Li9¢ . o _ _
W (s) = W(Lo) DL i Lo- S 23 W(s)=1=3W(Lg); 25+ s- L; (4.103)
and
V(s) = V(Lo)i E_Lii LSZ¢; Lo- S+ 23 V(s)=1=83V(Lo); 23+ s- L; (4.104)

whereW (LO) = 1:409 andV(LO) =1:575 and?3 = Lo+2=3 (L j Lo).

With respect to the H bow the KL bow possesses more mass per unit of length near
the tip to support the string. Apart from some minor details the KL how is dealt with by
Klopsteg in [6]. The computed values fog, © and® are 0.407, 0.765 and 2.01, respectively.
In Figure 4.13 we show thesfd curve anddfd curve of this KL bow and in Table 4.8 we
give the amounts of energy in di®erent parts of the KL bow in thbraced and fully drawn
situation and at the moment the arrow leaves the string. Comgring these results with
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those of Table 4.5, after we made the latter ones dimensiosse shows that more kinetic
energy is left behind in the limbs of thed bow. The maximum recoil force fort - t, is

P = 2:3 and the maximum tensile force in the string i = 4:3. For the H bow these
values were 2.10 and 3.7, respectively. After the peak therde in the string becomes
negative.

Before we discuss the consequences of the change of paramsetee describe the sit-
uations in which we stop the calculations. If nothing specighappens we stop after one
complete oscillation of limb and string. After one oscillabn we know the information we
are looking for; exciency’ , muzzle velocity®, maximum recoil force fort - t;, peak tensile
force in string and behaviour of the recoil force for>t,.

Figure 4.13:sfd and dfd curve of KL bow.

In the case of the KL how and the H bow (Section 4.8) we mentiodealready the
possibility that the force in the string becomes negative. Wen this happens we are forced
to stop the calculations because then the Newtonian methodils to converge. Figure 4.14.a
shows the shape of the how and string of the KL how at that momé&nwhich occurred
after arrow exit. The distance between the tip of the limb andhe x-axis approximates
the length |, of the string is unloaded situation and the force in the strig becomes zero.
This phenomenon can happen also far- t, if we take the mass of the arrow very small.

We also stop the computations when thec-coordinate of the middle of the stringb
becomes negative, then the string has passed the grip. Acliyabecause the how is sup-
ported by the how hand, we should stop the computations whelmbecomes smaller than
some positive value in order to require some space for the hband. In Figure 4.14.b we
depict the shape of the limb and string wherb becomes negative for the KL how with a
concentrated mass at the tip withm; = 0:0769.

Finally we stop when the string hits the limb near the tip, beause then the string
passes the limb. The shape of limb and string at the moment thioccurs for the KL how
with m, = 0:0384, are shown in Figure 4.14.c. It appears that the limb hgsassed the
unstrung shape of the bow which coincides with a part of thg-axis. Obviously, because of
a rather large dynamic force in the string it is stretched tosch on extend that the length
of the string exceeds the length of the bow.
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(@) (b) (c)

Figure 4.14: Calculated shapes of limb and string: (a) STOP=1, (b) STOP=2 and (c) STOP=3.
Arrows indicate global direction of motion of limb and strin g.

For convenience we introduce the variable STOP, of which thdomain is 0, 1, 2 and 3.
If STOP=0; nothing special happens and we stop after one conape oscillation, STOP=1,
then the force in the string becomes negative, STOP=2; the g hits the grip and
STOP=3; the string hits the limb near the tip.

It is clear that situations occurring with STOP=2 and STOP=3 have to be avoid.
Whether this is also the case with STOP=1 is not dear when thi®iappens after arrow
exit, but it does not seem to be a pleasant situation; perhags causes a so called "kick".
We return to this in the discussion of Table 4.10.

We now change the parameters in (4.102) before the semicqglone by one. Note that
W (Lo) is "xed by the requirement F(jODj) = 1 and that F(jODj) is linearly dependent
on, when we replacéN (s) and U(rp) by , W(sS) and , U(fo). Hence, it is easy to adjust
the weight of a described bow (1 in this case) to a desired valiy multiplying W (s) and
U(ro) by a suitable . V(Lo) is xed by the requirement m, = 1. Thus if we change
one parameter thenW (L,) and V(Lo) may change. In equations (4.90) and (4.91) of [8]
we suggest thatW (Lo) and V(L) are the same for di®erent bending sti®ness and mass
distributions along the limb, but that is wrong. In this secton we give for the sake of
completeness the values oV (Lo) and V(Lo) in all situations. With the discussion of
the results we mention the behaviour of the tensile fordé and recoil forceP only when
it di®ers strongly from the behaviour in the case of th& bow described in the former
Section 4.8.

First we change the brace heightOH | to investigate its in°uence on the performance of
the KL bow. In Table 4.9 we collected the results. The exciency is nearly independent
of the brace height. The static quality coe+cientq and the muzzle velocity® diminish
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Table 4.9: In°uence of the brace height on KL bow, V(L) = 1:575.

JOH] 0:179| 0:214 | 0:250 | 0:286
W(Lo) | 1.419| 1.409| 1.397| 1.385

q 0.418| 0.407| 0.393| 0.378
’ 0.763| 0.765| 0.766| 0.765
0 2.04 [ 201 |1.98 |1.94

STOP |3 1 0 0
minb(t) | %0 | 0.02 | 0.10 |0.14

with increasing brace height. For the smallest mentioned bce heightjOHj = 0:179, we
have STOP=3, the string hits the limb near the tip with a con guration which resembles
the one of Figure 4.14.c. For the two largest brace heights mt®ned in Table 4.9 we
have STOP=0. It turns out that the minimum distance between tie middle of the string
and grip during the vibratory motion after arrow exit, denoted by minf b(t)g in Table 4.9,
increases with increasing brace height as can be expectechu$ the requirement to have
enough space for the bow hand yields a minimum brace heighteohas to use.

In [6, page 18], Hickman mentions that a bow which bends thrghout its whole length,
hence without rigid grip, is not a pleasant bow to shoot becae it is likely to have an
unpleasant "kick". Hence, it is interesting to change the Legth of the grip 2L, and by
comparing the obtained results, to investigate if somethmspecial happens that indicates
the possibility of a kick forLq = 0.

In Table 4.10 we give the results. We change the brace heiglt well as the length of
the grip. The in°uence of the brace height on the three qualitgoetcients appears in the
casesLo =0 and Lo = 0:286 to be the same as fory = 0:143, the case we dealt with in
Table 4.9. From Table 4.10 we conclude further that a longerrigpp gives a smaller static
quality coexcient but also a larger exciency, so leaving the maele velocity about the same

The behaviour of the recoil force fot < t | is for all bows referred to in Table 4.10, about
the same. Thus, with respect to the dynamic behaviour far< t | there is no indication
for the occurrence of a kick for a bow without a grip. Howeverfor t > t | the behaviour
of the tensile force in the stringK changes with varyingL, and jOH|, what is re°ected
by the change of the variable STOP. If STOP=1, the tensile fare in the string becomes
negative and in reality the string will become slack. When té string is suddenly stretched
again it is possible that a kick is felt by the bow hand of the aher. It is tempting to
claim that this explains the occurrence of a kick. The resustin Table 4.10 suggest that for
smaller brace height the tensile force in the string becomeggative for a bow without or
with a short grip. However,it indicates also that for a large brace height the tensile force
becomes negative just for bow with a long grip. To the knowlgg of the author no book
or paper mentions this latter phenomenon.

The third parameter we change, while we leave all the other ea given in (4.102) of the
KL bow unperturbed, is the length 2. of the bow. Table 4.11 gives the quality coexcients.
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Table 4.10: In°uence of length of grip 2Ly on KL bow, also di®erent values forjOHj.

Lo 0 0.143 0.286

JOH] | 0:214| 0:250 | 0:286 | 0:214 | 0:250| 0:286| 0:214 | 0:250| 0:286
W (Lo) | 1.945| 1.934| 1.922| 1.409| 1.397| 1.385| 0.972| 0.960| 0.948
V(Lo) | 1.4 1.4 1.4 1.575| 1.575| 1.575| 1.8 1.8 1.9

q 0.412] 0.399| 0.384| 0.407| 0.393| 0.378| 0.399| 0.385| 0.370
’ 0.745| 0.747| 0.747| 0.765| 0.766| 0.765| 0.788| 0.786| 0.782
0 200 ({197 |193 [2.01 |198 194 |2.02 199 | 194

STOP | 2 1 0 1 0 0 0 1 1

Table 4.11: In°uence of the length 2L on the KL bow.

L 1:429| 1:286| 1:143| 1.0 0:8571| 0:7857| 0:7143
W(Lo) | 2.095| 1.409| 0.881| 0.491| 0.221 | 0.1237| 0.0495
V(Lo | 1.4 1.575| 1.8 2.1 252 |28 3.15

q 0.414| 0.407| 0.394| 0.372| 0.327 | 0.284 | 0.206
‘ 0.751| 0.765| 0.783| 0.800| 0.795 | | |
0 2.01 |2.01 |2.01 |1.97 |1.84 || |
STOP | 2 1 1 1 1 1 1

We observe that the static quality coe+cientq decreases when a bow is taken shorter. In
Figure 4.15 we depicted thesfd curve for bows with di®erent lengths of the limbs. It
shows that the short bow has a tendency to stack. Stacking isi¢ property of a bow to
be drawn easily to the last few inches and to build up to full wght rapidly as the string
comes to full draw. For the KL bow withL = 1:286, the force in the string is in the braced
situation larger than in the fully drawn situation. For the short bow with L = 0:7143, it is
the reverse. Further this static forceK is for the whole ranggOHj - b-j ODj de nitely
smaller for the shortest bow than for the longer KL bow.

Figure 4.16 shows thedfd curves for di®erent lengths 2. We conclude that the
dynamic behaviour of the short bow is inferior to that of the dng bow. For bows even
shorter than the mentioned ones, for instance = 0:7143, the acceleration force becomes
negative shortly after release (STOP=1, fott < t| by which the string becomes slacked.
Hence, a minimum length for a straight end bow has to be used ander to get an e®ective
bow.

We turn now to the in°uence of the distribution of the bending #§®nessW(s) and
massV (s). In Table 4.12 we chang&V and V simultaneously, where we use the following
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Figure 4.15: In°uence of length 2L on KL bow:
F (b) and K (b), Table 4.11.

Figure 4.16: dfd curve of KL bow, di®erent
lengths, Table 4.11.

notation
. L' ¢7
wn(s):wn(Lo)'(Li' Lsz " Lo S- 20 Wa()=1=8Wa(Lo): 2 s+ L: (4.105)
and
i(Lj s, , . L, ,
V(9= L) L2 Lo s 3 V(9 =128V (Le) i 5 s Li (4.106)

where:2; = L,2,=Lj (Lj Lo)(1=3)¥rforn=2;3;7,=0, ,=1=2, 3=1.
For n = 3 these functions correspond to those de ning the KL bow (40R)¢ ¢@.104).
In [8] it appeared that for three bowsn = 1;2;3 with an inextensible string without
mass and?, and 23 almost equal toL, the muzzle velocities are almost equal. From
Table 4.12 we conclude that this is not the case for the bowsvgh by (4.102) with (4.105)
and (4.106). For the bow with a uniform bending sti®ness and rss distribution (Wy; V1)
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Table 4.12: In°uence of bending sti®nesdN (s) and massV (s) on the KL bow.

W;V Wi; Vi | Wa Vs | W3, V3
W(lo) |0.96 |1.16 | 1.409
V(Lo) | 0.875 | 1.289 | 1.575

q 0.412 | 0.409 | 0.407
’ 0.704 | 0.744 | 0.765
° 194 199 |201
STOP | 2 2 1

the muzzle velocity is smaller than for the other two bows. Ifrigure 4.17 we give thedfd
curves forn = 1;2;3. It is seen that thedfd curve for a bow with (Wy; V,) is less smooth
than the dfd curve of a bow with W5; V,) or (W3; V3). This combined with the rather low
exciency makes this bow inferior to the other two bows, of whitthe one with (Ws3; V)
is the best. In the two cases1 = 1 and n = 2 the string hits the grip (STOP=2). The
shapes of limb and string when this happens resemble the orwn in Figure 4.14.b.

The next parameter we deal with is the mass of the arrown2,. Table4.13 gives ezx-
ciencies and muzzle velocities for the KL bow shooting arrewvith di®erent masses. It is
seen that although the exciency of the KL bow shooting a light @ow is bad, its muzzle
velocity will be high.

In [8] we discussed the concept of virtual mass, de ned by Klsfeg in [6, page 167].
This virtual mass, denoted byKy, is given by

il "¢

Kn=mj (4.107)
Klopsteg found experimentally that this virtual mass is a costant for a large numbers of
bows. For the H bow (inextensible string without mass), the ivtual masses for the rst
three arrow masses given in Table 4.13 are 0.017, 0.010 an@d0@, respectively. When
we compute these virtual masses, using the exciencies giver the KL bow, we obtain
0.038, 0.024 and 0.017, respectively. Hence, for the moraligtic KL bow, the virtual
mass depends less on the mass of the arrow, but it is certaimgt a constant. When the
lightest arrow is shot, the string hits the limb near the tip dter arrow exit, STOP=3. In
Figure 4.14.c. we show the shape of limb and half of string ahé moment this happens.
Because the exciency is small, a large amount of energy remsibehind in the limbs and
string, obviously large enough to stretch the string to a legth longer than the length of
the bow, permitting the limbs to pass they-axis. As for the H bow (see [8]) the maximum
recoil forceP for t <t, increases for decreasing mass,. For the KL bow, these values
are 3.1, 2.4, 1.8 and 1.4 for arrow masses 0.0384, 0.076%38land 0.3077, respectively.
For the heaviest two arrows we have STOP=0. Figure 4.18 showbke curvesE(t),
K (t) and P (t) for both masses 0.1538 and 0.3077. For the heaviest,(= 0:3077) a the
oscillations of the recoil force are less intense, but the wienum force in the string is only
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Figure 4.17: dfd curves for bows Wi1; Vi),
(W2; Vo) and (W3; V3), Table 4.12.

Table 4.13: In°uence of mass of arrow 2n, on the KL bow, q=0:407, W (Lo) = 1:409,V(Lo) =
1:575.

Ma 0.0384| 0.07169| 0.1538| 0.3077
’ 0.505 | 0.765 | 0.898 | 0.931
0 194 | 201 154 |111
STOP | 2 1 0 0

slightly smaller than in the case of the KL bow shooting an aow with massm, = 0:1538.
In the limit, when ma tends to in nity, the e+ciency tends to 1 and the energy in the
limbs equals at arrow exit, the amount of potential energy irthe limbs in braced situation.
Hence, fort | t;, the recoil forceP tends to zero and the forcK in the string tends to its
value in the braced situation.

In [8] we found that the e®ect of concentrated masses at the gipf the H bow is rather
small, in agreement with the ndings of Hickman in [6, page 47From Table 4.14, however,
we conclude that the performance of the KL bow depends on theass of the tips more
strongly. For the H bow the presence of mass at the tip witim; = 0:0769 reduced the
exciency from 0.89 to 0.87 (see [8]), but for the KL bow from 065 to 0.695. In Figure 4.19
we draw thedfd curves for di®erent values ai,. These curves show clearly the in°uence
of the mass at the tip in combination with the elasticity of the string. In [8] we showed
that, when concentrated masses are present and an inextési string without mass is
used, there is a jump in the force on the arrow at time = 0, just as in the case of the H
model. Thedfd curves form; 6 O in Figure 4.19 re°ect a tendency to oscillate like the
dfd curves in Figure 4.5, obtained by using the M model in the casd#d a bow with an
elastic string with mass. As in the case of the M model the ampide of this oscillation
is larger for heavier tips. We remark that for very heavy tipsor for moderately heavy tips
combined with the use of a rather sti® string, the °uctuationf the force in the string
become very large and that in those situations damping may beme important. In both



4.9. SENSITIVITY ANALYSIS FOR A STRAIGHT-END BOW 125

Figure 4.18: E(t), K (t) and P(t) for KL bow with di®erent arrow masses: m, = 0:1538 and
m, = 0:3077, Table 4.13.

cases with masses; = 0:0384 and 0.0769 the string hits the grip at a certain moment
t, t (STOP=2).

Figure 4.19:dfd curve for KL bow with masses
m; at the tips, Table 4.14.

Next we consider the in°uence of a rigid body possessing a mamef inertia J;, but
without mass, placed at the tip. In Table4.15 we changed the oment of inertia of the
rigid body, keeping all the other parameters the same as thees given in (4.102) for the
KL bow. A rigid body with J; = 9:8 10 ° is for instance a rod of the length £14 "Xed in
the middle of this rod at the tip with on both sides a mass equaib the half of the half
mass of the arromm, = 0:0769. ForJ, = 1:56 10 3 this rod is 4=14 long.

In order to get the in°uence of the moment of inertia purely, wetake the massm;
zero, notwithstanding the fact that a actual rigid body with non-zero moment of inertia
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Table 4.14: In°uence of concentrated tip masses on the KL bow,q = 0:407, W(Lo) = 1:409,

V(L) = 1:575.

CHAPTER 4. THE STATIC RECURVE BOW

m; 0 0.0384| 0.0769
’ 0.765| 0.721 | 0.695
° 201 195 |1.92
STOP | 1 2 2

Table 4.15: In°uence of moment of inertia J; on the KL bow, q = 0:407, W(Lo) = 1:409,
V(L) = 1:575.

Ji 0 9810°(3910%[8810“|15610°
. 0.765| 0.765 0.765 0.761 0.785

° 2.01 | 2.01 2.01 2.00 2.00
STOP | 1 1 1 1 2

possesses some mass. It means that the just mentioned rods @ery long, by which the
masses tend to zero for a xed moment of inertia Table 4.15 shewhat the performance
of the KL bow scarcely depends od;. This is in contrast with the in°uence of the point
massesn;, see Table 4.14.

We investigate now the in°uence of the sti®ness and mass of thdrg) in the case of
the KL bow. We changed both quantities simultaneously in Tale 4.16, this in order to
simulate a change of the number of strands employed in makitige string. For statics, the
sti®nest string yields the largest static quality coexcien. With respect to the etciency
and muzzle velocity the sti®ness and mass corresponding tatlof the KL bow give best
results. For the most elastic and lightest string mentionedn Table 4.16, the string hits
the grip after the arrow has left the string (STOP=2), while for the other two strings the
force in the string becomes negative (STOP=1).

Table 4.16: In°uence of numbers of strands of the string on the KL bow,V (Lg) = 1:575.

Us 66 131 | 197
Ms 0.0105| 0.0309| 0.0314
W(Lo) | 1.404 | 1.409 | 1.410
q 0.403 | 0.407 | 0.408
‘ 0.750 | 0.765 | 0.744
o 1.98 |2.01 |1.99
STOP | 2 1 1
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Table 4.17: In°uence of shape of bow in unbraced situation on the KL bow,V (Lg) = 1:575.

bo(Lo) | - o W(Lo) | q ’ ° STOP | min b(t)
0 0 1.409 | 0.407| 0.765| 2.01| 1 0.02

i 0012 | 0 1.097 | 0.425| 0.710| 1.98| 2 0

0 i 0:5]0.905 | 0.452| 0.680| 2.00| 2 0

0:12 i 1:0| 0.770 | 0.464| 0.673| 2.02| 3 |

0 0.1 |1.590 |0.389|0.795|2.01|1 0.06

Finally, we deal with the in°uence of the shape of the unstrungow given by(s). We
con ne our attention to bows for which this function is given ly

Ho(s) = po(Lo) + 'ofl, ILO ;Lo s L (4.108)

| 0
where (L) and - o are two parameters.jo(Lo) is the angle at which the limb is xed to
the grip (if this parameter is negative then the limb is saidd be set back in the grip) and ¢
is apart from the constant (L j LO) the curvature of a circle part of which coincides with
the limb in unstrung situation. In Table 4.17 we changed thesparameters; fory(Lg) =0
and - o=0 we have the KL bow again. In [8] we dealt with bows for whiclpy(Lo) = | 0:12,
o =0and (L) =0, -9 =j 05 andw(Ly) =0:12,-¢ = j 1, but in those cases the
bending sti®ness and mass distributions were di®erent and #teng was inextensible and
without mass. The results show that the static performancesibetter for bows with more
re°exed limbs, -9 = j 0.5 and - = | 1. Moreover the exciency in these cases is worse,
so that the dimensionless muzzle velocity is nearly indepaéent of the shape of the how
in unstrung position (at least for the shapes we consider byhich po(Lo) and - o change
simultaneously)

Hickman in [6, page 22], notes that many bows take a permanesét after they have
been used a great deal. In order to gain insight into this phemenon we take the case
-0 = 0:1. Hence, we consider a how which "follows the string”, of w¢h the unstrung
shape is a part of a circle with a rather small curvature. Thetatic quality coexcient is
smaller than that of the KL bow. However, the exciency is largeso that the dimensionless
muzzle velocity of both bows is again nearly unaltered. Notthat the min b(t) is much
larger in the case of the bow with some permanent set.

Besides bows with unstrung shape given by (4.108), we coreidlso angular bows (see
Figure 4.1.b) which are also non-recurve bows, as we mentehin the introduction. These
bows were used in Egypt and Assyria. In [13] angular bows arepicted which have been
found in the tomb of Tutankhamun. The bows do not possess a gtiLo = 0, and have
a characteristic bend in the middlepy(Lo = 0) > 0. For the distribution of the bending
sti®ness and mass along the limb we take those given by (4.188j (4.104) again. The
values of the parametersn.J;; m,; Us; mg are equal to their values in (4.102). Using these
data, the unstrung shape of the bow is xed by the requirementhat the limbs fall straight
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back in braced situation. The equation of equilibrium of thebow in braced situation for
the angular bow with uYs) = 0, reads

Ki(JOHji X1=2(s)) = W(S)Kp(s); 0+ s+ L; (4.109)

where X1-,(S) is the x-coordinate andK -, the tensile force in the string. This formula
yields the curvature as a function of the length coordinate,apart from a constant which
we call also- ¢ as in (4.108), which xes the forceK 1-,. We get

Mo(s) = arcsin(jOHj=L)+ -gs=L; 0- s- 2=3L; (4.110)
and
i ¢
bo(S) = arcsin(JOHj=L)+ - o's=Lj 3=2(s=Lj 2=3) ;2=3L - s- L;  (4.111)

Thus only for 0- s - 2=3L the unstrung shape of the limb is part of a circle. By means
of (4.110) and (4.111) the constraint that the bow is an angal bow is satis ed for a
bow with bending sti®ness given by (4.103), as we have assunhEkt we have to choose
the three parametersL, - o and jOHj. For L = 0:7857,- o = j 1 andjOH] = 0:214 the
unstrung bow resembles closely the bows shown in [13]. Wel ¢hls bow the AN bow, it
is determined by

AN(0:7857 0; W; V; 1b; 0:07690; 0; 0; 0; O;
i 0:15510:7427 i 0:1551 0:7427; 0:155%0:7427 0:7857 131, 0:02090:214;1 1;1) ;
(4.112)

whereW and V are given by (4.103) and (4.104) angy by (4.111). This bow is shown in
various situations in Figure 4.20, note the angular form in taced situation.

Figure 4.20: Angular bow AN in
various situations. Note the angular
form in braced situation, the limbs
form the equal sides and the string
the basis of an isosceles triangle.

In Figure 4.21 we have drawn thesfd and dfd curve of this bow. Its static quality
coexcient g = 0:395, its exciency” = 0:716 and its muzzle velocity> = 1:92 In Table 4.18
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Figure 4.21:sfd anddfd curve of the AN bow.

Table 4.18: Energy in parts of angular bow AN in a number of situations.

limbs string total bow arrow
energy pot. kin. pot. Kin. pot. Kin. Kin.
braced 0.1461 O 0.0115 O 0.1576 O 0
fully drawn | 0.5493 0 0.0033 O 0.5526 O 0
arrow exit | 0.1380 0.0573 0.0385 0.0359 0.1765 0.0932 0.2961

we give the amounts of energy in the di®erent parts of the AN bofeor a number of
situations. If we compare the quality coexcients of the AN bowwith those of the KL
bow, we nd that less recoverable energy is availablg & 0:395;q = 0:407), its exciency
is smaller ( = 0:716;” = 0:765), hence its muzzle velocity is smalleP (= 1:922 = 2:0).
After arrow exit the force in the string K attains a maximum, being 5.0, which is larger
than in the case of the KL bow, where it was 4.3. After this peakorce it becomes zero,
so we have STOP=1, just as with the KL bow. In Figure 4.22 we shothe forcesk, K
and P as functions of time in the case of the AN bow.

The shape of thedfd curve resembles that of the KL bow withL = 0:8571 given in
Figure 4.16, merely the oscillations are less intense. As@sequence,the acceleration force
E acting upon the arrow remains positive during the shootingmpcess, this in contradis-
tinction to its behaviour in the case of the short KL bow with same lengthL = 0:7857.
The amount of energy bound up in the pulled AN bow is slightlydrger than in the case of
the KL bow, see Table 4.18. Ap = 0:5526;Ap = 0:5292). This holds also for the potential
energies stored in di®erent parts in the AN bow at correspomgj times. The amounts of
kinetic energy are about the same for both bows at arrow exit.

In Table 4.19 we change the length. of the AN bow, while the other parameters are
kept the same as those given in (4.112). With increasing lethghe static quality coexcient
g increases, but forL = 1:000 andL = 1:286 the di®erence is only small. In Figure 4.23
we show thesfd and dfd curves of the AN bow withL = 1:286 besides those of the



130 CHAPTER 4. THE STATIC RECURVE BOW

Table 4.19: In°uence of length 2L on performance of the angular AN bow.

L W(Lo) [ V(Lo) | ’ o [STOP
1.286 | 1.409 | 1.4 | 0.453] 0.652] 1.96| 3

1.000 | 1.097 | 1.8 | 0.450| 0.689| 2.01| 3
0.8571| 0.905 | 2.1 |0.421|0.704|1.96| 3
0.7857/ 0.770 | 2.3 | 0.395|0.716| 1.92| 1

AN bow with L = 0:7857. Note the path of thesfd curve for the rst part of the draw.
The force F(b) is for a very small region negative, indicating that the braed situation
with jJOHj = 0:214 in an wstable one. ForjOHj = 0:232 we have a stable con guration.
Therefore we take this situation, in which the limb is not staight, as braced situation. The
exciency diminishes with increasing length. FotL = 1:000 the muzzle velocity attains its
largest value, being equal to that of the KL how. Thus in contdiction with the results
for the KL bow given in Table 4.11, the longest bow does not pssss the largest muzzle
velocity.

In this section we considered the performance of a bow as adtion of the dimensionless
parameters given before the semicolon in (4.2) which x the ahacteristics of a non-recurve
bow, namely the KL how. In [8] and Section 4.7 of this paper thstarting point was the
H bow. Comparing the results obtained in [8] and in Section A.with those given in this
section, one can obtain insight into the in°uence of the elaist string with mass together
with the sti®er and heavier part near the tip of the limb. Note hat we changed in this
section the bending sti®ness and mass distribution along theb simultaneously and also
the strain sti®ness and mass of the string. Because the bergisti®ness of the limb of the
H bow at the tip nearly vanishes, the nite-di®erence procedardeveloped in Section 4.4
fails when we put a rigid body possessing a moment of inertia e tip.

At the end of this section we changed besides the shape of thestrung how also
some other parameters. This in order to consider angular bew A change of the shape
of the KL bow in unbraced situation (,(S)) is, to a certain extend, also the subject of
Section 4.11, in which we consider the static-recurve bown Section 4.12 we deal with
the in°uence of the three parameters with dimensiofODj, F (jODj) and m, behind the
semicolon in (4.2) for non-recurve bows as well as for statiecurve bows.

4.10 A simple mathematical model for the static-recurve
bow

We consider again the very simple type of symmetric bow cossing of a grip, two rigid
limbs, two elastic hinges and an inextensible string withdumass. This bow has by its
symmetry only one degree of freedom. The aim of this sectios to gain insight into the
principles of the action of a static-recurve bow before we msider in section 4.11 a more



4.10. MODEL FOR STATIC-RECURVE BOW 131

Figure 4.22. Calculated accelera-
tion force E, string force K and re-
coil force P as function of time t
for the AN bow. The calculation is
stopped when the force in the string
K becomes zero.

realistic model of it.

In Figure 4.24 we show a bow with a straight rigid limb ST, referred to as a SB bow
(Figure 4.24.a) and a static-recurve bow with a rigid limb ST possessing a sharp bend at
T,, called a CB bow (Figure 4.24.b)

The half length of the grip is denoted byL,. The rigid limb is connected to this grip
by means of the elastic hinge S of strengtk > 0. The moment of inertia of the limb with
respect to S is in both cases. The length of the limb is denoted byL,, measured in
the case of a CB bow along the limb Sib. The string of half length| is inextensible and
without mass.

The angle' denotes for both types of bows the angle between S&nd the y-axis
and a is the angle between the string and thig-axis, both angles positive as indicated in
Figure 4.24. For' = ', we have the unbraced situation, hencé is the angle of zero
moment of the elastic hinge. In the braced situatiodb = jOH| the angle' is denoted by
' 1 and in the fully drawn situation b= jODj we have' ="' ; and ®= ®,.

In the case of a CB bow, because of the suxciently strong bend the limb, the string
lies along T, T, in the braced situation. If such a bow is drawn, at a certain moent the
string leaves the bridge at T and the string has contact with the bow only at T,. The
angle' in that situation is denoted by ' , The action of a CB bow can be described by
the action of two SB bows, one fot<'  and the other for'>"' . These two SB bows
are referred to as the SBbow and SB bow, respectively. The length of the grip, strength
of the hinge and moment of inertia of the limb are for both bowthe same as those of the
CB bow. The length of the limb of the SB bow equals the distance Sfin the case of the
CB bow, the half length of the string isl jj T1T,j and the angles o, ' 1-, and' ; are equal
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Figure 4.23: sfd and dfd curves of AN bow,
di®erent lengths, Table 4.19.

to the corresponding ones of the CE bow. For the SE bow, the igih of the limb equals
jST,j, the half length of the stringl, ' ¢ is the angle between thg-axis and the line ST, of
the CE bow in unbraced situation whileb in fully drawn position equalsjODj of the CB
bow.

Note that it is not the intention to give a model for a bow, likethe H model or M model
dealt with in Section 4.6. In that case we should have to givailes to determine strength
and place of the elastic hinge and moment of inertia of the lijmfrom the dimensions of
the bow and the distributions of the bending sti®ness and maatong the elastic limbs.

Also in this section we introduce dimensionless quantitiesAs unit of mass we use
155=L° (this value corresponds with the mass of one °exible limb, vwitthe use of the H
model, see Section 4.6). The weight (jODj) and draw jODj are used as unit of force and
length, respectively. Again we drop the bar in the case of dimsionless quantities, for
instancelL; = L, jODj.

The static quality coexcient q (4.82) for a SB bow can he calculated as

_C1i "0)%i (1= "o)? Lysin( 1+ ®)

4= "1i "o 2sin®, '
The two factors at the right hand side of equation (4.113) hava simple physical meaning.
The rst factor is the energy put into the two elastic hinges bybringing the bow from the
braced situation ( ="' ;=) into the fully drawn position (* = ' ;) divided by the moment
exerted on one hinge at full draw.

In Figure 4.25 we draw the moment action upon the hinge as a fation of ' , divided
by the nal moment in the fully drawn situation for two SB bows aly di®ering in their
value' o. The rst factor in (4.113) equals the area below this line beteen' ="' -, and
' ="' 4, shaded in Figure 4.25. We conclude that the smaller the amgl o the larger the
“rst factor in (4.113), and therefore the g when all the other parameters are taken the
same.

The numerator in the second factor is the distance betweendtlstring and hinge in fully
drawn position. The sin®, in the denominator of the second factor enters in the formal

(4.113)
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(@) (b)

Figure 4.24: Bows with two elastic hinges and rigid limbs: (a) SB and (b) CB bow.

because we are interested in the amount of energy per weightdanot per force in the
string in fully drawn situation. The larger L., the larger the second factor and it appears
that g shows the same tendency. This is, however, not clear befased because also the
“rst factor changes for di®erent values of ;.

Equation (4.113) holds also for a CB bow. In that case the pam@eters occurring in
(4.113) belong to the SB bow except the parameter ,-; its value is the' -, of the SB,
bow minus the angle between the lines STand ST;.

In what follows we give the results for one speci ¢ SB bow and erCB bow referred to
as the bow SB and the bow CB respectively. The characteristmonstants of these bows
are given in Table 4.20. In this table also those of the bow $Bnd SB, belonging to the
bow CB in the manner described above, are given. The other ctants are the same for
all the bows, they are:Ly = 0:4286,J = 0:0440,m, = 0:0769, wherem, is the half mass
of the arrow.

In the last column of Table 4.20 we give the static quality caecients q. Comparison
of the bow SB with the bow CB shows a better static performancef the bow CB. Thus,
because of the ears we are able to put more energy in the hinggsbringing it from the
braced situation into the fully drawn situation. The static quality coexcient of the bow
CB appears to he much larger than that of the bow SB For the bow CB the second
factor of the right-hand side is larger than that in the case fathe bow SB;, while the rst
factor is for both bows the same. Often the action of the eard the static-recurve bow is
explained by the leverage of its ears. This explanation ts nmioned e®ect.

However, we can also compare the static performance of thewb&B with that of a
bow called CB. The characteristic constants of this bow are also given inable 4.20. The
length L, equals that of the bow SB and its neutral position coincides with they-axis.
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Figure 4.25:Moment M exerted an elastic hinge as function of angle of rotatior .

Table 4.20: Comparison of di®erent bows.

bow | L JOHj |jODj || ' 0 ' 12 1 q

SB | 0.8571| 0.2143| 1 | 0 0.2527 | 0.5852| 0.415
CB | 0.8571| 0.2143| 1 | 0 0.3272 | 0.7308| 0.51
SB; | 0.666 | 0.2143| 0.9623| | 0 0.3272 | 0.7308| 0.392
SB, | 0.8126| | 1 1.2503| j 0:1665| j 0:1665| 0.5643| 0.564
SB; | 0.8126] 0.2143| 1 | 0 0:2699 | 0.6181| 0.411

Figure 4.26: sfd curve of CB bow, together
with those of SB; and SB, bow, Table 4.20.
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The static quality coexcient of the bow CB; is also larger than that of the bow SB. In
this case it is due to a larger rsts factor of the right-hand sle of (4.113), while the second
factor is now equal for both bows CB and SB In this way it is justi ed to state that
the good static performance of the bow CB is due to the e®ectiget back of the limbs in
unstrung situation.

In Figure 4.26 we show thesfd curve of the bow CB. The dashed lines complete the
sfd curves of the bows SBand SB,. The sfd curve of the bow CB is more convex then
that of the bow SB; indicating that its static coexcient is larger. The bow SB possesses
no braced situation because for this bowj Lo < L4 thus' 1o = ' g = j 0:1665 From
Figure 4.26 we conclude that the static quality coexcient ofhis bow is extreme large, it
appears to be 0.564. However, this $SBhow has a very bad dynamic performance as we
will see.

In [9] we showed that the exciency of the bows SB, CB, SBand SB; equal 1. Thus
for these bows all the energy put into the bow by the archer inrtnging it from the braced
situation into the fully drawn situation, is used to propel the arrow. For the SB bow we
have, as said beforel j Lo < L 1, hence one of the requirements stated in [9] to ensure
E(b) - O forjOHj < b < jODj is violated. In Figure 4.27 we draw thedfd curves of
the bows CB, SB and SB, and it appears that the acceleration forcd acting upon the
arrow becomes negative for sonte> jOHj in the case of the bow SB From Figure 4.27
we conclude that in the case of the SBbow less energy is transferred to the arrow (the
amount “q imparted to the arrow equals the area below thefd curve) than in the case
of the CB bow. This despite the fact that more energy is availde.

Figure 4.27 shows further a discontinuity at the timé equals' , thus with the transition
of SB, to SB,, of the acceleration forceE. We recall that the velocity of the arrowh.is
continuous during this transition (see [9]). So, at that tine t = t, we have a situation
which resembles the situation at = O; if we take an elastic string then the discontinuity
disappears

Because of the presence of the ears we expect that tifd curve of a static-recurve bow
with an elastic string and elastic limbs oscillates, at leador a model without damping.
But if we replace the elastic limbs by rigid ones then, becaesf the added mass at the
tip of the rigid limb in order to account for the mass of the lini, these oscillations will be
to heavy as in the case of the M model. Therefore we do not elabte this model further.
However, these dynamic considerations show that we have teckon with the possibility of
a sharp alternation of the acceleration forc& or even a discontinuity, when an inextensible
or nearly inextensible string touches the string bridges dhe static-recurve bow again.

In the next section we deal with these static-recurve bows thicontinuously distributed
elasticity of the working part of the limbs. The ears remainigid. Because the string is
assumed to be elastic, the expected di+culties with respecb the use of a nite-di®erence
method when the solution varies fast or even discontinuouss dunction of time, do not
occur using the method described in Section 4.4.
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Figure 4.27: dfd curve of CB bow, together
with those of SB; and SB, bow, Table 4.20.

4.11 Static-recurve bow

In this section we examine the in°uence of the rigid ears of dte-recurve bows. To do
this, we could change one by one the nine parameters (4.2) wiidetermine the action
of the ears. These parameters are: coordinates of centre ity (Xcg,; Yeg,) COOrdinates
of the string bridge (Xu,;Yn,) coordinates of the tip where the string is attached to the
bow (X,;Yi,), massme, moment of inertia Jo with respect to centre of gravity and the
coordinates of this place at which the ear is attached to thelastic limb, which follows
from L,. This would consume a tremendous amount of computing time drwould yield
an unsurveyable amount of information. Moreover, the otheparameters mentioned in
(4.2) a®ect the static and dynamic performance of the bow as lwelherefore we consider
a static-recurve bow with features xed by only a few paramets which remain to de ne.
A change of these new parameters corresponds with a simuléas change of some of
the parameters and functions given in (4.2). We hope that théows discussed here will
reveal already the speci ¢ properties of the static-recurveow. For the selection of the new
parameters we were guided by gures and other data given in sgal books and papers
[14, 10, 4, 1].

As we mentioned earlier in the introduction to this paper, tle old static-recurve bow
are mostly composite bows. Such a bow is formed by the unionstéves of wood and horn
combined with sinew. This makes it ditcult to determine the bading sti®ness along the
elastic line which represents in our model the working partfahe limb. Further, the place
where the grip ends and the limb startsl(,) and where the elastic working part ends and
the ear starts (L,) are not xed unambiguously, because for real bows the trarigins are
gradual.

The results given in this section are obtained by using the ndel for the static-recurve
bow given in Section 4.3, which adds parts of the mass of theisg as concentrated masses
to arrow and tip. In Section 4.7 we found that the use of such amdel for the string causes
some inaccuracy in the case of the straight-end bow and pddgithis will also he the case
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for the static-recurve bow.

In Figure 4.28 we show the unbraced, braced and fully drawntgation of the type of
static-recurve bow which is the main theme of this section. Aé ear is made up of two
straight, rigid pieces each of length 32L ., whereL. is the length of the ear;L. = i Lo.
The angle between those two pieces is denoted |y reckoned positive in the indicated
direction. The ear starts in a direct line with the end of the wrking part of the limb, of

which the unbraced shape is given by

Silo. | s L, (@119

o(s)” 0;0- s Lo; to(S) = po(Lo) + - 07— ;
Loi Lo

The limb is set back in the grip at an anglg (L) (the set back is positive agp(Lo) < 0)
and the working part of the limb coincides with a part of a cirle with curvature - o=(L; i
Lo).

The distributions of the bending sti®ness and mass are

Lijs

W(s) = W(Lo) , Lo s+ La; (4.115)
Lij Lo
and
Lijs
V(s) = V(Lo) , Lo- s+ La; (4.116)
Li Lo

respectively. The mass distribution along the earn., - s - L, is chosen to be constant
and equal toV(L;,). The massm, and moment of inertiaJe of the ear with respect to its
centre of gravity are given by

me = V(Ly)Le; (4.117)
and
Je= Mg 1712+ (1 +cospk) (1=2L¢)°; (4.118)
respectively. Note thatV (L) is now xed by the requirement
Z,,
mp = V(s)ds+ me=1": (4.119)

Lo

This type of bow in unbraced position is entirely determinedby the parametersLe, |,
Ho(Lo), - 0, L and the coordinatesxq(Lo), Yo(Lo) of the end points of the grip, being equal
to 0 and Lo, respectively. The coordinates of the point where the wonkg part of the limb
is connected without bend to the ear are

Z
L2 Si Lo

Xo(L2) = sinf o(Lo) + - o gds; (4.120)
Lo L2i Lo
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Figure 4.28: A static-recurve bow in various situations.

and
Z 1L si Lo
yo(Lz) = Lo+ cod po(l_o) + -9 gdS, (4121)
Lo L2i Lo
For the other mentioned coordinates we nd
Xp = Xo(L2) +1=2L¢sin(o(L2) + -0 (4.122)
Xp, = Xo(L2) + 1=2LccOS{b(L2) + -0 ; (4.123)

Xt = Xo(L2) +1=2L¢f (1 + cosp)sin(po(L2) + -0)i Sinpk cosfo(Ly) + -0)g; (4.124)

Yio = Yo(L2) + 1=2Lf (1 + cosp) cos(b(L2) + - o) i Sinksin(o(L2) + -0)g; (4.125)

Xcgo = 1:4(Xto + 2Xbo + XO(LZ)) ; (4-126)

ycgo = 1:4(yto + 2ybo + yO(LZ)) : (4-127)

We now introduce a bow, denoted by PE which, using the notatioof (4.2) is de ned
by

PE(1:000 0:1429W; V;w =~ 0;0:07690; 0; 0:4; 0:00250;
i 0:04640:75890;0:7857; 0:18560:89290:5714 131, 0:0209 0:25;
1,1;1): (4.128)

The functions W (s) and V(s) are given by (4.115) and (4.116), respectively, witlV (L) =
0:2304, andV (Lo) = 1:867. The parameterd o, m,, Us and mg are equal to their values
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Table 4.21: Energy in parts of PE bow in a number of situations.

limbs string total bow arrow
energy pot. kin. pot. Kin. pot. kin. Kin.
braced 0.1515 O 0.0100 O 0.1625 O 0
fully drawn | 0.5879 0 0.0053 0 0.5932 0 0
arrow exit | 0.1271 0.0980 0.0506 0.0279 0.1777 0.1271 0.2884

in the case of the KL bow de ned in (4.102), the brace heigh©OHj is now Q25 instead of
0.214, the lengthL is 1 instead of 1286.

This bow will be used as a starting point for changing paramet values. The ve
parameters which can be calculated from (4.128) ard:e = 0:428, i = 60*, [o(Lo) = O,
-0 =0, L =1:000. The unbraced, braced and fully drawn situation of the PBbow are
shown in Figure 4.29. The computed quality coexcients of it &; q = 0:432, 4 = 0:668
and©° = 1:94. In Figure 4.30 we give thesfd curve and thedfd curve and in Table 4.21
the amounts of energy in the di®erent parts of the PE bow for a mber of situations.
In the following we still call a bow a PE bow when 'some' of its grameters have been
altered, the not mentioned parameters are tacitly assumedtbe equal to the original
ones. A comparison of the performance of the PE bow with thatfdhe KL bow dealt
with in Section 4.9, shows that there is more energy availabin the fully drawn PE bow
(g=0:432n=0:407). However, the exciency of the PE bow is much lowef (= 0:668; =
0:765) and this causes a smaller dimensionless muzzle velogimu = 1:94° = 2:01).
Further, the amount of energy in the braced PE bow is larger @ that in the braced KL
bow (see Table 4.8) Ay = 0:1575A4 = 0:0950). However, it is interesting to note that
the energy in its string is smaller (0.010;0.0276). This isaptly due to the di®erence in
length of the strings but also to the forceK in the string of the braced PE bow, being
smaller than K in case of the KL bow (1.19;1.71). Thus in spite of the fact thahere is
more potential energy in the limbs in braced situation of thé’E bow,the force in its string
is smaller. We shall return to this subject later.

The sfd curve of the PE bow (Figure 4.30) possesses a bend at the motnte string
leaves the string bridges, just as thefd curve of the CB bow dealt with in the previous
section (see Figure 4.26). The rate of increase of the forle¢b) is during the nal part of
the draw much smaller than during the rst part, in which the string has contact with the
bridge. This agrees with [10, page xxvii]:

"When the bow was about half drawn, the rigid end-pieces (oaks) began to
act as levers so that the draw could be continued with less irase in the weight
than would have been the case without them.’

For the PE bow the string leaves the bridge wheb ¥ 0:5.
The dfd curve of the PE bow oscillates. This oscillating behaviourfdahe acceleration
forceE (b) resembles the behaviour shown in Figure 4.18 where we invgated the in°uence
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Figure 4.29: PE bow in vari-
ous situations.

Figure 4.30:sfd and dfd curve of PE bow.
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Figure 4.31: E(t), K(t) and P(t)
for PE bow.

of the presence of concentrated masses at the tip. The junfip(jODj) i E(O) is due to
the model for the string we use in this section. To the mass®, of the arrow we added
2=3ms which gets the same acceleration as the arrow, hence the dersion force at the
arrow for t = 0, E(0) equalsm,=(m, + 1=3m¢). From Figure 4.30 we conclude that the
static-recurve bow PE imparts its energy less smooth to therramw than the H and KL
bow. The tensile force in the stringk and the recoil forceP have the same behaviour as
can be seen in Figure 4.31 where we show the three functigrit), K (t) and P(t). The
maximum tensile force in the string equals :@; this is lower than in the case of the KL
bow where is was 8. The maximum recoil force fort - t, is larger; 27 for the PE bow
and 23 for the KL bow. After the arrow has left the string, the recdiforce P reaches the
value j 4:5. The force in the string becomes negative after the peak, & our computing
program we have STOP=1 (Section 4.9)

In what follows we change the parameters, L, o(Lo) and - . Instead of L, we
consider as a parameter this length divided by the length ohe limb, thus Le=(L j Lo)
will be changed. The behaviour of the recoil force and of the tensile forceK will be
discussed if it di®ers signi cantly from that in the case of th®E bow

First we change only the anglex. Table 4.22 gives the static quality coexcients for the
PE bow with varying . Starting with |, = 0 the static quality coexcient qincreases with
increasinglk, it passes a maximum in the range 55 | - 65 after which it diminishes
again. In Figure 4.32 we show thesfd curves of PE bows withy, = 0%, i = 30* and
k= 60*. For ik = 0* we have a straight bow and the string has no contact with the shg
bridge in all situations. This is also the case for the PE bowith |, = 30* as can be seen
in Figure 4.33, in which we show the shape of this bow in variswsituations. Therefore the
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Figure 4.32:sfd curves for PE bow with p; =
0%, i = 30* and | = 60%*, Table 4.22.

Figure 4.33: PE bow with
K = 307 in various situations.

sfd curves in Figure 4.32 of these two bows witly = 0* and i = 30* increase without a
bend.

The dynamic quality coezxcients of the PE bow withy, = 0%, 30%, 45, 60° and 75 are
given in Table 4.23 { = 1:000). In the range 30 - | - 60 the etciency decreases with
increasing angley,. This negative in°uence is so large that it overshadows the pitive
in°uence of a larger on the static performance (Table 4.22). The maximum muzzle
velocity and also the maximum amount of energy imparted to th arrow, of which the
mass is given in (4.128), is obtained fqy = 30*.

In Figure 4.34 we give thedfd curves of the PE bows withy, = 0%, i = 30* and
kk = 60*. The oscillations of thedfd curve for the bow with |, = 0* are slightly less than
those in the case of the bow withy = 60*.

The second parameter we change is the length 2f the bow. In Table 4.23 we give
the results forL = 1:286, 1000 and 07857. We changed also the angje.
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Table 4.22: In°uence of angle on static quality coexcient g.

| OF 15 30 45 55 60* 65 75 90"
g | 0.373| 0.387| 0.397| 0.419| 0.430| 0.432| 0.431| 0.423| 0.396
Table 4.23:In°uence of length L and angle on PE bow.
L 1.286 1.000 0.7857
e 0* 30° |45 |60f |OF 30° | 45 60t |75 | O 30 | 45 | 60"

W (Lo) | 1.076| .7982| .6761| 1.409 | .3873| .3061 | .2669 | .2304 | .1960 | .1069 | .0891 | .0754 | .0640
V(Lo) | 1.4 1.4 1.4 1.575| 1.867 | 1.867 | 1.867 | 1.867 | 1.867 | 2.489 | 2.489 | 2.489| 2.489

q 0.400| 0.441| 0.470| 0.407| 0.373| 0.397| 0.419| 0.432| 0.423| 0.301| 0.314| 0.310| 0.314
’ 0.770| 0.740| 0.652| 0.765| 0.782| 0.788| 0.730 | 0.668 | 0.693 | 0.796 | 0.809 | 0.789 | 0.723
° 200 | 206 | 200 |201 |195 (202 (200 |194 |195 |1.77 |182 |1.79 |1.72

In the case of the longest bowl, = 1:286,q attains its maximum in the neighbourhood
of i = 45* instead of 66 for the PE bow with L = 1:000. The di®erence for each length
L =1:286,L =1:000 andL = 0:7857 between the value af for . = 0* and the maximum
gis 0.070, Q059 and 0013, respectively. It follows that for longer bows the in°uece of
lk on g is larger. Possibly this decrease in the di®erences is causetonly by the change
of length L, but also by the decrease of the length of the eats, when the bow becomes
shorter; Lo = 1=2(L j Lo) in all the cases. Further, this maximum value ofj diminishes
with decreasing lengthL, being 0.470, 0.432 and 0.314, respectively. In the case loé t
shortest bow the static quality coexcient as function ofx attains two maxima, one in the
range G - | - 45" and another in 45 - | - 75" The sfd curves of the four bows with
the greatest values ofg for each length are shown in Figure 4.35. The con gurations of

Figure 4.34:dfd curves for PE bow with p =
0%, ik = 30* and | = 60%, Table 4.23. For sfd
curves see Figure 4.32.
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Figure 4.35: sfd curves for PE bow, di®erent
lengths and anglel;, Table 4.23.

Figure 4.36: PE bow with
L = 1:286, |k = 45% in vari-
ous situations.

Figure 4.37: PE bow with
L = 0:7857, |k = 30* in var-
jous situations.
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Figure 4.38: PE bow with
L = 0:7857, |k = 60* in var-
ious situations.

three of these bowslL =1:286, 4 = 45* and L = 0:7857,x = 30* and |x = 60* in various
positions are shown in Figure 4.36, Figure 4.37 and Figure38, respectively. The one with
L = 1:000, ik = 60* was already shown in Figure 4.29. Note that the angle betweehe
string and the y-axis is rather large for the shortest bows = 0:7857 (Figure 4.37 and
Figure 4.38). This has a negative in°uence on the static perfmance of these bows.

For dynamics, changingik has more in°uence on the exciency in the case of longer
bows,L =1:286 andL = 1:000. In these cases the values offor |x = 0* are 0118, 0114,
better than the values of* for which g is maximum. For the shortest bowl = 0:7857 with
L = 30* the exciency ~ is slightly better, while for i = 60%, ~ is 0:073 smaller than” for
kk = 0% The dfd curves for the PE bow withL = 1:286, & = 45* L = 1:000, ik = 60*
and L = 0:7857, = 60* are given in Figure 4.39. The oscillations of thefd curve of
the shortest bow are more intense than those of the PE bow. Tleeceleration forcek
becomes even negative for short intervals of time. In the spie mathematical model for
the string (third paragraph of this section), which we use irthis section, the string is able
to withstand negative tensile forces. We did not apply STOP# for this calculation, but
assumed that the arrow sticks to the string at those short irrvals of time and leaves the
string when it becomes stretched.

Just as for the bow of lengthL = 1:000 we nd that also for bows of length. = 1:286
and L = 0:7857 the greatest muzzle velocity is obtained with p= 30* . For L = 1:286
this is a bow where the string leaves the bridge almost immedely when it is drawn. For
L = 0:7857 we have fogr, = 30* the same situation as foi. = 1:000. The string has no
contact with the string bridge in all situations, see Figure4.37. In Figure 4.40 thedfd
curves of the bows withyy = 30* and di®erent lengths are shown. The shapes of these
curves resemble strongly those given in Figure 4.39 and thanse remark has to be made
with respect to the negative tensile force in the string.

We shorten now the relative length of the ear with respect tohe length of the limb
(Li Lo). In Table 4.24 we give the results. As expected, the staticuglity coexcients
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Figure 4.39: dfd curves of PE bow, di®erent
lengths and anglel;, Table 4.23.

Figure 4.40: dfd curves of PE bow, ix = 30
and di®erent lengths, Table 4.23.

Figure 4.41:dfd curves of PE bow, short and
light ears, ﬁ = 1=3, Table 4.24.



4.11. STATIC-RECURVE BOW 147

Table 4.24: In°uence of the quotient L:-Ie_o on the performance of the PE bow.

L 1.286 1.000 0.7857

m 45 |45 | 60° |[60° | 60° | 60°
Le=(Lj Lo) | 1/2 1/3 1/2 1/3 1/2 1/3
W (L) 0.6761| 0.9222| 0.2304| 0.3140| 0.0640| 0.820
V (Lo) 1.4 1.575 | 1.867 | 2.100 | 2.489 | 2.800
q 0.470 | 0.445 | 0.432 | 0.408 | 0.314 | 0.296
' 0.652 | 0.719 | 0.668 | 0.753 | 0.723 | 0.784
o 2.00 2.04 1.94 2.00 1.72 1.74

are smaller than those which belong to the corresponding bswvith longer ears, for the

three bow lengths. But the exciencies are much better and thiproduces a somewhat
higher muzzle velocity. In Figure 4.41 we show thdfd curves of the bows mentioned
in Table 4.24 with L, = 1=3(L | Lo), those having relatively short ears. Comparison of
these curves with those given in Figure 4.39 reveals that tremplitude of the oscillations

is smaller for shorter and hence lighter ears. We concludeofn these results that it is

advantageous to use long but also light ears. Technical litations determine of course
what is realizable.

We now direct our attention to the in°uence of the two parametes [p(Lo) and - o,
which determine the set back and the curvature of the workingpart of the limb, see
Equation (4.114). First we deal with PE bows with a straight varking part of the limb,
-0 = 0, set back in the grip at an anglej w(Lo). The quality coexcients are given in
Table 4.25. A negative angley(Lo), thus a positive set back, appears to be advantageous
both for statics and dynamics. Second, we consider PE bowstlwi ¢ =0, - = j 1 and
‘0= i 2. In Table 4.26 we give the quality coexcients}, ~ and ° of these bows. Of these
three bows the strongest curved oney = | 2 possesses the largest static quality coexcient
g. Notwithstanding its smallest exciency, its muzzle velocit is the best® = 2:01. For
o=jland-g=0we nd ° =1:99 and® = 1:94, respectively. In Table 4.26 we changed
for L = 1:000 and- o = j 1 also the anglels. The di®erence between the static quality
coezxcients forp, = 0* and |, = 30* is much smaller than in the case o = 0, see Table 4.23.

The muzzle velocity® for o = 30* is the best, just as in the case of a straight working
part of the limb, - ¢ = 0. However, now the range of with changing |k is smaller. Thus
the shape of the ear as a function gk is less important for a bow with a curved °exible
part.

Further, we changed for- ¢ = j 1 the length of the bow. The static quality coexcients
of the bows with - o = j 1 are unquestionably better than those of bows withy = 0 with
same lengthL and angle, see Table 4.23. The characteristic behaviour with respetd
sharp bends of thesfd curves given in Figure 4.42 resembles that of the bows givem i
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Figure 4.42: sfd curves of PE bow with - ¢ =
i 1 di®erent lengths and anglgx, Table 4.26.

Figure 4.43:dfd curves of PE bow with - ¢ =
i 1 di®erent lengths and anglel;, Table 4.26.
For sfd curves see Figure 4.42.

Figure 4.44:PE bow with - o= j 1
in various situation. Note that the
braced and the fully drawn position
are nearly the same as those given
in Figure 4.29 for the PE bow.
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Table 4.25: In°uence of the angle (L) on the performance of the PE bow,V (Lg) = 1:86.

bo(Lo) | i5° | O 5"

W (Lo) | 0.2077] 0.2304] 0.2576
q 0.437 | 0.432 | 0.421
’ 0.684 | 0.668 | 0.648
o 1.97 194 |1.89

Figure 4.35. This holds also for thelfd curves given in Figure 4.43-(, = j 1) compared
with the corresponding ones of Figure 4.39 { = 0). The amplitude of the oscillations for
the bows with - o = j 1 tend to be slightly smaller. In spite of this, for the longestwo
bows,L =1:286 andL = 1:000, the exciency of the bow with- o = j 1 is smaller and by
this the muzzle velocity is not that amount higher as we expésd in connection with the
static quality coezxcient. For the two static-recurve bows wih L = 0:7857, = 60* the
exciencies are nearly the same, so in these cases a lamggrelds a larger muzzle velocity.

The unbraced, braced and fully drawn position of the PE bow @h - o = j 1 is shown
in Figure 4.44. Note that the braced and the fully drawn posibn are nearly the same as
those given in Figure 4.29 for the PE bow. This appears also te true for the other two
bows with lengthL = 1:286 andL = 0:7857. This feature is used in what follows.

We next want to gain insight into the datic action of a bow with a strongly curved
elastic part of the limb. To this end we compare two bows, the P bow (4.128),- ¢ = 0,
and a bow named PE. The latter one di®ers from the PE bow only by its bending
sti®ness which isW (s), where | is some scalar & , - 1, W(s) is given by (4.115) with
W (L) = 0:2304, and the unbraced shape of the °exible part of the limb. Fohe new bow
PE: we adhere to the relevant quantities a superscript (. The question we will consider
is the following; what is the shape of the °exible part of the uoraced PE bow, for which
at full draw (jODj = 1) the PE: bow has nearly the same shape and weigt (jODj) = 1)
as the PE bow. The strings of both bows are now assumed to betensible.

Equation (4.8) gives the relation between the bending momeand curvature along the
limb of the PE bow in fully drawn situation.

Mi(s)= i W(SM(S); Lo~ s+ Ly (4.129)
For the PE: bow (4.8) reads, withW: (s) = W (S)
Mi(s)= i W ()f (1)X9) i (l)XS)g; Lo~ s+ Lo (4.130)

The bending moment and curvature in fully drawn situation ae in both cases assumed to
be the same, so

i1
L 20(s) ;Lo s+ Lo (4.131)

(ko)) =

5
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Table 4.26: In°uence of shape of unbraced working part of the limb, (L) = 0.

L 1.286 1.000 0.7857

V! 45 60" 60" 0 30 45 60" 60" 60" 60"

0 il 0 i1 i1l i1 i1l i 2 0 il

"0
W (L) | 0.6761| 0.3173| 0.2304| 0.1769| 0.1563| 0.1418| 0.1259| 0.0867| 0.0640| 0.0400
V(Lo) | 1.4 1.4 1.867 | 1.867 | 1.867 | 1.867 | 1.867 | 1.867 | 2.489 | 2.489

q 0.470 | 0.535 | 0.432 | 0.437 | 0.445 | 0.472 | 0.491 | 0.511 | 0.314 | 0.351
’ 0.652 | 0.575 | 0.668 | 0.718 | 0.710 | 0.665 | 0.619 | 0.604 | 0.723 | 0.731
° 200 |2.00 (194 |202 |203 |202 |199 |201 1.72 |1.63

The curvature of the working part of the limbs of the PE bow andhe PE: bow appear to
be almost constant in fully drawn as well as in braced situain This means that we can
use for the PE bow an unbraced shape which is circular, hence charactedzey a number
- 3. In fully drawn situation the curvature is approximated by

2(s) Ya K 1hi(Lo)=W(Lo) ¥ - 1=(L, i Lo); (4.132)

and in the braced situation

def

=(8) ¥4 K12h1(Lo)=W(Lo) = - 12~(L2 i Lo); (4.133)

where hj(Lo)(i = 1=2;1) is the distance between the end point of the grip (@.y) and
the string (see Figure 4.28)K (i = 1=2;1) is as previously the force in the string and
-i(i =1=2;1) is the curvature, apart from the factor L2 LO).

The index 1=2 indicates the braced situation and 1 indicates the fully @wn situation
as before. For the values of the quantities on the right-handide of (4.132) and (4.133)
we take values computed by means of our model, in which the ks considered as a
slender elastic beam. These values can also be approximaite straightforward manner
without using our model, but we do not elaborate this. Using4.132) the- ; of the PE:
bow becomes

1j

5

We now give an example. For the PE bow we haveK; = 0:8684,h;(Ly) = 0:725,
W(Lo) = 0:2304,K-, = 1:188 and h]_:z(l_o) = ]OHJ = 0:25. Then (4132) and (4133)
yield -1 =1:17 and- 1, = 0:55. For the PE bow we take the one from Table 4.26 with
b = 60* L = 1:000, po(Lo) =0, -o = j 1, W(LO) = 0:1259. Hence we have to take
. = 0:12530:2304 = 05464. Substituting, = 0:5464 and-; = 1:17 in (4.134), we nd
-5 = i 0:97, which is nearly equal to the correct valug 1 given in Table 4.26.

Changing the parameter, yields a class of bow$ PE: g, of which the unbraced form
of the °exible part of the limb is a part of a circle with a curvaure characterized by
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the coezxcient - given by (4.134). For bows belonging to this class the statiguality
coezxcient, expressed in ; and in some parameters of the PE bow: {, =0), becomes

Z Lo .

W(s) i, ) ¢
T 2 10 1= Cq i e ds 4.135
L, (L2i Lo)? 1 T1=2 1 (17 "1=2) ( )

T1=2

q:

by which we assumed, as has been mentioned earlier, the gfrito be inextensible. For
, = 1 we have approximately the static quality coe+cient of the HE bow again. Equation
(4.135) yieldsg=0:430,g=0:499 andqg=0:526for- o =0 (, =1), o= 1(, =0:5464)
and-o=j 2 (, =0:3763), respectively. The corresponding exact values fronafdle 4.26
areq = 0:432,q = 0:491 andq = 0:511, respectively. It follows that Equation (4.135)
gives a rather good approximation for the static quality caecient of a bow belonging to
the classf PE: g, anyhow for the character of the dependency @fon - . From (4.135) we
conclude that g increases for decreasing values of. We now give an approximation for
the force in the string in braced situation for the class of lmes f PE: g. The equation of
equilibrium of the PE bow in braced situation reads

Mi—p = Kiphip = W(S)ngz ;Lo s+ La; (4.136)
and for the bow PE
. i 0 . (0 ¢ :
Misp = Kinhin = i \W (8) (B)Xs)i (1)Xs) : Lo~ s+ La; (4.137)

The shape of both bows in braced situation is nearly the sam@g_,)%s) ¥2 (12_,-)Xs),
Lo- s Ly. Using (4.133) we get

i TN
Kig VaKim 5+, (1i —) ; (4.138)
. M-, M-
or by (4.132), (4.133) and (4.134)
P : ¢
Kiop YaKoo — 2+ — 2 (17 24y, (4.139)
"1=2 10 *p " 1=2

For -o=j 1 (, =0:5464) this formula yieIdsK£:20:5464)1/4 1:79 and we computed, using
the model developed in Section 4.3, 1.70, so there is a ratlggrod agreement.
In [5, page 81], Gordon writes

"...considerable force had to be applied to a bow which is iaily bent in the
opposite or "wrong" direction, before it could be strung.’

This does not agree with our results; in the case of the strdigend KL bow dealt with in
Section 4.9, the force in the string was:I1 and in the PE bow with- 4 = j 1 itis 1:70.
Equation (4.137) shows that ;_, increases with, but a comparison of the unstrung shape
of the PE bow with - o = j 1, given in Figure 4.44, with those depicted in many books
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Table 4.27: Energy in parts of the PE bow with - ¢ = | 1in a number of situations, (Figure 4.44).

limbs string total bow arrow
energy pot. kin. pot. Kin. pot. Kin. Kin.
braced 0.5755 0 0.0204 O 0.5959 0 0
fully drawn | 1.0817 O 0.0053 O 1.0867 O 0
arrow exit | 0.5324 0.1346 0.0844 0.0312 0.6168 0.1658 0.3040

and papers indicates that its curvature is already on the lge side. So with respect to
the force in the string which one has to apply to a bow, it is notmore dixcult to brace
a static-recurve bow than a straight-end bow. Although the bw is shorter and has an
opposite curved unstrung shape, it will be more complicateid disentangle the unstrung
situation and to transfer it into the braced one.

Gordon mentions that:

"...the archer is no longer starting to draw the bow from an itial condition of
zero stress and strain.'

This does agree with our nding that already in the braced sitation a large amount of
energy is stored in a static-recurve bow with curved elastiombs. In Table 4.27 we give
the amounts of energy in the parts of the PE bow with g = | 1 in a number of situations.
The energy in the braced bow, being:8959, is even larger than the energy put into the
bow by drawing it from braced situation into fully drawn, beng 0:491.

Balfour in [2] mentions:

"...greater skill and dexterity are called for in stringingthe strongly re°exed
Asiatic bows, than are needed for any bow of simple or "sing&tave" type. |
can speak from experience and know how ditcult and risky it is.

Indeed, a static-recurve bow in braced situation has a tendey to capsize. In that situation
we have static equilibrium, thus the potential energy, in nbs and string, is a minimum
for this con guration among all the admissible con gurationsn the "neighbourhood" (see
Section 4.5).

For bows whereby the string has contact with the bridge, thasadmissible gurations
are con gurations in which the string lies against the strindridges. However, if we permit
the string to slip past these bridges then the braced situain does not need to be a con-
“guration of a minimum potential energy and much energy (seeable 4.27) is disengaged
when the bow is able to spring back into its unbraced form. Irl@, page 6], Payne-Gallwey
notes that separate loops are knotted to each end of the migdpart of the string. These
loops t into the nocks of the bow and rest, when the bow is brade upon small ivory
bridges which are hollowed out to receive them and which, iris way, assist to retain the
string in its place. Such a danger holds for ears with a su+cidéyp large | for instance not
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for the ones of Figure 4.33 or Figure 4.37, where the ear carer\be taken straight,however
with a bend at its connection with the working part of the limh.

We next show the in°uence of the remaining parameters given if10.15) before the
semicolon; the length of the gripL,, distribution of bending sti®nessW (s) and of mass
V (s) along the bow, mass of the arrowB,, strain sti®ness and mass of the strings and
2mg and the brace heightjOHj. In Table 4.28 we collect the results obtained by changing
one parameter at a time Lo, m, and jOHj) or two parameters simultaneously Y (s),

V (s) and Us, mg), where the not mentioned parameters are those of the PE bovivgn in
(4.128). It follows that the in°uences of the parameters areoughly speaking the same as
in the case of the KL bow, dealt with in Section 4.9. An excepin has to be made for the
in°uence ofJOHj, which we will consider more closely.

We note that a larger brace height yields, as in the case of theL bow, a smaller
static quality coexcient but in the case of the PE bow a larger £ciency, so that the
muzzle velocity® remains nearly the same. In Table 4.28 we give with changin®Hj
also the values of mif(t), the smallestx-coordinate of the middle of the string fort >t ,.
Comparing these values with those given in Table 4.9 for the lKbow, reveals that for
JOHj = 0:250 both values are almost the same (0.09;0.10). However, fOH| = 0:286 it
is in the case of the PE bow larger (0.19;0.14). This propertg favourable for the Turkish
°ight shooters who used a grooved horn in order to be able to sttoarrows shorter than
the draw-length (see also Section 4.12).

Figure 4.45: Dimensionless
deformation curves of the
"Asiatic bow". Compare Fig-

ure 2.10.a in [9].

In that situation the min b(t) has to be larger than the length of the grooved horn.
From [4, page 175] we quote:

the groove is contrived to let the archer engender greaterrée by enabling the
bow string to be drawn further than the length of the arrow wold normally
permit. However, it may not project more than about half a fob (6 inches)
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Table 4.28: In°uence of a number of parameters on the performance of the PBow.

Lo q ] ° W (Lo) | V(Lo) | minh(t)
0 0.453| 0.622] 1.92| 0.3469] 1.6 |
0.1429 0.432| 0.668| 1.94| 0.2304| 1.867 | |
W:V

W(s)~ W(Lo);V(s)~ V(Lo) | 0.433] 0.594] 1.83] 0.1802] 1.167 | |
4:115 4:116 0.432| 0.668| 1.94| 0.2304| 1.4 |
My

0.0384 0.432] 0.493] 2.36| 0.2304| 1.867 | |
0.0769 0.432| 0.668| 1.94| 0.2304 | 1.867 | |
0.1538 0.432| 0.772| 1.47| 0.2304| 1.867 | |
ms; Us

0.0105, 66 0.430]| 0.681] 1.95] 0.2300] 1.867 | |
0.0209, 131 0.432| 0.668| 1.94| 0.2304 | 1.867 | |
0.0418, 262 0.433| 0.644| 1.90| 0.2307| 1.867 | |
JOH]

0.25 0.432| 0.668] 1.94| 0.2304| 1.867 | 0.09
0.25 0.432| 0.668| 1.94| 0.2304| 1.867 | 0.19
0.25 0.432| 0.668| 1.94| 0.2304| 1.867 | 0.23

Figure 4.46:sfd anddfd curves of the "Asiatic
bow". Compare sfd curve with the one given in
Figure 2.10.b in [9].
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from the belly without getting in the way of the string and, fa that reason, it
cannot reduce the length of an available arrow by more than #t amount. For
example, a thirty inch draw would require an arrow of about tenty- ve and a
half inches, which is, in fact the real length of many extant tirkish shafts.’

The dimensionless length of the groove is in this example3 = 0:20. The results
given in Tables 4.9 and 4.28 show that the use of a groove withs&raight-end bow would
require a large brace height and this implies a bad performea, while in the case of a
static-recurve bow the brace height can remain moderate aritchas a less disadvantageous
in°uence on its performance.

Finally we consider an Asiatic bow described in [10] by Latlm and Paterson, where a
reconstruction of it is shown in plate 18. In [9] we dealt witlthe statics of that bow. We
showed earlier its con guration in unbraced, braced and fylldrawn situation, its static
quality coexcient and the sfd curve. In Figure 4.45 we show the bow in various situations
again, but now computed with the model developed in Section3tfor the static-recurve
bow. The bending sti®ness as a function &ffor 6.24 cm =L - S- L, = 46:8 cm is
the same as that chosen in [9]. There we tried to guess the bergisti®ness 80 that the
calculated braced and fully drawn shape of the bow resembléabse of the reconstructed
bow shown on the photographs in [10]. Fot, - S- L we take now straight parts which
connect the tip (Xy,;V;,) and the end of the working part of the limb &o(L2); Yo(L 2)) with
the bridge (Xu,;Vy,)- The length L of this bow is 63.5 cm and the draWODj = 76:2 cm,
so the dimensionless length becomes B33. The brace heighfOHj = 18:4 cm.

In [10] nothing is said about the distribution of the mass alag the limb. We assumed
this mass distribution to be uniform. The coordinates of theentre of gravity of ear, mass
of ear and moment of inertia with respect to centre of gravitare computed using formulas
which resemble the Equations (4.117), (4.118), (4.126). €hdimensionless mass of the
arrow and mass and strain sti®ness of the string are taken thanse as those in the case
of the PE bow given in (4.128).

Under these assumptions the bow is given by

B(0:833 0:08 W;V = V, = 1:33 |p; 0:07690; 0; 0:291Q 0:001050
1 0:25540:6706 0:27330:6435; 0:3358 0:66030:6125131;0:02090:2417;
1,11): (4.140)

The dimensionless quality coexcients areg = 0:332,” = 0:726 and® = 1:77. The static
quality coexcient q di®ers slightly from the value given in [9], there it was:339. In that
article we assumed the bending sti®ne¥g(s) for0- s- LgandL,- s- L to be about
20 times the mean bending sti®ness of the °exible part of the Im However, if we take
this factor equal to 200 instead of 20 we obtaig = 0:331 and this nearly equals the value
of g calculated with the model of Section 4.3, when the strinig chosen to be inextensible.
This result shows that the assumption that grip and ears aregid, introduces some extra
inaccuracies because the rst mentioned factor 20 seems to tealistic. That the static
guality coexcient of the bow is 0333 and not 0331 is caused by the elasticity of the string.
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As in the case of the short bows, Tables 4.23 and 4.26 the stafjuality coexcient q is
poor, the exciency is rather good and the muzzle velocity is bad. Thesfd curve and
dfd curve are shown in Figure 4.46. Thelfd curve oscillates just as in the case of the
short PE bow, see Figure 4.39, 4.40, 4.41 and 4.43. Thus albtstAsiatic bow does not
seem to be a pleasant bow to shoot with.

In [10, page 104] it is said:

If, in shooting, it is your wish to outdistance your competiors you should use
a bow with short working part of the limb and choose a light amw.'

In Section 2.6 we brought this already forward with the discssion of the simple H model
(see Section 4.6). However, the results of this section igdie that long sti® ears are not
advantageous if they are also heavy. The statement given ihe last bit of the sentence
guoted above, agrees with our results, see Tables 4.13 ang84.

Note that for a bow with a straight part of the limb and L = 0:7857 orL = 1:000, the
bend in the ear, xed by the angley, yielding the maximum muzzle velocity® is so small
that the string is free from the string-bridges in all situatons. Pictures of old Asiatic bows
in many books and papers show braced bows at which the stringuiches the string-bridges.
But, the angle between the vertical and the outer part of earbletween bridges and nock)
in braced situation is generally small and in a few cases th&isg is even free from the
"string-bridges".

We found in this section that a short static-recurve bow pogsses nonherent better
performance than a longer straight-end bow. Inherent propies of the bow are those xed
by dimensionless parameters given before the semicolon4n2). In Section 4.12, where we
investigate the in°uence of the three parameters behind theemiicolon in (4.2), the draw
jODj, the weight F (jODj) and the mass of the limbmy, we return to this subject.

4.12 In°uence of draw, weight and mass of limb

In Section 4.9 and 4.11 we studied the in°uence of the dimensiess parameters, given
before the semicolon in (4.2), on the static and dynamic bewiaur of a bow. This has been
done in Section 4.9 for the non-recurve bow KL and in Sectionl4 for the static-recurve
bow PE. In this section we continue with an investigation of he in°uence of the three
parameters with dimension given behind the semicolon in @), namely: the drawjODj,
the weight F (jODj) and the massm,, of one limb, for both types of bows. To that end we
consider a number of bows described in [14] and [15].

We recollect formulas for four important quantities. First the amount of energyA put
into the bow by drawing it from the braced situation into the ully drawn situation is given
by (4.82)

A = gF (jOD))jODj : (4.141)
Second, the muzzle velocity, (3.81) in [8], by
I, = 31:32°f dy, g cm/sec (4.142)
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where

5 @ F(1OD)JOD] .

bv = M (4.143)

The number 31.32 is caused by the choice of our units. Thirdhé amount of energy
transferred to the arrow, using (4.87)

m.T = ma°* F(jOD])jODjg = "qF (jOD])jOD; : (4.144)
Fourth, the linear momentum of the arrow at arrow exit
2M,G = 62:64M,°f dyy g = 62:64 ’quakfg (4.145)
where
dvp %' F(jOD])jODjm : (4.146)

Of these four expressions, the rst part contains only dimeimnless quality coezcients
which depend on the dimensionless parameters, the part be®n braces depends only on
the parameters with dimensionjODj, F (jODj) and my.

From (4.142) ¢@.146) we conclude that for large values df, M,& and 2M,G it is
advantageous to have the draw and weight as large as possiblEquations (4.142) and
(4.143) indicate that the mass of the bowmy, has to be small to ensure a large muzzle
velocity . But, on the other hand (4.145) and (4.146) show thatn, has to be large in
order to obtain a large linear momentum of the arrow. As alrety mentioned, for °ight
shooting a large initial velocity T, of the arrow is essential. For hunting or warfare both
kinetic energy and linear momentum are important. A large itial velocity produces a °at
trajectory of the arrow in which case it requires less space a vertical direction.

The maximum weight and draw depend on the build of the archetdis strength deter-
mines the maximum weight and his span or the greatest distaadetween the bow hand
and the ear, cheek or chin the maximum draw, so both have phgai limitations. The
minimum mass of the limb has technical limitations. Constais such as the admissible
stress, Young's modulus, speci ¢ mass of the material of theolw enter into the problem.
How this minimum massm, depends on these various parameters is beyond the scope of
this paper. Nevertheless, this dependence is of major impamce for the construction of a
good bow.

We now show how the results given in Section 4.9 and 4.11 canused to approximate
the quality coexcients of bows with values of dimensionlesapameters di®erent from those
mentioned in these sections. One way to deal with the three rfations W (s), V(s) and
(s), 0 - s - L, is to approximate them by functions in a nite dimensional spce, for
instance by polynomials or splines of some nite degree whittas to be not too small in
order to get reasonable approximations. In this way the theefunctions are xed each by a
number of parameters, which together with the other 18 paraeters before the semicolon
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in (4.2) represent a bow. In the Sections 4.9 and 4.11 we chadgsome parameters sepa-
rately or simultaneously. ForW and V we changed only one parameter, the exponent,
see (4.105) and (4.106) and fan(s) we had two parameters, namely,(Lo) and - o, see
(4.108) and (4.114). Hence, the dimension of the parametgrage we dealt with, was 23.
Representations of di®erent types of practical bows form shers in the parameter space or
stated otherwise, for some type of bow the range of the paratees is by de nition limited.
From this point of view, we approximated in Section 4.9 the p#al derivatives with respect
to the parameters in one point (representing the KL bow) in tlke cluster of the non-recurve
bow C including the AN bow) and in Section 4.11 in one point (©@esenting the PE bow)
in the cluster of the static-recurve bows. The static qualit coexcient q and the exciency
"~ of bows represented by points in the neighbourhood of the KLow or PE bow can be
approximated by using the rst order terms of the Taylor expasion in mentioned points,
in which the derivatives are replaced by their nite-di®erere approximations. Then the
dimensionless muzzle velocity follows from these approximated values afand~ and the
dimensionless mass ma of the arrow, see (4.87).

In order to elucidate this procedure we consider a KL bow. Fdhe three parameters
with dimension behind the semicolon we takgODj = 71:12, F(jODj) = 28:1 and mj, =
0:13. Then this bow is given by

KL(91:46,10:16W;V ;" 0;0:010;0;0;0;0;0
91:46; 0, 91:46; 0, 91:46, 91:46; 3681, 0:0027 15:24,
7112 281;0:13): (4.147)

The bending sti®nes8§V (s) and mass per unit of lengthV () are given by

_ i(Li 3¢ — _ _
W(§)=200;263|(E_'LE) ;Lo 5+ Lo+2=3(Lj Lo);

i Lo
W(3)=66;754; Lo+2=3(Lj Lo)- 5- L; (4.148)

and

_ i(Li 3¢ _ _ _
V(g):o:oozd(t"_'l_i) ;Lo 5+ Lo+2=3(Lj Lo);

i Lo
V(3)=0:001; Lo+2=3(Lj Lo)- S- L: (4.149)

Starting with this bow we will calculate the characteristicquantities of two neighbouring
bows which di®er from it by their lengths, which are chosen as 2= 194:95 and 2. =
17272. Hence we leave the cross section of the limb near the grip< L,) unaltered as
well as the number of strands of the string, the length of thergp 2L, and the brace height
jOHj. In the functional dependency (4.148) and (4.149) we changfee length L, further
we have also in the new situationg(s) ~ 0. In practice we could start with a stave of
wood 194.95 cm long, shaped so that the distributions of theehding sti®ness and mass
become those given by (4.148) and (4.149) with = 97:47. The length of the string has to
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be chosen so that the brace height becomes 15.24, see (4.1W8 shorten this bow twice.
After each shortening we have to taper the limbs so that the diributions of the bending
sti®ness and mass become those of (4.148) and (4.149) agaih Wwithe actual half length
of the bow. Further we have to shorten the string in order to kep the brace height 15.24.
For the calculation of the weightF (jODj) of the bows with length 2. = 194:95 and
2L = 172:72 we use the formula for the dimensionless bending sti®n&¥g$L o) (see (3.26)
in [8])
W(Lo) = = ﬂ(LO)_ ; (4.150)
F(jODj)jODj?

Since the cross-section of the limb near the grip is unaltetgjW (jLo) has the same numer-
ical value as given in (4.148)jW (jL,) = 200; 263. The dimensionless valu#/ (L) however
will change (4.150), becausE (jODj) will be di®erent for the bows with di®erent lengths.
The two parameters which have changed by the process of lenghing or shortening the
KL bow, are L and Us, hence we can approximat&V (L) by

— La)— —
W(Lo) = W(Lo) KL bow * % KL bow(L i L KL bow)
L _ —
@gUO) KL bow(Ys i Us KL bow) : (4.151)

The dimensionless strain sti®nedds can be written as

Us S]OD]

(4.152)
I:(JODJ) W(Lo)

where the factor between braces at the right-hand side of (4&2) is the same for the three
bows with di®erent lengths, because of our assumptions. Stitingion of (4.152) in (4.151)
yields

¢ UsjODj? @WLo)~- ¢_
L —
@\gLO) KL bow(L i L KL bow) (4.153)

From Table 4.16 (in°uence o_’rUS ) we get
@WLo)— y W(Lo) 4107 | W(Lo) yyg _ 1:410; 1:409
@y KLbow " 197; 131 - 66

This number shows that the in°uence of the strain sti®ness on e¢hweight of the bow is
negligible. From Table 4.11 (in_°uence of).

@WLo)— 1/4W(|-o)_|_:1:4291 W(Lo) | _; 55 _ 2095i 1:409
@L KL bow 1:429; 1:286 0:1430

=1:510°: (4.154)

=4:8: (4.155)
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Substitution of (4.154) and (4.155) into (4.153) yields
(W(Lo) i 1:409)(1;j 0:0014) = 4:8(1:3706j 1:286)) W (Lo) =1:8155; (4.156)
and with (4.150)

_ 200263
FUOD) = 1155 7112

For 2L = 172:72 we obtain in the same wayF (jODj) = 34:6 kgf.

The mass of one limbm, changes linearly with the length of the limb [ j Ly). So,
we havem, = 0:1396 for 2. = 194:95 andm, = 0:1218 for 2 = 172:72. When the same
arrow with massm, = 0:010 kg is shot from the three bows, then the dimensionless a
masses aren, = 0:0716 for 2 = 194:95 andm, = 0:0821 for 2 = 172:72. The mass of
the string changes almost linearly with the length of the lirb, so the dimensionless mass
ms remains almost unchanged.

As already remarked the parametetJs changes according to (4.152). Meanwhile we
see (4.154) that the in°uence of the strain sti®ness of the stg on the static performance
is negligible and we assume that the same holds for the excignd\ote that a change of
both parametersmg and Us separately in Table 4.16 would have given more information.

Using the data given in Table 4.11 (in°uence df) and Table 4.13 (in°uence oim,) the
static quality coexcients becomeg = 0:411 for 2. = 194:95 andq = 0:401 for . = 172:72
and the exciencies becomé = 0:721 and” = 0:783, respectively

In Table 4.29 we collect the results. In this table we give adsthe dimensionless muzzle
velocity ©, the factorsdyv and the muzzle velocityg in cm/sec, the kinetic energy and the
linear momentum of the arrow in kg cm/sec These results shovhdt a shorter bow can
deliver a larger muzzle velocityg, although its dimensionless muzzle velocity is smaller.
This can be understood by the following reasoning. First, siter bows are sti®er. From
Table 4.11 we conclude thatWW (L) decreases sharply with decreasing length and (4.150)
shows that the smallerW (L) the larger the weight F (jODj) of the bow jODj and W (L)
being the same in all cases. Second, shorter bows are ligher, V(L) increases with
decreasing length and a large¥ (L) implies a lighter limb. This follows from

=21:8kgf: ; (4.157)

V(L0)jOD;j

b

V(Lo = (4.158)
where we haveV (L,) and jODj kept the same.

Both factors imply the d,v to be larger for shorter bows. The e®ect of its sti®ness is
much larger than that of its lightness and this implies thatd,p is also larger for shorter
bows. Further, the static quality coexcient q and the muzzle velocity® increase with
increasing length and the reverse holds for the exciency. This all combined shows an
increase of the muzzle velocity, kinetic energy and linearamentum of the arrow with
decreasing length in the way described above.

We now pay attention to the in°uence of a permanent set of a bow\e dealt already
with this phenomenon in Section 4.9, see Table 4.17. Thus ihi$ situation we have
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Table 4.29: In°uence of length 2L on performance of KL bowjODj = 71:12 cm, m, = 0:01 Kkg.

2L W(Lo) | F(jODj) | 2m, | g ° dpy dop | T MG | MaG
194.95| 1.812 | 21.9 0.278| 0.411| 0.721| 2.03| 11,205| 216.5| 6,730| 462 | 135
182.88| 1.409 | 28.1 0.260| 0.407| 0.765| 2.01| 15,373| 259.8| 7,805| 622 | 156
172.72| 1.144 | 34.6 0.246| 0.401| 0.783| 1.96| 20,006| 302.7| 8,695| 772 | 174

computed values for various parameters at our disposal, thin contrast with the cases that
just have been treated. The unbraced shape of the bow whichoffowed the string” was
chosen to be a part of a circle with curvature xed by o = 0:1, see (4.108). We compare
the performance of the bow given by (4.147) with a bow, with # same dimensionless
parameters, except the parameter,, namely - ¢ = 0:1 instead of- o = 0. In Table 4.30
we give the results. The dimensionless parametafé(L,), V(Lo), g, © and ° were already
given in Table 4.17. Using (4.150), (4.158) and the fact thav (Lo) and V(L) are the
same for both bows as well ag0Dj, we nd for the bow with -, = 0:1, F(jODj) = 24:9
and m,, = 0:13. Because the product off and ~ is for both bows about the same, the
smaller weight of the bow with permanent set implies a smali@l,,, aap, G, 3¢ and 23,5,.
In [6, page 22] Hickman studied also the in°uence of a permaneet and he found that it
reduces the cast of the bow. This agrees with our results, latiugh the conception "cast"
has never been de ned properly. Note that we assumed the benglisti®nessV (L) to be
the same for both bows. In practice a decrease of the weight ynlae caused by a change
of this entity when the bow has been used for some time.

In what follows we consider a number of bows described in [B4]d [15]. Of these bows
the draw, weight, the mass of the arrow and sometimes the maskthe limbs and part of
the remaining parameters are given. When the mass;, is not known we use instead of
da and dy, the quantities

d,, = ~UODDIOD] (4.159)
Ma
and
day = F(jODj)jODjm, (4.160)

for the estimation of the performance of the bow and arrow cdsmations.
Then, by (4.144) we have

o =(q)=2dy (4.161)
and by (4.145)

2m,0 = 2 () dy, (4.162)
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Table 4.30: In°uence of a permanent set of the KL bow,jODj = 71:12 cm, m, = 0:13 Kkg.

0 | W(Lo) | V(Lo) | F(jODj) | q ’ ° oy dp |G myC | MLG
0 1.409 | 1575 | 28.1 0.407| 0.765| 2.01| 15,373| 259.8| 7,805| 622 | 156
0.111590 |1.575|24.9 0.389| 0.795| 2.01| 13,623| 230.0| 7,350| 548 | 146

Because only a few parameters of all those which determinergaetely the performance
of a bow and arrow combination are given in [14] and [15], weeaable to give only rough
estimates for the quality coexcientsg, ~ and °. All bows mentioned by Pope in [15] were
shot repeatedly at least six times and the greatest distanaeas recorded. The elevation at
which each arrow was projected was approximately #%rom the horizontal.

We consider rst a straight-end bow. In [15, page 31], Pope degi#es an experiment
with a replica of an English longbow. He started with a bow 6 & 4.75 inches (194.95
cm) long. When drawn 28 inches (71.12 cm) it weighed 53 poun¢3.6 kgf) and shot
a °ight arrow with mass 310 grains (0.020 kg), 185 yards (16918n). Then Pope cut
down the bow to a length of 6 feet (182.88 cm), it weighed ther2ounds (28.1 kgf),and
shot the arrow 227 yards (20757 cm). This bow has been agairt down to a length of 5
feet 8 inches (172.72 cm) and the limbs were tapered a tri°e.slweight, when drawn 28
inches (71.12 cm) became 70 pounds (31.8 kgf) and shot thecavr245 yards (22403 cm).
Because Pope's information about the bow is not complete, vage not in a position to
imitate his experiments theoretically. However, a compason of his data with the results
in Table 4.29 shows that the trends of the in°uence of shortemy a bow, with respect to
weight and muzzle velocity or range, are the same. In Table34L we give the factord,,
in kgf cm/kg and dp, in kgf cm kg for the three bows Pope mentioned.

Second, we consider a number of static-recurve bows. In wHatlows we have some-
times the situation in which the weight of the bow is given fola draw di®erent from the
draw used during shooting the arrow. In these cases we approate the weight of the bow
using the slope of thesfd curve of the static-recurve bows with di®erent lengths, giaein
Figure 4.35, forb= 1 with

F(OD; + §= F(OD)+ & oo o T

@t_,b:jooj jODj

For L =-1:286 a nite di®erence approximation yield%f)_b:1 Y 1 and forL = 0:7857

we have&l .25
First, we consider two Tartar bows described by Pope in [15,age 23]. Both were 74
inches (187.96 cm) long. One weighed 2 pounds (.6804 kg) avoirdupois and pulled 30
pounds (13.6 kgf) when drawn 28 inches (71.12 cm). It shot a figarrow 310 grains (0.020
kg) in weight 100 yards (9140 cm). Thus for this bow we have = 1:32, m, = 0:0294,

dav = 97;000 kgfcm/kg andd,p, = 9:7 kgfcm/kg. The other bow weighed 3 44 pounds

¢ = F(jODj)+

- (4.163)
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Table 4.31: Comparison of various bows described in [14] and [15].

type ref. | F(jODj) | jODj | 2m, |[2m, |2L |2ms |range | d. ap
23.6 71.12| 0.020] | 195/ | 17,000| 168,000 16.8
longbow | [15] | 28.1 71.12] 0.020] | 188 | 21,000/ 200,000| 20.0
31.8 71.12| 0.020] | 173 | 22,500| 226,000| 22.6
Tartar [15] | 13.6 71.12| 0.020| 0.680| 188 | 9,140 | 97,000 | 9.7
46 73.66| 0.020| 1.47 | 188 0.057| 16,000( 339,000| 33.9
46 73.66| 0.020| 1.47 | 188 0.170| 8,230 | 339,000| 33.9
Tartar [15] | 47.6 76.2 | 0.113| 1.47 | 188| 0.057| 9,600 | 64,000 | 191.4
47.6 76.2 | 0.113| 1.47 | 188| 0.170| 9,140 | 64,000 | 191.4
Turkish | [15] | 39 73.66| 0.013] | 122 | 24,300| 442,000 28.7
39 73.66| 0.020] | 122 | | 22,860| 287,000 28.7
Turkish | [14] | 69 71.12| 0.014| 0.354| 114 | | 32,930| 701,000| 34.4.7

(1.5 kg) avoirdupois and when drawn 28 inches (71.12 cm) it bed 98 pounds (44.45 kgf).
The same °ight arrow 310 grains (.020 kg) in weight drawn 29 ihes (73.66 cm) shot only
90 yards (8230 cm) with a heavy string of 6 ounces (.17 kg) and@3 yards (16,000 cm)
with a light string, 2 ounces (.0567 kg) in weight. 1f we appsomate the weight of the
bow when drawn 73.66 cm by 46 kgf thed,, becomes 33®00 kgfcm/kg andd,, = 33:9
kgfcm kg. Pope shot also a war arrow 4 ounces (0.1134 kg) ap iright with this bow.
Drawing that arrow 30 inches (76.22 cm), the weight is than 4@ kgf approximately, it
°ew only 100 yards (9140 cm). In this case,, equals about 64,000 and,, about 191.4
and the dimensionless mass of tha, arrow ma equals 0.0769. Using the light string again
2 ounces (0.0567 kg) in weight, the same arrow °ew only 5 yardsther, thus 105 yards
(9600 cm).

Pope describes also a replica of a Turkish composite bow withhich he hoped to
exceed the American °ight record of 290 yards (26,500 cm) maddy Maxson in 1891.
Unfortunately, Pope does not mention the mass of the bow. Téibow weighed 85 pounds
(38.56 kgf) when drawn 29 inches (73.66 cm) and its length wd8 inches (121.92 cm).
It cast the arrow 310 grains (0.020 kg) in weight, 250 yards 2860 cm). In that case
day equals 287,000 and,, = 28:7. A 25-inch °ight arrow, 200 grains (0.013 kg) in weight
(shot with a groove) Pope was able to shoot 266 yards (24,30@)c In this case we have
day = 442;000 andd,, = 18:7.

In [14, page 3], Payne-Gallwey describes also a Turkish bowhe length of this bow
is 45 inches (114.3 cm), it weighed 12=2 ounces (0.354 kg) avoirdupois and pulled when
drawn 25 2 inches (64.77 cm) 118 pounds (53.5 kgf). When dra®8 inches (71.12 cm)
the weight is approximated by 69 kgf. Thend,, = 701;000 andd,, = 34:4. He shot 12
arrows, half an ounce (0.0142 kg) in weight each and the disize they travelled averaged
360 yards (32,900 cm). The dimensionless mass of the armoy = 0:04 for this bow arrow
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combination.

In Table 4.31 we collect the results. Besided,, and aap , one has to know the two
guality coezcients q and ~ to be able to estimate the performance of each bow-arrow
combination, but as we mentioned earlier we can give only rgh approximations for these
coezxcients because of lack of detailed information.

Comparison of the longbow with the weakest Tartar bow showshat the larger d,, of
the longbow is directly translated into a greater range. Obwusly the product q” is for
both bows about the same when we assume the range to be aboubpgmwrtional to the
square of the initial velocity of the arrowtT, see (4.161). The rather short range of the
huge Tartar bow is partly caused by the heavy string, as Popeonted out experimentally.
For a heavy string gives a bad exciency. In Section 4.7 we dealith the in°uence of the
mass of the string and we found that our results agree fairlyeMl with the results obtained
by using Hickman's rule. Hickman took the mass of the stringhito account by adding one
third of this mass to the mass of the arrow. In that case an appkimation of the maximum
exciency becomes (4.100)

My

max” Y4 ———
m, + 1=3mM;s

(4.164)

In the case of the static-recurve bow only the middle part ofrite string, thus not the loops
which rest against the ears at the moment the arrow leaves tlstring, has to be taken into
account. The mass of the middle part of the heavy string is albib0.7 times the total mass
of the string, thus 0.040 kg. In this case (4.164) yields a manxum exciency = = 0:34. For
the lighter string this value becomes, using the same appiiaxations 0.60. This explains
why the range when the light string is used, is about double thrange when the heavy
string is used. The dimensionless mass of the arrow, beingyo0.0136,is very small and
the results given in Table 4.28 show that this causes a smalt@ency too. This elucidates
the relative short range, even in the case of the light stringlespite the larged,,. A war
arrow is heavier, so in that case rst the maximum ezciency aceding to (4.164) with the
above made remarks with respect to the part of the string oneals to account for, becomes
larger, namely 0.74 and 0.89 forré, = :170 and 2Zng = 0:057, respectively. Second, the
dimension less mass of the arrow is larger and this impliesaththe e+ciency is not too
much smaller than the mentioned maxima. However, the factad,, is small for such a
bow-arrow combination. This implies the small muzzle veldty. Note that dq, is very large
for this bow shooting the heavy arrow. Using the above ap meaohed facts with respect
to static quality coexcient and exciency, (4.161) indicates bhat the linear momentum of
the war arrow is large.

For each bow there exists a minimum dimensionless mass of tagow for which the
arrow sticks to the string until the latter is stretched. Be@use short bows are light, the
minimum is also small. Further, the mass of the string compad with the mass of the
arrow is small and (11.23) indicates that the exciency can beogd. On the other hand,
from Tables 4.23 and 4.26 we conclude that the static qualitgoexcient of such a short
bow is rather bad in comparison with its value for longer bowsDespite this bad static
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quality coexcient, the large factord,, makes the short static-recurve bow in combination
av with a light arrow well adapted to °ight shooting.

In order to reduce the mass of the arrow and the drag of the amwoin the air, the Turk
shot °ight arrows shorter than the draw of the bow. This was mae possible by using a
horn groove siper"”) which they wore on the thumb ([14, page Dlor which was strapped
to the wrist ([10, page 106]) of the bow hand. These groovesided the arrow in safety
past the side of the bow. In Section 4.11 we saw that after amwoexit the string remains
free from such a groove when static-recurve bows with modezdrace heights are used. In
[14] Payne-Gallwey mentions that °ight arrows were shot fror800 to 800 yards (55,000 cm
to 73,150 cm) by certain famous Turkish archers. In [10, pad®9], Latham and Paterson
write that the greatest recorded distance achieved with a mal bow is 972 yards (88,880
cm). It was shot by the Ottoman sultan Selim 111in 1798. In Jure 1967 Harry Drake shot
851 yards 2 feet 9 inches (77,870 cm) and in September 1977 Boown shot 1,164 yards
2 feet 9 inches (106,520 cm).

For hunting and warfare the maximum range of the arrow is not alecisive quantity.
Then the amount of kinetic energy (4.144) is more importantrad also the linear momentum
(4.162). In that case, a heavier arrow gives a large exciencyéthus better performance,
however, there is some bound. Very heavy arrows obtain a vesynall velocity and besides
the increase of the kinetic energy with increasing mass ofdlarrow diminishes.

In [16] Rausing deals with the origin and development of theomposite bow. He argues
that the fact the static quality coexcient of the short static-recurve bow to be larger than
that of the short straight bow disposes the statement of PitRivers, Balfour, Clark and
also Beckho®:

“‘the composite bow has no inherent superiority over the woed self-bow, so
long as the latter was made from the most favourable kinds ofmber and
expertly used.'

In Section 4.11 we saw already that the short static-recurveow has no inherent better
performance than the long straight-end bow. On the other hal) much more energy per
unit of mass of limb can be stored in the fully drawn compositeow than in the wooden
bow. This must be the reason for the better performance of th&atic-recurve bow, if its
performance was better. Further, a short static-recurve b is easier in operation and is
therefore suited for the use on horse back.

4.13 Another check on our numerical method

The nite-di®erence method used in [8] met four requirementsirst, in the case of static
deformations, agreement with the solution of the shooting athod described in [9]. Second,
the sum of the potential and kinetic energy has to be constailuring the dynamic process
of shooting. Third, convergence of the results when the grigsed in the nite-di®erence
method, was re ned. Fourth, agreement with the solution obtmed by using the nite-
element method [8]. To be able to tackle the problems stated Section 4.3 of this paper,
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Figure 4.47: Cantilever beam, de°ection of
force F; and moment M; at the free end.

we had to introduce some changes in the nite-di®erence scheofe[8] and besides we
made some improvements (See Section 4.4). After every change checked the results
and found that the method described in Section 4.4 of this pap meets the rst three
requirements mentioned above. Because of the improvemerttse convergence we got was
even better that the convergence described in Section 4.4[8}. In this section we carry
out still another check.

The that end we consider a very simpli ed model of a bow, shown iFigure 4.47. In
this case the bow is a straight beam of length 1 with constantdmding sti®nessV = 1
and constant mass distributionV = 1. In the undeformed situation it coincides with part
of the y-axis and is clamped at the originO. At the free end there is xed a rigid body
with mass m; and moment of inertiaJ;. Another massm, is connected to the free end
of the beam by an inextensible string without mass as drawn iRigure 4.47. This mass
m, is allowed to move parallel to thex-axis. The length of this string is chosen so that in
the de°ected situationm, is at place (1,1). This initial de°ection is caused by a forc&;
acting upon ma and a bending momentM, applied upon the free end (Figure 4.47). The
external force actionsF; and M, are removed at timet = 0.

We assumeF; and M, to be suzciently small, so that the elementary linearized bea
theory can be applied. Then the equations of motion become

Ay:t) = | x°®:t); 0<y< 1;t> 0: (4.165)
The boundary conditions are fort > 0,
x(0:t) = xY0;t) =0 ; (4.166)
IRLY) = i xRLt) 5 (ma+ mOAL; 1) = xRt (4.167)
The initial conditions read
X(y;0) = j 1=6 Fyy®+1=2 (F  + M)y?; x(y;0)=0;0- y- 1: (4.168)

Here the prime indicates partial di®erentiation with respedo y. We observe that these
equations are the linearized versions of the equations ofcBen 4.3.
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In order to obtain an analytic solution we use the Laplace tnasform technique with
respect to the time variablet. The Laplace transform of the functionx(y;t), occurring in
equations (4.165¢ ¢@®.168), denoted byX (y; p) equals

Zl
Xip = exth ptox(y; )dt £ Xa(y; P+ Xa(y; P ; (4.169)

where
X1(y;p) = i (156 Fry®+1=2 (Fi + My)y?)=p; (4.170)
and
£ P_ . P — P — p_— =
Xo(y;p) = A(sinh ipyj sin ipy)+ B(cosh ipyj cos ipy) =pC (4.171)
with
' — — — — ¢
A(p) = i Ftlcosp ip +(:oshp ip i ipp ith(sinhp ip +sin P ip)
i M¢ ipsinh ipj sin ip+(m,+ myip(cosh ip i ¢cos ip) ;
B(p) = i Ftl_sinp ip+sinh ipj ip ipJi(cosh ipj cos ip)
+ M, ipcosh ip+cos ipi (Ma+ m)ip(sin' ipi sinh ip)
C(p) = | 2ipp ip 1+cos ipcosh ipj (ma+ m) ip(sin ipcosh ipij sinh” EcosIO ip)
i Jip ip(sinh’ ipcos ip+sin ipcosh ip)
— __ &
i (Ma+ m)Jp?(Li cosp ip i coshp ip) ; (4.172)
where p is a complex variable. This complex-valued functiorX (y; p) has simple poles,
which are the zeros of the functiorC(p) in (4.172), on the imaginary axis. It is easy to

show that there is no singularity in the originp = 0, this re°ects the fact that the cantilever
vibrates about its position of equilibriumx = 0. The inverse Laplace transformx(y;t) of

X(y;p) is
1 VAN
X(y:t) = 5 lim . expf ptgX (y; p)dp ; (4.173)
wherey > 0. Because the poles of (y; p) are simple andX ,(y; p) has a so called fractional
form, x(y;t) can be represented formally by an in nite series, in nite beause there is an
in nite number of poles.
The formal solution becomes

b3
x(y;t)=2  cos@t)xn(y) ; (4.174)

n=1
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where

Xn(Y) :Ethi singy(1i y)+sinhqp(1j y)+
coshg, singhy i cosg,y sinhg, + sin g, coshg,y | cosq, sinhg,y
+ pJi(i costh(1i y)i coshh(Li V)i
sinhg, singyy + cosg,y coshg, + cosg, coshg,y + sin ¢, sinhg,y)g
+ Mifa(i cosgh(1i y)+cosho,(li y)+
sinhq, singhy | cosg,y coshg, + cosg, cosha,y + sin ¢, sinhg,y)
+ (Mg + M)GE(sing, (1 y)+sinh gy(1i y)+ y
c:é)shq1 singhyj cosgysinhg, i sing, coshg,y + cosq, sinhg,y)g
= (ff (sing, coshg, i sinhg, cosg,)(m, + me + 1) + 2( m, + m,)g, sing, sinhg,
+ 3J, ¢ (sinh g, cosg, + sin ¢, coshg,)
(i 2] i tcoshg, cosg, +4(my + my)Ji(1 cc])mshq1 COSth))
i (ma+ m)Jf(sing, coshg, | sinhg, cosg,)g : (4.175)

The g, 2 R, n=1;2¢ ¢ ®cceurring in (4.174) and (4.175) follow from

1+ cosq, coshg, i (ma + my)gh(sing, coshg, | sinhg, cosq,)
i JiG(sinhq, cosg, + sin ¢, coshg,) + (Mg + my)Jif (1 cosg, i coshg,) =0 ; (4.176)

To obtain an expression for the functionx@y;0), 0- y - 1, we use the initial value
theorem ([17, page 185, theorem 4]). This theorem states th# the function f(t) satis es
the inequality jf (t)j <M expf ®tg, for all t > 0, M being a positive constant, then

z 1
lim expfi ptgf (t)dt =Ilim f (t) : (4.177)
p!1 0 t#0

We consider separately two di®erent cases. First 6 0, m; 6 0, m, 6 0, M; =0 and
Ji =0, than we get

.. i Ft

Ay;07)=0;0- y<1;)©(1;0):ma+mt. (4.178)

Second,F; 6 0, m; 60, m, 6 0, M, 6 0 and J, 6 0, then we have besides (4.178).
i My

t

#1;07) = (4.179)

In what follows we compare the analytic solution of the line&ed version of the problem
(in fact a numerical approximation) with the numerical appioximation obtained by using
the nite-di®erence method of Section 4.4.

As a matter of fact we can compare the analytic solution withhe results of two nite-
di®erence schemes. The rst scheme is given in Section 4.4. Beeond scheme is the
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Figure 4.48: Acceleration %(1;t) of the free end: (top) Tnite di®erence and (bottom) analytic
situation, bow (4.180).

linearized version of the rst one, it is a nite- di®erence schaee which belongs to the
equations of motion (4.165) ¢@.168). It turned out that for the cases we will consider,
the results of both schemes are almost equal. So, in the fellag we mention only results
obtained by the non-linear di®erence scheme.

First, we consider the bow

B(1;i 1,1,1,0:1,0;0;1 ;0;0:95; 1 1;1): (4.180)

In Figure 4.48 we draw the analytic solution for the casg; = 0:15,m; =0, m, =0:1, M, =

0, J; = 0 of the function A(1;t) and the approximation of this function, or actually E=m,,
calculated by means of the nite-di®erence method. We conckidor this acceleration of
the free end, that there is not a point wise agreement betwedhe analytic solution and
the approximation. Taking the highly °uctuating behaviour o the analytic solution into
account, this is not surprising. For the nite-di®erence apmximation neglects higher order
terms in the Taylor expansion of the solution. However, theris good global resemblance.
This is also expressed by the fact that the integral of thesarictions fromt = 0, hence the
velocities of the free endk(1;t) show a good correspondence, see Figure 4.49.
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Figure 4.49: Velocity x(1;t) of the free end: (top) nite di®erence and (bottom) analytic situa-
tion, bow (4.180).

Further for lim t # 0 the accelerationxfi; t) converges to the value given by (4.178) for
the analytic solution as well as for the approximation.

This notwithstanding the fact that there are large °uctuations of the solution near the
free end shortly after removal of the external forces. Theswictuations are connected
to the discontinuity as a function ofy of lim&(y;t) at the free endy = 1, given by
equations in (A.14). It is also this discontinuity which cages some problems with the use
of the crank-Nicolson scheme. In this scheme flr= 0, the second term on the right-hand
side of equation (4.45) fofj = ngis 0, according to the solution of the static equations, but
it has to possess a value given by equation (4.178)F=(m, + m¢). So, one way to solve
the dixculties is to adjust the value of the mentioned term. Havever, for a real bow, thus
solving the non-linear equations of motion, we have no andily expression at our disposal.
One can also drop equations (4.45) and (4.46) fpr= ng and use in the boundary conditions
at the tip non-symmetric nite-di®erences, as we did in [8]. Buespecially because of the
presence of a rigid body possessing a moment of inertia (Etjoa (4.14) or (4.41)) we did
not use this scheme in this paper. Another way to avoid the us® the acceleration at the
free end fort = 0 is applied in this paper by taking® =1, thus a fully implicit backward
time di®erence-scheme for the rst time step. In [8] we used edrdy this method in order
to avoid the use of the normal forcdl at t = O in the case of a bow with an inextensible
string and concentrated masses at the tips.

Figure 4.50 shows the acceleration of the free end as funatiof time, both the analytic
solution, in the caseF; = 0:075,m; =0, my; =0:1, M; = 0:05, J; = 0:1, and the numerical
approximation in the case of the bow

B(1;i 1,1;,1;0:1,0;0:1;1 ;0;0:95; 1, 0:1505 1) ; (4.181)
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Figure 4.50: Acceleration %(1;t) of the free end: (top) Tnite di®erence and (bottom) analytic
situation, bow (4.181).

where we adapted the boundary conditions of the static niteli®erence equations in an
obvious way, in order to take the bending momeni; = 0:05 exerted at the free end, into
account. In Figure 4.51 we draw the velociti(1;t), the analytic solution as well as the
numerical approximation. From the Figures 4.50 and 4.51 theame conclusions can be
drawn as those given above. Again the values &f{Zt) converge fort # 0 to the value
given by (4.179).

The obtained results show the limitedness of the utility oftie nite-di®erence method
when the solution which is approximated is rather unsteadyHowever, for a real bow there
are good reasons to presume the solutions to be smoother. sEithe mass and sti®ness
distribution along most bows are not constant for the limbs i@ tapered to the tips. In [8] we
compared already the performance of a bow with constant sti®s and mass distribution
with that of a bow with limbs tapered o®, and we found that thedfd curve of the last
mentioned bow was much smoother. Second, for a real bow thersl) possesses elasticity
and computations showed that this elasticity gives some srothing e®ect.
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Figure 4.51: Velocity x(1;t) of the free end: (top) nite di®erence and (bottom) analytic situa-
tion, bow (4.181).
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